|
import os |
|
|
|
import datasets |
|
from sklearn.preprocessing import MinMaxScaler, LabelEncoder, StandardScaler |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
class Reuters10K(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="Reuters10K dataset", |
|
version=Reuters10K.VERSION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_url = "train.npy" |
|
test_url = "test.npy" |
|
|
|
downloaded_files = dl_manager.download_and_extract({ |
|
"train": train_url, |
|
"test": test_url |
|
}) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"] |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
train_dataset = np.load(filepath, allow_pickle=True) |
|
|
|
X_train = train_dataset.item()['data'] |
|
Y_train = train_dataset.item()['label'] |
|
|
|
scaler = MinMaxScaler() |
|
X_train = scaler.fit_transform(X_train) |
|
|
|
|
|
for i, (x, y) in enumerate(zip(X_train, Y_train)): |
|
yield i, {"features": x, "label": y} |
|
|