xiemoxiaoshaso commited on
Commit
f672864
·
1 Parent(s): d68f6f6

Upload processing.py

Browse files
Files changed (1) hide show
  1. processing.py +1272 -0
processing.py ADDED
@@ -0,0 +1,1272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import math
3
+ import os
4
+ import sys
5
+ import hashlib
6
+
7
+ import torch
8
+ import numpy as np
9
+ from PIL import Image, ImageFilter, ImageOps
10
+ import random
11
+ import cv2
12
+ from skimage import exposure
13
+ from typing import Any, Dict, List
14
+
15
+ import modules.sd_hijack
16
+ from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common
17
+ from modules.sd_hijack import model_hijack
18
+ from modules.shared import opts, cmd_opts, state
19
+ import modules.shared as shared
20
+ import modules.paths as paths
21
+ import modules.face_restoration
22
+ import modules.images as images
23
+ import modules.styles
24
+ import modules.sd_models as sd_models
25
+ import modules.sd_vae as sd_vae
26
+ import logging
27
+ from ldm.data.util import AddMiDaS
28
+ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
29
+
30
+ from einops import repeat, rearrange
31
+ from blendmodes.blend import blendLayers, BlendType
32
+
33
+
34
+ # some of those options should not be changed at all because they would break the model, so I removed them from options.
35
+ opt_C = 4
36
+ opt_f = 8
37
+
38
+
39
+ def setup_color_correction(image):
40
+ logging.info("Calibrating color correction.")
41
+ correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
42
+ return correction_target
43
+
44
+
45
+ def apply_color_correction(correction, original_image):
46
+ logging.info("Applying color correction.")
47
+ image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
48
+ cv2.cvtColor(
49
+ np.asarray(original_image),
50
+ cv2.COLOR_RGB2LAB
51
+ ),
52
+ correction,
53
+ channel_axis=2
54
+ ), cv2.COLOR_LAB2RGB).astype("uint8"))
55
+
56
+ image = blendLayers(image, original_image, BlendType.LUMINOSITY)
57
+
58
+ return image
59
+
60
+
61
+ def apply_overlay(image, paste_loc, index, overlays):
62
+ if overlays is None or index >= len(overlays):
63
+ return image
64
+
65
+ overlay = overlays[index]
66
+
67
+ if paste_loc is not None:
68
+ x, y, w, h = paste_loc
69
+ base_image = Image.new('RGBA', (overlay.width, overlay.height))
70
+ image = images.resize_image(1, image, w, h)
71
+ base_image.paste(image, (x, y))
72
+ image = base_image
73
+
74
+ image = image.convert('RGBA')
75
+ image.alpha_composite(overlay)
76
+ image = image.convert('RGB')
77
+
78
+ return image
79
+
80
+
81
+ def txt2img_image_conditioning(sd_model, x, width, height):
82
+ if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
83
+
84
+ # The "masked-image" in this case will just be all zeros since the entire image is masked.
85
+ image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
86
+ image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
87
+
88
+ # Add the fake full 1s mask to the first dimension.
89
+ image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
90
+ image_conditioning = image_conditioning.to(x.dtype)
91
+
92
+ return image_conditioning
93
+
94
+ elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
95
+
96
+ return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
97
+
98
+ else:
99
+ # Dummy zero conditioning if we're not using inpainting or unclip models.
100
+ # Still takes up a bit of memory, but no encoder call.
101
+ # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
102
+ return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
103
+
104
+
105
+ class StableDiffusionProcessing:
106
+ """
107
+ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
108
+ """
109
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
110
+ if sampler_index is not None:
111
+ print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
112
+
113
+ self.outpath_samples: str = outpath_samples
114
+ self.outpath_grids: str = outpath_grids
115
+ self.prompt: str = prompt
116
+ self.prompt_for_display: str = None
117
+ self.negative_prompt: str = (negative_prompt or "")
118
+ self.styles: list = styles or []
119
+ self.seed: int = seed
120
+ self.subseed: int = subseed
121
+ self.subseed_strength: float = subseed_strength
122
+ self.seed_resize_from_h: int = seed_resize_from_h
123
+ self.seed_resize_from_w: int = seed_resize_from_w
124
+ self.sampler_name: str = sampler_name
125
+ self.batch_size: int = batch_size
126
+ self.n_iter: int = n_iter
127
+ self.steps: int = steps
128
+ self.cfg_scale: float = cfg_scale
129
+ self.width: int = width
130
+ self.height: int = height
131
+ self.restore_faces: bool = restore_faces
132
+ self.tiling: bool = tiling
133
+ self.do_not_save_samples: bool = do_not_save_samples
134
+ self.do_not_save_grid: bool = do_not_save_grid
135
+ self.extra_generation_params: dict = extra_generation_params or {}
136
+ self.overlay_images = overlay_images
137
+ self.eta = eta
138
+ self.do_not_reload_embeddings = do_not_reload_embeddings
139
+ self.paste_to = None
140
+ self.color_corrections = None
141
+ self.denoising_strength: float = denoising_strength
142
+ self.sampler_noise_scheduler_override = None
143
+ self.ddim_discretize = ddim_discretize or opts.ddim_discretize
144
+ self.s_min_uncond = s_min_uncond or opts.s_min_uncond
145
+ self.s_churn = s_churn or opts.s_churn
146
+ self.s_tmin = s_tmin or opts.s_tmin
147
+ self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
148
+ self.s_noise = s_noise or opts.s_noise
149
+ self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
150
+ self.override_settings_restore_afterwards = override_settings_restore_afterwards
151
+ self.is_using_inpainting_conditioning = False
152
+ self.disable_extra_networks = False
153
+ self.token_merging_ratio = 0
154
+ self.token_merging_ratio_hr = 0
155
+
156
+ if not seed_enable_extras:
157
+ self.subseed = -1
158
+ self.subseed_strength = 0
159
+ self.seed_resize_from_h = 0
160
+ self.seed_resize_from_w = 0
161
+
162
