Commit
·
f672864
1
Parent(s):
d68f6f6
Upload processing.py
Browse files- processing.py +1272 -0
processing.py
ADDED
@@ -0,0 +1,1272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import hashlib
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image, ImageFilter, ImageOps
|
10 |
+
import random
|
11 |
+
import cv2
|
12 |
+
from skimage import exposure
|
13 |
+
from typing import Any, Dict, List
|
14 |
+
|
15 |
+
import modules.sd_hijack
|
16 |
+
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common
|
17 |
+
from modules.sd_hijack import model_hijack
|
18 |
+
from modules.shared import opts, cmd_opts, state
|
19 |
+
import modules.shared as shared
|
20 |
+
import modules.paths as paths
|
21 |
+
import modules.face_restoration
|
22 |
+
import modules.images as images
|
23 |
+
import modules.styles
|
24 |
+
import modules.sd_models as sd_models
|
25 |
+
import modules.sd_vae as sd_vae
|
26 |
+
import logging
|
27 |
+
from ldm.data.util import AddMiDaS
|
28 |
+
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
29 |
+
|
30 |
+
from einops import repeat, rearrange
|
31 |
+
from blendmodes.blend import blendLayers, BlendType
|
32 |
+
|
33 |
+
|
34 |
+
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
35 |
+
opt_C = 4
|
36 |
+
opt_f = 8
|
37 |
+
|
38 |
+
|
39 |
+
def setup_color_correction(image):
|
40 |
+
logging.info("Calibrating color correction.")
|
41 |
+
correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
|
42 |
+
return correction_target
|
43 |
+
|
44 |
+
|
45 |
+
def apply_color_correction(correction, original_image):
|
46 |
+
logging.info("Applying color correction.")
|
47 |
+
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
48 |
+
cv2.cvtColor(
|
49 |
+
np.asarray(original_image),
|
50 |
+
cv2.COLOR_RGB2LAB
|
51 |
+
),
|
52 |
+
correction,
|
53 |
+
channel_axis=2
|
54 |
+
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
55 |
+
|
56 |
+
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
|
57 |
+
|
58 |
+
return image
|
59 |
+
|
60 |
+
|
61 |
+
def apply_overlay(image, paste_loc, index, overlays):
|
62 |
+
if overlays is None or index >= len(overlays):
|
63 |
+
return image
|
64 |
+
|
65 |
+
overlay = overlays[index]
|
66 |
+
|
67 |
+
if paste_loc is not None:
|
68 |
+
x, y, w, h = paste_loc
|
69 |
+
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
70 |
+
image = images.resize_image(1, image, w, h)
|
71 |
+
base_image.paste(image, (x, y))
|
72 |
+
image = base_image
|
73 |
+
|
74 |
+
image = image.convert('RGBA')
|
75 |
+
image.alpha_composite(overlay)
|
76 |
+
image = image.convert('RGB')
|
77 |
+
|
78 |
+
return image
|
79 |
+
|
80 |
+
|
81 |
+
def txt2img_image_conditioning(sd_model, x, width, height):
|
82 |
+
if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
|
83 |
+
|
84 |
+
# The "masked-image" in this case will just be all zeros since the entire image is masked.
|
85 |
+
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
|
86 |
+
image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
|
87 |
+
|
88 |
+
# Add the fake full 1s mask to the first dimension.
|
89 |
+
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
90 |
+
image_conditioning = image_conditioning.to(x.dtype)
|
91 |
+
|
92 |
+
return image_conditioning
|
93 |
+
|
94 |
+
elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
|
95 |
+
|
96 |
+
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
|
97 |
+
|
98 |
+
else:
|
99 |
+
# Dummy zero conditioning if we're not using inpainting or unclip models.
|
100 |
+
# Still takes up a bit of memory, but no encoder call.
|
101 |
+
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
102 |
+
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
|
103 |
+
|
104 |
+
|
105 |
+
class StableDiffusionProcessing:
|
106 |
+
"""
|
107 |
+
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
108 |
+
"""
|
109 |
+
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
|
110 |
+
if sampler_index is not None:
|
111 |
+
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
112 |
+
|
113 |
+
self.outpath_samples: str = outpath_samples
|
114 |
+
self.outpath_grids: str = outpath_grids
|
115 |
+
self.prompt: str = prompt
|
116 |
+
self.prompt_for_display: str = None
|
117 |
+
self.negative_prompt: str = (negative_prompt or "")
|
118 |
+
self.styles: list = styles or []
|
119 |
+
self.seed: int = seed
|
120 |
+
self.subseed: int = subseed
|
121 |
+
self.subseed_strength: float = subseed_strength
|
122 |
+
self.seed_resize_from_h: int = seed_resize_from_h
|
123 |
+
self.seed_resize_from_w: int = seed_resize_from_w
|
124 |
+
self.sampler_name: str = sampler_name
|
125 |
+
self.batch_size: int = batch_size
|
126 |
+
self.n_iter: int = n_iter
|
127 |
+
self.steps: int = steps
|
128 |
+
self.cfg_scale: float = cfg_scale
|
129 |
+
self.width: int = width
|
130 |
+
self.height: int = height
|
131 |
+
self.restore_faces: bool = restore_faces
|
132 |
+
self.tiling: bool = tiling
|
133 |
+
self.do_not_save_samples: bool = do_not_save_samples
|
134 |
+
self.do_not_save_grid: bool = do_not_save_grid
|
135 |
+
self.extra_generation_params: dict = extra_generation_params or {}
|
136 |
+
self.overlay_images = overlay_images
|
137 |
+
self.eta = eta
|
138 |
+
self.do_not_reload_embeddings = do_not_reload_embeddings
|
139 |
+
self.paste_to = None
|
140 |
+
self.color_corrections = None
|
141 |
+
self.denoising_strength: float = denoising_strength
|
142 |
+
self.sampler_noise_scheduler_override = None
|
143 |
+
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
|
144 |
+
self.s_min_uncond = s_min_uncond or opts.s_min_uncond
|
145 |
+
self.s_churn = s_churn or opts.s_churn
|
146 |
+
self.s_tmin = s_tmin or opts.s_tmin
|
147 |
+
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
148 |
+
self.s_noise = s_noise or opts.s_noise
|
149 |
+
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
|
150 |
+
self.override_settings_restore_afterwards = override_settings_restore_afterwards
|
151 |
+
self.is_using_inpainting_conditioning = False
|
152 |
+
self.disable_extra_networks = False
|
153 |
+
self.token_merging_ratio = 0
|
154 |
+
self.token_merging_ratio_hr = 0
|
155 |
+
|
156 |
+
if not seed_enable_extras:
|
157 |
+
self.subseed = -1
|
158 |
+
self.subseed_strength = 0
|
159 |
+
self.seed_resize_from_h = 0
|
160 |
+
self.seed_resize_from_w = 0
|
161 |
+
|
162 |
+
self.scripts = None
|
163 |
+
self.script_args = script_args
|
164 |
+
self.all_prompts = None
|
165 |
+
