Datasets:
wmt
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
File size: 41,398 Bytes
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb7526
 
 
cc97560
a4f2eab
cc97560
a4f2eab
 
 
cc97560
a4f2eab
 
 
 
 
 
cc97560
 
 
 
 
 
a4f2eab
 
 
 
 
 
 
cc97560
 
 
 
 
 
 
 
02f44e7
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02f44e7
 
cc97560
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
80983fa
 
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
80983fa
 
cc97560
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
deb7526
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80983fa
 
cc97560
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63646c9
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
deb7526
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
a4f2eab
cc97560
 
a4f2eab
 
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
a4f2eab
 
cc97560
 
 
 
deb7526
cc97560
 
deb7526
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
 
 
 
 
 
 
cc97560
 
 
 
 
 
d485594
cc97560
 
 
deb7526
cc97560
 
 
d485594
 
 
cc97560
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
d485594
cc97560
 
 
 
d485594
cc97560
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
d485594
cc97560
 
 
 
 
d485594
cc97560
 
d485594
cc97560
d485594
cc97560
 
 
d485594
 
 
 
 
 
 
cc97560
 
 
 
1e16d6f
cc97560
 
 
d485594
 
 
 
 
 
 
 
cc97560
d485594
cc97560
 
 
 
d485594
 
 
 
 
 
 
 
 
 
 
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
 
cc97560
 
d485594
cc97560
 
 
 
d485594
 
 
 
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02f44e7
 
cc97560
 
 
 
 
 
d485594
cc97560
 
d485594
 
cc97560
 
 
 
 
 
 
deb7526
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb7526
cc97560
 
 
 
 
 
 
 
 
 
 
 
 
 
d485594
cc97560
 
 
 
 
 
 
 
 
 
 
deb7526
cc97560
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""WMT: Translate dataset."""


import codecs
import functools
import glob
import gzip
import itertools
import os
import re
import xml.etree.cElementTree as ElementTree

import datasets


logger = datasets.logging.get_logger(__name__)


_DESCRIPTION = """\
Translation dataset based on the data from statmt.org.

Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:

```python
from datasets import inspect_dataset, load_dataset_builder

inspect_dataset("wmt15", "path/to/scripts")
builder = load_dataset_builder(
    "path/to/scripts/wmt_utils.py",
    language_pair=("fr", "de"),
    subsets={
        datasets.Split.TRAIN: ["commoncrawl_frde"],
        datasets.Split.VALIDATION: ["euelections_dev2019"],
    },
)

# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()

# Streamable version
ds = builder.as_streaming_dataset()
```

"""


CWMT_SUBSET_NAMES = ["casia2015", "casict2011", "casict2015", "datum2015", "datum2017", "neu2017"]


class SubDataset:
    """Class to keep track of information on a sub-dataset of WMT."""

    def __init__(self, name, target, sources, url, path, manual_dl_files=None):
        """Sub-dataset of WMT.

        Args:
          name: `string`, a unique dataset identifier.
          target: `string`, the target language code.
          sources: `set<string>`, the set of source language codes.
          url: `string` or `(string, string)`, URL(s) or URL template(s) specifying
            where to download the raw data from. If two strings are provided, the
            first is used for the source language and the second for the target.
            Template strings can either contain '{src}' placeholders that will be
            filled in with the source language code, '{0}' and '{1}' placeholders
            that will be filled in with the source and target language codes in
            alphabetical order, or all 3.
          path: `string` or `(string, string)`, path(s) or path template(s)
            specifing the path to the raw data relative to the root of the
            downloaded archive. If two strings are provided, the dataset is assumed
            to be made up of parallel text files, the first being the source and the
            second the target. If one string is provided, both languages are assumed
            to be stored within the same file and the extension is used to determine
            how to parse it. Template strings should be formatted the same as in
            `url`.
          manual_dl_files: `<list>(string)` (optional), the list of files that must
            be manually downloaded to the data directory.
        """
        self._paths = (path,) if isinstance(path, str) else path
        self._urls = (url,) if isinstance(url, str) else url
        self._manual_dl_files = manual_dl_files if manual_dl_files else []
        self.name = name
        self.target = target
        self.sources = set(sources)

    def _inject_language(self, src, strings):
        """Injects languages into (potentially) template strings."""
        if src not in self.sources:
            raise ValueError(f"Invalid source for '{self.name}': {src}")

        def _format_string(s):
            if "{0}" in s and "{1}" and "{src}" in s:
                return s.format(*sorted([src, self.target]), src=src)
            elif "{0}" in s and "{1}" in s:
                return s.format(*sorted([src, self.target]))
            elif "{src}" in s:
                return s.format(src=src)
            else:
                return s

        return [_format_string(s) for s in strings]

    def get_url(self, src):
        return self._inject_language(src, self._urls)

    def get_manual_dl_files(self, src):
        return self._inject_language(src, self._manual_dl_files)

    def get_path(self, src):
        return self._inject_language(src, self._paths)