+ self.scripts = None
163
+ self.script_args = script_args
164
+ self.all_prompts = None
165
+ self.all_negative_prompts = None
166
+ self.all_seeds = None
167
+ self.all_subseeds = None
168
+ self.iteration = 0
169
+ self.is_hr_pass = False
170
+ self.sampler = None
171
+
172
+ self.prompts = None
173
+ self.negative_prompts = None
174
+ self.seeds = None
175
+ self.subseeds = None
176
+
177
+ self.step_multiplier = 1
178
+ self.cached_uc = [None, None]
179
+ self.cached_c = [None, None]
180
+ self.uc = None
181
+ self.c = None
182
+
183
+ @property
184
+ def sd_model(self):
185
+ return shared.sd_model
186
+
187
+ def txt2img_image_conditioning(self, x, width=None, height=None):
188
+ self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
189
+
190
+ return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
191
+
192
+ def depth2img_image_conditioning(self, source_image):
193
+ # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
194
+ transformer = AddMiDaS(model_type="dpt_hybrid")
195
+ transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
196
+ midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
197
+ midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
198
+
199
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
200
+ conditioning = torch.nn.functional.interpolate(
201
+ self.sd_model.depth_model(midas_in),
202
+ size=conditioning_image.shape[2:],
203
+ mode="bicubic",
204
+ align_corners=False,
205
+ )
206
+
207
+ (depth_min, depth_max) = torch.aminmax(conditioning)
208
+ conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
209
+ return conditioning
210
+
211
+ def edit_image_conditioning(self, source_image):
212
+ conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
213
+
214
+ return conditioning_image
215
+
216
+ def unclip_image_conditioning(self, source_image):
217
+ c_adm = self.sd_model.embedder(source_image)
218
+ if self.sd_model.noise_augmentor is not None:
219
+ noise_level = 0 # TODO: Allow other noise levels?
220
+ c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
221
+ c_adm = torch.cat((c_adm, noise_level_emb), 1)
222
+ return c_adm
223
+
224
+ def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
225
+ self.is_using_inpainting_conditioning = True
226
+
227
+ # Handle the different mask inputs
228
+ if image_mask is not None:
229
+ if torch.is_tensor(image_mask):
230
+ conditioning_mask = image_mask
231
+ else:
232
+ conditioning_mask = np.array(image_mask.convert("L"))
233
+ conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
234
+ conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
235
+
236
+ # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
237
+ conditioning_mask = torch.round(conditioning_mask)
238
+ else:
239
+ conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
240
+
241
+ # Create another latent image, this time with a masked version of the original input.
242
+ # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
243
+ conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
244
+ conditioning_image = torch.lerp(
245
+ source_image,
246
+ source_image * (1.0 - conditioning_mask),
247
+ getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
248
+ )
249
+
250
+ # Encode the new masked image using first stage of network.
251
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
252
+
253
+ # Create the concatenated conditioning tensor to be fed to `c_concat`
254
+ conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
255
+ conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
256
+ image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
257
+ image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
258
+
259
+ return image_conditioning
260
+
261
+ def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
262
+ source_image = devices.cond_cast_float(source_image)
263
+
264
+ # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
265
+ # identify itself with a field common to all models. The conditioning_key is also hybrid.
266
+ if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
267
+ return self.depth2img_image_conditioning(source_image)
268
+
269
+ if self.sd_model.cond_stage_key == "edit":
270
+ return self.edit_image_conditioning(source_image)
271
+
272
+ if self.sampler.conditioning_key in {'hybrid', 'concat'}:
273
+ return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
274
+
275
+ if self.sampler.conditioning_key == "crossattn-adm":
276
+ return self.unclip_image_conditioning(source_image)
277
+
278
+ # Dummy zero conditioning if we're not using inpainting or depth model.
279
+ return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
280
+
281
+ def init(self, all_prompts, all_seeds, all_subseeds):
282
+ pass
283
+
284
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
285
+ raise NotImplementedError()
286
+
287
+ def close(self):
288
+ self.sampler = None
289
+ self.c = None
290
+ self.uc = None
291
+ self.cached_c = [None, None]
292
+ self.cached_uc = [None, None]
293
+
294
+ def get_token_merging_ratio(self, for_hr=False):
295
+ if for_hr:
296
+ return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
297
+
298
+ return self.token_merging_ratio or opts.token_merging_ratio
299
+
300
+ def setup_prompts(self):
301
+ if type(self.prompt) == list:
302
+ self.all_prompts = self.prompt
303
+ else:
304
+ self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
305
+
306
+ if type(self.negative_prompt) == list:
307
+ self.all_negative_prompts = self.negative_prompt
308
+ else:
309
+ self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
310
+
311
+ self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
312
+ self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
313
+
314
+ def get_conds_with_caching(self, function, required_prompts, steps, cache):
315
+ """
316
+ Returns the result of calling function(shared.sd_model, required_prompts, steps)
317
+ using a cache to store the result if the same arguments have been used before.