self.all_negative_prompts = None
|
166 |
+
self.all_seeds = None
|
167 |
+
self.all_subseeds = None
|
168 |
+
self.iteration = 0
|
169 |
+
self.is_hr_pass = False
|
170 |
+
self.sampler = None
|
171 |
+
|
172 |
+
self.prompts = None
|
173 |
+
self.negative_prompts = None
|
174 |
+
self.seeds = None
|
175 |
+
self.subseeds = None
|
176 |
+
|
177 |
+
self.step_multiplier = 1
|
178 |
+
self.cached_uc = [None, None]
|
179 |
+
self.cached_c = [None, None]
|
180 |
+
self.uc = None
|
181 |
+
self.c = None
|
182 |
+
|
183 |
+
@property
|
184 |
+
def sd_model(self):
|
185 |
+
return shared.sd_model
|
186 |
+
|
187 |
+
def txt2img_image_conditioning(self, x, width=None, height=None):
|
188 |
+
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
|
189 |
+
|
190 |
+
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
|
191 |
+
|
192 |
+
def depth2img_image_conditioning(self, source_image):
|
193 |
+
# Use the AddMiDaS helper to Format our source image to suit the MiDaS model
|
194 |
+
transformer = AddMiDaS(model_type="dpt_hybrid")
|
195 |
+
transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
|
196 |
+
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
|
197 |
+
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
|
198 |
+
|
199 |
+
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
|
200 |
+
conditioning = torch.nn.functional.interpolate(
|
201 |
+
self.sd_model.depth_model(midas_in),
|
202 |
+
size=conditioning_image.shape[2:],
|
203 |
+
mode="bicubic",
|
204 |
+
align_corners=False,
|
205 |
+
)
|
206 |
+
|
207 |
+
(depth_min, depth_max) = torch.aminmax(conditioning)
|
208 |
+
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
|
209 |
+
return conditioning
|
210 |
+
|
211 |
+
def edit_image_conditioning(self, source_image):
|
212 |
+
conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
|
213 |
+
|
214 |
+
return conditioning_image
|
215 |
+
|
216 |
+
def unclip_image_conditioning(self, source_image):
|
217 |
+
c_adm = self.sd_model.embedder(source_image)
|
218 |
+
if self.sd_model.noise_augmentor is not None:
|
219 |
+
noise_level = 0 # TODO: Allow other noise levels?
|
220 |
+
c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
|
221 |
+
c_adm = torch.cat((c_adm, noise_level_emb), 1)
|
222 |
+
return c_adm
|
223 |
+
|
224 |
+
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
|
225 |
+
self.is_using_inpainting_conditioning = True
|
226 |
+
|
227 |
+
# Handle the different mask inputs
|
228 |
+
if image_mask is not None:
|
229 |
+
if torch.is_tensor(image_mask):
|
230 |
+
conditioning_mask = image_mask
|
231 |
+
else:
|
232 |
+
conditioning_mask = np.array(image_mask.convert("L"))
|
233 |
+
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
|
234 |
+
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
|
235 |
+
|
236 |
+
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
|
237 |
+
conditioning_mask = torch.round(conditioning_mask)
|
238 |
+
else:
|
239 |
+
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
|
240 |
+
|
241 |
+
# Create another latent image, this time with a masked version of the original input.
|
242 |
+
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
243 |
+
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
|
244 |
+
conditioning_image = torch.lerp(
|
245 |
+
source_image,
|
246 |
+
source_image * (1.0 - conditioning_mask),
|
247 |
+
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
|
248 |
+
)
|
249 |
+
|
250 |
+
# Encode the new masked image using first stage of network.
|
251 |
+
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
252 |
+
|
253 |
+
# Create the concatenated conditioning tensor to be fed to `c_concat`
|
254 |
+
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
|
255 |
+
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
|
256 |
+
image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
|
257 |
+
image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
|
258 |
+
|
259 |
+
return image_conditioning
|
260 |
+
|
261 |
+
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
|
262 |
+
source_image = devices.cond_cast_float(source_image)
|
263 |
+
|
264 |
+
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
|
265 |
+
# identify itself with a field common to all models. The conditioning_key is also hybrid.
|
266 |
+
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
|
267 |
+
return self.depth2img_image_conditioning(source_image)
|
268 |
+
|
269 |
+
if self.sd_model.cond_stage_key == "edit":
|
270 |
+
return self.edit_image_conditioning(source_image)
|
271 |
+
|
272 |
+
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
273 |
+
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
274 |
+
|
275 |
+
if self.sampler.conditioning_key == "crossattn-adm":
|
276 |
+
return self.unclip_image_conditioning(source_image)
|
277 |
+
|
278 |
+
# Dummy zero conditioning if we're not using inpainting or depth model.
|
279 |
+
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
280 |
+
|
281 |
+
def init(self, all_prompts, all_seeds, all_subseeds):
|
282 |
+
pass
|
283 |
+
|
284 |
+
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
285 |
+
raise NotImplementedError()
|
286 |
+
|
287 |
+
def close(self):
|
288 |
+
self.sampler = None
|
289 |
+
self.c = None
|
290 |
+
self.uc = None
|
291 |
+
self.cached_c = [None, None]
|
292 |
+
self.cached_uc = [None, None]
|
293 |
+
|
294 |
+
def get_token_merging_ratio(self, for_hr=False):
|
295 |
+
if for_hr:
|
296 |
+
return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
|
297 |
+
|
298 |
+
return self.token_merging_ratio or opts.token_merging_ratio
|
299 |
+
|
300 |
+
def setup_prompts(self):
|
301 |
+
if type(self.prompt) == list:
|
302 |
+
self.all_prompts = self.prompt
|
303 |
+
else:
|
304 |
+
self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
|
305 |
+
|
306 |
+
if type(self.negative_prompt) == list:
|
307 |
+
self.all_negative_prompts = self.negative_prompt
|
308 |
+
else:
|
309 |
+
self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
|
310 |
+
|
311 |
+
self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
|
312 |
+
self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
|
313 |
+
|
314 |
+
def get_conds_with_caching(self, function, required_prompts, steps, cache):
|
315 |
+
"""
|
316 |
+
Returns the result of calling function(shared.sd_model, required_prompts, steps)
|
317 |
+
using a cache to store the result if the same arguments have been used before.
