Upload NCR.py
Browse files
NCR.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
import json
|
19 |
+
|
20 |
+
_CITATION = """
|
21 |
+
|
22 |
+
"""
|
23 |
+
|
24 |
+
_DESCRIPTION = """
|
25 |
+
"""
|
26 |
+
|
27 |
+
_HOMEPAGE = ""
|
28 |
+
|
29 |
+
# TODO: Add the licence for the dataset here if you can find it
|
30 |
+
_LICENSE = ""
|
31 |
+
|
32 |
+
_URLS = {
|
33 |
+
"train": "https://huggingface.co/datasets/wics/NCR/resolve/main/train_2.json",
|
34 |
+
"validation": "https://huggingface.co/datasets/wics/NCR/resolve/main/dev_2.json",
|
35 |
+
"test": "https://huggingface.co/datasets/wics/NCR/resolve/main/test_2.json",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
class NCR(datasets.GeneratorBasedBuilder):
|
40 |
+
|
41 |
+
|
42 |
+
VERSION = datasets.Version("0.0.1")
|
43 |
+
|
44 |
+
BUILDER_CONFIGS = [
|
45 |
+
datasets.BuilderConfig(
|
46 |
+
name="NCR", version=VERSION, description="Chinese dataset."
|
47 |
+
),
|
48 |
+
]
|
49 |
+
|
50 |
+
def _info(self):
|
51 |
+
features = datasets.Features(
|
52 |
+
{
|
53 |
+
"example_id": datasets.Value("string"),
|
54 |
+
"article": datasets.Value("string"),
|
55 |
+
"answer": datasets.Value("string"),
|
56 |
+
"question": datasets.Value("string"),
|
57 |
+
"options": datasets.features.Sequence(datasets.Value("string"))
|
58 |
+
}
|
59 |
+
)
|
60 |
+
return datasets.DatasetInfo(
|
61 |
+
description=_DESCRIPTION,
|
62 |
+
features=features,
|
63 |
+
homepage=_HOMEPAGE,
|
64 |
+
license=_LICENSE,
|
65 |
+
citation=_CITATION,
|
66 |
+
)
|
67 |
+
|
68 |
+
def _split_generators(self, dl_manager):
|
69 |
+
urls = {
|
70 |
+
"train": _URLS["train"],
|
71 |
+
"test": _URLS["test"],
|
72 |
+
"validation": _URLS["validation"],
|
73 |
+
}
|
74 |
+
data_dir = dl_manager.download_and_extract(urls)
|
75 |
+
return [
|
76 |
+
datasets.SplitGenerator(
|
77 |
+
name=datasets.Split.TRAIN,
|
78 |
+
# These kwargs will be passed to _generate_examples
|
79 |
+
gen_kwargs={
|
80 |
+
"filepath": data_dir["train"],
|
81 |
+
"split": "train",
|
82 |
+
},
|
83 |
+
),
|
84 |
+
datasets.SplitGenerator(
|
85 |
+
name=datasets.Split.TEST,
|
86 |
+
# These kwargs will be passed to _generate_examples
|
87 |
+
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
|
88 |
+
),
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.VALIDATION,
|
91 |
+
# These kwargs will be passed to _generate_examples
|
92 |
+
gen_kwargs={
|
93 |
+
"filepath": data_dir["validation"],
|
94 |
+
"split": "validation",
|
95 |
+
},
|
96 |
+
),
|
97 |
+
]
|
98 |
+
|
99 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
100 |
+
def _generate_examples(self, train_test_or_eval, files):
|
101 |
+
"""Yields examples."""
|
102 |
+
for file_idx, (path, f) in enumerate(files):
|
103 |
+
if path.startswith(train_test_or_eval) and path.endswith(".txt"):
|
104 |
+
data = json.loads(f.read().decode("utf-8"))
|
105 |
+
questions = data["Questions"]
|
106 |
+
for i in range(len(questions)):
|
107 |
+
question = questions[i]
|
108 |
+
|
109 |
+
yield f"{file_idx}_{i}", {
|
110 |
+
"example_id": data["Id"],
|
111 |
+
"article": data["Content"],
|
112 |
+
"question": question["Question"],
|
113 |
+
"answer": question["Answer"],
|
114 |
+
"options": question["Choices"],
|
115 |
+
}
|
116 |
+
|