318
+
319
+ cache is an array containing two elements. The first element is a tuple
320
+ representing the previously used arguments, or None if no arguments
321
+ have been used before. The second element is where the previously
322
+ computed result is stored.
323
+ """
324
+ if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info) == cache[0]:
325
+ return cache[1]
326
+
327
+ with devices.autocast():
328
+ cache[1] = function(shared.sd_model, required_prompts, steps)
329
+
330
+ cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info)
331
+ return cache[1]
332
+
333
+ def setup_conds(self):
334
+ sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
335
+ self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
336
+
337
+ self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
338
+ self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, self.cached_c)
339
+
340
+ def parse_extra_network_prompts(self):
341
+ self.prompts, extra_network_data = extra_networks.parse_prompts(self.prompts)
342
+
343
+ return extra_network_data
344
+
345
+
346
+ class Processed:
347
+ def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
348
+ self.images = images_list
349
+ self.prompt = p.prompt
350
+ self.negative_prompt = p.negative_prompt
351
+ self.seed = seed
352
+ self.subseed = subseed
353
+ self.subseed_strength = p.subseed_strength
354
+ self.info = info
355
+ self.comments = comments
356
+ self.width = p.width
357
+ self.height = p.height
358
+ self.sampler_name = p.sampler_name
359
+ self.cfg_scale = p.cfg_scale
360
+ self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
361
+ self.steps = p.steps
362
+ self.batch_size = p.batch_size
363
+ self.restore_faces = p.restore_faces
364
+ self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
365
+ self.sd_model_hash = shared.sd_model.sd_model_hash
366
+ self.seed_resize_from_w = p.seed_resize_from_w
367
+ self.seed_resize_from_h = p.seed_resize_from_h
368
+ self.denoising_strength = getattr(p, 'denoising_strength', None)
369
+ self.extra_generation_params = p.extra_generation_params
370
+ self.index_of_first_image = index_of_first_image
371
+ self.styles = p.styles
372
+ self.job_timestamp = state.job_timestamp
373
+ self.clip_skip = opts.CLIP_stop_at_last_layers
374
+ self.token_merging_ratio = p.token_merging_ratio
375
+ self.token_merging_ratio_hr = p.token_merging_ratio_hr
376
+
377
+ self.eta = p.eta
378
+ self.ddim_discretize = p.ddim_discretize
379
+ self.s_churn = p.s_churn
380
+ self.s_tmin = p.s_tmin
381
+ self.s_tmax = p.s_tmax
382
+ self.s_noise = p.s_noise
383
+ self.s_min_uncond = p.s_min_uncond
384
+ self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
385
+ self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
386
+ self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
387
+ self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
388
+ self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
389
+ self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
390
+
391
+ self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
392
+ self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
393
+ self.all_seeds = all_seeds or p.all_seeds or [self.seed]
394
+ self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
395
+ self.infotexts = infotexts or [info]
396
+
397
+ def js(self):
398
+ obj = {
399
+ "prompt": self.all_prompts[0],
400
+ "all_prompts": self.all_prompts,
401
+ "negative_prompt": self.all_negative_prompts[0],
402
+ "all_negative_prompts": self.all_negative_prompts,
403
+ "seed": self.seed,
404
+ "all_seeds": self.all_seeds,
405
+ "subseed": self.subseed,
406
+ "all_subseeds": self.all_subseeds,
407
+ "subseed_strength": self.subseed_strength,
408
+ "width": self.width,
409
+ "height": self.height,
410
+ "sampler_name": self.sampler_name,
411
+ "cfg_scale": self.cfg_scale,
412
+ "steps": self.steps,
413
+ "batch_size": self.batch_size,
414
+ "restore_faces": self.restore_faces,
415
+ "face_restoration_model": self.face_restoration_model,
416
+ "sd_model_hash": self.sd_model_hash,
417
+ "seed_resize_from_w": self.seed_resize_from_w,
418
+ "seed_resize_from_h": self.seed_resize_from_h,
419
+ "denoising_strength": self.denoising_strength,
420
+ "extra_generation_params": self.extra_generation_params,
421
+ "index_of_first_image": self.index_of_first_image,
422
+ "infotexts": self.infotexts,
423
+ "styles": self.styles,
424
+ "job_timestamp": self.job_timestamp,
425
+ "clip_skip": self.clip_skip,
426
+ "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
427
+ }
428
+
429
+ return json.dumps(obj)
430
+
431
+ def infotext(self, p: StableDiffusionProcessing, index):
432
+ return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
433
+
434
+ def get_token_merging_ratio(self, for_hr=False):
435
+ return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
436
+
437
+
438
+ # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
439
+ def slerp(val, low, high):
440
+ low_norm = low/torch.norm(low, dim=1, keepdim=True)
441
+ high_norm = high/torch.norm(high, dim=1, keepdim=True)
442
+ dot = (low_norm*high_norm).sum(1)
443
+
444
+ if dot.mean() > 0.9995:
445
+ return low * val + high * (1 - val)
446
+
447
+ omega = torch.acos(dot)
448
+ so = torch.sin(omega)
449
+ res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
450
+ return res
451
+
452
+
453
+ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
454
+ eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
455
+ xs = []
456
+
457
+ # if we have multiple seeds, this means we are working with batch size>1; this then
458
+ # enables the generation of additional tensors with noise that the sampler will use during its processing.