|
318 |
+
|
319 |
+
cache is an array containing two elements. The first element is a tuple
|
320 |
+
representing the previously used arguments, or None if no arguments
|
321 |
+
have been used before. The second element is where the previously
|
322 |
+
computed result is stored.
|
323 |
+
"""
|
324 |
+
if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info) == cache[0]:
|
325 |
+
return cache[1]
|
326 |
+
|
327 |
+
with devices.autocast():
|
328 |
+
cache[1] = function(shared.sd_model, required_prompts, steps)
|
329 |
+
|
330 |
+
cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info)
|
331 |
+
return cache[1]
|
332 |
+
|
333 |
+
def setup_conds(self):
|
334 |
+
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
|
335 |
+
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
|
336 |
+
|
337 |
+
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
|
338 |
+
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, self.cached_c)
|
339 |
+
|
340 |
+
def parse_extra_network_prompts(self):
|
341 |
+
self.prompts, extra_network_data = extra_networks.parse_prompts(self.prompts)
|
342 |
+
|
343 |
+
return extra_network_data
|
344 |
+
|
345 |
+
|
346 |
+
class Processed:
|
347 |
+
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
|
348 |
+
self.images = images_list
|
349 |
+
self.prompt = p.prompt
|
350 |
+
self.negative_prompt = p.negative_prompt
|
351 |
+
self.seed = seed
|
352 |
+
self.subseed = subseed
|
353 |
+
self.subseed_strength = p.subseed_strength
|
354 |
+
self.info = info
|
355 |
+
self.comments = comments
|
356 |
+
self.width = p.width
|
357 |
+
self.height = p.height
|
358 |
+
self.sampler_name = p.sampler_name
|
359 |
+
self.cfg_scale = p.cfg_scale
|
360 |
+
self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
|
361 |
+
self.steps = p.steps
|
362 |
+
self.batch_size = p.batch_size
|
363 |
+
self.restore_faces = p.restore_faces
|
364 |
+
self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
|
365 |
+
self.sd_model_hash = shared.sd_model.sd_model_hash
|
366 |
+
self.seed_resize_from_w = p.seed_resize_from_w
|
367 |
+
self.seed_resize_from_h = p.seed_resize_from_h
|
368 |
+
self.denoising_strength = getattr(p, 'denoising_strength', None)
|
369 |
+
self.extra_generation_params = p.extra_generation_params
|
370 |
+
self.index_of_first_image = index_of_first_image
|
371 |
+
self.styles = p.styles
|
372 |
+
self.job_timestamp = state.job_timestamp
|
373 |
+
self.clip_skip = opts.CLIP_stop_at_last_layers
|
374 |
+
self.token_merging_ratio = p.token_merging_ratio
|
375 |
+
self.token_merging_ratio_hr = p.token_merging_ratio_hr
|
376 |
+
|
377 |
+
self.eta = p.eta
|
378 |
+
self.ddim_discretize = p.ddim_discretize
|
379 |
+
self.s_churn = p.s_churn
|
380 |
+
self.s_tmin = p.s_tmin
|
381 |
+
self.s_tmax = p.s_tmax
|
382 |
+
self.s_noise = p.s_noise
|
383 |
+
self.s_min_uncond = p.s_min_uncond
|
384 |
+
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
|
385 |
+
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
|
386 |
+
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
387 |
+
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
388 |
+
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
389 |
+
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
|
390 |
+
|
391 |
+
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
|
392 |
+
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
|
393 |
+
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
|
394 |
+
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
|
395 |
+
self.infotexts = infotexts or [info]
|
396 |
+
|
397 |
+
def js(self):
|
398 |
+
obj = {
|
399 |
+
"prompt": self.all_prompts[0],
|
400 |
+
"all_prompts": self.all_prompts,
|
401 |
+
"negative_prompt": self.all_negative_prompts[0],
|
402 |
+
"all_negative_prompts": self.all_negative_prompts,
|
403 |
+
"seed": self.seed,
|
404 |
+
"all_seeds": self.all_seeds,
|
405 |
+
"subseed": self.subseed,
|
406 |
+
"all_subseeds": self.all_subseeds,
|
407 |
+
"subseed_strength": self.subseed_strength,
|
408 |
+
"width": self.width,
|
409 |
+
"height": self.height,
|
410 |
+
"sampler_name": self.sampler_name,
|
411 |
+
"cfg_scale": self.cfg_scale,
|
412 |
+
"steps": self.steps,
|
413 |
+
"batch_size": self.batch_size,
|
414 |
+
"restore_faces": self.restore_faces,
|
415 |
+
"face_restoration_model": self.face_restoration_model,
|
416 |
+
"sd_model_hash": self.sd_model_hash,
|
417 |
+
"seed_resize_from_w": self.seed_resize_from_w,
|
418 |
+
"seed_resize_from_h": self.seed_resize_from_h,
|
419 |
+
"denoising_strength": self.denoising_strength,
|
420 |
+
"extra_generation_params": self.extra_generation_params,
|
421 |
+
"index_of_first_image": self.index_of_first_image,
|
422 |
+
"infotexts": self.infotexts,
|
423 |
+
"styles": self.styles,
|
424 |
+
"job_timestamp": self.job_timestamp,
|
425 |
+
"clip_skip": self.clip_skip,
|
426 |
+
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
|
427 |
+
}
|
428 |
+
|
429 |
+
return json.dumps(obj)
|
430 |
+
|
431 |
+
def infotext(self, p: StableDiffusionProcessing, index):
|
432 |
+
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
433 |
+
|
434 |
+
def get_token_merging_ratio(self, for_hr=False):
|
435 |
+
return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
|
436 |
+
|
437 |
+
|
438 |
+
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
|
439 |
+
def slerp(val, low, high):
|
440 |
+
low_norm = low/torch.norm(low, dim=1, keepdim=True)
|
441 |
+
high_norm = high/torch.norm(high, dim=1, keepdim=True)
|
442 |
+
dot = (low_norm*high_norm).sum(1)
|
443 |
+
|
444 |
+
if dot.mean() > 0.9995:
|
445 |
+
return low * val + high * (1 - val)
|
446 |
+
|
447 |
+
omega = torch.acos(dot)
|
448 |
+
so = torch.sin(omega)
|
449 |
+
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
|
450 |
+
return res
|
451 |
+
|
452 |
+
|
453 |
+
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
454 |
+
eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
|
455 |
+
xs = []