# Subsets used in the training sets for various years of WMT.
_TRAIN_SUBSETS = [
    # pylint:disable=line-too-long
    SubDataset(
        name="commoncrawl",
        target="en",  # fr-de pair in commoncrawl_frde
        sources={"cs", "de", "es", "fr", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-commoncrawl.zip",
        path=("commoncrawl.{src}-en.{src}", "commoncrawl.{src}-en.en"),
    ),
    SubDataset(
        name="commoncrawl_frde",
        target="de",
        sources={"fr"},
        url=(
            "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/fr-de/bitexts/commoncrawl.fr.gz",
            "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/fr-de/bitexts/commoncrawl.de.gz",
        ),
        path=("", ""),
    ),
    SubDataset(
        name="czeng_10",
        target="en",
        sources={"cs"},
        url="http://ufal.mff.cuni.cz/czeng/czeng10",
        manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
        # Each tar contains multiple files, which we process specially in
        # _parse_czeng.
        path=("data.plaintext-format/??train.gz",) * 10,
    ),
    SubDataset(
        name="czeng_16pre",
        target="en",
        sources={"cs"},
        url="http://ufal.mff.cuni.cz/czeng/czeng16pre",
        manual_dl_files=["czeng16pre.deduped-ignoring-sections.txt.gz"],
        path="",
    ),
    SubDataset(
        name="czeng_16",
        target="en",
        sources={"cs"},
        url="http://ufal.mff.cuni.cz/czeng",
        manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
        # Each tar contains multiple files, which we process specially in
        # _parse_czeng.
        path=("data.plaintext-format/??train.gz",) * 10,
    ),
    SubDataset(
        # This dataset differs from the above in the filtering that is applied
        # during parsing.
        name="czeng_17",
        target="en",
        sources={"cs"},
        url="http://ufal.mff.cuni.cz/czeng",
        manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
        # Each tar contains multiple files, which we process specially in
        # _parse_czeng.
        path=("data.plaintext-format/??train.gz",) * 10,
    ),
    SubDataset(
        name="dcep_v1",
        target="en",
        sources={"lv"},
        url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/dcep.lv-en.v1.zip",
        path=("dcep.en-lv/dcep.lv", "dcep.en-lv/dcep.en"),
    ),
    SubDataset(
        name="europarl_v7",
        target="en",
        sources={"cs", "de", "es", "fr"},
        url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-europarl-v7.zip",
        path=("training/europarl-v7.{src}-en.{src}", "training/europarl-v7.{src}-en.en"),
    ),
    SubDataset(
        name="europarl_v7_frde",
        target="de",
        sources={"fr"},
        url=(
            "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/fr-de/bitexts/europarl-v7.fr.gz",
            "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/fr-de/bitexts/europarl-v7.de.gz",
        ),
        path=("", ""),
    ),
    SubDataset(
        name="europarl_v8_18",
        target="en",
        sources={"et", "fi"},
        url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/training-parallel-ep-v8.zip",
        path=("training/europarl-v8.{src}-en.{src}", "training/europarl-v8.{src}-en.en"),
    ),
    SubDataset(
        name="europarl_v8_16",
        target="en",
        sources={"fi", "ro"},
        url="https://huggingface.co/datasets/wmt/wmt16/resolve/main-zip/translation-task/training-parallel-ep-v8.zip",
        path=("training-parallel-ep-v8/europarl-v8.{src}-en.{src}", "training-parallel-ep-v8/europarl-v8.{src}-en.en"),
    ),
    SubDataset(
        name="europarl_v9",
        target="en",
        sources={"cs", "de", "fi", "lt"},
        url="https://huggingface.co/datasets/wmt/europarl/resolve/main/v9/training/europarl-v9.{src}-en.tsv.gz",
        path="",
    ),
    SubDataset(
        name="gigafren",
        target="en",
        sources={"fr"},
        url="https://huggingface.co/datasets/wmt/wmt10/resolve/main-zip/training-giga-fren.zip",
        path=("giga-fren.release2.fixed.fr.gz", "giga-fren.release2.fixed.en.gz"),
    ),
    SubDataset(
        name="hindencorp_01",
        target="en",
        sources={"hi"},
        url="http://ufallab.ms.mff.cuni.cz/~bojar/hindencorp",
        manual_dl_files=["hindencorp0.1.gz"],
        path="",
    ),
    SubDataset(
        name="leta_v1",
        target="en",
        sources={"lv"},
        url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/leta.v1.zip",
        path=("LETA-lv-en/leta.lv", "LETA-lv-en/leta.en"),
    ),
    SubDataset(
        name="multiun",
        target="en",
        sources={"es", "fr"},
        url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-un.zip",
        path=("un/undoc.2000.{src}-en.{src}", "un/undoc.2000.{src}-en.en"),
    ),
    SubDataset(
        name="newscommentary_v9",
        target="en",
        sources={"cs", "de", "fr", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt14/resolve/main-zip/training-parallel-nc-v9.zip",
        path=("training/news-commentary-v9.{src}-en.{src}", "training/news-commentary-v9.{src}-en.en"),
    ),
    SubDataset(
        name="newscommentary_v10",
        target="en",
        sources={"cs", "de", "fr", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/training-parallel-nc-v10.zip",
        path=("news-commentary-v10.{src}-en.{src}", "news-commentary-v10.{src}-en.en"),
    ),
    SubDataset(
        name="newscommentary_v11",
        target="en",
        sources={"cs", "de", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt16/resolve/main-zip/translation-task/training-parallel-nc-v11.zip",
        path=(