459
+ # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
460
+ # produce the same images as with two batches [100], [101].
461
+ if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
462
+ sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
463
+ else:
464
+ sampler_noises = None
465
+
466
+ for i, seed in enumerate(seeds):
467
+ noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
468
+
469
+ subnoise = None
470
+ if subseeds is not None:
471
+ subseed = 0 if i >= len(subseeds) else subseeds[i]
472
+
473
+ subnoise = devices.randn(subseed, noise_shape)
474
+
475
+ # randn results depend on device; gpu and cpu get different results for same seed;
476
+ # the way I see it, it's better to do this on CPU, so that everyone gets same result;
477
+ # but the original script had it like this, so I do not dare change it for now because
478
+ # it will break everyone's seeds.
479
+ noise = devices.randn(seed, noise_shape)
480
+
481
+ if subnoise is not None:
482
+ noise = slerp(subseed_strength, noise, subnoise)
483
+
484
+ if noise_shape != shape:
485
+ x = devices.randn(seed, shape)
486
+ dx = (shape[2] - noise_shape[2]) // 2
487
+ dy = (shape[1] - noise_shape[1]) // 2
488
+ w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
489
+ h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
490
+ tx = 0 if dx < 0 else dx
491
+ ty = 0 if dy < 0 else dy
492
+ dx = max(-dx, 0)
493
+ dy = max(-dy, 0)
494
+
495
+ x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
496
+ noise = x
497
+
498
+ if sampler_noises is not None:
499
+ cnt = p.sampler.number_of_needed_noises(p)
500
+
501
+ if eta_noise_seed_delta > 0:
502
+ torch.manual_seed(seed + eta_noise_seed_delta)
503
+
504
+ for j in range(cnt):
505
+ sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
506
+
507
+ xs.append(noise)
508
+
509
+ if sampler_noises is not None:
510
+ p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
511
+
512
+ x = torch.stack(xs).to(shared.device)
513
+ return x
514
+
515
+
516
+ def decode_first_stage(model, x):
517
+ with devices.autocast(disable=x.dtype == devices.dtype_vae):
518
+ x = model.decode_first_stage(x)
519
+
520
+ return x
521
+
522
+
523
+ def get_fixed_seed(seed):
524
+ if seed is None or seed == '' or seed == -1:
525
+ return int(random.randrange(4294967294))
526
+
527
+ return seed
528
+
529
+
530
+ def fix_seed(p):
531
+ p.seed = get_fixed_seed(p.seed)
532
+ p.subseed = get_fixed_seed(p.subseed)
533
+
534
+
535
+ def program_version():
536
+ import launch
537
+
538
+ res = launch.git_tag()
539
+ if res == "<none>":
540
+ res = None
541
+
542
+ return res
543
+
544
+
545
+ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
546
+ index = position_in_batch + iteration * p.batch_size
547
+
548
+ clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
549
+ enable_hr = getattr(p, 'enable_hr', False)
550
+ token_merging_ratio = p.get_token_merging_ratio()
551
+ token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
552
+
553
+ uses_ensd = opts.eta_noise_seed_delta != 0
554
+ if uses_ensd:
555
+ uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
556
+
557
+ generation_params = {
558
+ "Steps": p.steps,
559
+ "Sampler": p.sampler_name,
560
+ "CFG scale": p.cfg_scale,
561
+ "Image CFG scale": getattr(p, 'image_cfg_scale', None),
562
+ "Seed": all_seeds[index],
563
+ "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
564
+ "Size": f"{p.width}x{p.height}",
565
+ "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
566
+ "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
567
+ "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
568
+ "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
569
+ "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
570
+ "Denoising strength": getattr(p, 'denoising_strength', None),
571
+ "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
572
+ "Clip skip": None if clip_skip <= 1 else clip_skip,
573
+ "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
574
+ "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
575
+ "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
576
+ "Init image hash": getattr(p, 'init_img_hash', None),
577
+ "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
578
+ "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
579
+ **p.extra_generation_params,
580
+ "Version": program_version() if opts.add_version_to_infotext else None,
581
+ }
582
+
583
+ generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
584
+
585
+ negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
586
+
587
+ return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
588
+
589
+
590
+ def process_images(p: StableDiffusionProcessing) -> Processed:
591
+ stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
592
+
593
+ try:
594
+ # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
595
+ if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None:
596
+ p.override_settings.pop('sd_model_checkpoint', None)
597
+ sd_models.reload_model_weights()
598
+
599
+ for k, v in p.override_settings.items():
600
+ setattr(opts, k, v)
601
+
602
+ if k == 'sd_model_checkpoint':
603
+ sd_models.reload_model_weights()
604
+
605
+ if k == 'sd_vae':
606
+ sd_vae.reload_vae_weights()
607
+
608
+ sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
609
+
610
+ res = process_images_inner(p)
611
+
612
+ finally:
613
+ sd_models.apply_token_merging(p.sd_model, 0)
614
+
615
+ # restore opts to original state
616
+ if p.override_settings_restore_afterwards:
617
+ for k, v in stored_opts.items():
618
+ setattr(opts, k, v)
619
+
620
+ if k == 'sd_vae':
621
+ sd_vae.reload_vae_weights()
622
+
623
+ return res
