Datasets:
license: mit | |
language: | |
- en | |
tags: | |
- nlp | |
- ml | |
- dataset | |
- fake-news | |
- classification | |
pretty_name: x_g85_fn_dataset | |
configs: | |
- config_name: processed | |
data_files: | |
- split: train | |
path: fn_train.csv | |
- split: test | |
path: fn_test.csv | |
- split: valid | |
path: fn_valid.csv | |
dataset_info: | |
features: | |
- name: text | |
dtype: string | |
- name: label | |
dtype: int32 | |
# X_G85 Fake News Dataset | |
It is a preprocessed dataset that is used to build X_G85 ML Models. The collection of fake news that are collect from the following datasets | |
## How to stream dataset & use as pandas dataframe | |
By streaming the dataset, it won't download on your host computer. Read more here [hugging face streaming dataset](https://huggingface.co/docs/datasets/stream). | |
```py | |
import pandas as pd | |
from datasets import load_dataset | |
``` | |
> Note: The following operation may take some time depending on the size of the dataset. | |
```py | |
dataset = load_dataset("x-g85/x_g85_fn_dataset", streaming=True) | |
train = pd.DataFrame(dataset["train"]) | |
valid = pd.DataFrame(dataset["valid"]) | |
test = pd.DataFrame(dataset["test"]) | |
``` | |
```py | |
X_train = train["text"] | |
y_train = train["label"] | |
X_valid = valid["text"] | |
y_vaild = valid["label"] | |
X_test = test["text"] | |
y_test = test["label"] | |
``` | |
## Credit | |
We have used the following datasets to create our own datasets and train models. | |
- [Kaggle: Fake news detection dataset english](https://www.kaggle.com/datasets/sadikaljarif/fake-news-detection-dataset-english) | |
- [Kaggle: Liar Preprocessed](https://www.kaggle.com/datasets/khandalaryan/liar-preprocessed-dataset) | |
- [Kaggle: Stocknews](https://www.kaggle.com/datasets/aaron7sun/stocknews) | |