            "training-parallel-nc-v11/news-commentary-v11.{src}-en.{src}",
            "training-parallel-nc-v11/news-commentary-v11.{src}-en.en",
        ),
    ),
    SubDataset(
        name="newscommentary_v12",
        target="en",
        sources={"cs", "de", "ru", "zh"},
        url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/training-parallel-nc-v12.zip",
        path=("training/news-commentary-v12.{src}-en.{src}", "training/news-commentary-v12.{src}-en.en"),
    ),
    SubDataset(
        name="newscommentary_v13",
        target="en",
        sources={"cs", "de", "ru", "zh"},
        url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/training-parallel-nc-v13.zip",
        path=(
            "training-parallel-nc-v13/news-commentary-v13.{src}-en.{src}",
            "training-parallel-nc-v13/news-commentary-v13.{src}-en.en",
        ),
    ),
    SubDataset(
        name="newscommentary_v14",
        target="en",  # fr-de pair in newscommentary_v14_frde
        sources={"cs", "de", "kk", "ru", "zh"},
        url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.{0}-{1}.tsv.gz",
        path="",
    ),
    SubDataset(
        name="newscommentary_v14_frde",
        target="de",
        sources={"fr"},
        url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-fr.tsv.gz",
        path="",
    ),
    SubDataset(
        name="onlinebooks_v1",
        target="en",
        sources={"lv"},
        url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/books.lv-en.v1.zip",
        path=("farewell/farewell.lv", "farewell/farewell.en"),
    ),
    SubDataset(
        name="paracrawl_v1",
        target="en",
        sources={"cs", "de", "et", "fi", "ru"},
        url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-{src}.zipporah0-dedup-clean.tgz",  # TODO(QL): use gzip for streaming
        path=(
            "paracrawl-release1.en-{src}.zipporah0-dedup-clean.{src}",
            "paracrawl-release1.en-{src}.zipporah0-dedup-clean.en",
        ),
    ),
    SubDataset(
        name="paracrawl_v1_ru",
        target="en",
        sources={"ru"},
        url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz",  # TODO(QL): use gzip for streaming
        path=(
            "paracrawl-release1.en-ru.zipporah0-dedup-clean.ru",
            "paracrawl-release1.en-ru.zipporah0-dedup-clean.en",
        ),
    ),
    SubDataset(
        name="paracrawl_v3",
        target="en",  # fr-de pair in paracrawl_v3_frde
        sources={"cs", "de", "fi", "lt"},
        url="https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-{src}.bicleaner07.tmx.gz",
        path="",
    ),
    SubDataset(
        name="paracrawl_v3_frde",
        target="de",
        sources={"fr"},
        url=(
            "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/fr-de/bitexts/de-fr.bicleaner07.de.gz",
            "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/fr-de/bitexts/de-fr.bicleaner07.fr.gz",
        ),
        path=("", ""),
    ),
    SubDataset(
        name="rapid_2016",
        target="en",
        sources={"de", "et", "fi"},
        url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/rapid2016.zip",
        path=("rapid2016.{0}-{1}.{src}", "rapid2016.{0}-{1}.en"),
    ),
    SubDataset(
        name="rapid_2016_ltfi",
        target="en",
        sources={"fi", "lt"},
        url="https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-{src}.tmx.zip",
        path="rapid2016.en-{src}.tmx",
    ),
    SubDataset(
        name="rapid_2019",
        target="en",
        sources={"de"},
        url="https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.zip",
        path=("rapid2019.de-en.de", "rapid2019.de-en.en"),
    ),
    SubDataset(
        name="setimes_2",
        target="en",
        sources={"ro", "tr"},
        url="https://object.pouta.csc.fi/OPUS-SETIMES/v2/tmx/en-{src}.tmx.gz",
        path="",
    ),
    SubDataset(
        name="uncorpus_v1",
        target="en",
        sources={"ru", "zh"},
        url="https://huggingface.co/datasets/wmt/uncorpus/resolve/main-zip/UNv1.0.en-{src}.zip",
        path=("en-{src}/UNv1.0.en-{src}.{src}", "en-{src}/UNv1.0.en-{src}.en"),
    ),
    SubDataset(
        name="wikiheadlines_fi",
        target="en",
        sources={"fi"},
        url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/wiki-titles.zip",
        path="wiki/fi-en/titles.fi-en",
    ),
    SubDataset(
        name="wikiheadlines_hi",
        target="en",
        sources={"hi"},
        url="https://huggingface.co/datasets/wmt/wmt14/resolve/main-zip/wiki-titles.zip",
        path="wiki/hi-en/wiki-titles.hi-en",
    ),
    SubDataset(
        # Verified that wmt14 and wmt15 files are identical.
        name="wikiheadlines_ru",
        target="en",
        sources={"ru"},
        url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/wiki-titles.zip",
        path="wiki/ru-en/wiki.ru-en",
    ),
    SubDataset(
        name="wikititles_v1",
        target="en",
        sources={"cs", "de", "fi", "gu", "kk", "lt", "ru", "zh"},
        url="https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.{src}-en.tsv.gz",
        path="",
    ),
    SubDataset(
        name="yandexcorpus",
        target="en",
        sources={"ru"},
        url="https://translate.yandex.ru/corpus?lang=en",
        manual_dl_files=["1mcorpus.zip"],
        path=("corpus.en_ru.1m.ru", "corpus.en_ru.1m.en"),
    ),
    # pylint:enable=line-too-long
] + [
    SubDataset(  # pylint:disable=g-complex-comprehension
        name=ss,
        target="en",
        sources={"zh"},
        url="https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/%s.zip" % ss,
        path=("%s/*_c[hn].txt" % ss, "%s/*_en.txt" % ss),
    )
    for ss in CWMT_SUBSET_NAMES
]

