text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝¹ : Monoid α inst✝ : HasDistribNeg α a b : α u : αˣ ⊢ -↑u * -↑u⁻¹ = 1 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝¹ : Monoid α inst✝ : HasDistribNeg α a b : α u : αˣ ⊢ -↑u⁻¹ * -↑u = 1 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝¹ : Monoid α inst✝ : HasDistribNeg α a✝ b a : α u : αˣ ⊢ -(a /ₚ u) = -a /ₚ u [PROOFSTEP] simp only [divp, neg_mul] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Ring α a✝ b✝ a b : α u : αˣ ⊢ a /ₚ u + b /ₚ u = (a + b) /ₚ u [PROOFSTEP] simp only [divp, add_mul] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Ring α a✝ b✝ a b : α u : αˣ ⊢ a /ₚ u - b /ₚ u = (a - b) /ₚ u [PROOFSTEP] rw [sub_eq_add_neg, sub_eq_add_neg, neg_divp, divp_add_divp_same] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Ring α a✝ b✝ a b : α u : αˣ ⊢ a + b /ₚ u = (a * ↑u + b) /ₚ u [PROOFSTEP] simp only [divp, add_mul, Units.mul_inv_cancel_right] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Ring α a✝ b✝ a b : α u : αˣ ⊢ a - b /ₚ u = (a * ↑u - b) /ₚ u [PROOFSTEP] simp only [divp, sub_mul, Units.mul_inv_cancel_right] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Ring α a✝ b✝ a b : α u : αˣ ⊢ a /ₚ u + b = (a + b * ↑u) /ₚ u [PROOFSTEP] simp only [divp, add_mul, Units.mul_inv_cancel_right] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Ring α a✝ b✝ a b : α u : αˣ ⊢ a /ₚ u - b = (a - b * ↑u) /ₚ u [PROOFSTEP] simp only [divp, sub_mul, sub_right_inj] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Ring α a✝ b✝ a b : α u : αˣ ⊢ b = b * ↑u * ↑u⁻¹ [PROOFSTEP] rw [mul_assoc, Units.mul_inv, mul_one] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : CommRing α a b : α u₁ u₂ : αˣ ⊢ a /ₚ u₁ + b /ₚ u₂ = (a * ↑u₂ + ↑u₁ * b) /ₚ (u₁ * u₂) [PROOFSTEP] simp only [divp, add_mul, mul_inv_rev, val_mul] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : CommRing α a b : α u₁ u₂ : αˣ ⊢ a * ↑u₁⁻¹ + b * ↑u₂⁻¹ = a * ↑u₂ * (↑u₂⁻¹ * ↑u₁⁻¹) + ↑u₁ * b * (↑u₂⁻¹ * ↑u₁⁻¹) [PROOFSTEP] rw [mul_comm (↑u₁ * b), mul_comm b] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : CommRing α a b : α u₁ u₂ : αˣ ⊢ a * ↑u₁⁻¹ + ↑u₂⁻¹ * b = a * ↑u₂ * (↑u₂⁻¹ * ↑u₁⁻¹) + ↑u₂⁻¹ * ↑u₁⁻¹ * (↑u₁ * b) [PROOFSTEP] rw [← mul_assoc, ← mul_assoc, mul_assoc a, mul_assoc (↑u₂⁻¹ : α), mul_inv, inv_mul, mul_one, mul_one] -- porting note: `assoc_rw` not ported: `assoc_rw [mul_inv, mul_inv, mul_one, mul_one]` [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : CommRing α a b : α u₁ u₂ : αˣ ⊢ a /ₚ u₁ - b /ₚ u₂ = (a * ↑u₂ - ↑u₁ * b) /ₚ (u₁ * u₂) [PROOFSTEP] simp only [sub_eq_add_neg, neg_divp, divp_add_divp, mul_neg] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Semiring R a : Rˣ b : R ⊢ ↑a + b = ↑a * (1 + ↑a⁻¹ * b) [PROOFSTEP] rw [mul_add, mul_one, ← mul_assoc, Units.mul_inv, one_mul]
{"mathlib_filename": "Mathlib.Algebra.Ring.Units", "llama_tokens": 1674}
[GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝³ : Semiring R₁ inst✝² : Semiring R₂ inst✝¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝ : RingHomInvPair σ σ' x : R₁ ⊢ ↑σ' (↑σ x) = x [PROOFSTEP] rw [← RingHom.comp_apply, comp_eq] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝³ : Semiring R₁ inst✝² : Semiring R₂ inst✝¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝ : RingHomInvPair σ σ' x : R₁ ⊢ ↑(RingHom.id R₁) x = x [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝³ : Semiring R₁ inst✝² : Semiring R₂ inst✝¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝ : RingHomInvPair σ σ' x : R₂ ⊢ ↑σ (↑σ' x) = x [PROOFSTEP] rw [← RingHom.comp_apply, comp_eq₂] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝³ : Semiring R₁ inst✝² : Semiring R₂ inst✝¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝ : RingHomInvPair σ σ' x : R₂ ⊢ ↑(RingHom.id R₂) x = x [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝⁴ : Semiring R₁ inst✝³ : Semiring R₂ inst✝² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝¹ : RingHomInvPair σ σ' σ₂₁ : R₂ →+* R₁ inst✝ : RingHomInvPair σ₁₂ σ₂₁ ⊢ RingHom.comp σ₂₁ σ₁₂ = RingHom.id R₁ [PROOFSTEP] simp only [comp_eq] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝⁴ : Semiring R₁ inst✝³ : Semiring R₂ inst✝² : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝¹ : RingHomInvPair σ σ' σ₂₁ : R₂ →+* R₁ inst✝ : RingHomInvPair σ₁₂ σ₂₁ ⊢ RingHom.comp σ₁₂ σ₂₁ = RingHom.id R₂ [PROOFSTEP] simp only [comp_eq₂] [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝² : Semiring R₁ inst✝¹ : Semiring R₂ inst✝ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ ⊢ RingHom.comp σ₁₂ (RingHom.id R₁) = σ₁₂ [PROOFSTEP] ext [GOAL] case a R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝² : Semiring R₁ inst✝¹ : Semiring R₂ inst✝ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ x✝ : R₁ ⊢ ↑(RingHom.comp σ₁₂ (RingHom.id R₁)) x✝ = ↑σ₁₂ x✝ [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝² : Semiring R₁ inst✝¹ : Semiring R₂ inst✝ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ ⊢ RingHom.comp (RingHom.id R₂) σ₁₂ = σ₁₂ [PROOFSTEP] ext [GOAL] case a R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝² : Semiring R₁ inst✝¹ : Semiring R₂ inst✝ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ x✝ : R₁ ⊢ ↑(RingHom.comp (RingHom.id R₂) σ₁₂) x✝ = ↑σ₁₂ x✝ [PROOFSTEP] simp [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝⁵ : Semiring R₁ inst✝⁴ : Semiring R₂ inst✝³ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomSurjective σ₁₂ inst✝ : RingHomSurjective σ₂₃ ⊢ Function.Surjective ↑σ₁₃ [PROOFSTEP] have := σ₂₃.surjective.comp σ₁₂.surjective [GOAL] R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝⁵ : Semiring R₁ inst✝⁴ : Semiring R₂ inst✝³ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ σ : R₁ →+* R₂ σ' : R₂ →+* R₁ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹ : RingHomSurjective σ₁₂ inst✝ : RingHomSurjective σ₂₃ this : Function.Surjective (↑σ₂₃ ∘ ↑σ₁₂) ⊢ Function.Surjective ↑σ₁₃ [PROOFSTEP] rwa [← RingHom.coe_comp, RingHomCompTriple.comp_eq] at this
{"mathlib_filename": "Mathlib.Algebra.Ring.CompTypeclasses", "llama_tokens": 2178}
[GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg ⊢ ∀ (a b : R), a + b = b + a [PROOFSTEP] intro a b [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R ⊢ a + b = b + a [PROOFSTEP] have h₁ : (1 + 1 : R) * (a + b) = a + (a + b) + b := by rw [left_distrib] simp only [right_distrib, one_mul, add_assoc] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R ⊢ (1 + 1) * (a + b) = a + (a + b) + b [PROOFSTEP] rw [left_distrib] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R ⊢ (1 + 1) * a + (1 + 1) * b = a + (a + b) + b [PROOFSTEP] simp only [right_distrib, one_mul, add_assoc] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R h₁ : (1 + 1) * (a + b) = a + (a + b) + b ⊢ a + b = b + a [PROOFSTEP] have h₂ : (1 + 1 : R) * (a + b) = a + (b + a) + b := by rw [right_distrib] simp only [left_distrib, one_mul, add_assoc] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R h₁ : (1 + 1) * (a + b) = a + (a + b) + b ⊢ (1 + 1) * (a + b) = a + (b + a) + b [PROOFSTEP] rw [right_distrib] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R h₁ : (1 + 1) * (a + b) = a + (a + b) + b ⊢ 1 * (a + b) + 1 * (a + b) = a + (b + a) + b [PROOFSTEP] simp only [left_distrib, one_mul, add_assoc] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R h₁ : (1 + 1) * (a + b) = a + (a + b) + b h₂ : (1 + 1) * (a + b) = a + (b + a) + b ⊢ a + b = b + a [PROOFSTEP] have := h₁.symm.trans h₂ [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this✝ : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg a b : R h₁ : (1 + 1) * (a + b) = a + (a + b) + b h₂ : (1 + 1) * (a + b) = a + (b + a) + b this : a + (a + b) + b = a + (b + a) + b ⊢ a + b = b + a [PROOFSTEP] rwa [add_left_inj, add_right_inj] at this [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a a : R ⊢ 0 * a = 0 [PROOFSTEP] have : 0 * a = 0 * a + 0 * a := calc 0 * a = (0 + 0) * a := by rw [zero_add] _ = 0 * a + 0 * a := by rw [right_distrib] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a a : R ⊢ 0 * a = (0 + 0) * a [PROOFSTEP] rw [zero_add] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a a : R ⊢ (0 + 0) * a = 0 * a + 0 * a [PROOFSTEP] rw [right_distrib] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this✝ : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a a : R this : 0 * a = 0 * a + 0 * a ⊢ 0 * a = 0 [PROOFSTEP] rwa [self_eq_add_right] at this [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a zero_mul : ∀ (a : R), 0 * a = 0 a : R ⊢ a * 0 = 0 [PROOFSTEP] have : a * 0 = a * 0 + a * 0 := calc a * 0 = a * (0 + 0) := by rw [zero_add] _ = a * 0 + a * 0 := by rw [left_distrib] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a zero_mul : ∀ (a : R), 0 * a = 0 a : R ⊢ a * 0 = a * (0 + 0) [PROOFSTEP] rw [zero_add] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a zero_mul : ∀ (a : R), 0 * a = 0 a : R ⊢ a * (0 + 0) = a * 0 + a * 0 [PROOFSTEP] rw [left_distrib] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) one_mul : ∀ (a : R), 1 * a = a mul_one : ∀ (a : R), a * 1 = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c this✝ : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg add_comm : ∀ (a b : R), a + b = b + a zero_mul : ∀ (a : R), 0 * a = 0 a : R this : a * 0 = a * 0 + a * 0 ⊢ a * 0 = 0 [PROOFSTEP] rwa [self_eq_add_right] at this [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) mul_comm : ∀ (a b : R), a * b = b * a one_mul : ∀ (a : R), 1 * a = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c a : R ⊢ a * 1 = a [PROOFSTEP] rw [mul_comm, one_mul] [GOAL] R : Type u inst✝⁴ : Add R inst✝³ : Mul R inst✝² : Neg R inst✝¹ : Zero R inst✝ : One R add_assoc : ∀ (a b c : R), a + b + c = a + (b + c) zero_add : ∀ (a : R), 0 + a = a add_left_neg : ∀ (a : R), -a + a = 0 mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c) mul_comm : ∀ (a b : R), a * b = b * a one_mul : ∀ (a : R), 1 * a = a left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c mul_one : ∀ (a : R), a * 1 = a a b c : R ⊢ (a + b) * c = a * c + b * c [PROOFSTEP] rw [mul_comm, left_distrib, mul_comm, mul_comm b c]
{"mathlib_filename": "Mathlib.Algebra.Ring.MinimalAxioms", "llama_tokens": 6446}
[GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f g : X →[M'] Y h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T g : X →[M'] Y toFun✝ : X → Y map_smul'✝ : ∀ (m : M') (x : X), toFun✝ (m • x) = m • toFun✝ x h : { toFun := toFun✝, map_smul' := map_smul'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_smul' := map_smul'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T toFun✝¹ : X → Y map_smul'✝¹ : ∀ (m : M') (x : X), toFun✝¹ (m • x) = m • toFun✝¹ x toFun✝ : X → Y map_smul'✝ : ∀ (m : M') (x : X), toFun✝ (m • x) = m • toFun✝ x h : { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }.toFun = { toFun := toFun✝, map_smul' := map_smul'✝ }.toFun ⊢ { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } = { toFun := toFun✝, map_smul' := map_smul'✝ } [PROOFSTEP] congr [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T g : Y →[M'] Z f : X →[M'] Y m : M' x : X ⊢ ↑g (↑f (m • x)) = ↑g (m • ↑f x) [PROOFSTEP] rw [f.map_smul] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : X →[M'] Y x : X ⊢ ↑(comp (MulActionHom.id M') f) x = ↑f x [PROOFSTEP] rw [comp_apply, id_apply] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : X →[M'] Y x : X ⊢ ↑(comp f (MulActionHom.id M')) x = ↑f x [PROOFSTEP] rw [comp_apply, id_apply] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : A →[M] B g : B → A h₁ : Function.LeftInverse g ↑f h₂ : Function.RightInverse g ↑f m : M x : B ⊢ g (m • x) = g (m • ↑f (g x)) [PROOFSTEP] rw [h₂] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : A →[M] B g : B → A h₁ : Function.LeftInverse g ↑f h₂ : Function.RightInverse g ↑f m : M x : B ⊢ g (m • ↑f (g x)) = g (↑f (m • g x)) [PROOFSTEP] rw [f.map_smul] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : A →[M] B g : B → A h₁ : Function.LeftInverse g ↑f h₂ : Function.RightInverse g ↑f m : M x : B ⊢ g (↑f (m • g x)) = m • g x [PROOFSTEP] rw [h₁] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f g : A →+[M] B h : (fun m => m.toFun) f = (fun m => m.toFun) g ⊢ f = g [PROOFSTEP] rcases f with ⟨tF, _, _⟩ [GOAL] case mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T g : A →+[M] B tF : A →[M] B map_zero'✝ : MulActionHom.toFun tF 0 = 0 map_add'✝ : ∀ (x y : A), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y h : (fun m => m.toFun) { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ } = (fun m => m.toFun) g ⊢ { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ } = g [PROOFSTEP] rcases g with ⟨tG, _, _⟩ [GOAL] case mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T tF : A →[M] B map_zero'✝¹ : MulActionHom.toFun tF 0 = 0 map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y tG : A →[M] B map_zero'✝ : MulActionHom.toFun tG 0 = 0 map_add'✝ : ∀ (x y : A), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y h : (fun m => m.toFun) { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun m => m.toFun) { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ } [PROOFSTEP] cases tF [GOAL] case mk.mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T tG : A →[M] B map_zero'✝¹ : MulActionHom.toFun tG 0 = 0 map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y toFun✝ : A → B map_smul'✝ : ∀ (m : M) (x : A), toFun✝ (m • x) = m • toFun✝ x map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0 map_add'✝ : ∀ (x y : A), MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) = MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x + MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y h : (fun m => m.toFun) { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ } = (fun m => m.toFun) { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } ⊢ { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ } = { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } [PROOFSTEP] cases tG [GOAL] case mk.mk.mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T toFun✝¹ : A → B map_smul'✝¹ : ∀ (m : M) (x : A), toFun✝¹ (m • x) = m • toFun✝¹ x map_zero'✝¹ : MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } 0 = 0 map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } (x + y) = MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } x + MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } y toFun✝ : A → B map_smul'✝ : ∀ (m : M) (x : A), toFun✝ (m • x) = m • toFun✝ x map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0 map_add'✝ : ∀ (x y : A), MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) = MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x + MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y h : (fun m => m.toFun) { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun m => m.toFun) { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ } [PROOFSTEP] congr [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f g : A →+[M] B h : ↑f = ↑g ⊢ f = g [PROOFSTEP] ext a [GOAL] case a M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f g : A →+[M] B h : ↑f = ↑g a : A ⊢ ↑f a = ↑g a [PROOFSTEP] exact MulActionHom.congr_fun h a [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f g : A →+[M] B h : ↑f = ↑g ⊢ f = g [PROOFSTEP] ext a [GOAL] case a M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f g : A →+[M] B h : ↑f = ↑g a : A ⊢ ↑f a = ↑g a [PROOFSTEP] exact FunLike.congr_fun h a [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T x : A ⊢ ↑(DistribMulActionHom.id M) x = x [PROOFSTEP] rfl [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T src✝ : A →+ B := 0 m : M x✝ : A ⊢ ZeroHom.toFun (↑src✝) (m • x✝) = m • ZeroHom.toFun (↑src✝) x✝ [PROOFSTEP] change (0 : B) = m • (0 : B) [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T src✝ : A →+ B := 0 m : M x✝ : A ⊢ 0 = m • 0 [PROOFSTEP] rw [smul_zero] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : A →+[M] B x : A ⊢ ↑(comp (DistribMulActionHom.id M) f) x = ↑f x [PROOFSTEP] rw [comp_apply, id_apply] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : A →+[M] B x : A ⊢ ↑(comp f (DistribMulActionHom.id M)) x = ↑f x [PROOFSTEP] rw [comp_apply, id_apply] [GOAL] M' : Type u_1 X : Type u_2 inst✝²⁵ : SMul M' X Y : Type u_3 inst✝²⁴ : SMul M' Y Z : Type u_4 inst✝²³ : SMul M' Z M : Type u_5 inst✝²² : Monoid M A : Type u_6 inst✝²¹ : AddMonoid A inst✝²⁰ : DistribMulAction M A A' : Type u_7 inst✝¹⁹ : AddGroup A' inst✝¹⁸ : DistribMulAction M A' B : Type u_8 inst✝¹⁷ : AddMonoid B inst✝¹⁶ : DistribMulAction M B B' : Type u_9 inst✝¹⁵ : AddGroup B' inst✝¹⁴ : DistribMulAction M B' C : Type u_10 inst✝¹³ : AddMonoid C inst✝¹² : DistribMulAction M C R : Type u_11 inst✝¹¹ : Semiring R inst✝¹⁰ : MulSemiringAction M R R' : Type u_12 inst✝⁹ : Ring R' inst✝⁸ : MulSemiringAction M R' S : Type u_13 inst✝⁷ : Semiring S inst✝⁶ : MulSemiringAction M S S' : Type u_14 inst✝⁵ : Ring S' inst✝⁴ : MulSemiringAction M S' T : Type u_15 inst✝³ : Semiring T inst✝² : MulSemiringAction M T inst✝¹ : AddMonoid M' inst✝ : DistribMulAction R M' f g : R →+[R] M' h : ↑f 1 = ↑g 1 ⊢ f = g [PROOFSTEP] ext x [GOAL] case a M' : Type u_1 X : Type u_2 inst✝²⁵ : SMul M' X Y : Type u_3 inst✝²⁴ : SMul M' Y Z : Type u_4 inst✝²³ : SMul M' Z M : Type u_5 inst✝²² : Monoid M A : Type u_6 inst✝²¹ : AddMonoid A inst✝²⁰ : DistribMulAction M A A' : Type u_7 inst✝¹⁹ : AddGroup A' inst✝¹⁸ : DistribMulAction M A' B : Type u_8 inst✝¹⁷ : AddMonoid B inst✝¹⁶ : DistribMulAction M B B' : Type u_9 inst✝¹⁵ : AddGroup B' inst✝¹⁴ : DistribMulAction M B' C : Type u_10 inst✝¹³ : AddMonoid C inst✝¹² : DistribMulAction M C R : Type u_11 inst✝¹¹ : Semiring R inst✝¹⁰ : MulSemiringAction M R R' : Type u_12 inst✝⁹ : Ring R' inst✝⁸ : MulSemiringAction M R' S : Type u_13 inst✝⁷ : Semiring S inst✝⁶ : MulSemiringAction M S S' : Type u_14 inst✝⁵ : Ring S' inst✝⁴ : MulSemiringAction M S' T : Type u_15 inst✝³ : Semiring T inst✝² : MulSemiringAction M T inst✝¹ : AddMonoid M' inst✝ : DistribMulAction R M' f g : R →+[R] M' h : ↑f 1 = ↑g 1 x : R ⊢ ↑f x = ↑g x [PROOFSTEP] rw [← mul_one x, ← smul_eq_mul R, f.map_smul, g.map_smul, h] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f g : R →+*[M] S h : (fun m => m.toFun) f = (fun m => m.toFun) g ⊢ f = g [PROOFSTEP] rcases f with ⟨⟨tF, _, _⟩, _, _⟩ [GOAL] case mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T g : R →+*[M] S tF : R →[M] S map_zero'✝ : MulActionHom.toFun tF 0 = 0 map_add'✝ : ∀ (x y : R), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y map_one'✝ : MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom 1 = 1 map_mul'✝ : ∀ (x y : R), MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y h : (fun m => m.toFun) { toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } = (fun m => m.toFun) g ⊢ { toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } = g [PROOFSTEP] rcases g with ⟨⟨tG, _, _⟩, _, _⟩ [GOAL] case mk.mk.mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T tF : R →[M] S map_zero'✝¹ : MulActionHom.toFun tF 0 = 0 map_add'✝¹ : ∀ (x y : R), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y map_one'✝¹ : MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom 1 = 1 map_mul'✝¹ : ∀ (x y : R), MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y tG : R →[M] S map_zero'✝ : MulActionHom.toFun tG 0 = 0 map_add'✝ : ∀ (x y : R), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y map_one'✝ : MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom 1 = 1 map_mul'✝ : ∀ (x y : R), MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y h : (fun m => m.toFun) { toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun m => m.toFun) { toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ { toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = { toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } [PROOFSTEP] cases tF [GOAL] case mk.mk.mk.mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T tG : R →[M] S map_zero'✝¹ : MulActionHom.toFun tG 0 = 0 map_add'✝¹ : ∀ (x y : R), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y map_one'✝¹ : MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom 1 = 1 map_mul'✝¹ : ∀ (x y : R), MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y toFun✝ : R → S map_smul'✝ : ∀ (m : M) (x : R), toFun✝ (m • x) = m • toFun✝ x map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0 map_add'✝ : ∀ (x y : R), MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) = MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x + MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y map_one'✝ : MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom 1 = 1 map_mul'✝ : ∀ (x y : R), MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y h : (fun m => m.toFun) { toDistribMulActionHom := { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } = (fun m => m.toFun) { toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } ⊢ { toDistribMulActionHom := { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } = { toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } [PROOFSTEP] cases tG [GOAL] case mk.mk.mk.mk.mk.mk M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T toFun✝¹ : R → S map_smul'✝¹ : ∀ (m : M) (x : R), toFun✝¹ (m • x) = m • toFun✝¹ x map_zero'✝¹ : MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } 0 = 0 map_add'✝¹ : ∀ (x y : R), MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } (x + y) = MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } x + MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } y map_one'✝¹ : MulActionHom.toFun { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom 1 = 1 map_mul'✝¹ : ∀ (x y : R), MulActionHom.toFun { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y toFun✝ : R → S map_smul'✝ : ∀ (m : M) (x : R), toFun✝ (m • x) = m • toFun✝ x map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0 map_add'✝ : ∀ (x y : R), MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) = MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x + MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y map_one'✝ : MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom 1 = 1 map_mul'✝ : ∀ (x y : R), MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y h : (fun m => m.toFun) { toDistribMulActionHom := { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun m => m.toFun) { toDistribMulActionHom := { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ { toDistribMulActionHom := { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = { toDistribMulActionHom := { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ } [PROOFSTEP] congr [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : R →+*[M] S x : R ⊢ ↑(comp (MulSemiringActionHom.id M) f) x = ↑f x [PROOFSTEP] rw [comp_apply, id_apply] [GOAL] M' : Type u_1 X : Type u_2 inst✝²³ : SMul M' X Y : Type u_3 inst✝²² : SMul M' Y Z : Type u_4 inst✝²¹ : SMul M' Z M : Type u_5 inst✝²⁰ : Monoid M A : Type u_6 inst✝¹⁹ : AddMonoid A inst✝¹⁸ : DistribMulAction M A A' : Type u_7 inst✝¹⁷ : AddGroup A' inst✝¹⁶ : DistribMulAction M A' B : Type u_8 inst✝¹⁵ : AddMonoid B inst✝¹⁴ : DistribMulAction M B B' : Type u_9 inst✝¹³ : AddGroup B' inst✝¹² : DistribMulAction M B' C : Type u_10 inst✝¹¹ : AddMonoid C inst✝¹⁰ : DistribMulAction M C R : Type u_11 inst✝⁹ : Semiring R inst✝⁸ : MulSemiringAction M R R' : Type u_12 inst✝⁷ : Ring R' inst✝⁶ : MulSemiringAction M R' S : Type u_13 inst✝⁵ : Semiring S inst✝⁴ : MulSemiringAction M S S' : Type u_14 inst✝³ : Ring S' inst✝² : MulSemiringAction M S' T : Type u_15 inst✝¹ : Semiring T inst✝ : MulSemiringAction M T f : R →+*[M] S x : R ⊢ ↑(comp f (MulSemiringActionHom.id M)) x = ↑f x [PROOFSTEP] rw [comp_apply, id_apply]
{"mathlib_filename": "Mathlib.Algebra.Hom.GroupAction", "llama_tokens": 21824}
[GOAL] R : Type u_1 inst✝ : Semigroup R a b : R ab : IsLeftRegular (a * b) ⊢ Function.Injective (?m.3122 ab ∘ fun x => b * x) [PROOFSTEP] rwa [comp_mul_left a b] [GOAL] R : Type u_1 inst✝ : Semigroup R a b : R ab : IsRightRegular (b * a) ⊢ IsRightRegular b [PROOFSTEP] refine' fun x y xy => ab (_ : x * (b * a) = y * (b * a)) [GOAL] R : Type u_1 inst✝ : Semigroup R a b : R ab : IsRightRegular (b * a) x y : R xy : (fun x => x * b) x = (fun x => x * b) y ⊢ x * (b * a) = y * (b * a) [PROOFSTEP] rw [← mul_assoc, ← mul_assoc] [GOAL] R : Type u_1 inst✝ : Semigroup R a b : R ab : IsRightRegular (b * a) x y : R xy : (fun x => x * b) x = (fun x => x * b) y ⊢ x * b * a = y * b * a [PROOFSTEP] exact congr_fun (congr_arg (· * ·) xy) a [GOAL] R : Type u_1 inst✝ : Semigroup R a b : R ⊢ IsRegular (a * b) ∧ IsRegular (b * a) ↔ IsRegular a ∧ IsRegular b [PROOFSTEP] refine' ⟨_, _⟩ [GOAL] case refine'_1 R : Type u_1 inst✝ : Semigroup R a b : R ⊢ IsRegular (a * b) ∧ IsRegular (b * a) → IsRegular a ∧ IsRegular b [PROOFSTEP] rintro ⟨ab, ba⟩ [GOAL] case refine'_1.intro R : Type u_1 inst✝ : Semigroup R a b : R ab : IsRegular (a * b) ba : IsRegular (b * a) ⊢ IsRegular a ∧ IsRegular b [PROOFSTEP] exact ⟨⟨IsLeftRegular.of_mul ba.left, IsRightRegular.of_mul ab.right⟩, ⟨IsLeftRegular.of_mul ab.left, IsRightRegular.of_mul ba.right⟩⟩ [GOAL] case refine'_2 R : Type u_1 inst✝ : Semigroup R a b : R ⊢ IsRegular a ∧ IsRegular b → IsRegular (a * b) ∧ IsRegular (b * a) [PROOFSTEP] rintro ⟨ha, hb⟩ [GOAL] case refine'_2.intro R : Type u_1 inst✝ : Semigroup R a b : R ha : IsRegular a hb : IsRegular b ⊢ IsRegular (a * b) ∧ IsRegular (b * a) [PROOFSTEP] exact ⟨⟨(mul_isLeftRegular_iff _ ha.left).mpr hb.left, (mul_isRightRegular_iff _ hb.right).mpr ha.right⟩, ⟨(mul_isLeftRegular_iff _ hb.left).mpr ha.left, (mul_isRightRegular_iff _ ha.right).mpr hb.right⟩⟩ [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R ⊢ ¬IsLeftRegular 0 ↔ Nontrivial R [PROOFSTEP] rw [nontrivial_iff, not_iff_comm, isLeftRegular_zero_iff_subsingleton, subsingleton_iff] [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R ⊢ (¬∃ x y, x ≠ y) ↔ ∀ (x y : R), x = y [PROOFSTEP] push_neg [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R ⊢ (∀ (x y : R), x = y) ↔ ∀ (x y : R), x = y [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R ⊢ ¬IsRightRegular 0 ↔ Nontrivial R [PROOFSTEP] rw [nontrivial_iff, not_iff_comm, isRightRegular_zero_iff_subsingleton, subsingleton_iff] [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R ⊢ (¬∃ x y, x ≠ y) ↔ ∀ (x y : R), x = y [PROOFSTEP] push_neg [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R ⊢ (∀ (x y : R), x = y) ↔ ∀ (x y : R), x = y [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 inst✝¹ : MulZeroClass R a b : R inst✝ : Nontrivial R la : IsLeftRegular a ⊢ a ≠ 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 inst✝¹ : MulZeroClass R b : R inst✝ : Nontrivial R la : IsLeftRegular 0 ⊢ False [PROOFSTEP] rcases exists_pair_ne R with ⟨x, y, xy⟩ [GOAL] case intro.intro R : Type u_1 inst✝¹ : MulZeroClass R b : R inst✝ : Nontrivial R la : IsLeftRegular 0 x y : R xy : x ≠ y ⊢ False [PROOFSTEP] refine' xy (la (_ : 0 * x = 0 * y)) -- Porting note: lean4 seems to need the type signature [GOAL] case intro.intro R : Type u_1 inst✝¹ : MulZeroClass R b : R inst✝ : Nontrivial R la : IsLeftRegular 0 x y : R xy : x ≠ y ⊢ 0 * x = 0 * y [PROOFSTEP] rw [zero_mul, zero_mul] [GOAL] R : Type u_1 inst✝¹ : MulZeroClass R a b : R inst✝ : Nontrivial R ra : IsRightRegular a ⊢ a ≠ 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 inst✝¹ : MulZeroClass R b : R inst✝ : Nontrivial R ra : IsRightRegular 0 ⊢ False [PROOFSTEP] rcases exists_pair_ne R with ⟨x, y, xy⟩ [GOAL] case intro.intro R : Type u_1 inst✝¹ : MulZeroClass R b : R inst✝ : Nontrivial R ra : IsRightRegular 0 x y : R xy : x ≠ y ⊢ False [PROOFSTEP] refine' xy (ra (_ : x * 0 = y * 0)) [GOAL] case intro.intro R : Type u_1 inst✝¹ : MulZeroClass R b : R inst✝ : Nontrivial R ra : IsRightRegular 0 x y : R xy : x ≠ y ⊢ x * 0 = y * 0 [PROOFSTEP] rw [mul_zero, mul_zero] [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R hb : IsLeftRegular b ⊢ b * a = 0 ↔ a = 0 [PROOFSTEP] nth_rw 1 [← mul_zero b] [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R hb : IsLeftRegular b ⊢ b * a = b * 0 ↔ a = 0 [PROOFSTEP] exact ⟨fun h ↦ hb h, fun ha ↦ by rw [ha, mul_zero]⟩ [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R hb : IsLeftRegular b ha : a = 0 ⊢ b * a = b * 0 [PROOFSTEP] rw [ha, mul_zero] [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R hb : IsRightRegular b ⊢ a * b = 0 ↔ a = 0 [PROOFSTEP] nth_rw 1 [← zero_mul b] [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R hb : IsRightRegular b ⊢ a * b = 0 * b ↔ a = 0 [PROOFSTEP] exact ⟨fun h ↦ hb h, fun ha ↦ by rw [ha, zero_mul]⟩ [GOAL] R : Type u_1 inst✝ : MulZeroClass R a b : R hb : IsRightRegular b ha : a = 0 ⊢ a * b = 0 * b [PROOFSTEP] rw [ha, zero_mul] [GOAL] R : Type u_1 inst✝ : CommSemigroup R a b : R ⊢ IsRegular (a * b) ↔ IsRegular a ∧ IsRegular b [PROOFSTEP] refine' Iff.trans _ isRegular_mul_and_mul_iff [GOAL] R : Type u_1 inst✝ : CommSemigroup R a b : R ⊢ IsRegular (a * b) ↔ IsRegular (a * b) ∧ IsRegular (b * a) [PROOFSTEP] refine' ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ [GOAL] R : Type u_1 inst✝ : CommSemigroup R a b : R ab : IsRegular (a * b) ⊢ IsRegular (b * a) [PROOFSTEP] rwa [mul_comm] [GOAL] R : Type u_1 inst✝ : Monoid R a b : R h : b * a = 1 ⊢ IsLeftRegular (?m.12942 h * a) [PROOFSTEP] rw [h] [GOAL] R : Type u_1 inst✝ : Monoid R a b : R h : b * a = 1 ⊢ IsLeftRegular 1 [PROOFSTEP] exact isRegular_one.left [GOAL] R : Type u_1 inst✝ : Monoid R a b : R h : a * b = 1 ⊢ IsRightRegular (a * ?m.13480 h) [PROOFSTEP] rw [h] [GOAL] R : Type u_1 inst✝ : Monoid R a b : R h : a * b = 1 ⊢ IsRightRegular 1 [PROOFSTEP] exact isRegular_one.right [GOAL] R : Type u_1 inst✝ : Monoid R a b : R ua : IsUnit a ⊢ IsRegular a [PROOFSTEP] rcases ua with ⟨a, rfl⟩ [GOAL] case intro R : Type u_1 inst✝ : Monoid R b : R a : Rˣ ⊢ IsRegular ↑a [PROOFSTEP] exact Units.isRegular a
{"mathlib_filename": "Mathlib.Algebra.Regular.Basic", "llama_tokens": 3086}
[GOAL] α : Type u_1 inst✝¹ : Group α inst✝ : HasDistribNeg α a : α ⊢ (-a)⁻¹ = -a⁻¹ [PROOFSTEP] rw [eq_comm, eq_inv_iff_mul_eq_one, neg_mul, mul_neg, neg_neg, mul_left_inv] [GOAL] α : Type u_1 inst✝ : NonUnitalCommRing α a b✝ c✝ b c x : α h : x * x - b * x + c = 0 ⊢ ∃ y, y * y - b * y + c = 0 ∧ x + y = b ∧ x * y = c [PROOFSTEP] have : c = x * (b - x) := (eq_neg_of_add_eq_zero_right h).trans (by simp [mul_sub, mul_comm]) [GOAL] α : Type u_1 inst✝ : NonUnitalCommRing α a b✝ c✝ b c x : α h : x * x - b * x + c = 0 ⊢ -(x * x - b * x) = x * (b - x) [PROOFSTEP] simp [mul_sub, mul_comm] [GOAL] α : Type u_1 inst✝ : NonUnitalCommRing α a b✝ c✝ b c x : α h : x * x - b * x + c = 0 this : c = x * (b - x) ⊢ ∃ y, y * y - b * y + c = 0 ∧ x + y = b ∧ x * y = c [PROOFSTEP] refine' ⟨b - x, _, by simp, by rw [this]⟩ [GOAL] α : Type u_1 inst✝ : NonUnitalCommRing α a b✝ c✝ b c x : α h : x * x - b * x + c = 0 this : c = x * (b - x) ⊢ x + (b - x) = b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : NonUnitalCommRing α a b✝ c✝ b c x : α h : x * x - b * x + c = 0 this : c = x * (b - x) ⊢ x * (b - x) = c [PROOFSTEP] rw [this] [GOAL] α : Type u_1 inst✝ : NonUnitalCommRing α a b✝ c✝ b c x : α h : x * x - b * x + c = 0 this : c = x * (b - x) ⊢ (b - x) * (b - x) - b * (b - x) + c = 0 [PROOFSTEP] rw [this, sub_add, ← sub_mul, sub_self] [GOAL] α : Type u_1 inst✝¹ : NonAssocRing α inst✝ : Nontrivial α a : α h : a + 1 = a ⊢ a + 1 = a + 0 [PROOFSTEP] simp [h] [GOAL] α : Type u_1 inst✝¹ : NonAssocRing α inst✝ : Nontrivial α a : α h : a - 1 = a ⊢ a + -1 = a + -0 [PROOFSTEP] simp [← sub_eq_add_neg, h] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : x = 0 ⊢ x = 0 ∨ y = 0 case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : ¬x = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] { left exact hx } [GOAL] case pos α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : x = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] left [GOAL] case pos.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : x = 0 ⊢ x = 0 [PROOFSTEP] exact hx [GOAL] case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : ¬x = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] { right rw [← sub_zero (x * y), ← mul_zero x, ← mul_sub] at h have := (IsLeftCancelMulZero.mul_left_cancel_of_ne_zero) hx h rwa [sub_zero] at this } [GOAL] case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : ¬x = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] right [GOAL] case neg.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : ¬x = 0 ⊢ y = 0 [PROOFSTEP] rw [← sub_zero (x * y), ← mul_zero x, ← mul_sub] at h [GOAL] case neg.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * (y - 0) = x * 0 hx : ¬x = 0 ⊢ y = 0 [PROOFSTEP] have := (IsLeftCancelMulZero.mul_left_cancel_of_ne_zero) hx h [GOAL] case neg.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * (y - 0) = x * 0 hx : ¬x = 0 this : y - 0 = 0 ⊢ y = 0 [PROOFSTEP] rwa [sub_zero] at this [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : y = 0 ⊢ x = 0 ∨ y = 0 case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : ¬y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] { right exact hy } [GOAL] case pos α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] right [GOAL] case pos.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : y = 0 ⊢ y = 0 [PROOFSTEP] exact hy [GOAL] case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : ¬y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] { left rw [← sub_zero (x * y), ← zero_mul y, ← sub_mul] at h have := (IsRightCancelMulZero.mul_right_cancel_of_ne_zero) hy h rwa [sub_zero] at this } [GOAL] case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : ¬y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] left [GOAL] case neg.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : ¬y = 0 ⊢ x = 0 [PROOFSTEP] rw [← sub_zero (x * y), ← zero_mul y, ← sub_mul] at h [GOAL] case neg.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : (x - 0) * y = 0 * y hy : ¬y = 0 ⊢ x = 0 [PROOFSTEP] have := (IsRightCancelMulZero.mul_right_cancel_of_ne_zero) hy h [GOAL] case neg.h α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : (x - 0) * y = 0 * y hy : ¬y = 0 this : x - 0 = 0 ⊢ x = 0 [PROOFSTEP] rwa [sub_zero] at this [GOAL] α : Type ?u.21715 inst✝¹ : Ring α inst✝ : NoZeroDivisors α a✝ b✝ c✝ : α ha : a✝ ≠ 0 h : a✝ * b✝ = a✝ * c✝ ⊢ b✝ = c✝ [PROOFSTEP] rw [← sub_eq_zero, ← mul_sub] at h [GOAL] α : Type ?u.21715 inst✝¹ : Ring α inst✝ : NoZeroDivisors α a✝ b✝ c✝ : α ha : a✝ ≠ 0 h✝ : a✝ * b✝ = a✝ * c✝ h : a✝ * (b✝ - c✝) = 0 ⊢ b✝ = c✝ [PROOFSTEP] exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_left ha) [GOAL] α : Type ?u.21715 inst✝¹ : Ring α inst✝ : NoZeroDivisors α a✝ b✝ c✝ : α hb : b✝ ≠ 0 h : a✝ * b✝ = c✝ * b✝ ⊢ a✝ = c✝ [PROOFSTEP] rw [← sub_eq_zero, ← sub_mul] at h [GOAL] α : Type ?u.21715 inst✝¹ : Ring α inst✝ : NoZeroDivisors α a✝ b✝ c✝ : α hb : b✝ ≠ 0 h✝ : a✝ * b✝ = c✝ * b✝ h : (a✝ - c✝) * b✝ = 0 ⊢ a✝ = c✝ [PROOFSTEP] exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_right hb)
{"mathlib_filename": "Mathlib.Algebra.Ring.Basic", "llama_tokens": 3338}
[GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Distrib R a x y x' y' : R h : SemiconjBy a x y h' : SemiconjBy a x' y' ⊢ SemiconjBy a (x + x') (y + y') [PROOFSTEP] simp only [SemiconjBy, left_distrib, right_distrib, h.eq, h'.eq] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : Distrib R a b x y : R ha : SemiconjBy a x y hb : SemiconjBy b x y ⊢ SemiconjBy (a + b) x y [PROOFSTEP] simp only [SemiconjBy, left_distrib, right_distrib, ha.eq, hb.eq] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝¹ : Mul R inst✝ : HasDistribNeg R a x y : R h : SemiconjBy a x y ⊢ SemiconjBy a (-x) (-y) [PROOFSTEP] simp only [SemiconjBy, h.eq, neg_mul, mul_neg] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝¹ : Mul R inst✝ : HasDistribNeg R a x y : R h : SemiconjBy a x y ⊢ SemiconjBy (-a) x y [PROOFSTEP] simp only [SemiconjBy, h.eq, neg_mul, mul_neg] [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : NonUnitalNonAssocRing R a b x y x' y' : R h : SemiconjBy a x y h' : SemiconjBy a x' y' ⊢ SemiconjBy a (x - x') (y - y') [PROOFSTEP] simpa only [sub_eq_add_neg] using h.add_right h'.neg_right [GOAL] α : Type u β : Type v γ : Type w R : Type x inst✝ : NonUnitalNonAssocRing R a b x y x' y' : R ha : SemiconjBy a x y hb : SemiconjBy b x y ⊢ SemiconjBy (a - b) x y [PROOFSTEP] simpa only [sub_eq_add_neg] using ha.add_left hb.neg_left
{"mathlib_filename": "Mathlib.Algebra.Ring.Semiconj", "llama_tokens": 671}
[GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Zero R inst✝¹ : Zero M inst✝ : ZeroHomClass F R M f : F r : R neZero : NeZero (↑f r) h : r = 0 ⊢ ↑f r = 0 [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Zero R inst✝¹ : Zero M inst✝ : ZeroHomClass F R M f : F r : R neZero : NeZero (↑f r) h : r = 0 ⊢ ↑f 0 = 0 [PROOFSTEP] exact ZeroHomClass.map_zero f [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 R : Type u_9 M : Type u_10 inst✝³ : Zero R r : R inst✝² : NeZero r inst✝¹ : Zero M inst✝ : ZeroHomClass F R M f : F hf : Function.Injective ↑f ⊢ ↑f r ≠ 0 [PROOFSTEP] rw [← ZeroHomClass.map_zero f] [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 R : Type u_9 M : Type u_10 inst✝³ : Zero R r : R inst✝² : NeZero r inst✝¹ : Zero M inst✝ : ZeroHomClass F R M f : F hf : Function.Injective ↑f ⊢ ↑f r ≠ ↑f 0 [PROOFSTEP] exact hf.ne NeZero.out [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : One M inst✝ : One N f g : OneHom M N h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : One M inst✝ : One N g : OneHom M N toFun✝ : M → N map_one'✝ : toFun✝ 1 = 1 h : { toFun := toFun✝, map_one' := map_one'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_one' := map_one'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : One M inst✝ : One N toFun✝¹ : M → N map_one'✝¹ : toFun✝¹ 1 = 1 toFun✝ : M → N map_one'✝ : toFun✝ 1 = 1 h : { toFun := toFun✝¹, map_one' := map_one'✝¹ }.toFun = { toFun := toFun✝, map_one' := map_one'✝ }.toFun ⊢ { toFun := toFun✝¹, map_one' := map_one'✝¹ } = { toFun := toFun✝, map_one' := map_one'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : Mul M inst✝ : Mul N f g : M →ₙ* N h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : Mul M inst✝ : Mul N g : M →ₙ* N toFun✝ : M → N map_mul'✝ : ∀ (x y : M), toFun✝ (x * y) = toFun✝ x * toFun✝ y h : { toFun := toFun✝, map_mul' := map_mul'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_mul' := map_mul'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : Mul M inst✝ : Mul N toFun✝¹ : M → N map_mul'✝¹ : ∀ (x y : M), toFun✝¹ (x * y) = toFun✝¹ x * toFun✝¹ y toFun✝ : M → N map_mul'✝ : ∀ (x y : M), toFun✝ (x * y) = toFun✝ x * toFun✝ y h : { toFun := toFun✝¹, map_mul' := map_mul'✝¹ }.toFun = { toFun := toFun✝, map_mul' := map_mul'✝ }.toFun ⊢ { toFun := toFun✝¹, map_mul' := map_mul'✝¹ } = { toFun := toFun✝, map_mul' := map_mul'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulOneClass M inst✝ : MulOneClass N f g : M →* N h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulOneClass M inst✝ : MulOneClass N g : M →* N toOneHom✝ : OneHom M N map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y h : (fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } = (fun f => f.toFun) g ⊢ { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulOneClass M inst✝ : MulOneClass N toOneHom✝¹ : OneHom M N map_mul'✝¹ : ∀ (x y : M), OneHom.toFun toOneHom✝¹ (x * y) = OneHom.toFun toOneHom✝¹ x * OneHom.toFun toOneHom✝¹ y toOneHom✝ : OneHom M N map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y h : (fun f => f.toFun) { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } ⊢ { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } = { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toOneHom α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulOneClass M inst✝ : MulOneClass N toOneHom✝¹ : OneHom M N map_mul'✝¹ : ∀ (x y : M), OneHom.toFun toOneHom✝¹ (x * y) = OneHom.toFun toOneHom✝¹ x * OneHom.toFun toOneHom✝¹ y toOneHom✝ : OneHom M N map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y h : (fun f => f.toFun) { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } ⊢ toOneHom✝¹ = toOneHom✝ [PROOFSTEP] apply FunLike.coe_injective' [GOAL] case mk.mk.e_toOneHom.a α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulOneClass M inst✝ : MulOneClass N toOneHom✝¹ : OneHom M N map_mul'✝¹ : ∀ (x y : M), OneHom.toFun toOneHom✝¹ (x * y) = OneHom.toFun toOneHom✝¹ x * OneHom.toFun toOneHom✝¹ y toOneHom✝ : OneHom M N map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y h : (fun f => f.toFun) { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } ⊢ ↑toOneHom✝¹ = ↑toOneHom✝ [PROOFSTEP] exact h [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MonoidHomClass F M N f : F a b : M h : a * b = 1 ⊢ ↑f a * ↑f b = 1 [PROOFSTEP] rw [← map_mul, h, map_one] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : MulOneClass M inst✝³ : MulOneClass N inst✝² : DivInvMonoid G inst✝¹ : DivInvMonoid H inst✝ : MonoidHomClass F G H f : F hf : ∀ (a : G), ↑f a⁻¹ = (↑f a)⁻¹ a b : G ⊢ ↑f (a / b) = ↑f a / ↑f b [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv, map_mul, hf] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : MulOneClass M inst✝³ : MulOneClass N inst✝² : Group G inst✝¹ : DivisionMonoid H inst✝ : MonoidHomClass F G H f : F a b : G ⊢ ↑f (a * b⁻¹) = ↑f a * (↑f b)⁻¹ [PROOFSTEP] rw [map_mul, map_inv] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : MulOneClass M inst✝³ : MulOneClass N inst✝² : Monoid G inst✝¹ : Monoid H inst✝ : MonoidHomClass F G H f : F a : G ⊢ ↑f (a ^ 0) = ↑f a ^ 0 [PROOFSTEP] rw [pow_zero, pow_zero, map_one] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : MulOneClass M inst✝³ : MulOneClass N inst✝² : Monoid G inst✝¹ : Monoid H inst✝ : MonoidHomClass F G H f : F a : G n : ℕ ⊢ ↑f (a ^ (n + 1)) = ↑f a ^ (n + 1) [PROOFSTEP] rw [pow_succ, pow_succ, map_mul, map_pow f a n] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : MulOneClass M inst✝³ : MulOneClass N inst✝² : DivInvMonoid G inst✝¹ : DivInvMonoid H inst✝ : MonoidHomClass F G H f : F hf : ∀ (x : G), ↑f x⁻¹ = (↑f x)⁻¹ a : G n : ℕ ⊢ ↑f (a ^ ↑n) = ↑f a ^ ↑n [PROOFSTEP] rw [zpow_ofNat, map_pow, zpow_ofNat] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : MulOneClass M inst✝³ : MulOneClass N inst✝² : DivInvMonoid G inst✝¹ : DivInvMonoid H inst✝ : MonoidHomClass F G H f : F hf : ∀ (x : G), ↑f x⁻¹ = (↑f x)⁻¹ a : G n : ℕ ⊢ ↑f (a ^ Int.negSucc n) = ↑f a ^ Int.negSucc n [PROOFSTEP] rw [zpow_negSucc, hf, map_pow, ← zpow_negSucc, ← zpow_negSucc] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulZeroOneClass M inst✝ : MulZeroOneClass N f g : M →*₀ N h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulZeroOneClass M inst✝ : MulZeroOneClass N g : M →*₀ N toZeroHom✝ : ZeroHom M N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = (fun f => f.toFun) g ⊢ { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulZeroOneClass M inst✝ : MulZeroOneClass N toZeroHom✝¹ : ZeroHom M N map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y toZeroHom✝ : ZeroHom M N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toZeroHom α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulZeroOneClass M inst✝ : MulZeroOneClass N toZeroHom✝¹ : ZeroHom M N map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y toZeroHom✝ : ZeroHom M N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ toZeroHom✝¹ = toZeroHom✝ [PROOFSTEP] apply FunLike.coe_injective' [GOAL] case mk.mk.e_toZeroHom.a α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulZeroOneClass M inst✝ : MulZeroOneClass N toZeroHom✝¹ : ZeroHom M N map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y toZeroHom✝ : ZeroHom M N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ ↑toZeroHom✝¹ = ↑toZeroHom✝ [PROOFSTEP] exact h [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : One M inst✝¹ : One N inst✝ : One P hnp : OneHom N P hmn : OneHom M N ⊢ (↑hnp ∘ ↑hmn) 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P hnp : N →ₙ* P hmn : M →ₙ* N x y : M ⊢ (↑hnp ∘ ↑hmn) (x * y) = (↑hnp ∘ ↑hmn) x * (↑hnp ∘ ↑hmn) y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P hnp : N →* P hmn : M →* N ⊢ (↑hnp ∘ ↑hmn) 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P hnp : N →* P hmn : M →* N ⊢ ∀ (x y : M), OneHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_one' := (_ : ↑hnp (↑hmn 1) = 1) } (x * y) = OneHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_one' := (_ : ↑hnp (↑hmn 1) = 1) } x * OneHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_one' := (_ : ↑hnp (↑hmn 1) = 1) } y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulZeroOneClass M inst✝¹ : MulZeroOneClass N inst✝ : MulZeroOneClass P hnp : N →*₀ P hmn : M →*₀ N ⊢ (↑hnp ∘ ↑hmn) 0 = 0 [PROOFSTEP] rw [Function.comp_apply, map_zero, map_zero] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulZeroOneClass M inst✝¹ : MulZeroOneClass N inst✝ : MulZeroOneClass P hnp : N →*₀ P hmn : M →*₀ N ⊢ ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulZeroOneClass M inst✝¹ : MulZeroOneClass N inst✝ : MulZeroOneClass P hnp : N →*₀ P hmn : M →*₀ N ⊢ ∀ (x y : M), ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } (x * y) = ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } x * ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : One M inst✝¹ : One N inst✝ : One P g : OneHom N P f₁ f₂ : OneHom M N hg : Function.Injective ↑g h : comp g f₁ = comp g f₂ x : M ⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x) [PROOFSTEP] rw [← OneHom.comp_apply, h, OneHom.comp_apply] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P g : N →ₙ* P f₁ f₂ : M →ₙ* N hg : Function.Injective ↑g h : comp g f₁ = comp g f₂ x : M ⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x) [PROOFSTEP] rw [← MulHom.comp_apply, h, MulHom.comp_apply] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P g : N →* P f₁ f₂ : M →* N hg : Function.Injective ↑g h : comp g f₁ = comp g f₂ x : M ⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x) [PROOFSTEP] rw [← MonoidHom.comp_apply, h, MonoidHom.comp_apply] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : MulZeroOneClass M inst✝¹ : MulZeroOneClass N inst✝ : MulZeroOneClass P g : N →*₀ P f₁ f₂ : M →*₀ N hg : Function.Injective ↑g h : comp g f₁ = comp g f₂ x : M ⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x) [PROOFSTEP] rw [← MonoidWithZeroHom.comp_apply, h, MonoidWithZeroHom.comp_apply] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : One M inst✝¹ : One N inst✝ : One P f : OneHom N P ⊢ comp f 1 = 1 [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : One M inst✝¹ : One N inst✝ : One P f : OneHom N P x✝ : M ⊢ ↑(comp f 1) x✝ = ↑1 x✝ [PROOFSTEP] simp only [OneHom.map_one, OneHom.coe_comp, Function.comp_apply, OneHom.one_apply] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : Mul M inst✝ : CommSemigroup N f g : M →ₙ* N x y : M ⊢ (fun m => ↑f m * ↑g m) (x * y) = (fun m => ↑f m * ↑g m) x * (fun m => ↑f m * ↑g m) y [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : Mul M inst✝ : CommSemigroup N f g : M →ₙ* N x y : M ⊢ (fun m => ↑f m * ↑g m) (x * y) = (fun m => ↑f m * ↑g m) x * (fun m => ↑f m * ↑g m) y [PROOFSTEP] show f (x * y) * g (x * y) = f x * g x * (f y * g y) [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : Mul M inst✝ : CommSemigroup N f g : M →ₙ* N x y : M ⊢ ↑f (x * y) * ↑g (x * y) = ↑f x * ↑g x * (↑f y * ↑g y) [PROOFSTEP] rw [f.map_mul, g.map_mul, ← mul_assoc, ← mul_assoc, mul_right_comm (f x)] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : Mul M inst✝¹ : CommSemigroup N inst✝ : CommSemigroup P g : N →ₙ* P f₁ f₂ : M →ₙ* N ⊢ comp g (f₁ * f₂) = comp g f₁ * comp g f₂ [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : Mul M inst✝¹ : CommSemigroup N inst✝ : CommSemigroup P g : N →ₙ* P f₁ f₂ : M →ₙ* N x✝ : M ⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝ [PROOFSTEP] simp only [mul_apply, Function.comp_apply, map_mul, coe_comp] [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N✝ : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H M : Type ?u.198672 N : Type ?u.198675 inst✝¹ : MulOneClass M inst✝ : CommMonoid N f g : M →* N ⊢ ↑f 1 * ↑g 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N✝ : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H M : Type ?u.198672 N : Type ?u.198675 inst✝¹ : MulOneClass M inst✝ : CommMonoid N f g : M →* N x y : M ⊢ OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } (x * y) = OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } x * OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } y [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N✝ : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H M : Type ?u.198672 N : Type ?u.198675 inst✝¹ : MulOneClass M inst✝ : CommMonoid N f g : M →* N x y : M ⊢ OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } (x * y) = OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } x * OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } y [PROOFSTEP] show f (x * y) * g (x * y) = f x * g x * (f y * g y) [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N✝ : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H M : Type ?u.198672 N : Type ?u.198675 inst✝¹ : MulOneClass M inst✝ : CommMonoid N f g : M →* N x y : M ⊢ ↑f (x * y) * ↑g (x * y) = ↑f x * ↑g x * (↑f y * ↑g y) [PROOFSTEP] rw [f.map_mul, g.map_mul, ← mul_assoc, ← mul_assoc, mul_right_comm (f x)] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : Group G inst✝³ : CommGroup H inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P f : N →* P ⊢ comp f 1 = 1 [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : Group G inst✝³ : CommGroup H inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P f : N →* P x✝ : M ⊢ ↑(comp f 1) x✝ = ↑1 x✝ [PROOFSTEP] simp only [map_one, coe_comp, Function.comp_apply, one_apply] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : Group G inst✝³ : CommGroup H inst✝² : MulOneClass M inst✝¹ : CommMonoid N inst✝ : CommMonoid P g : N →* P f₁ f₂ : M →* N ⊢ comp g (f₁ * f₂) = comp g f₁ * comp g f₂ [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : Group G inst✝³ : CommGroup H inst✝² : MulOneClass M inst✝¹ : CommMonoid N inst✝ : CommMonoid P g : N →* P f₁ f₂ : M →* N x✝ : M ⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝ [PROOFSTEP] simp only [mul_apply, Function.comp_apply, map_mul, coe_comp] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H inst✝¹ : Group α inst✝ : DivisionMonoid β f : α →* β g h : α ⊢ ↑f (g * h⁻¹) = ↑f g * (↑f h)⁻¹ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G✝ : Type u_6 H✝ : Type u_7 F : Type u_8 inst✝⁴ : Group G✝ inst✝³ : CommGroup H✝ G : Type u_9 H : Type u_10 inst✝² : Group G inst✝¹ : MulOneClass H inst✝ : MonoidHomClass F G H f : F h : ∀ (a : G), ↑f a = 1 → a = 1 x y : G hxy : ↑f x = ↑f y ⊢ ↑f (x * y⁻¹) = 1 [PROOFSTEP] rw [map_mul, hxy, ← map_mul, mul_inv_self, map_one] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝² : Group G inst✝¹ : CommGroup H inst✝ : MulOneClass M f : M → G map_mul : ∀ (a b : M), f (a * b) = f a * f b ⊢ f 1 * ?m.224335 f map_mul = ?m.224335 f map_mul [PROOFSTEP] rw [← map_mul, mul_one] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H✝ : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H✝ inst✝¹ : MulOneClass M H : Type u_9 inst✝ : Group H f : G → H map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹ x y : G ⊢ f (x * y) = f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹ [PROOFSTEP] {simp only [one_mul, inv_one, ← map_div, inv_inv] } [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H✝ : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H✝ inst✝¹ : MulOneClass M H : Type u_9 inst✝ : Group H f : G → H map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹ x y : G ⊢ f (x * y) = f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹ [PROOFSTEP] simp only [one_mul, inv_one, ← map_div, inv_inv] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H✝ : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H✝ inst✝¹ : MulOneClass M H : Type u_9 inst✝ : Group H f : G → H map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹ x y : G ⊢ f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹ = f x * f y [PROOFSTEP] { simp only [map_div] simp only [mul_right_inv, one_mul, inv_inv] } [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H✝ : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H✝ inst✝¹ : MulOneClass M H : Type u_9 inst✝ : Group H f : G → H map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹ x y : G ⊢ f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹ = f x * f y [PROOFSTEP] simp only [map_div] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H✝ : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H✝ inst✝¹ : MulOneClass M H : Type u_9 inst✝ : Group H f : G → H map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹ x y : G ⊢ f x * (f 1 * (f 1)⁻¹ * (f y)⁻¹)⁻¹ = f x * f y [PROOFSTEP] simp only [mul_right_inv, one_mul, inv_inv] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H✝ : Type u_7 F : Type u_8 inst✝³ : Group G inst✝² : CommGroup H✝ inst✝¹ : MulOneClass M H : Type u_9 inst✝ : Group H f : G → H hf : ∀ (x y : G), f (x / y) = f x / f y ⊢ ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹ [PROOFSTEP] simpa only [div_eq_mul_inv] using hf [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G✝ : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : Group G✝ inst✝³ : CommGroup H inst✝² : MulOneClass M✝ M : Type ?u.229390 G : Type ?u.229393 inst✝¹ : MulOneClass M inst✝ : CommGroup G f : M →* G a b : M ⊢ (↑f (a * b))⁻¹ = (↑f a)⁻¹ * (↑f b)⁻¹ [PROOFSTEP] rw [← mul_inv, f.map_mul] [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N✝ : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁵ : Group G inst✝⁴ : CommGroup H inst✝³ : MulOneClass M✝ M : Type u_9 N : Type u_10 A : Type u_11 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : CommGroup A φ : N →* A ψ : M →* N ⊢ comp φ⁻¹ ψ = (comp φ ψ)⁻¹ [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 M✝ : Type u_3 N✝ : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁵ : Group G inst✝⁴ : CommGroup H inst✝³ : MulOneClass M✝ M : Type u_9 N : Type u_10 A : Type u_11 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : CommGroup A φ : N →* A ψ : M →* N x✝ : M ⊢ ↑(comp φ⁻¹ ψ) x✝ = ↑(comp φ ψ)⁻¹ x✝ [PROOFSTEP] simp only [Function.comp_apply, inv_apply, coe_comp] [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁵ : Group G inst✝⁴ : CommGroup H inst✝³ : MulOneClass M✝ M : Type u_9 A : Type u_10 B : Type u_11 inst✝² : MulOneClass M inst✝¹ : CommGroup A inst✝ : CommGroup B φ : A →* B ψ : M →* A ⊢ comp φ ψ⁻¹ = (comp φ ψ)⁻¹ [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝⁵ : Group G inst✝⁴ : CommGroup H inst✝³ : MulOneClass M✝ M : Type u_9 A : Type u_10 B : Type u_11 inst✝² : MulOneClass M inst✝¹ : CommGroup A inst✝ : CommGroup B φ : A →* B ψ : M →* A x✝ : M ⊢ ↑(comp φ ψ⁻¹) x✝ = ↑(comp φ ψ)⁻¹ x✝ [PROOFSTEP] simp only [Function.comp_apply, inv_apply, map_inv, coe_comp] [GOAL] α : Type u_1 β : Type u_2 M✝ : Type u_3 N : Type u_4 P : Type u_5 G✝ : Type u_6 H : Type u_7 F : Type u_8 inst✝⁴ : Group G✝ inst✝³ : CommGroup H inst✝² : MulOneClass M✝ M : Type ?u.233732 G : Type ?u.233735 inst✝¹ : MulOneClass M inst✝ : CommGroup G f g : M →* G a b : M ⊢ ↑f (a * b) / ↑g (a * b) = ↑f a / ↑g a * (↑f b / ↑g b) [PROOFSTEP] simp [div_eq_mul_inv, mul_assoc, mul_left_comm, mul_comm] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulZeroOneClass M inst✝ : CommMonoidWithZero N f g : M →*₀ N src✝ : M →* N := ↑f * ↑g ⊢ (fun a => ↑f a * ↑g a) 0 = 0 [PROOFSTEP] dsimp only [] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 N : Type u_4 P : Type u_5 G : Type u_6 H : Type u_7 F : Type u_8 inst✝¹ : MulZeroOneClass M inst✝ : CommMonoidWithZero N f g : M →*₀ N src✝ : M →* N := ↑f * ↑g ⊢ ↑f 0 * ↑g 0 = 0 [PROOFSTEP] rw [map_zero, zero_mul]
{"mathlib_filename": "Mathlib.Algebra.Hom.Group", "llama_tokens": 14747}
[GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C ⊢ Function.Injective fun f => f.toFun [PROOFSTEP] rintro ⟨⟨⟨f, _⟩, _⟩, _⟩ ⟨⟨⟨g, _⟩, _⟩, _⟩ h [GOAL] case mk.mk.mk.mk.mk.mk R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A → B map_smul'✝¹ : ∀ (m : R) (x : A), f (m • x) = m • f x map_zero'✝¹ : MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } 0 = 0 map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } (x + y) = MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } x + MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } y map_mul'✝¹ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y g : A → B map_smul'✝ : ∀ (m : R) (x : A), g (m • x) = m • g x map_zero'✝ : MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } 0 = 0 map_add'✝ : ∀ (x y : A), MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } (x + y) = MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } x + MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } y map_mul'✝ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y h : (fun f => f.toFun) { toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ } ⊢ { toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ } = { toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ } [PROOFSTEP] congr [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C ⊢ Function.Injective FunLike.coe [PROOFSTEP] rintro ⟨⟨⟨f, _⟩, _⟩, _⟩ ⟨⟨⟨g, _⟩, _⟩, _⟩ h [GOAL] case mk.mk.mk.mk.mk.mk R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A → B map_smul'✝¹ : ∀ (m : R) (x : A), f (m • x) = m • f x map_zero'✝¹ : MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } 0 = 0 map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } (x + y) = MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } x + MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } y map_mul'✝¹ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y g : A → B map_smul'✝ : ∀ (m : R) (x : A), g (m • x) = m • g x map_zero'✝ : MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } 0 = 0 map_add'✝ : ∀ (x y : A), MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } (x + y) = MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } x + MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } y map_mul'✝ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y h : ↑{ toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ } = ↑{ toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ } ⊢ { toDistribMulActionHom := { toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }, map_mul' := map_mul'✝¹ } = { toDistribMulActionHom := { toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }, map_mul' := map_mul'✝ } [PROOFSTEP] congr [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f g : A →ₙₐ[R] B ⊢ f = g → ∀ (x : A), ↑f x = ↑g x [PROOFSTEP] rintro rfl x [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B x : A ⊢ ↑f x = ↑f x [PROOFSTEP] rfl [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0 h₃ : ∀ (x y : A), MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) = MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y h₄ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y ⊢ { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ } = f [PROOFSTEP] rfl [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f g : A →ₙₐ[R] B h : ↑f = ↑g ⊢ f = g [PROOFSTEP] ext a [GOAL] case h R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f g : A →ₙₐ[R] B h : ↑f = ↑g a : A ⊢ ↑f a = ↑g a [PROOFSTEP] exact DistribMulActionHom.congr_fun h a [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f g : A →ₙₐ[R] B h : ↑f = ↑g ⊢ f = g [PROOFSTEP] ext a [GOAL] case h R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f g : A →ₙₐ[R] B h : ↑f = ↑g a : A ⊢ ↑f a = ↑g a [PROOFSTEP] exact FunLike.congr_fun h a [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0 h₃ : ∀ (x y : A), MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) = MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y h₄ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y ⊢ ↑{ toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ } = { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ } [PROOFSTEP] rfl [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0 h₃ : ∀ (x y : A), MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) = MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y h₄ : ∀ (x y : A), MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y ⊢ ↑{ toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }, map_mul' := h₄ } = { toFun := ↑f, map_mul' := h₄ } [PROOFSTEP] rfl [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C src✝ : A →+[R] B := 0 ⊢ ∀ (x y : A), MulActionHom.toFun { toMulActionHom := src✝.toMulActionHom, map_zero' := (_ : MulActionHom.toFun src✝.toMulActionHom 0 = 0), map_add' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x + y) = MulActionHom.toFun src✝.toMulActionHom x + MulActionHom.toFun src✝.toMulActionHom y) }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := src✝.toMulActionHom, map_zero' := (_ : MulActionHom.toFun src✝.toMulActionHom 0 = 0), map_add' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x + y) = MulActionHom.toFun src✝.toMulActionHom x + MulActionHom.toFun src✝.toMulActionHom y) }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := src✝.toMulActionHom, map_zero' := (_ : MulActionHom.toFun src✝.toMulActionHom 0 = 0), map_add' := (_ : ∀ (x y : A), MulActionHom.toFun src✝.toMulActionHom (x + y) = MulActionHom.toFun src✝.toMulActionHom x + MulActionHom.toFun src✝.toMulActionHom y) }.toMulActionHom y [PROOFSTEP] simp [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B g : A →ₙₐ[R] C c : R x : A ⊢ Pi.prod (↑f) (↑g) (c • x) = c • Pi.prod (↑f) (↑g) x [PROOFSTEP] simp only [Pi.prod, Prod.smul_mk, map_smul, RingHom.id_apply] [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B g : A →ₙₐ[R] C ⊢ MulActionHom.toFun { toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) } 0 = 0 [PROOFSTEP] simp only [Pi.prod, Prod.zero_eq_mk, map_zero] [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B g : A →ₙₐ[R] C x y : A ⊢ MulActionHom.toFun { toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) } (x + y) = MulActionHom.toFun { toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) } x + MulActionHom.toFun { toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) } y [PROOFSTEP] simp only [Pi.prod, Prod.mk_add_mk, map_add] [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B g : A →ₙₐ[R] C x y : A ⊢ MulActionHom.toFun { toMulActionHom := { toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) }, map_zero' := (_ : (↑f 0, ↑g 0) = (0, 0)), map_add' := (_ : ∀ (x y : A), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }.toMulActionHom (x * y) = MulActionHom.toFun { toMulActionHom := { toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) }, map_zero' := (_ : (↑f 0, ↑g 0) = (0, 0)), map_add' := (_ : ∀ (x y : A), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }.toMulActionHom x * MulActionHom.toFun { toMulActionHom := { toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) }, map_zero' := (_ : (↑f 0, ↑g 0) = (0, 0)), map_add' := (_ : ∀ (x y : A), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }.toMulActionHom y [PROOFSTEP] simp only [Pi.prod, Prod.mk_mul_mk, map_mul] [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B g : A →ₙₐ[R] C ⊢ comp (fst R B C) (prod f g) = f [PROOFSTEP] rfl [GOAL] R : Type u A : Type v B : Type w C : Type w₁ inst✝⁶ : Monoid R inst✝⁵ : NonUnitalNonAssocSemiring A inst✝⁴ : DistribMulAction R A inst✝³ : NonUnitalNonAssocSemiring B inst✝² : DistribMulAction R B inst✝¹ : NonUnitalNonAssocSemiring C inst✝ : DistribMulAction R C f : A →ₙₐ[R] B g : A →ₙₐ[R] C ⊢ comp (snd R B C) (prod f g) = g [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Hom.NonUnitalAlg", "llama_tokens": 8654}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝⁵ : Mul R inst✝⁴ : Mul S inst✝³ : Add R inst✝² : Add S inst✝¹ : Mul S' inst✝ : Add S' e f : R ≃+* S h₁ : (fun f => f.toFun) e = (fun f => f.toFun) f h₂ : (fun f => f.invFun) e = (fun f => f.invFun) f ⊢ e = f [PROOFSTEP] cases e [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝⁵ : Mul R inst✝⁴ : Mul S inst✝³ : Add R inst✝² : Add S inst✝¹ : Mul S' inst✝ : Add S' f : R ≃+* S toEquiv✝ : R ≃ S map_mul'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x * y) = Equiv.toFun toEquiv✝ x * Equiv.toFun toEquiv✝ y map_add'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x + y) = Equiv.toFun toEquiv✝ x + Equiv.toFun toEquiv✝ y h₁ : (fun f => f.toFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } = (fun f => f.toFun) f h₂ : (fun f => f.invFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } = (fun f => f.invFun) f ⊢ { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } = f [PROOFSTEP] cases f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝⁵ : Mul R inst✝⁴ : Mul S inst✝³ : Add R inst✝² : Add S inst✝¹ : Mul S' inst✝ : Add S' toEquiv✝¹ : R ≃ S map_mul'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x * y) = Equiv.toFun toEquiv✝¹ x * Equiv.toFun toEquiv✝¹ y map_add'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x + y) = Equiv.toFun toEquiv✝¹ x + Equiv.toFun toEquiv✝¹ y toEquiv✝ : R ≃ S map_mul'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x * y) = Equiv.toFun toEquiv✝ x * Equiv.toFun toEquiv✝ y map_add'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x + y) = Equiv.toFun toEquiv✝ x + Equiv.toFun toEquiv✝ y h₁ : (fun f => f.toFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } h₂ : (fun f => f.invFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } = (fun f => f.invFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } ⊢ { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } = { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toEquiv F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝⁵ : Mul R inst✝⁴ : Mul S inst✝³ : Add R inst✝² : Add S inst✝¹ : Mul S' inst✝ : Add S' toEquiv✝¹ : R ≃ S map_mul'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x * y) = Equiv.toFun toEquiv✝¹ x * Equiv.toFun toEquiv✝¹ y map_add'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x + y) = Equiv.toFun toEquiv✝¹ x + Equiv.toFun toEquiv✝¹ y toEquiv✝ : R ≃ S map_mul'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x * y) = Equiv.toFun toEquiv✝ x * Equiv.toFun toEquiv✝ y map_add'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x + y) = Equiv.toFun toEquiv✝ x + Equiv.toFun toEquiv✝ y h₁ : (fun f => f.toFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } h₂ : (fun f => f.invFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } = (fun f => f.invFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } ⊢ toEquiv✝¹ = toEquiv✝ [PROOFSTEP] apply Equiv.coe_fn_injective h₁ [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 α : Type ?u.47054 β : Type ?u.47060 inst✝³ : Add α inst✝² : Mul α inst✝¹ : Add β inst✝ : Mul β f : α ≃+* β ⊢ (fun f => let src := ↑AddEquiv.mulOp.symm (toAddEquiv f); let src_1 := ↑MulEquiv.op.symm (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : α), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : α), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) ((fun f => let src := ↑AddEquiv.mulOp (toAddEquiv f); let src_1 := ↑MulEquiv.op (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) f) = f [PROOFSTEP] ext [GOAL] case h F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 α : Type ?u.47054 β : Type ?u.47060 inst✝³ : Add α inst✝² : Mul α inst✝¹ : Add β inst✝ : Mul β f : α ≃+* β x✝ : α ⊢ ↑((fun f => let src := ↑AddEquiv.mulOp.symm (toAddEquiv f); let src_1 := ↑MulEquiv.op.symm (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : α), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : α), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) ((fun f => let src := ↑AddEquiv.mulOp (toAddEquiv f); let src_1 := ↑MulEquiv.op (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 α : Type ?u.47054 β : Type ?u.47060 inst✝³ : Add α inst✝² : Mul α inst✝¹ : Add β inst✝ : Mul β f : αᵐᵒᵖ ≃+* βᵐᵒᵖ ⊢ (fun f => let src := ↑AddEquiv.mulOp (toAddEquiv f); let src_1 := ↑MulEquiv.op (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) ((fun f => let src := ↑AddEquiv.mulOp.symm (toAddEquiv f); let src_1 := ↑MulEquiv.op.symm (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : α), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : α), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) f) = f [PROOFSTEP] ext [GOAL] case h F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 α : Type ?u.47054 β : Type ?u.47060 inst✝³ : Add α inst✝² : Mul α inst✝¹ : Add β inst✝ : Mul β f : αᵐᵒᵖ ≃+* βᵐᵒᵖ x✝ : αᵐᵒᵖ ⊢ ↑((fun f => let src := ↑AddEquiv.mulOp (toAddEquiv f); let src_1 := ↑MulEquiv.op (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : αᵐᵒᵖ), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) ((fun f => let src := ↑AddEquiv.mulOp.symm (toAddEquiv f); let src_1 := ↑MulEquiv.op.symm (toMulEquiv f); { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : α), Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y), map_add' := (_ : ∀ (x y : α), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }) f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝¹ : NonAssocRing R inst✝ : NonAssocRing S f : R ≃+* S x✝ y x : R ⊢ ↑f x = -1 ↔ x = -1 [PROOFSTEP] rw [← neg_eq_iff_eq_neg, ← neg_eq_iff_eq_neg, ← map_neg, RingEquiv.map_eq_one_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R✝ : Type u_4 S✝ : Type u_5 S' : Type u_6 inst✝⁴ : NonUnitalNonAssocSemiring R✝ inst✝³ : NonUnitalNonAssocSemiring S✝ inst✝² : NonUnitalNonAssocSemiring S' R : Type u_7 S : Type u_8 inst✝¹ : NonUnitalNonAssocSemiring R inst✝ : NonUnitalNonAssocSemiring S f g : R ≃+* S h : f = g ⊢ ↑f = ↑g [PROOFSTEP] rw [h] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : NonUnitalNonAssocSemiring S inst✝ : NonUnitalNonAssocSemiring S' e : R ≃+* S ⊢ NonUnitalRingHom.comp (toNonUnitalRingHom e) (toNonUnitalRingHom (RingEquiv.symm e)) = NonUnitalRingHom.id S [PROOFSTEP] ext [GOAL] case a F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : NonUnitalNonAssocSemiring S inst✝ : NonUnitalNonAssocSemiring S' e : R ≃+* S x✝ : S ⊢ ↑(NonUnitalRingHom.comp (toNonUnitalRingHom e) (toNonUnitalRingHom (RingEquiv.symm e))) x✝ = ↑(NonUnitalRingHom.id S) x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : NonUnitalNonAssocSemiring S inst✝ : NonUnitalNonAssocSemiring S' e : R ≃+* S ⊢ NonUnitalRingHom.comp (toNonUnitalRingHom (RingEquiv.symm e)) (toNonUnitalRingHom e) = NonUnitalRingHom.id R [PROOFSTEP] ext [GOAL] case a F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : NonUnitalNonAssocSemiring S inst✝ : NonUnitalNonAssocSemiring S' e : R ≃+* S x✝ : R ⊢ ↑(NonUnitalRingHom.comp (toNonUnitalRingHom (RingEquiv.symm e)) (toNonUnitalRingHom e)) x✝ = ↑(NonUnitalRingHom.id R) x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R✝ : Type u_4 S✝ : Type u_5 S' : Type u_6 inst✝⁴ : NonAssocSemiring R✝ inst✝³ : NonAssocSemiring S✝ inst✝² : NonAssocSemiring S' R : Type u_7 S : Type u_8 inst✝¹ : NonAssocSemiring R inst✝ : NonAssocSemiring S f g : R ≃+* S h : f = g ⊢ ↑f = ↑g [PROOFSTEP] rw [h] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonAssocSemiring R inst✝¹ : NonAssocSemiring S inst✝ : NonAssocSemiring S' e : R ≃+* S ⊢ RingHom.comp (toRingHom e) (toRingHom (RingEquiv.symm e)) = RingHom.id S [PROOFSTEP] ext [GOAL] case a F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonAssocSemiring R inst✝¹ : NonAssocSemiring S inst✝ : NonAssocSemiring S' e : R ≃+* S x✝ : S ⊢ ↑(RingHom.comp (toRingHom e) (toRingHom (RingEquiv.symm e))) x✝ = ↑(RingHom.id S) x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonAssocSemiring R inst✝¹ : NonAssocSemiring S inst✝ : NonAssocSemiring S' e : R ≃+* S ⊢ RingHom.comp (toRingHom (RingEquiv.symm e)) (toRingHom e) = RingHom.id R [PROOFSTEP] ext [GOAL] case a F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 inst✝² : NonAssocSemiring R inst✝¹ : NonAssocSemiring S inst✝ : NonAssocSemiring S' e : R ≃+* S x✝ : R ⊢ ↑(RingHom.comp (toRingHom (RingEquiv.symm e)) (toRingHom e)) x✝ = ↑(RingHom.id R) x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 A : Type u_7 B : Type u_8 inst✝¹ : Semiring A inst✝ : Semiring B hB : IsField B e : A ≃* B x y : A ⊢ ↑e (x * y) = ↑e (y * x) [PROOFSTEP] rw [map_mul, map_mul, hB.mul_comm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 A : Type u_7 B : Type u_8 inst✝¹ : Semiring A inst✝ : Semiring B hB : IsField B e : A ≃* B a✝ : A h : a✝ ≠ 0 ⊢ ∃ b, a✝ * b = 1 [PROOFSTEP] obtain ⟨a', he⟩ := hB.mul_inv_cancel ((e.injective.ne h).trans_eq <| map_zero e) [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 A : Type u_7 B : Type u_8 inst✝¹ : Semiring A inst✝ : Semiring B hB : IsField B e : A ≃* B a✝ : A h : a✝ ≠ 0 a' : B he : ↑e a✝ * a' = 1 ⊢ ∃ b, a✝ * b = 1 [PROOFSTEP] exact ⟨e.symm a', e.injective <| by rw [map_mul, map_one, e.apply_symm_apply, he]⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 R : Type u_4 S : Type u_5 S' : Type u_6 A : Type u_7 B : Type u_8 inst✝¹ : Semiring A inst✝ : Semiring B hB : IsField B e : A ≃* B a✝ : A h : a✝ ≠ 0 a' : B he : ↑e a✝ * a' = 1 ⊢ ↑e (a✝ * ↑(symm e) a') = ↑e 1 [PROOFSTEP] rw [map_mul, map_one, e.apply_symm_apply, he]
{"mathlib_filename": "Mathlib.Algebra.Ring.Equiv", "llama_tokens": 6777}
[GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ rla : IsLeftRegular a ⊢ IsLeftRegular (a ^ n) [PROOFSTEP] simp only [IsLeftRegular, ← mul_left_iterate, rla.iterate n] [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ rra : IsRightRegular a ⊢ IsRightRegular (a ^ n) [PROOFSTEP] rw [IsRightRegular, ← mul_right_iterate] [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ rra : IsRightRegular a ⊢ Function.Injective (fun x => x * a)^[n] [PROOFSTEP] exact rra.iterate n [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ n0 : 0 < n ⊢ IsLeftRegular (a ^ n) ↔ IsLeftRegular a [PROOFSTEP] refine' ⟨_, IsLeftRegular.pow n⟩ [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ n0 : 0 < n ⊢ IsLeftRegular (a ^ n) → IsLeftRegular a [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos n0, pow_succ'] [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ n0 : 0 < n ⊢ IsLeftRegular (a ^ Nat.pred n * a) → IsLeftRegular a [PROOFSTEP] exact IsLeftRegular.of_mul [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ n0 : 0 < n ⊢ IsRightRegular (a ^ n) ↔ IsRightRegular a [PROOFSTEP] refine' ⟨_, IsRightRegular.pow n⟩ [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ n0 : 0 < n ⊢ IsRightRegular (a ^ n) → IsRightRegular a [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos n0, pow_succ] [GOAL] R : Type u_1 a b : R inst✝ : Monoid R n : ℕ n0 : 0 < n ⊢ IsRightRegular (a * a ^ Nat.pred n) → IsRightRegular a [PROOFSTEP] exact IsRightRegular.of_mul
{"mathlib_filename": "Mathlib.Algebra.Regular.Pow", "llama_tokens": 721}
[GOAL] M N : GroupWithZeroCat f g : M ⟶ N h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk M N : GroupWithZeroCat g : M ⟶ N toZeroHom✝ : ZeroHom ↑M ↑N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = (fun f => f.toFun) g ⊢ { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk M N : GroupWithZeroCat toZeroHom✝¹ : ZeroHom ↑M ↑N map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y toZeroHom✝ : ZeroHom ↑M ↑N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toZeroHom M N : GroupWithZeroCat toZeroHom✝¹ : ZeroHom ↑M ↑N map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y toZeroHom✝ : ZeroHom ↑M ↑N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ toZeroHom✝¹ = toZeroHom✝ [PROOFSTEP] apply FunLike.coe_injective' [GOAL] case mk.mk.e_toZeroHom.a M N : GroupWithZeroCat toZeroHom✝¹ : ZeroHom ↑M ↑N map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1 map_mul'✝¹ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y toZeroHom✝ : ZeroHom ↑M ↑N map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1 map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y h : (fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } = (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } ⊢ ↑toZeroHom✝¹ = ↑toZeroHom✝ [PROOFSTEP] exact h [GOAL] α β : GroupWithZeroCat e : ↑α ≃* ↑β ⊢ ↑e ≫ ↑(MulEquiv.symm e) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : GroupWithZeroCat e : ↑α ≃* ↑β x✝ : (forget GroupWithZeroCat).obj α ⊢ ↑(↑e ≫ ↑(MulEquiv.symm e)) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : GroupWithZeroCat e : ↑α ≃* ↑β ⊢ ↑(MulEquiv.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : GroupWithZeroCat e : ↑α ≃* ↑β x✝ : (forget GroupWithZeroCat).obj β ⊢ ↑(↑(MulEquiv.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Algebra.Category.GroupWithZeroCat", "llama_tokens": 1805}
[GOAL] α : Type u inst✝ : MulZeroClass α x✝ : ULift α ⊢ ↑Equiv.ulift (0 * x✝) = ↑Equiv.ulift 0 [PROOFSTEP] simp [GOAL] α : Type u inst✝ : MulZeroClass α x✝ : ULift α ⊢ ↑Equiv.ulift (x✝ * 0) = ↑Equiv.ulift 0 [PROOFSTEP] simp [GOAL] α : Type u inst✝ : Distrib α x✝² x✝¹ x✝ : ULift α ⊢ ↑Equiv.ulift (x✝² * (x✝¹ + x✝)) = ↑Equiv.ulift (x✝² * x✝¹ + x✝² * x✝) [PROOFSTEP] simp [left_distrib] [GOAL] α : Type u inst✝ : Distrib α x✝² x✝¹ x✝ : ULift α ⊢ ↑Equiv.ulift ((x✝² + x✝¹) * x✝) = ↑Equiv.ulift (x✝² * x✝ + x✝¹ * x✝) [PROOFSTEP] simp [right_distrib]
{"mathlib_filename": "Mathlib.Algebra.Ring.ULift", "llama_tokens": 360}
[GOAL] M : Type u_1 inst✝² : Monoid M R : Type u_2 inst✝¹ : Semiring R inst✝ : MulSemiringAction M R m : M ⊢ HSMul.hSMul m = map (MulSemiringAction.toRingHom M R m) [PROOFSTEP] suffices DistribMulAction.toAddMonoidHom R[X] m = (mapRingHom (MulSemiringAction.toRingHom M R m)).toAddMonoidHom by ext1 r exact FunLike.congr_fun this r [GOAL] M : Type u_1 inst✝² : Monoid M R : Type u_2 inst✝¹ : Semiring R inst✝ : MulSemiringAction M R m : M this : DistribMulAction.toAddMonoidHom R[X] m = RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m)) ⊢ HSMul.hSMul m = map (MulSemiringAction.toRingHom M R m) [PROOFSTEP] ext1 r [GOAL] case h M : Type u_1 inst✝² : Monoid M R : Type u_2 inst✝¹ : Semiring R inst✝ : MulSemiringAction M R m : M this : DistribMulAction.toAddMonoidHom R[X] m = RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m)) r : R[X] ⊢ m • r = map (MulSemiringAction.toRingHom M R m) r [PROOFSTEP] exact FunLike.congr_fun this r [GOAL] M : Type u_1 inst✝² : Monoid M R : Type u_2 inst✝¹ : Semiring R inst✝ : MulSemiringAction M R m : M ⊢ DistribMulAction.toAddMonoidHom R[X] m = RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m)) [PROOFSTEP] ext n r : 2 [GOAL] case h.h M : Type u_1 inst✝² : Monoid M R : Type u_2 inst✝¹ : Semiring R inst✝ : MulSemiringAction M R m : M n : ℕ r : R ⊢ ↑(AddMonoidHom.comp (DistribMulAction.toAddMonoidHom R[X] m) (LinearMap.toAddMonoidHom (monomial n))) r = ↑(AddMonoidHom.comp (RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m))) (LinearMap.toAddMonoidHom (monomial n))) r [PROOFSTEP] change m • monomial n r = map (MulSemiringAction.toRingHom M R m) (monomial n r) [GOAL] case h.h M : Type u_1 inst✝² : Monoid M R : Type u_2 inst✝¹ : Semiring R inst✝ : MulSemiringAction M R m : M n : ℕ r : R ⊢ m • ↑(monomial n) r = map (MulSemiringAction.toRingHom M R m) (↑(monomial n) r) [PROOFSTEP] rw [Polynomial.map_monomial, Polynomial.smul_monomial, MulSemiringAction.toRingHom_apply] [GOAL] M : Type u_1 inst✝⁴ : Monoid M R : Type u_2 inst✝³ : Semiring R inst✝² : MulSemiringAction M R S : Type u_3 inst✝¹ : CommSemiring S inst✝ : MulSemiringAction M S m : M f : S[X] x r : S ⊢ eval (m • x) (m • ↑C r) = m • eval x (↑C r) [PROOFSTEP] rw [smul_C, eval_C, eval_C] [GOAL] M : Type u_1 inst✝⁴ : Monoid M R : Type u_2 inst✝³ : Semiring R inst✝² : MulSemiringAction M R S : Type u_3 inst✝¹ : CommSemiring S inst✝ : MulSemiringAction M S m : M f✝ : S[X] x : S f g : S[X] ihf : eval (m • x) (m • f) = m • eval x f ihg : eval (m • x) (m • g) = m • eval x g ⊢ eval (m • x) (m • (f + g)) = m • eval x (f + g) [PROOFSTEP] rw [smul_add, eval_add, ihf, ihg, eval_add, smul_add] [GOAL] M : Type u_1 inst✝⁴ : Monoid M R : Type u_2 inst✝³ : Semiring R inst✝² : MulSemiringAction M R S : Type u_3 inst✝¹ : CommSemiring S inst✝ : MulSemiringAction M S m : M f : S[X] x : S n : ℕ r : S x✝ : eval (m • x) (m • (↑C r * X ^ n)) = m • eval x (↑C r * X ^ n) ⊢ eval (m • x) (m • (↑C r * X ^ (n + 1))) = m • eval x (↑C r * X ^ (n + 1)) [PROOFSTEP] rw [smul_mul', smul_pow', smul_C, smul_X, eval_mul, eval_C, eval_pow, eval_X, eval_mul, eval_C, eval_pow, eval_X, smul_mul', smul_pow'] [GOAL] M : Type u_1 inst✝⁶ : Monoid M R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : MulSemiringAction M R S : Type u_3 inst✝³ : CommSemiring S inst✝² : MulSemiringAction M S G : Type u_4 inst✝¹ : Group G inst✝ : MulSemiringAction G S g : G f : S[X] x : S ⊢ eval (g • x) f = g • eval x (g⁻¹ • f) [PROOFSTEP] rw [← smul_eval_smul, smul_inv_smul] [GOAL] M : Type u_1 inst✝⁶ : Monoid M R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : MulSemiringAction M R S : Type u_3 inst✝³ : CommSemiring S inst✝² : MulSemiringAction M S G : Type u_4 inst✝¹ : Group G inst✝ : MulSemiringAction G S g : G f : S[X] x : S ⊢ eval x (g • f) = g • eval (g⁻¹ • x) f [PROOFSTEP] rw [← smul_eval_smul, smul_inv_smul] [GOAL] M : Type u_1 inst✝⁴ : Monoid M G : Type u_2 inst✝³ : Group G inst✝² : Fintype G R : Type u_3 inst✝¹ : CommRing R inst✝ : MulSemiringAction G R x : R ⊢ ↑↑↑(aeval x) (X - ↑C (ofQuotientStabilizer G x ↑1)) = 0 [PROOFSTEP] simp [GOAL] M : Type u_1 inst✝⁴ : Monoid M G : Type u_2 inst✝³ : Group G inst✝² : Fintype G R : Type u_3 inst✝¹ : CommRing R inst✝ : MulSemiringAction G R x : R g : G g' : G ⧸ stabilizer G x ⊢ g • (X - ↑C (ofQuotientStabilizer G x g')) = X - ↑C (ofQuotientStabilizer G x ((fun x_1 x_2 => x_1 • x_2) g g')) [PROOFSTEP] rw [ofQuotientStabilizer_smul, smul_sub, Polynomial.smul_X, Polynomial.smul_C] [GOAL] M : Type u_1 inst✝⁴ : Monoid M G : Type u_2 inst✝³ : Group G inst✝² : Fintype G R : Type u_3 inst✝¹ : CommRing R inst✝ : MulSemiringAction G R x : R g : G n : ℕ ⊢ g • Polynomial.coeff (prodXSubSmul G R x) n = Polynomial.coeff (prodXSubSmul G R x) n [PROOFSTEP] rw [← Polynomial.coeff_smul, prodXSubSmul.smul] [GOAL] M : Type u_1 inst✝⁴ : Monoid M P : Type u_2 inst✝³ : CommSemiring P inst✝² : MulSemiringAction M P Q : Type u_3 inst✝¹ : CommSemiring Q inst✝ : MulSemiringAction M Q g : P →+*[M] Q m : M p : P[X] b : P ⊢ map (↑g) (m • ↑C b) = m • map (↑g) (↑C b) [PROOFSTEP] rw [smul_C, map_C, coe_fn_coe, g.map_smul, map_C, coe_fn_coe, smul_C] [GOAL] M : Type u_1 inst✝⁴ : Monoid M P : Type u_2 inst✝³ : CommSemiring P inst✝² : MulSemiringAction M P Q : Type u_3 inst✝¹ : CommSemiring Q inst✝ : MulSemiringAction M Q g : P →+*[M] Q m : M p✝ p q : P[X] ihp : map (↑g) (m • p) = m • map (↑g) p ihq : map (↑g) (m • q) = m • map (↑g) q ⊢ map (↑g) (m • (p + q)) = m • map (↑g) (p + q) [PROOFSTEP] rw [smul_add, Polynomial.map_add, ihp, ihq, Polynomial.map_add, smul_add] [GOAL] M : Type u_1 inst✝⁴ : Monoid M P : Type u_2 inst✝³ : CommSemiring P inst✝² : MulSemiringAction M P Q : Type u_3 inst✝¹ : CommSemiring Q inst✝ : MulSemiringAction M Q g : P →+*[M] Q m : M p : P[X] n : ℕ b : P x✝ : map (↑g) (m • (↑C b * X ^ n)) = m • map (↑g) (↑C b * X ^ n) ⊢ map (↑g) (m • (↑C b * X ^ (n + 1))) = m • map (↑g) (↑C b * X ^ (n + 1)) [PROOFSTEP] rw [smul_mul', smul_C, smul_pow', smul_X, Polynomial.map_mul, map_C, Polynomial.map_pow, map_X, coe_fn_coe, g.map_smul, Polynomial.map_mul, map_C, Polynomial.map_pow, map_X, smul_mul', smul_C, smul_pow', smul_X, coe_fn_coe] -- porting note: added `.toRingHom`
{"mathlib_filename": "Mathlib.Algebra.Polynomial.GroupRingAction", "llama_tokens": 3130}
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Subobject", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : NonUnitalNonAssocSemiring S inst✝ : NonUnitalNonAssocSemiring T f✝ : R →ₙ+* S g : R →ₙ+* T f : R →ₙ+* S × T x : R ⊢ ↑(NonUnitalRingHom.prod (comp (fst S T) f) (comp (snd S T) f)) x = ↑f x [PROOFSTEP] simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝² : NonAssocSemiring R inst✝¹ : NonAssocSemiring S inst✝ : NonAssocSemiring T f✝ : R →+* S g : R →+* T f : R →+* S × T x : R ⊢ ↑(RingHom.prod (comp (fst S T) f) (comp (snd S T) f)) x = ↑f x [PROOFSTEP] simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S x : R × S ⊢ (fun x => (x, 0)) x.fst = x [PROOFSTEP] cases x [GOAL] case mk α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S fst✝ : R snd✝ : S ⊢ (fun x => (x, 0)) (fst✝, snd✝).fst = (fst✝, snd✝) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S ⊢ ∀ (x y : R), Equiv.toFun { toFun := fun x => (x, 0), invFun := Prod.fst, left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst), right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) } (x * y) = Equiv.toFun { toFun := fun x => (x, 0), invFun := Prod.fst, left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst), right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) } x * Equiv.toFun { toFun := fun x => (x, 0), invFun := Prod.fst, left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst), right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) } y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S ⊢ ∀ (x y : R), Equiv.toFun { toFun := fun x => (x, 0), invFun := Prod.fst, left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst), right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) } (x + y) = Equiv.toFun { toFun := fun x => (x, 0), invFun := Prod.fst, left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst), right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) } x + Equiv.toFun { toFun := fun x => (x, 0), invFun := Prod.fst, left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst), right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) } y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S x : S × R ⊢ (fun x => (0, x)) x.snd = x [PROOFSTEP] cases x [GOAL] case mk α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S fst✝ : S snd✝ : R ⊢ (fun x => (0, x)) (fst✝, snd✝).snd = (fst✝, snd✝) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S ⊢ ∀ (x y : R), Equiv.toFun { toFun := fun x => (0, x), invFun := Prod.snd, left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd), right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) } (x * y) = Equiv.toFun { toFun := fun x => (0, x), invFun := Prod.snd, left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd), right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) } x * Equiv.toFun { toFun := fun x => (0, x), invFun := Prod.snd, left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd), right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) } y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 R : Type u_3 R' : Type u_4 S : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 inst✝⁴ : NonAssocSemiring R inst✝³ : NonAssocSemiring S inst✝² : NonAssocSemiring R' inst✝¹ : NonAssocSemiring S' inst✝ : Subsingleton S ⊢ ∀ (x y : R), Equiv.toFun { toFun := fun x => (0, x), invFun := Prod.snd, left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd), right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) } (x + y) = Equiv.toFun { toFun := fun x => (0, x), invFun := Prod.snd, left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd), right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) } x + Equiv.toFun { toFun := fun x => (0, x), invFun := Prod.snd, left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd), right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) } y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 R✝ : Type u_3 R' : Type u_4 S✝ : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 R : Type u_9 S : Type u_10 inst✝⁴ : Ring R inst✝³ : Ring S inst✝² : IsDomain (R × S) inst✝¹ : Nontrivial R inst✝ : Nontrivial S ⊢ False [PROOFSTEP] have := NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero (show ((0 : R), (1 : S)) * (1, 0) = 0 by simp) [GOAL] α : Type u_1 β : Type u_2 R✝ : Type u_3 R' : Type u_4 S✝ : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 R : Type u_9 S : Type u_10 inst✝⁴ : Ring R inst✝³ : Ring S inst✝² : IsDomain (R × S) inst✝¹ : Nontrivial R inst✝ : Nontrivial S ⊢ (0, 1) * (1, 0) = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 R✝ : Type u_3 R' : Type u_4 S✝ : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 R : Type u_9 S : Type u_10 inst✝⁴ : Ring R inst✝³ : Ring S inst✝² : IsDomain (R × S) inst✝¹ : Nontrivial R inst✝ : Nontrivial S this : (0, 1) = 0 ∨ (1, 0) = 0 ⊢ False [PROOFSTEP] rw [Prod.mk_eq_zero, Prod.mk_eq_zero] at this [GOAL] α : Type u_1 β : Type u_2 R✝ : Type u_3 R' : Type u_4 S✝ : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 R : Type u_9 S : Type u_10 inst✝⁴ : Ring R inst✝³ : Ring S inst✝² : IsDomain (R × S) inst✝¹ : Nontrivial R inst✝ : Nontrivial S this : 0 = 0 ∧ 1 = 0 ∨ 1 = 0 ∧ 0 = 0 ⊢ False [PROOFSTEP] rcases this with (⟨_, h⟩ | ⟨h, _⟩) [GOAL] case inl.intro α : Type u_1 β : Type u_2 R✝ : Type u_3 R' : Type u_4 S✝ : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 R : Type u_9 S : Type u_10 inst✝⁴ : Ring R inst✝³ : Ring S inst✝² : IsDomain (R × S) inst✝¹ : Nontrivial R inst✝ : Nontrivial S left✝ : 0 = 0 h : 1 = 0 ⊢ False [PROOFSTEP] exact zero_ne_one h.symm [GOAL] case inr.intro α : Type u_1 β : Type u_2 R✝ : Type u_3 R' : Type u_4 S✝ : Type u_5 S' : Type u_6 T : Type u_7 T' : Type u_8 R : Type u_9 S : Type u_10 inst✝⁴ : Ring R inst✝³ : Ring S inst✝² : IsDomain (R × S) inst✝¹ : Nontrivial R inst✝ : Nontrivial S h : 1 = 0 right✝ : 0 = 0 ⊢ False [PROOFSTEP] exact zero_ne_one h.symm
{"mathlib_filename": "Mathlib.Algebra.Ring.Prod", "llama_tokens": 4235}
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Preadditive", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a + a = 0 [PROOFSTEP] have : a + a = a + a + (a + a) := calc a + a = (a + a) * (a + a) := by rw [mul_self] _ = a * a + a * a + (a * a + a * a) := by rw [add_mul, mul_add] _ = a + a + (a + a) := by rw [mul_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a + a = (a + a) * (a + a) [PROOFSTEP] rw [mul_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ (a + a) * (a + a) = a * a + a * a + (a * a + a * a) [PROOFSTEP] rw [add_mul, mul_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a * a + a * a + (a * a + a * a) = a + a + (a + a) [PROOFSTEP] rw [mul_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α this : a + a = a + a + (a + a) ⊢ a + a = 0 [PROOFSTEP] rwa [self_eq_add_left] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ -a = -a + 0 [PROOFSTEP] rw [add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ -a + 0 = -a + -a + a [PROOFSTEP] rw [← neg_add_self, add_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ -a + -a + a = a [PROOFSTEP] rw [add_self, zero_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a = -b ↔ a = b [PROOFSTEP] rw [neg_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a * b + b * a = 0 [PROOFSTEP] have : a + b = a + b + (a * b + b * a) := calc a + b = (a + b) * (a + b) := by rw [mul_self] _ = a * a + a * b + (b * a + b * b) := by rw [add_mul, mul_add, mul_add] _ = a + a * b + (b * a + b) := by simp only [mul_self] _ = a + b + (a * b + b * a) := by abel [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a + b = (a + b) * (a + b) [PROOFSTEP] rw [mul_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ (a + b) * (a + b) = a * a + a * b + (b * a + b * b) [PROOFSTEP] rw [add_mul, mul_add, mul_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a * a + a * b + (b * a + b * b) = a + a * b + (b * a + b) [PROOFSTEP] simp only [mul_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a + a * b + (b * a + b) = a + b + (a * b + b * a) [PROOFSTEP] abel [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a + a * b + (b * a + b) = a + b + (a * b + b * a) [PROOFSTEP] abel [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α this : a + b = a + b + (a * b + b * a) ⊢ a * b + b * a = 0 [PROOFSTEP] rwa [self_eq_add_right] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a - b = a + b [PROOFSTEP] rw [sub_eq_add_neg, add_right_inj, neg_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a b : α ⊢ a * (1 + a) = 0 [PROOFSTEP] rw [mul_add, mul_one, mul_self, add_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : BooleanRing α a✝ b✝ : α src✝ : BooleanRing α := inferInstance a b : α ⊢ a * b = b * a [PROOFSTEP] rw [← add_eq_zero', mul_add_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a ⊔ b = b ⊔ a [PROOFSTEP] dsimp only [(· ⊔ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a + b + a * b = b + a + b * a [PROOFSTEP] ring [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a ⊓ b = b ⊓ a [PROOFSTEP] dsimp only [(· ⊓ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a * b = b * a [PROOFSTEP] ring [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ a ⊔ b ⊔ c = a ⊔ (b ⊔ c) [PROOFSTEP] dsimp only [(· ⊔ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ a + b + a * b + c + (a + b + a * b) * c = a + (b + c + b * c) + a * (b + c + b * c) [PROOFSTEP] ring [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ a ⊓ b ⊓ c = a ⊓ (b ⊓ c) [PROOFSTEP] dsimp only [(· ⊓ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ a * b * c = a * (b * c) [PROOFSTEP] ring [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a ⊔ a ⊓ b = a [PROOFSTEP] dsimp only [(· ⊔ ·), (· ⊓ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a + a * b + a * (a * b) = a [PROOFSTEP] rw [← mul_assoc, mul_self, add_assoc, add_self, add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a ⊓ (a ⊔ b) = a [PROOFSTEP] dsimp only [(· ⊔ ·), (· ⊓ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a * (a + b + a * b) = a [PROOFSTEP] rw [mul_add, mul_add, mul_self, ← mul_assoc, mul_self, add_assoc, add_self, add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ (a + b + a * b) * (a + c + a * c) = a * a + b * c + a * (b * c) + (a * b + a * a * b) + (a * c + a * a * c) + (a * b * c + a * a * b * c) [PROOFSTEP] ring [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ a * a + b * c + a * (b * c) + (a * b + a * a * b) + (a * c + a * a * c) + (a * b * c + a * a * b * c) = a + b * c + a * (b * c) [PROOFSTEP] simp only [mul_self, add_self, add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) ⊔ (a ⊔ b ⊓ c) = a ⊔ b ⊓ c [PROOFSTEP] dsimp only [(· ⊔ ·), (· ⊓ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ (a + b + a * b) * (a + c + a * c) + (a + b * c + a * (b * c)) + (a + b + a * b) * (a + c + a * c) * (a + b * c + a * (b * c)) = a + b * c + a * (b * c) [PROOFSTEP] rw [le_sup_inf_aux, add_self, mul_self, zero_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ src✝ : Lattice α := Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a) (_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a) a : α ⊢ a * (1 + a) + 0 + a * (1 + a) * 0 = 0 [PROOFSTEP] norm_num [mul_add, mul_self, add_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ src✝ : Lattice α := Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a) (_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a) a : α ⊢ ⊤ ≤ a ⊔ aᶜ [PROOFSTEP] change 1 + (a + (1 + a) + a * (1 + a)) + 1 * (a + (1 + a) + a * (1 + a)) = a + (1 + a) + a * (1 + a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ src✝ : Lattice α := Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a) (_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a) a : α ⊢ 1 + (a + (1 + a) + a * (1 + a)) + 1 * (a + (1 + a) + a * (1 + a)) = a + (1 + a) + a * (1 + a) [PROOFSTEP] norm_num [mul_add, mul_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ src✝ : Lattice α := Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a) (_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a) a : α ⊢ 1 + (a + (1 + a)) = 0 [PROOFSTEP] rw [← add_assoc, add_self] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ src✝ : Lattice α := Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a) (_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a) a : α ⊢ a + 1 + a * 1 = 1 [PROOFSTEP] rw [mul_one, (add_comm a 1), add_assoc, add_self, add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ src✝ : Lattice α := Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a) (_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a) a : α ⊢ 0 + a + 0 * a = a [PROOFSTEP] rw [zero_mul, zero_add, add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ (a + b + a * b) * (1 + a * b) = a + b + (a * b + a * b * (a * b)) + (a * (b * b) + a * a * b) [PROOFSTEP] ring [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : α ⊢ a + b + (a * b + a * b * (a * b)) + (a * (b * b) + a * a * b) = a + b [PROOFSTEP] simp only [mul_self, add_self, add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : AsBoolAlg α ⊢ ↑ofBoolAlg (a ∆ b) = ↑ofBoolAlg a + ↑ofBoolAlg b [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b : AsBoolAlg α ⊢ ↑ofBoolAlg ((a ⊔ b) \ (a ⊓ b)) = ↑ofBoolAlg a + ↑ofBoolAlg b [PROOFSTEP] exact of_boolalg_symmDiff_aux _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ f : α →+* β a b : AsBoolAlg α ⊢ (↑toBoolAlg ∘ ↑f ∘ ↑ofBoolAlg) (a ⊔ b) = (↑toBoolAlg ∘ ↑f ∘ ↑ofBoolAlg) a ⊔ (↑toBoolAlg ∘ ↑f ∘ ↑ofBoolAlg) b [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ f : α →+* β a b : AsBoolAlg α ⊢ ↑toBoolAlg (↑f (↑ofBoolAlg a + ↑ofBoolAlg b + ↑ofBoolAlg a * ↑ofBoolAlg b)) = ↑toBoolAlg (↑f (↑ofBoolAlg a)) ⊔ ↑toBoolAlg (↑f (↑ofBoolAlg b)) [PROOFSTEP] simp_rw [map_add f, map_mul f, toBoolAlg_add_add_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a : Bool ⊢ a * 0 = 0 [PROOFSTEP] cases a [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 ⊢ false * 0 = 0 [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 ⊢ true * 0 = 0 [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Ring.BooleanRing", "llama_tokens": 6475}
[GOAL] G H : AddCommGroupCat f : G ⟶ H s : Fork f 0 ⊢ ↑s.pt →+ ↑G [PROOFSTEP] exact Fork.ι s [GOAL] G H : AddCommGroupCat f : G ⟶ H s : Fork f 0 c : ↑s.pt ⊢ ↑f (↑(Fork.ι s) c) = 0 [PROOFSTEP] exact FunLike.congr_fun s.condition c [GOAL] G H : AddCommGroupCat f : G ⟶ H x✝ : Fork f 0 ⊢ (fun s => codRestrict (Fork.ι s) (ker f) (_ : ∀ (c : ↑s.pt), ↑(Fork.ι s) c ∈ ker f)) x✝ ≫ Fork.ι (kernelCone f) = Fork.ι x✝ [PROOFSTEP] rfl [GOAL] G H : AddCommGroupCat f : G ⟶ H x✝¹ : Fork f 0 x✝ : x✝¹.pt ⟶ (kernelCone f).pt h : x✝ ≫ Fork.ι (kernelCone f) = Fork.ι x✝¹ x : ↑x✝¹.pt ⊢ ↑(↑x✝ x) = ↑(↑((fun s => codRestrict (Fork.ι s) (ker f) (_ : ∀ (c : ↑s.pt), ↑(Fork.ι s) c ∈ ker f)) x✝¹) x) [PROOFSTEP] exact FunLike.congr_fun h x [GOAL] G H : AddCommGroupCat f : G ⟶ H x✝¹ : Cofork f 0 x✝ : (cokernelCocone f).pt ⟶ x✝¹.pt h : Cofork.π (cokernelCocone f) ≫ x✝ = Cofork.π x✝¹ this : Epi (Cofork.π (cokernelCocone f)) ⊢ ?m.55829 x✝¹ x✝ h this ≫ x✝ = ?m.55829 x✝¹ x✝ h this ≫ (fun s => lift (range f) (Cofork.π s) (_ : range f ≤ ker (Cofork.π s))) x✝¹ [PROOFSTEP] simpa only [parallelPair_obj_one] using h
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Kernels", "llama_tokens": 653}
[GOAL] X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z ⊢ Exact f g ↔ AddMonoidHom.range f = AddMonoidHom.ker g [PROOFSTEP] rw [Abelian.exact_iff' f g (kernelIsLimit _) (cokernelIsColimit _)] [GOAL] X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z ⊢ f ≫ g = 0 ∧ Fork.ι (kernelCone g) ≫ Cofork.π (cokernelCocone f) = 0 ↔ AddMonoidHom.range f = AddMonoidHom.ker g [PROOFSTEP] exact ⟨fun h => ((AddMonoidHom.range_le_ker_iff _ _).mpr h.left).antisymm ((QuotientAddGroup.ker_le_range_iff _ _).mpr h.right), fun h => ⟨(AddMonoidHom.range_le_ker_iff _ _).mp h.le, (QuotientAddGroup.ker_le_range_iff _ _).mp h.symm.le⟩⟩ [GOAL] X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J ⊢ PreservesFiniteLimits colim [PROOFSTEP] refine Functor.preservesFiniteLimitsOfMapExact _ fun F G H η γ h => (exact_iff _ _).mpr (le_antisymm ?_ ?_) [GOAL] case refine_1 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : Exact η γ ⊢ AddMonoidHom.range (colim.map η) ≤ AddMonoidHom.ker (colim.map γ) case refine_2 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : Exact η γ ⊢ AddMonoidHom.ker (colim.map γ) ≤ AddMonoidHom.range (colim.map η) [PROOFSTEP] all_goals replace h : ∀ j : J, Exact (η.app j) (γ.app j) := fun j => Functor.map_exact ((evaluation _ _).obj j) η γ h [GOAL] case refine_1 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : Exact η γ ⊢ AddMonoidHom.range (colim.map η) ≤ AddMonoidHom.ker (colim.map γ) [PROOFSTEP] replace h : ∀ j : J, Exact (η.app j) (γ.app j) := fun j => Functor.map_exact ((evaluation _ _).obj j) η γ h [GOAL] case refine_2 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : Exact η γ ⊢ AddMonoidHom.ker (colim.map γ) ≤ AddMonoidHom.range (colim.map η) [PROOFSTEP] replace h : ∀ j : J, Exact (η.app j) (γ.app j) := fun j => Functor.map_exact ((evaluation _ _).obj j) η γ h [GOAL] case refine_1 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) ⊢ AddMonoidHom.range (colim.map η) ≤ AddMonoidHom.ker (colim.map γ) [PROOFSTEP] rw [AddMonoidHom.range_le_ker_iff, ← comp_def] [GOAL] case refine_1 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) ⊢ colim.map η ≫ colim.map γ = 0 [PROOFSTEP] exact colimit.hom_ext fun j => by simp [reassoc_of% (h j).w] [GOAL] X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J ⊢ colimit.ι F j ≫ colim.map η ≫ colim.map γ = colimit.ι F j ≫ 0 [PROOFSTEP] simp [reassoc_of% (h j).w] [GOAL] case refine_2 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) ⊢ AddMonoidHom.ker (colim.map γ) ≤ AddMonoidHom.range (colim.map η) [PROOFSTEP] intro x (hx : _ = _) [GOAL] case refine_2 X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) x : ↑(colim.obj G) hx : ↑(colim.map γ) x = 0 ⊢ x ∈ AddMonoidHom.range (colim.map η) [PROOFSTEP] rcases Concrete.colimit_exists_rep G x with ⟨j, y, rfl⟩ [GOAL] case refine_2.intro.intro X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx : ↑(colim.map γ) (↑(colimit.ι G j) y) = 0 ⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η) [PROOFSTEP] erw [← comp_apply, colimit.ι_map, comp_apply, ← map_zero (by exact colimit.ι H j : H.obj j →+ ↑(colimit H))] at hx [GOAL] X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0 ⊢ ↑(H.obj j) →+ ↑(colimit H) [PROOFSTEP] exact colimit.ι H j [GOAL] case refine_2.intro.intro X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0 hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0 ⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η) [PROOFSTEP] rcases Concrete.colimit_exists_of_rep_eq H _ _ hx with ⟨k, e₁, e₂, hk : _ = H.map e₂ 0⟩ [GOAL] case refine_2.intro.intro.intro.intro.intro X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0 hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0 k : J e₁ e₂ : j ⟶ k hk : ↑(H.map e₁) (↑(NatTrans.app γ j) y) = ↑(H.map e₂) 0 ⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η) [PROOFSTEP] rw [map_zero, ← comp_apply, ← NatTrans.naturality, comp_apply] at hk [GOAL] case refine_2.intro.intro.intro.intro.intro X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0 hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0 k : J e₁ e₂ : j ⟶ k hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0 ⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η) [PROOFSTEP] rcases((exact_iff _ _).mp <| h k).ge hk with ⟨t, ht⟩ [GOAL] case refine_2.intro.intro.intro.intro.intro.intro X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0 hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0 k : J e₁ e₂ : j ⟶ k hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0 t : ↑(F.obj k) ht : ↑(NatTrans.app η k) t = ↑(G.map e₁) y ⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η) [PROOFSTEP] use colimit.ι F k t [GOAL] case h X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0 hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0 k : J e₁ e₂ : j ⟶ k hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0 t : ↑(F.obj k) ht : ↑(NatTrans.app η k) t = ↑(G.map e₁) y ⊢ ↑(colim.map η) (↑(colimit.ι F k) t) = ↑(colimit.ι G j) y [PROOFSTEP] erw [← comp_apply, colimit.ι_map, comp_apply, ht] [GOAL] case h X Y Z : AddCommGroupCat f : X ⟶ Y g : Y ⟶ Z J : Type u inst✝¹ : SmallCategory J inst✝ : IsFiltered J F G H : J ⥤ AddCommGroupCat η : F ⟶ G γ : G ⟶ H h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j) j : J y : (forget AddCommGroupCat).obj (G.obj j) hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0 hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0 k : J e₁ e₂ : j ⟶ k hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0 t : ↑(F.obj k) ht : ↑(NatTrans.app η k) t = ↑(G.map e₁) y ⊢ ↑(colimit.ι G k) (↑(G.map e₁) y) = ↑(colimit.ι G j) y [PROOFSTEP] exact colimit.w_apply G e₁ y
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Abelian", "llama_tokens": 4481}
[GOAL] G H : AddCommGroupCat f : G ⟶ H ⊢ factorThruImage f ≫ ι f = f [PROOFSTEP] ext [GOAL] case w G H : AddCommGroupCat f : G ⟶ H x✝ : ↑G ⊢ ↑(factorThruImage f ≫ ι f) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f ⊢ (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0 [PROOFSTEP] haveI := F'.m_mono [GOAL] G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f this : Mono F'.m ⊢ (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0 [PROOFSTEP] apply injective_of_mono F'.m [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f this : Mono F'.m ⊢ ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0) = ↑F'.m 0 [PROOFSTEP] change (F'.e ≫ F'.m) _ = _ [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f this : Mono F'.m ⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑0) (_ : ↑0 ∈ AddMonoidHom.range f)) = ↑F'.m 0 [PROOFSTEP] rw [F'.fac, AddMonoidHom.map_zero] [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f this : Mono F'.m ⊢ ↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑0) (_ : ↑0 ∈ AddMonoidHom.range f)) = 0 [PROOFSTEP] exact (Classical.indefiniteDescription (fun y => f y = 0) _).2 [GOAL] G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f ⊢ ∀ (x y : ↑(image f)), ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } y [PROOFSTEP] intro x y [GOAL] G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } y [PROOFSTEP] haveI := F'.m_mono [GOAL] G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } y [PROOFSTEP] apply injective_of_mono F'.m [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ↑F'.m (ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } (x + y)) = ↑F'.m (ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } y) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ↑F'.m (ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } (x + y)) = ↑F'.m (ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } x) + ↑F'.m (ZeroHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)), map_zero' := (_ : (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0) } y) [PROOFSTEP] change (F'.e ≫ F'.m) _ = (F'.e ≫ F'.m) _ + (F'.e ≫ F'.m) _ [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(x + y)) (_ : ↑(x + y) ∈ AddMonoidHom.range f)) = ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) + ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f)) [PROOFSTEP] rw [F'.fac] [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ↑f ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(x + y)) (_ : ↑(x + y) ∈ AddMonoidHom.range f)) = ↑f ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) + ↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f)) [PROOFSTEP] rw [(Classical.indefiniteDescription (fun z => f z = _) _).2] [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ↑(x + y) = ↑f ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) + ↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f)) [PROOFSTEP] rw [(Classical.indefiniteDescription (fun z => f z = _) _).2] [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ↑(x + y) = ↑x + ↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f)) [PROOFSTEP] rw [(Classical.indefiniteDescription (fun z => f z = _) _).2] [GOAL] case a G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) this : Mono F'.m ⊢ ↑(x + y) = ↑x + ↑y [PROOFSTEP] rfl [GOAL] G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f ⊢ lift F' ≫ F'.m = ι f [PROOFSTEP] ext x [GOAL] case w G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x : ↑(image f) ⊢ ↑(lift F' ≫ F'.m) x = ↑(ι f) x [PROOFSTEP] change (F'.e ≫ F'.m) _ = _ [GOAL] case w G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x : ↑(image f) ⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) = ↑(ι f) x [PROOFSTEP] rw [F'.fac, (Classical.indefiniteDescription _ x.2).2] [GOAL] case w G H : AddCommGroupCat f : G ⟶ H F' : MonoFactorisation f x : ↑(image f) ⊢ ↑x = ↑(ι f) x [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Images", "llama_tokens": 4541}
[GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b : R s : S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : SMul S M inst✝ : IsScalarTower R S M a : R ab : IsSMulRegular M (a • s) c d : M cd : ((fun m => a • m) ∘ fun x => s • x) c = ((fun m => a • m) ∘ fun x => s • x) d ⊢ c = d [PROOFSTEP] dsimp only [Function.comp] at cd [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b : R s : S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : SMul S M inst✝ : IsScalarTower R S M a : R ab : IsSMulRegular M (a • s) c d : M cd : a • s • c = a • s • d ⊢ c = d [PROOFSTEP] rw [← smul_assoc, ← smul_assoc] at cd [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b : R s : S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : SMul S M inst✝ : IsScalarTower R S M a : R ab : IsSMulRegular M (a • s) c d : M cd✝¹ : a • s • c = a • s • d cd✝ : (a • s) • c = a • s • d cd : (a • s) • c = (a • s) • d ⊢ c = d [PROOFSTEP] exact ab cd [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a * b) ⊢ IsSMulRegular M b [PROOFSTEP] rw [← smul_eq_mul] at ab [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a • b) ⊢ IsSMulRegular M b [PROOFSTEP] exact ab.of_smul _ [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b [PROOFSTEP] refine' ⟨_, _⟩ [GOAL] case refine'_1 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) → IsSMulRegular M a ∧ IsSMulRegular M b [PROOFSTEP] rintro ⟨ab, ba⟩ [GOAL] case refine'_1.intro R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a * b) ba : IsSMulRegular M (b * a) ⊢ IsSMulRegular M a ∧ IsSMulRegular M b [PROOFSTEP] refine' ⟨ba.of_mul, ab.of_mul⟩ [GOAL] case refine'_2 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M a ∧ IsSMulRegular M b → IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) [PROOFSTEP] rintro ⟨ha, hb⟩ [GOAL] case refine'_2.intro R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ha : IsSMulRegular M a hb : IsSMulRegular M b ⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) [PROOFSTEP] exact ⟨ha.mul hb, hb.mul ha⟩ [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a b : M ab : (fun x => 1 • x) a = (fun x => 1 • x) b ⊢ a = b [PROOFSTEP] dsimp only [Function.comp] at ab [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a b : M ab : 1 • a = 1 • b ⊢ a = b [PROOFSTEP] rw [one_smul, one_smul] at ab [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a b : M ab : a = b ⊢ a = b [PROOFSTEP] assumption [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M h : a * b = 1 ⊢ IsSMulRegular M (?m.10326 h * b) [PROOFSTEP] rw [h] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M h : a * b = 1 ⊢ IsSMulRegular M 1 [PROOFSTEP] exact one M [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ ra : IsSMulRegular M a ⊢ IsSMulRegular M (a ^ n) [PROOFSTEP] induction' n with n hn [GOAL] case zero R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a ⊢ IsSMulRegular M (a ^ Nat.zero) [PROOFSTEP] rw [pow_zero] [GOAL] case zero R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a ⊢ IsSMulRegular M 1 [PROOFSTEP] simp only [one] [GOAL] case succ R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a n : ℕ hn : IsSMulRegular M (a ^ n) ⊢ IsSMulRegular M (a ^ Nat.succ n) [PROOFSTEP] rw [pow_succ] [GOAL] case succ R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a n : ℕ hn : IsSMulRegular M (a ^ n) ⊢ IsSMulRegular M (a * a ^ n) [PROOFSTEP] exact (ra.smul_iff (a ^ n)).mpr hn [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ n0 : 0 < n ⊢ IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a [PROOFSTEP] refine' ⟨_, pow n⟩ [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ n0 : 0 < n ⊢ IsSMulRegular M (a ^ n) → IsSMulRegular M a [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ n0 : 0 < n ⊢ IsSMulRegular M (a ^ Nat.pred n • a) → IsSMulRegular M a [PROOFSTEP] exact of_smul _ [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁴ : Monoid S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : MulAction S M inst✝ : IsScalarTower R S M h : a • s = 1 ⊢ IsSMulRegular M (a • s) [PROOFSTEP] rw [h] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁴ : Monoid S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : MulAction S M inst✝ : IsScalarTower R S M h : a • s = 1 ⊢ IsSMulRegular M 1 [PROOFSTEP] exact one M [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ (fun x => 0 • x) a = (fun x => 0 • x) b [PROOFSTEP] dsimp only [Function.comp] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ 0 • a = 0 • b [PROOFSTEP] repeat' rw [MulActionWithZero.zero_smul] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ 0 • a = 0 • b [PROOFSTEP] rw [MulActionWithZero.zero_smul] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ 0 = 0 • b [PROOFSTEP] rw [MulActionWithZero.zero_smul] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M ⊢ ¬IsSMulRegular M 0 ↔ Nontrivial M [PROOFSTEP] rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M ⊢ (¬∃ x y, x ≠ y) ↔ ∀ (x y : M), x = y [PROOFSTEP] push_neg [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M ⊢ (∀ (x y : M), x = y) ↔ ∀ (x y : M), x = y [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝² : CommSemigroup R inst✝¹ : SMul R M inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b [PROOFSTEP] rw [← mul_and_mul_iff] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝² : CommSemigroup R inst✝¹ : SMul R M inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ↔ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) [PROOFSTEP] exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝² : CommSemigroup R inst✝¹ : SMul R M inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a * b) ⊢ IsSMulRegular M (b * a) [PROOFSTEP] rwa [mul_comm] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G ⊢ IsSMulRegular R g [PROOFSTEP] intro x y h [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G x y : R h : (fun x => g • x) x = (fun x => g • x) y ⊢ x = y [PROOFSTEP] convert congr_arg (g⁻¹ • ·) h using 1 [GOAL] case h.e'_2 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G x y : R h : (fun x => g • x) x = (fun x => g • x) y ⊢ x = g⁻¹ • (fun x => g • x) x [PROOFSTEP] simp [← smul_assoc] [GOAL] case h.e'_3 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G x y : R h : (fun x => g • x) x = (fun x => g • x) y ⊢ y = g⁻¹ • (fun x => g • x) y [PROOFSTEP] simp [← smul_assoc] [GOAL] R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ua : IsUnit a ⊢ IsSMulRegular M a [PROOFSTEP] rcases ua with ⟨a, rfl⟩ [GOAL] case intro R : Type u_1 S : Type u_2 M : Type u_3 b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a : Rˣ ⊢ IsSMulRegular M ↑a [PROOFSTEP] exact a.isSMulRegular M
