ceval / ceval.py
wics's picture
Update ceval.py
a9bac0f
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datasets
import json
_CITATION = """
"""
_DESCRIPTION = """
"""
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_URLS = {
"validation": "https://raw.githubusercontent.com/wicsaax/ceval/main/ceval_val.json",
}
class ceval(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.2")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="ceval", version=VERSION, description="Chinese eval dataset."
),
]
def _info(self):
features = datasets.Features(
{
"subject": datasets.Value("string"),
"question": datasets.Value("string"),
"ideal": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = {
"validation": _URLS["validation"]
}
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_dir["validation"], "split": "validation"},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, 'r', encoding="utf-8") as f:
print(filepath)
data = json.loads(f.read())
for idx, single_data in enumerate(data):
yield f"{idx}", single_data