_DEV_SUBSETS = [
    SubDataset(
        name="euelections_dev2019",
        target="de",
        sources={"fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/euelections_dev2019.fr-de.src.fr", "dev/euelections_dev2019.fr-de.tgt.de"),
    ),
    SubDataset(
        name="newsdev2014",
        target="en",
        sources={"hi"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdev2014.hi", "dev/newsdev2014.en"),
    ),
    SubDataset(
        name="newsdev2015",
        target="en",
        sources={"fi"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdev2015-fien-src.{src}.sgm", "dev/newsdev2015-fien-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdiscussdev2015",
        target="en",
        sources={"ro", "tr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdev2016",
        target="en",
        sources={"ro", "tr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdev2016-{src}en-src.{src}.sgm", "dev/newsdev2016-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdev2017",
        target="en",
        sources={"lv", "zh"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdev2017-{src}en-src.{src}.sgm", "dev/newsdev2017-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdev2018",
        target="en",
        sources={"et"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdev2018-{src}en-src.{src}.sgm", "dev/newsdev2018-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdev2019",
        target="en",
        sources={"gu", "kk", "lt"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdev2019-{src}en-src.{src}.sgm", "dev/newsdev2019-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdiscussdev2015",
        target="en",
        sources={"fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdiscusstest2015",
        target="en",
        sources={"fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newssyscomb2009",
        target="en",
        sources={"cs", "de", "es", "fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newssyscomb2009.{src}", "dev/newssyscomb2009.en"),
    ),
    SubDataset(
        name="newstest2008",
        target="en",
        sources={"cs", "de", "es", "fr", "hu"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/news-test2008.{src}", "dev/news-test2008.en"),
    ),
    SubDataset(
        name="newstest2009",
        target="en",
        sources={"cs", "de", "es", "fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2009.{src}", "dev/newstest2009.en"),
    ),
    SubDataset(
        name="newstest2010",
        target="en",
        sources={"cs", "de", "es", "fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2010.{src}", "dev/newstest2010.en"),
    ),
    SubDataset(
        name="newstest2011",
        target="en",
        sources={"cs", "de", "es", "fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2011.{src}", "dev/newstest2011.en"),
    ),
    SubDataset(
        name="newstest2012",
        target="en",
        sources={"cs", "de", "es", "fr", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2012.{src}", "dev/newstest2012.en"),
    ),
    SubDataset(
        name="newstest2013",
        target="en",
        sources={"cs", "de", "es", "fr", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2013.{src}", "dev/newstest2013.en"),
    ),
    SubDataset(
        name="newstest2014",
        target="en",
        sources={"cs", "de", "es", "fr", "hi", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2014-{src}en-src.{src}.sgm", "dev/newstest2014-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newstest2015",
        target="en",
        sources={"cs", "de", "fi", "ru"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2015-{src}en-src.{src}.sgm", "dev/newstest2015-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newsdiscusstest2015",
        target="en",
        sources={"fr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newstest2016",
        target="en",
        sources={"cs", "de", "fi", "ro", "ru", "tr"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2016-{src}en-src.{src}.sgm", "dev/newstest2016-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newstestB2016",
        target="en",
        sources={"fi"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstestB2016-enfi-ref.{src}.sgm", "dev/newstestB2016-enfi-src.en.sgm"),
    ),
    SubDataset(
        name="newstest2017",
        target="en",
        sources={"cs", "de", "fi", "lv", "ru", "tr", "zh"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2017-{src}en-src.{src}.sgm", "dev/newstest2017-{src}en-ref.en.sgm"),
    ),
    SubDataset(
        name="newstestB2017",
        target="en",
        sources={"fi"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstestB2017-fien-src.fi.sgm", "dev/newstestB2017-fien-ref.en.sgm"),
    ),
    SubDataset(
        name="newstest2018",
        target="en",
        sources={"cs", "de", "et", "fi", "ru", "tr", "zh"},
        url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
        path=("dev/newstest2018-{src}en-src.{src}.sgm", "dev/newstest2018-{src}en-ref.en.sgm"),
    ),
]