{"mathlib_filename": "Mathlib.Algebra.Regular.SMul", "llama_tokens": 5539}
[GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x y : (j : J) × ↑(F.obj j) h : Types.FilteredColimit.Rel (F ⋙ forget GroupCat) x y ⊢ colimitInvAux F x = colimitInvAux F y [PROOFSTEP] apply G.mk_eq [GOAL] case h J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x y : (j : J) × ↑(F.obj j) h : Types.FilteredColimit.Rel (F ⋙ forget GroupCat) x y ⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := x.snd⁻¹ }.snd = ↑(F.map g) { fst := y.fst, snd := y.snd⁻¹ }.snd [PROOFSTEP] obtain ⟨k, f, g, hfg⟩ := h [GOAL] case h.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k hfg : (F ⋙ forget GroupCat).map f x.snd = (F ⋙ forget GroupCat).map g y.snd ⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := x.snd⁻¹ }.snd = ↑(F.map g) { fst := y.fst, snd := y.snd⁻¹ }.snd [PROOFSTEP] use k, f, g [GOAL] case h J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k hfg : (F ⋙ forget GroupCat).map f x.snd = (F ⋙ forget GroupCat).map g y.snd ⊢ ↑(F.map f) { fst := x.fst, snd := x.snd⁻¹ }.snd = ↑(F.map g) { fst := y.fst, snd := y.snd⁻¹ }.snd [PROOFSTEP] rw [MonoidHom.map_inv, MonoidHom.map_inv, inv_inj] [GOAL] case h J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k hfg : (F ⋙ forget GroupCat).map f x.snd = (F ⋙ forget GroupCat).map g y.snd ⊢ ↑(F.map f) x.snd = ↑(F.map g) y.snd [PROOFSTEP] exact hfg [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x : ↑(G F) ⊢ ↑(G F) [PROOFSTEP] refine' Quot.lift (colimitInvAux.{v, u} F) _ x [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x : ↑(G F) ⊢ ∀ (a b : (j : J) × ↑(F.obj j)), Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) a b → colimitInvAux F a = colimitInvAux F b [PROOFSTEP] intro x y h [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x✝ : ↑(G F) x y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) x y ⊢ colimitInvAux F x = colimitInvAux F y [PROOFSTEP] apply colimitInvAux_eq_of_rel [GOAL] case h J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x✝ : ↑(G F) x y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) x y ⊢ Types.FilteredColimit.Rel (F ⋙ forget GroupCat) x y [PROOFSTEP] apply Types.FilteredColimit.rel_of_quot_rel [GOAL] case h.a J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat x✝ : ↑(G F) x y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) x y ⊢ Types.Quot.Rel (F ⋙ forget GroupCat) x y [PROOFSTEP] exact h [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat src✝¹ : Inv ↑(G F) := colimitInv F src✝ : Monoid ↑(G F) := (G F).str x : ↑(G F) ⊢ x⁻¹ * x = 1 [PROOFSTEP] refine Quot.inductionOn x ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat src✝¹ : Inv ↑(G F) := colimitInv F src✝ : Monoid ↑(G F) := (G F).str x : ↑(G F) ⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j), (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a)⁻¹ * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a = 1 [PROOFSTEP] clear x [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat src✝¹ : Inv ↑(G F) := colimitInv F src✝ : Monoid ↑(G F) := (G F).str ⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j), (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a)⁻¹ * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a = 1 [PROOFSTEP] intro x [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat src✝¹ : Inv ↑(G F) := colimitInv F src✝ : Monoid ↑(G F) := (G F).str x : (j : J) × ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) x)⁻¹ * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) x = 1 [PROOFSTEP] cases' x with j x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat src✝¹ : Inv ↑(G F) := colimitInv F src✝ : Monoid ↑(G F) := (G F).str j : J x : ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j ⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) { fst := j, snd := x })⁻¹ * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) { fst := j, snd := x } = 1 [PROOFSTEP] erw [colimit_inv_mk_eq, colimit_mul_mk_eq (F ⋙ forget₂ GroupCat MonCat.{max v u}) ⟨j, _⟩ ⟨j, _⟩ j (𝟙 j) (𝟙 j), colimit_one_eq (F ⋙ forget₂ GroupCat MonCat.{max v u}) j] [GOAL] case mk J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat src✝¹ : Inv ↑(G F) := colimitInv F src✝ : Monoid ↑(G F) := (G F).str j : J x : ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat) { fst := j, snd := ↑((F ⋙ forget₂ GroupCat MonCat).map (𝟙 j)) { fst := j, snd := { fst := j, snd := x }.snd⁻¹ }.snd * ↑((F ⋙ forget₂ GroupCat MonCat).map (𝟙 j)) { fst := j, snd := x }.snd } = MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat) { fst := j, snd := 1 } [PROOFSTEP] dsimp [GOAL] case mk J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ GroupCat src✝¹ : Inv ↑(G F) := colimitInv F src✝ : Monoid ↑(G F) := (G F).str j : J x : ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat) { fst := j, snd := ↑((forget₂ GroupCat MonCat).map (F.map (𝟙 j))) x⁻¹ * ↑((forget₂ GroupCat MonCat).map (F.map (𝟙 j))) x } = MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat) { fst := j, snd := 1 } [PROOFSTEP] erw [CategoryTheory.Functor.map_id, mul_left_inv]
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.FilteredColimits", "llama_tokens": 3107}
[GOAL] G H : AddCommGroupCat ⊢ ∀ ⦃X Y : Discrete WalkingPair⦄ (f : X ⟶ Y), ((Functor.const (Discrete WalkingPair)).obj (of (↑G × ↑H))).map f ≫ (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H)) Y = (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H)) X ≫ (pair G H).map f [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟨⟩⟩⟩ [GOAL] case mk.left.mk.left.up.up.refl G H : AddCommGroupCat ⊢ ((Functor.const (Discrete WalkingPair)).obj (of (↑G × ↑H))).map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } } ≫ (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H)) { as := WalkingPair.left } = (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H)) { as := WalkingPair.left } ≫ (pair G H).map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } } [PROOFSTEP] rfl [GOAL] case mk.right.mk.right.up.up.refl G H : AddCommGroupCat ⊢ ((Functor.const (Discrete WalkingPair)).obj (of (↑G × ↑H))).map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } } ≫ (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H)) { as := WalkingPair.right } = (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H)) { as := WalkingPair.right } ≫ (pair G H).map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } } [PROOFSTEP] rfl [GOAL] G H : AddCommGroupCat ⊢ ∀ (s : Cone (pair G H)) (j : Discrete WalkingPair), (fun s => AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s ≫ NatTrans.app { pt := of (↑G × ↑H), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π j = NatTrans.app s.π j [PROOFSTEP] rintro s (⟨⟩ | ⟨⟩) [GOAL] case mk.left G H : AddCommGroupCat s : Cone (pair G H) ⊢ (fun s => AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s ≫ NatTrans.app { pt := of (↑G × ↑H), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π { as := WalkingPair.left } = NatTrans.app s.π { as := WalkingPair.left } [PROOFSTEP] rfl [GOAL] case mk.right G H : AddCommGroupCat s : Cone (pair G H) ⊢ (fun s => AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s ≫ NatTrans.app { pt := of (↑G × ↑H), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π { as := WalkingPair.right } = NatTrans.app s.π { as := WalkingPair.right } [PROOFSTEP] rfl [GOAL] G H : AddCommGroupCat s : Cone (pair G H) m : s.pt ⟶ { pt := of (↑G × ↑H), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.pt w : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app { pt := of (↑G × ↑H), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π j = NatTrans.app s.π j ⊢ m = (fun s => AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s [PROOFSTEP] simp_rw [← w ⟨WalkingPair.left⟩, ← w ⟨WalkingPair.right⟩] [GOAL] G H : AddCommGroupCat s : Cone (pair G H) m : s.pt ⟶ { pt := of (↑G × ↑H), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.pt w : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app { pt := of (↑G × ↑H), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π j = NatTrans.app s.π j ⊢ m = AddMonoidHom.prod (m ≫ AddMonoidHom.fst ↑G ↑H) (m ≫ AddMonoidHom.snd ↑G ↑H) [PROOFSTEP] rfl [GOAL] J : Type w f : J → AddCommGroupCat s : Fan f ⊢ (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0 [PROOFSTEP] simp only [Functor.const_obj_obj, map_zero] [GOAL] J : Type w f : J → AddCommGroupCat s : Fan f ⊢ (fun j => 0) = 0 [PROOFSTEP] rfl [GOAL] J : Type w f : J → AddCommGroupCat s : Fan f x y : ↑s.pt ⊢ ZeroHom.toFun { toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x, map_zero' := (_ : (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x, map_zero' := (_ : (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0) } x + ZeroHom.toFun { toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x, map_zero' := (_ : (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0) } y [PROOFSTEP] simp only [Functor.const_obj_obj, map_add] [GOAL] J : Type w f : J → AddCommGroupCat s : Fan f x y : ↑s.pt ⊢ (fun j => ↑(NatTrans.app s.π { as := j }) x + ↑(NatTrans.app s.π { as := j }) y) = (fun j => ↑(NatTrans.app s.π { as := j }) x) + fun j => ↑(NatTrans.app s.π { as := j }) y [PROOFSTEP] rfl [GOAL] J : Type w f : J → AddCommGroupCat s : Cone (Discrete.functor f) m : s.pt ⟶ { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.pt w : ∀ (j : Discrete J), m ≫ NatTrans.app { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.π j = NatTrans.app s.π j ⊢ m = lift f s [PROOFSTEP] ext x [GOAL] case w J : Type w f : J → AddCommGroupCat s : Cone (Discrete.functor f) m : s.pt ⟶ { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.pt w : ∀ (j : Discrete J), m ≫ NatTrans.app { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.π j = NatTrans.app s.π j x : ↑s.pt ⊢ ↑m x = ↑(lift f s) x [PROOFSTEP] funext j [GOAL] case w.h J : Type w f : J → AddCommGroupCat s : Cone (Discrete.functor f) m : s.pt ⟶ { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.pt w : ∀ (j : Discrete J), m ≫ NatTrans.app { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.π j = NatTrans.app s.π j x : ↑s.pt j : J ⊢ ↑m x j = ↑(lift f s) x j [PROOFSTEP] exact congr_arg (fun g : s.pt ⟶ f j => (g : s.pt → f j) x) (w ⟨j⟩)
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Biproducts", "llama_tokens": 3292}
[GOAL] A B : ModuleCat ℤ f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B n : ℤ x : ↑A ⊢ AddHom.toFun { toFun := ↑f, map_add' := (_ : ∀ (a b : ↑A), ↑(let_fun this := f; this) (a + b) = ↑(let_fun this := f; this) a + ↑(let_fun this := f; this) b) } (n • x) = ↑(RingHom.id ℤ) n • AddHom.toFun { toFun := ↑f, map_add' := (_ : ∀ (a b : ↑A), ↑(let_fun this := f; this) (a + b) = ↑(let_fun this := f; this) a + ↑(let_fun this := f; this) b) } x [PROOFSTEP] convert AddMonoidHom.map_zsmul (show A.carrier →+ B.carrier from f) x n [GOAL] case h.e'_2.h.e'_1.h.e'_4.h.e'_3 A B : ModuleCat ℤ f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B n : ℤ x : ↑A ⊢ SMulZeroClass.toSMul = SubNegMonoid.SMulInt [PROOFSTEP] ext [GOAL] case h.e'_3.h.e'_4.h.e'_3 A B : ModuleCat ℤ f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B n : ℤ x : ↑A ⊢ SMulZeroClass.toSMul = SubNegMonoid.SMulInt [PROOFSTEP] ext [GOAL] case h.e'_2.h.e'_1.h.e'_4.h.e'_3.smul.h.h A B : ModuleCat ℤ f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B n : ℤ x : ↑A x✝¹ : ℤ x✝ : ↑A ⊢ SMul.smul x✝¹ x✝ = SMul.smul x✝¹ x✝ [PROOFSTEP] apply int_smul_eq_zsmul [GOAL] case h.e'_3.h.e'_4.h.e'_3.smul.h.h A B : ModuleCat ℤ f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B n : ℤ x : ↑A x✝¹ : (fun x => ℤ) n x✝ : ↑B ⊢ SMul.smul x✝¹ x✝ = SMul.smul x✝¹ x✝ [PROOFSTEP] apply int_smul_eq_zsmul
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.ZModuleEquivalence", "llama_tokens": 898}
[GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) ⊢ ∀ (a b c : (i : I) → f i), a * (b + c) = a * b + a * c [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i ⊢ a✝ * (b✝ + c✝) = a✝ * b✝ + a✝ * c✝ [PROOFSTEP] ext [GOAL] case h I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i x✝ : I ⊢ (a✝ * (b✝ + c✝)) x✝ = (a✝ * b✝ + a✝ * c✝) x✝ [PROOFSTEP] exact mul_add _ _ _ [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) ⊢ ∀ (a b c : (i : I) → f i), (a + b) * c = a * c + b * c [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i ⊢ (a✝ + b✝) * c✝ = a✝ * c✝ + b✝ * c✝ [PROOFSTEP] ext [GOAL] case h I : Type u f : I → Type v x y : (i : I) → f i i : I inst✝ : (i : I) → Distrib (f i) a✝ b✝ c✝ : (i : I) → f i x✝ : I ⊢ ((a✝ + b✝) * c✝) x✝ = (a✝ * c✝ + b✝ * c✝) x✝ [PROOFSTEP] exact add_mul _ _ _
{"mathlib_filename": "Mathlib.Algebra.Ring.Pi", "llama_tokens": 724}
[GOAL] ⊢ ConcreteCategory BoolRingCat [PROOFSTEP] dsimp [BoolRingCat] [GOAL] ⊢ ConcreteCategory (Bundled BooleanRing) [PROOFSTEP] infer_instance -- Porting note: disabled `simps` -- Invalid simp lemma BoolRingCat.hasForgetToCommRing_forget₂_obj_str_add. -- The given definition is not a constructor application: -- inferInstance.1 -- @[simps] [GOAL] α β : BoolRingCat e : ↑α ≃+* ↑β ⊢ ↑e ≫ ↑(RingEquiv.symm e) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : BoolRingCat e : ↑α ≃+* ↑β x✝ : (forget BoolRingCat).obj α ⊢ ↑(↑e ≫ ↑(RingEquiv.symm e)) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : BoolRingCat e : ↑α ≃+* ↑β ⊢ ↑(RingEquiv.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : BoolRingCat e : ↑α ≃+* ↑β x✝ : (forget BoolRingCat).obj β ⊢ ↑(↑(RingEquiv.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Algebra.Category.BoolRingCat", "llama_tokens": 467}
[GOAL] R : Type u inst✝² : Ring R X Y : ModuleCat R f : X ⟶ Y M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M hf : LinearMap.ker f = ⊥ ⊢ Function.Injective ↑f [PROOFSTEP] convert LinearMap.ker_eq_bot.1 hf [GOAL] R : Type u inst✝² : Ring R X Y : ModuleCat R f : X ⟶ Y M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ Mono f ↔ Function.Injective ↑f [PROOFSTEP] rw [mono_iff_ker_eq_bot, LinearMap.ker_eq_bot] [GOAL] R : Type u inst✝² : Ring R X Y : ModuleCat R f : X ⟶ Y M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] rw [epi_iff_range_eq_top, LinearMap.range_eq_top] [GOAL] R : Type u inst✝² : Ring R X Y : ModuleCat R f✝ : X ⟶ Y M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M X✝ Y✝ : ModuleCat R f : X✝ ⟶ Y✝ hf : Epi f ⊢ Epi ((forget (ModuleCat R)).map f) [PROOFSTEP] erw [CategoryTheory.epi_iff_surjective, ← epi_iff_surjective] [GOAL] R : Type u inst✝² : Ring R X Y : ModuleCat R f✝ : X ⟶ Y M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M X✝ Y✝ : ModuleCat R f : X✝ ⟶ Y✝ hf : Epi f ⊢ Epi f [PROOFSTEP] exact hf [GOAL] R : Type u inst✝² : Ring R X Y : ModuleCat R f✝ : X ⟶ Y M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M X✝ Y✝ : ModuleCat R f : X✝ ⟶ Y✝ hf : Mono f ⊢ Mono ((forget (ModuleCat R)).map f) [PROOFSTEP] erw [CategoryTheory.mono_iff_injective, ← mono_iff_injective] [GOAL] R : Type u inst✝² : Ring R X Y : ModuleCat R f✝ : X ⟶ Y M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M X✝ Y✝ : ModuleCat R f : X✝ ⟶ Y✝ hf : Mono f ⊢ Mono f [PROOFSTEP] exact hf
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.EpiMono", "llama_tokens": 810}
[GOAL] R : Type u inst✝ : Ring R ι : Type v Z : ι → ModuleCatMax R s : Cone (Discrete.functor Z) j : Discrete ι ⊢ (fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s ≫ NatTrans.app (productCone Z).π j = NatTrans.app s.π j [PROOFSTEP] cases j [GOAL] case mk R : Type u inst✝ : Ring R ι : Type v Z : ι → ModuleCatMax R s : Cone (Discrete.functor Z) as✝ : ι ⊢ (fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s ≫ NatTrans.app (productCone Z).π { as := as✝ } = NatTrans.app s.π { as := as✝ } [PROOFSTEP] aesop [GOAL] R : Type u inst✝ : Ring R ι : Type v Z : ι → ModuleCatMax R s : Cone (Discrete.functor Z) m : s.pt ⟶ (productCone Z).pt w : ∀ (j : Discrete ι), m ≫ NatTrans.app (productCone Z).π j = NatTrans.app s.π j ⊢ m = (fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝ : Ring R ι : Type v Z : ι → ModuleCatMax R s : Cone (Discrete.functor Z) m : s.pt ⟶ (productCone Z).pt w : ∀ (j : Discrete ι), m ≫ NatTrans.app (productCone Z).π j = NatTrans.app s.π j x : ↑s.pt ⊢ ↑m x = ↑((fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s) x [PROOFSTEP] funext i [GOAL] case h.h R : Type u inst✝ : Ring R ι : Type v Z : ι → ModuleCatMax R s : Cone (Discrete.functor Z) m : s.pt ⟶ (productCone Z).pt w : ∀ (j : Discrete ι), m ≫ NatTrans.app (productCone Z).π j = NatTrans.app s.π j x : ↑s.pt i : ι ⊢ ↑m x i = ↑((fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s) x i [PROOFSTEP] exact LinearMap.congr_fun (w ⟨i⟩) x
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Products", "llama_tokens": 715}
[GOAL] G : GroupCat inst✝ : Subsingleton ↑G ⊢ IsZero G [PROOFSTEP] refine' ⟨fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩⟩ [GOAL] case refine'_1 G : GroupCat inst✝ : Subsingleton ↑G X : GroupCat f : G ⟶ X ⊢ f = default [PROOFSTEP] ext x [GOAL] case refine'_1.w G : GroupCat inst✝ : Subsingleton ↑G X : GroupCat f : G ⟶ X x : ↑G ⊢ ↑f x = ↑default x [PROOFSTEP] have : x = 1 := Subsingleton.elim _ _ [GOAL] case refine'_1.w G : GroupCat inst✝ : Subsingleton ↑G X : GroupCat f : G ⟶ X x : ↑G this : x = 1 ⊢ ↑f x = ↑default x [PROOFSTEP] rw [this, map_one, map_one] [GOAL] case refine'_2 G : GroupCat inst✝ : Subsingleton ↑G X : GroupCat f : X ⟶ G ⊢ f = default [PROOFSTEP] ext [GOAL] case refine'_2.w G : GroupCat inst✝ : Subsingleton ↑G X : GroupCat f : X ⟶ G x✝ : ↑X ⊢ ↑f x✝ = ↑default x✝ [PROOFSTEP] apply Subsingleton.elim [GOAL] G : CommGroupCat inst✝ : Subsingleton ↑G ⊢ IsZero G [PROOFSTEP] refine' ⟨fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩⟩ [GOAL] case refine'_1 G : CommGroupCat inst✝ : Subsingleton ↑G X : CommGroupCat f : G ⟶ X ⊢ f = default [PROOFSTEP] ext x [GOAL] case refine'_1.w G : CommGroupCat inst✝ : Subsingleton ↑G X : CommGroupCat f : G ⟶ X x : ↑G ⊢ ↑f x = ↑default x [PROOFSTEP] have : x = 1 := Subsingleton.elim _ _ [GOAL] case refine'_1.w G : CommGroupCat inst✝ : Subsingleton ↑G X : CommGroupCat f : G ⟶ X x : ↑G this : x = 1 ⊢ ↑f x = ↑default x [PROOFSTEP] rw [this, map_one, map_one] [GOAL] case refine'_2 G : CommGroupCat inst✝ : Subsingleton ↑G X : CommGroupCat f : X ⟶ G ⊢ f = default [PROOFSTEP] ext [GOAL] case refine'_2.w G : CommGroupCat inst✝ : Subsingleton ↑G X : CommGroupCat f : X ⟶ G x✝ : ↑X ⊢ ↑f x✝ = ↑default x✝ [PROOFSTEP] apply Subsingleton.elim
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Zero", "llama_tokens": 879}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j : J ⊢ coconeFun F j 0 = 0 [PROOFSTEP] apply Quot.sound [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j : J ⊢ Setoid.r (Prequotient.of j 0) zero [PROOFSTEP] apply Relation.zero [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j : J ⊢ ∀ (x y : ↑(F.obj j)), ZeroHom.toFun { toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } (x + y) = ZeroHom.toFun { toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } x + ZeroHom.toFun { toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } y [PROOFSTEP] intros [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j : J x✝ y✝ : ↑(F.obj j) ⊢ ZeroHom.toFun { toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } (x✝ + y✝) = ZeroHom.toFun { toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } x✝ + ZeroHom.toFun { toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } y✝ [PROOFSTEP] apply Quot.sound [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j : J x✝ y✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j (x✝ + y✝)) (add (Prequotient.of j x✝) (Prequotient.of j y✝)) [PROOFSTEP] apply Relation.add [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j j' : J f : j ⟶ j' ⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j [PROOFSTEP] ext [GOAL] case w J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j j' : J f : j ⟶ j' x✝ : ↑(F.obj j) ⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝ [PROOFSTEP] apply Quot.sound [GOAL] case w.a J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j j' : J f : j ⟶ j' x✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝) [PROOFSTEP] apply Relation.map [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x [PROOFSTEP] rw [← cocone_naturality F f] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F ⊢ ColimitType F → ↑s.pt [PROOFSTEP] fapply Quot.lift [GOAL] case f J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F ⊢ Prequotient F → ↑s.pt [PROOFSTEP] exact descFunLift F s [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F ⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b [PROOFSTEP] intro x y r [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F r : Setoid.r x y ⊢ descFunLift F s x = descFunLift F s y [PROOFSTEP] induction r with | refl => rfl | symm _ _ _ r_ih => exact r_ih.symm | trans _ _ _ _ _ r_ih_h r_ih_k => exact Eq.trans r_ih_h r_ih_k | map j j' f x => simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x | zero => simp | neg => simp | add => simp | neg_1 _ _ _ r_ih => dsimp; rw [r_ih] | add_1 _ _ _ _ r_ih => dsimp; rw [r_ih] | add_2 _ _ _ _ r_ih => dsimp; rw [r_ih] | zero_add => dsimp; rw [zero_add] | add_zero => dsimp; rw [add_zero] | add_left_neg => dsimp; rw [add_left_neg] | add_comm => dsimp; rw [add_comm] | add_assoc => dsimp; rw [add_assoc] [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F r : Setoid.r x y ⊢ descFunLift F s x = descFunLift F s y [PROOFSTEP] induction r with | refl => rfl | symm _ _ _ r_ih => exact r_ih.symm | trans _ _ _ _ _ r_ih_h r_ih_k => exact Eq.trans r_ih_h r_ih_k | map j j' f x => simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x | zero => simp | neg => simp | add => simp | neg_1 _ _ _ r_ih => dsimp; rw [r_ih] | add_1 _ _ _ _ r_ih => dsimp; rw [r_ih] | add_2 _ _ _ _ r_ih => dsimp; rw [r_ih] | zero_add => dsimp; rw [zero_add] | add_zero => dsimp; rw [add_zero] | add_left_neg => dsimp; rw [add_left_neg] | add_comm => dsimp; rw [add_comm] | add_assoc => dsimp; rw [add_assoc] [GOAL] case a.refl J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] | refl => rfl [GOAL] case a.refl J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] rfl [GOAL] case a.symm J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ y✝ : Prequotient F x✝ : Relation F x✝¹ y✝ r_ih : descFunLift F s x✝¹ = descFunLift F s y✝ ⊢ descFunLift F s y✝ = descFunLift F s x✝¹ [PROOFSTEP] | symm _ _ _ r_ih => exact r_ih.symm [GOAL] case a.symm J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ y✝ : Prequotient F x✝ : Relation F x✝¹ y✝ r_ih : descFunLift F s x✝¹ = descFunLift F s y✝ ⊢ descFunLift F s y✝ = descFunLift F s x✝¹ [PROOFSTEP] exact r_ih.symm [GOAL] case a.trans J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝² y✝ z✝ : Prequotient F x✝¹ : Relation F x✝² y✝ x✝ : Relation F y✝ z✝ r_ih_h : descFunLift F s x✝² = descFunLift F s y✝ r_ih_k : descFunLift F s y✝ = descFunLift F s z✝ ⊢ descFunLift F s x✝² = descFunLift F s z✝ [PROOFSTEP] | trans _ _ _ _ _ r_ih_h r_ih_k => exact Eq.trans r_ih_h r_ih_k [GOAL] case a.trans J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝² y✝ z✝ : Prequotient F x✝¹ : Relation F x✝² y✝ x✝ : Relation F y✝ z✝ r_ih_h : descFunLift F s x✝² = descFunLift F s y✝ r_ih_k : descFunLift F s y✝ = descFunLift F s z✝ ⊢ descFunLift F s x✝² = descFunLift F s z✝ [PROOFSTEP] exact Eq.trans r_ih_h r_ih_k [GOAL] case a.map J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x✝ y : Prequotient F j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x) [PROOFSTEP] | map j j' f x => simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x [GOAL] case a.map J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x✝ y : Prequotient F j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x) [PROOFSTEP] simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x [GOAL] case a.zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F j✝ : J ⊢ descFunLift F s (Prequotient.of j✝ 0) = descFunLift F s zero [PROOFSTEP] | zero => simp [GOAL] case a.zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F j✝ : J ⊢ descFunLift F s (Prequotient.of j✝ 0) = descFunLift F s zero [PROOFSTEP] simp [GOAL] case a.neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F j✝ : J x✝ : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j✝ (-x✝)) = descFunLift F s (neg (Prequotient.of j✝ x✝)) [PROOFSTEP] | neg => simp [GOAL] case a.neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F j✝ : J x✝ : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j✝ (-x✝)) = descFunLift F s (neg (Prequotient.of j✝ x✝)) [PROOFSTEP] simp [GOAL] case a.add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F j✝ : J x✝ y✝ : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j✝ (x✝ + y✝)) = descFunLift F s (add (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝)) [PROOFSTEP] | add => simp [GOAL] case a.add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : Prequotient F j✝ : J x✝ y✝ : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j✝ (x✝ + y✝)) = descFunLift F s (add (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝)) [PROOFSTEP] simp [GOAL] case a.neg_1 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ x'✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s (neg x✝¹) = descFunLift F s (neg x'✝) [PROOFSTEP] | neg_1 _ _ _ r_ih => dsimp; rw [r_ih] [GOAL] case a.neg_1 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ x'✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s (neg x✝¹) = descFunLift F s (neg x'✝) [PROOFSTEP] dsimp [GOAL] case a.neg_1 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ x'✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ -descFunLift F s x✝¹ = -descFunLift F s x'✝ [PROOFSTEP] rw [r_ih] [GOAL] case a.add_1 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ x'✝ y✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x'✝ y✝) [PROOFSTEP] | add_1 _ _ _ _ r_ih => dsimp; rw [r_ih] [GOAL] case a.add_1 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ x'✝ y✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x'✝ y✝) [PROOFSTEP] dsimp [GOAL] case a.add_1 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ x'✝ y✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s x✝¹ + descFunLift F s y✝ = descFunLift F s x'✝ + descFunLift F s y✝ [PROOFSTEP] rw [r_ih] [GOAL] case a.add_2 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ y✝ y'✝ : Prequotient F x✝ : Relation F y✝ y'✝ r_ih : descFunLift F s y✝ = descFunLift F s y'✝ ⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x✝¹ y'✝) [PROOFSTEP] | add_2 _ _ _ _ r_ih => dsimp; rw [r_ih] [GOAL] case a.add_2 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ y✝ y'✝ : Prequotient F x✝ : Relation F y✝ y'✝ r_ih : descFunLift F s y✝ = descFunLift F s y'✝ ⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x✝¹ y'✝) [PROOFSTEP] dsimp [GOAL] case a.add_2 J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝¹ y✝ y'✝ : Prequotient F x✝ : Relation F y✝ y'✝ r_ih : descFunLift F s y✝ = descFunLift F s y'✝ ⊢ descFunLift F s x✝¹ + descFunLift F s y✝ = descFunLift F s x✝¹ + descFunLift F s y'✝ [PROOFSTEP] rw [r_ih] [GOAL] case a.zero_add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝ [PROOFSTEP] | zero_add => dsimp; rw [zero_add] [GOAL] case a.zero_add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝ [PROOFSTEP] dsimp [GOAL] case a.zero_add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ 0 + descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] rw [zero_add] [GOAL] case a.add_zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝ [PROOFSTEP] | add_zero => dsimp; rw [add_zero] [GOAL] case a.add_zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝ [PROOFSTEP] dsimp [GOAL] case a.add_zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ + 0 = descFunLift F s x✝ [PROOFSTEP] rw [add_zero] [GOAL] case a.add_left_neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero [PROOFSTEP] | add_left_neg => dsimp; rw [add_left_neg] [GOAL] case a.add_left_neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero [PROOFSTEP] dsimp [GOAL] case a.add_left_neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ : Prequotient F ⊢ -descFunLift F s x✝ + descFunLift F s x✝ = 0 [PROOFSTEP] rw [add_left_neg] [GOAL] case a.add_comm J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ y✝ : Prequotient F ⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝) [PROOFSTEP] | add_comm => dsimp; rw [add_comm] [GOAL] case a.add_comm J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ y✝ : Prequotient F ⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝) [PROOFSTEP] dsimp [GOAL] case a.add_comm J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ y✝ : Prequotient F ⊢ descFunLift F s x✝ + descFunLift F s y✝ = descFunLift F s y✝ + descFunLift F s x✝ [PROOFSTEP] rw [add_comm] [GOAL] case a.add_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝)) [PROOFSTEP] | add_assoc => dsimp; rw [add_assoc] [GOAL] case a.add_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝)) [PROOFSTEP] dsimp [GOAL] case a.add_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s x✝ + descFunLift F s y✝ + descFunLift F s z✝ = descFunLift F s x✝ + (descFunLift F s y✝ + descFunLift F s z✝) [PROOFSTEP] rw [add_assoc] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : ↑(colimit F) x✝¹ x✝ : Prequotient F ⊢ ZeroHom.toFun { toFun := descFun F s, map_zero' := (_ : descFun F s 0 = descFun F s 0) } (Quot.mk Setoid.r x✝¹ + Quot.mk Setoid.r x✝) = ZeroHom.toFun { toFun := descFun F s, map_zero' := (_ : descFun F s 0 = descFun F s 0) } (Quot.mk Setoid.r x✝¹) + ZeroHom.toFun { toFun := descFun F s, map_zero' := (_ : descFun F s 0 = descFun F s 0) } (Quot.mk Setoid.r x✝) [PROOFSTEP] dsimp [(· + ·)] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : ↑(colimit F) x✝¹ x✝ : Prequotient F ⊢ descFun F s (Add.add (Quot.mk Setoid.r x✝¹) (Quot.mk Setoid.r x✝)) = Add.add (descFun F s (Quot.mk Setoid.r x✝¹)) (descFun F s (Quot.mk Setoid.r x✝)) [PROOFSTEP] rw [← quot_add F] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F x y : ↑(colimit F) x✝¹ x✝ : Prequotient F ⊢ descFun F s (Quot.mk Setoid.r (add x✝¹ x✝)) = Add.add (descFun F s (Quot.mk Setoid.r x✝¹)) (descFun F s (Quot.mk Setoid.r x✝)) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x : Prequotient F ⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) [PROOFSTEP] change (m : ColimitType F →+ s.pt) _ = (descMorphism F s : ColimitType F →+ s.pt) _ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x : Prequotient F ⊢ ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) [PROOFSTEP] induction x using Prequotient.recOn with | of j x => exact FunLike.congr_fun (w j) x | zero => dsimp only [quot_zero] rw [map_zero, map_zero] | neg x ih => dsimp only [quot_neg] rw [map_neg, map_neg, ih] | add x y ihx ihy => simp only [quot_add] erw [m.map_add, (descMorphism F s).map_add, ihx, ihy] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x : Prequotient F ⊢ ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) [PROOFSTEP] induction x using Prequotient.recOn with | of j x => exact FunLike.congr_fun (w j) x | zero => dsimp only [quot_zero] rw [map_zero, map_zero] | neg x ih => dsimp only [quot_neg] rw [map_neg, map_neg, ih] | add x y ihx ihy => simp only [quot_add] erw [m.map_add, (descMorphism F s).map_add, ihx, ihy] [GOAL] case of J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r j : J x : ↑(F.obj j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of j x)) [PROOFSTEP] | of j x => exact FunLike.congr_fun (w j) x [GOAL] case of J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r j : J x : ↑(F.obj j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of j x)) [PROOFSTEP] exact FunLike.congr_fun (w j) x [GOAL] case zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Quot Setoid.r ⊢ ↑m (Quot.mk Setoid.r zero) = ↑(descMorphism F s) (Quot.mk Setoid.r zero) [PROOFSTEP] | zero => dsimp only [quot_zero] rw [map_zero, map_zero] [GOAL] case zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Quot Setoid.r ⊢ ↑m (Quot.mk Setoid.r zero) = ↑(descMorphism F s) (Quot.mk Setoid.r zero) [PROOFSTEP] dsimp only [quot_zero] [GOAL] case zero J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Quot Setoid.r ⊢ ↑m 0 = ↑(descMorphism F s) 0 [PROOFSTEP] rw [map_zero, map_zero] [GOAL] case neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x : Prequotient F ih : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) ⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (neg x)) [PROOFSTEP] | neg x ih => dsimp only [quot_neg] rw [map_neg, map_neg, ih] [GOAL] case neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x : Prequotient F ih : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) ⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (neg x)) [PROOFSTEP] dsimp only [quot_neg] [GOAL] case neg J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x : Prequotient F ih : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) ⊢ ↑m (-Quot.mk Setoid.r x) = ↑(descMorphism F s) (-Quot.mk Setoid.r x) [PROOFSTEP] rw [map_neg, map_neg, ih] [GOAL] case add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x y : Prequotient F ihx : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) ihy : ↑m (Quot.mk Setoid.r y) = ↑(descMorphism F s) (Quot.mk Setoid.r y) ⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑(descMorphism F s) (Quot.mk Setoid.r (add x y)) [PROOFSTEP] | add x y ihx ihy => simp only [quot_add] erw [m.map_add, (descMorphism F s).map_add, ihx, ihy] [GOAL] case add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x y : Prequotient F ihx : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) ihy : ↑m (Quot.mk Setoid.r y) = ↑(descMorphism F s) (Quot.mk Setoid.r y) ⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑(descMorphism F s) (Quot.mk Setoid.r (add x y)) [PROOFSTEP] simp only [quot_add] [GOAL] case add J : Type v inst✝ : SmallCategory J F : J ⥤ AddCommGroupCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : Quot Setoid.r x y : Prequotient F ihx : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) ihy : ↑m (Quot.mk Setoid.r y) = ↑(descMorphism F s) (Quot.mk Setoid.r y) ⊢ ↑m (Add.add (Quot.mk Setoid.r x) (Quot.mk Setoid.r y)) = ↑(descMorphism F s) (Add.add (Quot.mk Setoid.r x) (Quot.mk Setoid.r y)) [PROOFSTEP] erw [m.map_add, (descMorphism F s).map_add, ihx, ihy] [GOAL] G H : AddCommGroupCat f : G ⟶ H ⊢ f ≫ mk' (AddMonoidHom.range f) = 0 [PROOFSTEP] ext x [GOAL] case w G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ ↑(f ≫ mk' (AddMonoidHom.range f)) x = ↑0 x [PROOFSTEP] apply Quotient.sound [GOAL] case w.a G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ ↑f x ≈ 0 [PROOFSTEP] apply leftRel_apply.mpr [GOAL] case w.a G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ -↑f x + 0 ∈ AddMonoidHom.range f [PROOFSTEP] fconstructor [GOAL] case w.a.w G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ ↑G case w.a.h G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ ↑f ?w.a.w = -↑f x + 0 [PROOFSTEP] exact -x [GOAL] case w.a.h G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ ↑f (-x) = -↑f x + 0 [PROOFSTEP] simp only [add_zero, AddMonoidHom.map_neg] [GOAL] G H : AddCommGroupCat f : G ⟶ H ⊢ ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0 [PROOFSTEP] rintro _ ⟨x, rfl⟩ [GOAL] case intro G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ ↑(cokernel.π f) (↑f x) = 0 [PROOFSTEP] exact cokernel.condition_apply f x [GOAL] G H : AddCommGroupCat f : G ⟶ H ⊢ cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0) ≫ lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) = 𝟙 (cokernel f) [PROOFSTEP] refine coequalizer.hom_ext ?_ [GOAL] G H : AddCommGroupCat f : G ⟶ H ⊢ coequalizer.π f 0 ≫ cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0) ≫ lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) = coequalizer.π f 0 ≫ 𝟙 (cokernel f) [PROOFSTEP] simp only [coequalizer_as_cokernel, cokernel.π_desc_assoc, Category.comp_id] [GOAL] G H : AddCommGroupCat f : G ⟶ H ⊢ mk' (AddMonoidHom.range f) ≫ lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) = cokernel.π f [PROOFSTEP] rfl [GOAL] G H : AddCommGroupCat f : G ⟶ H ⊢ lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) ≫ cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0) = 𝟙 (of (↑H ⧸ AddMonoidHom.range f)) [PROOFSTEP] ext x [GOAL] case w G H : AddCommGroupCat f : G ⟶ H x : ↑(of (↑H ⧸ AddMonoidHom.range f)) ⊢ ↑(lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) ≫ cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0)) x = ↑(𝟙 (of (↑H ⧸ AddMonoidHom.range f))) x [PROOFSTEP] exact QuotientAddGroup.induction_on x <| cokernel.π_desc_apply f _ _
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Colimits", "llama_tokens": 12377}
[GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R ⊢ ∀ ⦃X Y : Discrete WalkingPair⦄ (f : X ⟶ Y), ((Functor.const (Discrete WalkingPair)).obj (of R (↑M × ↑N))).map f ≫ (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) Y = (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) X ≫ (pair M N).map f [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟨⟩⟩⟩ [GOAL] case mk.left.mk.left.up.up.refl R : Type u inst✝ : Ring R M N : ModuleCat R ⊢ ((Functor.const (Discrete WalkingPair)).obj (of R (↑M × ↑N))).map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } } ≫ (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) { as := WalkingPair.left } = (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) { as := WalkingPair.left } ≫ (pair M N).map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } } [PROOFSTEP] rfl [GOAL] case mk.right.mk.right.up.up.refl R : Type u inst✝ : Ring R M N : ModuleCat R ⊢ ((Functor.const (Discrete WalkingPair)).obj (of R (↑M × ↑N))).map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } } ≫ (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) { as := WalkingPair.right } = (fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) { as := WalkingPair.right } ≫ (pair M N).map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } } [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R ⊢ ∀ (s : Cone (pair M N)) (j : Discrete WalkingPair), (fun s => LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s ≫ NatTrans.app { pt := of R (↑M × ↑N), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π j = NatTrans.app s.π j [PROOFSTEP] rintro s (⟨⟩ | ⟨⟩) [GOAL] case mk.left R : Type u inst✝ : Ring R M N : ModuleCat R s : Cone (pair M N) ⊢ (fun s => LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s ≫ NatTrans.app { pt := of R (↑M × ↑N), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π { as := WalkingPair.left } = NatTrans.app s.π { as := WalkingPair.left } [PROOFSTEP] rfl [GOAL] case mk.right R : Type u inst✝ : Ring R M N : ModuleCat R s : Cone (pair M N) ⊢ (fun s => LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s ≫ NatTrans.app { pt := of R (↑M × ↑N), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π { as := WalkingPair.right } = NatTrans.app s.π { as := WalkingPair.right } [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R s : Cone (pair M N) m : s.pt ⟶ { pt := of R (↑M × ↑N), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.pt w : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app { pt := of R (↑M × ↑N), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π j = NatTrans.app s.π j ⊢ m = (fun s => LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right })) s [PROOFSTEP] simp_rw [← w ⟨WalkingPair.left⟩, ← w ⟨WalkingPair.right⟩] [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R s : Cone (pair M N) m : s.pt ⟶ { pt := of R (↑M × ↑N), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.pt w : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app { pt := of R (↑M × ↑N), π := NatTrans.mk fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π j = NatTrans.app s.π j ⊢ m = LinearMap.prod (m ≫ LinearMap.fst R ↑M ↑N) (m ≫ LinearMap.snd R ↑M ↑N) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R J : Type w f : J → ModuleCat R s : Fan f x y : ↑s.pt ⊢ (fun x j => ↑(NatTrans.app s.π { as := j }) x) (x + y) = (fun x j => ↑(NatTrans.app s.π { as := j }) x) x + (fun x j => ↑(NatTrans.app s.π { as := j }) x) y [PROOFSTEP] simp only [Functor.const_obj_obj, map_add] [GOAL] R : Type u inst✝ : Ring R J : Type w f : J → ModuleCat R s : Fan f x y : ↑s.pt ⊢ (fun j => ↑(NatTrans.app s.π { as := j }) x + ↑(NatTrans.app s.π { as := j }) y) = (fun j => ↑(NatTrans.app s.π { as := j }) x) + fun j => ↑(NatTrans.app s.π { as := j }) y [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R J : Type w f : J → ModuleCat R s : Fan f r : R x : ↑s.pt ⊢ AddHom.toFun { toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x, map_add' := (_ : ∀ (x y : ↑s.pt), (fun x j => ↑(NatTrans.app s.π { as := j }) x) (x + y) = (fun x j => ↑(NatTrans.app s.π { as := j }) x) x + (fun x j => ↑(NatTrans.app s.π { as := j }) x) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x, map_add' := (_ : ∀ (x y : ↑s.pt), (fun x j => ↑(NatTrans.app s.π { as := j }) x) (x + y) = (fun x j => ↑(NatTrans.app s.π { as := j }) x) x + (fun x j => ↑(NatTrans.app s.π { as := j }) x) y) } x [PROOFSTEP] simp only [Functor.const_obj_obj, map_smul] [GOAL] R : Type u inst✝ : Ring R J : Type w f : J → ModuleCat R s : Fan f r : R x : ↑s.pt ⊢ (fun j => r • ↑(NatTrans.app s.π { as := j }) x) = ↑(RingHom.id R) r • fun j => ↑(NatTrans.app s.π { as := j }) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R J : Type w f : J → ModuleCat R s : Cone (Discrete.functor f) m : s.pt ⟶ { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.pt w : ∀ (j : Discrete J), m ≫ NatTrans.app { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.π j = NatTrans.app s.π j ⊢ m = lift f s [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝ : Ring R J : Type w f : J → ModuleCat R s : Cone (Discrete.functor f) m : s.pt ⟶ { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.pt w : ∀ (j : Discrete J), m ≫ NatTrans.app { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.π j = NatTrans.app s.π j x : ↑s.pt ⊢ ↑m x = ↑(lift f s) x [PROOFSTEP] funext j [GOAL] case h.h R : Type u inst✝ : Ring R J : Type w f : J → ModuleCat R s : Cone (Discrete.functor f) m : s.pt ⟶ { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.pt w : ∀ (j : Discrete J), m ≫ NatTrans.app { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.π j = NatTrans.app s.π j x : ↑s.pt j : J ⊢ ↑m x j = ↑(lift f s) x j [PROOFSTEP] exact congr_arg (fun g : s.pt ⟶ f j => (g : s.pt → f j) x) (w ⟨j⟩)
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Biproducts", "llama_tokens": 3486}
[GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f ⊢ ∃ h, f ≫ h = g [PROOFSTEP] let G : (⟨X⟩ : ModuleCat ℤ) ⟶ ⟨A⟩ := { g with map_smul' := by intros dsimp rw [map_zsmul] } [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f ⊢ ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x [PROOFSTEP] intros [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f r✝ : ℤ x✝ : ↑(ModuleCat.mk ↑X) ⊢ AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r✝ • x✝) = ↑(RingHom.id ℤ) r✝ • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x✝ [PROOFSTEP] dsimp [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f r✝ : ℤ x✝ : ↑(ModuleCat.mk ↑X) ⊢ ↑g (r✝ • x✝) = r✝ • ↑g x✝ [PROOFSTEP] rw [map_zsmul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } ⊢ ∃ h, f ≫ h = g [PROOFSTEP] let F : (⟨X⟩ : ModuleCat ℤ) ⟶ ⟨Y⟩ := { f with map_smul' := by intros dsimp rw [map_zsmul] } [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } ⊢ ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x [PROOFSTEP] intros [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } r✝ : ℤ x✝ : ↑(ModuleCat.mk ↑X) ⊢ AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r✝ • x✝) = ↑(RingHom.id ℤ) r✝ • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x✝ [PROOFSTEP] dsimp [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } r✝ : ℤ x✝ : ↑(ModuleCat.mk ↑X) ⊢ ↑f (r✝ • x✝) = r✝ • ↑f x✝ [PROOFSTEP] rw [map_zsmul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } ⊢ ∃ h, f ≫ h = g [PROOFSTEP] have : Mono F := by refine' ⟨fun {Z} α β eq1 => _⟩ -- Porting note: trouble getting to ℤ-module from ModuleCat ℤ -- AddCommGroup.intModule not defeq to .isModule let α' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ α let β' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ β have eq2 : α' ≫ f = β' ≫ f := by ext x simp only [CategoryTheory.comp_apply, LinearMap.toAddMonoidHom_coe] simpa only [ModuleCat.coe_comp, LinearMap.coe_mk, Function.comp_apply] using FunLike.congr_fun eq1 x rw [cancel_mono] at eq2 have : ⇑α' = ⇑β' := congrArg _ eq2 ext x apply congrFun this _ [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } ⊢ Mono F [PROOFSTEP] refine' ⟨fun {Z} α β eq1 => _⟩ -- Porting note: trouble getting to ℤ-module from ModuleCat ℤ -- AddCommGroup.intModule not defeq to .isModule [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F ⊢ α = β [PROOFSTEP] let α' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ α [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α ⊢ α = β [PROOFSTEP] let β' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ β [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β ⊢ α = β [PROOFSTEP] have eq2 : α' ≫ f = β' ≫ f := by ext x simp only [CategoryTheory.comp_apply, LinearMap.toAddMonoidHom_coe] simpa only [ModuleCat.coe_comp, LinearMap.coe_mk, Function.comp_apply] using FunLike.congr_fun eq1 x [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β ⊢ α' ≫ f = β' ≫ f [PROOFSTEP] ext x [GOAL] case w A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β x : ↑(of ↑Z) ⊢ ↑(α' ≫ f) x = ↑(β' ≫ f) x [PROOFSTEP] simp only [CategoryTheory.comp_apply, LinearMap.toAddMonoidHom_coe] [GOAL] case w A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β x : ↑(of ↑Z) ⊢ ↑(LinearMap.toAddMonoidHom α ≫ f) x = ↑(LinearMap.toAddMonoidHom β ≫ f) x [PROOFSTEP] simpa only [ModuleCat.coe_comp, LinearMap.coe_mk, Function.comp_apply] using FunLike.congr_fun eq1 x [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β eq2 : α' ≫ f = β' ≫ f ⊢ α = β [PROOFSTEP] rw [cancel_mono] at eq2 [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β eq2 : α' = β' ⊢ α = β [PROOFSTEP] have : ⇑α' = ⇑β' := congrArg _ eq2 [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β eq2 : α' = β' this : ↑α' = ↑β' ⊢ α = β [PROOFSTEP] ext x [GOAL] case h A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } Z : ModuleCat ℤ α β : Z ⟶ ModuleCat.mk ↑X eq1 : α ≫ F = β ≫ F α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β eq2 : α' = β' this : ↑α' = ↑β' x : ↑Z ⊢ ↑α x = ↑β x [PROOFSTEP] apply congrFun this _ [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } this : Mono F ⊢ ∃ h, f ≫ h = g [PROOFSTEP] refine' ⟨(Injective.factorThru G F).toAddMonoidHom, _⟩ [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } this : Mono F ⊢ f ≫ LinearMap.toAddMonoidHom (Injective.factorThru G F) = g [PROOFSTEP] ext x [GOAL] case w A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (ModuleCat.mk A) X Y : Bundled AddCommGroup g : X ⟶ Bundled.mk A f : X ⟶ Y m : Mono f G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A := { toAddHom := { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := g.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) } x) } F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y := { toAddHom := { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }, map_smul' := (_ : ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)), AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := f.toFun, map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) } x) } this : Mono F x : (forget (Bundled AddCommGroup)).obj X ⊢ ↑(f ≫ LinearMap.toAddMonoidHom (Injective.factorThru G F)) x = ↑g x [PROOFSTEP] convert FunLike.congr_fun (Injective.comp_factorThru G F) x [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f ⊢ ∃ h, f ≫ h = g [PROOFSTEP] let G : (⟨X, inferInstance⟩ : AddCommGroupCat) ⟶ ⟨A, inferInstance⟩ := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ g [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g ⊢ ∃ h, f ≫ h = g [PROOFSTEP] let F : (⟨X, inferInstance⟩ : AddCommGroupCat) ⟶ ⟨Y, inferInstance⟩ := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) (_) _ f [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f ⊢ ∃ h, f ≫ h = g [PROOFSTEP] have : Mono F := by rw [mono_iff_injective] intro _ _ h exact ((ModuleCat.mono_iff_injective f).mp m) h [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f ⊢ Mono F [PROOFSTEP] rw [mono_iff_injective] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f ⊢ Function.Injective ↑F [PROOFSTEP] intro _ _ h [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f a₁✝ a₂✝ : ↑(Bundled.mk ↑X) h : ↑F a₁✝ = ↑F a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] exact ((ModuleCat.mono_iff_injective f).mp m) h [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F ⊢ ∃ h, f ≫ h = g [PROOFSTEP] refine ⟨@LinearMap.mk _ _ _ _ _ _ _ _ _ (_) _ (Injective.factorThru G F).toAddHom ?_, ?_⟩ [GOAL] case refine_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F ⊢ ∀ (r : ℤ) (x : ↑Y), AddHom.toFun (↑(Injective.factorThru G F)) (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun (↑(Injective.factorThru G F)) x case refine_2 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F ⊢ f ≫ { toAddHom := ↑(Injective.factorThru G F), map_smul' := ?refine_1 } = g [PROOFSTEP] change ∀ r, ∀ x, (Injective.factorThru G F).toFun _ = _ • (Injective.factorThru G F).toFun _ [GOAL] case refine_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F ⊢ ∀ (r : ℤ) (x : ↑Y), ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) = ↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x [PROOFSTEP] intro m x [GOAL] case refine_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m✝ : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F m : ℤ x : ↑Y ⊢ ZeroHom.toFun (↑(Injective.factorThru G F)) (m • x) = ↑(RingHom.id ℤ) m • ZeroHom.toFun (↑(Injective.factorThru G F)) x [PROOFSTEP] rw [AddMonoidHom.toFun_eq_coe, RingHom.id_apply] [GOAL] case refine_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m✝ : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F m : ℤ x : ↑Y ⊢ ↑(Injective.factorThru G F) (m • x) = m • ↑(Injective.factorThru G F) x [PROOFSTEP] induction' m using Int.induction_on with n hn n hn [GOAL] case refine_1.hz A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y ⊢ ↑(Injective.factorThru G F) (0 • x) = 0 • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [zero_smul] [GOAL] case refine_1.hz A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y ⊢ ↑(Injective.factorThru G F) (0 • x) = 0 [PROOFSTEP] convert map_zero (M := Y) (N := A) (F := Y →+ A) _ -- Porting note: hell of non-defeq instances; somehow this worked [GOAL] case h.e'_2.h.e'_6 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y ⊢ 0 • x = 0 [PROOFSTEP] refine @zero_smul ℤ Y (MonoidWithZero.toZero) (AddMonoid.toZero) ?_ x [GOAL] case refine_1.hp A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x ⊢ ↑(Injective.factorThru G F) ((↑n + 1) • x) = (↑n + 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] conv_rhs => rw [add_smul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x | (↑n + 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [add_smul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x | (↑n + 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [add_smul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x | (↑n + 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [add_smul] [GOAL] case refine_1.hp A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x ⊢ ↑(Injective.factorThru G F) ((↑n + 1) • x) = ↑n • ↑(Injective.factorThru G F) x + 1 • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [← hn, one_smul, ← map_add] [GOAL] case refine_1.hp A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x ⊢ ↑(Injective.factorThru G F) ((↑n + 1) • x) = ↑(Injective.factorThru G F) (↑n • x + x) [PROOFSTEP] congr [GOAL] case refine_1.hp.h.e_6.h A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x ⊢ (↑n + 1) • x = ↑n • x + x [PROOFSTEP] convert @add_smul ℤ Y _ _ ?_ n 1 x [GOAL] case h.e'_3.h.e'_6 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x ⊢ x = 1 • x [PROOFSTEP] refine @one_smul ℤ Y _ ?_ x |>.symm [GOAL] case refine_1.hn A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x ⊢ ↑(Injective.factorThru G F) ((-↑n - 1) • x) = (-↑n - 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] conv_rhs => rw [sub_smul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x | (-↑n - 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [sub_smul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x | (-↑n - 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [sub_smul] [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x | (-↑n - 1) • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [sub_smul] [GOAL] case refine_1.hn A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x ⊢ ↑(Injective.factorThru G F) ((-↑n - 1) • x) = -↑n • ↑(Injective.factorThru G F) x - 1 • ↑(Injective.factorThru G F) x [PROOFSTEP] rw [← hn, one_smul, ← map_sub] [GOAL] case refine_1.hn A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x ⊢ ↑(Injective.factorThru G F) ((-↑n - 1) • x) = ↑(Injective.factorThru G F) (-↑n • x - x) [PROOFSTEP] congr [GOAL] case refine_1.hn.h.e_6.h A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x ⊢ (-↑n - 1) • x = -↑n • x - x [PROOFSTEP] convert @sub_smul ℤ Y _ _ ?_ (-n) 1 x [GOAL] case h.e'_3.h.e'_6 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑Y n : ℕ hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x ⊢ x = 1 • x [PROOFSTEP] refine @one_smul ℤ Y _ ?_ x |>.symm [GOAL] case refine_2 A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F ⊢ f ≫ { toAddHom := ↑(Injective.factorThru G F), map_smul' := (_ : ∀ (r : ℤ) (x : ↑Y), ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) = ↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) } = g [PROOFSTEP] ext x [GOAL] case refine_2.h A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this : Mono F x : ↑X ⊢ ↑(f ≫ { toAddHom := ↑(Injective.factorThru G F), map_smul' := (_ : ∀ (r : ℤ) (x : ↑Y), ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) = ↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) }) x = ↑g x [PROOFSTEP] have := congrFun (congrArg (fun H => H.toFun) (Injective.comp_factorThru G F)) x [GOAL] case refine_2.h A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this✝ : Mono F x : ↑X this : (fun H => H.toFun) (F ≫ Injective.factorThru G F) x = (fun H => H.toFun) G x ⊢ ↑(f ≫ { toAddHom := ↑(Injective.factorThru G F), map_smul' := (_ : ∀ (r : ℤ) (x : ↑Y), ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) = ↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) }) x = ↑g x [PROOFSTEP] simp only [ModuleCat.coe_comp, Function.comp_apply] at this [GOAL] case refine_2.h A : Type u inst✝¹ : AddCommGroup A inst✝ : Injective (Bundled.mk A) X Y : ModuleCat ℤ g : X ⟶ ModuleCat.mk A f : X ⟶ Y m : Mono f G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f this✝ : Mono F x : ↑X this : ZeroHom.toFun (↑(LinearMap.toAddMonoidHom f ≫ Injective.factorThru (LinearMap.toAddMonoidHom g) (LinearMap.toAddMonoidHom f))) x = ZeroHom.toFun (↑(LinearMap.toAddMonoidHom g)) x ⊢ ↑(f ≫ { toAddHom := ↑(Injective.factorThru G F), map_smul' := (_ : ∀ (r : ℤ) (x : ↑Y), ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) = ↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) }) x = ↑g x [PROOFSTEP] apply this [GOAL] A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ I : Ideal ℤ g : { x // x ∈ I } →ₗ[ℤ] A ⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ I), ↑g' x = ↑g { val := x, property := mem } [PROOFSTEP] rcases IsPrincipalIdealRing.principal I with ⟨m, rfl⟩ [GOAL] case mk.