|
456 |
+
|
457 |
+
# if we have multiple seeds, this means we are working with batch size>1; this then
|
458 |
+
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
459 |
+
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
460 |
+
# produce the same images as with two batches [100], [101].
|
461 |
+
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
|
462 |
+
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
463 |
+
else:
|
464 |
+
sampler_noises = None
|
465 |
+
|
466 |
+
for i, seed in enumerate(seeds):
|
467 |
+
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
468 |
+
|
469 |
+
subnoise = None
|
470 |
+
if subseeds is not None:
|
471 |
+
subseed = 0 if i >= len(subseeds) else subseeds[i]
|
472 |
+
|
473 |
+
subnoise = devices.randn(subseed, noise_shape)
|
474 |
+
|
475 |
+
# randn results depend on device; gpu and cpu get different results for same seed;
|
476 |
+
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
|
477 |
+
# but the original script had it like this, so I do not dare change it for now because
|
478 |
+
# it will break everyone's seeds.
|
479 |
+
noise = devices.randn(seed, noise_shape)
|
480 |
+
|
481 |
+
if subnoise is not None:
|
482 |
+
noise = slerp(subseed_strength, noise, subnoise)
|
483 |
+
|
484 |
+
if noise_shape != shape:
|
485 |
+
x = devices.randn(seed, shape)
|
486 |
+
dx = (shape[2] - noise_shape[2]) // 2
|
487 |
+
dy = (shape[1] - noise_shape[1]) // 2
|
488 |
+
w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
|
489 |
+
h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
|
490 |
+
tx = 0 if dx < 0 else dx
|
491 |
+
ty = 0 if dy < 0 else dy
|
492 |
+
dx = max(-dx, 0)
|
493 |
+
dy = max(-dy, 0)
|
494 |
+
|
495 |
+
x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
|
496 |
+
noise = x
|
497 |
+
|
498 |
+
if sampler_noises is not None:
|
499 |
+
cnt = p.sampler.number_of_needed_noises(p)
|
500 |
+
|
501 |
+
if eta_noise_seed_delta > 0:
|
502 |
+
torch.manual_seed(seed + eta_noise_seed_delta)
|
503 |
+
|
504 |
+
for j in range(cnt):
|
505 |
+
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
506 |
+
|
507 |
+
xs.append(noise)
|
508 |
+
|
509 |
+
if sampler_noises is not None:
|
510 |
+
p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
|
511 |
+
|
512 |
+
x = torch.stack(xs).to(shared.device)
|
513 |
+
return x
|
514 |
+
|
515 |
+
|
516 |
+
def decode_first_stage(model, x):
|
517 |
+
with devices.autocast(disable=x.dtype == devices.dtype_vae):
|
518 |
+
x = model.decode_first_stage(x)
|
519 |
+
|
520 |
+
return x
|
521 |
+
|
522 |
+
|
523 |
+
def get_fixed_seed(seed):
|
524 |
+
if seed is None or seed == '' or seed == -1:
|
525 |
+
return int(random.randrange(4294967294))
|
526 |
+
|
527 |
+
return seed
|
528 |
+
|
529 |
+
|
530 |
+
def fix_seed(p):
|
531 |
+
p.seed = get_fixed_seed(p.seed)
|
532 |
+
p.subseed = get_fixed_seed(p.subseed)
|
533 |
+
|
534 |
+
|
535 |
+
def program_version():
|
536 |
+
import launch
|
537 |
+
|
538 |
+
res = launch.git_tag()
|
539 |
+
if res == "<none>":
|
540 |
+
res = None
|
541 |
+
|
542 |
+
return res
|
543 |
+
|
544 |
+
|
545 |
+
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
|
546 |
+
index = position_in_batch + iteration * p.batch_size
|
547 |
+
|
548 |
+
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
549 |
+
enable_hr = getattr(p, 'enable_hr', False)
|
550 |
+
token_merging_ratio = p.get_token_merging_ratio()
|
551 |
+
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
|
552 |
+
|
553 |
+
uses_ensd = opts.eta_noise_seed_delta != 0
|
554 |
+
if uses_ensd:
|
555 |
+
uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
|
556 |
+
|
557 |
+
generation_params = {
|
558 |
+
"Steps": p.steps,
|
559 |
+
"Sampler": p.sampler_name,
|
560 |
+
"CFG scale": p.cfg_scale,
|
561 |
+
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
|
562 |
+
"Seed": all_seeds[index],
|
563 |
+
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
564 |
+
"Size": f"{p.width}x{p.height}",
|
565 |
+
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
566 |
+
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
567 |
+
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
568 |
+
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
569 |
+
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
570 |
+
"Denoising strength": getattr(p, 'denoising_strength', None),
|
571 |
+
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
|
572 |
+
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
573 |
+
"ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
|
574 |
+
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
|
575 |
+
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
|
576 |
+
"Init image hash": getattr(p, 'init_img_hash', None),
|
577 |
+
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
|
578 |
+
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
|
579 |
+
**p.extra_generation_params,
|
580 |
+
"Version": program_version() if opts.add_version_to_infotext else None,
|
581 |
+
}
|
582 |
+
|
583 |
+
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
584 |
+
|
585 |
+
negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
|
586 |
+
|
587 |
+
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
588 |
+
|
589 |
+
|
590 |
+
def process_images(p: StableDiffusionProcessing) -> Processed:
|
591 |
+
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
|
592 |
+
|
593 |
+
try:
|
594 |
+
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
|
595 |
+
if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None:
|
596 |
+
p.override_settings.pop('sd_model_checkpoint', None)
|
597 |
+
sd_models.reload_model_weights()
|
598 |
+
|
599 |
+
for k, v in p.override_settings.items():
|
600 |
+
setattr(opts, k, v)
|
601 |
+
|
602 |
+
if k == 'sd_model_checkpoint':
|
603 |
+
sd_models.reload_model_weights()
|
604 |
+
|
605 |
+
if k == 'sd_vae':
|
606 |
+
sd_vae.reload_vae_weights()
|
607 |
+
|
608 |
+
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
|
609 |
+
|
610 |
+
res = process_images_inner(p)
|
611 |
+
|
612 |
+
finally:
|
613 |
+
sd_models.apply_token_merging(p.sd_model, 0)
|
614 |
+
|
615 |
+
# restore opts to original state
|
616 |
+
if p.override_settings_restore_afterwards:
|
617 |
+
for k, v in stored_opts.items():
|