DATASET_MAP = {dataset.name: dataset for dataset in _TRAIN_SUBSETS + _DEV_SUBSETS}

_CZENG17_FILTER = SubDataset(
    name="czeng17_filter",
    target="en",
    sources={"cs"},
    url="http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip",
    path="convert_czeng16_to_17.pl",
)


class WmtConfig(datasets.BuilderConfig):
    """BuilderConfig for WMT."""

    def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), subsets=None, **kwargs):
        """BuilderConfig for WMT.

        Args:
          url: The reference URL for the dataset.
          citation: The paper citation for the dataset.
          description: The description of the dataset.
          language_pair: pair of languages that will be used for translation. Should
                     contain 2 letter coded strings. For example: ("en", "de").
            configuration for the `datasets.features.text.TextEncoder` used for the
            `datasets.features.text.Translation` features.
          subsets: Dict[split, list[str]]. List of the subset to use for each of the
            split. Note that WMT subclasses overwrite this parameter.
          **kwargs: keyword arguments forwarded to super.
        """
        name = "%s-%s" % (language_pair[0], language_pair[1])
        if "name" in kwargs:  # Add name suffix for custom configs
            name += "." + kwargs.pop("name")

        super(WmtConfig, self).__init__(name=name, description=description, **kwargs)

        self.url = url or "http://www.statmt.org"
        self.citation = citation
        self.language_pair = language_pair
        self.subsets = subsets

        # TODO(PVP): remove when manual dir works
        # +++++++++++++++++++++
        if language_pair[1] in ["cs", "hi", "ru"]:
            assert NotImplementedError(f"The dataset for {language_pair[1]}-en is currently not fully supported.")
        # +++++++++++++++++++++


class Wmt(datasets.GeneratorBasedBuilder):
    """WMT translation dataset."""