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A ⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem } [PROOFSTEP] by_cases m_eq_zero : m = 0 [GOAL] case pos A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : m = 0 ⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem } [PROOFSTEP] subst m_eq_zero [GOAL] case pos A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A ⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {0}), ↑g' x = ↑g { val := x, property := mem } [PROOFSTEP] refine' ⟨{ toFun := _ map_add' := _ map_smul' := _ }, fun n hn => _⟩ [GOAL] case pos.refine'_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A ⊢ ℤ → A [PROOFSTEP] intro _ [GOAL] case pos.refine'_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A a✝ : ℤ ⊢ A [PROOFSTEP] exact g 0 [GOAL] case pos.refine'_2 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A ⊢ ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0 [PROOFSTEP] intro _ _ [GOAL] case pos.refine'_2 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A x✝ y✝ : ℤ ⊢ ↑g 0 = ↑g 0 + ↑g 0 [PROOFSTEP] simp only [map_zero, add_zero] [GOAL] case pos.refine'_3 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A ⊢ ∀ (r x : ℤ), AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } x [PROOFSTEP] intro n1 _ [GOAL] case pos.refine'_3 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A n1 x✝ : ℤ ⊢ AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } (n1 • x✝) = ↑(RingHom.id ℤ) n1 • AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } x✝ [PROOFSTEP] simp only [map_zero, smul_zero] [GOAL] case pos.refine'_4 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A n : ℤ hn : n ∈ Submodule.span ℤ {0} ⊢ ↑{ toAddHom := { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) }, map_smul' := (_ : ∀ (n1 : ℤ), ℤ → ↑g 0 = ↑(RingHom.id ℤ) n1 • ↑g 0) } n = ↑g { val := n, property := hn } [PROOFSTEP] rw [Submodule.span_singleton_eq_bot.mpr rfl, Submodule.mem_bot] at hn [GOAL] case pos.refine'_4 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A n : ℤ hn✝ : n ∈ Submodule.span ℤ {0} hn : n = 0 ⊢ ↑{ toAddHom := { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) }, map_smul' := (_ : ∀ (n1 : ℤ), ℤ → ↑g 0 = ↑(RingHom.id ℤ) n1 • ↑g 0) } n = ↑g { val := n, property := hn✝ } [PROOFSTEP] simp only [hn, map_zero] [GOAL] case pos.refine'_4 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A n : ℤ hn✝ : n ∈ Submodule.span ℤ {0} hn : n = 0 ⊢ 0 = ↑g { val := 0, property := (_ : (fun x => x ∈ Submodule.span ℤ {0}) 0) } [PROOFSTEP] symm [GOAL] case pos.refine'_4 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A n : ℤ hn✝ : n ∈ Submodule.span ℤ {0} hn : n = 0 ⊢ ↑g { val := 0, property := (_ : (fun x => x ∈ Submodule.span ℤ {0}) 0) } = 0 [PROOFSTEP] convert map_zero g [GOAL] case neg A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 ⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem } [PROOFSTEP] set gₘ := g ⟨m, Submodule.subset_span (Set.mem_singleton _)⟩ with gm_eq [GOAL] case neg A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } ⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem } [PROOFSTEP] refine' ⟨{ toFun := _ map_add' := _ map_smul' := _ }, fun n hn => _⟩ [GOAL] case neg.refine'_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } ⊢ ℤ → A [PROOFSTEP] intro n [GOAL] case neg.refine'_1 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ ⊢ A [PROOFSTEP] exact n • DivisibleBy.div gₘ m [GOAL] case neg.refine'_2 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } ⊢ ∀ (x y : ℤ), (x + y) • DivisibleBy.div gₘ m = x • DivisibleBy.div gₘ m + y • DivisibleBy.div gₘ m [PROOFSTEP] intro n1 n2 [GOAL] case neg.refine'_2 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n1 n2 : ℤ ⊢ (n1 + n2) • DivisibleBy.div gₘ m = n1 • DivisibleBy.div gₘ m + n2 • DivisibleBy.div gₘ m [PROOFSTEP] simp only [add_smul] [GOAL] case neg.refine'_3 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } ⊢ ∀ (r x : ℤ), AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } (r • x) = ↑(RingHom.id ℤ) r • AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } x [PROOFSTEP] intro n1 n2 [GOAL] case neg.refine'_3 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n1 n2 : ℤ ⊢ AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } (n1 • n2) = ↑(RingHom.id ℤ) n1 • AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } n2 [PROOFSTEP] dsimp [GOAL] case neg.refine'_3 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n1 n2 : ℤ ⊢ (n1 * n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m [PROOFSTEP] rw [mul_smul] [GOAL] case neg.refine'_4 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n ∈ Submodule.span ℤ {m} ⊢ ↑{ toAddHom := { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }, map_smul' := (_ : ∀ (n1 n2 : ℤ), AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } (n1 • n2) = ↑(RingHom.id ℤ) n1 • AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } n2) } n = ↑g { val := n, property := hn } [PROOFSTEP] rw [Submodule.mem_span_singleton] at hn [GOAL] case neg.refine'_4 A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn✝ : n ∈ Submodule.span ℤ {m} hn : ∃ a, a • m = n ⊢ ↑{ toAddHom := { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }, map_smul' := (_ : ∀ (n1 n2 : ℤ), AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } (n1 • n2) = ↑(RingHom.id ℤ) n1 • AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } n2) } n = ↑g { val := n, property := hn✝ } [PROOFSTEP] rcases hn with ⟨n, rfl⟩ [GOAL] case neg.refine'_4.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n • m ∈ Submodule.span ℤ {m} ⊢ ↑{ toAddHom := { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }, map_smul' := (_ : ∀ (n1 n2 : ℤ), AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } (n1 • n2) = ↑(RingHom.id ℤ) n1 • AddHom.toFun { toFun := fun n => n • DivisibleBy.div gₘ m, map_add' := (_ : ∀ (n1 n2 : ℤ), (n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m + n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) } n2) } (n • m) = ↑g { val := n • m, property := hn } [PROOFSTEP] simp only [gm_eq, Algebra.id.smul_eq_mul, LinearMap.coe_mk] [GOAL] case neg.refine'_4.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n • m ∈ Submodule.span ℤ {m} ⊢ ↑{ toFun := fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m, map_add' := (_ : ∀ (x y : ℤ), (fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) (x + y) = (fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) x + (fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) y) } (n * m) = ↑g { val := n * m, property := (_ : (fun x => x ∈ Submodule.span ℤ {m}) (n * m)) } [PROOFSTEP] dsimp [GOAL] case neg.refine'_4.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n • m ∈ Submodule.span ℤ {m} ⊢ (n * m) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = ↑g { val := n * m, property := hn } [PROOFSTEP] rw [mul_smul] -- Porting note: used to be able to just rw [Div...] [GOAL] case neg.refine'_4.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n • m ∈ Submodule.span ℤ {m} ⊢ n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = ↑g { val := n * m, property := hn } [PROOFSTEP] have s := congrArg (fun l => n • l) <| DivisibleBy.div_cancel gₘ m_eq_zero [GOAL] case neg.refine'_4.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n • m ∈ Submodule.span ℤ {m} s : (fun l => n • l) (m • DivisibleBy.div gₘ m) = (fun l => n • l) gₘ ⊢ n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = ↑g { val := n * m, property := hn } [PROOFSTEP] dsimp at s [GOAL] case neg.refine'_4.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n • m ∈ Submodule.span ℤ {m} s : n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n • ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } ⊢ n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = ↑g { val := n * m, property := hn } [PROOFSTEP] rw [s, ← LinearMap.map_smul] [GOAL] case neg.refine'_4.intro A : Type u inst✝¹ : AddCommGroup A inst✝ : DivisibleBy A ℤ m : ℤ g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A m_eq_zero : ¬m = 0 gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } n : ℤ hn : n • m ∈ Submodule.span ℤ {m} s : n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m = n • ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) } ⊢ ↑g (n • { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) = ↑g { val := n * m, property := hn } [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Injective", "llama_tokens": 32835}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCatMax j : J ⊢ Group ((F ⋙ forget GroupCat).obj j) [PROOFSTEP] change Group (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCatMax j : J ⊢ Group ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCat src✝ : Submonoid ((j : J) → ↑((F ⋙ forget₂ GroupCat MonCat).obj j)) := MonCat.sectionsSubmonoid (F ⋙ forget₂ GroupCat MonCat) a : (j : J) → ↑(F.obj j) ah : a ∈ { toSubsemigroup := { carrier := Functor.sections (F ⋙ forget GroupCat), mul_mem' := (_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : ∀ {j j' : J} (f : j ⟶ j'), ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).map f (OfNat.ofNat 1 j) = OfNat.ofNat 1 j') }.toSubsemigroup.carrier j j' : J f : j ⟶ j' ⊢ (F ⋙ forget GroupCat).map f (a⁻¹ j) = a⁻¹ j' [PROOFSTEP] simp only [Functor.comp_map, Pi.inv_apply, MonoidHom.map_inv, inv_inj] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCat src✝ : Submonoid ((j : J) → ↑((F ⋙ forget₂ GroupCat MonCat).obj j)) := MonCat.sectionsSubmonoid (F ⋙ forget₂ GroupCat MonCat) a : (j : J) → ↑(F.obj j) ah : a ∈ { toSubsemigroup := { carrier := Functor.sections (F ⋙ forget GroupCat), mul_mem' := (_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : ∀ {j j' : J} (f : j ⟶ j'), ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).map f (OfNat.ofNat 1 j) = OfNat.ofNat 1 j') }.toSubsemigroup.carrier j j' : J f : j ⟶ j' ⊢ (forget GroupCat).map (F.map f) (a j)⁻¹ = (a j')⁻¹ [PROOFSTEP] dsimp [Functor.sections] at ah ⊢ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCat src✝ : Submonoid ((j : J) → ↑((F ⋙ forget₂ GroupCat MonCat).obj j)) := MonCat.sectionsSubmonoid (F ⋙ forget₂ GroupCat MonCat) a : (j : J) → ↑(F.obj j) ah : a ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'} j j' : J f : j ⟶ j' ⊢ ↑(F.map f) (a j)⁻¹ = (a j')⁻¹ [PROOFSTEP] rw [(F.map f).map_inv (a j), ah f] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCatMax ⊢ Group (Types.limitCone (F ⋙ forget GroupCat)).pt [PROOFSTEP] change Group (sectionsSubgroup.{v, u} F) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCatMax ⊢ Group { x // x ∈ sectionsSubgroup F } [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ GroupCatMax this : ReflectsIsomorphisms (forget₂ GroupCatMax MonCatMax) := reflectsIsomorphisms_forget₂ GroupCatMax MonCatMax c' : Cone (F ⋙ forget₂ GroupCat MonCat) t : IsLimit c' ⊢ (forget₂ GroupCat MonCat).mapCone { pt := of (Types.limitCone (F ⋙ forget GroupCatMax)).pt, π := NatTrans.mk (MonCat.limitπMonoidHom (F ⋙ forget₂ GroupCatMax MonCatMax)) } ≅ c' [PROOFSTEP] apply IsLimit.uniqueUpToIso (MonCat.HasLimits.limitConeIsLimit.{v, u} _) t [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommGroupCatMax j : J ⊢ CommGroup ((F ⋙ forget CommGroupCatMax).obj j) [PROOFSTEP] change CommGroup (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommGroupCatMax j : J ⊢ CommGroup ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommGroupCatMax this : ReflectsIsomorphisms (forget₂ CommGroupCatMax GroupCatMax) := reflectsIsomorphisms_forget₂ CommGroupCatMax GroupCatMax c' : Cone (F ⋙ forget₂ CommGroupCat GroupCatMax) t : IsLimit c' ⊢ (forget₂ CommGroupCat GroupCatMax).mapCone { pt := of (Types.limitCone (F ⋙ forget CommGroupCat)).pt, π := NatTrans.mk (MonCat.limitπMonoidHom (F ⋙ forget₂ CommGroupCat GroupCat ⋙ forget₂ GroupCat MonCat)) } ≅ c' [PROOFSTEP] apply IsLimit.uniqueUpToIso (GroupCat.limitConeIsLimit _) t [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommGroupCatMax this : ReflectsIsomorphisms (forget₂ CommGroupCatMax GroupCatMax) := reflectsIsomorphisms_forget₂ CommGroupCatMax GroupCatMax c' : Cone (F ⋙ forget₂ CommGroupCat GroupCatMax) t : IsLimit c' ⊢ IsLimit ((forget₂ CommGroupCatMax GroupCat ⋙ forget₂ GroupCat MonCat).mapCone { liftedCone := { pt := of (Types.limitCone (F ⋙ forget CommGroupCat)).pt, π := NatTrans.mk (MonCat.limitπMonoidHom (F ⋙ forget₂ CommGroupCat GroupCat ⋙ forget₂ GroupCat MonCat)) }, validLift := IsLimit.uniqueUpToIso (GroupCat.limitConeIsLimit (F ⋙ forget₂ CommGroupCat GroupCatMax)) t }.liftedCone) [PROOFSTEP] apply MonCat.HasLimits.limitConeIsLimit _ [GOAL] J✝ : Type v inst✝ : SmallCategory J✝ J : Type v 𝒥 : Category.{v, v} J F : J ⥤ CommGroupCatMax ⊢ PreservesLimit F (forget₂ CommGroupCatMax GroupCatMax) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J f : ℕ → AddCommGroupCat ⊢ HasProduct f [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0 [PROOFSTEP] refine Subtype.ext ?_ [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ ↑((fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0) = ↑0 [PROOFSTEP] simp [(AddSubgroup.coe_zero _).symm] [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H g g' : ↑(kernel f) ⊢ ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g') = ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g + ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g' [PROOFSTEP] refine Subtype.ext ?_ [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H g g' : ↑(kernel f) ⊢ ↑(ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g')) = ↑(ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g + ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g') [PROOFSTEP] change _ = _ + _ [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H g g' : ↑(kernel f) ⊢ ↑(ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g')) = ↑(ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g) + ↑(ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g') [PROOFSTEP] dsimp [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H g g' : ↑(kernel f) ⊢ ↑(kernel.ι f) (g + g') = ↑(kernel.ι f) g + ↑(kernel.ι f) g' [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0 [PROOFSTEP] refine FunLike.ext _ _ ?_ [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ ∀ (x : ↑(of { x // x ∈ AddMonoidHom.ker f })), ↑(AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f) x = ↑0 x [PROOFSTEP] rintro ⟨x, (hx : f _ = 0)⟩ [GOAL] case mk J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑G hx : ↑f x = 0 ⊢ ↑(AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f) { val := x, property := hx } = ↑0 { val := x, property := hx } [PROOFSTEP] exact hx [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ { toZeroHom := { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }, map_add' := (_ : ∀ (g g' : ↑(kernel f)), ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g') = ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g + ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g') } ≫ kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0) = 𝟙 (kernel f) [PROOFSTEP] refine equalizer.hom_ext ?_ [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ ({ toZeroHom := { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }, map_add' := (_ : ∀ (g g' : ↑(kernel f)), ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g') = ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g + ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g') } ≫ kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)) ≫ equalizer.ι f 0 = 𝟙 (kernel f) ≫ equalizer.ι f 0 [PROOFSTEP] ext x [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑(kernel f) ⊢ ↑(({ toZeroHom := { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }, map_add' := (_ : ∀ (g g' : ↑(kernel f)), ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g') = ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g + ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g') } ≫ kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)) ≫ equalizer.ι f 0) x = ↑(𝟙 (kernel f) ≫ equalizer.ι f 0) x [PROOFSTEP] dsimp [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑(kernel f) ⊢ ↑(kernel.ι f) (↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)) { val := ↑(kernel.ι f) x, property := (_ : ↑(kernel.ι f ≫ f) x = ↑0 x) }) = ↑(kernel.ι f) x [PROOFSTEP] generalize_proofs _ h1 h2 [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑(kernel f) h✝ : HasKernel f h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0 h2 : ↑(kernel.ι f ≫ f) x = ↑0 x ⊢ ↑(kernel.ι f) (↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) h1) { val := ↑(kernel.ι f) x, property := h2 }) = ↑(kernel.ι f) x [PROOFSTEP] erw [FunLike.congr_fun (kernel.lift_ι f _ h1) ⟨_, h2⟩] [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑(kernel f) h✝ : HasKernel f h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0 h2 : ↑(kernel.ι f ≫ f) x = ↑0 x ⊢ ↑(AddSubgroup.subtype (AddMonoidHom.ker f)) { val := ↑(kernel.ι f) x, property := h2 } = ↑(kernel.ι f) x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0) ≫ { toZeroHom := { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }, map_add' := (_ : ∀ (g g' : ↑(kernel f)), ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g') = ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g + ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g') } = 𝟙 (of { x // x ∈ AddMonoidHom.ker f }) [PROOFSTEP] apply AddCommGroupCat.ext [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ ∀ (x : ↑(of { x // x ∈ AddMonoidHom.ker f })), ↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0) ≫ { toZeroHom := { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }, map_add' := (_ : ∀ (g g' : ↑(kernel f)), ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } (g + g') = ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g + ZeroHom.toFun { toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } g') }) x = ↑(𝟙 (of { x // x ∈ AddMonoidHom.ker f })) x [PROOFSTEP] simp only [AddMonoidHom.coe_mk, coe_id, coe_comp] [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ ∀ (x : ↑(of { x // x ∈ AddMonoidHom.ker f })), (↑{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } ∘ ↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0))) x = id x [PROOFSTEP] rintro ⟨x, mem⟩ [GOAL] case w.mk J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑G mem : x ∈ AddMonoidHom.ker f ⊢ (↑{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } ∘ ↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0))) { val := x, property := mem } = id { val := x, property := mem } [PROOFSTEP] refine Subtype.ext ?_ [GOAL] case w.mk J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑G mem : x ∈ AddMonoidHom.ker f ⊢ ↑((↑{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }, map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } ∘ ↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0))) { val := x, property := mem }) = ↑(id { val := x, property := mem }) [PROOFSTEP] simp only [ZeroHom.coe_mk, Function.comp_apply, id_eq] [GOAL] case w.mk J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑G mem : x ∈ AddMonoidHom.ker f ⊢ ↑(kernel.ι f) (↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)) { val := x, property := mem }) = x [PROOFSTEP] generalize_proofs _ h1 h2 [GOAL] case w.mk J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑G mem : x ∈ AddMonoidHom.ker f h✝ : HasKernel f h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0 ⊢ ↑(kernel.ι f) (↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) h1) { val := x, property := mem }) = x [PROOFSTEP] erw [FunLike.congr_fun (kernel.lift_ι f _ h1) ⟨_, mem⟩] [GOAL] case w.mk J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x : ↑G mem : x ∈ AddMonoidHom.ker f h✝ : HasKernel f h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0 ⊢ ↑(AddSubgroup.subtype (AddMonoidHom.ker f)) { val := x, property := mem } = x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ (kernelIsoKer f).hom ≫ AddSubgroup.subtype (AddMonoidHom.ker f) = kernel.ι f [PROOFSTEP] ext [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x✝ : ↑(kernel f) ⊢ ↑((kernelIsoKer f).hom ≫ AddSubgroup.subtype (AddMonoidHom.ker f)) x✝ = ↑(kernel.ι f) x✝ [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H ⊢ (kernelIsoKer f).inv ≫ kernel.ι f = AddSubgroup.subtype (AddMonoidHom.ker f) [PROOFSTEP] ext [GOAL] case w J : Type v inst✝ : SmallCategory J G H : AddCommGroupCat f : G ⟶ H x✝ : ↑(of { x // x ∈ AddMonoidHom.ker f }) ⊢ ↑((kernelIsoKer f).inv ≫ kernel.ι f) x✝ = ↑(AddSubgroup.subtype (AddMonoidHom.ker f)) x✝ [PROOFSTEP] simp [kernelIsoKer]
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Limits", "llama_tokens": 9401}
[GOAL] R : Type u inst✝ : Ring R M : ModuleCat R N : Submodule R ↑M ⊢ (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N [PROOFSTEP] convert congr_arg LinearMap.range (underlyingIso_arrow (↾N.subtype : of R { x // x ∈ N } ⟶ M)) using 1 [GOAL] case h.e'_2 R : Type u inst✝ : Ring R M : ModuleCat R N : Submodule R ↑M ⊢ (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = LinearMap.range ((underlyingIso (↾(Submodule.subtype N))).inv ≫ arrow (Subobject.mk (↾(Submodule.subtype N)))) [PROOFSTEP] have : -- Porting note: added the `.toLinearEquiv.toLinearMap`(underlyingIso (↾N.subtype : of R _ ⟶ M)).inv = (underlyingIso (↾N.subtype : of R _ ⟶ M)).symm.toLinearEquiv.toLinearMap := by apply LinearMap.ext intro x rfl [GOAL] R : Type u inst✝ : Ring R M : ModuleCat R N : Submodule R ↑M ⊢ (underlyingIso (↾(Submodule.subtype N))).inv = ↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm) [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u inst✝ : Ring R M : ModuleCat R N : Submodule R ↑M ⊢ ∀ (x : ↑(of R { x // x ∈ N })), ↑(underlyingIso (↾(Submodule.subtype N))).inv x = ↑↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm) x [PROOFSTEP] intro x [GOAL] case h R : Type u inst✝ : Ring R M : ModuleCat R N : Submodule R ↑M x : ↑(of R { x // x ∈ N }) ⊢ ↑(underlyingIso (↾(Submodule.subtype N))).inv x = ↑↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm) x [PROOFSTEP] rfl [GOAL] case h.e'_2 R : Type u inst✝ : Ring R M : ModuleCat R N : Submodule R ↑M this : (underlyingIso (↾(Submodule.subtype N))).inv = ↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm) ⊢ (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = LinearMap.range ((underlyingIso (↾(Submodule.subtype N))).inv ≫ arrow (Subobject.mk (↾(Submodule.subtype N)))) [PROOFSTEP] rw [this, comp_def, LinearEquiv.range_comp] [GOAL] case h.e'_3 R : Type u inst✝ : Ring R M : ModuleCat R N : Submodule R ↑M ⊢ N = LinearMap.range (↾(Submodule.subtype N)) [PROOFSTEP] exact (Submodule.range_subtype _).symm [GOAL] R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ S = (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) [PROOFSTEP] fapply eq_mk_of_comm [GOAL] case i R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ underlying.obj S ≅ of R { x // x ∈ (fun S => LinearMap.range (arrow S)) S } [PROOFSTEP] apply LinearEquiv.toModuleIso'Left [GOAL] case i.e R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ ↑(underlying.obj S) ≃ₗ[R] { x // x ∈ (fun S => LinearMap.range (arrow S)) S } [PROOFSTEP] apply LinearEquiv.ofBijective (LinearMap.codRestrict (LinearMap.range S.arrow) S.arrow _) [GOAL] case i.e R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ Function.Bijective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) ?m.95491) R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ ∀ (c : ↑(underlying.obj S)), ↑(arrow S) c ∈ LinearMap.range (arrow S) [PROOFSTEP] constructor [GOAL] case i.e.left R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ Function.Injective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) ?m.95491) [PROOFSTEP] simp [← LinearMap.ker_eq_bot, LinearMap.ker_codRestrict] [GOAL] case i.e.left R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ LinearMap.ker (arrow S) = ⊥ [PROOFSTEP] rw [ker_eq_bot_of_mono] [GOAL] case i.e.right R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ Function.Surjective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) ?m.95491) [PROOFSTEP] rw [← LinearMap.range_eq_top, LinearMap.range_codRestrict, Submodule.comap_subtype_self] [GOAL] case i.e.right.hf R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ ∀ (c : ↑(underlying.obj S)), ↑(arrow S) c ∈ LinearMap.range (arrow S) [PROOFSTEP] exact LinearMap.mem_range_self _ [GOAL] case w R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ (LinearEquiv.toModuleIso'Left (LinearEquiv.ofBijective (LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) (_ : Function.Injective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) ∧ Function.Surjective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))))).hom ≫ ↾(Submodule.subtype ((fun S => LinearMap.range (arrow S)) S)) = arrow S [PROOFSTEP] apply LinearMap.ext [GOAL] case w.h R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M ⊢ ∀ (x : ↑(underlying.obj S)), ↑((LinearEquiv.toModuleIso'Left (LinearEquiv.ofBijective (LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) (_ : Function.Injective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) ∧ Function.Surjective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))))).hom ≫ ↾(Submodule.subtype ((fun S => LinearMap.range (arrow S)) S))) x = ↑(arrow S) x [PROOFSTEP] intro x [GOAL] case w.h R : Type u inst✝ : Ring R M : ModuleCat R S : Subobject M x : ↑(underlying.obj S) ⊢ ↑((LinearEquiv.toModuleIso'Left (LinearEquiv.ofBijective (LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) (_ : Function.Injective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) ∧ Function.Surjective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) (_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))))).hom ≫ ↾(Submodule.subtype ((fun S => LinearMap.range (arrow S)) S))) x = ↑(arrow S) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R M : ModuleCat R S T : Submodule R ↑M ⊢ ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } S ≤ ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } T ↔ S ≤ T [PROOFSTEP] refine' ⟨fun h => _, fun h => mk_le_mk_of_comm (↟(Submodule.ofLe h)) rfl⟩ [GOAL] R : Type u inst✝ : Ring R M : ModuleCat R S T : Submodule R ↑M h : ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } S ≤ ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } T ⊢ S ≤ T [PROOFSTEP] convert LinearMap.range_comp_le_range (ofMkLEMk _ _ h) (↾T.subtype) [GOAL] case h.e'_3 R : Type u inst✝ : Ring R M : ModuleCat R S T : Submodule R ↑M h : ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } S ≤ ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } T ⊢ S = LinearMap.range (LinearMap.comp (↾(Submodule.subtype T)) (ofMkLEMk (↾(Submodule.subtype S)) (↾(Submodule.subtype T)) h)) [PROOFSTEP] simpa only [← comp_def, ofMkLEMk_comp] using (Submodule.range_subtype _).symm [GOAL] case h.e'_4 R : Type u inst✝ : Ring R M : ModuleCat R S T : Submodule R ↑M h : ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } S ≤ ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S), left_inv := (_ : ∀ (N : Submodule R ↑M), (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N), right_inv := (_ : ∀ (S : Subobject M), (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) } T ⊢ T = LinearMap.range (↾(Submodule.subtype T)) [PROOFSTEP] exact (Submodule.range_subtype _).symm [GOAL] R : Type u inst✝ : Ring R M✝ : ModuleCat R M N : ModuleCat R f : M ⟶ N x : { x // x ∈ LinearMap.ker f } ⊢ ↑(arrow (kernelSubobject f)) (↑toKernelSubobject x) = ↑x [PROOFSTEP] suffices ((arrow ((kernelSubobject f))) ∘ (kernelSubobjectIso f ≪≫ kernelIsoKer f).inv) x = x by convert this [GOAL] R : Type u inst✝ : Ring R M✝ : ModuleCat R M N : ModuleCat R f : M ⟶ N x : { x // x ∈ LinearMap.ker f } this : (↑(arrow (kernelSubobject f)) ∘ ↑(kernelSubobjectIso f ≪≫ kernelIsoKer f).inv) x = ↑x ⊢ ↑(arrow (kernelSubobject f)) (↑toKernelSubobject x) = ↑x [PROOFSTEP] convert this [GOAL] R : Type u inst✝ : Ring R M✝ : ModuleCat R M N : ModuleCat R f : M ⟶ N x : { x // x ∈ LinearMap.ker f } ⊢ (↑(arrow (kernelSubobject f)) ∘ ↑(kernelSubobjectIso f ≪≫ kernelIsoKer f).inv) x = ↑x [PROOFSTEP] rw [Iso.trans_inv, ← coe_comp, Category.assoc] [GOAL] R : Type u inst✝ : Ring R M✝ : ModuleCat R M N : ModuleCat R f : M ⟶ N x : { x // x ∈ LinearMap.ker f } ⊢ ↑((kernelIsoKer f).inv ≫ (kernelSubobjectIso f).inv ≫ arrow (kernelSubobject f)) x = ↑x [PROOFSTEP] simp only [Category.assoc, kernelSubobject_arrow', kernelIsoKer_inv_kernel_ι] [GOAL] R : Type u inst✝ : Ring R M✝ : ModuleCat R M N : ModuleCat R f : M ⟶ N x : { x // x ∈ LinearMap.ker f } ⊢ ↑(Submodule.subtype (LinearMap.ker f)) x = ↑x [PROOFSTEP] aesop_cat [GOAL] R : Type u inst✝² : Ring R M✝ L M N : ModuleCat R f : L ⟶ M inst✝¹ : HasImage f g : underlying.obj (imageSubobject f) ⟶ N inst✝ : HasCokernel g x y : ↑N l : ↑L w : x = y + ↑g (↑(factorThruImageSubobject f) l) ⊢ ↑(cokernel.π g) x = ↑(cokernel.π g) y [PROOFSTEP] subst w [GOAL] R : Type u inst✝² : Ring R M✝ L M N : ModuleCat R f : L ⟶ M inst✝¹ : HasImage f g : underlying.obj (imageSubobject f) ⟶ N inst✝ : HasCokernel g y : ↑N l : ↑L ⊢ ↑(cokernel.π g) (y + ↑g (↑(factorThruImageSubobject f) l)) = ↑(cokernel.π g) y [PROOFSTEP] simp only [map_add, add_right_eq_self] [GOAL] R : Type u inst✝² : Ring R M✝ L M N : ModuleCat R f : L ⟶ M inst✝¹ : HasImage f g : underlying.obj (imageSubobject f) ⟶ N inst✝ : HasCokernel g y : ↑N l : ↑L ⊢ ↑(cokernel.π g) (↑g (↑(factorThruImageSubobject f) l)) = 0 [PROOFSTEP] change ((cokernel.π g) ∘ (g) ∘ (factorThruImageSubobject f)) l = 0 [GOAL] R : Type u inst✝² : Ring R M✝ L M N : ModuleCat R f : L ⟶ M inst✝¹ : HasImage f g : underlying.obj (imageSubobject f) ⟶ N inst✝ : HasCokernel g y : ↑N l : ↑L ⊢ (↑(cokernel.π g) ∘ ↑g ∘ ↑(factorThruImageSubobject f)) l = 0 [PROOFSTEP] rw [← coe_comp, ← coe_comp, Category.assoc] [GOAL] R : Type u inst✝² : Ring R M✝ L M N : ModuleCat R f : L ⟶ M inst✝¹ : HasImage f g : underlying.obj (imageSubobject f) ⟶ N inst✝ : HasCokernel g y : ↑N l : ↑L ⊢ ↑(factorThruImageSubobject f ≫ g ≫ cokernel.π g) l = 0 [PROOFSTEP] simp only [cokernel.condition, comp_zero] [GOAL] R : Type u inst✝² : Ring R M✝ L M N : ModuleCat R f : L ⟶ M inst✝¹ : HasImage f g : underlying.obj (imageSubobject f) ⟶ N inst✝ : HasCokernel g y : ↑N l : ↑L ⊢ ↑0 l = 0 [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Subobject", "llama_tokens": 5895}
[GOAL] ⊢ ConcreteCategory GroupCat [PROOFSTEP] dsimp only [GroupCat] [GOAL] ⊢ ConcreteCategory (Bundled Group) [PROOFSTEP] infer_instance [GOAL] R S : GroupCat i : R ⟶ S r : ↑R h : r = 1 ⊢ ↑i r = 1 [PROOFSTEP] simp [h] [GOAL] ⊢ ConcreteCategory CommGroupCat [PROOFSTEP] dsimp only [CommGroupCat] [GOAL] ⊢ ConcreteCategory (Bundled CommGroup) [PROOFSTEP] infer_instance [GOAL] R S : CommGroupCat i : R ⟶ S r : ↑R h : r = 1 ⊢ ↑i r = 1 [PROOFSTEP] simp [h] [GOAL] G : AddCommGroupCat h k : ↑G w : asHom h = asHom k ⊢ h = k [PROOFSTEP] convert congr_arg (fun k : AddCommGroupCat.of ℤ ⟶ G => (k : ℤ → G) (1 : ℤ)) w [GOAL] case h.e'_2 G : AddCommGroupCat h k : ↑G w : asHom h = asHom k ⊢ h = ↑(asHom h) 1 [PROOFSTEP] simp [GOAL] case h.e'_3 G : AddCommGroupCat h k : ↑G w : asHom h = asHom k ⊢ k = ↑(asHom k) 1 [PROOFSTEP] simp [GOAL] G H : AddCommGroupCat f : G ⟶ H inst✝ : Mono f g₁ g₂ : ↑G h : ↑f g₁ = ↑f g₂ ⊢ g₁ = g₂ [PROOFSTEP] have t0 : asHom g₁ ≫ f = asHom g₂ ≫ f := by aesop_cat [GOAL] G H : AddCommGroupCat f : G ⟶ H inst✝ : Mono f g₁ g₂ : ↑G h : ↑f g₁ = ↑f g₂ ⊢ asHom g₁ ≫ f = asHom g₂ ≫ f [PROOFSTEP] aesop_cat [GOAL] G H : AddCommGroupCat f : G ⟶ H inst✝ : Mono f g₁ g₂ : ↑G h : ↑f g₁ = ↑f g₂ t0 : asHom g₁ ≫ f = asHom g₂ ≫ f ⊢ g₁ = g₂ [PROOFSTEP] have t1 : asHom g₁ = asHom g₂ := (cancel_mono _).1 t0 [GOAL] G H : AddCommGroupCat f : G ⟶ H inst✝ : Mono f g₁ g₂ : ↑G h : ↑f g₁ = ↑f g₂ t0 : asHom g₁ ≫ f = asHom g₂ ≫ f t1 : asHom g₁ = asHom g₂ ⊢ g₁ = g₂ [PROOFSTEP] apply asHom_injective t1 [GOAL] α : Type u ⊢ (fun g => g.toEquiv) 1 = 1 [PROOFSTEP] aesop [GOAL] α : Type u ⊢ ∀ (x y : ↑(GroupCat.of (Aut α))), OneHom.toFun { toFun := fun g => g.toEquiv, map_one' := (_ : (fun g => g.toEquiv) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun g => g.toEquiv, map_one' := (_ : (fun g => g.toEquiv) 1 = 1) } x * OneHom.toFun { toFun := fun g => g.toEquiv, map_one' := (_ : (fun g => g.toEquiv) 1 = 1) } y [PROOFSTEP] aesop [GOAL] α : Type u ⊢ (fun g => Equiv.toIso g) 1 = 1 [PROOFSTEP] aesop [GOAL] α : Type u ⊢ ∀ (x y : ↑(GroupCat.of (Equiv.Perm α))), OneHom.toFun { toFun := fun g => Equiv.toIso g, map_one' := (_ : (fun g => Equiv.toIso g) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun g => Equiv.toIso g, map_one' := (_ : (fun g => Equiv.toIso g) 1 = 1) } x * OneHom.toFun { toFun := fun g => Equiv.toIso g, map_one' := (_ : (fun g => Equiv.toIso g) 1 = 1) } y [PROOFSTEP] aesop [GOAL] X Y : GroupCat f : X ⟶ Y x✝ : IsIso ((forget GroupCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget GroupCat).map f) [GOAL] X Y : GroupCat f : X ⟶ Y x✝ : IsIso ((forget GroupCat).map f) i : (forget GroupCat).obj X ≅ (forget GroupCat).obj Y := asIso ((forget GroupCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := MulEquiv.mk i.toEquiv (MonoidHom.map_mul (show MonoidHom X Y from f)) [GOAL] X Y : GroupCat f : X ⟶ Y x✝ : IsIso ((forget GroupCat).map f) i : (forget GroupCat).obj X ≅ (forget GroupCat).obj Y := asIso ((forget GroupCat).map f) e : ↑X ≃* ↑Y := { toEquiv := i.toEquiv, map_mul' := (_ : ∀ (a b : ↑X), ↑(let_fun this := f; this) (a * b) = ↑(let_fun this := f; this) a * ↑(let_fun this := f; this) b) } ⊢ IsIso f [PROOFSTEP] exact IsIso.of_iso e.toGroupCatIso [GOAL] X Y : CommGroupCat f : X ⟶ Y x✝ : IsIso ((forget CommGroupCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget CommGroupCat).map f) [GOAL] X Y : CommGroupCat f : X ⟶ Y x✝ : IsIso ((forget CommGroupCat).map f) i : (forget CommGroupCat).obj X ≅ (forget CommGroupCat).obj Y := asIso ((forget CommGroupCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := MulEquiv.mk i.toEquiv (MonoidHom.map_mul (show MonoidHom X Y from f)) [GOAL] X Y : CommGroupCat f : X ⟶ Y x✝ : IsIso ((forget CommGroupCat).map f) i : (forget CommGroupCat).obj X ≅ (forget CommGroupCat).obj Y := asIso ((forget CommGroupCat).map f) e : ↑X ≃* ↑Y := { toEquiv := i.toEquiv, map_mul' := (_ : ∀ (a b : ↑X), ↑(let_fun this := f; this) (a * b) = ↑(let_fun this := f; this) a * ↑(let_fun this := f; this) b) } ⊢ IsIso f [PROOFSTEP] exact IsIso.of_iso e.toCommGroupCatIso
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Basic", "llama_tokens": 2076}
[GOAL] A : Type u B : Type v inst✝¹ : Group A inst✝ : Group B f : A →* B h : ∀ (u v : { x // x ∈ ker f } →* A), comp f u = comp f v → u = v ⊢ ker f = ⊥ [PROOFSTEP] simpa using _root_.congr_arg range (h f.ker.subtype 1 (by aesop_cat)) [GOAL] A : Type u B : Type v inst✝¹ : Group A inst✝ : Group B f : A →* B h : ∀ (u v : { x // x ∈ ker f } →* A), comp f u = comp f v → u = v ⊢ comp f (Subgroup.subtype (ker f)) = comp f 1 [PROOFSTEP] aesop_cat [GOAL] A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v ⊢ range f = ⊤ [PROOFSTEP] specialize h 1 (QuotientGroup.mk' _) _ [GOAL] A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v ⊢ comp 1 f = comp (QuotientGroup.mk' (range f)) f [PROOFSTEP] ext1 x [GOAL] case h A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v x : A ⊢ ↑(comp 1 f) x = ↑(comp (QuotientGroup.mk' (range f)) f) x [PROOFSTEP] simp only [one_apply, coe_comp, coe_mk', Function.comp_apply] [GOAL] case h A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v x : A ⊢ 1 = ↑(↑f x) [PROOFSTEP] rw [show (1 : B ⧸ f.range) = (1 : B) from QuotientGroup.mk_one _, QuotientGroup.eq, inv_one, one_mul] [GOAL] case h A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v x : A ⊢ ↑f x ∈ range f [PROOFSTEP] exact ⟨x, rfl⟩ [GOAL] A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : 1 = QuotientGroup.mk' (range f) ⊢ range f = ⊤ [PROOFSTEP] replace h : (QuotientGroup.mk' _).ker = (1 : B →* B ⧸ f.range).ker := by rw [h] [GOAL] A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : 1 = QuotientGroup.mk' (range f) ⊢ ker (QuotientGroup.mk' ?m.28184) = ker 1 [PROOFSTEP] rw [h] [GOAL] A : Type u B : Type v inst✝¹ : CommGroup A inst✝ : CommGroup B f : A →* B h : ker (QuotientGroup.mk' (range f)) = ker 1 ⊢ range f = ⊤ [PROOFSTEP] rwa [ker_one, QuotientGroup.ker_mk'] at h [GOAL] A B : GroupCat f : A ⟶ B b : ↑B x : X' y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ b *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) [PROOFSTEP] rw [← y.2.choose_spec, leftCoset_assoc] -- Porting note: should we make `Bundled.α` reducible? [GOAL] A B : GroupCat f : A ⟶ B b : ↑B x : X' y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ b * Exists.choose (_ : ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) [PROOFSTEP] let b' : B := y.2.choose [GOAL] A B : GroupCat f : A ⟶ B b : ↑B x : X' y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) b' : ↑B := Exists.choose (_ : ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ b * Exists.choose (_ : ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) [PROOFSTEP] use b * b' [GOAL] A B : GroupCat f : A ⟶ B b b' : ↑B x : X' y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ (b * b') • fromCoset y = b • b' • fromCoset y [PROOFSTEP] change fromCoset _ = fromCoset _ [GOAL] A B : GroupCat f : A ⟶ B b b' : ↑B x : X' y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ fromCoset { val := b * b' *l ↑y, property := (_ : b * b' *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } = fromCoset { val := b *l ↑{ val := b' *l ↑y, property := (_ : b' *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }, property := (_ : b *l ↑{ val := b' *l ↑y, property := (_ : b' *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] simp only [leftCoset_assoc] [GOAL] A B : GroupCat f : A ⟶ B x : X' y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ 1 • fromCoset y = fromCoset y [PROOFSTEP] change fromCoset _ = fromCoset _ [GOAL] A B : GroupCat f : A ⟶ B x : X' y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ fromCoset { val := 1 *l ↑y, property := (_ : 1 *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } = fromCoset y [PROOFSTEP] simp only [one_leftCoset, Subtype.ext_iff_val] [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : b ∈ MonoidHom.range f ⊢ fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] congr [GOAL] case e_a.e_val A B : GroupCat f : A ⟶ B b : ↑B hb : b ∈ MonoidHom.range f ⊢ b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] let b : B.α := b [GOAL] case e_a.e_val A B : GroupCat f : A ⟶ B b✝ : ↑B hb : b✝ ∈ MonoidHom.range f b : ↑B := b✝ ⊢ b✝ *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] change b *l f.range = f.range [GOAL] case e_a.e_val A B : GroupCat f : A ⟶ B b✝ : ↑B hb : b✝ ∈ MonoidHom.range f b : ↑B := b✝ ⊢ b *l ↑(MonoidHom.range f) = ↑(MonoidHom.range f) [PROOFSTEP] nth_rw 2 [show (f.range : Set B.α) = 1 *l f.range from (one_leftCoset _).symm] [GOAL] case e_a.e_val A B : GroupCat f : A ⟶ B b✝ : ↑B hb : b✝ ∈ MonoidHom.range f b : ↑B := b✝ ⊢ b *l ↑(MonoidHom.range f) = 1 *l ↑(MonoidHom.range f) [PROOFSTEP] rw [leftCoset_eq_iff, mul_one] [GOAL] case e_a.e_val A B : GroupCat f : A ⟶ B b✝ : ↑B hb : b✝ ∈ MonoidHom.range f b : ↑B := b✝ ⊢ b⁻¹ ∈ MonoidHom.range f [PROOFSTEP] exact Subgroup.inv_mem _ hb [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ≠ fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] intro r [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ¬b ∈ MonoidHom.range f r : fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ⊢ False [PROOFSTEP] simp only [fromCoset.injEq, Subtype.mk.injEq] at r [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ¬b ∈ MonoidHom.range f r : b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ⊢ False [PROOFSTEP] let b' : B.α := b [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ¬b ∈ MonoidHom.range f r : b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier b' : ↑B := b ⊢ False [PROOFSTEP] change b' *l f.range = f.range at r [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ¬b ∈ MonoidHom.range f b' : ↑B := b r : b' *l ↑(MonoidHom.range f) = ↑(MonoidHom.range f) ⊢ False [PROOFSTEP] nth_rw 2 [show (f.range : Set B.α) = 1 *l f.range from (one_leftCoset _).symm] at r [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ¬b ∈ MonoidHom.range f b' : ↑B := b r : b' *l ↑(MonoidHom.range f) = 1 *l ↑(MonoidHom.range f) ⊢ False [PROOFSTEP] rw [leftCoset_eq_iff, mul_one] at r [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ¬b ∈ MonoidHom.range f b' : ↑B := b r : b'⁻¹ ∈ MonoidHom.range f ⊢ False [PROOFSTEP] exact hb (inv_inv b ▸ Subgroup.inv_mem _ r) [GOAL] A B : GroupCat f : A ⟶ B ⊢ ↑τ.symm (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = ∞ [PROOFSTEP] rw [tau, Equiv.symm_swap, Equiv.swap_apply_left] [GOAL] A B : GroupCat f : A ⟶ B ⊢ ↑τ.symm ∞ = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] rw [tau, Equiv.symm_swap, Equiv.swap_apply_right] [GOAL] A B : GroupCat f : A ⟶ B β : ↑B x : X' ⊢ (fun x => β⁻¹ • x) ((fun x => β • x) x) = x [PROOFSTEP] dsimp only [GOAL] A B : GroupCat f : A ⟶ B β : ↑B x : X' ⊢ β⁻¹ • β • x = x [PROOFSTEP] rw [← mul_smul, mul_left_inv, one_smul] [GOAL] A B : GroupCat f : A ⟶ B β : ↑B x : X' ⊢ (fun x => β • x) ((fun x => β⁻¹ • x) x) = x [PROOFSTEP] dsimp only [GOAL] A B : GroupCat f : A ⟶ B β : ↑B x : X' ⊢ β • β⁻¹ • x = x [PROOFSTEP] rw [← mul_smul, mul_right_inv, one_smul] [GOAL] A B : GroupCat f : A ⟶ B ⊢ (fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1 = 1 [PROOFSTEP] ext [GOAL] case H A B : GroupCat f : A ⟶ B x✝ : X' ⊢ ↑((fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1) x✝ = ↑1 x✝ [PROOFSTEP] simp [one_smul] [GOAL] A B : GroupCat f : A ⟶ B b1 b2 : ↑B ⊢ OneHom.toFun { toFun := fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }, map_one' := (_ : (fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1 = 1) } (b1 * b2) = OneHom.toFun { toFun := fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }, map_one' := (_ : (fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1 = 1) } b1 * OneHom.toFun { toFun := fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }, map_one' := (_ : (fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1 = 1) } b2 [PROOFSTEP] ext [GOAL] case H A B : GroupCat f : A ⟶ B b1 b2 : ↑B x✝ : X' ⊢ ↑(OneHom.toFun { toFun := fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }, map_one' := (_ : (fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1 = 1) } (b1 * b2)) x✝ = ↑(OneHom.toFun { toFun := fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }, map_one' := (_ : (fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1 = 1) } b1 * OneHom.toFun { toFun := fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }, map_one' := (_ : (fun β => { toFun := fun x => β • x, invFun := fun x => β⁻¹ • x, left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x), right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) }) 1 = 1) } b2) x✝ [PROOFSTEP] simp [mul_smul] [GOAL] A B : GroupCat f : A ⟶ B ⊢ (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1 [PROOFSTEP] ext [GOAL] case H A B : GroupCat f : A ⟶ B x✝ : X' ⊢ ↑((fun β => (τ.symm.trans (↑g β)).trans τ) 1) x✝ = ↑1 x✝ [PROOFSTEP] simp [GOAL] A B : GroupCat f : A ⟶ B b1 b2 : ↑B ⊢ OneHom.toFun { toFun := fun β => (τ.symm.trans (↑g β)).trans τ, map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) } (b1 * b2) = OneHom.toFun { toFun := fun β => (τ.symm.trans (↑g β)).trans τ, map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) } b1 * OneHom.toFun { toFun := fun β => (τ.symm.trans (↑g β)).trans τ, map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) } b2 [PROOFSTEP] ext [GOAL] case H A B : GroupCat f : A ⟶ B b1 b2 : ↑B x✝ : X' ⊢ ↑(OneHom.toFun { toFun := fun β => (τ.symm.trans (↑g β)).trans τ, map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) } (b1 * b2)) x✝ = ↑(OneHom.toFun { toFun := fun β => (τ.symm.trans (↑g β)).trans τ, map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) } b1 * OneHom.toFun { toFun := fun β => (τ.symm.trans (↑g β)).trans τ, map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) } b2) x✝ [PROOFSTEP] simp [GOAL] A B : GroupCat f : A ⟶ B x : ↑B y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) ⊢ x *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) [PROOFSTEP] aesop_cat [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f ⊢ ↑(↑h x) ∞ = ∞ [PROOFSTEP] change ((τ).symm.trans (g x)).trans τ _ = _ [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f ⊢ ↑((τ.symm.trans (↑g x)).trans τ) ∞ = ∞ [PROOFSTEP] simp only [MonoidHom.coe_mk, Equiv.toFun_as_coe, Equiv.coe_trans, Function.comp_apply] [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f ⊢ ↑τ (↑(↑g x) (↑τ.symm ∞)) = ∞ [PROOFSTEP] rw [τ_symm_apply_infinity, g_apply_fromCoset] [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f ⊢ ↑τ (fromCoset { val := x *l ↑{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }, property := (_ : x *l ↑{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }) = ∞ [PROOFSTEP] simpa only using τ_apply_fromCoset' f x hx [GOAL] A B : GroupCat f : A ⟶ B x : ↑B ⊢ ↑(↑h x) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] change ((τ).symm.trans (g x)).trans τ _ = _ [GOAL] A B : GroupCat f : A ⟶ B x : ↑B ⊢ ↑((τ.symm.trans (↑g x)).trans τ) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] simp [τ_symm_apply_fromCoset, g_apply_infinity, τ_apply_infinity] [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ ↑(↑h x) (fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] change ((τ).symm.trans (g x)).trans τ _ = _ [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ ↑((τ.symm.trans (↑g x)).trans τ) (fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] simp only [tau, MonoidHom.coe_mk, Equiv.toFun_as_coe, Equiv.coe_trans, Function.comp_apply] [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ ↑(Equiv.swap (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) ∞) (↑(↑g x) (↑(Equiv.swap (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) ∞).symm (fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }))) = fromCoset { val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] rw [Equiv.symm_swap, @Equiv.swap_apply_of_ne_of_ne X' _ (fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩) ∞ (fromCoset ⟨b *l f.range.carrier, ⟨b, rfl⟩⟩) (fromCoset_ne_of_nin_range _ hb) (by simp)] [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ≠ ∞ [PROOFSTEP] simp [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ ↑(Equiv.swap (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) ∞) (↑(↑g x) (fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })) = fromCoset { val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] simp only [g_apply_fromCoset, leftCoset_assoc] [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ ↑(Equiv.swap (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) ∞) (fromCoset { val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : (fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) (x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }) = fromCoset { val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] refine' Equiv.swap_apply_of_ne_of_ne (fromCoset_ne_of_nin_range _ fun r => hb _) (by simp) [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f ⊢ fromCoset { val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : (fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) (x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } ≠ ∞ [PROOFSTEP] simp [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f r : x * b ∈ MonoidHom.range f ⊢ b ∈ MonoidHom.range f [PROOFSTEP] convert Subgroup.mul_mem _ (Subgroup.inv_mem _ hx) r [GOAL] case h.e'_4 A B : GroupCat f : A ⟶ B x : ↑B hx : x ∈ MonoidHom.range f b : ↑B hb : ¬b ∈ MonoidHom.range f r : x * b ∈ MonoidHom.range f ⊢ b = x⁻¹ * (x * b) [PROOFSTEP] rw [← mul_assoc, mul_left_inv, one_mul] [GOAL] A B : GroupCat f : A ⟶ B ⊢ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = {x | ↑h x = ↑g x} [PROOFSTEP] refine' Set.ext fun b => ⟨_, fun hb : h b = g b => by_contradiction fun r => _⟩ [GOAL] case refine'_1 A B : GroupCat f : A ⟶ B b : ↑B ⊢ b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier → b ∈ {x | ↑h x = ↑g x} [PROOFSTEP] rintro ⟨a, rfl⟩ [GOAL] case refine'_1.intro A B : GroupCat f : A ⟶ B a : ↑A ⊢ ↑f a ∈ {x | ↑h x = ↑g x} [PROOFSTEP] change h (f a) = g (f a) [GOAL] case refine'_1.intro A B : GroupCat f : A ⟶ B a : ↑A ⊢ ↑h (↑f a) = ↑g (↑f a) [PROOFSTEP] ext ⟨⟨_, ⟨y, rfl⟩⟩⟩ [GOAL] case refine'_1.intro.H.fromCoset.mk.intro A B : GroupCat f : A ⟶ B a : ↑A y : ↑B ⊢ ↑(↑h (↑f a)) (fromCoset { val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) = ↑(↑g (↑f a)) (fromCoset { val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) [PROOFSTEP] rw [g_apply_fromCoset] [GOAL] case refine'_1.intro.H.fromCoset.mk.intro A B : GroupCat f : A ⟶ B a : ↑A y : ↑B ⊢ ↑(↑h (↑f a)) (fromCoset { val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) = fromCoset { val := ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }, property := (_ : ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] by_cases m : y ∈ f.range [GOAL] case pos A B : GroupCat f : A ⟶ B a : ↑A y : ↑B m : y ∈ MonoidHom.range f ⊢ ↑(↑h (↑f a)) (fromCoset { val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) = fromCoset { val := ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }, property := (_ : ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] rw [h_apply_fromCoset' _ _ _ m, fromCoset_eq_of_mem_range _ m] [GOAL] case pos A B : GroupCat f : A ⟶ B a : ↑A y : ↑B m : y ∈ MonoidHom.range f ⊢ fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } = fromCoset { val := ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }, property := (_ : ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] change fromCoset _ = fromCoset ⟨f a *l (y *l _), _⟩ [GOAL] case pos A B : GroupCat f : A ⟶ B a : ↑A y : ↑B m : y ∈ MonoidHom.range f ⊢ fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } = fromCoset { val := ↑f a *l (y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier), property := (_ : ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] simp only [← fromCoset_eq_of_mem_range _ (Subgroup.mul_mem _ ⟨a, rfl⟩ m)] [GOAL] case pos A B : GroupCat f : A ⟶ B a : ↑A y : ↑B m : y ∈ MonoidHom.range f ⊢ fromCoset { val := ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } = fromCoset { val := ↑f a *l (y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier), property := (_ : ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] congr [GOAL] case pos.e_a.e_val A B : GroupCat f : A ⟶ B a : ↑A y : ↑B m : y ∈ MonoidHom.range f ⊢ ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = ↑f a *l (y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) [PROOFSTEP] rw [leftCoset_assoc _ (f a) y] [GOAL] case neg A B : GroupCat f : A ⟶ B a : ↑A y : ↑B m : ¬y ∈ MonoidHom.range f ⊢ ↑(↑h (↑f a)) (fromCoset { val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) = fromCoset { val := ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }, property := (_ : ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] rw [h_apply_fromCoset_nin_range f (f a) ⟨_, rfl⟩ _ m] [GOAL] case neg A B : GroupCat f : A ⟶ B a : ↑A y : ↑B m : ¬y ∈ MonoidHom.range f ⊢ fromCoset { val := ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } = fromCoset { val := ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }, property := (_ : ↑f a *l ↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y, property := (_ : ∃ y_1, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 = Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } [PROOFSTEP] simp only [leftCoset_assoc] [GOAL] case refine'_1.intro.H.infinity A B : GroupCat f : A ⟶ B a : ↑A ⊢ ↑(↑h (↑f a)) ∞ = ↑(↑g (↑f a)) ∞ [PROOFSTEP] rw [g_apply_infinity, h_apply_infinity f (f a) ⟨_, rfl⟩] [GOAL] case refine'_2 A B : GroupCat f : A ⟶ B b : ↑B hb : ↑h b = ↑g b r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ⊢ False [PROOFSTEP] have eq1 : (h b) (fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩) = fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩ := by change ((τ).symm.trans (g b)).trans τ _ = _ dsimp [tau] simp [g_apply_infinity f] [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ↑h b = ↑g b r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ⊢ ↑(↑h b) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] change ((τ).symm.trans (g b)).trans τ _ = _ [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ↑h b = ↑g b r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ⊢ ↑((τ.symm.trans (↑g b)).trans τ) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] dsimp [tau] [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ↑h b = ↑g b r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ⊢ ↑(Equiv.swap (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) ∞) (↑(↑g b) (↑(Equiv.swap (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) ∞) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }))) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] simp [g_apply_infinity f] [GOAL] case refine'_2 A B : GroupCat f : A ⟶ B b : ↑B hb : ↑h b = ↑g b r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier eq1 : ↑(↑h b) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ⊢ False [PROOFSTEP] have eq2 : (g b) (fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩) = fromCoset ⟨b *l f.range.carrier, ⟨b, rfl⟩⟩ := rfl [GOAL] case refine'_2 A B : GroupCat f : A ⟶ B b : ↑B hb : ↑h b = ↑g b r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier eq1 : ↑(↑h b) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } eq2 : ↑(↑g b) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ⊢ False [PROOFSTEP] exact (fromCoset_ne_of_nin_range _ r).symm (by rw [← eq1, ← eq2, FunLike.congr_fun hb]) [GOAL] A B : GroupCat f : A ⟶ B b : ↑B hb : ↑h b = ↑g b r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier eq1 : ↑(↑h b) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } eq2 : ↑(↑g b) (fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) = fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ⊢ fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } = fromCoset { val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } [PROOFSTEP] rw [← eq1, ← eq2, FunLike.congr_fun hb] [GOAL] A B : GroupCat f : A ⟶ B ⊢ (f ≫ let_fun this := g; this) = f ≫ let_fun this := h; this [PROOFSTEP] ext a [GOAL] case w A B : GroupCat f : A ⟶ B a : ↑A ⊢ ↑(f ≫ let_fun this := g; this) a = ↑(f ≫ let_fun this := h; this) a [PROOFSTEP] change g (f a) = h (f a) [GOAL] case w A B : GroupCat f : A ⟶ B a : ↑A ⊢ ↑g (↑f a) = ↑h (↑f a) [PROOFSTEP] have : f a ∈ {b | h b = g b} := by rw [← agree] use a [GOAL] A B : GroupCat f : A ⟶ B a : ↑A ⊢ ↑f a ∈ {b | ↑h b = ↑g b} [PROOFSTEP] rw [← agree] [GOAL] A B : GroupCat f : A ⟶ B a : ↑A ⊢ ↑f a ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] use a [GOAL] case w A B : GroupCat f : A ⟶ B a : ↑A this : ↑f a ∈ {b | ↑h b = ↑g b} ⊢ ↑g (↑f a) = ↑h (↑f a) [PROOFSTEP] rw [this] [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : ¬x ∈ MonoidHom.range f ⊢ g ≠ h [PROOFSTEP] intro r [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : ¬x ∈ MonoidHom.range f r : g = h ⊢ False [PROOFSTEP] replace r := FunLike.congr_fun (FunLike.congr_fun r x) (fromCoset ⟨f.range, ⟨1, one_leftCoset _⟩⟩) [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : ¬x ∈ MonoidHom.range f r : ↑(↑g x) (fromCoset { val := ↑(MonoidHom.range f), property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = ↑(MonoidHom.range f)) }) = ↑(↑h x) (fromCoset { val := ↑(MonoidHom.range f), property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = ↑(MonoidHom.range f)) }) ⊢ False [PROOFSTEP] change _ = ((τ).symm.trans (g x)).trans τ _ at r [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : ¬x ∈ MonoidHom.range f r : ↑(↑g x) (fromCoset { val := ↑(MonoidHom.range f), property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = ↑(MonoidHom.range f)) }) = ↑((τ.symm.trans (↑g x)).trans τ) (fromCoset { val := ↑(MonoidHom.range f), property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = ↑(MonoidHom.range f)) }) ⊢ False [PROOFSTEP] rw [g_apply_fromCoset, MonoidHom.coe_mk] at r [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : ¬x ∈ MonoidHom.range f r : fromCoset { val := x *l ↑{ val := ↑(MonoidHom.range f), property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = ↑(MonoidHom.range f)) }, property := (_ : x *l ↑{ val := ↑(MonoidHom.range f), property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = ↑(MonoidHom.range f)) } ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } = ↑((τ.symm.trans (↑↑g x)).trans τ) (fromCoset { val := ↑(MonoidHom.range f), property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = ↑(MonoidHom.range f)) }) ⊢ False [PROOFSTEP] simp only [MonoidHom.coe_range, Subtype.coe_mk, Equiv.symm_swap, Equiv.toFun_as_coe, Equiv.coe_trans, Function.comp_apply] at r [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : ¬x ∈ MonoidHom.range f r : fromCoset { val := x *l Set.range ↑f, property := (_ : (fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) (x *l Set.range ↑f)) } = ↑τ (↑(↑↑g x) (↑τ.symm (fromCoset { val := Set.range ↑f, property := (_ : (fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) (Set.range ↑f)) }))) ⊢ False [PROOFSTEP] erw [Equiv.swap_apply_left, g_apply_infinity, Equiv.swap_apply_right] at r [GOAL] A B : GroupCat f : A ⟶ B x : ↑B hx : ¬x ∈ MonoidHom.range f r : fromCoset { val := x *l Set.range ↑f, property := (_ : (fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) (x *l Set.range ↑f)) } = fromCoset { val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier, property := (_ : ∃ y, Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ⊢ False [PROOFSTEP] exact fromCoset_ne_of_nin_range _ hx r [GOAL] A B : GroupCat f : A ⟶ B inst✝ : Epi f ⊢ Function.Surjective ↑f [PROOFSTEP] by_contra r [GOAL] A B : GroupCat f : A ⟶ B inst✝ : Epi f r : ¬Function.Surjective ↑f ⊢ False [PROOFSTEP] dsimp [Function.Surjective] at r [GOAL] A B : GroupCat f : A ⟶ B inst✝ : Epi f r : ¬∀ (b : ↑B), ∃ a, ↑f a = b ⊢ False [PROOFSTEP] push_neg at r [GOAL] A B : GroupCat f : A ⟶ B inst✝ : Epi f r : ∃ b, ∀ (a : ↑A), ↑f a ≠ b ⊢ False [PROOFSTEP] rcases r with ⟨b, hb⟩ [GOAL] case intro A B : GroupCat f : A ⟶ B inst✝ : Epi f b : ↑B hb : ∀ (a : ↑A), ↑f a ≠ b ⊢ False [PROOFSTEP] exact SurjectiveOfEpiAuxs.g_ne_h f b (fun ⟨c, hc⟩ => hb _ hc) ((cancel_epi f).1 (SurjectiveOfEpiAuxs.comp_eq f)) [GOAL] A B : AddGroupCat f : A ⟶ B ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] have i1 : Epi f ↔ Epi (groupAddGroupEquivalence.inverse.map f) := by refine' ⟨_, groupAddGroupEquivalence.inverse.epi_of_epi_map⟩ intro e' apply groupAddGroupEquivalence.inverse.map_epi [GOAL] A B : AddGroupCat f : A ⟶ B ⊢ Epi f ↔ Epi (groupAddGroupEquivalence.inverse.map f) [PROOFSTEP] refine' ⟨_, groupAddGroupEquivalence.inverse.epi_of_epi_map⟩ [GOAL] A B : AddGroupCat f : A ⟶ B ⊢ Epi f → Epi (groupAddGroupEquivalence.inverse.map f) [PROOFSTEP] intro e' [GOAL] A B : AddGroupCat f : A ⟶ B e' : Epi f ⊢ Epi (groupAddGroupEquivalence.inverse.map f) [PROOFSTEP] apply groupAddGroupEquivalence.inverse.map_epi [GOAL] A B : AddGroupCat f : A ⟶ B i1 : Epi f ↔ Epi (groupAddGroupEquivalence.inverse.map f) ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] rwa [GroupCat.epi_iff_surjective] at i1 [GOAL] A B : GroupCat f✝ : A ⟶ B X✝ Y✝ : GroupCat f : X✝ ⟶ Y✝ e : Mono f ⊢ Mono ((forget GroupCat).map f) [PROOFSTEP] rwa [mono_iff_injective, ← CategoryTheory.mono_iff_injective] at e [GOAL] A B : GroupCat f✝ : A ⟶ B X✝ Y✝ : GroupCat f : X✝ ⟶ Y✝ e : Epi f ⊢ Epi ((forget GroupCat).map f) [PROOFSTEP] rwa [epi_iff_surjective, ← CategoryTheory.epi_iff_surjective] at e [GOAL] A B : CommGroupCat f : A ⟶ B ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] rw [epi_iff_range_eq_top, MonoidHom.range_top_iff_surjective] [GOAL] A B : CommGroupCat f✝ : A ⟶ B X✝ Y✝ : CommGroupCat f : X✝ ⟶ Y✝ e : Mono f ⊢ Mono ((forget CommGroupCat).map f) [PROOFSTEP] rwa [mono_iff_injective, ← CategoryTheory.mono_iff_injective] at e [GOAL] A B : CommGroupCat f✝ : A ⟶ B X✝ Y✝ : CommGroupCat f : X✝ ⟶ Y✝ e : Epi f ⊢ Epi ((forget CommGroupCat).map f) [PROOFSTEP] rwa [epi_iff_surjective, ← CategoryTheory.epi_iff_surjective] at e
