---
dataset_info:
features:
- name: id
dtype: string
- name: question
dtype: string
- name: options
list: string
- name: answer
dtype: string
- name: task_plan
dtype: string
- name: video
dtype: binary
splits:
- name: video_3d_what_move
num_bytes: 13156784
num_examples: 408
- name: video_3d_where_move
num_bytes: 11911124
num_examples: 402
- name: video_3d_what_attribute_move
num_bytes: 11401767
num_examples: 390
- name: video_3d_what_rotate
num_bytes: 17223350
num_examples: 411
- name: video_3d_where_rotate
num_bytes: 14860244
num_examples: 378
- name: video_3d_what_attribute_rotate
num_bytes: 15306580
num_examples: 405
- name: video_sg_what_object
num_bytes: 654650009
num_examples: 387
- name: video_sg_what_relation
num_bytes: 707499456
num_examples: 411
- name: video_sg_what_action
num_bytes: 636426745
num_examples: 375
download_size: 748458643
dataset_size: 2082436059
configs:
- config_name: default
data_files:
- split: video_3d_what_move
path: data/video_3d_what_move-*
- split: video_3d_where_move
path: data/video_3d_where_move-*
- split: video_3d_what_attribute_move
path: data/video_3d_what_attribute_move-*
- split: video_3d_what_rotate
path: data/video_3d_what_rotate-*
- split: video_3d_where_rotate
path: data/video_3d_where_rotate-*
- split: video_3d_what_attribute_rotate
path: data/video_3d_what_attribute_rotate-*
- split: video_sg_what_object
path: data/video_sg_what_object-*
- split: video_sg_what_relation
path: data/video_sg_what_relation-*
- split: video_sg_what_action
path: data/video_sg_what_action-*
---
# Dataset Card for TaskMeAnything-v1-videoqa-2024
TaskMeAnything-v1-videoqa-2024 benchmark dataset
If you like our project, please give us a star ⭐ on GitHub for latest update.
## TaskMeAnything-v1-2024-Videoqa
[TaskMeAnything-v1-videoqa-2024](https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-videoqa-2024) is a benchmark for reflecting the current progress of MLMs by `automatically` finding tasks that SOTA MLMs struggle with using the TaskMeAnything Top-K queries.
This benchmark includes 2,394 3d video questions and 1,173 real video questions that the TaskMeAnything algorithm automatically approximated as challenging for over 12 popular MLMs.
The dataset contains 19 splits, while each splits contains 300+ questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: video, question, options, answer and its corresponding task plan.
## Load TaskMeAnything-v1-2024 VideoQA Dataset
```
import datasets
dataset_name = 'weikaih/TaskMeAnything-v1-videoqa-2024'
dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT)
```
where `TASK_GENERATOR_SPLIT` is one of the task generators, eg, `2024_2d_how_many`.
## Evaluation Results
### Overall
![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/_KadJKJSHhZXXfIfePaUg.png)
### Breakdown performance on each task types
![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/-DrQ90FuGatJE4CuHsWS9.png)
![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/6D33K2tSc1OYF4_f6YJ63.png)
![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/eKzh5ghGNVrCluVmnkZW0.png)
![video/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/sm8dAmjxsXmJu8oeqLaeQ.png)
## Out-of-Scope Use
This dataset should not be used for training models.
## Disclaimers
**TaskMeAnything** and its associated resources are provided for research and educational purposes only.
The authors and contributors make no warranties regarding the accuracy or reliability of the data and software.
Users are responsible for ensuring their use complies with applicable laws and regulations.
The project is not liable for any damages or losses resulting from the use of these resources.
## Contact
- Jieyu Zhang: jieyuz2@cs.washington.edu
## Citation
**BibTeX:**
```bibtex
@article{zhang2024task,
title={Task Me Anything},
author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay},
journal={arXiv preprint arXiv:2406.11775},
year={2024}
}
```