618 |
+
setattr(opts, k, v)
|
619 |
+
|
620 |
+
if k == 'sd_vae':
|
621 |
+
sd_vae.reload_vae_weights()
|
622 |
+
|
623 |
+
return res
|
624 |
+
|
625 |
+
|
626 |
+
def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
627 |
+
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
628 |
+
|
629 |
+
if type(p.prompt) == list:
|
630 |
+
assert(len(p.prompt) > 0)
|
631 |
+
else:
|
632 |
+
assert p.prompt is not None
|
633 |
+
|
634 |
+
devices.torch_gc()
|
635 |
+
|
636 |
+
seed = get_fixed_seed(p.seed)
|
637 |
+
subseed = get_fixed_seed(p.subseed)
|
638 |
+
|
639 |
+
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
|
640 |
+
modules.sd_hijack.model_hijack.clear_comments()
|
641 |
+
|
642 |
+
comments = {}
|
643 |
+
|
644 |
+
p.setup_prompts()
|
645 |
+
|
646 |
+
if type(seed) == list:
|
647 |
+
p.all_seeds = seed
|
648 |
+
else:
|
649 |
+
p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
|
650 |
+
|
651 |
+
if type(subseed) == list:
|
652 |
+
p.all_subseeds = subseed
|
653 |
+
else:
|
654 |
+
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
|
655 |
+
|
656 |
+
def infotext(iteration=0, position_in_batch=0):
|
657 |
+
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
|
658 |
+
|
659 |
+
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
660 |
+
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
661 |
+
|
662 |
+
if p.scripts is not None:
|
663 |
+
p.scripts.process(p)
|
664 |
+
|
665 |
+
infotexts = []
|
666 |
+
output_images = []
|
667 |
+
|
668 |
+
with torch.no_grad(), p.sd_model.ema_scope():
|
669 |
+
with devices.autocast():
|
670 |
+
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
|
671 |
+
|
672 |
+
# for OSX, loading the model during sampling changes the generated picture, so it is loaded here
|
673 |
+
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
|
674 |
+
sd_vae_approx.model()
|
675 |
+
|
676 |
+
if state.job_count == -1:
|
677 |
+
state.job_count = p.n_iter
|
678 |
+
|
679 |
+
extra_network_data = None
|
680 |
+
for n in range(p.n_iter):
|
681 |
+
p.iteration = n
|
682 |
+
|
683 |
+
if state.skipped:
|
684 |
+
state.skipped = False
|
685 |
+
|
686 |
+
if state.interrupted:
|
687 |
+
break
|
688 |
+
|
689 |
+
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
690 |
+
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
691 |
+
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
692 |
+
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
693 |
+
|
694 |
+
if p.scripts is not None:
|
695 |
+
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
|
696 |
+
|
697 |
+
if len(p.prompts) == 0:
|
698 |
+
break
|
699 |
+
|
700 |
+
extra_network_data = p.parse_extra_network_prompts()
|
701 |
+
|
702 |
+
if not p.disable_extra_networks:
|
703 |
+
with devices.autocast():
|
704 |
+
extra_networks.activate(p, extra_network_data)
|
705 |
+
|
706 |
+
if p.scripts is not None:
|
707 |
+
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
|
708 |
+
|
709 |
+
# params.txt should be saved after scripts.process_batch, since the
|
710 |
+
# infotext could be modified by that callback
|
711 |
+
# Example: a wildcard processed by process_batch sets an extra model
|
712 |
+
# strength, which is saved as "Model Strength: 1.0" in the infotext
|
713 |
+
if n == 0:
|
714 |
+
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
|
715 |
+
processed = Processed(p, [], p.seed, "")
|
716 |
+
file.write(processed.infotext(p, 0))
|
717 |
+
|
718 |
+
p.setup_conds()
|
719 |
+
|
720 |
+
if len(model_hijack.comments) > 0:
|
721 |
+
for comment in model_hijack.comments:
|
722 |
+
comments[comment] = 1
|
723 |
+
|
724 |
+
if p.n_iter > 1:
|
725 |
+
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
726 |
+
|
727 |
+
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
|
728 |
+
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
729 |
+
|
730 |
+
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
731 |
+
for x in x_samples_ddim:
|
732 |
+
devices.test_for_nans(x, "vae")
|
733 |
+
|
734 |
+
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
735 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
736 |
+
|
737 |
+
del samples_ddim
|
738 |
+
|
739 |
+
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
740 |
+
lowvram.send_everything_to_cpu()
|
741 |
+
|
742 |
+
devices.torch_gc()
|
743 |
+
|
744 |
+
if p.scripts is not None:
|
745 |
+
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
746 |
+
|
747 |
+
for i, x_sample in enumerate(x_samples_ddim):
|
748 |
+
p.batch_index = i
|
749 |
+
|
750 |
+
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
751 |
+
x_sample = x_sample.astype(np.uint8)
|
752 |
+
|
753 |
+
if p.restore_faces:
|
754 |
+
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
|
755 |
+
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
|
756 |
+
|
757 |
+
devices.torch_gc()
|
758 |
+
|
759 |
+
x_sample = modules.face_restoration.restore_faces(x_sample)
|
760 |
+
devices.torch_gc()
|
761 |
+
|
762 |
+
image = Image.fromarray(x_sample)
|
763 |
+
|
764 |
+
if p.scripts is not None:
|
765 |
+
pp = scripts.PostprocessImageArgs(image)
|
766 |
+
p.scripts.postprocess_image(p, pp)
|
767 |
+
image = pp.image
|
768 |
+
|
769 |
+
if p.color_corrections is not None and i < len(p.color_corrections):
|
770 |
+
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
771 |
+
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
772 |
+
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
773 |
+
image = apply_color_correction(p.color_corrections[i], image)
|
774 |
+
|
775 |
+
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
776 |
+
|
777 |
+
if opts.samples_save and not p.do_not_save_samples:
|
778 |
+
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
779 |
+
|
780 |
+
text = infotext(n, i)
|
781 |
+
infotexts.append(text)
|
782 |
+
if opts.enable_pnginfo:
|
783 |
+
image.info["parameters"] = text
|
784 |
+
output_images.append(image)
|
785 |
+
|
786 |
+
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
|
787 |
+
image_mask = p.mask_for_overlay.convert('RGB')
|
788 |
+
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
789 |
+
|
790 |
+
if opts.save_mask:
|
791 |
+
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
|
792 |
+
|
793 |
+
if opts.save_mask_composite:
|
794 |