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.EpiMono", "llama_tokens": 23274}
[GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → AddCommGroup (G i) inst✝² : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ⊢ Nonempty ι [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → AddCommGroup (G i) inst✝² : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z✝ : DirectLimit G f ind : ι z p q : ⨁ (i : ι), G i x✝¹ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' p x✝ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' q i : ι x : G i ihx : ↑(of R ι G f i) x = Quotient.mk'' p j : ι y : G j ihy : ↑(of R ι G f j) y = Quotient.mk'' q k : ι hik : i ≤ k hjk : j ≤ k ⊢ ↑(of R ι G f k) (↑(f i k hik) x + ↑(f j k hjk) y) = Quotient.mk'' (p + q) [PROOFSTEP] rw [LinearMap.map_add, of_f, of_f, ihx, ihy] -- porting note: was `rfl` [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → AddCommGroup (G i) inst✝² : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z✝ : DirectLimit G f ind : ι z p q : ⨁ (i : ι), G i x✝¹ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' p x✝ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' q i : ι x : G i ihx : ↑(of R ι G f i) x = Quotient.mk'' p j : ι y : G j ihy : ↑(of R ι G f j) y = Quotient.mk'' q k : ι hik : i ≤ k hjk : j ≤ k ⊢ Quotient.mk'' p + Quotient.mk'' q = Quotient.mk'' (p + q) [PROOFSTEP] simp only [Submodule.Quotient.mk''_eq_mk, Quotient.mk_add] [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → AddCommGroup (G i) inst✝² : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝¹ : AddCommGroup P inst✝ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x a : ⨁ (i : ι), G i x✝ : a ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i j : ι hij : i ≤ j x : G i hx : ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j hij) x) = a ⊢ a ∈ ↑(LinearMap.ker (DirectSum.toModule R ι P g)) [PROOFSTEP] rw [← hx, SetLike.mem_coe, LinearMap.sub_mem_ker_iff, DirectSum.toModule_lof, DirectSum.toModule_lof, Hg] [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →ₗ[R] P x✝ : DirectLimit G f i j : ι hij : i ≤ j x : G i ⊢ ↑((fun i => LinearMap.comp F (of R ι G f i)) j) (↑(f i j hij) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x [PROOFSTEP] rw [LinearMap.comp_apply, of_f] [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →ₗ[R] P x✝ : DirectLimit G f i j : ι hij : i ≤ j x : G i ⊢ ↑F (↑(of R ι G f i) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →ₗ[R] P x✝ : DirectLimit G f i : ι x : G i ⊢ ↑F (↑(of R ι G f i) x) = ↑(lift R ι G f (fun i => LinearMap.comp F (of R ι G f i)) (_ : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑((fun i => LinearMap.comp F (of R ι G f i)) j) (↑(f i j hij) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x)) (↑(of R ι G f i) x) [PROOFSTEP] rw [lift_of] [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →ₗ[R] P x✝ : DirectLimit G f i : ι x : G i ⊢ ↑F (↑(of R ι G f i) x) = ↑(LinearMap.comp F (of R ι G f i)) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁶ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → AddCommGroup (G i) inst✝³ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝² : AddCommGroup P inst✝¹ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝ : DirectedSystem G fun i j h => ↑(f i j h) x : DirectSum ι G i j : ι hij : i ≤ j hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i ⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) x = ↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) x) [PROOFSTEP] rw [← @DFinsupp.sum_single ι G _ _ _ x] [GOAL] R : Type u inst✝⁶ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → AddCommGroup (G i) inst✝³ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝² : AddCommGroup P inst✝¹ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝ : DirectedSystem G fun i j h => ↑(f i j h) x : DirectSum ι G i j : ι hij : i ≤ j hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i ⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) (DFinsupp.sum x DFinsupp.single) = ↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) (DFinsupp.sum x DFinsupp.single)) [PROOFSTEP] unfold DFinsupp.sum [GOAL] R : Type u inst✝⁶ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → AddCommGroup (G i) inst✝³ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝² : AddCommGroup P inst✝¹ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝ : DirectedSystem G fun i j h => ↑(f i j h) x : DirectSum ι G i j : ι hij : i ≤ j hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i ⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) (Finset.sum (DFinsupp.support x) fun i => DFinsupp.single i (↑x i)) = ↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) (Finset.sum (DFinsupp.support x) fun i => DFinsupp.single i (↑x i))) [PROOFSTEP] simp only [LinearMap.map_sum] [GOAL] R : Type u inst✝⁶ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → AddCommGroup (G i) inst✝³ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝² : AddCommGroup P inst✝¹ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝ : DirectedSystem G fun i j h => ↑(f i j h) x : DirectSum ι G i j : ι hij : i ≤ j hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i ⊢ (Finset.sum (DFinsupp.support x) fun x_1 => ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) (DFinsupp.single x_1 (↑x x_1))) = Finset.sum (DFinsupp.support x) fun x_1 => ↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) (DFinsupp.single x_1 (↑x x_1))) [PROOFSTEP] refine' Finset.sum_congr rfl fun k hk => _ [GOAL] R : Type u inst✝⁶ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → AddCommGroup (G i) inst✝³ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝² : AddCommGroup P inst✝¹ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝ : DirectedSystem G fun i j h => ↑(f i j h) x : DirectSum ι G i j : ι hij : i ≤ j hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i k : ι hk : k ∈ DFinsupp.support x ⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) (DFinsupp.single k (↑x k)) = ↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) (DFinsupp.single k (↑x k))) [PROOFSTEP] rw [DirectSum.single_eq_lof R k (x k), DirectSum.toModule_lof, DirectSum.toModule_lof, totalize_of_le (hx k hk), totalize_of_le (le_trans (hx k hk) hij), DirectedSystem.map_map] [GOAL] R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ⊢ Nonempty ι [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝¹ : DirectSum ι G H : Submodule.Quotient.mk x✝¹ = 0 ind : ι x : DirectSum ι G x✝ : x ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i j : ι hij : i ≤ j y : G i hxy : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) = x k : ι hik : i ≤ k hjk : j ≤ k ⊢ (∀ (k_1 : ι), k_1 ∈ DFinsupp.support x → k_1 ≤ k) ∧ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) x = 0 [PROOFSTEP] subst hxy [GOAL] R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} ⊢ (∀ (k_1 : ι), k_1 ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) → k_1 ≤ k) ∧ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) = 0 [PROOFSTEP] constructor [GOAL] case left R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} ⊢ ∀ (k_1 : ι), k_1 ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) → k_1 ≤ k [PROOFSTEP] intro i0 hi0 [GOAL] case left R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi0 : i0 ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) ⊢ i0 ≤ k [PROOFSTEP] rw [DFinsupp.mem_support_iff, DirectSum.sub_apply, ← DirectSum.single_eq_lof, ← DirectSum.single_eq_lof, DFinsupp.single_apply, DFinsupp.single_apply] at hi0 [GOAL] case left R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi0 : ((if h : i = i0 then Eq.recOn h y else 0) - if h : j = i0 then Eq.recOn h (↑(f i j hij) y) else 0) ≠ 0 ⊢ i0 ≤ k [PROOFSTEP] split_ifs at hi0 with hi hj hj [GOAL] case pos R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi : i = i0 hj : j = i0 hi0 : Eq.recOn hi y - Eq.recOn hj (↑(f i j hij) y) ≠ 0 ⊢ i0 ≤ k [PROOFSTEP] rwa [hi] at hik [GOAL] case neg R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi : i = i0 hj : ¬j = i0 hi0 : Eq.recOn hi y - 0 ≠ 0 ⊢ i0 ≤ k [PROOFSTEP] rwa [hi] at hik [GOAL] case pos R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi : ¬i = i0 hj : j = i0 hi0 : 0 - Eq.recOn hj (↑(f i j hij) y) ≠ 0 ⊢ i0 ≤ k [PROOFSTEP] rwa [hj] at hjk [GOAL] case neg R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi : ¬i = i0 hj : ¬j = i0 hi0 : 0 - 0 ≠ 0 ⊢ i0 ≤ k [PROOFSTEP] exfalso [GOAL] case neg.h R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi : ¬i = i0 hj : ¬j = i0 hi0 : 0 - 0 ≠ 0 ⊢ False [PROOFSTEP] apply hi0 [GOAL] case neg.h R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} i0 : ι hi : ¬i = i0 hj : ¬j = i0 hi0 : 0 - 0 ≠ 0 ⊢ 0 - 0 = 0 [PROOFSTEP] rw [sub_zero] [GOAL] case right R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : DirectSum ι G H : Submodule.Quotient.mk x = 0 ind i j : ι hij : i ≤ j y : G i k : ι hik : i ≤ k hjk : j ≤ k x✝ : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a} ⊢ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) = 0 [PROOFSTEP] simp [LinearMap.map_sub, totalize_of_le, hik, hjk, DirectedSystem.map_map, DirectSum.apply_eq_component, DirectSum.component.of] [GOAL] R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝² : DirectSum ι G H : Submodule.Quotient.mk x✝² = 0 ind : ι x y : DirectSum ι G x✝¹ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0 x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0 i : ι hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0 j : ι hj : ∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j hyj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0 k : ι hik : i ≤ k hjk : j ≤ k ⊢ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) (x + y) = 0 [PROOFSTEP] simp only [map_add] [GOAL] R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝² : DirectSum ι G H : Submodule.Quotient.mk x✝² = 0 ind : ι x y : DirectSum ι G x✝¹ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0 x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0 i : ι hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0 j : ι hj : ∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j hyj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0 k : ι hik : i ≤ k hjk : j ≤ k ⊢ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) x + ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) y = 0 [PROOFSTEP] rw [toModule_totalize_of_le hik hi, toModule_totalize_of_le hjk hj] [GOAL] R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝² : DirectSum ι G H : Submodule.Quotient.mk x✝² = 0 ind : ι x y : DirectSum ι G x✝¹ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0 x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0 i : ι hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0 j : ι hj : ∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j hyj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0 k : ι hik : i ≤ k hjk : j ≤ k ⊢ ↑(f i k hik) (↑(DirectSum.toModule R ι (G i) fun k => totalize (fun i => G i) f k i) x) + ↑(f j k hjk) (↑(DirectSum.toModule R ι (G j) fun k => totalize (fun i => G i) f k j) y) = 0 [PROOFSTEP] simp [hxi, hyj] [GOAL] R : Type u inst✝⁸ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁷ : Preorder ι G : ι → Type w inst✝⁶ : (i : ι) → AddCommGroup (G i) inst✝⁵ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝⁴ : AddCommGroup P inst✝³ : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝¹ : DirectSum ι G H : Submodule.Quotient.mk x✝¹ = 0 ind : ι a : R x : DirectSum ι G x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0 i : ι hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0 ⊢ ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) (a • x) = 0 [PROOFSTEP] simp [LinearMap.map_smul, hxi] [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 i : ι x : G i H : ↑(of R ι G f i) x = 0 this : Nonempty ι j : ι hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j hxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0 hx0 : x = 0 ⊢ ↑(f i i (_ : i ≤ i)) x = 0 [PROOFSTEP] simp [hx0] [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 i : ι x : G i H : ↑(of R ι G f i) x = 0 this : Nonempty ι j : ι hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j hxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0 hx0 : ¬x = 0 ⊢ i ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) [PROOFSTEP] simp [DirectSum.apply_eq_component, hx0] [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 i : ι x : G i H : ↑(of R ι G f i) x = 0 this : Nonempty ι j : ι hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j hxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0 hx0 : ¬x = 0 hij : i ≤ j ⊢ ↑(f i j hij) x = 0 [PROOFSTEP] simp only [DirectSum.toModule_lof] at hxj [GOAL] R : Type u inst✝⁷ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type w inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j P : Type u₁ inst✝³ : AddCommGroup P inst✝² : Module R P g : (i : ι) → G i →ₗ[R] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 i : ι x : G i H : ↑(of R ι G f i) x = 0 this : Nonempty ι j : ι hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j hx0 : ¬x = 0 hij : i ≤ j hxj : ↑(totalize G (fun i j H => f i j H) i j) x = 0 ⊢ ↑(f i j hij) x = 0 [PROOFSTEP] rwa [totalize_of_le hij] at hxj [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → AddCommGroup (G i) f : (i j : ι) → i ≤ j → G i →+ G j P : Type u₁ inst✝² : AddCommGroup P g : (i : ι) → G i →+ P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →+ P x✝ : DirectLimit G f i j : ι hij : i ≤ j x : G i ⊢ ↑((fun i => AddMonoidHom.comp F (LinearMap.toAddMonoidHom (of G f i))) j) (↑(f i j hij) x) = ↑((fun i => AddMonoidHom.comp F (LinearMap.toAddMonoidHom (of G f i))) i) x [PROOFSTEP] simp [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → AddCommGroup (G i) f : (i j : ι) → i ≤ j → G i →+ G j P : Type u₁ inst✝² : AddCommGroup P g : (i : ι) → G i →+ P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →+ P x✝ : DirectLimit G f i : ι x : G i ⊢ ↑F (↑(of G f i) x) = ↑(lift G f P (fun i => AddMonoidHom.comp F (LinearMap.toAddMonoidHom (of G f i))) (_ : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑F (↑(of G f j) (↑(f i j hij) x)) = ↑F (↑(of G f i) x))) (↑(of G f i) x) [PROOFSTEP] simp [GOAL] R : Type u inst✝² : Ring R ι : Type v dec_ι : DecidableEq ι inst✝¹ : Preorder ι G : ι → Type w inst✝ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j ⊢ Zero (DirectLimit G f) [PROOFSTEP] unfold DirectLimit [GOAL] R : Type u inst✝² : Ring R ι : Type v dec_ι : DecidableEq ι inst✝¹ : Preorder ι G : ι → Type w inst✝ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j ⊢ Zero (FreeCommRing ((i : ι) × G i) ⧸ Ideal.span {a | (∃ i j H x, of { fst := j, snd := f i j H x } - of { fst := i, snd := x } = a) ∨ (∃ i, of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, of { fst := i, snd := x + y } - (of { fst := i, snd := x } + of { fst := i, snd := y }) = a) ∨ ∃ i x y, of { fst := i, snd := x * y } - of { fst := i, snd := x } * of { fst := i, snd := y } = a}) [PROOFSTEP] exact ⟨0⟩ [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ⊢ Nonempty ι [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝ : FreeCommRing ((i : ι) × G i) s✝ : Multiplicative (Multiset ((i : ι) × G i)) a : (i : ι) × G i s : Multiset ((i : ι) × G i) ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) i : ι x : G i j : ι y : G j hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s) k : ι hik : i ≤ k hjk : j ≤ k ⊢ ↑(of G f k) (f i k hik x * f j k hjk y) = Quotient.mk'' (FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s)) [PROOFSTEP] rw [(of G f k).map_mul, of_f, of_f, hs] /- porting note: In Lean3, from here, this was `by refl`. I have added the lemma `FreeCommRing.of_cons` to fix this proof. -/ [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝ : FreeCommRing ((i : ι) × G i) s✝ : Multiplicative (Multiset ((i : ι) × G i)) a : (i : ι) × G i s : Multiset ((i : ι) × G i) ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) i : ι x : G i j : ι y : G j hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s) k : ι hik : i ≤ k hjk : j ≤ k ⊢ ↑(of G f i) x * Quotient.mk'' (FreeAbelianGroup.of s) = Quotient.mk'' (FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s)) [PROOFSTEP] apply congr_arg Quotient.mk'' [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝ : FreeCommRing ((i : ι) × G i) s✝ : Multiplicative (Multiset ((i : ι) × G i)) a : (i : ι) × G i s : Multiset ((i : ι) × G i) ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) i : ι x : G i j : ι y : G j hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s) k : ι hik : i ≤ k hjk : j ≤ k ⊢ (fun x x_1 => x * x_1) (FreeCommRing.of { fst := i, snd := x }) (FreeAbelianGroup.of s) = FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s) [PROOFSTEP] symm [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝ : FreeCommRing ((i : ι) × G i) s✝ : Multiplicative (Multiset ((i : ι) × G i)) a : (i : ι) × G i s : Multiset ((i : ι) × G i) ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) i : ι x : G i j : ι y : G j hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s) k : ι hik : i ≤ k hjk : j ≤ k ⊢ FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s) = (fun x x_1 => x * x_1) (FreeCommRing.of { fst := i, snd := x }) (FreeAbelianGroup.of s) [PROOFSTEP] apply FreeCommRing.of_cons [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝¹ : FreeCommRing ((i : ι) × G i) s : Multiplicative (Multiset ((i : ι) × G i)) x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) i : ι x : G i ih : ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) ⊢ ↑(of G f i) (-x) = Quotient.mk'' (-FreeAbelianGroup.of s) [PROOFSTEP] rw [(of G f i).map_neg, ih] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝¹ : FreeCommRing ((i : ι) × G i) s : Multiplicative (Multiset ((i : ι) × G i)) x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) i : ι x : G i ih : ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s) ⊢ -Quotient.mk'' (FreeAbelianGroup.of s) = Quotient.mk'' (-FreeAbelianGroup.of s) [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝² : FreeCommRing ((i : ι) × G i) p q : FreeAbelianGroup (Multiplicative (Multiset ((i : ι) × G i))) x✝¹ : ∃ i x, ↑(of G f i) x = Quotient.mk'' p x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' q i : ι x : G i ihx : ↑(of G f i) x = Quotient.mk'' p j : ι y : G j ihy : ↑(of G f j) y = Quotient.mk'' q k : ι hik : i ≤ k hjk : j ≤ k ⊢ ↑(of G f k) (f i k hik x + f j k hjk y) = Quotient.mk'' (p + q) [PROOFSTEP] rw [(of _ _ _).map_add, of_f, of_f, ihx, ihy] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 z : DirectLimit G f ind : ι x✝² : FreeCommRing ((i : ι) × G i) p q : FreeAbelianGroup (Multiplicative (Multiset ((i : ι) × G i))) x✝¹ : ∃ i x, ↑(of G f i) x = Quotient.mk'' p x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' q i : ι x : G i ihx : ↑(of G f i) x = Quotient.mk'' p j : ι y : G j ihy : ↑(of G f j) y = Quotient.mk'' q k : ι hik : i ≤ k hjk : j ≤ k ⊢ Quotient.mk'' p + Quotient.mk'' q = Quotient.mk'' (p + q) [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] z : DirectLimit G fun i j h => ↑(f' i j h) i : ι x : G i h : ↑(of G (fun i j h => ↑(f' i j h)) i) x = z ⊢ Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) (↑C x) = ↑C z [PROOFSTEP] rw [map_C, h] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X] x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁ x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂ i₁ : ι p₁ : (G i₁)[X] ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁ i₂ : ι p₂ : (G i₂)[X] ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂ i : ι h1 : i₁ ≤ i h2 : i₂ ≤ i ⊢ Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) (Polynomial.map (f' i₁ i h1) p₁ + Polynomial.map (f' i₂ i h2) p₂) = q₁ + q₂ [PROOFSTEP] rw [Polynomial.map_add, map_map, map_map, ← ih₁, ← ih₂] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X] x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁ x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂ i₁ : ι p₁ : (G i₁)[X] ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁ i₂ : ι p₂ : (G i₂)[X] ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂ i : ι h1 : i₁ ≤ i h2 : i₂ ≤ i ⊢ Polynomial.map (RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₁ i h1)) p₁ + Polynomial.map (RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₂ i h2)) p₂ = Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ + Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ [PROOFSTEP] congr 2 [GOAL] case e_a.e_f R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X] x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁ x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂ i₁ : ι p₁ : (G i₁)[X] ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁ i₂ : ι p₂ : (G i₂)[X] ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂ i : ι h1 : i₁ ≤ i h2 : i₂ ≤ i ⊢ RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₁ i h1) = of G (fun i j h => ↑(f' i j h)) i₁ [PROOFSTEP] ext x [GOAL] case e_a.e_f R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X] x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁ x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂ i₁ : ι p₁ : (G i₁)[X] ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁ i₂ : ι p₂ : (G i₂)[X] ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂ i : ι h1 : i₁ ≤ i h2 : i₂ ≤ i ⊢ RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₂ i h2) = of G (fun i j h => ↑(f' i j h)) i₂ [PROOFSTEP] ext x [GOAL] case e_a.e_f.a R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X] x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁ x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂ i₁ : ι p₁ : (G i₁)[X] ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁ i₂ : ι p₂ : (G i₂)[X] ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂ i : ι h1 : i₁ ≤ i h2 : i₂ ≤ i x : G i₁ ⊢ ↑(RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₁ i h1)) x = ↑(of G (fun i j h => ↑(f' i j h)) i₁) x [PROOFSTEP] simp_rw [RingHom.comp_apply, of_f] [GOAL] case e_a.e_f.a R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X] x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁ x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂ i₁ : ι p₁ : (G i₁)[X] ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁ i₂ : ι p₂ : (G i₂)[X] ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂ i : ι h1 : i₁ ≤ i h2 : i₂ ≤ i x : G i₂ ⊢ ↑(RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₂ i h2)) x = ↑(of G (fun i j h => ↑(f' i j h)) i₂) x [PROOFSTEP] simp_rw [RingHom.comp_apply, of_f] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 q : (DirectLimit G fun i j h => ↑(f' i j h))[X] n : ℕ z : DirectLimit G fun i j h => ↑(f' i j h) x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = ↑C z * X ^ n i : ι x : G i h : ↑(of G (fun i j h => ↑(f' i j h)) i) x = z ⊢ Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) (↑C x * X ^ (n + 1)) = ↑C z * X ^ (n + 1) [PROOFSTEP] rw [Polynomial.map_mul, map_C, h, Polynomial.map_pow, map_X] [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t ⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) x) [PROOFSTEP] refine' Subring.InClosure.recOn hxs _ _ _ _ [GOAL] case refine'_1 R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t ⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) 1)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) 1) [PROOFSTEP] rw [(restriction _).map_one, (FreeCommRing.lift _).map_one, (f' j k hjk).map_one, (restriction _).map_one, (FreeCommRing.lift _).map_one] [GOAL] case refine'_2 R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t ⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (-1))) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (-1)) [PROOFSTEP] rw [(restriction _).map_neg, (restriction _).map_one, RingHom.map_neg, (FreeCommRing.lift _).map_one, (f' j k hjk).map_neg, (f' j k hjk).map_one, -- porting note: similarly here I give strictly less information(restriction _).map_neg, (restriction _).map_one, RingHom.map_neg, (FreeCommRing.lift _).map_one] [GOAL] case refine'_3 R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t ⊢ ∀ (z : FreeCommRing ((i : ι) × G i)), z ∈ FreeCommRing.of '' s → ∀ (n : FreeCommRing ((i : ι) × G i)), ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) → ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (z * n))) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (z * n)) [PROOFSTEP] rintro _ ⟨p, hps, rfl⟩ n ih [GOAL] case refine'_3.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t p : (i : ι) × G i hps : p ∈ s n : FreeCommRing ((i : ι) × G i) ih : ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) ⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (FreeCommRing.of p * n))) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (FreeCommRing.of p * n)) [PROOFSTEP] rw [(restriction _).map_mul, (FreeCommRing.lift _).map_mul, (f' j k hjk).map_mul, ih, (restriction _).map_mul, (FreeCommRing.lift _).map_mul, restriction_of, dif_pos hps, lift_of, restriction_of, dif_pos (hst hps), lift_of] [GOAL] case refine'_3.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t p : (i : ι) × G i hps : p ∈ s n : FreeCommRing ((i : ι) × G i) ih : ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) ⊢ ↑(f' j k hjk) (↑(f' (↑{ val := p, property := hps }).fst j (_ : (↑{ val := p, property := hps }).fst ≤ j)) (↑{ val := p, property := hps }).snd) * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) = ↑(f' (↑{ val := p, property := (_ : p ∈ t) }).fst k (_ : (↑{ val := p, property := (_ : p ∈ t) }).fst ≤ k)) (↑{ val := p, property := (_ : p ∈ t) }).snd * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) [PROOFSTEP] dsimp only -- porting note: Lean 3 could get away with far fewer hints for inputs in the line below [GOAL] case refine'_3.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t p : (i : ι) × G i hps : p ∈ s n : FreeCommRing ((i : ι) × G i) ih : ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) ⊢ ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) p.snd) * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) = ↑(f' p.fst k (_ : p.fst ≤ k)) p.snd * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) [PROOFSTEP] have := DirectedSystem.map_map (fun i j h => f' i j h) (hj p hps) hjk [GOAL] case refine'_3.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t p : (i : ι) × G i hps : p ∈ s n : FreeCommRing ((i : ι) × G i) ih : ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) this : ∀ (x : G p.fst), ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) x) = ↑(f' p.fst k (_ : p.fst ≤ k)) x ⊢ ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) p.snd) * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) = ↑(f' p.fst k (_ : p.fst ≤ k)) p.snd * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) [PROOFSTEP] dsimp only at this [GOAL] case refine'_3.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t p : (i : ι) × G i hps : p ∈ s n : FreeCommRing ((i : ι) × G i) ih : ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) this : ∀ (x : G p.fst), ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) x) = ↑(f' p.fst k (_ : p.fst ≤ k)) x ⊢ ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) p.snd) * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) = ↑(f' p.fst k (_ : p.fst ≤ k)) p.snd * ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) [PROOFSTEP] rw [this] [GOAL] case refine'_4 R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t ⊢ ∀ {x y : FreeCommRing ((i : ι) × G i)}, ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) x) → ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) y)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) y) → ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y))) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (x + y)) [PROOFSTEP] rintro x y ihx ihy [GOAL] case refine'_4 R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) x✝ : FreeCommRing ((i : ι) × G i) s t : Set ((i : ι) × G i) hxs : IsSupported x✝ s j k : ι hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k hjk : j ≤ k hst : s ⊆ t x y : FreeCommRing ((i : ι) × G i) ihx : ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) x) ihy : ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) y)) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) y) ⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y))) = ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (x + y)) [PROOFSTEP] rw [(restriction _).map_add, (FreeCommRing.lift _).map_add, (f' j k hjk).map_add, ihx, ihy, (restriction _).map_add, (FreeCommRing.lift _).map_add] [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ⊢ ∃ j s H, IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0 [PROOFSTEP] refine' span_induction (Ideal.Quotient.eq_zero_iff_mem.1 H) _ _ _ _ [GOAL] case refine'_1 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ⊢ ∀ (x : FreeCommRing ((i : ι) × G i)), x ∈ {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} → ∃ j s H, IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0 [PROOFSTEP] rintro x (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩) [GOAL] case refine'_1.inl.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ ∃ j_1 s H, IsSupported (FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } - FreeCommRing.of { fst := i, snd := x }) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j_1 (_ : (↑ix).fst ≤ j_1)) (↑ix).snd) (↑(restriction s) (FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } - FreeCommRing.of { fst := i, snd := x })) = 0 [PROOFSTEP] refine' ⟨j, {⟨i, x⟩, ⟨j, f' i j hij x⟩}, _, isSupported_sub (isSupported_of.2 <| Or.inr rfl) (isSupported_of.2 <| Or.inl rfl), _⟩ [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_1 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ ∀ (k : (i : ι) × G i), k ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} → k.fst ≤ j [PROOFSTEP] rintro k (rfl | ⟨rfl | _⟩) [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_1.inl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x }.fst ≤ j case refine'_1.inl.intro.intro.intro.intro.refine'_1.inr.refl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }.fst ≤ j [PROOFSTEP] exact hij [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_1.inr.refl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }.fst ≤ j [PROOFSTEP] rfl [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}) (FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } - FreeCommRing.of { fst := i, snd := x })) = 0 [PROOFSTEP] rw [(restriction _).map_sub, RingHom.map_sub, restriction_of, dif_pos, restriction_of, dif_pos, lift_of, lift_of] [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ ↑(f' (↑{ val := { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst j (_ : (↑{ val := { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst ≤ j)) (↑{ val := { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).snd - ↑(f' (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst j (_ : (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst ≤ j)) (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).snd = 0 case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} [PROOFSTEP] dsimp only [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) - ↑(f' i j (_ : i ≤ j)) x = 0 case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} [PROOFSTEP] have := DirectedSystem.map_map (fun i j h => f' i j h) hij (le_refl j : j ≤ j) [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i this : ∀ (x : G i), ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) = ↑(f' i j (_ : i ≤ j)) x ⊢ ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) - ↑(f' i j (_ : i ≤ j)) x = 0 case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} [PROOFSTEP] dsimp only at this [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i this : ∀ (x : G i), ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) = ↑(f' i j (_ : i ≤ j)) x ⊢ ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) - ↑(f' i j (_ : i ≤ j)) x = 0 case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} [PROOFSTEP] rw [this] [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i this : ∀ (x : G i), ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) = ↑(f' i j (_ : i ≤ j)) x ⊢ ↑(f' i j (_ : i ≤ j)) x - ↑(f' i j (_ : i ≤ j)) x = 0 case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} [PROOFSTEP] exact sub_self _ [GOAL] case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i j : ι hij : i ≤ j x : G i ⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} [PROOFSTEP] exacts [Or.inr rfl, Or.inl rfl] [GOAL] case refine'_1.inr.inl.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 i : ι ⊢ ∃ j s H, IsSupported (FreeCommRing.of { fst := i, snd := 1 } - 1) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (FreeCommRing.of { fst := i, snd := 1 } - 1)) = 0 [PROOFSTEP] refine' ⟨i, {⟨i, 1⟩}, _, isSupported_sub (isSupported_of.2 rfl) isSupported_one, _⟩ [GOAL] case refine'_1.inr.inl.intro.refine'_1 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 i : ι ⊢ ∀ (k : (i : ι) × G i), k ∈ {{ fst := i, snd := 1 }} → k.fst ≤ i [PROOFSTEP] rintro k (rfl | h) [GOAL] case refine'_1.inr.inl.intro.refine'_1.refl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 i : ι ⊢ { fst := i, snd := 1 }.fst ≤ i [PROOFSTEP] rfl -- porting note: the Lean3 proof contained `rw [restriction_of]`, but this -- lemma does not seem to work here [GOAL] case refine'_1.inr.inl.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 i : ι ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction {{ fst := i, snd := 1 }}) (FreeCommRing.of { fst := i, snd := 1 } - 1)) = 0 [PROOFSTEP] rw [RingHom.map_sub, RingHom.map_sub] [GOAL] case refine'_1.inr.inl.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 i : ι ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction {{ fst := i, snd := 1 }}) (FreeCommRing.of { fst := i, snd := 1 })) - ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction {{ fst := i, snd := 1 }}) 1) = 0 [PROOFSTEP] erw [lift_of, dif_pos rfl, RingHom.map_one, RingHom.map_one, lift_of, RingHom.map_one, sub_self] [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ∃ j s H, IsSupported (FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y })) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }))) = 0 [PROOFSTEP] refine' ⟨i, {⟨i, x + y⟩, ⟨i, x⟩, ⟨i, y⟩}, _, isSupported_sub (isSupported_of.2 <| Or.inl rfl) (isSupported_add (isSupported_of.2 <| Or.inr <| Or.inl rfl) (isSupported_of.2 <| Or.inr <| Or.inr rfl)), _⟩ [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ∀ (k : (i : ι) × G i), k ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} → k.fst ≤ i [PROOFSTEP] rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩) [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1.inl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y }.fst ≤ i [PROOFSTEP] rfl [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1.inr.inl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x }.fst ≤ i [PROOFSTEP] rfl [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1.inr.inr.refl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y }.fst ≤ i [PROOFSTEP] rfl [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}) (FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }))) = 0 [PROOFSTEP] rw [(restriction _).map_sub, (restriction _).map_add, restriction_of, restriction_of, restriction_of, dif_pos, dif_pos, dif_pos, RingHom.map_sub, (FreeCommRing.lift _).map_add, lift_of, lift_of, lift_of] [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(f' (↑{ val := { fst := i, snd := x + y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst i (_ : (↑{ val := { fst := i, snd := x + y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst ≤ i)) (↑{ val := { fst := i, snd := x + y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).snd - (↑(f' (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst i (_ : (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst ≤ i)) (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).snd + ↑(f' (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst i (_ : (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst ≤ i)) (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).snd) = 0 case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] dsimp only [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(f' i i (_ : i ≤ i)) (x + y) - (↑(f' i i (_ : i ≤ i)) x + ↑(f' i i (_ : i ≤ i)) y) = 0 case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] rw [(f' i i _).map_add] [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(f' i i (_ : i ≤ i)) x + ↑(f' i i (_ : i ≤ i)) y - (↑(f' i i (_ : i ≤ i)) x + ↑(f' i i (_ : i ≤ i)) y) = 0 case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] exact sub_self _ [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] all_goals tauto [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] tauto [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] tauto [GOAL] case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] tauto [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ∃ j s H, IsSupported (FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y }) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y })) = 0 [PROOFSTEP] refine' ⟨i, {⟨i, x * y⟩, ⟨i, x⟩, ⟨i, y⟩}, _, isSupported_sub (isSupported_of.2 <| Or.inl rfl) (isSupported_mul (isSupported_of.2 <| Or.inr <| Or.inl rfl) (isSupported_of.2 <| Or.inr <| Or.inr rfl)), _⟩ [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ∀ (k : (i : ι) × G i), k ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} → k.fst ≤ i [PROOFSTEP] rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩) [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1.inl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y }.fst ≤ i [PROOFSTEP] rfl [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1.inr.inl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x }.fst ≤ i [PROOFSTEP] rfl [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1.inr.inr.refl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y }.fst ≤ i [PROOFSTEP] rfl [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}) (FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y })) = 0 [PROOFSTEP] rw [(restriction _).map_sub, (restriction _).map_mul, restriction_of, restriction_of, restriction_of, dif_pos, dif_pos, dif_pos, RingHom.map_sub, (FreeCommRing.lift _).map_mul, lift_of, lift_of, lift_of] [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(f' (↑{ val := { fst := i, snd := x * y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst i (_ : (↑{ val := { fst := i, snd := x * y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst ≤ i)) (↑{ val := { fst := i, snd := x * y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).snd - ↑(f' (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst i (_ : (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst ≤ i)) (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).snd * ↑(f' (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst i (_ : (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst ≤ i)) (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).snd = 0 case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] dsimp only [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(f' i i (_ : i ≤ i)) (x * y) - ↑(f' i i (_ : i ≤ i)) x * ↑(f' i i (_ : i ≤ i)) y = 0 case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] rw [(f' i i _).map_mul] [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ ↑(f' i i (_ : i ≤ i)) x * ↑(f' i i (_ : i ≤ i)) y - ↑(f' i i (_ : i ≤ i)) x * ↑(f' i i (_ : i ≤ i)) y = 0 case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] exact sub_self _ [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] all_goals tauto -- porting note: was --exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)] [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] tauto -- porting note: was --exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)] [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] tauto -- porting note: was --exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)] [GOAL] case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 i : ι x y : G i ⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} [PROOFSTEP] tauto -- porting note: was --exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)] [GOAL] case refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ⊢ ∃ j s H, IsSupported 0 s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) 0) = 0 [PROOFSTEP] refine' Nonempty.elim (by infer_instance) fun ind : ι => _ [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ⊢ Nonempty ι [PROOFSTEP] infer_instance [GOAL] case refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ind : ι ⊢ ∃ j s H, IsSupported 0 s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) 0) = 0 [PROOFSTEP] refine' ⟨ind, ∅, fun _ => False.elim, isSupported_zero, _⟩ -- porting note: `RingHom.map_zero` was `(restriction _).map_zero` [GOAL] case refine'_2 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ind : ι ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst ind (_ : (↑ix).fst ≤ ind)) (↑ix).snd) (↑(restriction ∅) 0) = 0 [PROOFSTEP] rw [RingHom.map_zero, (FreeCommRing.lift _).map_zero] [GOAL] case refine'_3 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ⊢ ∀ (x y : FreeCommRing ((i : ι) × G i)), (∃ j s H, IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0) → (∃ j s H, IsSupported y s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) y) = 0) → ∃ j s H, IsSupported (x + y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0 [PROOFSTEP] rintro x y ⟨i, s, hi, hxs, ihs⟩ ⟨j, t, hj, hyt, iht⟩ [GOAL] case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 ⊢ ∃ j s H, IsSupported (x + y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0 [PROOFSTEP] obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j [GOAL] case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 k : ι hik : i ≤ k hjk : j ≤ k ⊢ ∃ j s H, IsSupported (x + y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0 [PROOFSTEP] have : ∀ z : Σ i, G i, z ∈ s ∪ t → z.1 ≤ k := by rintro z (hz | hz) exact le_trans (hi z hz) hik exact le_trans (hj z hz) hjk [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 k : ι hik : i ≤ k hjk : j ≤ k ⊢ ∀ (z : (i : ι) × G i), z ∈ s ∪ t → z.fst ≤ k [PROOFSTEP] rintro z (hz | hz) [GOAL] case inl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 k : ι hik : i ≤ k hjk : j ≤ k z : (i : ι) × G i hz : z ∈ s ⊢ z.fst ≤ k case inr R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 k : ι hik : i ≤ k hjk : j ≤ k z : (i : ι) × G i hz : z ∈ t ⊢ z.fst ≤ k [PROOFSTEP] exact le_trans (hi z hz) hik [GOAL] case inr R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 k : ι hik : i ≤ k hjk : j ≤ k z : (i : ι) × G i hz : z ∈ t ⊢ z.fst ≤ k [PROOFSTEP] exact le_trans (hj z hz) hjk [GOAL] case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 k : ι hik : i ≤ k hjk : j ≤ k this : ∀ (z : (i : ι) × G i), z ∈ s ∪ t → z.fst ≤ k ⊢ ∃ j s H, IsSupported (x + y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0 [PROOFSTEP] refine' ⟨k, s ∪ t, this, isSupported_add (isSupported_upwards hxs <| Set.subset_union_left s t) (isSupported_upwards hyt <| Set.subset_union_right s t), _⟩ [GOAL] case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) i : ι s : Set ((i : ι) × G i) hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i hxs : IsSupported x s ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0 j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 k : ι hik : i ≤ k hjk : j ≤ k this : ∀ (z : (i : ι) × G i), z ∈ s ∪ t → z.fst ≤ k ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction (s ∪ t)) (x + y)) = 0 [PROOFSTEP] rw [RingHom.map_add, (FreeCommRing.lift _).map_add, ← of.zero_exact_aux2 G f' hxs hi this hik (Set.subset_union_left s t), ← of.zero_exact_aux2 G f' hyt hj this hjk (Set.subset_union_right s t), ihs, (f' i k hik).map_zero, iht, (f' j k hjk).map_zero, zero_add] [GOAL] case refine'_4 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x = 0 ⊢ ∀ (a x : FreeCommRing ((i : ι) × G i)), (∃ j s H, IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0) → ∃ j s H, IsSupported (a • x) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (a • x)) = 0 [PROOFSTEP] rintro x y ⟨j, t, hj, hyt, iht⟩ [GOAL] case refine'_4.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 ⊢ ∃ j s H, IsSupported (x • y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x • y)) = 0 [PROOFSTEP] rw [smul_eq_mul] [GOAL] case refine'_4.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 ⊢ ∃ j s H, IsSupported (x * y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0 [PROOFSTEP] rcases exists_finset_support x with ⟨s, hxs⟩ [GOAL] case refine'_4.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s ⊢ ∃ j s H, IsSupported (x * y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0 [PROOFSTEP] rcases(s.image Sigma.fst).exists_le with ⟨i, hi⟩ [GOAL] case refine'_4.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i ⊢ ∃ j s H, IsSupported (x * y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0 [PROOFSTEP] obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j [GOAL] case refine'_4.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i k : ι hik : i ≤ k hjk : j ≤ k ⊢ ∃ j s H, IsSupported (x * y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0 [PROOFSTEP] have : ∀ z : Σ i, G i, z ∈ ↑s ∪ t → z.1 ≤ k := by rintro z (hz | hz) exacts [(hi z.1 <| Finset.mem_image.2 ⟨z, hz, rfl⟩).trans hik, (hj z hz).trans hjk] [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i k : ι hik : i ≤ k hjk : j ≤ k ⊢ ∀ (z : (i : ι) × G i), z ∈ ↑s ∪ t → z.fst ≤ k [PROOFSTEP] rintro z (hz | hz) [GOAL] case inl R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i k : ι hik : i ≤ k hjk : j ≤ k z : (i : ι) × G i hz : z ∈ ↑s ⊢ z.fst ≤ k case inr R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i k : ι hik : i ≤ k hjk : j ≤ k z : (i : ι) × G i hz : z ∈ t ⊢ z.fst ≤ k [PROOFSTEP] exacts [(hi z.1 <| Finset.mem_image.2 ⟨z, hz, rfl⟩).trans hik, (hj z hz).trans hjk] [GOAL] case refine'_4.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i k : ι hik : i ≤ k hjk : j ≤ k this : ∀ (z : (i : ι) × G i), z ∈ ↑s ∪ t → z.fst ≤ k ⊢ ∃ j s H, IsSupported (x * y) s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0 [PROOFSTEP] refine' ⟨k, ↑s ∪ t, this, isSupported_mul (isSupported_upwards hxs <| Set.subset_union_left (↑s) t) (isSupported_upwards hyt <| Set.subset_union_right (↑s) t), _⟩ -- porting note: RingHom.map_mul was `(restriction _).map_mul` [GOAL] case refine'_4.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝² : DirectedSystem G fun i j h => ↑(f' i j h) inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝ : FreeCommRing ((i : ι) × G i) H : ↑(Ideal.Quotient.mk (Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a})) x✝ = 0 x y : FreeCommRing ((i : ι) × G i) j : ι t : Set ((i : ι) × G i) hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j hyt : IsSupported y t iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0 s : Finset ((i : ι) × G i) hxs : IsSupported x ↑s i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i k : ι hik : i ≤ k hjk : j ≤ k this : ∀ (z : (i : ι) × G i), z ∈ ↑s ∪ t → z.fst ≤ k ⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction (↑s ∪ t)) (x * y)) = 0 [PROOFSTEP] rw [RingHom.map_mul, (FreeCommRing.lift _).map_mul, ← of.zero_exact_aux2 G f' hyt hj this hjk (Set.subset_union_right (↑s) t), iht, (f' j k hjk).map_zero, mul_zero] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : DirectedSystem G fun i j h => ↑(f' i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 i : ι x : G i hix : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 this : Nonempty ι j : ι s : Set ((i : ι) × G i) H : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ j hxs : IsSupported (FreeCommRing.of { fst := i, snd := x }) s hx : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (FreeCommRing.of { fst := i, snd := x })) = 0 hixs : { fst := i, snd := x } ∈ s ⊢ ↑(f' i j (_ : { fst := i, snd := x }.fst ≤ j)) x = 0 [PROOFSTEP] rw [restriction_of, dif_pos hixs, lift_of] at hx [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : DirectedSystem G fun i j h => ↑(f' i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 i : ι x : G i hix : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 this : Nonempty ι j : ι s : Set ((i : ι) × G i) H : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ j hxs : IsSupported (FreeCommRing.of { fst := i, snd := x }) s hixs : { fst := i, snd := x } ∈ s hx : ↑(f' (↑{ val := { fst := i, snd := x }, property := hixs }).fst j (_ : (↑{ val := { fst := i, snd := x }, property := hixs }).fst ≤ j)) (↑{ val := { fst := i, snd := x }, property := hixs }).snd = 0 ⊢ ↑(f' i j (_ : { fst := i, snd := x }.fst ≤ j)) x = 0 [PROOFSTEP] exact hx [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι ⊢ Function.Injective ↑(of G (fun i j h => ↑(f' i j h)) i) [PROOFSTEP] suffices ∀ x, of G (fun i j h => f' i j h) i x = 0 → x = 0 by intro x y hxy rw [← sub_eq_zero] apply this rw [(of G _ i).map_sub, hxy, sub_self] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0 ⊢ Function.Injective ↑(of G (fun i j h => ↑(f' i j h)) i) [PROOFSTEP] intro x y hxy [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0 x y : G i hxy : ↑(of G (fun i j h => ↑(f' i j h)) i) x = ↑(of G (fun i j h => ↑(f' i j h)) i) y ⊢ x = y [PROOFSTEP] rw [← sub_eq_zero] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0 x y : G i hxy : ↑(of G (fun i j h => ↑(f' i j h)) i) x = ↑(of G (fun i j h => ↑(f' i j h)) i) y ⊢ x - y = 0 [PROOFSTEP] apply this [GOAL] case a R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0 x y : G i hxy : ↑(of G (fun i j h => ↑(f' i j h)) i) x = ↑(of G (fun i j h => ↑(f' i j h)) i) y ⊢ ↑(of G (fun i j h => ↑(f' i j h)) i) (x - y) = 0 [PROOFSTEP] rw [(of G _ i).map_sub, hxy, sub_self] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι ⊢ ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0 [PROOFSTEP] intro x hx [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι x : G i hx : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 ⊢ x = 0 [PROOFSTEP] rcases of.zero_exact hx with ⟨j, hij, hfx⟩ [GOAL] case intro.intro R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι x : G i hx : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 j : ι hij : i ≤ j hfx : ↑(f' i j hij) x = 0 ⊢ x = 0 [PROOFSTEP] apply hf i j hij [GOAL] case intro.intro.a R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij) i : ι x : G i hx : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 j : ι hij : i ≤ j hfx : ↑(f' i j hij) x = 0 ⊢ ↑(f' i j hij) x = ↑(f' i j hij) 0 [PROOFSTEP] rw [hfx, (f' i j hij).map_zero] [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x ⊢ ∀ (a : FreeCommRing ((i : ι) × G i)), a ∈ Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} → ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) a = 0 [PROOFSTEP] suffices Ideal.span _ ≤ Ideal.comap (FreeCommRing.lift fun x : Σ i : ι, G i => g x.fst x.snd) ⊥ by intro x hx exact (mem_bot P).1 (this hx) [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x this : Ideal.span ?m.2207035 ≤ Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥ ⊢ ∀ (a : FreeCommRing ((i : ι) × G i)), a ∈ Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} → ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) a = 0 [PROOFSTEP] intro x hx [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x this : Ideal.span ?m.2207035 ≤ Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥ x : FreeCommRing ((i : ι) × G i) hx : x ∈ Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} ⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) x = 0 [PROOFSTEP] exact (mem_bot P).1 (this hx) [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x ⊢ Ideal.span {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} ≤ Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥ [PROOFSTEP] rw [Ideal.span_le] [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x ⊢ {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} ⊆ ↑(Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥) [PROOFSTEP] intro x hx [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x x : FreeCommRing ((i : ι) × G i) hx : x ∈ {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} ⊢ x ∈ ↑(Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥) [PROOFSTEP] rw [SetLike.mem_coe, Ideal.mem_comap, mem_bot] [GOAL] R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x x : FreeCommRing ((i : ι) × G i) hx : x ∈ {a | (∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨ (∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨ (∃ i x y, FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) = a) ∨ ∃ i x y, FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } = a} ⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) x = 0 [PROOFSTEP] rcases hx with (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩) [GOAL] case inl.intro.intro.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x i j : ι hij : i ≤ j x : G i ⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) (FreeCommRing.of { fst := j, snd := f i j hij x } - FreeCommRing.of { fst := i, snd := x }) = 0 [PROOFSTEP] simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one, (g i).map_add, (g i).map_mul, sub_self] [GOAL] case inr.inl.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x i : ι ⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) (FreeCommRing.of { fst := i, snd := 1 } - 1) = 0 [PROOFSTEP] simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one, (g i).map_add, (g i).map_mul, sub_self] [GOAL] case inr.inr.inl.intro.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x i : ι x y : G i ⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) (FreeCommRing.of { fst := i, snd := x + y } - (FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y })) = 0 [PROOFSTEP] simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one, (g i).map_add, (g i).map_mul, sub_self] [GOAL] case inr.inr.inr.intro.intro.intro R : Type u inst✝³ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝ : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x i : ι x y : G i ⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) (FreeCommRing.of { fst := i, snd := x * y } - FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y }) = 0 [PROOFSTEP] simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one, (g i).map_add, (g i).map_mul, sub_self] [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝² : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →+* P x✝ : DirectLimit G f i j : ι hij : i ≤ j x : G i ⊢ ↑((fun i => RingHom.comp F (of G f i)) j) (f i j hij x) = ↑((fun i => RingHom.comp F (of G f i)) i) x [PROOFSTEP] simp [of_f] [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j P : Type u₁ inst✝² : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 F : DirectLimit G f →+* P x✝ : DirectLimit G f i : ι x : G i ⊢ ↑F (↑(of G f i) x) = ↑(lift G f P (fun i => RingHom.comp F (of G f i)) (_ : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑F (↑(of G f j) (f i j hij x)) = ↑F (↑(of G f i) x))) (↑(of G f i) x) [PROOFSTEP] simp [lift_of] [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) ⊢ Nonempty ι [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι ⊢ 0 ≠ 1 [PROOFSTEP] change (0 : Ring.DirectLimit G fun i j h => f' i j h) ≠ 1 [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι ⊢ 0 ≠ 1 [PROOFSTEP] rw [← (Ring.DirectLimit.of _ _ _).map_one] [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι ⊢ 0 ≠ ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) ?m.2568554) 1 R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι ⊢ ι [PROOFSTEP] intro H [GOAL] R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι H : 0 = ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) ?m.2568554) 1 ⊢ False R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι ⊢ ι [PROOFSTEP] rcases Ring.DirectLimit.of.zero_exact H.symm with ⟨j, hij, hf⟩ [GOAL] case intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι H : 0 = ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) ?m.2568554) 1 j : ι hij : ?m.2568554 ≤ j hf : ↑(f' ?m.2568554 j hij) 1 = 0 ⊢ False R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι ⊢ ι [PROOFSTEP] rw [(f' i j hij).map_one] at hf [GOAL] case intro.intro R : Type u inst✝⁵ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : Nonempty ι inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j inst✝ : DirectedSystem G fun i j h => ↑(f' i j h) i : ι H : 0 = ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) i) 1 j : ι hij : i ≤ j hf : 1 = 0 ⊢ False [PROOFSTEP] exact one_ne_zero hf [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : Nonempty ι inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j p : Ring.DirectLimit G f i : ι x : G i H : ↑(Ring.DirectLimit.of G f i) x ≠ 0 ⊢ ↑(Ring.DirectLimit.of G f i) x * ↑(Ring.DirectLimit.of G f i) x⁻¹ = 1 [PROOFSTEP] erw [← (Ring.DirectLimit.of _ _ _).map_mul, mul_inv_cancel fun h : x = 0 => H <| by rw [h, (Ring.DirectLimit.of _ _ _).map_zero], (Ring.DirectLimit.of _ _ _).map_one] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : Nonempty ι inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j p : Ring.DirectLimit G f i : ι x : G i H : ↑(Ring.DirectLimit.of G f i) x ≠ 0 h : x = 0 ⊢ ↑(Ring.DirectLimit.of G f i) x = 0 [PROOFSTEP] rw [h, (Ring.DirectLimit.of _ _ _).map_zero] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : Nonempty ι inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j p : Ring.DirectLimit G f hp : p ≠ 0 ⊢ p * inv G f p = 1 [PROOFSTEP] rw [inv, dif_neg hp, Classical.choose_spec (DirectLimit.exists_inv G f hp)] [GOAL] R : Type u inst✝⁴ : Ring R ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type w inst✝² : Nonempty ι inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : (i : ι) → Field (G i) f : (i j : ι) → i ≤ j → G i → G j f' : (i j : ι) → i ≤ j → G i →+* G j p : Ring.DirectLimit G f hp : p ≠ 0 ⊢ inv G f p * p = 1 [PROOFSTEP] rw [_root_.mul_comm, DirectLimit.mul_inv_cancel G f hp]