624
+
625
+
626
+ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
627
+ """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
628
+
629
+ if type(p.prompt) == list:
630
+ assert(len(p.prompt) > 0)
631
+ else:
632
+ assert p.prompt is not None
633
+
634
+ devices.torch_gc()
635
+
636
+ seed = get_fixed_seed(p.seed)
637
+ subseed = get_fixed_seed(p.subseed)
638
+
639
+ modules.sd_hijack.model_hijack.apply_circular(p.tiling)
640
+ modules.sd_hijack.model_hijack.clear_comments()
641
+
642
+ comments = {}
643
+
644
+ p.setup_prompts()
645
+
646
+ if type(seed) == list:
647
+ p.all_seeds = seed
648
+ else:
649
+ p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
650
+
651
+ if type(subseed) == list:
652
+ p.all_subseeds = subseed
653
+ else:
654
+ p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
655
+
656
+ def infotext(iteration=0, position_in_batch=0):
657
+ return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
658
+
659
+ if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
660
+ model_hijack.embedding_db.load_textual_inversion_embeddings()
661
+
662
+ if p.scripts is not None:
663
+ p.scripts.process(p)
664
+
665
+ infotexts = []
666
+ output_images = []
667
+
668
+ with torch.no_grad(), p.sd_model.ema_scope():
669
+ with devices.autocast():
670
+ p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
671
+
672
+ # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
673
+ if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
674
+ sd_vae_approx.model()
675
+
676
+ if state.job_count == -1:
677
+ state.job_count = p.n_iter
678
+
679
+ extra_network_data = None
680
+ for n in range(p.n_iter):
681
+ p.iteration = n
682
+
683
+ if state.skipped:
684
+ state.skipped = False
685
+
686
+ if state.interrupted:
687
+ break
688
+
689
+ p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
690
+ p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
691
+ p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
692
+ p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
693
+
694
+ if p.scripts is not None:
695
+ p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
696
+
697
+ if len(p.prompts) == 0:
698
+ break
699
+
700
+ extra_network_data = p.parse_extra_network_prompts()
701
+
702
+ if not p.disable_extra_networks:
703
+ with devices.autocast():
704
+ extra_networks.activate(p, extra_network_data)
705
+
706
+ if p.scripts is not None:
707
+ p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
708
+
709
+ # params.txt should be saved after scripts.process_batch, since the
710
+ # infotext could be modified by that callback
711
+ # Example: a wildcard processed by process_batch sets an extra model
712
+ # strength, which is saved as "Model Strength: 1.0" in the infotext
713
+ if n == 0:
714
+ with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
715
+ processed = Processed(p, [], p.seed, "")
716
+ file.write(processed.infotext(p, 0))
717
+
718
+ p.setup_conds()
719
+
720
+ if len(model_hijack.comments) > 0:
721
+ for comment in model_hijack.comments:
722
+ comments[comment] = 1
723
+
724
+ if p.n_iter > 1:
725
+ shared.state.job = f"Batch {n+1} out of {p.n_iter}"
726
+
727
+ with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
728
+ samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
729
+
730
+ x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
731
+ for x in x_samples_ddim:
732
+ devices.test_for_nans(x, "vae")
733
+
734
+ x_samples_ddim = torch.stack(x_samples_ddim).float()
735
+ x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
736
+
737
+ del samples_ddim
738
+
739
+ if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
740
+ lowvram.send_everything_to_cpu()
741
+
742
+ devices.torch_gc()
743
+
744
+ if p.scripts is not None:
745
+ p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
746
+
747
+ for i, x_sample in enumerate(x_samples_ddim):
748
+ p.batch_index = i
749
+
750
+ x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
751
+ x_sample = x_sample.astype(np.uint8)
752
+
753
+ if p.restore_faces:
754
+ if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
755
+ images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
756
+
757
+ devices.torch_gc()
758
+
759
+ x_sample = modules.face_restoration.restore_faces(x_sample)
760
+ devices.torch_gc()
761
+
762
+ image = Image.fromarray(x_sample)
763
+
764
+ if p.scripts is not None:
765
+ pp = scripts.PostprocessImageArgs(image)
766
+ p.scripts.postprocess_image(p, pp)
767
+ image = pp.image
768
+
769
+ if p.color_corrections is not None and i < len(p.color_corrections):
770
+ if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
771
+ image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
772
+ images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
773
+ image = apply_color_correction(p.color_corrections[i], image)
774
+
775
+ image = apply_overlay(image, p.paste_to, i, p.overlay_images)
776
+
777
+ if opts.samples_save and not p.do_not_save_samples:
778
+ images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
779
+
780
+ text = infotext(n, i)
781
+ infotexts.append(text)
782
+ if opts.enable_pnginfo:
783
+ image.info["parameters"] = text
784
+ output_images.append(image)
785
+
786
+ if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
787
+ image_mask = p.mask_for_overlay.convert('RGB')
788
+ image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
789
+
790
+ if opts.save_mask:
791
+ images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
792
+
793
+ if opts.save_mask_composite:
794
+ images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
795
+
796
+ if opts.return_mask:
797
+ output_images.append(image_mask)
