|
import datasets |
|
from Bio import SeqIO |
|
from Bio.SeqUtils import gc_fraction |
|
from typing import Any, Dict, List, Tuple |
|
import os |
|
import gzip |
|
import re |
|
|
|
class GenomeDatasetConfig(datasets.BuilderConfig): |
|
def __init__(self,*args, num_urls: int, **kwargs): |
|
super(GenomeDatasetConfig, self).__init__(**kwargs) |
|
self.num_urls = num_urls |
|
|
|
class GenomeDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIG_CLASS = GenomeDatasetConfig |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features({ |
|
"DNA_id": datasets.Value("string"), |
|
"organism": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
"region_type": datasets.Value("string"), |
|
"specific_class": datasets.Value("string"), |
|
"product": datasets.Value("string"), |
|
"sequence": datasets.Value("string"), |
|
"gc_content": datasets.Value("float"), |
|
"translation_code": datasets.Value("string"), |
|
"start_postion": datasets.Value("int32"), |
|
"end_position": datasets.Value("int32"), |
|
}) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls_filepath = dl_manager.download_and_extract('urlfile.txt') |
|
with open(urls_filepath) as urls_file: |
|
downloaded_files = [line.rstrip() for line in urls_file] |
|
|
|
num_urls = self.config.num_urls or len(downloaded_files) |
|
downloaded_files = downloaded_files[:num_urls] |
|
|
|
train_files = downloaded_files[:int(len(downloaded_files) * 0.8)] |
|
test_files = downloaded_files[int(len(downloaded_files) * 0.8):] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepaths": train_files} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepaths": test_files} |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, filepaths: List[str]) -> Tuple[str, Dict[str, Any]]: |
|
split_regex = re.compile('-') |
|
id_ = 0 |
|
for filepath in filepaths: |
|
if filepath.endswith(".seq.gz"): |
|
with gzip.open(filepath, 'rt') as handle: |
|
for record in SeqIO.parse(handle, "genbank"): |
|
if 'molecule_type' in record.annotations and record.annotations['molecule_type'] == 'DNA': |
|
organism = record.annotations.get('organism', 'unknown') |
|
collection_date = record.annotations.get('date', 'unknown') |
|
year = split_regex.split(collection_date)[-1] if '-' in collection_date else collection_date |
|
for feature in record.features: |
|
seq = feature.extract(record.seq) |
|
gc_content = gc_fraction(seq) |
|
start_position = int(feature.location.start) |
|
end_position = int(feature.location.end) |
|
if feature.type in ['rRNA', 'tRNA','CDS','tmRNA','mRNA','mat_peptide','sig_peptide','propeptide']: |
|
region_type = 'coding' |
|
product = feature.qualifiers.get('product', ['Unknown'])[0] |
|
if feature.type == 'CDS': |
|
translation = feature.qualifiers.get('translation', ['NA'])[0] |
|
specific_class = 'Protein' |
|
else: |
|
translation = 'NA' |
|
specific_class = feature.type |
|
elif feature.type == 'regulatory': |
|
region_type = feature.type |
|
specific_class = feature.qualifiers.get('regulatory_class', ['regulatory'])[0] |
|
translation = 'NA' |
|
product = feature.qualifiers.get('product', ['NA'])[0] |
|
elif feature.type == 'gene': |
|
continue |
|
else: |
|
if 'product' in feature.qualifiers: |
|
product = feature.qualifiers.get('product')[0] |
|
region_type = 'coding' |
|
specific_class = feature.type |
|
else: |
|
product = 'NA' |
|
region_type = feature.type |
|
specific_class = 'NA' |
|
translation = 'NA' |
|
yield str(id_), { |
|
'DNA_id': record.id, |
|
'organism': organism, |
|
'year': year, |
|
'region_type': region_type, |
|
'specific_class': specific_class, |
|
'product': product, |
|
'sequence': str(seq), |
|
'gc_content': gc_content, |
|
'translation_code': translation, |
|
'start_postion': start_position, |
|
'end_position': end_position |
|
} |
|
id_+= 1 |
|
|
|
|
|
|