    BUILDER_CONFIG_CLASS = WmtConfig

    def __init__(self, *args, **kwargs):
        super(Wmt, self).__init__(*args, **kwargs)

    @property
    def _subsets(self):
        """Subsets that make up each split of the dataset."""
        raise NotImplementedError("This is a abstract method")

    @property
    def subsets(self):
        """Subsets that make up each split of the dataset for the language pair."""
        source, target = self.config.language_pair
        filtered_subsets = {}
        subsets = self._subsets if self.config.subsets is None else self.config.subsets
        for split, ss_names in subsets.items():
            filtered_subsets[split] = []
            for ss_name in ss_names:
                dataset = DATASET_MAP[ss_name]
                if dataset.target != target or source not in dataset.sources:
                    logger.info("Skipping sub-dataset that does not include language pair: %s", ss_name)
                else:
                    filtered_subsets[split].append(ss_name)
        logger.info("Using sub-datasets: %s", filtered_subsets)
        return filtered_subsets

    def _info(self):
        src, target = self.config.language_pair
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"translation": datasets.features.Translation(languages=self.config.language_pair)}
            ),
            supervised_keys=(src, target),
            homepage=self.config.url,
            citation=self.config.citation,
        )

    def _vocab_text_gen(self, split_subsets, extraction_map, language):
        for _, ex in self._generate_examples(split_subsets, extraction_map, with_translation=False):
            yield ex[language]

    def _split_generators(self, dl_manager):
        source, _ = self.config.language_pair
        manual_paths_dict = {}
        urls_to_download = {}
        for ss_name in itertools.chain.from_iterable(self.subsets.values()):
            if ss_name == "czeng_17":
                # CzEng1.7 is CzEng1.6 with some blocks filtered out. We must download
                # the filtering script so we can parse out which blocks need to be
                # removed.
                urls_to_download[_CZENG17_FILTER.name] = _CZENG17_FILTER.get_url(source)

            # get dataset
            dataset = DATASET_MAP[ss_name]
            if dataset.get_manual_dl_files(source):
                # TODO(PVP): following two lines skip configs that are incomplete for now
                # +++++++++++++++++++++
                logger.info(f"Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}")
                continue
                # +++++++++++++++++++++

                manual_dl_files = dataset.get_manual_dl_files(source)
                manual_paths = [
                    os.path.join(os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), fname)
                    for fname in manual_dl_files
                ]
                assert all(
                    os.path.exists(path) for path in manual_paths
                ), f"For {dataset.name}, you must manually download the following file(s) from {dataset.get_url(source)} and place them in {dl_manager.manual_dir}: {', '.join(manual_dl_files)}"

                # set manual path for correct subset
                manual_paths_dict[ss_name] = manual_paths
            else:
                urls_to_download[ss_name] = dataset.get_url(source)

        # Download and extract files from URLs.
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        # Extract manually downloaded files.
        manual_files = dl_manager.extract(manual_paths_dict)
        extraction_map = dict(downloaded_files, **manual_files)

        for language in self.config.language_pair:
            self._vocab_text_gen(self.subsets[datasets.Split.TRAIN], extraction_map, language)

        return [
            datasets.SplitGenerator(  # pylint:disable=g-complex-comprehension
                name=split, gen_kwargs={"split_subsets": split_subsets, "extraction_map": extraction_map}
            )
            for split, split_subsets in self.subsets.items()
        ]

    def _generate_examples(self, split_subsets, extraction_map, with_translation=True):
        """Returns the examples in the raw (text) form."""
        source, _ = self.config.language_pair

        def _get_local_paths(dataset, extract_dirs):
            rel_paths = dataset.get_path(source)
            if len(extract_dirs) == 1:
                extract_dirs = extract_dirs * len(rel_paths)
            return [
                os.path.join(ex_dir, rel_path) if rel_path else ex_dir
                for ex_dir, rel_path in zip(extract_dirs, rel_paths)
            ]

        def _get_filenames(dataset):
            rel_paths = dataset.get_path(source)
            urls = dataset.get_url(source)
            if len(urls) == 1:
                urls = urls * len(rel_paths)
            return [rel_path if rel_path else os.path.basename(url) for url, rel_path in zip(urls, rel_paths)]