798
+
799
+ if opts.return_mask_composite:
800
+ output_images.append(image_mask_composite)
801
+
802
+ del x_samples_ddim
803
+
804
+ devices.torch_gc()
805
+
806
+ state.nextjob()
807
+
808
+ p.color_corrections = None
809
+
810
+ index_of_first_image = 0
811
+ unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
812
+ if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
813
+ grid = images.image_grid(output_images, p.batch_size)
814
+
815
+ if opts.return_grid:
816
+ text = infotext()
817
+ infotexts.insert(0, text)
818
+ if opts.enable_pnginfo:
819
+ grid.info["parameters"] = text
820
+ output_images.insert(0, grid)
821
+ index_of_first_image = 1
822
+
823
+ if opts.grid_save:
824
+ images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
825
+
826
+ if not p.disable_extra_networks and extra_network_data:
827
+ extra_networks.deactivate(p, extra_network_data)
828
+
829
+ devices.torch_gc()
830
+
831
+ res = Processed(
832
+ p,
833
+ images_list=output_images,
834
+ seed=p.all_seeds[0],
835
+ info=infotext(),
836
+ comments="".join(f"{comment}\n" for comment in comments),
837
+ subseed=p.all_subseeds[0],
838
+ index_of_first_image=index_of_first_image,
839
+ infotexts=infotexts,
840
+ )
841
+
842
+ if p.scripts is not None:
843
+ p.scripts.postprocess(p, res)
844
+
845
+ return res
846
+
847
+
848
+ def old_hires_fix_first_pass_dimensions(width, height):
849
+ """old algorithm for auto-calculating first pass size"""
850
+
851
+ desired_pixel_count = 512 * 512
852
+ actual_pixel_count = width * height
853
+ scale = math.sqrt(desired_pixel_count / actual_pixel_count)
854
+ width = math.ceil(scale * width / 64) * 64
855
+ height = math.ceil(scale * height / 64) * 64
856
+
857
+ return width, height
858
+
859
+
860
+ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
861
+ sampler = None
862
+
863
+ def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
864
+ super().__init__(**kwargs)
865
+ self.enable_hr = enable_hr
866
+ self.denoising_strength = denoising_strength
867
+ self.hr_scale = hr_scale
868
+ self.hr_upscaler = hr_upscaler
869
+ self.hr_second_pass_steps = hr_second_pass_steps
870
+ self.hr_resize_x = hr_resize_x
871
+ self.hr_resize_y = hr_resize_y
872
+ self.hr_upscale_to_x = hr_resize_x
873
+ self.hr_upscale_to_y = hr_resize_y
874
+ self.hr_sampler_name = hr_sampler_name
875
+ self.hr_prompt = hr_prompt
876
+ self.hr_negative_prompt = hr_negative_prompt
877
+ self.all_hr_prompts = None
878
+ self.all_hr_negative_prompts = None
879
+
880
+ if firstphase_width != 0 or firstphase_height != 0:
881
+ self.hr_upscale_to_x = self.width
882
+ self.hr_upscale_to_y = self.height
883
+ self.width = firstphase_width
884
+ self.height = firstphase_height
885
+
886
+ self.truncate_x = 0
887
+ self.truncate_y = 0
888
+ self.applied_old_hires_behavior_to = None
889
+
890
+ self.hr_prompts = None
891
+ self.hr_negative_prompts = None
892
+ self.hr_extra_network_data = None
893
+
894
+ self.hr_c = None
895
+ self.hr_uc = None
896
+
897
+ def init(self, all_prompts, all_seeds, all_subseeds):
898
+ if self.enable_hr:
899
+ if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
900
+ self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
901
+
902
+ if tuple(self.hr_prompt) != tuple(self.prompt):
903
+ self.extra_generation_params["Hires prompt"] = self.hr_prompt
904
+
905
+ if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
906
+ self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
907
+
908
+ if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
909
+ self.hr_resize_x = self.width
910
+ self.hr_resize_y = self.height
911
+ self.hr_upscale_to_x = self.width
912
+ self.hr_upscale_to_y = self.height
913
+
914
+ self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
915
+ self.applied_old_hires_behavior_to = (self.width, self.height)
916
+
917
+ if self.hr_resize_x == 0 and self.hr_resize_y == 0:
918
+ self.extra_generation_params["Hires upscale"] = self.hr_scale
919
+ self.hr_upscale_to_x = int(self.width * self.hr_scale)
920
+ self.hr_upscale_to_y = int(self.height * self.hr_scale)
921
+ else:
922
+ self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
923
+
924
+ if self.hr_resize_y == 0:
925
+ self.hr_upscale_to_x = self.hr_resize_x
926
+ self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
927
+ elif self.hr_resize_x == 0:
928
+ self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
929
+ self.hr_upscale_to_y = self.hr_resize_y
930
+ else:
931
+ target_w = self.hr_resize_x
932
+ target_h = self.hr_resize_y
933
+ src_ratio = self.width / self.height
934
+ dst_ratio = self.hr_resize_x / self.hr_resize_y
935
+
936
+ if src_ratio < dst_ratio:
937
+ self.hr_upscale_to_x = self.hr_resize_x
938
+ self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
939
+ else:
940
+ self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
941
+ self.hr_upscale_to_y = self.hr_resize_y
942
+
943
+ self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
944
+ self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
945
+
946
+ # special case: the user has chosen to do nothing
947
+ if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
948
+ self.enable_hr = False
949
+ self.denoising_strength = None
950
+ self.extra_generation_params.pop("Hires upscale", None)
951
+ self.extra_generation_params.pop("Hires resize", None)
952
+ return
953
+
954
+ if not state.processing_has_refined_job_count:
955
+ if state.job_count == -1:
956
+ state.job_count = self.n_iter
957
+
958
+ shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
959
+ state.job_count = state.job_count * 2
960
+ state.processing_has_refined_job_count = True
