--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: options list: string - name: answer dtype: string - name: task_plan dtype: string - name: video dtype: binary splits: - name: video_3d_what_move num_bytes: 13156784 num_examples: 408 - name: video_3d_where_move num_bytes: 11911124 num_examples: 402 - name: video_3d_what_attribute_move num_bytes: 11401767 num_examples: 390 - name: video_3d_what_rotate num_bytes: 17223350 num_examples: 411 - name: video_3d_where_rotate num_bytes: 14860244 num_examples: 378 - name: video_3d_what_attribute_rotate num_bytes: 15306580 num_examples: 405 - name: video_sg_what_object num_bytes: 654650009 num_examples: 387 - name: video_sg_what_relation num_bytes: 707499456 num_examples: 411 - name: video_sg_what_action num_bytes: 636426745 num_examples: 375 download_size: 748458643 dataset_size: 2082436059 configs: - config_name: default data_files: - split: video_3d_what_move path: data/video_3d_what_move-* - split: video_3d_where_move path: data/video_3d_where_move-* - split: video_3d_what_attribute_move path: data/video_3d_what_attribute_move-* - split: video_3d_what_rotate path: data/video_3d_what_rotate-* - split: video_3d_where_rotate path: data/video_3d_where_rotate-* - split: video_3d_what_attribute_rotate path: data/video_3d_what_attribute_rotate-* - split: video_sg_what_object path: data/video_sg_what_object-* - split: video_sg_what_relation path: data/video_sg_what_relation-* - split: video_sg_what_action path: data/video_sg_what_action-* --- # Dataset Card for TaskMeAnything-v1-videoqa-2024

TaskMeAnything-v1-videoqa-2024 benchmark dataset

🌐 Website | 📑 Paper | 🤗 Huggingface | 💻 Interface

If you like our project, please give us a star ⭐ on GitHub for latest update.
## TaskMeAnything-v1-2024-Videoqa [TaskMeAnything-v1-videoqa-2024](https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-videoqa-2024) is a benchmark for reflecting the current progress of MLMs by `automatically` finding tasks that SOTA MLMs struggle with using the TaskMeAnything Top-K queries. This benchmark includes 2,394 3d video questions and 1,173 real video questions that the TaskMeAnything algorithm automatically approximated as challenging for over 12 popular MLMs. The dataset contains 19 splits, while each splits contains 300+ questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: video, question, options, answer and its corresponding task plan. ## Load TaskMeAnything-v1-2024 VideoQA Dataset ``` import datasets dataset_name = 'weikaih/TaskMeAnything-v1-videoqa-2024' dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT) ``` where `TASK_GENERATOR_SPLIT` is one of the task generators, eg, `2024_2d_how_many`. ## Evaluation Results ### Overall ![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/_KadJKJSHhZXXfIfePaUg.png) ### Breakdown performance on each task types ![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/-DrQ90FuGatJE4CuHsWS9.png) ![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/6D33K2tSc1OYF4_f6YJ63.png) ![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/eKzh5ghGNVrCluVmnkZW0.png) ![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/sm8dAmjxsXmJu8oeqLaeQ.png) ## Out-of-Scope Use This dataset should not be used for training models. ## Disclaimers **TaskMeAnything** and its associated resources are provided for research and educational purposes only. The authors and contributors make no warranties regarding the accuracy or reliability of the data and software. Users are responsible for ensuring their use complies with applicable laws and regulations. The project is not liable for any damages or losses resulting from the use of these resources. ## Contact - Jieyu Zhang: jieyuz2@cs.washington.edu ## Citation **BibTeX:** ```bibtex @article{zhang2024task, title={Task Me Anything}, author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay}, journal={arXiv preprint arXiv:2406.11775}, year={2024} } ```