# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datasets import json _CITATION = """ """ _DESCRIPTION = """ """ _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" _URLS = { "train": "https://raw.githubusercontent.com/wicsaax/NCR/main/train_2.json", "validation": "https://raw.githubusercontent.com/wicsaax/NCR/main/dev_2.json", "test": "https://raw.githubusercontent.com/wicsaax/NCR/main/test_2.json", } class NCR(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="NCR", version=VERSION, description="Chinese dataset." ), ] def _info(self): features = datasets.Features( { "example_id": datasets.Value("string"), "article": datasets.Value("string"), "answer": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.features.Sequence(datasets.Value("string")) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = { "train": _URLS["train"], "test": _URLS["test"], "validation": _URLS["validation"], } data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir["train"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": data_dir["test"], "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir["validation"], "split": "validation", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): def pure(sens): if sens.startswith('A') or sens.startswith('B') or sens.startswith('C') or sens.startswith('D'): sens = sens[1:] if sens.startswith('.') or sens.startswith('.'): sens = sens[1:] return sens.strip() with open(filepath, encoding="utf-8") as f: data = json.loads(f.read()) for article_idx,single_data in enumerate(data): questions = single_data["Questions"] for i in range(len(questions)): question = questions[i] options = [pure(i) for i in question["Choices"]] yield f"{article_idx}_{i}", { "example_id": single_data["ID"], "article": single_data["Content"], "question": question["Question"], "answer": question["Answer"], "options": options, }