961
+
962
+ if self.hr_second_pass_steps:
963
+ self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
964
+
965
+ if self.hr_upscaler is not None:
966
+ self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
967
+
968
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
969
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
970
+
971
+ latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
972
+ if self.enable_hr and latent_scale_mode is None:
973
+ assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
974
+
975
+ x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
976
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
977
+
978
+ if not self.enable_hr:
979
+ return samples
980
+
981
+ self.is_hr_pass = True
982
+
983
+ target_width = self.hr_upscale_to_x
984
+ target_height = self.hr_upscale_to_y
985
+
986
+ def save_intermediate(image, index):
987
+ """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
988
+
989
+ if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
990
+ return
991
+
992
+ if not isinstance(image, Image.Image):
993
+ image = sd_samplers.sample_to_image(image, index, approximation=0)
994
+
995
+ info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
996
+ images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
997
+
998
+ if latent_scale_mode is not None:
999
+ for i in range(samples.shape[0]):
1000
+ save_intermediate(samples, i)
1001
+
1002
+ samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
1003
+
1004
+ # Avoid making the inpainting conditioning unless necessary as
1005
+ # this does need some extra compute to decode / encode the image again.
1006
+ if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
1007
+ image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
1008
+ else:
1009
+ image_conditioning = self.txt2img_image_conditioning(samples)
1010
+ else:
1011
+ decoded_samples = decode_first_stage(self.sd_model, samples)
1012
+ lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
1013
+
1014
+ batch_images = []
1015
+ for i, x_sample in enumerate(lowres_samples):
1016
+ x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
1017
+ x_sample = x_sample.astype(np.uint8)
1018
+ image = Image.fromarray(x_sample)
1019
+
1020
+ save_intermediate(image, i)
1021
+
1022
+ image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
1023
+ image = np.array(image).astype(np.float32) / 255.0
1024
+ image = np.moveaxis(image, 2, 0)
1025
+ batch_images.append(image)
1026
+
1027
+ decoded_samples = torch.from_numpy(np.array(batch_images))
1028
+ decoded_samples = decoded_samples.to(shared.device)
1029
+ decoded_samples = 2. * decoded_samples - 1.
1030
+
1031
+ samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
1032
+
1033
+ image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
1034
+
1035
+ shared.state.nextjob()
1036
+
1037
+ img2img_sampler_name = self.hr_sampler_name or self.sampler_name
1038
+
1039
+ if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
1040
+ img2img_sampler_name = 'DDIM'
1041
+
1042
+ self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
1043
+
1044
+ samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
1045
+
1046
+ noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
1047
+
1048
+ # GC now before running the next img2img to prevent running out of memory
1049
+ x = None
1050
+ devices.torch_gc()
1051
+
1052
+ if not self.disable_extra_networks:
1053
+ with devices.autocast():
1054
+ extra_networks.activate(self, self.hr_extra_network_data)
1055
+
1056
+ sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
1057
+
1058
+ samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
1059
+
1060
+ sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
1061
+
1062
+ self.is_hr_pass = False
1063
+
1064
+ return samples
1065
+
1066
+ def close(self):
1067
+ self.hr_c = None
1068
+ self.hr_uc = None
1069
+
1070
+ def setup_prompts(self):
1071
+ super().setup_prompts()
1072
+
1073
+ if not self.enable_hr:
1074
+ return
1075
+
1076
+ if self.hr_prompt == '':
1077
+ self.hr_prompt = self.prompt
1078
+
1079
+ if self.hr_negative_prompt == '':
1080
+ self.hr_negative_prompt = self.negative_prompt
1081
+
1082
+ if type(self.hr_prompt) == list:
1083
+ self.all_hr_prompts = self.hr_prompt
1084
+ else:
1085
+ self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
1086
+
1087
+ if type(self.hr_negative_prompt) == list:
1088
+ self.all_hr_negative_prompts = self.hr_negative_prompt
1089
+ else:
1090
+ self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
1091
+
1092
+ self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
1093
+ self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
1094
+
1095
+ def setup_conds(self):
1096
+ super().setup_conds()
1097
+
1098
+ if self.enable_hr:
1099
+ self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
1100
+ self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, self.cached_c)
1101
+
1102
+ def parse_extra_network_prompts(self):
1103
+ res = super().parse_extra_network_prompts()
1104
+
1105
+ if self.enable_hr:
1106
+ self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
1107
+ self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
1108
+
1109
+ self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
1110
+
1111
+ return res
1112
+
1113
+
1114
+ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
1115
+ sampler = None
1116
+
1117
+ def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
1118
+ super().__init__(**kwargs)
1119
+
1120
+ self.init_images = init_images
1121
+ self.resize_mode: int = resize_mode
1122
+ self.denoising_strength: float = denoising_strength
1123