+
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
|
795 |
+
|
796 |
+
if opts.return_mask:
|
797 |
+
output_images.append(image_mask)
|
798 |
+
|
799 |
+
if opts.return_mask_composite:
|
800 |
+
output_images.append(image_mask_composite)
|
801 |
+
|
802 |
+
del x_samples_ddim
|
803 |
+
|
804 |
+
devices.torch_gc()
|
805 |
+
|
806 |
+
state.nextjob()
|
807 |
+
|
808 |
+
p.color_corrections = None
|
809 |
+
|
810 |
+
index_of_first_image = 0
|
811 |
+
unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
|
812 |
+
if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
|
813 |
+
grid = images.image_grid(output_images, p.batch_size)
|
814 |
+
|
815 |
+
if opts.return_grid:
|
816 |
+
text = infotext()
|
817 |
+
infotexts.insert(0, text)
|
818 |
+
if opts.enable_pnginfo:
|
819 |
+
grid.info["parameters"] = text
|
820 |
+
output_images.insert(0, grid)
|
821 |
+
index_of_first_image = 1
|
822 |
+
|
823 |
+
if opts.grid_save:
|
824 |
+
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
825 |
+
|
826 |
+
if not p.disable_extra_networks and extra_network_data:
|
827 |
+
extra_networks.deactivate(p, extra_network_data)
|
828 |
+
|
829 |
+
devices.torch_gc()
|
830 |
+
|
831 |
+
res = Processed(
|
832 |
+
p,
|
833 |
+
images_list=output_images,
|
834 |
+
seed=p.all_seeds[0],
|
835 |
+
info=infotext(),
|
836 |
+
comments="".join(f"{comment}\n" for comment in comments),
|
837 |
+
subseed=p.all_subseeds[0],
|
838 |
+
index_of_first_image=index_of_first_image,
|
839 |
+
infotexts=infotexts,
|
840 |
+
)
|
841 |
+
|
842 |
+
if p.scripts is not None:
|
843 |
+
p.scripts.postprocess(p, res)
|
844 |
+
|
845 |
+
return res
|
846 |
+
|
847 |
+
|
848 |
+
def old_hires_fix_first_pass_dimensions(width, height):
|
849 |
+
"""old algorithm for auto-calculating first pass size"""
|
850 |
+
|
851 |
+
desired_pixel_count = 512 * 512
|
852 |
+
actual_pixel_count = width * height
|
853 |
+
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
854 |
+
width = math.ceil(scale * width / 64) * 64
|
855 |
+
height = math.ceil(scale * height / 64) * 64
|
856 |
+
|
857 |
+
return width, height
|
858 |
+
|
859 |
+
|
860 |
+
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
861 |
+
sampler = None
|
862 |
+
|
863 |
+
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
|
864 |
+
super().__init__(**kwargs)
|
865 |
+
self.enable_hr = enable_hr
|
866 |
+
self.denoising_strength = denoising_strength
|
867 |
+
self.hr_scale = hr_scale
|
868 |
+
self.hr_upscaler = hr_upscaler
|
869 |
+
self.hr_second_pass_steps = hr_second_pass_steps
|
870 |
+
self.hr_resize_x = hr_resize_x
|
871 |
+
self.hr_resize_y = hr_resize_y
|
872 |
+
self.hr_upscale_to_x = hr_resize_x
|
873 |
+
self.hr_upscale_to_y = hr_resize_y
|
874 |
+
self.hr_sampler_name = hr_sampler_name
|
875 |
+
self.hr_prompt = hr_prompt
|
876 |
+
self.hr_negative_prompt = hr_negative_prompt
|
877 |
+
self.all_hr_prompts = None
|
878 |
+
self.all_hr_negative_prompts = None
|
879 |
+
|
880 |
+
if firstphase_width != 0 or firstphase_height != 0:
|
881 |
+
self.hr_upscale_to_x = self.width
|
882 |
+
self.hr_upscale_to_y = self.height
|
883 |
+
self.width = firstphase_width
|
884 |
+
self.height = firstphase_height
|
885 |
+
|
886 |
+
self.truncate_x = 0
|
887 |
+
self.truncate_y = 0
|
888 |
+
self.applied_old_hires_behavior_to = None
|
889 |
+
|
890 |
+
self.hr_prompts = None
|
891 |
+
self.hr_negative_prompts = None
|
892 |
+
self.hr_extra_network_data = None
|
893 |
+
|
894 |
+
self.hr_c = None
|
895 |
+
self.hr_uc = None
|
896 |
+
|
897 |
+
def init(self, all_prompts, all_seeds, all_subseeds):
|
898 |
+
if self.enable_hr:
|
899 |
+
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
|
900 |
+
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
|
901 |
+
|
902 |
+
if tuple(self.hr_prompt) != tuple(self.prompt):
|
903 |
+
self.extra_generation_params["Hires prompt"] = self.hr_prompt
|
904 |
+
|
905 |
+
if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
|
906 |
+
self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
|
907 |
+
|
908 |
+
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
|
909 |
+
self.hr_resize_x = self.width
|
910 |
+
self.hr_resize_y = self.height
|
911 |
+
self.hr_upscale_to_x = self.width
|
912 |
+
self.hr_upscale_to_y = self.height
|
913 |
+
|
914 |
+
self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
|
915 |
+
self.applied_old_hires_behavior_to = (self.width, self.height)
|
916 |
+
|
917 |
+
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
|
918 |
+
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
919 |
+
self.hr_upscale_to_x = int(self.width * self.hr_scale)
|
920 |
+
self.hr_upscale_to_y = int(self.height * self.hr_scale)
|
921 |
+
else:
|
922 |
+
self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
|
923 |
+
|
924 |
+
if self.hr_resize_y == 0:
|
925 |
+
self.hr_upscale_to_x = self.hr_resize_x
|
926 |
+
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
|
927 |
+
elif self.hr_resize_x == 0:
|
928 |
+
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
|
929 |
+
self.hr_upscale_to_y = self.hr_resize_y
|
930 |
+
else:
|
931 |
+
target_w = self.hr_resize_x
|
932 |
+
target_h = self.hr_resize_y
|
933 |
+
src_ratio = self.width / self.height
|
934 |
+
dst_ratio = self.hr_resize_x / self.hr_resize_y
|
935 |
+
|
936 |
+
if src_ratio < dst_ratio:
|
937 |
+
self.hr_upscale_to_x = self.hr_resize_x
|
938 |
+
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
|
939 |
+
else:
|
940 |
+
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
|
941 |
+
self.hr_upscale_to_y = self.hr_resize_y
|
942 |
+
|
943 |
+
self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
|
944 |
+
self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
|
945 |
+
|
946 |
+
# special case: the user has chosen to do nothing
|
947 |
+
if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
|
948 |
+
self.enable_hr = False
|
949 |
+
self.denoising_strength = None
|
950 |
+
self.extra_generation_params.pop("Hires upscale", None)
|
951 |
+
self.extra_generation_params.pop("Hires resize", None)
|
952 |
+
return
|
953 |
+
|
954 |
+
if not state.processing_has_refined_job_count:
|
955 |
+
if state.job_count == -1:
|
956 |
+
state.job_count = self.n_iter
|
957 |
+
|
958 |
+
shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
|
959 |
+
state.job_count = state.job_count * 2
|
960 |
+
state.processing_has_refined_job_count = True
|
961 |
+
|
962 |
+
if self.hr_second_pass_steps:
|
963 |
+
self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
|
964 |
+
|
965 |
+
if self.hr_upscaler is not None:
|
966 |
+
self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
|
967 |
+
|
968 |
+
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
969 |
+
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
970 |
+
|
971 |
+
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
972 |
+
if self.enable_hr and latent_scale_mode is None:
|
973 |
+
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
|
974 |
+
|
975 |
+
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
976 |
+
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
|
977 |
+
|
978 |
+
if not self.enable_hr:
|
979 |
+
return samples
|
980 |
+
|
981 |
+
self.is_hr_pass = True
|
982 |
+
|
983 |
+
target_width = self.hr_upscale_to_x
|
984 |
+
target_height = self.hr_upscale_to_y
|
985 |
+
|
986 |
+
def save_intermediate(image, index):
|
987 |
+
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
|
988 |
+
|
989 |
+
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
|
990 |
+
return
|
991 |
+
|
992 |
+
if not isinstance(image, Image.Image):
|
993 |
+
image = sd_samplers.sample_to_image(image, index, approximation=0)
|
994 |
+
|
995 |
+
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
|
996 |
+
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
|
997 |
+
|
998 |
+
if latent_scale_mode is not None:
|
999 |
+
for i in range(samples.shape[0]):
|
1000 |
+
save_intermediate(samples, i)
|
1001 |
+
|
1002 |
+
samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
|
1003 |
+
|
1004 |
+
# Avoid making the inpainting conditioning unless necessary as
|
1005 |
+
# this does need some extra compute to decode / encode the image again.
|
1006 |
+
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
|
1007 |
+
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
|
1008 |
+
else:
|
1009 |
+
image_conditioning = self.txt2img_image_conditioning(samples)
|
1010 |
+
else:
|
1011 |
+
decoded_samples = decode_first_stage(self.sd_model, samples)
|
1012 |
+
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
1013 |
+
|
1014 |
+
batch_images = []
|
1015 |
+
for i, x_sample in enumerate(lowres_samples):
|
1016 |
+
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
1017 |
+
x_sample = x_sample.astype(np.uint8)
|
1018 |
+
image = Image.fromarray(x_sample)
|
1019 |
+
|
1020 |
+
save_intermediate(image, i)
|
1021 |
+
|
1022 |
+
image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
|
1023 |
+
image = np.array(image).astype(np.float32) / 255.0
|
1024 |
+
image = np.moveaxis(image, 2, 0)
|
1025 |
+
batch_images.append(image)
|
1026 |
+
|
1027 |
+
decoded_samples = torch.from_numpy(np.array(batch_images))
|
1028 |
+
decoded_samples = decoded_samples.to(shared.device)
|
1029 |
+
decoded_samples = 2. * decoded_samples - 1.
|
1030 |
+
|
1031 |
+
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
1032 |
+
|
1033 |
+
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
|
1034 |
+
|
1035 |
+
shared.state.nextjob()
|
1036 |
+
|
1037 |
+
img2img_sampler_name = self.hr_sampler_name or self.sampler_name
|
1038 |
+
|
1039 |
+
if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
|
1040 |
+
img2img_sampler_name = 'DDIM'
|
1041 |
+
|
1042 |
+
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
|
1043 |
+
|
1044 |
+
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
|
1045 |
+
|
1046 |
+
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
|
1047 |
+
|
1048 |
+
# GC now before running the next img2img to prevent running out of memory
|
1049 |
+
x = None
|
1050 |
+
devices.torch_gc()
|
1051 |
+
|
1052 |
+
if not self.disable_extra_networks:
|
1053 |
+
with devices.autocast():
|
1054 |
+
extra_networks.activate(self, self.hr_extra_network_data)
|
1055 |
+
|
1056 |
+
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
|
1057 |
+
|
1058 |
+
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
|
1059 |
+
|
1060 |
+
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
|
1061 |
+
|
1062 |
+
self.is_hr_pass = False
|
1063 |
+
|
1064 |
+
return samples
|
1065 |
+
|
1066 |
+
def close(self):
|
1067 |
+
self.hr_c = None
|
1068 |
+
self.hr_uc = None
|
1069 |
+
|
1070 |
+
def setup_prompts(self):
|
1071 |
+
super().setup_prompts()
|
1072 |
+
|
1073 |
+
if not self.enable_hr:
|
1074 |
+
return
|
1075 |
+
|
1076 |
+
if self.hr_prompt == '':
|
1077 |
+
self.hr_prompt = self.prompt
|
1078 |
+
|
1079 |
+
if self.hr_negative_prompt == '':
|
1080 |
+
self.hr_negative_prompt = self.negative_prompt
|
1081 |
+
|
1082 |
+
if type(self.hr_prompt) == list:
|
1083 |
+
self.all_hr_prompts = self.hr_prompt
|
1084 |
+
else:
|
1085 |
+
self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
|
1086 |
+
|
1087 |
+
if type(self.hr_negative_prompt) == list:
|
1088 |
+
self.all_hr_negative_prompts = self.hr_negative_prompt
|
1089 |
+
else:
|
1090 |
+
self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
|
1091 |
+
|
1092 |
+
self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
|
1093 |
+
self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
|
1094 |
+
|
1095 |
+
def setup_conds(self):
|
1096 |
+
super().setup_conds()
|
1097 |
+
|
1098 |
+
if self.enable_hr:
|
1099 |
+
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
|
1100 |
+
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, self.cached_c)
|
1101 |
+
|
1102 |
+
def parse_extra_network_prompts(self):
|
1103 |
+
res = super().parse_extra_network_prompts()
|
1104 |
+
|
1105 |
+
if self.enable_hr:
|
1106 |
+
self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
|
1107 |
+
self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
|
1108 |
+
|
1109 |
+
self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
|
1110 |
+
|
1111 |
+
return res
|
1112 |
+
|
1113 |
+
|
1114 |
+
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
1115 |
+
sampler = None
|
1116 |
+
|
1117 |
+
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
1118 |
+
super().__init__(**kwargs)
|
1119 |
+
|
1120 |
+
self.init_images = init_images
|
1121 |
+