        for ss_name in split_subsets:
            # TODO(PVP) remove following five lines when manual data works
            # +++++++++++++++++++++
            dataset = DATASET_MAP[ss_name]
            source, _ = self.config.language_pair
            if dataset.get_manual_dl_files(source):
                logger.info(f"Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}")
                continue
            # +++++++++++++++++++++

            logger.info("Generating examples from: %s", ss_name)
            dataset = DATASET_MAP[ss_name]
            extract_dirs = extraction_map[ss_name]
            files = _get_local_paths(dataset, extract_dirs)
            filenames = _get_filenames(dataset)

            sub_generator_args = tuple(files)

            if ss_name.startswith("czeng"):
                if ss_name.endswith("16pre"):
                    sub_generator = functools.partial(_parse_tsv, language_pair=("en", "cs"))
                    sub_generator_args += tuple(filenames)
                elif ss_name.endswith("17"):
                    filter_path = _get_local_paths(_CZENG17_FILTER, extraction_map[_CZENG17_FILTER.name])[0]
                    sub_generator = functools.partial(_parse_czeng, filter_path=filter_path)
                else:
                    sub_generator = _parse_czeng
            elif ss_name == "hindencorp_01":
                sub_generator = _parse_hindencorp
            elif len(files) == 2:
                if ss_name.endswith("_frde"):
                    sub_generator = _parse_frde_bitext
                else:
                    sub_generator = _parse_parallel_sentences
                    sub_generator_args += tuple(filenames)
            elif len(files) == 1:
                fname = filenames[0]
                # Note: Due to formatting used by `download_manager`, the file
                # extension may not be at the end of the file path.
                if ".tsv" in fname:
                    sub_generator = _parse_tsv
                    sub_generator_args += tuple(filenames)
                elif (
                    ss_name.startswith("newscommentary_v14")
                    or ss_name.startswith("europarl_v9")
                    or ss_name.startswith("wikititles_v1")
                ):
                    sub_generator = functools.partial(_parse_tsv, language_pair=self.config.language_pair)
                    sub_generator_args += tuple(filenames)
                elif "tmx" in fname or ss_name.startswith("paracrawl_v3"):
                    sub_generator = _parse_tmx
                elif ss_name.startswith("wikiheadlines"):
                    sub_generator = _parse_wikiheadlines
                else:
                    raise ValueError("Unsupported file format: %s" % fname)
            else:
                raise ValueError("Invalid number of files: %d" % len(files))

            for sub_key, ex in sub_generator(*sub_generator_args):
                if not all(ex.values()):
                    continue
                # TODO(adarob): Add subset feature.
                # ex["subset"] = subset
                key = f"{ss_name}/{sub_key}"
                if with_translation is True:
                    ex = {"translation": ex}
                yield key, ex


def _parse_parallel_sentences(f1, f2, filename1, filename2):
    """Returns examples from parallel SGML or text files, which may be gzipped."""

    def _parse_text(path, original_filename):
        """Returns the sentences from a single text file, which may be gzipped."""
        split_path = original_filename.split(".")

        if split_path[-1] == "gz":
            lang = split_path[-2]

            def gen():
                with open(path, "rb") as f, gzip.GzipFile(fileobj=f) as g:
                    for line in g:
                        yield line.decode("utf-8").rstrip()

            return gen(), lang

        if split_path[-1] == "txt":
            # CWMT
            lang = split_path[-2].split("_")[-1]
            lang = "zh" if lang in ("ch", "cn", "c[hn]") else lang
        else:
            lang = split_path[-1]

        def gen():
            with open(path, "rb") as f:
                for line in f:
                    yield line.decode("utf-8").rstrip()

        return gen(), lang

    def _parse_sgm(path, original_filename):
        """Returns sentences from a single SGML file."""
        lang = original_filename.split(".")[-2]
        # Note: We can't use the XML parser since some of the files are badly
        # formatted.
        seg_re = re.compile(r"<seg id=\"\d+\">(.*)</seg>")

        def gen():
            with open(path, encoding="utf-8") as f:
                for line in f:
                    seg_match = re.match(seg_re, line)
                    if seg_match:
                        assert len(seg_match.groups()) == 1
                        yield seg_match.groups()[0]

        return gen(), lang

    parse_file = _parse_sgm if os.path.basename(f1).endswith(".sgm") else _parse_text