+ self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
1124
+ self.init_latent = None
1125
+ self.image_mask = mask
1126
+ self.latent_mask = None
1127
+ self.mask_for_overlay = None
1128
+ self.mask_blur = mask_blur
1129
+ self.inpainting_fill = inpainting_fill
1130
+ self.inpaint_full_res = inpaint_full_res
1131
+ self.inpaint_full_res_padding = inpaint_full_res_padding
1132
+ self.inpainting_mask_invert = inpainting_mask_invert
1133
+ self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
1134
+ self.mask = None
1135
+ self.nmask = None
1136
+ self.image_conditioning = None
1137
+
1138
+ def init(self, all_prompts, all_seeds, all_subseeds):
1139
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
1140
+ crop_region = None
1141
+
1142
+ image_mask = self.image_mask
1143
+
1144
+ if image_mask is not None:
1145
+ image_mask = image_mask.convert('L')
1146
+
1147
+ if self.inpainting_mask_invert:
1148
+ image_mask = ImageOps.invert(image_mask)
1149
+
1150
+ if self.mask_blur > 0:
1151
+ image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
1152
+
1153
+ if self.inpaint_full_res:
1154
+ self.mask_for_overlay = image_mask
1155
+ mask = image_mask.convert('L')
1156
+ crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
1157
+ crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
1158
+ x1, y1, x2, y2 = crop_region
1159
+
1160
+ mask = mask.crop(crop_region)
1161
+ image_mask = images.resize_image(2, mask, self.width, self.height)
1162
+ self.paste_to = (x1, y1, x2-x1, y2-y1)
1163
+ else:
1164
+ image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
1165
+ np_mask = np.array(image_mask)
1166
+ np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
1167
+ self.mask_for_overlay = Image.fromarray(np_mask)
1168
+
1169
+ self.overlay_images = []
1170
+
1171
+ latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
1172
+
1173
+ add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
1174
+ if add_color_corrections:
1175
+ self.color_corrections = []
1176
+ imgs = []
1177
+ for img in self.init_images:
1178
+
1179
+ # Save init image
1180
+ if opts.save_init_img:
1181
+ self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
1182
+ images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
1183
+
1184
+ image = images.flatten(img, opts.img2img_background_color)
1185
+
1186
+ if crop_region is None and self.resize_mode != 3:
1187
+ image = images.resize_image(self.resize_mode, image, self.width, self.height)
1188
+
1189
+ if image_mask is not None:
1190
+ image_masked = Image.new('RGBa', (image.width, image.height))
1191
+ image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
1192
+
1193
+ self.overlay_images.append(image_masked.convert('RGBA'))
1194
+
1195
+ # crop_region is not None if we are doing inpaint full res
1196
+ if crop_region is not None:
1197
+ image = image.crop(crop_region)
1198
+ image = images.resize_image(2, image, self.width, self.height)
1199
+
1200
+ if image_mask is not None:
1201
+ if self.inpainting_fill != 1:
1202
+ image = masking.fill(image, latent_mask)
1203
+
1204
+ if add_color_corrections:
1205
+ self.color_corrections.append(setup_color_correction(image))
1206
+
1207
+ image = np.array(image).astype(np.float32) / 255.0
1208
+ image = np.moveaxis(image, 2, 0)
1209
+
1210
+ imgs.append(image)
1211
+
1212
+ if len(imgs) == 1:
1213
+ batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
1214
+ if self.overlay_images is not None:
1215
+ self.overlay_images = self.overlay_images * self.batch_size
1216
+
1217
+ if self.color_corrections is not None and len(self.color_corrections) == 1:
1218
+ self.color_corrections = self.color_corrections * self.batch_size
1219
+
1220
+ elif len(imgs) <= self.batch_size:
1221
+ self.batch_size = len(imgs)
1222
+ batch_images = np.array(imgs)
1223
+ else:
1224
+ raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
1225
+
1226
+ image = torch.from_numpy(batch_images)
1227
+ image = 2. * image - 1.
1228
+ image = image.to(shared.device)
1229
+
1230
+ self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
1231
+
1232
+ if self.resize_mode == 3:
1233
+ self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
1234
+
1235
+ if image_mask is not None:
1236
+ init_mask = latent_mask
1237
+ latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
1238
+ latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
1239
+ latmask = latmask[0]
1240
+ latmask = np.around(latmask)
1241
+ latmask = np.tile(latmask[None], (4, 1, 1))
1242
+
1243
+ self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
1244
+ self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
1245
+
1246
+ # this needs to be fixed to be done in sample() using actual seeds for batches
1247
+ if self.inpainting_fill == 2:
1248
+ self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
1249
+ elif self.inpainting_fill == 3:
1250
+ self.init_latent = self.init_latent * self.mask
1251
+
1252
+ self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
1253
+
1254
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
1255
+ x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
1256
+
1257
+ if self.initial_noise_multiplier != 1.0:
1258
+ self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
1259
+ x *= self.initial_noise_multiplier
1260
+
1261
+ samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
1262
+
1263
+ if self.mask is not None:
1264
+ samples = samples * self.nmask + self.init_latent * self.mask
1265
+
1266
+ del x
1267
+ devices.torch_gc()
1268
+
1269
+ return samples
1270
+
1271
+ def get_token_merging_ratio(self, for_hr=False):
1272
+ return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio