File size: 6,783 Bytes
e3d13e5
 
 
 
 
4b41596
e3d13e5
4b41596
e3d13e5
 
 
 
 
 
 
 
 
0874a8d
4c7de3c
69b2996
0874a8d
 
2a67722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b5200
 
 
2a67722
 
e3d13e5
 
988bd87
e3d13e5
 
 
 
4c7de3c
e3d13e5
 
 
4c7de3c
 
e3d13e5
 
 
 
 
 
 
 
 
 
 
 
 
259842d
e3d13e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988bd87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d13e5
 
 
 
 
988bd87
 
 
e3d13e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259842d
 
 
0874a8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids: []
paperswithcode_id: hybridqa
pretty_name: HybridQA
tags:
- multihop-tabular-text-qa
dataset_info:
  features:
  - name: question_id
    dtype: string
  - name: question
    dtype: string
  - name: table_id
    dtype: string
  - name: answer_text
    dtype: string
  - name: question_postag
    dtype: string
  - name: table
    struct:
    - name: url
      dtype: string
    - name: title
      dtype: string
    - name: header
      sequence: string
    - name: data
      list:
      - name: value
        dtype: string
      - name: urls
        list:
        - name: url
          dtype: string
        - name: summary
          dtype: string
    - name: section_title
      dtype: string
    - name: section_text
      dtype: string
    - name: uid
      dtype: string
    - name: intro
      dtype: string
  config_name: hybrid_qa
  splits:
  - name: train
    num_bytes: 2745712769
    num_examples: 62682
  - name: validation
    num_bytes: 153512016
    num_examples: 3466
  - name: test
    num_bytes: 148795919
    num_examples: 3463
  download_size: 217436855
  dataset_size: 3048020704
---

# Dataset Card for HybridQA

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** -
- **Repository:** [GitHub](https://github.com/wenhuchen/HybridQA)
- **Paper:** [HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data](https://arxiv.org/abs/1909.05358)
- **Leaderboard:** [HybridQA Competition](https://competitions.codalab.org/competitions/24420)
- **Point of Contact:** [Wenhu Chen](wenhuchen@cs.ucsb.edu)


### Dataset Summary

Existing question answering datasets focus on dealing with homogeneous information, based either only on text or
KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms,
using homogeneous information alone might lead to severe coverage problems.
To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that
requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table
and multiple free-form corpora linked with the entities in the table. The questions are designed
to aggregate both tabular information and text information, i.e.,
lack of either form would render the question unanswerable.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The dataset is in English language.

## Dataset Structure

### Data Instances

A typical example looks like this

```
{
    "question_id": "00009b9649d0dd0a",
    "question": "Who were the builders of the mosque in Herat with fire temples ?",
    "table_id": "List_of_mosques_in_Afghanistan_0",
    "answer_text": "Ghurids",
    "question_postag": "WP VBD DT NNS IN DT NN IN NNP IN NN NNS .",
    "table": {
        "url": "https://en.wikipedia.org/wiki/List_of_mosques_in_Afghanistan",
        "title": "List of mosques in Afghanistan",
        "header": [
            "Name",
            "Province",
            "City",
            "Year",
            "Remarks"
        ],
        "data": [
            {
                "value": "Kabul",
                "urls": [
                    {
                        "summary": "Kabul ( Persian : کابل , romanized : Kābol , Pashto : کابل , romanized : Kābəl ) is the capital and largest city of Afghanistan...",
                        "url": "/wiki/Kabul"
                    }
                ]
            }
        ]
    },
    "section_title": "",
    "section_text": "",
    "uid": "List_of_mosques_in_Afghanistan_0",
    "intro": "The following is an incomplete list of large mosques in Afghanistan:"
}
```

### Data Fields

- `question_id` (str)
- `question` (str)
- `table_id` (str)
- `answer_text` (str)
- `question_postag` (str)
- `table` (dict):
  - `url` (str)
  - `title` (str)
  - `header` (list of str)
  - `data` (list of dict):
    - `value` (str)
    - `urls` (list of dict):
      - `url` (str)
      - `summary` (str)
- `section_title` (str)
- `section_text` (str)
- `uid` (str)
- `intro` (str)

### Data Splits

The dataset is split into `train`, `dev` and `test` splits.

|                 | train | validation | test |
| --------------- |------:|-----------:|-----:|
| N. Instances    | 62682 |       3466 | 3463 |


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]
```
@article{chen2020hybridqa,
  title={HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data},
  author={Chen, Wenhu and Zha, Hanwen and Chen, Zhiyu and Xiong, Wenhan and Wang, Hong and Wang, William},
  journal={Findings of EMNLP 2020},
  year={2020}
}
```
### Contributions

Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.