self.resize_mode: int = resize_mode
|
1122 |
+
self.denoising_strength: float = denoising_strength
|
1123 |
+
self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
|
1124 |
+
self.init_latent = None
|
1125 |
+
self.image_mask = mask
|
1126 |
+
self.latent_mask = None
|
1127 |
+
self.mask_for_overlay = None
|
1128 |
+
self.mask_blur = mask_blur
|
1129 |
+
self.inpainting_fill = inpainting_fill
|
1130 |
+
self.inpaint_full_res = inpaint_full_res
|
1131 |
+
self.inpaint_full_res_padding = inpaint_full_res_padding
|
1132 |
+
self.inpainting_mask_invert = inpainting_mask_invert
|
1133 |
+
self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
|
1134 |
+
self.mask = None
|
1135 |
+
self.nmask = None
|
1136 |
+
self.image_conditioning = None
|
1137 |
+
|
1138 |
+
def init(self, all_prompts, all_seeds, all_subseeds):
|
1139 |
+
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
1140 |
+
crop_region = None
|
1141 |
+
|
1142 |
+
image_mask = self.image_mask
|
1143 |
+
|
1144 |
+
if image_mask is not None:
|
1145 |
+
image_mask = image_mask.convert('L')
|
1146 |
+
|
1147 |
+
if self.inpainting_mask_invert:
|
1148 |
+
image_mask = ImageOps.invert(image_mask)
|
1149 |
+
|
1150 |
+
if self.mask_blur > 0:
|
1151 |
+
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
1152 |
+
|
1153 |
+
if self.inpaint_full_res:
|
1154 |
+
self.mask_for_overlay = image_mask
|
1155 |
+
mask = image_mask.convert('L')
|
1156 |
+
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
1157 |
+
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
1158 |
+
x1, y1, x2, y2 = crop_region
|
1159 |
+
|
1160 |
+
mask = mask.crop(crop_region)
|
1161 |
+
image_mask = images.resize_image(2, mask, self.width, self.height)
|
1162 |
+
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
1163 |
+
else:
|
1164 |
+
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
1165 |
+
np_mask = np.array(image_mask)
|
1166 |
+
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
1167 |
+
self.mask_for_overlay = Image.fromarray(np_mask)
|
1168 |
+
|
1169 |
+
self.overlay_images = []
|
1170 |
+
|
1171 |
+
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
|
1172 |
+
|
1173 |
+
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
1174 |
+
if add_color_corrections:
|
1175 |
+
self.color_corrections = []
|
1176 |
+
imgs = []
|
1177 |
+
for img in self.init_images:
|
1178 |
+
|
1179 |
+
# Save init image
|
1180 |
+
if opts.save_init_img:
|
1181 |
+
self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
|
1182 |
+
images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
|
1183 |
+
|
1184 |
+
image = images.flatten(img, opts.img2img_background_color)
|
1185 |
+
|
1186 |
+
if crop_region is None and self.resize_mode != 3:
|
1187 |
+
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
1188 |
+
|
1189 |
+
if image_mask is not None:
|
1190 |
+
image_masked = Image.new('RGBa', (image.width, image.height))
|
1191 |
+
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
1192 |
+
|
1193 |
+
self.overlay_images.append(image_masked.convert('RGBA'))
|
1194 |
+
|
1195 |
+
# crop_region is not None if we are doing inpaint full res
|
1196 |
+
if crop_region is not None:
|
1197 |
+
image = image.crop(crop_region)
|
1198 |
+
image = images.resize_image(2, image, self.width, self.height)
|
1199 |
+
|
1200 |
+
if image_mask is not None:
|
1201 |
+
if self.inpainting_fill != 1:
|
1202 |
+
image = masking.fill(image, latent_mask)
|
1203 |
+
|
1204 |
+
if add_color_corrections:
|
1205 |
+
self.color_corrections.append(setup_color_correction(image))
|
1206 |
+
|
1207 |
+
image = np.array(image).astype(np.float32) / 255.0
|
1208 |
+
image = np.moveaxis(image, 2, 0)
|
1209 |
+
|
1210 |
+
imgs.append(image)
|
1211 |
+
|
1212 |
+
if len(imgs) == 1:
|
1213 |
+
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
|
1214 |
+
if self.overlay_images is not None:
|
1215 |
+
self.overlay_images = self.overlay_images * self.batch_size
|
1216 |
+
|
1217 |
+
if self.color_corrections is not None and len(self.color_corrections) == 1:
|
1218 |
+
self.color_corrections = self.color_corrections * self.batch_size
|
1219 |
+
|
1220 |
+
elif len(imgs) <= self.batch_size:
|
1221 |
+
self.batch_size = len(imgs)
|
1222 |
+
batch_images = np.array(imgs)
|
1223 |
+
else:
|
1224 |
+
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
|
1225 |
+
|
1226 |
+
image = torch.from_numpy(batch_images)
|
1227 |
+
image = 2. * image - 1.
|
1228 |
+
image = image.to(shared.device)
|
1229 |
+
|
1230 |
+
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
1231 |
+
|
1232 |
+
if self.resize_mode == 3:
|
1233 |
+
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
1234 |
+
|
1235 |
+
if image_mask is not None:
|
1236 |
+
init_mask = latent_mask
|
1237 |
+
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
1238 |
+
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
1239 |
+
latmask = latmask[0]
|
1240 |
+
latmask = np.around(latmask)
|
1241 |
+
latmask = np.tile(latmask[None], (4, 1, 1))
|
1242 |
+
|
1243 |
+
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
|
1244 |
+
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
|
1245 |
+
|
1246 |
+
# this needs to be fixed to be done in sample() using actual seeds for batches
|
1247 |
+
if self.inpainting_fill == 2:
|
1248 |
+
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
|
1249 |
+
elif self.inpainting_fill == 3:
|
1250 |
+
self.init_latent = self.init_latent * self.mask
|
1251 |
+
|
1252 |
+
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
|
1253 |
+
|
1254 |
+
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
1255 |
+
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
1256 |
+
|
1257 |
+
if self.initial_noise_multiplier != 1.0:
|
1258 |
+
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
|
1259 |
+
x *= self.initial_noise_multiplier
|
1260 |
+
|
1261 |
+
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
1262 |
+
|
1263 |
+
if self.mask is not None:
|
1264 |
+
samples = samples * self.nmask + self.init_latent * self.mask
|
1265 |
+
|
1266 |
+
del x
|
1267 |
+
devices.torch_gc()
|
1268 |
+
|
1269 |
+
return samples
|
1270 |
+
|
1271 |
+
def get_token_merging_ratio(self, for_hr=False):
|
1272 |
+
return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio
|