    # Some datasets (e.g., CWMT) contain multiple parallel files specified with
    # a wildcard. We sort both sets to align them and parse them one by one.
    f1_files = sorted(glob.glob(f1))
    f2_files = sorted(glob.glob(f2))

    assert f1_files and f2_files, "No matching files found: %s, %s." % (f1, f2)
    assert len(f1_files) == len(f2_files), "Number of files do not match: %d vs %d for %s vs %s." % (
        len(f1_files),
        len(f2_files),
        f1,
        f2,
    )

    for f_id, (f1_i, f2_i) in enumerate(zip(sorted(f1_files), sorted(f2_files))):
        l1_sentences, l1 = parse_file(f1_i, filename1)
        l2_sentences, l2 = parse_file(f2_i, filename2)

        for line_id, (s1, s2) in enumerate(zip(l1_sentences, l2_sentences)):
            key = f"{f_id}/{line_id}"
            yield key, {l1: s1, l2: s2}


def _parse_frde_bitext(fr_path, de_path):
    with open(fr_path, encoding="utf-8") as fr_f:
        with open(de_path, encoding="utf-8") as de_f:
            for line_id, (s1, s2) in enumerate(zip(fr_f, de_f)):
                yield line_id, {"fr": s1.rstrip(), "de": s2.rstrip()}


def _parse_tmx(path):
    """Generates examples from TMX file."""

    def _get_tuv_lang(tuv):
        for k, v in tuv.items():
            if k.endswith("}lang"):
                return v
        raise AssertionError("Language not found in `tuv` attributes.")

    def _get_tuv_seg(tuv):
        segs = tuv.findall("seg")
        assert len(segs) == 1, "Invalid number of segments: %d" % len(segs)
        return segs[0].text

    with open(path, "rb") as f:
        # Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
        utf_f = codecs.getreader("utf-8")(f)
        for line_id, (_, elem) in enumerate(ElementTree.iterparse(utf_f)):
            if elem.tag == "tu":
                yield line_id, {_get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv")}
                elem.clear()


def _parse_tsv(path, filename, language_pair=None):
    """Generates examples from TSV file."""
    if language_pair is None:
        lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])\.tsv", filename)
        assert lang_match is not None, "Invalid TSV filename: %s" % filename
        l1, l2 = lang_match.groups()
    else:
        l1, l2 = language_pair
    with open(path, encoding="utf-8") as f:
        for j, line in enumerate(f):
            cols = line.split("\t")
            if len(cols) != 2:
                logger.warning("Skipping line %d in TSV (%s) with %d != 2 columns.", j, path, len(cols))
                continue
            s1, s2 = cols
            yield j, {l1: s1.strip(), l2: s2.strip()}


def _parse_wikiheadlines(path):
    """Generates examples from Wikiheadlines dataset file."""
    lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])$", path)
    assert lang_match is not None, "Invalid Wikiheadlines filename: %s" % path
    l1, l2 = lang_match.groups()
    with open(path, encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            s1, s2 = line.split("|||")
            yield line_id, {l1: s1.strip(), l2: s2.strip()}


def _parse_czeng(*paths, **kwargs):
    """Generates examples from CzEng v1.6, with optional filtering for v1.7."""
    filter_path = kwargs.get("filter_path", None)
    if filter_path:
        re_block = re.compile(r"^[^-]+-b(\d+)-\d\d[tde]")
        with open(filter_path, encoding="utf-8") as f:
            bad_blocks = {blk for blk in re.search(r"qw{([\s\d]*)}", f.read()).groups()[0].split()}
        logger.info("Loaded %d bad blocks to filter from CzEng v1.6 to make v1.7.", len(bad_blocks))

    for path in paths:
        for gz_path in sorted(glob.glob(path)):
            with open(gz_path, "rb") as g, gzip.GzipFile(fileobj=g) as f:
                filename = os.path.basename(gz_path)
                for line_id, line in enumerate(f):
                    line = line.decode("utf-8")  # required for py3
                    if not line.strip():
                        continue
                    id_, unused_score, cs, en = line.split("\t")
                    if filter_path:
                        block_match = re.match(re_block, id_)
                        if block_match and block_match.groups()[0] in bad_blocks:
                            continue
                    sub_key = f"{filename}/{line_id}"
                    yield sub_key, {
                        "cs": cs.strip(),
                        "en": en.strip(),
                    }


def _parse_hindencorp(path):
    with open(path, encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            split_line = line.split("\t")
            if len(split_line) != 5:
                logger.warning("Skipping invalid HindEnCorp line: %s", line)
                continue
            yield line_id, {"translation": {"en": split_line[3].strip(), "hi": split_line[4].strip()}}