{"mathlib_filename": "Mathlib.Algebra.DirectLimit", "llama_tokens": 228816}
[GOAL] R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y [PROOFSTEP] apply (mono_iff_injective F'.m).1 [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ Mono F'.m case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y)) = ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) [PROOFSTEP] infer_instance [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y)) = ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) [PROOFSTEP] rw [LinearMap.map_add] [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y)) = ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x) + ↑F'.m ((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) [PROOFSTEP] change (F'.e ≫ F'.m) _ = (F'.e ≫ F'.m) _ + (F'.e ≫ F'.m) _ [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(x + y)) (_ : ↑(x + y) ∈ LinearMap.range f)) = ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)) + ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ LinearMap.range f)) [PROOFSTEP] simp_rw [F'.fac, (Classical.indefiniteDescription (fun z => f z = _) _).2] [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x y : ↑(image f) ⊢ ↑(x + y) = ↑x + ↑y [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f c : R x : ↑(image f) ⊢ AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } x [PROOFSTEP] apply (mono_iff_injective F'.m).1 [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f c : R x : ↑(image f) ⊢ Mono F'.m case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f c : R x : ↑(image f) ⊢ ↑F'.m (AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } (c • x)) = ↑F'.m (↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } x) [PROOFSTEP] infer_instance [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f c : R x : ↑(image f) ⊢ ↑F'.m (AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } (c • x)) = ↑F'.m (↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } x) [PROOFSTEP] rw [LinearMap.map_smul] [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f c : R x : ↑(image f) ⊢ ↑F'.m (AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } (c • x)) = ↑(RingHom.id R) c • ↑F'.m (AddHom.toFun { toFun := fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)), map_add' := (_ : ∀ (x y : ↑(image f)), (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) = (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x + (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y) } x) [PROOFSTEP] change (F'.e ≫ F'.m) _ = _ • (F'.e ≫ F'.m) _ [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f c : R x : ↑(image f) ⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(c • x)) (_ : ↑(c • x) ∈ LinearMap.range f)) = ↑(RingHom.id R) c • ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)) [PROOFSTEP] simp_rw [F'.fac, (Classical.indefiniteDescription (fun z => f z = _) _).2] [GOAL] case a R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f c : R x : ↑(image f) ⊢ ↑(c • x) = ↑(RingHom.id R) c • ↑x [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f ⊢ lift F' ≫ F'.m = ι f [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x : ↑(image f) ⊢ ↑(lift F' ≫ F'.m) x = ↑(ι f) x [PROOFSTEP] change (F'.e ≫ F'.m) _ = _ [GOAL] case h R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x : ↑(image f) ⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)) = ↑(ι f) x [PROOFSTEP] rw [F'.fac, (Classical.indefiniteDescription _ x.2).2] [GOAL] case h R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H F' : MonoFactorisation f x : ↑(image f) ⊢ ↑x = ↑(ι f) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R G✝ H✝ : ModuleCat R f✝ : G✝ ⟶ H✝ G H : ModuleCat R f : G ⟶ H ⊢ (imageIsoRange f).hom ≫ ofHom (Submodule.subtype (LinearMap.range f)) = Limits.image.ι f [PROOFSTEP] erw [← imageIsoRange_inv_image_ι f, Iso.hom_inv_id_assoc]
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Images", "llama_tokens": 4927}
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.EquivalenceGroupAddGroup", "llama_tokens": 0}
[GOAL] R : Type u inst✝ : CommRing R X✝ Y✝ : AlgebraCat R a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₁✝ = (CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₂✝ ⊢ ∀ (x : ↑X✝), ↑a₁✝ x = ↑a₂✝ x [PROOFSTEP] intros x [GOAL] R : Type u inst✝ : CommRing R X✝ Y✝ : AlgebraCat R a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₁✝ = (CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₂✝ x : ↑X✝ ⊢ ↑a₁✝ x = ↑a₂✝ x [PROOFSTEP] dsimp at h [GOAL] R : Type u inst✝ : CommRing R X✝ Y✝ : AlgebraCat R a₁✝ a₂✝ : X✝ ⟶ Y✝ h : ↑a₁✝ = ↑a₂✝ x : ↑X✝ ⊢ ↑a₁✝ x = ↑a₂✝ x [PROOFSTEP] rw [h] [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R ⊢ ∀ (X : Type u), { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (𝟙 X) = 𝟙 ({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj X) [PROOFSTEP] intro X [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R X : Type u ⊢ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (𝟙 X) = 𝟙 ({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj X) [PROOFSTEP] apply FreeAlgebra.hom_ext [GOAL] case w R : Type u inst✝ : CommRing R M N U : ModuleCat R X : Type u ⊢ ↑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (𝟙 X)) ∘ FreeAlgebra.ι R = ↑(𝟙 ({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj X)) ∘ FreeAlgebra.ι R [PROOFSTEP] simp only [FreeAlgebra.ι_comp_lift] [GOAL] case w R : Type u inst✝ : CommRing R M N U : ModuleCat R X : Type u ⊢ FreeAlgebra.ι R ∘ 𝟙 X = ↑(𝟙 (mk (FreeAlgebra R X))) ∘ FreeAlgebra.ι R [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R ⊢ ∀ {X Y Z : Type u} (f : X ⟶ Y) (g : Y ⟶ Z), { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (f ≫ g) = { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map f ≫ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map g [PROOFSTEP] intros [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (f✝ ≫ g✝) = { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map f✝ ≫ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map g✝ [PROOFSTEP] apply FreeAlgebra.hom_ext [GOAL] case w R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ ↑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R = ↑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map f✝ ≫ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map g✝) ∘ FreeAlgebra.ι R [PROOFSTEP] simp only [FreeAlgebra.ι_comp_lift] [GOAL] case w R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ FreeAlgebra.ι R ∘ (f✝ ≫ g✝) = ↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ FreeAlgebra.ι R [PROOFSTEP] ext1 -- Porting node: this ↓ `erw` used to be handled by the `simp` below it [GOAL] case w.h R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : X✝ ⊢ (FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ = (↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ FreeAlgebra.ι R) x✝ [PROOFSTEP] erw [CategoryTheory.coe_comp] [GOAL] case w.h R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : X✝ ⊢ (FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ = ((↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ ↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝))) ∘ FreeAlgebra.ι R) x✝ [PROOFSTEP] simp only [CategoryTheory.coe_comp, Function.comp_apply, types_comp_apply] -- Porting node: this ↓ `erw` and `rfl` used to be handled by the `simp` above [GOAL] case w.h R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : X✝ ⊢ FreeAlgebra.ι R (g✝ (f✝ x✝)) = ↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) (↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝)) (FreeAlgebra.ι R x✝)) [PROOFSTEP] erw [FreeAlgebra.lift_ι_apply, FreeAlgebra.lift_ι_apply] [GOAL] case w.h R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : X✝ ⊢ FreeAlgebra.ι R (g✝ (f✝ x✝)) = (FreeAlgebra.ι R ∘ g✝) (f✝ x✝) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R ⊢ ∀ {X' X : Type u} {Y : AlgebraCat R} (f : X' ⟶ X) (g : X ⟶ (forget (AlgebraCat R)).obj Y), ↑((fun X A => (FreeAlgebra.lift R).symm) X' Y).symm (f ≫ g) = (free R).map f ≫ ↑((fun X A => (FreeAlgebra.lift R).symm) X Y).symm g [PROOFSTEP] intros [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R X'✝ X✝ : Type u Y✝ : AlgebraCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝ ⊢ ↑((fun X A => (FreeAlgebra.lift R).symm) X'✝ Y✝).symm (f✝ ≫ g✝) = (free R).map f✝ ≫ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝).symm g✝ [PROOFSTEP] apply FreeAlgebra.hom_ext [GOAL] case w R : Type u inst✝ : CommRing R M N U : ModuleCat R X'✝ X✝ : Type u Y✝ : AlgebraCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝ ⊢ ↑(↑((fun X A => (FreeAlgebra.lift R).symm) X'✝ Y✝).symm (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R = ↑((free R).map f✝ ≫ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝).symm g✝) ∘ FreeAlgebra.ι R [PROOFSTEP] simp only [FreeAlgebra.ι_comp_lift] [GOAL] case w R : Type u inst✝ : CommRing R M N U : ModuleCat R X'✝ X✝ : Type u Y✝ : AlgebraCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝ ⊢ ↑(↑(FreeAlgebra.lift R).symm.symm (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R = ↑((free R).map f✝ ≫ ↑(FreeAlgebra.lift R).symm.symm g✝) ∘ FreeAlgebra.ι R [PROOFSTEP] ext1 [GOAL] case w.h R : Type u inst✝ : CommRing R M N U : ModuleCat R X'✝ X✝ : Type u Y✝ : AlgebraCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝ x✝ : X'✝ ⊢ (↑(↑(FreeAlgebra.lift R).symm.symm (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R) x✝ = (↑((free R).map f✝ ≫ ↑(FreeAlgebra.lift R).symm.symm g✝) ∘ FreeAlgebra.ι R) x✝ [PROOFSTEP] simp only [free_map, Equiv.symm_symm, FreeAlgebra.lift_ι_apply, CategoryTheory.coe_comp, Function.comp_apply, types_comp_apply] -- Porting node: this ↓ `erw` and `rfl` used to be handled by the `simp` above [GOAL] case w.h R : Type u inst✝ : CommRing R M N U : ModuleCat R X'✝ X✝ : Type u Y✝ : AlgebraCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝ x✝ : X'✝ ⊢ ↑(↑(FreeAlgebra.lift R) (f✝ ≫ g✝)) (FreeAlgebra.ι R x✝) = ↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ ↑(FreeAlgebra.lift R) g✝) (FreeAlgebra.ι R x✝) [PROOFSTEP] erw [FreeAlgebra.lift_ι_apply, CategoryTheory.comp_apply, FreeAlgebra.lift_ι_apply, Function.comp_apply, FreeAlgebra.lift_ι_apply] [GOAL] case w.h R : Type u inst✝ : CommRing R M N U : ModuleCat R X'✝ X✝ : Type u Y✝ : AlgebraCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝ x✝ : X'✝ ⊢ (f✝ ≫ g✝) x✝ = g✝ (f✝ x✝) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R ⊢ ∀ {X : Type u} {Y Y' : AlgebraCat R} (f : (free R).obj X ⟶ Y) (g : Y ⟶ Y'), ↑((fun X A => (FreeAlgebra.lift R).symm) X Y') (f ≫ g) = ↑((fun X A => (FreeAlgebra.lift R).symm) X Y) f ≫ (forget (AlgebraCat R)).map g [PROOFSTEP] intros [GOAL] R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ : Type u Y✝ Y'✝ : AlgebraCat R f✝ : (free R).obj X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Y'✝ ⊢ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y'✝) (f✝ ≫ g✝) = ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝) f✝ ≫ (forget (AlgebraCat R)).map g✝ [PROOFSTEP] ext [GOAL] case h R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ : Type u Y✝ Y'✝ : AlgebraCat R f✝ : (free R).obj X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Y'✝ a✝ : X✝ ⊢ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y'✝) (f✝ ≫ g✝) a✝ = (↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝) f✝ ≫ (forget (AlgebraCat R)).map g✝) a✝ [PROOFSTEP] simp only [CategoryTheory.coe_comp, Function.comp_apply, FreeAlgebra.lift_symm_apply, types_comp_apply] -- Porting note: proof used to be done after this ↑ `simp`; added ↓ two lines [GOAL] case h R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ : Type u Y✝ Y'✝ : AlgebraCat R f✝ : (free R).obj X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Y'✝ a✝ : X✝ ⊢ ↑(FreeAlgebra.lift R).symm (f✝ ≫ g✝) a✝ = (forget (AlgebraCat R)).map g✝ (↑(FreeAlgebra.lift R).symm f✝ a✝) [PROOFSTEP] erw [FreeAlgebra.lift_symm_apply, FreeAlgebra.lift_symm_apply] [GOAL] case h R : Type u inst✝ : CommRing R M N U : ModuleCat R X✝ : Type u Y✝ Y'✝ : AlgebraCat R f✝ : (free R).obj X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Y'✝ a✝ : X✝ ⊢ (↑(f✝ ≫ g✝) ∘ FreeAlgebra.ι R) a✝ = (forget (AlgebraCat R)).map g✝ ((↑f✝ ∘ FreeAlgebra.ι R) a✝) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u g₁ : Ring X₁ g₂ : Ring X₂ m₁ : Algebra R X₁ m₂ : Algebra R X₂ e : X₁ ≃ₐ[R] X₂ ⊢ ↑e ≫ ↑(symm e) = 𝟙 (AlgebraCat.of R X₁) [PROOFSTEP] ext x [GOAL] case w R : Type u inst✝ : CommRing R X₁ X₂ : Type u g₁ : Ring X₁ g₂ : Ring X₂ m₁ : Algebra R X₁ m₂ : Algebra R X₂ e : X₁ ≃ₐ[R] X₂ x : (forget (AlgebraCat R)).obj (AlgebraCat.of R X₁) ⊢ ↑(↑e ≫ ↑(symm e)) x = ↑(𝟙 (AlgebraCat.of R X₁)) x [PROOFSTEP] exact e.left_inv x [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u g₁ : Ring X₁ g₂ : Ring X₂ m₁ : Algebra R X₁ m₂ : Algebra R X₂ e : X₁ ≃ₐ[R] X₂ ⊢ ↑(symm e) ≫ ↑e = 𝟙 (AlgebraCat.of R X₂) [PROOFSTEP] ext x [GOAL] case w R : Type u inst✝ : CommRing R X₁ X₂ : Type u g₁ : Ring X₁ g₂ : Ring X₂ m₁ : Algebra R X₁ m₂ : Algebra R X₂ e : X₁ ≃ₐ[R] X₂ x : (forget (AlgebraCat R)).obj (AlgebraCat.of R X₂) ⊢ ↑(↑(symm e) ≫ ↑e) x = ↑(𝟙 (AlgebraCat.of R X₂)) x [PROOFSTEP] exact e.right_inv x [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R i : X ≅ Y x : ↑X ⊢ ↑i.inv (↑i.hom x) = x [PROOFSTEP] change (i.hom ≫ i.inv) x = x [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R i : X ≅ Y x : ↑X ⊢ ↑(i.hom ≫ i.inv) x = x [PROOFSTEP] simp only [hom_inv_id] [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R i : X ≅ Y x : ↑X ⊢ ↑(𝟙 X) x = x [PROOFSTEP] rw [id_apply] [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R i : X ≅ Y x : ↑Y ⊢ ↑i.hom (↑i.inv x) = x [PROOFSTEP] change (i.inv ≫ i.hom) x = x [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R i : X ≅ Y x : ↑Y ⊢ ↑(i.inv ≫ i.hom) x = x [PROOFSTEP] simp only [inv_hom_id] [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R i : X ≅ Y x : ↑Y ⊢ ↑(𝟙 Y) x = x [PROOFSTEP] rw [id_apply] [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R f : X ⟶ Y x✝ : IsIso ((forget (AlgebraCat R)).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget (AlgebraCat.{u} R)).map f) [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R f : X ⟶ Y x✝ : IsIso ((forget (AlgebraCat R)).map f) i : (forget (AlgebraCat R)).obj X ≅ (forget (AlgebraCat R)).obj Y := asIso ((forget (AlgebraCat R)).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃ₐ[R] Y := { f, i.toEquiv with } [GOAL] R : Type u inst✝ : CommRing R X₁ X₂ : Type u X Y : AlgebraCat R f : X ⟶ Y x✝ : IsIso ((forget (AlgebraCat R)).map f) i : (forget (AlgebraCat R)).obj X ≅ (forget (AlgebraCat R)).obj Y := asIso ((forget (AlgebraCat R)).map f) e : ↑X ≃ₐ[R] ↑Y := let src := i.toEquiv; { toEquiv := { toFun := f.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) }, map_mul' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑↑f) (x * y) = OneHom.toFun (↑↑↑f) x * OneHom.toFun (↑↑↑f) y), map_add' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑↑f) (x + y) = OneHom.toFun (↑↑↑f) x + OneHom.toFun (↑↑↑f) y), commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑f) (↑(algebraMap R ↑X) r) = ↑(algebraMap R ↑Y) r) } ⊢ IsIso f [PROOFSTEP] exact ⟨(IsIso.of_iso e.toAlgebraIso).1⟩
{"mathlib_filename": "Mathlib.Algebra.Category.AlgebraCat.Basic", "llama_tokens": 7156}
[GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v ⊢ Disjoint (span R (range (u ∘ Sum.inl))) (span R (range (u ∘ Sum.inr))) [PROOFSTEP] rw [huv, disjoint_comm] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v ⊢ Disjoint (span R (range (u ∘ Sum.inr))) (span R (range (↑f ∘ v))) [PROOFSTEP] refine' Disjoint.mono_right (span_mono (range_comp_subset_range _ _)) _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v ⊢ Disjoint (span R (range (u ∘ Sum.inr))) (span R (range ↑f)) [PROOFSTEP] rw [← LinearMap.range_coe, (span_eq (LinearMap.range f)), (exact_iff _ _).mp he] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v ⊢ Disjoint (span R (range (u ∘ Sum.inr))) (LinearMap.ker g) [PROOFSTEP] exact range_ker_disjoint hw [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v w : ι' → ↑P hw : LinearIndependent R w hse : ShortExact f g ⊢ LinearIndependent R (Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w)) [PROOFSTEP] refine' linearIndependent_leftExact hv _ hse.mono hse.exact _ [GOAL] case refine'_1 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v w : ι' → ↑P hw : LinearIndependent R w hse : ShortExact f g ⊢ LinearIndependent R (↑g ∘ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inr) [PROOFSTEP] simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inr] [GOAL] case refine'_1 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v w : ι' → ↑P hw : LinearIndependent R w hse : ShortExact f g ⊢ LinearIndependent R (↑g ∘ Function.invFun ↑g ∘ w) [PROOFSTEP] rwa [← Function.comp.assoc, Function.RightInverse.comp_eq_id (Function.rightInverse_invFun ((epi_iff_surjective _).mp hse.epi)), Function.comp.left_id] [GOAL] case refine'_2 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N hv : LinearIndependent R v M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr) hm : Mono f he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v w : ι' → ↑P hw : LinearIndependent R w hse : ShortExact f g ⊢ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inl = ↑f ∘ v [PROOFSTEP] simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inl] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) ⊢ ⊤ ≤ span R (range u) [PROOFSTEP] intro m _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ ⊢ m ∈ span R (range u) [PROOFSTEP] have hgm : g m ∈ span R (range (g ∘ u ∘ Sum.inr)) := hw mem_top [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ hgm : ↑g m ∈ span R (range (↑g ∘ u ∘ Sum.inr)) ⊢ m ∈ span R (range u) [PROOFSTEP] rw [Finsupp.mem_span_range_iff_exists_finsupp] at hgm [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ hgm : ∃ c, (Finsupp.sum c fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m ⊢ m ∈ span R (range u) [PROOFSTEP] obtain ⟨cm, hm⟩ := hgm [GOAL] case intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m ⊢ m ∈ span R (range u) [PROOFSTEP] let m' : M := Finsupp.sum cm fun j a ↦ a • (u (Sum.inr j)) [GOAL] case intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) ⊢ m ∈ span R (range u) [PROOFSTEP] have hsub : m - m' ∈ LinearMap.range f [GOAL] case hsub ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) ⊢ m - m' ∈ LinearMap.range f [PROOFSTEP] rw [(exact_iff _ _).mp he] [GOAL] case hsub ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) ⊢ m - m' ∈ LinearMap.ker g [PROOFSTEP] simp only [LinearMap.mem_ker, map_sub, sub_eq_zero] [GOAL] case hsub ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) ⊢ ↑g m = ↑g (Finsupp.sum cm fun j a => a • u (Sum.inr j)) [PROOFSTEP] rw [← hm, map_finsupp_sum] [GOAL] case hsub ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) ⊢ (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = Finsupp.sum cm fun a b => ↑g (b • u (Sum.inr a)) [PROOFSTEP] simp only [Function.comp_apply, SMulHomClass.map_smul] [GOAL] case intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) hsub : m - m' ∈ LinearMap.range f ⊢ m ∈ span R (range u) [PROOFSTEP] obtain ⟨n, hnm⟩ := hsub [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N hnm : ↑f n = m - m' ⊢ m ∈ span R (range u) [PROOFSTEP] have hn : n ∈ span R (range v) := hv mem_top [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N hnm : ↑f n = m - m' hn : n ∈ span R (range v) ⊢ m ∈ span R (range u) [PROOFSTEP] rw [Finsupp.mem_span_range_iff_exists_finsupp] at hn [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N hnm : ↑f n = m - m' hn : ∃ c, (Finsupp.sum c fun i a => a • v i) = n ⊢ m ∈ span R (range u) [PROOFSTEP] obtain ⟨cn, hn⟩ := hn [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N hnm : ↑f n = m - m' cn : ι →₀ R hn : (Finsupp.sum cn fun i a => a • v i) = n ⊢ m ∈ span R (range u) [PROOFSTEP] rw [← hn, map_finsupp_sum] at hnm [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n ⊢ m ∈ span R (range u) [PROOFSTEP] rw [← sub_add_cancel m m', ← hnm, ] [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n ⊢ (Finsupp.sum cn fun a b => ↑f (b • v a)) + m' ∈ span R (range u) [PROOFSTEP] simp only [SMulHomClass.map_smul] [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n ⊢ ((Finsupp.sum cn fun a b => b • ↑f (v a)) + Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u) [PROOFSTEP] have hn' : (Finsupp.sum cn fun a b ↦ b • f (v a)) = (Finsupp.sum cn fun a b ↦ b • u (Sum.inl a)) := by congr; ext a b; change b • (f ∘ v) a = _; rw [← huv]; rfl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n ⊢ (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) [PROOFSTEP] congr [GOAL] case e_g ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n ⊢ (fun a b => b • ↑f (v a)) = fun a b => b • u (Sum.inl a) [PROOFSTEP] ext a b [GOAL] case e_g.h.h ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n a : ι b : R ⊢ b • ↑f (v a) = b • u (Sum.inl a) [PROOFSTEP] change b • (f ∘ v) a = _ [GOAL] case e_g.h.h ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n a : ι b : R ⊢ b • (↑f ∘ v) a = b • u (Sum.inl a) [PROOFSTEP] rw [← huv] [GOAL] case e_g.h.h ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n a : ι b : R ⊢ b • (u ∘ Sum.inl) a = b • u (Sum.inl a) [PROOFSTEP] rfl [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ ((Finsupp.sum cn fun a b => b • ↑f (v a)) + Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u) [PROOFSTEP] rw [hn'] [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ ((Finsupp.sum cn fun a b => b • u (Sum.inl a)) + Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u) [PROOFSTEP] apply add_mem [GOAL] case intro.intro.intro.a ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ (Finsupp.sum cn fun a b => b • u (Sum.inl a)) ∈ span R (range u) [PROOFSTEP] rw [Finsupp.mem_span_range_iff_exists_finsupp] [GOAL] case intro.intro.intro.a ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ ∃ c, (Finsupp.sum c fun i a => a • u i) = Finsupp.sum cn fun a b => b • u (Sum.inl a) [PROOFSTEP] use cn.mapDomain (Sum.inl) [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ (Finsupp.sum (Finsupp.mapDomain Sum.inl cn) fun i a => a • u i) = Finsupp.sum cn fun a b => b • u (Sum.inl a) [PROOFSTEP] rw [Finsupp.sum_mapDomain_index_inj Sum.inl_injective] [GOAL] case intro.intro.intro.a ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ (Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u) [PROOFSTEP] rw [Finsupp.mem_span_range_iff_exists_finsupp] [GOAL] case intro.intro.intro.a ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ ∃ c, (Finsupp.sum c fun i a => a • u i) = Finsupp.sum cm fun j a => a • u (Sum.inr j) [PROOFSTEP] use cm.mapDomain (Sum.inr) [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P he : Exact f g huv : u ∘ Sum.inl = ↑f ∘ v hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr)) m : ↑M a✝ : m ∈ ⊤ cm : ι' →₀ R hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j) n : ↑N cn : ι →₀ R hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m' hn : (Finsupp.sum cn fun i a => a • v i) = n hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a) ⊢ (Finsupp.sum (Finsupp.mapDomain Sum.inr cm) fun i a => a • u i) = Finsupp.sum cm fun j a => a • u (Sum.inr j) [PROOFSTEP] rw [Finsupp.sum_mapDomain_index_inj Sum.inr_injective] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P w : ι' → ↑P hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range w) hE : Epi g he : Exact f g ⊢ ⊤ ≤ span R (range (Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w))) [PROOFSTEP] refine' span_exact he _ hv _ [GOAL] case refine'_1 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P w : ι' → ↑P hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range w) hE : Epi g he : Exact f g ⊢ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inl = ↑f ∘ v [PROOFSTEP] simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inl] [GOAL] case refine'_2 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P w : ι' → ↑P hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range w) hE : Epi g he : Exact f g ⊢ ⊤ ≤ span R (range (↑g ∘ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inr)) [PROOFSTEP] convert hw [GOAL] case h.e'_4.h.e'_6.h.e'_3 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P w : ι' → ↑P hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range w) hE : Epi g he : Exact f g ⊢ ↑g ∘ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inr = w [PROOFSTEP] simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inr] [GOAL] case h.e'_4.h.e'_6.h.e'_3 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P w : ι' → ↑P hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range w) hE : Epi g he : Exact f g ⊢ ↑g ∘ Function.invFun ↑g ∘ w = w [PROOFSTEP] rw [ModuleCat.epi_iff_surjective] at hE [GOAL] case h.e'_4.h.e'_6.h.e'_3 ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R u : ι ⊕ ι' → ↑M f : N ⟶ M g : M ⟶ P w : ι' → ↑P hv : ⊤ ≤ span R (range v) hw : ⊤ ≤ span R (range w) hE : Function.Surjective ↑g he : Exact f g ⊢ ↑g ∘ Function.invFun ↑g ∘ w = w [PROOFSTEP] rw [← Function.comp.assoc, Function.RightInverse.comp_eq_id (Function.rightInverse_invFun hE), Function.comp.left_id] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝³ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R f : N ⟶ M g : M ⟶ P h : ShortExact f g inst✝² : Module.Free R ↑N inst✝¹ : Module.Free R ↑P inst✝ : StrongRankCondition R ⊢ Module.rank R ↑M = Module.rank R ↑N + Module.rank R ↑P [PROOFSTEP] haveI := free_shortExact h [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝³ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R f : N ⟶ M g : M ⟶ P h : ShortExact f g inst✝² : Module.Free R ↑N inst✝¹ : Module.Free R ↑P inst✝ : StrongRankCondition R this : Module.Free R ↑M ⊢ Module.rank R ↑M = Module.rank R ↑N + Module.rank R ↑P [PROOFSTEP] rw [Module.Free.rank_eq_card_chooseBasisIndex, Module.Free.rank_eq_card_chooseBasisIndex R N, Module.Free.rank_eq_card_chooseBasisIndex R P, Cardinal.add_def, Cardinal.eq] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝³ : Ring R N P : ModuleCat R v : ι → ↑N M : ModuleCat R f : N ⟶ M g : M ⟶ P h : ShortExact f g inst✝² : Module.Free R ↑N inst✝¹ : Module.Free R ↑P inst✝ : StrongRankCondition R this : Module.Free R ↑M ⊢ Nonempty (Module.Free.ChooseBasisIndex R ↑M ≃ Module.Free.ChooseBasisIndex R ↑N ⊕ Module.Free.ChooseBasisIndex R ↑P) [PROOFSTEP] exact ⟨Basis.indexEquiv (Module.Free.chooseBasis R M) (Basis.ofShortExact h (Module.Free.chooseBasis R N) (Module.Free.chooseBasis R P))⟩ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝⁵ : Ring R N P : ModuleCat R v : ι → ↑N n p : ℕ M : ModuleCat R f : N ⟶ M g : M ⟶ P h : ShortExact f g inst✝⁴ : Module.Free R ↑N inst✝³ : Module.Finite R ↑N inst✝² : Module.Free R ↑P inst✝¹ : Module.Finite R ↑P hN : FiniteDimensional.finrank R ↑N = n hP : FiniteDimensional.finrank R ↑P = p inst✝ : StrongRankCondition R ⊢ FiniteDimensional.finrank R ↑M = n + p [PROOFSTEP] apply FiniteDimensional.finrank_eq_of_rank_eq [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝⁵ : Ring R N P : ModuleCat R v : ι → ↑N n p : ℕ M : ModuleCat R f : N ⟶ M g : M ⟶ P h : ShortExact f g inst✝⁴ : Module.Free R ↑N inst✝³ : Module.Finite R ↑N inst✝² : Module.Free R ↑P inst✝¹ : Module.Finite R ↑P hN : FiniteDimensional.finrank R ↑N = n hP : FiniteDimensional.finrank R ↑P = p inst✝ : StrongRankCondition R ⊢ Module.rank R ↑M = ↑(n + p) [PROOFSTEP] rw [free_shortExact_rank_add h, ← hN, ← hP] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 inst✝⁵ : Ring R N P : ModuleCat R v : ι → ↑N n p : ℕ M : ModuleCat R f : N ⟶ M g : M ⟶ P h : ShortExact f g inst✝⁴ : Module.Free R ↑N inst✝³ : Module.Finite R ↑N inst✝² : Module.Free R ↑P inst✝¹ : Module.Finite R ↑P hN : FiniteDimensional.finrank R ↑N = n hP : FiniteDimensional.finrank R ↑P = p inst✝ : StrongRankCondition R ⊢ Module.rank R ↑N + Module.rank R ↑P = ↑(FiniteDimensional.finrank R ↑N + FiniteDimensional.finrank R ↑P) [PROOFSTEP] simp only [Nat.cast_add, FiniteDimensional.finrank_eq_rank]
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Free", "llama_tokens": 15005}
[GOAL] C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P : PresheafOfModules R X : Cᵒᵖ ⊢ map P (𝟙 X) = id' [PROOFSTEP] ext [GOAL] case h C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P : PresheafOfModules R X : Cᵒᵖ x✝ : ↑(obj P X) ⊢ ↑(map P (𝟙 X)) x✝ = ↑id' x✝ [PROOFSTEP] simp [GOAL] C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P : PresheafOfModules R X Y Z : Cᵒᵖ f : X ⟶ Y g : Y ⟶ Z ⊢ map P (f ≫ g) = comp (map P g) (map P f) [PROOFSTEP] ext [GOAL] case h C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P : PresheafOfModules R X Y Z : Cᵒᵖ f : X ⟶ Y g : Y ⟶ Z x✝ : ↑(obj P X) ⊢ ↑(map P (f ≫ g)) x✝ = ↑(comp (map P g) (map P f)) x✝ [PROOFSTEP] simp [GOAL] C : Type u₁ inst✝ : Category.{v₁, u₁} C R✝ : Cᵒᵖ ⥤ RingCat P Q R : PresheafOfModules R✝ f : Hom P Q g : Hom Q R x✝² : Cᵒᵖ x✝¹ : ↑(R✝.obj x✝²) x✝ : ↑(P.presheaf.obj x✝²) ⊢ ↑(NatTrans.app (f.hom ≫ g.hom) x✝²) (x✝¹ • x✝) = x✝¹ • ↑(NatTrans.app (f.hom ≫ g.hom) x✝²) x✝ [PROOFSTEP] simp [Hom.map_smul] [GOAL] C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P Q : PresheafOfModules R f g : P ⟶ Q w : ∀ (X : Cᵒᵖ), app f X = app g X ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P Q : PresheafOfModules R g : P ⟶ Q hom✝ : P.presheaf ⟶ Q.presheaf map_smul✝ : ∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x w : ∀ (X : Cᵒᵖ), app { hom := hom✝, map_smul := map_smul✝ } X = app g X ⊢ { hom := hom✝, map_smul := map_smul✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P Q : PresheafOfModules R hom✝¹ : P.presheaf ⟶ Q.presheaf map_smul✝¹ : ∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝¹ X) (r • x) = r • ↑(NatTrans.app hom✝¹ X) x hom✝ : P.presheaf ⟶ Q.presheaf map_smul✝ : ∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x w : ∀ (X : Cᵒᵖ), app { hom := hom✝¹, map_smul := map_smul✝¹ } X = app { hom := hom✝, map_smul := map_smul✝ } X ⊢ { hom := hom✝¹, map_smul := map_smul✝¹ } = { hom := hom✝, map_smul := map_smul✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_hom C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P Q : PresheafOfModules R hom✝¹ : P.presheaf ⟶ Q.presheaf map_smul✝¹ : ∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝¹ X) (r • x) = r • ↑(NatTrans.app hom✝¹ X) x hom✝ : P.presheaf ⟶ Q.presheaf map_smul✝ : ∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x w : ∀ (X : Cᵒᵖ), app { hom := hom✝¹, map_smul := map_smul✝¹ } X = app { hom := hom✝, map_smul := map_smul✝ } X ⊢ hom✝¹ = hom✝ [PROOFSTEP] ext X x [GOAL] case mk.mk.e_hom.w.h.w C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat P Q : PresheafOfModules R hom✝¹ : P.presheaf ⟶ Q.presheaf map_smul✝¹ : ∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝¹ X) (r • x) = r • ↑(NatTrans.app hom✝¹ X) x hom✝ : P.presheaf ⟶ Q.presheaf map_smul✝ : ∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x w : ∀ (X : Cᵒᵖ), app { hom := hom✝¹, map_smul := map_smul✝¹ } X = app { hom := hom✝, map_smul := map_smul✝ } X X : Cᵒᵖ x : ↑(P.presheaf.obj X) ⊢ ↑(NatTrans.app hom✝¹ X) x = ↑(NatTrans.app hom✝ X) x [PROOFSTEP] exact LinearMap.congr_fun (w X) x
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Presheaf", "llama_tokens": 2184}
[GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M i j : ι x : A i y : M j ⊢ ↑(↑(smulAddMonoidHom A M) (↑(of A i) x)) (↑(of M j) y) = ↑(of M (i + j)) (GSmul.smul x y) [PROOFSTEP] simp [smulAddMonoidHom] [GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M x : ⨁ (i : ι), M i ⊢ 1 • x = x [PROOFSTEP] suffices smulAddMonoidHom A M 1 = AddMonoidHom.id (⨁ i, M i) from FunLike.congr_fun this x [GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M x : ⨁ (i : ι), M i ⊢ ↑(smulAddMonoidHom A M) 1 = AddMonoidHom.id (⨁ (i : ι), M i) [PROOFSTEP] apply DirectSum.addHom_ext [GOAL] case H ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M x : ⨁ (i : ι), M i ⊢ ∀ (i : ι) (y : M i), ↑(↑(smulAddMonoidHom A M) 1) (↑(of (fun i => M i) i) y) = ↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) y) [PROOFSTEP] intro i xi [GOAL] case H ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M x : ⨁ (i : ι), M i i : ι xi : M i ⊢ ↑(↑(smulAddMonoidHom A M) 1) (↑(of (fun i => M i) i) xi) = ↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) xi) [PROOFSTEP] rw [show (1 : DirectSum ι fun i => A i) = (of A 0) GOne.one by rfl] [GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M x : ⨁ (i : ι), M i i : ι xi : M i ⊢ 1 = ↑(of A 0) GOne.one [PROOFSTEP] rfl [GOAL] case H ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M x : ⨁ (i : ι), M i i : ι xi : M i ⊢ ↑(↑(smulAddMonoidHom A M) (↑(of A 0) GOne.one)) (↑(of (fun i => M i) i) xi) = ↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) xi) [PROOFSTEP] rw [smulAddMonoidHom_apply_of_of] [GOAL] case H ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GMonoid A inst✝ : Gmodule A M x : ⨁ (i : ι), M i i : ι xi : M i ⊢ ↑(of M (0 + i)) (GSmul.smul GOne.one xi) = ↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) xi) [PROOFSTEP] exact DirectSum.of_eq_of_gradedMonoid_eq (one_smul (GradedMonoid A) <| GradedMonoid.mk i xi) -- Porting note: renamed to mul_smul' since DirectSum.Gmodule.mul_smul already exists -- Almost identical to the proof of `direct_sum.mul_assoc` [GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GSemiring A inst✝ : Gmodule A M a b : ⨁ (i : ι), A i c : ⨁ (i : ι), M i ⊢ (a * b) • c = a • b • c [PROOFSTEP] suffices ( -- `fun a b c ↦ (a * b) • c` as a bundled homsmulAddMonoidHom A M).compHom.comp (DirectSum.mulHom A) = (AddMonoidHom.compHom AddMonoidHom.flipHom <| (smulAddMonoidHom A M).flip.compHom.comp <| smulAddMonoidHom A M).flip from -- `fun a b c ↦ a • (b • c)` as a bundled homFunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this a) b) c [GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GSemiring A inst✝ : Gmodule A M a b : ⨁ (i : ι), A i c : ⨁ (i : ι), M i ⊢ comp (↑compHom (smulAddMonoidHom A M)) (mulHom A) = AddMonoidHom.flip (↑(↑compHom flipHom) (comp (↑compHom (AddMonoidHom.flip (smulAddMonoidHom A M))) (smulAddMonoidHom A M))) [PROOFSTEP] ext ai ax bi bx ci cx : 6 [GOAL] case H.h.H.h.H.h ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GSemiring A inst✝ : Gmodule A M a b : ⨁ (i : ι), A i c : ⨁ (i : ι), M i ai : ι ax : A ai bi : ι bx : A bi ci : ι cx : M ci ⊢ ↑(comp (↑(comp (↑(comp (comp (↑compHom (smulAddMonoidHom A M)) (mulHom A)) (of (fun i => A i) ai)) ax) (of (fun i => A i) bi)) bx) (of (fun i => M i) ci)) cx = ↑(comp (↑(comp (↑(comp (AddMonoidHom.flip (↑(↑compHom flipHom) (comp (↑compHom (AddMonoidHom.flip (smulAddMonoidHom A M))) (smulAddMonoidHom A M)))) (of (fun i => A i) ai)) ax) (of (fun i => A i) bi)) bx) (of (fun i => M i) ci)) cx [PROOFSTEP] dsimp only [coe_comp, Function.comp_apply, compHom_apply_apply, flip_apply, flipHom_apply] [GOAL] case H.h.H.h.H.h ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GSemiring A inst✝ : Gmodule A M a b : ⨁ (i : ι), A i c : ⨁ (i : ι), M i ai : ι ax : A ai bi : ι bx : A bi ci : ι cx : M ci ⊢ ↑(↑(smulAddMonoidHom A M) (↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx))) (↑(of (fun i => M i) ci) cx) = ↑(↑(smulAddMonoidHom A M) (↑(of (fun i => A i) ai) ax)) (↑(↑(smulAddMonoidHom A M) (↑(of (fun i => A i) bi) bx)) (↑(of (fun i => M i) ci) cx)) [PROOFSTEP] rw [smulAddMonoidHom_apply_of_of, smulAddMonoidHom_apply_of_of, DirectSum.mulHom_of_of, smulAddMonoidHom_apply_of_of] [GOAL] case H.h.H.h.H.h ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GSemiring A inst✝ : Gmodule A M a b : ⨁ (i : ι), A i c : ⨁ (i : ι), M i ai : ι ax : A ai bi : ι bx : A bi ci : ι cx : M ci ⊢ ↑(of M (ai + bi + ci)) (GSmul.smul (GMul.mul ax bx) cx) = ↑(of M (ai + (bi + ci))) (GSmul.smul ax (GSmul.smul bx cx)) [PROOFSTEP] exact DirectSum.of_eq_of_gradedMonoid_eq (mul_smul (GradedMonoid.mk ai ax) (GradedMonoid.mk bi bx) (GradedMonoid.mk ci cx)) [GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GSemiring A inst✝ : Gmodule A M r s : ⨁ (i : ι), A i x : ⨁ (i : ι), M i ⊢ (r + s) • x = r • x + s • x [PROOFSTEP] simp only [smul_def, map_add, AddMonoidHom.add_apply] [GOAL] ι : Type u_1 A : ι → Type u_2 M : ι → Type u_3 inst✝⁵ : AddMonoid ι inst✝⁴ : (i : ι) → AddCommMonoid (A i) inst✝³ : (i : ι) → AddCommMonoid (M i) inst✝² : DecidableEq ι inst✝¹ : GSemiring A inst✝ : Gmodule A M x : ⨁ (i : ι), M i ⊢ 0 • x = 0 [PROOFSTEP] simp only [smul_def, map_zero, AddMonoidHom.zero_apply] [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 ⊢ Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) [PROOFSTEP] letI := isModule 𝓐 𝓜 [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 this : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 ⊢ Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 ⊢ M ≃ₗ[A] ⨁ (i : ι), { x // x ∈ 𝓜 i } [PROOFSTEP] letI h := isModule 𝓐 𝓜 [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 ⊢ M ≃ₗ[A] ⨁ (i : ι), { x // x ∈ 𝓜 i } [PROOFSTEP] refine ⟨⟨(DirectSum.decomposeAddEquiv 𝓜).toAddHom, ?_⟩, (DirectSum.decomposeAddEquiv 𝓜).symm.toFun, (DirectSum.decomposeAddEquiv 𝓜).left_inv, (DirectSum.decomposeAddEquiv 𝓜).right_inv⟩ [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 ⊢ ∀ (r : A) (x : M), AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) (r • x) = ↑(RingHom.id A) r • AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) x [PROOFSTEP] intro x y [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M ⊢ AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) (x • y) = ↑(RingHom.id A) x • AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) y [PROOFSTEP] classical rw [AddHom.toFun_eq_coe, ← DirectSum.sum_support_decompose 𝓐 x, map_sum, Finset.sum_smul, AddEquiv.coe_toAddHom, map_sum, Finset.sum_smul] refine Finset.sum_congr rfl (fun i _hi => ?_) rw [RingHom.id_apply, ← DirectSum.sum_support_decompose 𝓜 y, map_sum, Finset.smul_sum, map_sum, Finset.smul_sum] refine Finset.sum_congr rfl (fun j _hj => ?_) rw [show (decompose 𝓐 x i : A) • (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j) : (⨁ i, 𝓜 i)) = DirectSum.Gmodule.smulAddMonoidHom _ _ (decompose 𝓐 ↑(decompose 𝓐 x i)) (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j)) from DirectSum.Gmodule.smul_def _ _ _ _] simp only [decomposeAddEquiv_apply, Equiv.invFun_as_coe, Equiv.symm_symm, decompose_coe, Gmodule.smulAddMonoidHom_apply_of_of] convert DirectSum.decompose_coe 𝓜 _ rfl [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M ⊢ AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) (x • y) = ↑(RingHom.id A) x • AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) y [PROOFSTEP] rw [AddHom.toFun_eq_coe, ← DirectSum.sum_support_decompose 𝓐 x, map_sum, Finset.sum_smul, AddEquiv.coe_toAddHom, map_sum, Finset.sum_smul] [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M ⊢ ∑ x_1 in DFinsupp.support (↑(decompose 𝓐) x), ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) x_1) • y) = ∑ i in DFinsupp.support (↑(decompose 𝓐) x), ↑(RingHom.id A) ↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) y [PROOFSTEP] refine Finset.sum_congr rfl (fun i _hi => ?_) [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M i : ι _hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x) ⊢ ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • y) = ↑(RingHom.id A) ↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) y [PROOFSTEP] rw [RingHom.id_apply, ← DirectSum.sum_support_decompose 𝓜 y, map_sum, Finset.smul_sum, map_sum, Finset.smul_sum] [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M i : ι _hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x) ⊢ ∑ x_1 in DFinsupp.support (↑(decompose 𝓜) y), ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) x_1)) = ∑ x_1 in DFinsupp.support (↑(decompose 𝓜) y), ↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) ↑(↑(↑(decompose 𝓜) y) x_1) [PROOFSTEP] refine Finset.sum_congr rfl (fun j _hj => ?_) [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M i : ι _hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x) j : ι _hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y) ⊢ ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j)) = ↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) ↑(↑(↑(decompose 𝓜) y) j) [PROOFSTEP] rw [show (decompose 𝓐 x i : A) • (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j) : (⨁ i, 𝓜 i)) = DirectSum.Gmodule.smulAddMonoidHom _ _ (decompose 𝓐 ↑(decompose 𝓐 x i)) (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j)) from DirectSum.Gmodule.smul_def _ _ _ _] [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M i : ι _hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x) j : ι _hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y) ⊢ ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j)) = ↑(↑(Gmodule.smulAddMonoidHom (fun i => { x // x ∈ 𝓐 i }) fun i => { x // x ∈ 𝓜 i }) (↑(decompose 𝓐) ↑(↑(↑(decompose 𝓐) x) i))) (↑(decomposeAddEquiv 𝓜) ↑(↑(↑(decompose 𝓜) y) j)) [PROOFSTEP] simp only [decomposeAddEquiv_apply, Equiv.invFun_as_coe, Equiv.symm_symm, decompose_coe, Gmodule.smulAddMonoidHom_apply_of_of] [GOAL] ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M i : ι _hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x) j : ι _hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y) ⊢ ↑(decompose 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j)) = ↑(of (fun i => { x // x ∈ 𝓜 i }) (i + j)) (GradedMonoid.GSmul.smul (↑(↑(decompose 𝓐) x) i) (↑(↑(decompose 𝓜) y) j)) [PROOFSTEP] convert DirectSum.decompose_coe 𝓜 _ [GOAL] case h.e'_2.h.e'_6 ι : Type u_1 R : Type u_2 A : Type u_3 M : Type u_4 σ : Type u_5 σ' : Type u_6 inst✝¹⁴ : AddMonoid ι inst✝¹³ : CommSemiring R inst✝¹² : Semiring A inst✝¹¹ : Algebra R A 𝓐 : ι → σ' inst✝¹⁰ : SetLike σ' A 𝓜 : ι → σ inst✝⁹ : AddCommMonoid M inst✝⁸ : Module A M inst✝⁷ : SetLike σ M inst✝⁶ : AddSubmonoidClass σ' A inst✝⁵ : AddSubmonoidClass σ M inst✝⁴ : SetLike.GradedMonoid 𝓐 inst✝³ : SetLike.GradedSmul 𝓐 𝓜 inst✝² : DecidableEq ι inst✝¹ : GradedRing 𝓐 inst✝ : Decomposition 𝓜 h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜 x : A y : M i : ι _hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x) j : ι _hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y) ⊢ ↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j) = ↑(GradedMonoid.GSmul.smul (↑(↑(decompose 𝓐) x) i) (↑(↑(decompose 𝓜) y) j)) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Module.GradedModule", "llama_tokens": 11240}
[GOAL] R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P ⊢ Module.Projective R P ↔ Projective (of R P) [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P h : Module.Projective R P ⊢ Projective (of R P) [PROOFSTEP] letI : Module.Projective R (ModuleCat.of R P) := h [GOAL] case refine'_1 R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P h : Module.Projective R P this : Module.Projective R ↑(of R P) := h ⊢ Projective (of R P) [PROOFSTEP] exact ⟨fun E X epi => Module.projective_lifting_property _ _ ((ModuleCat.epi_iff_surjective _).mp epi)⟩ [GOAL] case refine'_2 R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P h : Projective (of R P) ⊢ Module.Projective R P [PROOFSTEP] refine' Module.Projective.of_lifting_property.{u, v} _ [GOAL] case refine'_2 R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P h : Projective (of R P) ⊢ ∀ {M : Type (max v u)} {N : Type (max u v)} [inst : AddCommGroup M] [inst_1 : AddCommGroup N] [inst_2 : Module R M] [inst_3 : Module R N] (f : M →ₗ[R] N) (g : P →ₗ[R] N), Function.Surjective ↑f → ∃ h, comp f h = g [PROOFSTEP] intro E X mE mX sE sX f g s [GOAL] case refine'_2 R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P h : Projective (of R P) E : Type (max v u) X : Type (max u v) mE : AddCommGroup E mX : AddCommGroup X sE : Module R E sX : Module R X f : E →ₗ[R] X g : P →ₗ[R] X s : Function.Surjective ↑f ⊢ ∃ h, comp f h = g [PROOFSTEP] haveI : Epi (↟f) := (ModuleCat.epi_iff_surjective (↟f)).mpr s [GOAL] case refine'_2 R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P h : Projective (of R P) E : Type (max v u) X : Type (max u v) mE : AddCommGroup E mX : AddCommGroup X sE : Module R E sX : Module R X f : E →ₗ[R] X g : P →ₗ[R] X s : Function.Surjective ↑f this : Epi (↟f) ⊢ ∃ h, comp f h = g [PROOFSTEP] letI : Projective (ModuleCat.of R P) := h [GOAL] case refine'_2 R : Type u inst✝² : Ring R P : Type (max u v) inst✝¹ : AddCommGroup P inst✝ : Module R P h : Projective (of R P) E : Type (max v u) X : Type (max u v) mE : AddCommGroup E mX : AddCommGroup X sE : Module R E sX : Module R X f : E →ₗ[R] X g : P →ₗ[R] X s : Function.Surjective ↑f this✝ : Epi (↟f) this : Projective (of R P) := h ⊢ ∃ h, comp f h = g [PROOFSTEP] exact ⟨Projective.factorThru (↟g) (↟f), Projective.factorThru_comp (↟g) (↟f)⟩ [GOAL] R : Type u inst✝ : Ring R M✝ M : ModuleCat R m : ↑M ⊢ ↑(↑(Basis.constr Finsupp.basisSingleOne ℕ) _root_.id) (Finsupp.single m 1) = m [PROOFSTEP] dsimp [Basis.constr] [GOAL] R : Type u inst✝ : Ring R M✝ M : ModuleCat R m : ↑M ⊢ ↑(comp (Finsupp.total (↑M) (↑M) R _root_.id) (comp (Finsupp.lmapDomain R R _root_.id) LinearMap.id)) (Finsupp.single m 1) = m [PROOFSTEP] simp only [Finsupp.lmapDomain_id, comp_id] [GOAL] R : Type u inst✝ : Ring R M✝ M : ModuleCat R m : ↑M ⊢ ↑(Finsupp.total (↑M) (↑M) R _root_.id) (Finsupp.single m 1) = m [PROOFSTEP] rw [Finsupp.total_single, one_smul] [GOAL] R : Type u inst✝ : Ring R M✝ M : ModuleCat R m : ↑M ⊢ _root_.id m = m [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Projective", "llama_tokens": 1577}
[GOAL] ⊢ ∀ {X' X : Type u} {Y : AddCommGroupCat} (f : X' ⟶ X) (g : X ⟶ (forget AddCommGroupCat).obj Y), ↑((fun X G => FreeAbelianGroup.lift.symm) X' Y).symm (f ≫ g) = free.map f ≫ ↑((fun X G => FreeAbelianGroup.lift.symm) X Y).symm g [PROOFSTEP] intros [GOAL] X'✝ X✝ : Type u Y✝ : AddCommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget AddCommGroupCat).obj Y✝ ⊢ ↑((fun X G => FreeAbelianGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝) = free.map f✝ ≫ ↑((fun X G => FreeAbelianGroup.lift.symm) X✝ Y✝).symm g✝ [PROOFSTEP] ext [GOAL] case w X'✝ X✝ : Type u Y✝ : AddCommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget AddCommGroupCat).obj Y✝ x✝ : ↑(free.obj X'✝) ⊢ ↑(↑((fun X G => FreeAbelianGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝)) x✝ = ↑(free.map f✝ ≫ ↑((fun X G => FreeAbelianGroup.lift.symm) X✝ Y✝).symm g✝) x✝ [PROOFSTEP] simp only [Equiv.symm_symm] [GOAL] case w X'✝ X✝ : Type u Y✝ : AddCommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget AddCommGroupCat).obj Y✝ x✝ : ↑(free.obj X'✝) ⊢ ↑(↑FreeAbelianGroup.lift (f✝ ≫ g✝)) x✝ = ↑(free.map f✝ ≫ ↑FreeAbelianGroup.lift g✝) x✝ [PROOFSTEP] apply FreeAbelianGroup.lift_comp [GOAL] ⊢ ∀ (X : Type u), { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (𝟙 X) = 𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X) [PROOFSTEP] intros [GOAL] X✝ : Type u ⊢ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (𝟙 X✝) = 𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝) [PROOFSTEP] ext1 [GOAL] case w X✝ : Type u x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝) ⊢ ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (𝟙 X✝)) x✝ = ↑(𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)) x✝ [PROOFSTEP] rw [← FreeGroup.map.unique] [GOAL] case w.hg X✝ : Type u x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝) ⊢ ∀ (x : X✝), ↑(𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)) (FreeGroup.of x) = FreeGroup.of (𝟙 X✝ x) [PROOFSTEP] intros [GOAL] case w.hg X✝ : Type u x✝¹ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝) x✝ : X✝ ⊢ ↑(𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)) (FreeGroup.of x✝) = FreeGroup.of (𝟙 X✝ x✝) [PROOFSTEP] rfl [GOAL] ⊢ ∀ {X Y Z : Type u} (f : X ⟶ Y) (g : Y ⟶ Z), { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (f ≫ g) = { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f ≫ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g [PROOFSTEP] intros [GOAL] X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (f✝ ≫ g✝) = { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝ [PROOFSTEP] ext1 [GOAL] case w X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝) ⊢ ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (f✝ ≫ g✝)) x✝ = ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝) x✝ [PROOFSTEP] rw [← FreeGroup.map.unique] [GOAL] case w.hg X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝) ⊢ ∀ (x : X✝), ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝) (FreeGroup.of x) = FreeGroup.of ((f✝ ≫ g✝) x) [PROOFSTEP] intros [GOAL] case w.hg X✝ Y✝ Z✝ : Type u f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝¹ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝) x✝ : X✝ ⊢ ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝) (FreeGroup.of x✝) = FreeGroup.of ((f✝ ≫ g✝) x✝) [PROOFSTEP] rfl [GOAL] ⊢ ∀ {X' X : Type u} {Y : GroupCat} (f : X' ⟶ X) (g : X ⟶ (forget GroupCat).obj Y), ↑((fun X G => FreeGroup.lift.symm) X' Y).symm (f ≫ g) = free.map f ≫ ↑((fun X G => FreeGroup.lift.symm) X Y).symm g [PROOFSTEP] intros [GOAL] X'✝ X✝ : Type u Y✝ : GroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget GroupCat).obj Y✝ ⊢ ↑((fun X G => FreeGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝) = free.map f✝ ≫ ↑((fun X G => FreeGroup.lift.symm) X✝ Y✝).symm g✝ [PROOFSTEP] ext1 [GOAL] case w X'✝ X✝ : Type u Y✝ : GroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget GroupCat).obj Y✝ x✝ : ↑(free.obj X'✝) ⊢ ↑(↑((fun X G => FreeGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝)) x✝ = ↑(free.map f✝ ≫ ↑((fun X G => FreeGroup.lift.symm) X✝ Y✝).symm g✝) x✝ [PROOFSTEP] simp only [Equiv.symm_symm] [GOAL] case w X'✝ X✝ : Type u Y✝ : GroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget GroupCat).obj Y✝ x✝ : ↑(free.obj X'✝) ⊢ ↑(↑FreeGroup.lift (f✝ ≫ g✝)) x✝ = ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) x✝ [PROOFSTEP] apply Eq.symm [GOAL] case w.h X'✝ X✝ : Type u Y✝ : GroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget GroupCat).obj Y✝ x✝ : ↑(free.obj X'✝) ⊢ ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) x✝ = ↑(↑FreeGroup.lift (f✝ ≫ g✝)) x✝ [PROOFSTEP] apply FreeGroup.lift.unique [GOAL] case w.h.hg X'✝ X✝ : Type u Y✝ : GroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget GroupCat).obj Y✝ x✝ : ↑(free.obj X'✝) ⊢ ∀ (x : X'✝), ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) (FreeGroup.of x) = (f✝ ≫ g✝) x [PROOFSTEP] intros [GOAL] case w.h.hg X'✝ X✝ : Type u Y✝ : GroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget GroupCat).obj Y✝ x✝¹ : ↑(free.obj X'✝) x✝ : X'✝ ⊢ ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) (FreeGroup.of x✝) = (f✝ ≫ g✝) x✝ [PROOFSTEP] apply FreeGroup.lift.of [GOAL] G : GroupCat ⊢ CommGroup (Abelianization ↑G) [PROOFSTEP] infer_instance [GOAL] X✝ Y✝ : GroupCat f : X✝ ⟶ Y✝ ⊢ (fun x => ↑Abelianization.of (↑f x)) 1 = 1 [PROOFSTEP] simp [GOAL] X✝ Y✝ : GroupCat f : X✝ ⟶ Y✝ ⊢ ∀ (x y : ↑X✝), OneHom.toFun { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) } x * OneHom.toFun { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) } y [PROOFSTEP] simp [GOAL] ⊢ ∀ (X : GroupCat), { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map (𝟙 X) = 𝟙 ({ obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.obj X) [PROOFSTEP] intros [GOAL] X✝ : GroupCat ⊢ { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map (𝟙 X✝) = 𝟙 ({ obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.obj X✝) [PROOFSTEP] simp only [MonoidHom.mk_coe, coe_id] [GOAL] X✝ : GroupCat ⊢ ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑(𝟙 X✝) x), map_one' := (_ : ↑Abelianization.of (↑(𝟙 X✝) 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X✝), ↑Abelianization.of (↑(𝟙 X✝) (a * a_1)) = ↑Abelianization.of (↑(𝟙 X✝) a) * ↑Abelianization.of (↑(𝟙 X✝) a_1)) } = 𝟙 (Bundled.mk (Abelianization ↑X✝)) [PROOFSTEP] apply (Equiv.apply_eq_iff_eq_symm_apply Abelianization.lift).mpr [GOAL] X✝ : GroupCat ⊢ { toOneHom := { toFun := fun x => ↑Abelianization.of (↑(𝟙 X✝) x), map_one' := (_ : ↑Abelianization.of (↑(𝟙 X✝) 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X✝), ↑Abelianization.of (↑(𝟙 X✝) (a * a_1)) = ↑Abelianization.of (↑(𝟙 X✝) a) * ↑Abelianization.of (↑(𝟙 X✝) a_1)) } = ↑Abelianization.lift.symm (𝟙 (Bundled.mk (Abelianization ↑X✝))) [PROOFSTEP] rfl [GOAL] ⊢ ∀ {X Y Z : GroupCat} (f : X ⟶ Y) (g : Y ⟶ Z), { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map (f ≫ g) = { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map f ≫ { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map g [PROOFSTEP] intros [GOAL] X✝ Y✝ Z✝ : GroupCat f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map (f✝ ≫ g✝) = { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map f✝ ≫ { obj := fun G => Bundled.mk (Abelianization ↑G), map := fun {X Y} f => ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X), ↑Abelianization.of (↑f (a * a_1)) = ↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map g✝ [PROOFSTEP] simp only [coe_comp] [GOAL] X✝ Y✝ Z✝ : GroupCat f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑(f✝ ≫ g✝) x), map_one' := (_ : ↑Abelianization.of (↑(f✝ ≫ g✝) 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X✝), ↑Abelianization.of (↑(f✝ ≫ g✝) (a * a_1)) = ↑Abelianization.of (↑(f✝ ≫ g✝) a) * ↑Abelianization.of (↑(f✝ ≫ g✝) a_1)) } = ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f✝ x), map_one' := (_ : ↑Abelianization.of (↑f✝ 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X✝), ↑Abelianization.of (↑f✝ (a * a_1)) = ↑Abelianization.of (↑f✝ a) * ↑Abelianization.of (↑f✝ a_1)) } ≫ ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑g✝ x), map_one' := (_ : ↑Abelianization.of (↑g✝ 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑Y✝), ↑Abelianization.of (↑g✝ (a * a_1)) = ↑Abelianization.of (↑g✝ a) * ↑Abelianization.of (↑g✝ a_1)) } [PROOFSTEP] apply (Equiv.apply_eq_iff_eq_symm_apply Abelianization.lift).mpr [GOAL] X✝ Y✝ Z✝ : GroupCat f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ { toOneHom := { toFun := fun x => ↑Abelianization.of (↑(f✝ ≫ g✝) x), map_one' := (_ : ↑Abelianization.of (↑(f✝ ≫ g✝) 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X✝), ↑Abelianization.of (↑(f✝ ≫ g✝) (a * a_1)) = ↑Abelianization.of (↑(f✝ ≫ g✝) a) * ↑Abelianization.of (↑(f✝ ≫ g✝) a_1)) } = ↑Abelianization.lift.symm (↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑f✝ x), map_one' := (_ : ↑Abelianization.of (↑f✝ 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑X✝), ↑Abelianization.of (↑f✝ (a * a_1)) = ↑Abelianization.of (↑f✝ a) * ↑Abelianization.of (↑f✝ a_1)) } ≫ ↑Abelianization.lift { toOneHom := { toFun := fun x => ↑Abelianization.of (↑g✝ x), map_one' := (_ : ↑Abelianization.of (↑g✝ 1) = 1) }, map_mul' := (_ : ∀ (a a_1 : ↑Y✝), ↑Abelianization.of (↑g✝ (a * a_1)) = ↑Abelianization.of (↑g✝ a) * ↑Abelianization.of (↑g✝ a_1)) }) [PROOFSTEP] rfl [GOAL] ⊢ ∀ {X' X : GroupCat} {Y : CommGroupCat} (f : X' ⟶ X) (g : X ⟶ (forget₂ CommGroupCat GroupCat).obj Y), ↑((fun G A => Abelianization.lift.symm) X' Y).symm (f ≫ g) = abelianize.map f ≫ ↑((fun G A => Abelianization.lift.symm) X Y).symm g [PROOFSTEP] intros [GOAL] X'✝ X✝ : GroupCat Y✝ : CommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝ ⊢ ↑((fun G A => Abelianization.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝) = abelianize.map f✝ ≫ ↑((fun G A => Abelianization.lift.symm) X✝ Y✝).symm g✝ [PROOFSTEP] ext1 [GOAL] case w X'✝ X✝ : GroupCat Y✝ : CommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝ x✝ : ↑(abelianize.obj X'✝) ⊢ ↑(↑((fun G A => Abelianization.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝)) x✝ = ↑(abelianize.map f✝ ≫ ↑((fun G A => Abelianization.lift.symm) X✝ Y✝).symm g✝) x✝ [PROOFSTEP] simp only [Equiv.symm_symm] [GOAL] case w X'✝ X✝ : GroupCat Y✝ : CommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝ x✝ : ↑(abelianize.obj X'✝) ⊢ ↑(↑Abelianization.lift (f✝ ≫ g✝)) x✝ = ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) x✝ [PROOFSTEP] apply Eq.symm [GOAL] case w.h X'✝ X✝ : GroupCat Y✝ : CommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝ x✝ : ↑(abelianize.obj X'✝) ⊢ ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) x✝ = ↑(↑Abelianization.lift (f✝ ≫ g✝)) x✝ [PROOFSTEP] apply Abelianization.lift.unique [GOAL] case w.h.hφ X'✝ X✝ : GroupCat Y✝ : CommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝ x✝ : ↑(abelianize.obj X'✝) ⊢ ∀ (x : ↑X'✝), ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) (↑Abelianization.of x) = ↑(f✝ ≫ g✝) x [PROOFSTEP] intros [GOAL] case w.h.hφ X'✝ X✝ : GroupCat Y✝ : CommGroupCat f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝ x✝¹ : ↑(abelianize.obj X'✝) x✝ : ↑X'✝ ⊢ ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) (↑Abelianization.of x✝) = ↑(f✝ ≫ g✝) x✝ [PROOFSTEP] apply Abelianization.lift.of [GOAL] ⊢ ∀ ⦃X Y : MonCat⦄ (f : X ⟶ Y), (MonCat.units ⋙ forget₂ GroupCat MonCat).map f ≫ (fun X => Units.coeHom ↑X) Y = (fun X => Units.coeHom ↑X) X ≫ (𝟭 MonCat).map f [PROOFSTEP] intros [GOAL] X✝ Y✝ : MonCat f✝ : X✝ ⟶ Y✝ ⊢ (MonCat.units ⋙ forget₂ GroupCat MonCat).map f✝ ≫ (fun X => Units.coeHom ↑X) Y✝ = (fun X => Units.coeHom ↑X) X✝ ≫ (𝟭 MonCat).map f✝ [PROOFSTEP] exact MonoidHom.ext fun x => rfl [GOAL] ⊢ ∀ ⦃X Y : CommMonCat⦄ (f : X ⟶ Y), (CommMonCat.units ⋙ forget₂ CommGroupCat CommMonCat).map f ≫ (fun X => Units.coeHom ↑X) Y = (fun X => Units.coeHom ↑X) X ≫ (𝟭 CommMonCat).map f [PROOFSTEP] intros [GOAL] X✝ Y✝ : CommMonCat f✝ : X✝ ⟶ Y✝ ⊢ (CommMonCat.units ⋙ forget₂ CommGroupCat CommMonCat).map f✝ ≫ (fun X => Units.coeHom ↑X) Y✝ = (fun X => Units.coeHom ↑X) X✝ ≫ (𝟭 CommMonCat).map f✝ [PROOFSTEP] exact MonoidHom.ext fun x => rfl
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Adjunctions", "llama_tokens": 9173}
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Simple", "llama_tokens": 0}
[GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N hf : Mono f ⊢ (LinearEquiv.toModuleIso' (LinearEquiv.trans (LinearEquiv.symm (Submodule.quotEquivOfEqBot (LinearMap.ker f) (_ : LinearMap.ker f = ⊥))) (LinearEquiv.trans (LinearMap.quotKerEquivRange f) (LinearEquiv.ofEq (LinearMap.range f) (LinearMap.ker (Submodule.mkQ (LinearMap.range f))) (_ : LinearMap.range f = LinearMap.ker (Submodule.mkQ (LinearMap.range f))))))).hom ≫ Fork.ι (kernelCone (Submodule.mkQ (LinearMap.range f))) = f [PROOFSTEP] ext [GOAL] case h R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N hf : Mono f x✝ : ↑M ⊢ ↑((LinearEquiv.toModuleIso' (LinearEquiv.trans (LinearEquiv.symm (Submodule.quotEquivOfEqBot (LinearMap.ker f) (_ : LinearMap.ker f = ⊥))) (LinearEquiv.trans (LinearMap.quotKerEquivRange f) (LinearEquiv.ofEq (LinearMap.range f) (LinearMap.ker (Submodule.mkQ (LinearMap.range f))) (_ : LinearMap.range f = LinearMap.ker (Submodule.mkQ (LinearMap.range f))))))).hom ≫ Fork.ι (kernelCone (Submodule.mkQ (LinearMap.range f)))) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N hf : Epi f ⊢ Cofork.π (cokernelCocone (Submodule.subtype (LinearMap.ker f))) ≫ (LinearEquiv.toModuleIso' (LinearEquiv.trans (LinearEquiv.trans (Submodule.quotEquivOfEq (LinearMap.range (Submodule.subtype (LinearMap.ker f))) (LinearMap.ker f) (_ : LinearMap.range (Submodule.subtype (LinearMap.ker f)) = LinearMap.ker f)) (LinearMap.quotKerEquivRange f)) (LinearEquiv.ofTop (LinearMap.range f) (_ : LinearMap.range f = ⊤)))).hom = f [PROOFSTEP] ext [GOAL] case h R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N hf : Epi f x✝ : ↑((parallelPair (Submodule.subtype (LinearMap.ker f)) 0).obj WalkingParallelPair.one) ⊢ ↑(Cofork.π (cokernelCocone (Submodule.subtype (LinearMap.ker f))) ≫ (LinearEquiv.toModuleIso' (LinearEquiv.trans (LinearEquiv.trans (Submodule.quotEquivOfEq (LinearMap.range (Submodule.subtype (LinearMap.ker f))) (LinearMap.ker f) (_ : LinearMap.range (Submodule.subtype (LinearMap.ker f)) = LinearMap.ker f)) (LinearMap.quotKerEquivRange f)) (LinearEquiv.ofTop (LinearMap.range f) (_ : LinearMap.range f = ⊤)))).hom) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N O : ModuleCat R g : N ⟶ O ⊢ Exact f g ↔ range f = ker g [PROOFSTEP] rw [abelian.exact_iff' f g (kernelIsLimit _) (cokernelIsColimit _)] [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N O : ModuleCat R g : N ⟶ O ⊢ f ≫ g = 0 ∧ Fork.ι (kernelCone g) ≫ Cofork.π (cokernelCocone f) = 0 ↔ range f = ker g [PROOFSTEP] exact ⟨fun h => le_antisymm (range_le_ker_iff.2 h.1) (ker_le_range_iff.2 h.2), fun h => ⟨range_le_ker_iff.1 <| le_of_eq h, ker_le_range_iff.1 <| le_of_eq h.symm⟩⟩
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Abelian", "llama_tokens": 1234}
[GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] ⊢ natDegree 0 ≤ 0 [PROOFSTEP] simp [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : Multiset S[X] ⊢ ∀ (a : List S[X]), natDegree (Multiset.sum (Quotient.mk (List.isSetoid S[X]) a)) ≤ foldr max (_ : ∀ (a b c : ℕ), max a (max b c) = max b (max a c)) 0 (Multiset.map natDegree (Quotient.mk (List.isSetoid S[X]) a)) [PROOFSTEP] simpa using natDegree_list_sum_le [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S f : ι → S[X] ⊢ natDegree (∑ i in s, f i) ≤ Finset.fold max 0 (natDegree ∘ f) s [PROOFSTEP] simpa using natDegree_multiset_sum_le (s.val.map f) [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] ⊢ degree (List.sum l) ≤ List.maximum (List.map natDegree l) [PROOFSTEP] by_cases h : l.sum = 0 [GOAL] case pos R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : List.sum l = 0 ⊢ degree (List.sum l) ≤ List.maximum (List.map natDegree l) [PROOFSTEP] simp [h] [GOAL] case neg R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : ¬List.sum l = 0 ⊢ degree (List.sum l) ≤ List.maximum (List.map natDegree l) [PROOFSTEP] rw [degree_eq_natDegree h] [GOAL] case neg R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : ¬List.sum l = 0 ⊢ ↑(natDegree (List.sum l)) ≤ List.maximum (List.map natDegree l) [PROOFSTEP] suffices (l.map natDegree).maximum = ((l.map natDegree).foldr max 0 : ℕ) by rw [this] simpa [this, Nat.cast_withBot] using natDegree_list_sum_le l [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : ¬List.sum l = 0 this : List.maximum (List.map natDegree l) = ↑(List.foldr max 0 (List.map natDegree l)) ⊢ ↑(natDegree (List.sum l)) ≤ List.maximum (List.map natDegree l) [PROOFSTEP] rw [this] [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : ¬List.sum l = 0 this : List.maximum (List.map natDegree l) = ↑(List.foldr max 0 (List.map natDegree l)) ⊢ ↑(natDegree (List.sum l)) ≤ ↑(List.foldr max 0 (List.map natDegree l)) [PROOFSTEP] simpa [this, Nat.cast_withBot] using natDegree_list_sum_le l [GOAL] case neg R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : ¬List.sum l = 0 ⊢ List.maximum (List.map natDegree l) = ↑(List.foldr max 0 (List.map natDegree l)) [PROOFSTEP] rw [← List.foldr_max_of_ne_nil] [GOAL] case neg R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : ¬List.sum l = 0 ⊢ ↑(List.foldr max ⊥ (List.map natDegree l)) = ↑(List.foldr max 0 (List.map natDegree l)) [PROOFSTEP] congr [GOAL] case neg R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : ¬List.sum l = 0 ⊢ List.map natDegree l ≠ [] [PROOFSTEP] contrapose! h [GOAL] case neg R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : List.map natDegree l = [] ⊢ List.sum l = 0 [PROOFSTEP] rw [List.map_eq_nil] at h [GOAL] case neg R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] h : l = [] ⊢ List.sum l = 0 [PROOFSTEP] simp [h] [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] ⊢ natDegree (List.prod l) ≤ List.sum (List.map natDegree l) [PROOFSTEP] induction' l with hd tl IH [GOAL] case nil R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S ⊢ natDegree (List.prod []) ≤ List.sum (List.map natDegree []) [PROOFSTEP] simp [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S hd : S[X] tl : List S[X] IH : natDegree (List.prod tl) ≤ List.sum (List.map natDegree tl) ⊢ natDegree (List.prod (hd :: tl)) ≤ List.sum (List.map natDegree (hd :: tl)) [PROOFSTEP] simpa using natDegree_mul_le.trans (add_le_add_left IH _) [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] ⊢ degree (List.prod l) ≤ List.sum (List.map degree l) [PROOFSTEP] induction' l with hd tl IH [GOAL] case nil R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S ⊢ degree (List.prod []) ≤ List.sum (List.map degree []) [PROOFSTEP] simp [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S hd : S[X] tl : List S[X] IH : degree (List.prod tl) ≤ List.sum (List.map degree tl) ⊢ degree (List.prod (hd :: tl)) ≤ List.sum (List.map degree (hd :: tl)) [PROOFSTEP] simpa using (degree_mul_le _ _).trans (add_le_add_left IH _) [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n ⊢ coeff (List.prod l) (List.length l * n) = List.prod (List.map (fun p => coeff p n) l) [PROOFSTEP] induction' l with hd tl IH [GOAL] case nil R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hl : ∀ (p : S[X]), p ∈ [] → natDegree p ≤ n ⊢ coeff (List.prod []) (List.length [] * n) = List.prod (List.map (fun p => coeff p n) []) [PROOFSTEP] simp [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n ⊢ coeff (List.prod (hd :: tl)) (List.length (hd :: tl) * n) = List.prod (List.map (fun p => coeff p n) (hd :: tl)) [PROOFSTEP] have hl' : ∀ p ∈ tl, natDegree p ≤ n := fun p hp => hl p (List.mem_cons_of_mem _ hp) [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n ⊢ coeff (List.prod (hd :: tl)) (List.length (hd :: tl) * n) = List.prod (List.map (fun p => coeff p n) (hd :: tl)) [PROOFSTEP] simp only [List.prod_cons, List.map, List.length] [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n ⊢ coeff (hd * List.prod tl) ((List.length tl + 1) * n) = coeff hd n * List.prod (List.map (fun p => coeff p n) tl) [PROOFSTEP] rw [add_mul, one_mul, add_comm, ← IH hl', mul_comm tl.length] [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n ⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl) [PROOFSTEP] have h : natDegree tl.prod ≤ n * tl.length := by refine' (natDegree_list_prod_le _).trans _ rw [← tl.length_map natDegree, mul_comm] refine' List.sum_le_card_nsmul _ _ _ simpa using hl' [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n ⊢ natDegree (List.prod tl) ≤ n * List.length tl [PROOFSTEP] refine' (natDegree_list_prod_le _).trans _ [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n ⊢ List.sum (List.map natDegree tl) ≤ n * List.length tl [PROOFSTEP] rw [← tl.length_map natDegree, mul_comm] [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n ⊢ List.sum (List.map natDegree tl) ≤ List.length (List.map natDegree tl) * n [PROOFSTEP] refine' List.sum_le_card_nsmul _ _ _ [GOAL] R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n ⊢ ∀ (x : ℕ), x ∈ List.map natDegree tl → x ≤ n [PROOFSTEP] simpa using hl' [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n h : natDegree (List.prod tl) ≤ n * List.length tl ⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl) [PROOFSTEP] have hdn : natDegree hd ≤ n := hl _ (List.mem_cons_self _ _) [GOAL] case cons R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n h : natDegree (List.prod tl) ≤ n * List.length tl hdn : natDegree hd ≤ n ⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl) [PROOFSTEP] rcases hdn.eq_or_lt with (rfl | hdn') [GOAL] case cons.inl R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] hd : S[X] tl : List S[X] hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) → coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl hdn : natDegree hd ≤ natDegree hd ⊢ coeff (hd * List.prod tl) (natDegree hd + natDegree hd * List.length tl) = coeff hd (natDegree hd) * coeff (List.prod tl) (natDegree hd * List.length tl) [PROOFSTEP] cases' h.eq_or_lt with h' h' [GOAL] case cons.inl.inl R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] hd : S[X] tl : List S[X] hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) → coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl hdn : natDegree hd ≤ natDegree hd h' : natDegree (List.prod tl) = natDegree hd * List.length tl ⊢ coeff (hd * List.prod tl) (natDegree hd + natDegree hd * List.length tl) = coeff hd (natDegree hd) * coeff (List.prod tl) (natDegree hd * List.length tl) [PROOFSTEP] rw [← h', coeff_mul_degree_add_degree, leadingCoeff, leadingCoeff] [GOAL] case cons.inl.inr R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] hd : S[X] tl : List S[X] hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) → coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl hdn : natDegree hd ≤ natDegree hd h' : natDegree (List.prod tl) < natDegree hd * List.length tl ⊢ coeff (hd * List.prod tl) (natDegree hd + natDegree hd * List.length tl) = coeff hd (natDegree hd) * coeff (List.prod tl) (natDegree hd * List.length tl) [PROOFSTEP] rw [coeff_eq_zero_of_natDegree_lt, coeff_eq_zero_of_natDegree_lt h', mul_zero] [GOAL] case cons.inl.inr R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] hd : S[X] tl : List S[X] hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) → coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl hdn : natDegree hd ≤ natDegree hd h' : natDegree (List.prod tl) < natDegree hd * List.length tl ⊢ natDegree (hd * List.prod tl) < natDegree hd + natDegree hd * List.length tl [PROOFSTEP] exact natDegree_mul_le.trans_lt (add_lt_add_left h' _) [GOAL] case cons.inr R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n h : natDegree (List.prod tl) ≤ n * List.length tl hdn : natDegree hd ≤ n hdn' : natDegree hd < n ⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl) [PROOFSTEP] rw [coeff_eq_zero_of_natDegree_lt hdn', coeff_eq_zero_of_natDegree_lt, zero_mul] [GOAL] case cons.inr R : Type u ι : Type w s : Finset ι S : Type u_1 inst✝ : Semiring S l : List S[X] n : ℕ hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n hd : S[X] tl : List S[X] IH : (∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) → coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl) hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n h : natDegree (List.prod tl) ≤ n * List.length tl hdn : natDegree hd ≤ n hdn' : natDegree hd < n ⊢ natDegree (hd * List.prod tl) < n + n * List.length tl [PROOFSTEP] exact natDegree_mul_le.trans_lt (add_lt_add_of_lt_of_le hdn' h) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ ∀ (a : List R[X]), natDegree (prod (Quotient.mk (List.isSetoid R[X]) a)) ≤ Multiset.sum (Multiset.map natDegree (Quotient.mk (List.isSetoid R[X]) a)) [PROOFSTEP] simpa using natDegree_list_prod_le [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ natDegree (∏ i in s, f i) ≤ ∑ i in s, natDegree (f i) [PROOFSTEP] simpa using natDegree_multiset_prod_le (s.1.map f) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ ∀ (a : List R[X]), degree (prod (Quotient.mk (List.isSetoid R[X]) a)) ≤ Multiset.sum (Multiset.map degree (Quotient.mk (List.isSetoid R[X]) a)) [PROOFSTEP] simpa using degree_list_prod_le [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ degree (∏ i in s, f i) ≤ ∑ i in s, degree (f i) [PROOFSTEP] simpa only [Multiset.map_map] using degree_multiset_prod_le (s.1.map f) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) [PROOFSTEP] induction' t using Multiset.induction_on with a t ih [GOAL] case empty R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t) ≠ 0 h : prod (Multiset.map leadingCoeff 0) ≠ 0 ⊢ leadingCoeff (prod 0) = prod (Multiset.map leadingCoeff 0) [PROOFSTEP] simp [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : prod (Multiset.map leadingCoeff (a ::ₘ t)) ≠ 0 ⊢ leadingCoeff (prod (a ::ₘ t)) = prod (Multiset.map leadingCoeff (a ::ₘ t)) [PROOFSTEP] simp only [Multiset.map_cons, Multiset.prod_cons] at h ⊢ [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ leadingCoeff (a * prod t) = leadingCoeff a * prod (Multiset.map leadingCoeff t) [PROOFSTEP] rw [Polynomial.leadingCoeff_mul'] [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ leadingCoeff a * leadingCoeff (prod t) = leadingCoeff a * prod (Multiset.map leadingCoeff t) [PROOFSTEP] rw [ih] [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ prod (Multiset.map leadingCoeff t) ≠ 0 [PROOFSTEP] simp [*] [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ ¬prod (Multiset.map leadingCoeff t) = 0 [PROOFSTEP] apply right_ne_zero_of_mul h [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ leadingCoeff a * leadingCoeff (prod t) ≠ 0 [PROOFSTEP] rw [ih] [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ prod (Multiset.map leadingCoeff t) ≠ 0 [PROOFSTEP] simp [*] [GOAL] case cons R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0 a : R[X] t : Multiset R[X] ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t) h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0 ⊢ prod (Multiset.map leadingCoeff t) ≠ 0 [PROOFSTEP] apply right_ne_zero_of_mul h [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∏ i in s, leadingCoeff (f i) ≠ 0 ⊢ leadingCoeff (∏ i in s, f i) = ∏ i in s, leadingCoeff (f i) [PROOFSTEP] simpa using leadingCoeff_multiset_prod' (s.1.map f) (by simpa using h) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∏ i in s, leadingCoeff (f i) ≠ 0 ⊢ prod (Multiset.map leadingCoeff (Multiset.map f s.val)) ≠ 0 [PROOFSTEP] simpa using h [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 ⊢ natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t) [PROOFSTEP] revert h [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 → natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t) [PROOFSTEP] refine' Multiset.induction_on t _ fun a t ih ht => _ [GOAL] case refine'_1 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ prod (Multiset.map (fun f => leadingCoeff f) 0) ≠ 0 → natDegree (prod 0) = Multiset.sum (Multiset.map (fun f => natDegree f) 0) [PROOFSTEP] simp [GOAL] case refine'_2 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ih : prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 → natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t) ht : prod (Multiset.map (fun f => leadingCoeff f) (a ::ₘ t)) ≠ 0 ⊢ natDegree (prod (a ::ₘ t)) = Multiset.sum (Multiset.map (fun f => natDegree f) (a ::ₘ t)) [PROOFSTEP] rw [Multiset.map_cons, Multiset.prod_cons] at ht ⊢ [GOAL] case refine'_2 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ih : prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 → natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t) ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 ⊢ natDegree (a * prod t) = Multiset.sum (natDegree a ::ₘ Multiset.map (fun f => natDegree f) t) [PROOFSTEP] rw [Multiset.sum_cons, Polynomial.natDegree_mul', ih] [GOAL] case refine'_2 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ih : prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 → natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t) ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 ⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 [PROOFSTEP] apply right_ne_zero_of_mul ht [GOAL] case refine'_2 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ih : prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 → natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t) ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 ⊢ leadingCoeff a * leadingCoeff (prod t) ≠ 0 [PROOFSTEP] rwa [Polynomial.leadingCoeff_multiset_prod'] [GOAL] case refine'_2.h R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ih : prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 → natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t) ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 ⊢ prod (Multiset.map leadingCoeff t) ≠ 0 [PROOFSTEP] apply right_ne_zero_of_mul ht [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∏ i in s, leadingCoeff (f i) ≠ 0 ⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i) [PROOFSTEP] simpa using natDegree_multiset_prod' (s.1.map f) (by simpa using h) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∏ i in s, leadingCoeff (f i) ≠ 0 ⊢ prod (Multiset.map (fun f => leadingCoeff f) (Multiset.map f s.val)) ≠ 0 [PROOFSTEP] simpa using h [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t) [PROOFSTEP] nontriviality R [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R ⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t) [PROOFSTEP] apply natDegree_multiset_prod' [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R ⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 [PROOFSTEP] suffices (t.map fun f => leadingCoeff f).prod = 1 by rw [this] simp [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R this : prod (Multiset.map (fun f => leadingCoeff f) t) = 1 ⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 [PROOFSTEP] rw [this] [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R this : prod (Multiset.map (fun f => leadingCoeff f) t) = 1 ⊢ 1 ≠ 0 [PROOFSTEP] simp [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R ⊢ prod (Multiset.map (fun f => leadingCoeff f) t) = 1 [PROOFSTEP] convert prod_replicate (Multiset.card t) (1 : R) [GOAL] case h.e'_2.h.e'_3 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R ⊢ Multiset.map (fun f => leadingCoeff f) t = replicate (↑Multiset.card t) 1 [PROOFSTEP] simp only [eq_replicate, Multiset.card_map, eq_self_iff_true, true_and_iff] [GOAL] case h.e'_2.h.e'_3 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R ⊢ ∀ (b : R), b ∈ Multiset.map (fun f => leadingCoeff f) t → b = 1 [PROOFSTEP] rintro i hi [GOAL] case h.e'_2.h.e'_3 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R i : R hi : i ∈ Multiset.map (fun f => leadingCoeff f) t ⊢ i = 1 [PROOFSTEP] obtain ⟨i, hi, rfl⟩ := Multiset.mem_map.mp hi [GOAL] case h.e'_2.h.e'_3.intro.intro R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R i : R[X] hi✝ : i ∈ t hi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t ⊢ leadingCoeff i = 1 [PROOFSTEP] apply h [GOAL] case h.e'_2.h.e'_3.intro.intro.a R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R i : R[X] hi✝ : i ∈ t hi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t ⊢ i ∈ t [PROOFSTEP] assumption [GOAL] case h.e'_3 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (f : R[X]), f ∈ t → Monic f ✝ : Nontrivial R ⊢ 1 = 1 ^ ↑Multiset.card t [PROOFSTEP] simp [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (i : ι), i ∈ s → Monic (f i) ⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i) [PROOFSTEP] simpa using natDegree_multiset_prod_of_monic (s.1.map f) (by simpa using h) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] h : ∀ (i : ι), i ∈ s → Monic (f i) ⊢ ∀ (f_1 : R[X]), f_1 ∈ Multiset.map f s.val → Monic f_1 [PROOFSTEP] simpa using h [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] n : ℕ hl : ∀ (p : R[X]), p ∈ t → natDegree p ≤ n ⊢ coeff (prod t) (↑Multiset.card t * n) = prod (Multiset.map (fun p => coeff p n) t) [PROOFSTEP] induction t using Quotient.inductionOn [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] n : ℕ a✝ : List R[X] hl : ∀ (p : R[X]), p ∈ Quotient.mk (List.isSetoid R[X]) a✝ → natDegree p ≤ n ⊢ coeff (prod (Quotient.mk (List.isSetoid R[X]) a✝)) (↑Multiset.card (Quotient.mk (List.isSetoid R[X]) a✝) * n) = prod (Multiset.map (fun p => coeff p n) (Quotient.mk (List.isSetoid R[X]) a✝)) [PROOFSTEP] simpa using coeff_list_prod_of_natDegree_le _ _ hl [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f✝ : ι → R[X] t : Multiset R[X] f : ι → R[X] n : ℕ h : ∀ (p : ι), p ∈ s → natDegree (f p) ≤ n ⊢ coeff (∏ i in s, f i) (Finset.card s * n) = ∏ i in s, coeff (f i) n [PROOFSTEP] cases' s with l hl [GOAL] case mk R : Type u ι : Type w inst✝ : CommSemiring R f✝ : ι → R[X] t : Multiset R[X] f : ι → R[X] n : ℕ l : Multiset ι hl : Nodup l h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n ⊢ coeff (∏ i in { val := l, nodup := hl }, f i) (Finset.card { val := l, nodup := hl } * n) = ∏ i in { val := l, nodup := hl }, coeff (f i) n [PROOFSTEP] convert coeff_multiset_prod_of_natDegree_le (l.map f) n ?_ [GOAL] case h.e'_2.h.e'_4.h.e'_5 R : Type u ι : Type w inst✝ : CommSemiring R f✝ : ι → R[X] t : Multiset R[X] f : ι → R[X] n : ℕ l : Multiset ι hl : Nodup l h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n ⊢ Finset.card { val := l, nodup := hl } = ↑Multiset.card (Multiset.map f l) [PROOFSTEP] simp [GOAL] case h.e'_3 R : Type u ι : Type w inst✝ : CommSemiring R f✝ : ι → R[X] t : Multiset R[X] f : ι → R[X] n : ℕ l : Multiset ι hl : Nodup l h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n ⊢ ∏ i in { val := l, nodup := hl }, coeff (f i) n = prod (Multiset.map (fun p => coeff p n) (Multiset.map f l)) [PROOFSTEP] simp [GOAL] case mk R : Type u ι : Type w inst✝ : CommSemiring R f✝ : ι → R[X] t : Multiset R[X] f : ι → R[X] n : ℕ l : Multiset ι hl : Nodup l h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n ⊢ ∀ (p : R[X]), p ∈ Multiset.map f l → natDegree p ≤ n [PROOFSTEP] simpa using h [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ coeff (prod t) 0 = prod (Multiset.map (fun f => coeff f 0) t) [PROOFSTEP] refine' Multiset.induction_on t _ fun a t ht => _ [GOAL] case refine'_1 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ coeff (prod 0) 0 = prod (Multiset.map (fun f => coeff f 0) 0) [PROOFSTEP] simp [GOAL] case refine'_2 R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ht : coeff (prod t) 0 = prod (Multiset.map (fun f => coeff f 0) t) ⊢ coeff (prod (a ::ₘ t)) 0 = prod (Multiset.map (fun f => coeff f 0) (a ::ₘ t)) [PROOFSTEP] rw [Multiset.prod_cons, Multiset.map_cons, Multiset.prod_cons, Polynomial.mul_coeff_zero, ht] [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommSemiring R f : ι → R[X] t : Multiset R[X] ⊢ coeff (∏ i in s, f i) 0 = ∏ i in s, coeff (f i) 0 [PROOFSTEP] simpa using coeff_zero_multiset_prod (s.1.map f) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ⊢ nextCoeff (prod (Multiset.map (fun x => X - ↑C x) t)) = -Multiset.sum t [PROOFSTEP] rw [nextCoeff_multiset_prod] [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ⊢ Multiset.sum (Multiset.map (fun i => nextCoeff (X - ↑C i)) t) = -Multiset.sum t [PROOFSTEP] simp only [nextCoeff_X_sub_C] [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ⊢ Multiset.sum (Multiset.map (fun x => -x) t) = -Multiset.sum t [PROOFSTEP] exact t.sum_hom (-AddMonoidHom.id R) [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ⊢ ∀ (i : R), i ∈ t → Monic (X - ↑C i) [PROOFSTEP] intros [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R i✝ : R a✝ : i✝ ∈ t ⊢ Monic (X - ↑C i✝) [PROOFSTEP] apply monic_X_sub_C [GOAL] R : Type u ι : Type w s✝ : Finset ι inst✝ : CommRing R s : Finset ι f : ι → R ⊢ nextCoeff (∏ i in s, (X - ↑C (f i))) = -∑ i in s, f i [PROOFSTEP] simpa using multiset_prod_X_sub_C_nextCoeff (s.1.map f) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = -Multiset.sum t [PROOFSTEP] nontriviality R [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = -Multiset.sum t [PROOFSTEP] convert multiset_prod_X_sub_C_nextCoeff (by assumption) [GOAL] R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R ⊢ Multiset ?m.927417 [PROOFSTEP] assumption [GOAL] case h.e'_2 R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = nextCoeff (prod (Multiset.map (fun x => X - ↑C x) t)) [PROOFSTEP] rw [nextCoeff] [GOAL] case h.e'_2 R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = if natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 then 0 else coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) - 1) [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0 [PROOFSTEP] rw [natDegree_multiset_prod_of_monic] at h [GOAL] case pos R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : Multiset.sum (Multiset.map natDegree (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0 [PROOFSTEP] simp only [Multiset.mem_map] at * [GOAL] case pos.h R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ ∀ (f : R[X]), f ∈ Multiset.map (fun x => X - ↑C x) t → Monic f [PROOFSTEP] simp only [Multiset.mem_map] at * [GOAL] case pos R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : Multiset.sum (Multiset.map (fun x => natDegree x) (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0 case pos.h R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ ∀ (f : R[X]), (∃ a, a ∈ t ∧ X - ↑C a = f) → Monic f [PROOFSTEP] swap [GOAL] case pos.h R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ ∀ (f : R[X]), (∃ a, a ∈ t ∧ X - ↑C a = f) → Monic f [PROOFSTEP] rintro _ ⟨_, _, rfl⟩ [GOAL] case pos.h.intro.intro R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 w✝ : R left✝ : w✝ ∈ t ⊢ Monic (X - ↑C w✝) [PROOFSTEP] apply monic_X_sub_C [GOAL] case pos R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : Multiset.sum (Multiset.map (fun x => natDegree x) (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0 [PROOFSTEP] simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h [GOAL] case pos R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : ∀ (x : ℕ), (∃ a, (∃ a_1, a_1 ∈ t ∧ X - ↑C a_1 = a) ∧ natDegree a = x) → x = 0 ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0 [PROOFSTEP] contrapose! h [GOAL] case pos R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) ≠ 0 ⊢ ∃ x, (∃ a, (∃ a_1, a_1 ∈ t ∧ X - ↑C a_1 = a) ∧ natDegree a = x) ∧ x ≠ 0 [PROOFSTEP] obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht [GOAL] case pos.intro R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) ≠ 0 x : R hx : x ∈ t ⊢ ∃ x, (∃ a, (∃ a_1, a_1 ∈ t ∧ X - ↑C a_1 = a) ∧ natDegree a = x) ∧ x ≠ 0 [PROOFSTEP] exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, natDegree_X_sub_C _⟩, one_ne_zero⟩ [GOAL] case neg R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) - 1) [PROOFSTEP] congr [GOAL] case neg.e_a.e_a R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ ↑Multiset.card t = natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) [PROOFSTEP] rw [natDegree_multiset_prod_of_monic] [GOAL] case neg.e_a.e_a R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ ↑Multiset.card t = Multiset.sum (Multiset.map natDegree (Multiset.map (fun x => X - ↑C x) t)) [PROOFSTEP] simp [natDegree_X_sub_C, monic_X_sub_C] [GOAL] case neg.e_a.e_a.h R : Type u ι : Type w s : Finset ι inst✝ : CommRing R t : Multiset R ht : 0 < ↑Multiset.card t ✝ : Nontrivial R h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 ⊢ ∀ (f : R[X]), f ∈ Multiset.map (fun x => X - ↑C x) t → Monic f [PROOFSTEP] simp [natDegree_X_sub_C, monic_X_sub_C] [GOAL] R : Type u ι : Type w s✝ : Finset ι inst✝ : CommRing R s : Finset ι f : ι → R hs : 0 < Finset.card s ⊢ coeff (∏ i in s, (X - ↑C (f i))) (Finset.card s - 1) = -∑ i in s, f i [PROOFSTEP] simpa using multiset_prod_X_sub_C_coeff_card_pred (s.1.map f) (by simpa using hs) [GOAL] R : Type u ι : Type w s✝ : Finset ι inst✝ : CommRing R s : Finset ι f : ι → R hs : 0 < Finset.card s ⊢ 0 < ↑Multiset.card (Multiset.map f s.val) [PROOFSTEP] simpa using hs [GOAL] R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ∀ (i : ι), i ∈ s → f i ≠ 0 ⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i) [PROOFSTEP] nontriviality R [GOAL] R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ∀ (i : ι), i ∈ s → f i ≠ 0 ✝ : Nontrivial R ⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i) [PROOFSTEP] apply natDegree_prod' [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ∀ (i : ι), i ∈ s → f i ≠ 0 ✝ : Nontrivial R ⊢ ∏ i in s, leadingCoeff (f i) ≠ 0 [PROOFSTEP] rw [prod_ne_zero_iff] [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ∀ (i : ι), i ∈ s → f i ≠ 0 ✝ : Nontrivial R ⊢ ∀ (a : ι), a ∈ s → leadingCoeff (f a) ≠ 0 [PROOFSTEP] intro x hx [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ∀ (i : ι), i ∈ s → f i ≠ 0 ✝ : Nontrivial R x : ι hx : x ∈ s ⊢ leadingCoeff (f x) ≠ 0 [PROOFSTEP] simp [h x hx] [GOAL] R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ¬0 ∈ t ⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t) [PROOFSTEP] nontriviality R [GOAL] R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ¬0 ∈ t ✝ : Nontrivial R ⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t) [PROOFSTEP] rw [natDegree_multiset_prod'] [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ¬0 ∈ t ✝ : Nontrivial R ⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 [PROOFSTEP] simp_rw [Ne.def, Multiset.prod_eq_zero_iff, Multiset.mem_map, leadingCoeff_eq_zero] [GOAL] case h R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h : ¬0 ∈ t ✝ : Nontrivial R ⊢ ¬∃ a, a ∈ t ∧ a = 0 [PROOFSTEP] rintro ⟨_, h, rfl⟩ [GOAL] case h.intro.intro R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] h✝ : ¬0 ∈ t ✝ : Nontrivial R h : 0 ∈ t ⊢ False [PROOFSTEP] contradiction [GOAL] R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] ⊢ leadingCoeff (prod t) = prod (Multiset.map (fun f => leadingCoeff f) t) [PROOFSTEP] rw [← leadingCoeffHom_apply, MonoidHom.map_multiset_prod] [GOAL] R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] ⊢ prod (Multiset.map (↑leadingCoeffHom) t) = prod (Multiset.map (fun f => leadingCoeff f) t) [PROOFSTEP] rfl [GOAL] R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] t : Multiset R[X] ⊢ leadingCoeff (∏ i in s, f i) = ∏ i in s, leadingCoeff (f i) [PROOFSTEP] simpa using leadingCoeff_multiset_prod (s.1.map f)
{"mathlib_filename": "Mathlib.Algebra.Polynomial.BigOperators", "llama_tokens": 22204}
[GOAL] R : Type u inst✝ : Ring R r : R M N : ModuleCat R f : M ⟶ N ⊢ (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f ≫ (fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) N = (fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) M ≫ (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f [PROOFSTEP] ext [GOAL] case w R : Type u inst✝ : Ring R r : R M N : ModuleCat R f : M ⟶ N x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj M) ⊢ ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f ≫ (fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) N) x✝ = ↑((fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) M ≫ (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f) x✝ [PROOFSTEP] exact (f.map_smul _ _).symm [GOAL] R : Type u inst✝ : Ring R ⊢ Function.LeftInverse (fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r) [PROOFSTEP] intro r [GOAL] R : Type u inst✝ : Ring R r : R ⊢ (fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) ((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) r) = r [PROOFSTEP] simp [GOAL] R : Type u inst✝ : Ring R ⊢ Function.RightInverse (fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r) [PROOFSTEP] intro φ [GOAL] R : Type u inst✝ : Ring R φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)) ⊢ (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ [PROOFSTEP] apply NatTrans.ext [GOAL] case app R : Type u inst✝ : Ring R φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)) ⊢ ((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ)).app = φ.app [PROOFSTEP] ext M (x : M) [GOAL] case app.h.w R : Type u inst✝ : Ring R φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)) M : ModuleCat R x : ↑M ⊢ ↑(NatTrans.app ((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ)) M) x = ↑(NatTrans.app φ M) x [PROOFSTEP] have w := congr_fun ((forget _).congr_map (φ.naturality (ModuleCat.asHomRight (LinearMap.toSpanSingleton R M x)))) (1 : R) [GOAL] case app.h.w R : Type u inst✝ : Ring R φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)) M : ModuleCat R x : ↑M w : (forget AddCommGroupCat).map ((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map (ModuleCat.asHomRight (LinearMap.toSpanSingleton R (↑M) x)) ≫ NatTrans.app φ M) 1 = (forget AddCommGroupCat).map (NatTrans.app φ (ModuleCat.of R R) ≫ (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map (ModuleCat.asHomRight (LinearMap.toSpanSingleton R (↑M) x))) 1 ⊢ ↑(NatTrans.app ((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ)) M) x = ↑(NatTrans.app φ M) x [PROOFSTEP] exact w.symm.trans (congr_arg (φ.app M) (one_smul R x)) [GOAL] R : Type u inst✝ : Ring R ⊢ ∀ (x y : R), Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x * y) = Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x * Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y [PROOFSTEP] intros [GOAL] R : Type u inst✝ : Ring R x✝ y✝ : R ⊢ Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x✝ * y✝) = Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x✝ * Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y✝ [PROOFSTEP] apply NatTrans.ext [GOAL] case app R : Type u inst✝ : Ring R x✝ y✝ : R ⊢ (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x✝ * y✝)).app = (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x✝ * Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y✝).app [PROOFSTEP] ext [GOAL] case app.h.w R : Type u inst✝ : Ring R x✝² y✝ : R x✝¹ : ModuleCat R x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹) ⊢ ↑(NatTrans.app (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x✝² * y✝)) x✝¹) x✝ = ↑(NatTrans.app (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x✝² * Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y✝) x✝¹) x✝ [PROOFSTEP] dsimp [GOAL] case app.h.w R : Type u inst✝ : Ring R x✝² y✝ : R x✝¹ : ModuleCat R x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹) ⊢ (x✝² * y✝) • x✝ = ↑(NatTrans.app ((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) * NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝)) x✝¹) x✝ [PROOFSTEP] simp only [AddCommGroupCat.ofHom_apply, DistribMulAction.toAddMonoidHom_apply, mul_smul] [GOAL] case app.h.w R : Type u inst✝ : Ring R x✝² y✝ : R x✝¹ : ModuleCat R x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹) ⊢ x✝² • y✝ • x✝ = ↑(NatTrans.app ((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) * NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝)) x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R ⊢ ∀ (x y : R), Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x + y) = Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x + Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y [PROOFSTEP] intros [GOAL] R : Type u inst✝ : Ring R x✝ y✝ : R ⊢ Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x✝ + y✝) = Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x✝ + Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y✝ [PROOFSTEP] apply NatTrans.ext [GOAL] case app R : Type u inst✝ : Ring R x✝ y✝ : R ⊢ (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x✝ + y✝)).app = (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x✝ + Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y✝).app [PROOFSTEP] ext [GOAL] case app.h.w R : Type u inst✝ : Ring R x✝² y✝ : R x✝¹ : ModuleCat R x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹) ⊢ ↑(NatTrans.app (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } (x✝² + y✝)) x✝¹) x✝ = ↑(NatTrans.app (Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } x✝² + Equiv.toFun { toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r), invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r), right_inv := (_ : ∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))), (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) ((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) = φ) } y✝) x✝¹) x✝ [PROOFSTEP] dsimp [GOAL] case app.h.w R : Type u inst✝ : Ring R x✝² y✝ : R x✝¹ : ModuleCat R x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹) ⊢ (x✝² + y✝) • x✝ = ↑(NatTrans.app ((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) + NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝)) x✝¹) x✝ [PROOFSTEP] simp only [AddCommGroupCat.ofHom_apply, DistribMulAction.toAddMonoidHom_apply, add_smul] [GOAL] case app.h.w R : Type u inst✝ : Ring R x✝² y✝ : R x✝¹ : ModuleCat R x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹) ⊢ x✝² • x✝ + y✝ • x✝ = ↑(NatTrans.app ((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) + NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝)) x✝¹) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Tannaka", "llama_tokens": 8440}
[GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N ⊢ ↟(Submodule.subtype (LinearMap.ker f)) ≫ f = 0 [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N x : ↑(of R { x // x ∈ LinearMap.ker f }) ⊢ ↑(↟(Submodule.subtype (LinearMap.ker f)) ≫ f) x = ↑0 x [PROOFSTEP] cases x [GOAL] case h.mk R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N val✝ : ↑M property✝ : val✝ ∈ LinearMap.ker f ⊢ ↑(↟(Submodule.subtype (LinearMap.ker f)) ≫ f) { val := val✝, property := property✝ } = ↑0 { val := val✝, property := property✝ } [PROOFSTEP] assumption [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N s : Fork f 0 c : ↑s.pt ⊢ ↑f (↑(Fork.ι s) c) = 0 [PROOFSTEP] rw [← @Function.comp_apply _ _ _ f (Fork.ι s) c, ← coe_comp, Fork.condition, HasZeroMorphisms.comp_zero (Fork.ι s) N] [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N s : Fork f 0 c : ↑s.pt ⊢ ↑0 c = 0 [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N s : Fork f 0 m : s.pt ⟶ (kernelCone f).pt h : m ≫ Fork.ι (kernelCone f) = Fork.ι s x : ↑s.pt ⊢ ↑(↑m x) = ↑(↑((fun s => LinearMap.codRestrict (LinearMap.ker f) (Fork.ι s) (_ : ∀ (c : ↑s.pt), ↑(Fork.ι s) c ∈ LinearMap.ker f)) s) x) [PROOFSTEP] simp [← h] [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N s : Fork f 0 m : s.pt ⟶ (kernelCone f).pt h : m ≫ Fork.ι (kernelCone f) = Fork.ι s x : ↑s.pt ⊢ ↑m x = ↑(LinearMap.codRestrict (LinearMap.ker f) (m ≫ Fork.ι (kernelCone f)) (_ : ∀ (c : ↑s.pt), ↑(m ≫ Fork.ι (kernelCone f)) c ∈ LinearMap.ker f)) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N s : Cofork f 0 m : (cokernelCocone f).pt ⟶ s.pt h : Cofork.π (cokernelCocone f) ≫ m = Cofork.π s ⊢ m = (fun s => Submodule.liftQ (LinearMap.range f) (Cofork.π s) (_ : LinearMap.range f ≤ LinearMap.ker (Cofork.π s))) s [PROOFSTEP] haveI : Epi (asHom (LinearMap.range f).mkQ) := (epi_iff_range_eq_top _).mpr (Submodule.range_mkQ _) -- Porting note: broken dot notation [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N s : Cofork f 0 m : (cokernelCocone f).pt ⟶ s.pt h : Cofork.π (cokernelCocone f) ≫ m = Cofork.π s this : Epi (↟(Submodule.mkQ (LinearMap.range f))) ⊢ m = (fun s => Submodule.liftQ (LinearMap.range f) (Cofork.π s) (_ : LinearMap.range f ≤ LinearMap.ker (Cofork.π s))) s [PROOFSTEP] apply (cancel_epi (asHom (LinearMap.range f).mkQ)).1 [GOAL] R : Type u inst✝ : Ring R M N : ModuleCat R f : M ⟶ N s : Cofork f 0 m : (cokernelCocone f).pt ⟶ s.pt h : Cofork.π (cokernelCocone f) ≫ m = Cofork.π s this : Epi (↟(Submodule.mkQ (LinearMap.range f))) ⊢ ↟(Submodule.mkQ (LinearMap.range f)) ≫ m = ↟(Submodule.mkQ (LinearMap.range f)) ≫ (fun s => Submodule.liftQ (LinearMap.range f) (Cofork.π s) (_ : LinearMap.range f ≤ LinearMap.ker (Cofork.π s))) s [PROOFSTEP] convert h [GOAL] R : Type u inst✝ : Ring R G H : ModuleCat R f : G ⟶ H ⊢ cokernel.π f ≫ (cokernelIsoRangeQuotient f).hom = Submodule.mkQ (LinearMap.range f) [PROOFSTEP] convert colimit.isoColimitCocone_ι_hom (F := parallelPair f 0) _ _ [GOAL] R : Type u inst✝ : Ring R G H : ModuleCat R f✝ : G ⟶ H M N : ModuleCat R f : M ⟶ N x y : ↑N m : ↑M w : x = y + ↑f m ⊢ ↑(cokernel.π f) x = ↑(cokernel.π f) y [PROOFSTEP] subst w [GOAL] R : Type u inst✝ : Ring R G H : ModuleCat R f✝ : G ⟶ H M N : ModuleCat R f : M ⟶ N y : ↑N m : ↑M ⊢ ↑(cokernel.π f) (y + ↑f m) = ↑(cokernel.π f) y [PROOFSTEP] simpa only [map_add, add_right_eq_self] using cokernel.condition_apply f m
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Kernels", "llama_tokens": 1779}
[GOAL] R : Type u inst✝ : Ring R X✝ Y✝ : ModuleCat R a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₁✝ = (CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₂✝ x : ↑X✝ ⊢ ↑a₁✝ x = ↑a₂✝ x [PROOFSTEP] dsimp at h [GOAL] R : Type u inst✝ : Ring R X✝ Y✝ : ModuleCat R a₁✝ a₂✝ : X✝ ⟶ Y✝ h : ↑a₁✝ = ↑a₂✝ x : ↑X✝ ⊢ ↑a₁✝ x = ↑a₂✝ x [PROOFSTEP] rw [h] [GOAL] R : Type u inst✝¹ : Ring R M : ModuleCat R inst✝ : Subsingleton ↑M X : ModuleCat R f : M ⟶ X ⊢ f = default [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝¹ : Ring R M : ModuleCat R inst✝ : Subsingleton ↑M X : ModuleCat R f : M ⟶ X x : ↑M ⊢ ↑f x = ↑default x [PROOFSTEP] rw [Subsingleton.elim x (0 : M)] [GOAL] case h R : Type u inst✝¹ : Ring R M : ModuleCat R inst✝ : Subsingleton ↑M X : ModuleCat R f : M ⟶ X x : ↑M ⊢ ↑f 0 = ↑default 0 [PROOFSTEP] dsimp [GOAL] case h R : Type u inst✝¹ : Ring R M : ModuleCat R inst✝ : Subsingleton ↑M X : ModuleCat R f : M ⟶ X x : ↑M ⊢ ↑f 0 = ↑0 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝¹ : Ring R M : ModuleCat R inst✝ : Subsingleton ↑M X : ModuleCat R f : X ⟶ M ⊢ f = default [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝¹ : Ring R M : ModuleCat R inst✝ : Subsingleton ↑M X : ModuleCat R f : X ⟶ M x : ↑X ⊢ ↑f x = ↑default x [PROOFSTEP] apply Subsingleton.elim [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v g₁ : AddCommGroup X₁ g₂ : AddCommGroup X₂ m₁ : Module R X₁ m₂ : Module R X₂ e : X₁ ≃ₗ[R] X₂ ⊢ ↑e ≫ ↑(symm e) = 𝟙 (ModuleCat.of R X₁) [PROOFSTEP] ext [GOAL] case h R : Type u inst✝ : Ring R X₁ X₂ : Type v g₁ : AddCommGroup X₁ g₂ : AddCommGroup X₂ m₁ : Module R X₁ m₂ : Module R X₂ e : X₁ ≃ₗ[R] X₂ x✝ : ↑(ModuleCat.of R X₁) ⊢ ↑(↑e ≫ ↑(symm e)) x✝ = ↑(𝟙 (ModuleCat.of R X₁)) x✝ [PROOFSTEP] apply e.left_inv [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v g₁ : AddCommGroup X₁ g₂ : AddCommGroup X₂ m₁ : Module R X₁ m₂ : Module R X₂ e : X₁ ≃ₗ[R] X₂ ⊢ ↑(symm e) ≫ ↑e = 𝟙 (ModuleCat.of R X₂) [PROOFSTEP] ext [GOAL] case h R : Type u inst✝ : Ring R X₁ X₂ : Type v g₁ : AddCommGroup X₁ g₂ : AddCommGroup X₂ m₁ : Module R X₁ m₂ : Module R X₂ e : X₁ ≃ₗ[R] X₂ x✝ : ↑(ModuleCat.of R X₂) ⊢ ↑(↑(symm e) ≫ ↑e) x✝ = ↑(𝟙 (ModuleCat.of R X₂)) x✝ [PROOFSTEP] apply e.right_inv [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v X Y : ModuleCat R i : X ≅ Y ⊢ ∀ (x y : ↑X), ↑i.hom (x + y) = ↑i.hom x + ↑i.hom y [PROOFSTEP] simp [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v X Y : ModuleCat R i : X ≅ Y ⊢ ∀ (r : R) (x : ↑X), AddHom.toFun { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) } x [PROOFSTEP] simp [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v X Y : ModuleCat R i : X ≅ Y x : ↑X ⊢ ↑i.inv (AddHom.toFun { toAddHom := { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) }, map_smul' := (_ : ∀ (a : R) (a_1 : ↑X), ↑i.hom (a • a_1) = a • ↑i.hom a_1) }.toAddHom x) = x [PROOFSTEP] change (i.hom ≫ i.inv) x = x [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v X Y : ModuleCat R i : X ≅ Y x : ↑X ⊢ ↑(i.hom ≫ i.inv) x = x [PROOFSTEP] simp [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v X Y : ModuleCat R i : X ≅ Y x : ↑Y ⊢ AddHom.toFun { toAddHom := { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) }, map_smul' := (_ : ∀ (a : R) (a_1 : ↑X), ↑i.hom (a • a_1) = a • ↑i.hom a_1) }.toAddHom (↑i.inv x) = x [PROOFSTEP] change (i.inv ≫ i.hom) x = x [GOAL] R : Type u inst✝ : Ring R X₁ X₂ : Type v X Y : ModuleCat R i : X ≅ Y x : ↑Y ⊢ ↑(i.inv ≫ i.hom) x = x [PROOFSTEP] simp [GOAL] R✝ : Type u inst✝ : Ring R✝ X₁ X₂ : Type v P Q R : ModuleCat R✝ f f' : P ⟶ Q g : Q ⟶ R ⊢ (f + f') ≫ g = f ≫ g + f' ≫ g [PROOFSTEP] ext [GOAL] case h R✝ : Type u inst✝ : Ring R✝ X₁ X₂ : Type v P Q R : ModuleCat R✝ f f' : P ⟶ Q g : Q ⟶ R x✝ : ↑P ⊢ ↑((f + f') ≫ g) x✝ = ↑(f ≫ g + f' ≫ g) x✝ [PROOFSTEP] dsimp [GOAL] case h R✝ : Type u inst✝ : Ring R✝ X₁ X₂ : Type v P Q R : ModuleCat R✝ f f' : P ⟶ Q g : Q ⟶ R x✝ : ↑P ⊢ ↑g (↑(f + f') x✝) = ↑(f ≫ g + f' ≫ g) x✝ [PROOFSTEP] erw [map_add] [GOAL] case h R✝ : Type u inst✝ : Ring R✝ X₁ X₂ : Type v P Q R : ModuleCat R✝ f f' : P ⟶ Q g : Q ⟶ R x✝ : ↑P ⊢ ↑g (↑f x✝) + ↑g (↑f' x✝) = ↑(f ≫ g + f' ≫ g) x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u inst✝ : Ring R✝ X₁ X₂ : Type v P Q R : ModuleCat R✝ f : P ⟶ Q g g' : Q ⟶ R ⊢ f ≫ (g + g') = f ≫ g + f ≫ g' [PROOFSTEP] ext [GOAL] case h R✝ : Type u inst✝ : Ring R✝ X₁ X₂ : Type v P Q R : ModuleCat R✝ f : P ⟶ Q g g' : Q ⟶ R x✝ : ↑P ⊢ ↑(f ≫ (g + g')) x✝ = ↑(f ≫ g + f ≫ g') x✝ [PROOFSTEP] rfl [GOAL] R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S ⊢ ∀ (X Y Z : ModuleCat S) (r : S) (f : X ⟶ Y) (g : Y ⟶ Z), (r • f) ≫ g = r • f ≫ g [PROOFSTEP] intros [GOAL] R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S X✝ Y✝ Z✝ : ModuleCat S r✝ : S f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ (r✝ • f✝) ≫ g✝ = r✝ • f✝ ≫ g✝ [PROOFSTEP] ext [GOAL] case h R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S X✝ Y✝ Z✝ : ModuleCat S r✝ : S f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : ↑X✝ ⊢ ↑((r✝ • f✝) ≫ g✝) x✝ = ↑(r✝ • f✝ ≫ g✝) x✝ [PROOFSTEP] dsimp [GOAL] case h R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S X✝ Y✝ Z✝ : ModuleCat S r✝ : S f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : ↑X✝ ⊢ ↑g✝ (↑(r✝ • f✝) x✝) = ↑(r✝ • f✝ ≫ g✝) x✝ [PROOFSTEP] rw [LinearMap.smul_apply, LinearMap.smul_apply, map_smul] [GOAL] case h R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S X✝ Y✝ Z✝ : ModuleCat S r✝ : S f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ x✝ : ↑X✝ ⊢ r✝ • ↑g✝ (↑f✝ x✝) = r✝ • ↑(f✝ ≫ g✝) x✝ [PROOFSTEP] rfl [GOAL] R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S ⊢ ∀ (X Y Z : ModuleCat S) (f : X ⟶ Y) (r : S) (g : Y ⟶ Z), f ≫ (r • g) = r • f ≫ g [PROOFSTEP] intros [GOAL] R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S X✝ Y✝ Z✝ : ModuleCat S f✝ : X✝ ⟶ Y✝ r✝ : S g✝ : Y✝ ⟶ Z✝ ⊢ f✝ ≫ (r✝ • g✝) = r✝ • f✝ ≫ g✝ [PROOFSTEP] ext [GOAL] case h R : Type u inst✝¹ : Ring R X₁ X₂ : Type v S : Type u inst✝ : CommRing S X✝ Y✝ Z✝ : ModuleCat S f✝ : X✝ ⟶ Y✝ r✝ : S g✝ : Y✝ ⟶ Z✝ x✝ : ↑X✝ ⊢ ↑(f✝ ≫ (r✝ • g✝)) x✝ = ↑(r✝ • f✝ ≫ g✝) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Basic", "llama_tokens": 4025}
[GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j : J ⊢ ∀ (x y : ↑(F.obj j)), coconeFun F j (x + y) = coconeFun F j x + coconeFun F j y [PROOFSTEP] intros [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j : J x✝ y✝ : ↑(F.obj j) ⊢ coconeFun F j (x✝ + y✝) = coconeFun F j x✝ + coconeFun F j y✝ [PROOFSTEP] apply Quot.sound [GOAL] case a R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j : J x✝ y✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j (x✝ + y✝)) (add (Prequotient.of j x✝) (Prequotient.of j y✝)) [PROOFSTEP] apply Relation.add [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j : J ⊢ ∀ (r : R) (x : ↑(F.obj j)), AddHom.toFun { toFun := coconeFun F j, map_add' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x + y)) = Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := coconeFun F j, map_add' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x + y)) = Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) } x [PROOFSTEP] intros [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j : J r✝ : R x✝ : ↑(F.obj j) ⊢ AddHom.toFun { toFun := coconeFun F j, map_add' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x + y)) = Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) } (r✝ • x✝) = ↑(RingHom.id R) r✝ • AddHom.toFun { toFun := coconeFun F j, map_add' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x + y)) = Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) } x✝ [PROOFSTEP] apply Quot.sound [GOAL] case a R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j : J r✝ : R x✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j (r✝ • x✝)) (smul (↑(RingHom.id R) r✝) (Prequotient.of j x✝)) [PROOFSTEP] apply Relation.smul [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j j' : J f : j ⟶ j' ⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j [PROOFSTEP] ext [GOAL] case h R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j j' : J f : j ⟶ j' x✝ : ↑(F.obj j) ⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝ [PROOFSTEP] apply Quot.sound [GOAL] case h.a R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j j' : J f : j ⟶ j' x✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝) [PROOFSTEP] apply ModuleCat.Colimits.Relation.map [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x [PROOFSTEP] rw [← cocone_naturality F f] [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x [PROOFSTEP] rfl [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F ⊢ ColimitType F → ↑s.pt [PROOFSTEP] fapply Quot.lift [GOAL] case f R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F ⊢ Prequotient F → ↑s.pt [PROOFSTEP] exact descFunLift F s [GOAL] case a R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F ⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b [PROOFSTEP] intro x y r [GOAL] case a R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F r : Setoid.r x y ⊢ descFunLift F s x = descFunLift F s y [PROOFSTEP] induction' r with h₁ r_x r_y r_h r_ih r_x r_y r_z r_h r_k r_ih_h r_ih_k r_j r_j' r_f r_x j j x j x y j s x u v r r_ih u v w r r_ih u v w r r_ih s u v r r_ih [GOAL] case a.refl R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y h₁ : Prequotient F ⊢ descFunLift F s h₁ = descFunLift F s h₁ [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.refl R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y h₁ : Prequotient F ⊢ descFunLift F s h₁ = descFunLift F s h₁ [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.symm R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y r_x r_y : Prequotient F r_h : Relation F r_x r_y r_ih : descFunLift F s r_x = descFunLift F s r_y ⊢ descFunLift F s r_y = descFunLift F s r_x [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.symm R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y r_x r_y : Prequotient F r_h : Relation F r_x r_y r_ih : descFunLift F s r_x = descFunLift F s r_y ⊢ descFunLift F s r_y = descFunLift F s r_x [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.trans R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y r_x r_y r_z : Prequotient F r_h : Relation F r_x r_y r_k : Relation F r_y r_z r_ih_h : descFunLift F s r_x = descFunLift F s r_y r_ih_k : descFunLift F s r_y = descFunLift F s r_z ⊢ descFunLift F s r_x = descFunLift F s r_z [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.trans R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y r_x r_y r_z : Prequotient F r_h : Relation F r_x r_y r_k : Relation F r_y r_z r_ih_h : descFunLift F s r_x = descFunLift F s r_y r_ih_k : descFunLift F s r_y = descFunLift F s r_z ⊢ descFunLift F s r_x = descFunLift F s r_z [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.map R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F r_j r_j' : J r_f : r_j ⟶ r_j' r_x : ↑(F.obj r_j) ⊢ descFunLift F s (Prequotient.of r_j' (↑(F.map r_f) r_x)) = descFunLift F s (Prequotient.of r_j r_x) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.map R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F r_j r_j' : J r_f : r_j ⟶ r_j' r_x : ↑(F.obj r_j) ⊢ descFunLift F s (Prequotient.of r_j' (↑(F.map r_f) r_x)) = descFunLift F s (Prequotient.of r_j r_x) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F j : J ⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F j : J ⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.neg R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x✝ y : Prequotient F j : J x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x)) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.neg R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x✝ y : Prequotient F j : J x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x)) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x✝ y✝ : Prequotient F j : J x y : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y)) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x✝ y✝ : Prequotient F j : J x y : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y)) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F x✝ y : Prequotient F j : J s : R x : ↑(F.obj j) ⊢ descFunLift F s✝ (Prequotient.of j (s • x)) = descFunLift F s✝ (smul s (Prequotient.of j x)) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F x✝ y : Prequotient F j : J s : R x : ↑(F.obj j) ⊢ descFunLift F s✝ (Prequotient.of j (s • x)) = descFunLift F s✝ (smul s (Prequotient.of j x)) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.neg_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v : Prequotient F r : Relation F u v r_ih : descFunLift F s u = descFunLift F s v ⊢ descFunLift F s (neg u) = descFunLift F s (neg v) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.neg_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v : Prequotient F r : Relation F u v r_ih : descFunLift F s u = descFunLift F s v ⊢ descFunLift F s (neg u) = descFunLift F s (neg v) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v w : Prequotient F r : Relation F u v r_ih : descFunLift F s u = descFunLift F s v ⊢ descFunLift F s (add u w) = descFunLift F s (add v w) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v w : Prequotient F r : Relation F u v r_ih : descFunLift F s u = descFunLift F s v ⊢ descFunLift F s (add u w) = descFunLift F s (add v w) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_2 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v w : Prequotient F r : Relation F v w r_ih : descFunLift F s v = descFunLift F s w ⊢ descFunLift F s (add u v) = descFunLift F s (add u w) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_2 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v w : Prequotient F r : Relation F v w r_ih : descFunLift F s v = descFunLift F s w ⊢ descFunLift F s (add u v) = descFunLift F s (add u w) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F x y : Prequotient F s : R u v : Prequotient F r : Relation F u v r_ih : descFunLift F s✝ u = descFunLift F s✝ v ⊢ descFunLift F s✝ (smul s u) = descFunLift F s✝ (smul s v) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F x y : Prequotient F s : R u v : Prequotient F r : Relation F u v r_ih : descFunLift F s✝ u = descFunLift F s✝ v ⊢ descFunLift F s✝ (smul s u) = descFunLift F s✝ (smul s v) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.zero_add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝ [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.zero_add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝ [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝ [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝ [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_left_neg R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_left_neg R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_comm R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ y✝ : Prequotient F ⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_comm R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ y✝ : Prequotient F ⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_assoc R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝)) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_assoc R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝)) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.one_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (smul 1 x✝) = descFunLift F s x✝ [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.one_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (smul 1 x✝) = descFunLift F s x✝ [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.mul_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ t✝ : R x✝ : Prequotient F ⊢ descFunLift F s (smul (s✝ * t✝) x✝) = descFunLift F s (smul s✝ (smul t✝ x✝)) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.mul_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ t✝ : R x✝ : Prequotient F ⊢ descFunLift F s (smul (s✝ * t✝) x✝) = descFunLift F s (smul s✝ (smul t✝ x✝)) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul_add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ : R x✝ y✝ : Prequotient F ⊢ descFunLift F s (smul s✝ (add x✝ y✝)) = descFunLift F s (add (smul s✝ x✝) (smul s✝ y✝)) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul_add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ : R x✝ y✝ : Prequotient F ⊢ descFunLift F s (smul s✝ (add x✝ y✝)) = descFunLift F s (add (smul s✝ x✝) (smul s✝ y✝)) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul_zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ : R ⊢ descFunLift F s (smul s✝ zero) = descFunLift F s zero [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.smul_zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ : R ⊢ descFunLift F s (smul s✝ zero) = descFunLift F s zero [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ t✝ : R x✝ : Prequotient F ⊢ descFunLift F s (smul (s✝ + t✝) x✝) = descFunLift F s (add (smul s✝ x✝) (smul t✝ x✝)) [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.add_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ t✝ : R x✝ : Prequotient F ⊢ descFunLift F s (smul (s✝ + t✝) x✝) = descFunLift F s (add (smul s✝ x✝) (smul t✝ x✝)) [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.zero_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (smul 0 x✝) = descFunLift F s zero [PROOFSTEP] try dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.zero_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (smul 0 x✝) = descFunLift F s zero [PROOFSTEP] dsimp -- refl -- · rfl -- porting note: `dsimp` (above) now closes this -- symm [GOAL] case a.symm R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y r_x r_y : Prequotient F r_h : Relation F r_x r_y r_ih : descFunLift F s r_x = descFunLift F s r_y ⊢ descFunLift F s r_y = descFunLift F s r_x [PROOFSTEP] exact r_ih.symm [GOAL] case a.trans R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y r_x r_y r_z : Prequotient F r_h : Relation F r_x r_y r_k : Relation F r_y r_z r_ih_h : descFunLift F s r_x = descFunLift F s r_y r_ih_k : descFunLift F s r_y = descFunLift F s r_z ⊢ descFunLift F s r_x = descFunLift F s r_z [PROOFSTEP] exact Eq.trans r_ih_h r_ih_k [GOAL] case a.map R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F r_j r_j' : J r_f : r_j ⟶ r_j' r_x : ↑(F.obj r_j) ⊢ ↑(NatTrans.app s.ι r_j') (↑(F.map r_f) r_x) = ↑(NatTrans.app s.ι r_j) r_x [PROOFSTEP] exact s.w_apply r_f r_x [GOAL] case a.zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F j : J ⊢ ↑(NatTrans.app s.ι j) 0 = 0 [PROOFSTEP] simp -- neg [GOAL] case a.neg R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x✝ y : Prequotient F j : J x : ↑(F.obj j) ⊢ ↑(NatTrans.app s.ι j) (-x) = -↑(NatTrans.app s.ι j) x [PROOFSTEP] simp -- add [GOAL] case a.add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x✝ y✝ : Prequotient F j : J x y : ↑(F.obj j) ⊢ ↑(NatTrans.app s.ι j) (x + y) = ↑(NatTrans.app s.ι j) x + ↑(NatTrans.app s.ι j) y [PROOFSTEP] simp -- smul, [GOAL] case a.smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F x✝ y : Prequotient F j : J s : R x : ↑(F.obj j) ⊢ ↑(NatTrans.app s✝.ι j) (s • x) = s • ↑(NatTrans.app s✝.ι j) x [PROOFSTEP] simp -- neg_1 [GOAL] case a.neg_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v : Prequotient F r : Relation F u v r_ih : descFunLift F s u = descFunLift F s v ⊢ -descFunLift F s u = -descFunLift F s v [PROOFSTEP] rw [r_ih] -- add_1 [GOAL] case a.add_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v w : Prequotient F r : Relation F u v r_ih : descFunLift F s u = descFunLift F s v ⊢ descFunLift F s u + descFunLift F s w = descFunLift F s v + descFunLift F s w [PROOFSTEP] rw [r_ih] -- add_2 [GOAL] case a.add_2 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y u v w : Prequotient F r : Relation F v w r_ih : descFunLift F s v = descFunLift F s w ⊢ descFunLift F s u + descFunLift F s v = descFunLift F s u + descFunLift F s w [PROOFSTEP] rw [r_ih] -- smul_1 [GOAL] case a.smul_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F x y : Prequotient F s : R u v : Prequotient F r : Relation F u v r_ih : descFunLift F s✝ u = descFunLift F s✝ v ⊢ s • descFunLift F s✝ u = s • descFunLift F s✝ v [PROOFSTEP] rw [r_ih] -- zero_add [GOAL] case a.zero_add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ 0 + descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] rw [zero_add] -- add_zero [GOAL] case a.add_zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ + 0 = descFunLift F s x✝ [PROOFSTEP] rw [add_zero] -- add_left_neg [GOAL] case a.add_left_neg R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ -descFunLift F s x✝ + descFunLift F s x✝ = 0 [PROOFSTEP] rw [add_left_neg] -- add_comm [GOAL] case a.add_comm R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ y✝ : Prequotient F ⊢ descFunLift F s x✝ + descFunLift F s y✝ = descFunLift F s y✝ + descFunLift F s x✝ [PROOFSTEP] rw [add_comm] -- add_assoc [GOAL] case a.add_assoc R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s x✝ + descFunLift F s y✝ + descFunLift F s z✝ = descFunLift F s x✝ + (descFunLift F s y✝ + descFunLift F s z✝) [PROOFSTEP] rw [add_assoc] -- one_smul [GOAL] case a.one_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ 1 • descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] rw [one_smul] -- mul_smul [GOAL] case a.mul_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ t✝ : R x✝ : Prequotient F ⊢ (s✝ * t✝) • descFunLift F s x✝ = s✝ • t✝ • descFunLift F s x✝ [PROOFSTEP] rw [mul_smul] -- smul_add [GOAL] case a.smul_add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ : R x✝ y✝ : Prequotient F ⊢ s✝ • (descFunLift F s x✝ + descFunLift F s y✝) = s✝ • descFunLift F s x✝ + s✝ • descFunLift F s y✝ [PROOFSTEP] rw [smul_add] -- smul_zero [GOAL] case a.smul_zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ : R ⊢ s✝ • 0 = 0 [PROOFSTEP] rw [smul_zero] -- add_smul [GOAL] case a.add_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : Prequotient F s✝ t✝ : R x✝ : Prequotient F ⊢ (s✝ + t✝) • descFunLift F s x✝ = s✝ • descFunLift F s x✝ + t✝ • descFunLift F s x✝ [PROOFSTEP] rw [add_smul] -- zero_smul [GOAL] case a.zero_smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y x✝ : Prequotient F ⊢ 0 • descFunLift F s x✝ = 0 [PROOFSTEP] rw [zero_smul] [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : ↑(colimit F) ⊢ descFun F s (x + y) = descFun F s x + descFun F s y [PROOFSTEP] rcases x [GOAL] case mk R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : ↑(colimit F) a✝ : Prequotient F ⊢ descFun F s (Quot.mk Setoid.r a✝ + y) = descFun F s (Quot.mk Setoid.r a✝) + descFun F s y [PROOFSTEP] rcases y [GOAL] case mk.mk R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F x y : ↑(colimit F) a✝¹ a✝ : Prequotient F ⊢ descFun F s (Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝) = descFun F s (Quot.mk Setoid.r a✝¹) + descFun F s (Quot.mk Setoid.r a✝) [PROOFSTEP] rfl [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F s : R x : ↑(colimit F) ⊢ AddHom.toFun { toFun := descFun F s✝, map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) } (s • x) = ↑(RingHom.id R) s • AddHom.toFun { toFun := descFun F s✝, map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) } x [PROOFSTEP] rcases x [GOAL] case mk R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s✝ : Cocone F s : R x : ↑(colimit F) a✝ : Prequotient F ⊢ AddHom.toFun { toFun := descFun F s✝, map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) } (s • Quot.mk Setoid.r a✝) = ↑(RingHom.id R) s • AddHom.toFun { toFun := descFun F s✝, map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) } (Quot.mk Setoid.r a✝) [PROOFSTEP] rfl [GOAL] R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ m = (fun s => descMorphism F s) s [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt ⊢ ↑m x = ↑((fun s => descMorphism F s) s) x [PROOFSTEP] refine Quot.rec (motive := fun x ↦ m x = _) (fun x ↦ ?_) (fun x_a x_b x_p ↦ ?_) x [GOAL] case h.refine_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : ↑(colimitCocone F).pt x : Prequotient F ⊢ (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x) case h.refine_2 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt x_a x_b : Prequotient F x_p : Setoid.r x_a x_b ⊢ (_ : ↑m (Quot.mk Setoid.r x_b) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x_b)) = (_ : (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x_b)) [PROOFSTEP] dsimp [GOAL] case h.refine_1 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x✝ : ↑(colimitCocone F).pt x : Prequotient F ⊢ ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x) case h.refine_2 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt x_a x_b : Prequotient F x_p : Setoid.r x_a x_b ⊢ (_ : ↑m (Quot.mk Setoid.r x_b) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x_b)) = (_ : (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x_b)) [PROOFSTEP] induction' x with x_j x_x [GOAL] case h.refine_1.of R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt x_j : J x_x : ↑(F.obj x_j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of x_j x_x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x)) [PROOFSTEP] have w' := congr_fun (congr_arg (fun f : F.obj x_j ⟶ s.pt => (f : F.obj x_j → s.pt)) (w x_j)) x_x [GOAL] case h.refine_1.of R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt x_j : J x_x : ↑(F.obj x_j) w' : (fun f => ↑f) (NatTrans.app (colimitCocone F).ι x_j ≫ m) x_x = (fun f => ↑f) (NatTrans.app s.ι x_j) x_x ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of x_j x_x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x)) [PROOFSTEP] simp only at w' [GOAL] case h.refine_1.of R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt x_j : J x_x : ↑(F.obj x_j) w' : ↑(NatTrans.app (colimitCocone F).ι x_j ≫ m) x_x = ↑(NatTrans.app s.ι x_j) x_x ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of x_j x_x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x)) [PROOFSTEP] erw [w'] [GOAL] case h.refine_1.of R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt x_j : J x_x : ↑(F.obj x_j) w' : ↑(NatTrans.app (colimitCocone F).ι x_j ≫ m) x_x = ↑(NatTrans.app s.ι x_j) x_x ⊢ ↑(NatTrans.app s.ι x_j) x_x = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x)) [PROOFSTEP] rfl [GOAL] case h.refine_1.zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt ⊢ ↑m (Quot.mk Setoid.r zero) = ↑(descMorphism F s) (Quot.mk Setoid.r zero) [PROOFSTEP] rw [quot_zero, map_zero] -- porting note: was `simp` but `map_zero` won't fire [GOAL] case h.refine_1.zero R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt ⊢ 0 = ↑(descMorphism F s) 0 [PROOFSTEP] rfl [GOAL] case h.refine_1.neg R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt a✝ : Prequotient F a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝) ⊢ ↑m (Quot.mk Setoid.r (neg a✝)) = ↑(descMorphism F s) (Quot.mk Setoid.r (neg a✝)) [PROOFSTEP] simpa [GOAL] case h.refine_1.add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt a✝¹ a✝ : Prequotient F a_ih✝¹ : ↑m (Quot.mk Setoid.r a✝¹) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝¹) a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝) ⊢ ↑m (Quot.mk Setoid.r (add a✝¹ a✝)) = ↑(descMorphism F s) (Quot.mk Setoid.r (add a✝¹ a✝)) [PROOFSTEP] rw [quot_add, map_add, map_add] -- porting note: this was closed by `simp [*]` [GOAL] case h.refine_1.add R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt a✝¹ a✝ : Prequotient F a_ih✝¹ : ↑m (Quot.mk Setoid.r a✝¹) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝¹) a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝) ⊢ ↑m (ColimitType.mk a✝¹) + ↑m (ColimitType.mk a✝) = ↑(descMorphism F s) (ColimitType.mk a✝¹) + ↑(descMorphism F s) (ColimitType.mk a✝) [PROOFSTEP] congr 1 [GOAL] case h.refine_1.smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt a✝¹ : R a✝ : Prequotient F a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝) ⊢ ↑m (Quot.mk Setoid.r (smul a✝¹ a✝)) = ↑(descMorphism F s) (Quot.mk Setoid.r (smul a✝¹ a✝)) [PROOFSTEP] rw [quot_smul, map_smul, map_smul] -- porting note: this was closed by `simp [*]` [GOAL] case h.refine_1.smul R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt a✝¹ : R a✝ : Prequotient F a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝) ⊢ a✝¹ • ↑m (ColimitType.mk a✝) = a✝¹ • ↑(descMorphism F s) (ColimitType.mk a✝) [PROOFSTEP] congr 1 [GOAL] case h.refine_2 R : Type u inst✝¹ : Ring R J : Type w inst✝ : Category.{v, w} J F : J ⥤ ModuleCat R s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt x_a x_b : Prequotient F x_p : Setoid.r x_a x_b ⊢ (_ : ↑m (Quot.mk Setoid.r x_b) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x_b)) = (_ : (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x_b)) [PROOFSTEP] rfl -- porting note: this wasn't here
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Colimits", "llama_tokens": 18526}
[GOAL] k : Type u inst✝² : Field k A : Type w inst✝¹ : Ring A inst✝ : Algebra k A ⊢ ∀ (X Y Z : ModuleCat A) (r : k) (f : X ⟶ Y) (g : Y ⟶ Z), (r • f) ≫ g = r • f ≫ g [PROOFSTEP] aesop_cat_nonterminal [GOAL] case h k : Type u inst : Field k A : Type w inst_1 : Ring A inst_2 : Algebra k A X Y Z : ModuleCat A r : k f : X ⟶ Y g : Y ⟶ Z x✝ : ↑X ⊢ ↑g (↑(r • f) x✝) = ↑(r • f ≫ g) x✝ [PROOFSTEP] rw [LinearMap.smul_apply, LinearMap.smul_apply, LinearMap.map_smul_of_tower] [GOAL] case h k : Type u inst : Field k A : Type w inst_1 : Ring A inst_2 : Algebra k A X Y Z : ModuleCat A r : k f : X ⟶ Y g : Y ⟶ Z x✝ : ↑X ⊢ r • ↑g (↑f x✝) = r • ↑(f ≫ g) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Algebra", "llama_tokens": 367}
[GOAL] J✝ : Type inst✝⁴ : SmallCategory J✝ inst✝³ : FinCategory J✝ k : Type v inst✝² : Field k J : Type inst✝¹ : Fintype J Z : J → ModuleCat k inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j) ⊢ FiniteDimensional k ↑(ModuleCat.of k ((j : J) → ↑(Z j))) [PROOFSTEP] unfold ModuleCat.of [GOAL] J✝ : Type inst✝⁴ : SmallCategory J✝ inst✝³ : FinCategory J✝ k : Type v inst✝² : Field k J : Type inst✝¹ : Fintype J Z : J → ModuleCat k inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j) ⊢ FiniteDimensional k ↑(ModuleCat.mk ((j : J) → ↑(Z j))) [PROOFSTEP] infer_instance [GOAL] J✝ : Type inst✝⁴ : SmallCategory J✝ inst✝³ : FinCategory J✝ k : Type v inst✝² : Field k J : Type inst✝¹ : Fintype J Z : J → ModuleCat k inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j) this : FiniteDimensional k ↑(ModuleCat.of k ((j : J) → ↑(Z j))) ⊢ Mono (ModuleCat.piIsoPi fun j => Z j).hom [PROOFSTEP] infer_instance [GOAL] J : Type inst✝² : SmallCategory J inst✝¹ : FinCategory J k : Type v inst✝ : Field k F : J ⥤ FGModuleCat k ⊢ ∀ (j : J), FiniteDimensional k ↑((F ⋙ forget₂ (FGModuleCat k) (ModuleCat k)).obj j) [PROOFSTEP] intro j [GOAL] J : Type inst✝² : SmallCategory J inst✝¹ : FinCategory J k : Type v inst✝ : Field k F : J ⥤ FGModuleCat k j : J ⊢ FiniteDimensional k ↑((F ⋙ forget₂ (FGModuleCat k) (ModuleCat k)).obj j) [PROOFSTEP] change FiniteDimensional k (F.obj j) [GOAL] J : Type inst✝² : SmallCategory J inst✝¹ : FinCategory J k : Type v inst✝ : Field k F : J ⥤ FGModuleCat k j : J ⊢ FiniteDimensional k ↑(F.obj j) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Algebra.Category.FGModuleCat.Limits", "llama_tokens": 730}
[GOAL] R : CommRingCat ⊢ IsIso (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away 1))) [PROOFSTEP] cases R [GOAL] case mk α✝ : Type ?u.2107 str✝ : CommRing α✝ ⊢ IsIso (CommRingCat.ofHom (algebraMap (↑(Bundled.mk α✝)) (Localization.Away 1))) [PROOFSTEP] exact localization_unit_isIso _ [GOAL] R : CommRingCat M : Submonoid ↑R ⊢ Epi (CommRingCat.ofHom (algebraMap (↑R) (Localization M))) [PROOFSTEP] rcases R with ⟨α, str⟩ [GOAL] case mk α : Type ?u.6171 str : CommRing α M : Submonoid ↑(Bundled.mk α) ⊢ Epi (CommRingCat.ofHom (algebraMap (↑(Bundled.mk α)) (Localization M))) [PROOFSTEP] exact IsLocalization.epi M _ [GOAL] R S : CommRingCat f : R ≅ S a : ↑R ha : IsUnit (↑f.hom a) ⊢ IsUnit a [PROOFSTEP] convert f.inv.isUnit_map ha [GOAL] case h.e'_3 R S : CommRingCat f : R ≅ S a : ↑R ha : IsUnit (↑f.hom a) ⊢ a = ↑f.inv (↑f.hom a) [PROOFSTEP] exact (RingHom.congr_fun f.hom_inv_id _).symm
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.Instances", "llama_tokens": 454}
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.Adjunctions", "llama_tokens": 0}
[GOAL] ⊢ ∀ {α β : Type ?u.90} (Iα : Mul α) (Iβ : Mul β), Function.Injective MulHom.toFun [PROOFSTEP] intros [GOAL] α✝ β✝ : Type ?u.90 Iα✝ : Mul α✝ Iβ✝ : Mul β✝ ⊢ Function.Injective MulHom.toFun [PROOFSTEP] apply @FunLike.coe_injective [GOAL] ⊢ ∀ {α : Type ?u.90} (I : Mul α), (MulHom.id α).toFun = id [PROOFSTEP] aesop_cat [GOAL] ⊢ ∀ {α β γ : Type ?u.90} (Iα : Mul α) (Iβ : Mul β) (Iγ : Mul γ) (f : α →ₙ* β) (g : β →ₙ* γ), (MulHom.comp g f).toFun = g.toFun ∘ f.toFun [PROOFSTEP] aesop_cat [GOAL] X Y : Type u inst✝¹ : Mul X inst✝ : Mul Y e : X ≃* Y ⊢ toMulHom e ≫ toMulHom (symm e) = 𝟙 (MagmaCat.of X) [PROOFSTEP] ext [GOAL] case w X Y : Type u inst✝¹ : Mul X inst✝ : Mul Y e : X ≃* Y x✝ : (forget MagmaCat).obj (MagmaCat.of X) ⊢ ↑(toMulHom e ≫ toMulHom (symm e)) x✝ = ↑(𝟙 (MagmaCat.of X)) x✝ [PROOFSTEP] simp_rw [comp_apply, toMulHom_eq_coe, MagmaCat.MulEquiv_coe_eq, symm_apply_apply, id_apply] [GOAL] X✝ Y✝ : Type u X Y : MagmaCat f : X ⟶ Y x✝ : IsIso ((forget MagmaCat).map f) ⊢ IsIso f [PROOFSTEP] skip [GOAL] X✝ Y✝ : Type u X Y : MagmaCat f : X ⟶ Y x✝ : IsIso ((forget MagmaCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget MagmaCat).map f) [GOAL] X✝ Y✝ : Type u X Y : MagmaCat f : X ⟶ Y x✝ : IsIso ((forget MagmaCat).map f) i : (forget MagmaCat).obj X ≅ (forget MagmaCat).obj Y := asIso ((forget MagmaCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := { f, i.toEquiv with } [GOAL] X✝ Y✝ : Type u X Y : MagmaCat f : X ⟶ Y x✝ : IsIso ((forget MagmaCat).map f) i : (forget MagmaCat).obj X ≅ (forget MagmaCat).obj Y := asIso ((forget MagmaCat).map f) e : ↑X ≃* ↑Y := let src := i.toEquiv; { toEquiv := { toFun := f.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) }, map_mul' := (_ : ∀ (x y : ↑X), MulHom.toFun f (x * y) = MulHom.toFun f x * MulHom.toFun f y) } ⊢ IsIso f [PROOFSTEP] exact ⟨(IsIso.of_iso e.toMagmaCatIso).1⟩ [GOAL] X✝ Y✝ : Type u X Y : SemigroupCat f : X ⟶ Y x✝ : IsIso ((forget SemigroupCat).map f) ⊢ IsIso f [PROOFSTEP] skip [GOAL] X✝ Y✝ : Type u X Y : SemigroupCat f : X ⟶ Y x✝ : IsIso ((forget SemigroupCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget SemigroupCat).map f) [GOAL] X✝ Y✝ : Type u X Y : SemigroupCat f : X ⟶ Y x✝ : IsIso ((forget SemigroupCat).map f) i : (forget SemigroupCat).obj X ≅ (forget SemigroupCat).obj Y := asIso ((forget SemigroupCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := { f, i.toEquiv with } [GOAL] X✝ Y✝ : Type u X Y : SemigroupCat f : X ⟶ Y x✝ : IsIso ((forget SemigroupCat).map f) i : (forget SemigroupCat).obj X ≅ (forget SemigroupCat).obj Y := asIso ((forget SemigroupCat).map f) e : ↑X ≃* ↑Y := let src := i.toEquiv; { toEquiv := { toFun := f.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) }, map_mul' := (_ : ∀ (x y : ↑X), MulHom.toFun f (x * y) = MulHom.toFun f x * MulHom.toFun f y) } ⊢ IsIso f [PROOFSTEP] exact ⟨(IsIso.of_iso e.toSemigroupCatIso).1⟩
{"mathlib_filename": "Mathlib.Algebra.Category.SemigroupCat.Basic", "llama_tokens": 1609}
[GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L H✝ H : LieSubalgebra R L inst✝ : IsCartanSubalgebra H ⊢ LieSubmodule.normalizer (toLieSubmodule H) = toLieSubmodule H [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff, coe_normalizer_eq_normalizer, IsCartanSubalgebra.self_normalizing, coe_toLieSubmodule] [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L H✝ H : LieSubalgebra R L inst✝ : IsCartanSubalgebra H k : ℕ ⊢ LieSubmodule.ucs k (toLieSubmodule H) = toLieSubmodule H [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L H✝ H : LieSubalgebra R L inst✝ : IsCartanSubalgebra H ⊢ LieSubmodule.ucs Nat.zero (toLieSubmodule H) = toLieSubmodule H [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L H✝ H : LieSubalgebra R L inst✝ : IsCartanSubalgebra H k : ℕ ih : LieSubmodule.ucs k (toLieSubmodule H) = toLieSubmodule H ⊢ LieSubmodule.ucs (Nat.succ k) (toLieSubmodule H) = toLieSubmodule H [PROOFSTEP] simp [ih] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L ⊢ IsCartanSubalgebra H ↔ LieSubmodule.IsUcsLimit (toLieSubmodule H) [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L ⊢ IsCartanSubalgebra H → LieSubmodule.IsUcsLimit (toLieSubmodule H) [PROOFSTEP] intro h [GOAL] case mp R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L h : IsCartanSubalgebra H ⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H) [PROOFSTEP] have h₁ : LieAlgebra.IsNilpotent R H := by infer_instance [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L h : IsCartanSubalgebra H ⊢ LieAlgebra.IsNilpotent R { x // x ∈ H } [PROOFSTEP] infer_instance [GOAL] case mp R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L h : IsCartanSubalgebra H h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H } ⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H) [PROOFSTEP] obtain ⟨k, hk⟩ := H.toLieSubmodule.isNilpotent_iff_exists_self_le_ucs.mp h₁ [GOAL] case mp.intro R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L h : IsCartanSubalgebra H h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H } k : ℕ hk : toLieSubmodule H ≤ LieSubmodule.ucs k ⊥ ⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H) [PROOFSTEP] replace hk : H.toLieSubmodule = LieSubmodule.ucs k ⊥ := le_antisymm hk (LieSubmodule.ucs_le_of_normalizer_eq_self H.normalizer_eq_self_of_isCartanSubalgebra k) [GOAL] case mp.intro R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L h : IsCartanSubalgebra H h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H } k : ℕ hk : toLieSubmodule H = LieSubmodule.ucs k ⊥ ⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H) [PROOFSTEP] refine' ⟨k, fun l hl => _⟩ [GOAL] case mp.intro R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L h : IsCartanSubalgebra H h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H } k : ℕ hk : toLieSubmodule H = LieSubmodule.ucs k ⊥ l : ℕ hl : k ≤ l ⊢ LieSubmodule.ucs l ⊥ = toLieSubmodule H [PROOFSTEP] rw [← Nat.sub_add_cancel hl, LieSubmodule.ucs_add, ← hk, LieSubalgebra.ucs_eq_self_of_isCartanSubalgebra] [GOAL] case mpr R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L ⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H) → IsCartanSubalgebra H [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case mpr.intro R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H ⊢ IsCartanSubalgebra H [PROOFSTEP] exact { nilpotent := by dsimp only [LieAlgebra.IsNilpotent] erw [H.toLieSubmodule.isNilpotent_iff_exists_lcs_eq_bot] use k rw [_root_.eq_bot_iff, LieSubmodule.lcs_le_iff, hk k (le_refl k)] self_normalizing := by have hk' := hk (k + 1) k.le_succ rw [LieSubmodule.ucs_succ, hk k (le_refl k)] at hk' rw [← LieSubalgebra.coe_to_submodule_eq_iff, ← LieSubalgebra.coe_normalizer_eq_normalizer, hk', LieSubalgebra.coe_toLieSubmodule] } [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H ⊢ LieAlgebra.IsNilpotent R { x // x ∈ H } [PROOFSTEP] dsimp only [LieAlgebra.IsNilpotent] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H ⊢ LieModule.IsNilpotent R { x // x ∈ H } { x // x ∈ H } [PROOFSTEP] erw [H.toLieSubmodule.isNilpotent_iff_exists_lcs_eq_bot] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H ⊢ ∃ k, LieSubmodule.lcs k (toLieSubmodule H) = ⊥ [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H ⊢ LieSubmodule.lcs k (toLieSubmodule H) = ⊥ [PROOFSTEP] rw [_root_.eq_bot_iff, LieSubmodule.lcs_le_iff, hk k (le_refl k)] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H ⊢ normalizer H = H [PROOFSTEP] have hk' := hk (k + 1) k.le_succ [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H hk' : LieSubmodule.ucs (k + 1) ⊥ = toLieSubmodule H ⊢ normalizer H = H [PROOFSTEP] rw [LieSubmodule.ucs_succ, hk k (le_refl k)] at hk' [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H hk' : LieSubmodule.normalizer (toLieSubmodule H) = toLieSubmodule H ⊢ normalizer H = H [PROOFSTEP] rw [← LieSubalgebra.coe_to_submodule_eq_iff, ← LieSubalgebra.coe_normalizer_eq_normalizer, hk', LieSubalgebra.coe_toLieSubmodule] [GOAL] R✝ : Type u L✝ : Type v inst✝⁵ : CommRing R✝ inst✝⁴ : LieRing L✝ inst✝³ : LieAlgebra R✝ L✝ H : LieSubalgebra R✝ L✝ R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L ⊢ LieSubalgebra.normalizer (↑R L I) = ⊤ [PROOFSTEP] ext x [GOAL] case h R✝ : Type u L✝ : Type v inst✝⁵ : CommRing R✝ inst✝⁴ : LieRing L✝ inst✝³ : LieAlgebra R✝ L✝ H : LieSubalgebra R✝ L✝ R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L x : L ⊢ x ∈ LieSubalgebra.normalizer (↑R L I) ↔ x ∈ ⊤ [PROOFSTEP] simpa only [LieSubalgebra.mem_normalizer_iff, LieSubalgebra.mem_top, iff_true_iff] using fun y hy => I.lie_mem hy [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L H : LieSubalgebra R L inst✝ : IsNilpotent R L ⊢ LieSubalgebra.normalizer ⊤ = ⊤ [PROOFSTEP] rw [← top_coe_lieSubalgebra, normalizer_eq_top, top_coe_lieSubalgebra]
{"mathlib_filename": "Mathlib.Algebra.Lie.CartanSubalgebra", "llama_tokens": 3620}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F x✝ y✝ z✝ : ColimitType F x y z : Prequotient F ⊢ Quot.mk Setoid.r x * (Quot.mk Setoid.r y + Quot.mk Setoid.r z) = Quot.mk Setoid.r x * Quot.mk Setoid.r y + Quot.mk Setoid.r x * Quot.mk Setoid.r z [PROOFSTEP] simp only [(· + ·), (· * ·), Add.add] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F x✝ y✝ z✝ : ColimitType F x y z : Prequotient F ⊢ Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x) (Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y') (Quot.mk Setoid.r y) (Quot.mk Setoid.r z)) = Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y') (Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x) (Quot.mk Setoid.r y)) (Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x) (Quot.mk Setoid.r z)) [PROOFSTEP] exact Quot.sound (Relation.left_distrib _ _ _) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F x✝ y✝ z✝ : ColimitType F x y z : Prequotient F ⊢ (Quot.mk Setoid.r x + Quot.mk Setoid.r y) * Quot.mk Setoid.r z = Quot.mk Setoid.r x * Quot.mk Setoid.r z + Quot.mk Setoid.r y * Quot.mk Setoid.r z [PROOFSTEP] simp only [(· + ·), (· * ·), Add.add] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F x✝ y✝ z✝ : ColimitType F x y z : Prequotient F ⊢ Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y') (Quot.mk Setoid.r x) (Quot.mk Setoid.r y)) (Quot.mk Setoid.r z) = Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y') (Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x) (Quot.mk Setoid.r z)) (Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r y) (Quot.mk Setoid.r z)) [PROOFSTEP] exact Quot.sound (Relation.right_distrib _ _ _) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F x✝ y✝ z✝ : ColimitType F x y z : Prequotient F ⊢ Quot.mk Setoid.r x * Quot.mk Setoid.r y * Quot.mk Setoid.r z = Quot.mk Setoid.r x * (Quot.mk Setoid.r y * Quot.mk Setoid.r z) [PROOFSTEP] simp only [(· * ·)] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F x✝ y✝ z✝ : ColimitType F x y z : Prequotient F ⊢ Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x) (Quot.mk Setoid.r y)) (Quot.mk Setoid.r z) = Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x) (Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y')) (_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r y) (Quot.mk Setoid.r z)) [PROOFSTEP] exact Quot.sound (Relation.mul_assoc _ _ _) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J ⊢ coconeFun F j 1 = 1 [PROOFSTEP] apply Quot.sound [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J ⊢ Setoid.r (Prequotient.of j 1) one [PROOFSTEP] apply Relation.one [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J ⊢ ∀ (x y : ↑(F.obj j)), OneHom.toFun { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } (x * y) = OneHom.toFun { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } x * OneHom.toFun { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } y [PROOFSTEP] intros [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J x✝ y✝ : ↑(F.obj j) ⊢ OneHom.toFun { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } (x✝ * y✝) = OneHom.toFun { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } x✝ * OneHom.toFun { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } y✝ [PROOFSTEP] apply Quot.sound [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J x✝ y✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j (x✝ * y✝)) (mul (Prequotient.of j x✝) (Prequotient.of j y✝)) [PROOFSTEP] apply Relation.mul [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J ⊢ OneHom.toFun (↑{ toOneHom := { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }, map_mul' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x * y)) = Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) }) 0 = 0 [PROOFSTEP] apply Quot.sound [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J ⊢ Setoid.r (Prequotient.of j 0) zero [PROOFSTEP] apply Relation.zero [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J ⊢ ∀ (x y : ↑(F.obj j)), OneHom.toFun (↑{ toOneHom := { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }, map_mul' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x * y)) = Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }, map_mul' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x * y)) = Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) }) x + OneHom.toFun (↑{ toOneHom := { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }, map_mul' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x * y)) = Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) }) y [PROOFSTEP] intros [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J x✝ y✝ : ↑(F.obj j) ⊢ OneHom.toFun (↑{ toOneHom := { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }, map_mul' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x * y)) = Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) }) (x✝ + y✝) = OneHom.toFun (↑{ toOneHom := { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }, map_mul' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x * y)) = Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) }) x✝ + OneHom.toFun (↑{ toOneHom := { toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }, map_mul' := (_ : ∀ (x y : ↑(F.obj j)), Quot.mk Setoid.r (Prequotient.of j (x * y)) = Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) }) y✝ [PROOFSTEP] apply Quot.sound [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j : J x✝ y✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j (x✝ + y✝)) (add (Prequotient.of j x✝) (Prequotient.of j y✝)) [PROOFSTEP] apply Relation.add [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j j' : J f : j ⟶ j' ⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j [PROOFSTEP] ext [GOAL] case w J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j j' : J f : j ⟶ j' x✝ : (forget CommRingCat).obj (F.obj j) ⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝ [PROOFSTEP] apply Quot.sound [GOAL] case w.a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j j' : J f : j ⟶ j' x✝ : (forget CommRingCat).obj (F.obj j) ⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝) [PROOFSTEP] apply Relation.map [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x [PROOFSTEP] rw [← cocone_naturality F f] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F ⊢ ColimitType F → ↑s.pt [PROOFSTEP] fapply Quot.lift [GOAL] case f J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F ⊢ Prequotient F → ↑s.pt [PROOFSTEP] exact descFunLift F s [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F ⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b [PROOFSTEP] intro x y r [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : Prequotient F r : Setoid.r x y ⊢ descFunLift F s x = descFunLift F s y [PROOFSTEP] induction r with | refl => rfl | symm x y _ ih => exact ih.symm | trans x y z _ _ ih1 ih2 => exact ih1.trans ih2 | map j j' f x => exact RingHom.congr_fun (s.ι.naturality f) x | zero j => simp | one j => simp | neg j x => simp | add j x y => simp | mul j x y => simp | neg_1 x x' r ih => dsimp; rw [ih] | add_1 x x' y r ih => dsimp; rw [ih] | add_2 x y y' r ih => dsimp; rw [ih] | mul_1 x x' y r ih => dsimp; rw [ih] | mul_2 x y y' r ih => dsimp; rw [ih] | zero_add x => dsimp; rw [zero_add] | add_zero x => dsimp; rw [add_zero] | one_mul x => dsimp; rw [one_mul] | mul_one x => dsimp; rw [mul_one] | add_left_neg x => dsimp; rw [add_left_neg] | add_comm x y => dsimp; rw [add_comm] | mul_comm x y => dsimp; rw [mul_comm] | add_assoc x y z => dsimp; rw [add_assoc] | mul_assoc x y z => dsimp; rw [mul_assoc] | left_distrib x y z => dsimp; rw [mul_add] | right_distrib x y z => dsimp; rw [add_mul] | zero_mul x => dsimp; rw [zero_mul] | mul_zero x => dsimp; rw [mul_zero] [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : Prequotient F r : Setoid.r x y ⊢ descFunLift F s x = descFunLift F s y [PROOFSTEP] induction r with | refl => rfl | symm x y _ ih => exact ih.symm | trans x y z _ _ ih1 ih2 => exact ih1.trans ih2 | map j j' f x => exact RingHom.congr_fun (s.ι.naturality f) x | zero j => simp | one j => simp | neg j x => simp | add j x y => simp | mul j x y => simp | neg_1 x x' r ih => dsimp; rw [ih] | add_1 x x' y r ih => dsimp; rw [ih] | add_2 x y y' r ih => dsimp; rw [ih] | mul_1 x x' y r ih => dsimp; rw [ih] | mul_2 x y y' r ih => dsimp; rw [ih] | zero_add x => dsimp; rw [zero_add] | add_zero x => dsimp; rw [add_zero] | one_mul x => dsimp; rw [one_mul] | mul_one x => dsimp; rw [mul_one] | add_left_neg x => dsimp; rw [add_left_neg] | add_comm x y => dsimp; rw [add_comm] | mul_comm x y => dsimp; rw [mul_comm] | add_assoc x y z => dsimp; rw [add_assoc] | mul_assoc x y z => dsimp; rw [mul_assoc] | left_distrib x y z => dsimp; rw [mul_add] | right_distrib x y z => dsimp; rw [add_mul] | zero_mul x => dsimp; rw [zero_mul] | mul_zero x => dsimp; rw [mul_zero] [GOAL] case a.refl J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] | refl => rfl [GOAL] case a.refl J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] rfl [GOAL] case a.symm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝¹ y✝ x y : Prequotient F x✝ : Relation F x y ih : descFunLift F s x = descFunLift F s y ⊢ descFunLift F s y = descFunLift F s x [PROOFSTEP] | symm x y _ ih => exact ih.symm [GOAL] case a.symm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝¹ y✝ x y : Prequotient F x✝ : Relation F x y ih : descFunLift F s x = descFunLift F s y ⊢ descFunLift F s y = descFunLift F s x [PROOFSTEP] exact ih.symm [GOAL] case a.trans J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝² y✝ x y z : Prequotient F x✝¹ : Relation F x y x✝ : Relation F y z ih1 : descFunLift F s x = descFunLift F s y ih2 : descFunLift F s y = descFunLift F s z ⊢ descFunLift F s x = descFunLift F s z [PROOFSTEP] | trans x y z _ _ ih1 ih2 => exact ih1.trans ih2 [GOAL] case a.trans J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝² y✝ x y z : Prequotient F x✝¹ : Relation F x y x✝ : Relation F y z ih1 : descFunLift F s x = descFunLift F s y ih2 : descFunLift F s y = descFunLift F s z ⊢ descFunLift F s x = descFunLift F s z [PROOFSTEP] exact ih1.trans ih2 [GOAL] case a.map J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y : Prequotient F j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x) [PROOFSTEP] | map j j' f x => exact RingHom.congr_fun (s.ι.naturality f) x [GOAL] case a.map J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y : Prequotient F j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x) [PROOFSTEP] exact RingHom.congr_fun (s.ι.naturality f) x [GOAL] case a.zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : Prequotient F j : J ⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero [PROOFSTEP] | zero j => simp [GOAL] case a.zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : Prequotient F j : J ⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero [PROOFSTEP] simp [GOAL] case a.one J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : Prequotient F j : J ⊢ descFunLift F s (Prequotient.of j 1) = descFunLift F s one [PROOFSTEP] | one j => simp [GOAL] case a.one J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : Prequotient F j : J ⊢ descFunLift F s (Prequotient.of j 1) = descFunLift F s one [PROOFSTEP] simp [GOAL] case a.neg J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y : Prequotient F j : J x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x)) [PROOFSTEP] | neg j x => simp [GOAL] case a.neg J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y : Prequotient F j : J x : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x)) [PROOFSTEP] simp [GOAL] case a.add J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ : Prequotient F j : J x y : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y)) [PROOFSTEP] | add j x y => simp [GOAL] case a.add J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ : Prequotient F j : J x y : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y)) [PROOFSTEP] simp [GOAL] case a.mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ : Prequotient F j : J x y : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (x * y)) = descFunLift F s (mul (Prequotient.of j x) (Prequotient.of j y)) [PROOFSTEP] | mul j x y => simp [GOAL] case a.mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ : Prequotient F j : J x y : ↑(F.obj j) ⊢ descFunLift F s (Prequotient.of j (x * y)) = descFunLift F s (mul (Prequotient.of j x) (Prequotient.of j y)) [PROOFSTEP] simp [GOAL] case a.neg_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x x' : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s (neg x) = descFunLift F s (neg x') [PROOFSTEP] | neg_1 x x' r ih => dsimp; rw [ih] [GOAL] case a.neg_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x x' : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s (neg x) = descFunLift F s (neg x') [PROOFSTEP] dsimp [GOAL] case a.neg_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x x' : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ -descFunLift F s x = -descFunLift F s x' [PROOFSTEP] rw [ih] [GOAL] case a.add_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x x' y : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s (add x y) = descFunLift F s (add x' y) [PROOFSTEP] | add_1 x x' y r ih => dsimp; rw [ih] [GOAL] case a.add_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x x' y : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s (add x y) = descFunLift F s (add x' y) [PROOFSTEP] dsimp [GOAL] case a.add_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x x' y : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s x + descFunLift F s y = descFunLift F s x' + descFunLift F s y [PROOFSTEP] rw [ih] [GOAL] case a.add_2 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y y' : Prequotient F r : Relation F y y' ih : descFunLift F s y = descFunLift F s y' ⊢ descFunLift F s (add x y) = descFunLift F s (add x y') [PROOFSTEP] | add_2 x y y' r ih => dsimp; rw [ih] [GOAL] case a.add_2 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y y' : Prequotient F r : Relation F y y' ih : descFunLift F s y = descFunLift F s y' ⊢ descFunLift F s (add x y) = descFunLift F s (add x y') [PROOFSTEP] dsimp [GOAL] case a.add_2 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y y' : Prequotient F r : Relation F y y' ih : descFunLift F s y = descFunLift F s y' ⊢ descFunLift F s x + descFunLift F s y = descFunLift F s x + descFunLift F s y' [PROOFSTEP] rw [ih] [GOAL] case a.mul_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x x' y : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s (mul x y) = descFunLift F s (mul x' y) [PROOFSTEP] | mul_1 x x' y r ih => dsimp; rw [ih] [GOAL] case a.mul_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x x' y : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s (mul x y) = descFunLift F s (mul x' y) [PROOFSTEP] dsimp [GOAL] case a.mul_1 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x x' y : Prequotient F r : Relation F x x' ih : descFunLift F s x = descFunLift F s x' ⊢ descFunLift F s x * descFunLift F s y = descFunLift F s x' * descFunLift F s y [PROOFSTEP] rw [ih] [GOAL] case a.mul_2 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y y' : Prequotient F r : Relation F y y' ih : descFunLift F s y = descFunLift F s y' ⊢ descFunLift F s (mul x y) = descFunLift F s (mul x y') [PROOFSTEP] | mul_2 x y y' r ih => dsimp; rw [ih] [GOAL] case a.mul_2 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y y' : Prequotient F r : Relation F y y' ih : descFunLift F s y = descFunLift F s y' ⊢ descFunLift F s (mul x y) = descFunLift F s (mul x y') [PROOFSTEP] dsimp [GOAL] case a.mul_2 J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y y' : Prequotient F r : Relation F y y' ih : descFunLift F s y = descFunLift F s y' ⊢ descFunLift F s x * descFunLift F s y = descFunLift F s x * descFunLift F s y' [PROOFSTEP] rw [ih] [GOAL] case a.zero_add J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (add zero x) = descFunLift F s x [PROOFSTEP] | zero_add x => dsimp; rw [zero_add] [GOAL] case a.zero_add J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (add zero x) = descFunLift F s x [PROOFSTEP] dsimp [GOAL] case a.zero_add J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ 0 + descFunLift F s x = descFunLift F s x [PROOFSTEP] rw [zero_add] [GOAL] case a.add_zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (add x zero) = descFunLift F s x [PROOFSTEP] | add_zero x => dsimp; rw [add_zero] [GOAL] case a.add_zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (add x zero) = descFunLift F s x [PROOFSTEP] dsimp [GOAL] case a.add_zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s x + 0 = descFunLift F s x [PROOFSTEP] rw [add_zero] [GOAL] case a.one_mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul one x) = descFunLift F s x [PROOFSTEP] | one_mul x => dsimp; rw [one_mul] [GOAL] case a.one_mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul one x) = descFunLift F s x [PROOFSTEP] dsimp [GOAL] case a.one_mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ 1 * descFunLift F s x = descFunLift F s x [PROOFSTEP] rw [one_mul] [GOAL] case a.mul_one J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul x one) = descFunLift F s x [PROOFSTEP] | mul_one x => dsimp; rw [mul_one] [GOAL] case a.mul_one J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul x one) = descFunLift F s x [PROOFSTEP] dsimp [GOAL] case a.mul_one J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s x * 1 = descFunLift F s x [PROOFSTEP] rw [mul_one] [GOAL] case a.add_left_neg J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (add (neg x) x) = descFunLift F s zero [PROOFSTEP] | add_left_neg x => dsimp; rw [add_left_neg] [GOAL] case a.add_left_neg J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (add (neg x) x) = descFunLift F s zero [PROOFSTEP] dsimp [GOAL] case a.add_left_neg J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ -descFunLift F s x + descFunLift F s x = 0 [PROOFSTEP] rw [add_left_neg] [GOAL] case a.add_comm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y : Prequotient F ⊢ descFunLift F s (add x y) = descFunLift F s (add y x) [PROOFSTEP] | add_comm x y => dsimp; rw [add_comm] [GOAL] case a.add_comm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y : Prequotient F ⊢ descFunLift F s (add x y) = descFunLift F s (add y x) [PROOFSTEP] dsimp [GOAL] case a.add_comm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y : Prequotient F ⊢ descFunLift F s x + descFunLift F s y = descFunLift F s y + descFunLift F s x [PROOFSTEP] rw [add_comm] [GOAL] case a.mul_comm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y : Prequotient F ⊢ descFunLift F s (mul x y) = descFunLift F s (mul y x) [PROOFSTEP] | mul_comm x y => dsimp; rw [mul_comm] [GOAL] case a.mul_comm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y : Prequotient F ⊢ descFunLift F s (mul x y) = descFunLift F s (mul y x) [PROOFSTEP] dsimp [GOAL] case a.mul_comm J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y : Prequotient F ⊢ descFunLift F s x * descFunLift F s y = descFunLift F s y * descFunLift F s x [PROOFSTEP] rw [mul_comm] [GOAL] case a.add_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (add (add x y) z) = descFunLift F s (add x (add y z)) [PROOFSTEP] | add_assoc x y z => dsimp; rw [add_assoc] [GOAL] case a.add_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (add (add x y) z) = descFunLift F s (add x (add y z)) [PROOFSTEP] dsimp [GOAL] case a.add_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s x + descFunLift F s y + descFunLift F s z = descFunLift F s x + (descFunLift F s y + descFunLift F s z) [PROOFSTEP] rw [add_assoc] [GOAL] case a.mul_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (mul (mul x y) z) = descFunLift F s (mul x (mul y z)) [PROOFSTEP] | mul_assoc x y z => dsimp; rw [mul_assoc] [GOAL] case a.mul_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (mul (mul x y) z) = descFunLift F s (mul x (mul y z)) [PROOFSTEP] dsimp [GOAL] case a.mul_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s x * descFunLift F s y * descFunLift F s z = descFunLift F s x * (descFunLift F s y * descFunLift F s z) [PROOFSTEP] rw [mul_assoc] [GOAL] case a.left_distrib J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (mul x (add y z)) = descFunLift F s (add (mul x y) (mul x z)) [PROOFSTEP] | left_distrib x y z => dsimp; rw [mul_add] [GOAL] case a.left_distrib J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (mul x (add y z)) = descFunLift F s (add (mul x y) (mul x z)) [PROOFSTEP] dsimp [GOAL] case a.left_distrib J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s x * (descFunLift F s y + descFunLift F s z) = descFunLift F s x * descFunLift F s y + descFunLift F s x * descFunLift F s z [PROOFSTEP] rw [mul_add] [GOAL] case a.right_distrib J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (mul (add x y) z) = descFunLift F s (add (mul x z) (mul y z)) [PROOFSTEP] | right_distrib x y z => dsimp; rw [add_mul] [GOAL] case a.right_distrib J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ descFunLift F s (mul (add x y) z) = descFunLift F s (add (mul x z) (mul y z)) [PROOFSTEP] dsimp [GOAL] case a.right_distrib J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y✝ x y z : Prequotient F ⊢ (descFunLift F s x + descFunLift F s y) * descFunLift F s z = descFunLift F s x * descFunLift F s z + descFunLift F s y * descFunLift F s z [PROOFSTEP] rw [add_mul] [GOAL] case a.zero_mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul zero x) = descFunLift F s zero [PROOFSTEP] | zero_mul x => dsimp; rw [zero_mul] [GOAL] case a.zero_mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul zero x) = descFunLift F s zero [PROOFSTEP] dsimp [GOAL] case a.zero_mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ 0 * descFunLift F s x = 0 [PROOFSTEP] rw [zero_mul] [GOAL] case a.mul_zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul x zero) = descFunLift F s zero [PROOFSTEP] | mul_zero x => dsimp; rw [mul_zero] [GOAL] case a.mul_zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s (mul x zero) = descFunLift F s zero [PROOFSTEP] dsimp [GOAL] case a.mul_zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ y x : Prequotient F ⊢ descFunLift F s x * 0 = 0 [PROOFSTEP] rw [mul_zero] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : ↑(colimit F) ⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y [PROOFSTEP] exact Quot.induction_on₂ x y fun a b => rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : ↑(colimit F) ⊢ OneHom.toFun (↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }, map_mul' := (_ : ∀ (x y : ↑(colimit F)), OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }, map_mul' := (_ : ∀ (x y : ↑(colimit F)), OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }, map_mul' := (_ : ∀ (x y : ↑(colimit F)), OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) }) y [PROOFSTEP] refine Quot.induction_on₂ x y fun a b => ?_ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : ↑(colimit F) a b : Prequotient F ⊢ OneHom.toFun (↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }, map_mul' := (_ : ∀ (x y : ↑(colimit F)), OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) }) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) = OneHom.toFun (↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }, map_mul' := (_ : ∀ (x y : ↑(colimit F)), OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) }) (Quot.mk Setoid.r a) + OneHom.toFun (↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }, map_mul' := (_ : ∀ (x y : ↑(colimit F)), OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) }) (Quot.mk Setoid.r b) [PROOFSTEP] dsimp [descFun, (· + ·)] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : ↑(colimit F) a b : Prequotient F ⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y) (Add.add (Quot.mk Setoid.r a) (Quot.mk Setoid.r b)) = Add.add (descFunLift F s a) (descFunLift F s b) [PROOFSTEP] rw [← quot_add] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x y : ↑(colimit F) a b : Prequotient F ⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y) (Quot.mk Setoid.r (add a b)) = Add.add (descFunLift F s a) (descFunLift F s b) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt ⊢ ↑m x = ↑((fun s => descMorphism F s) s) x [PROOFSTEP] change (colimitCocone F).pt →+* s.pt at m [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ ↑m x = ↑((fun s => descMorphism F s) s) x [PROOFSTEP] refine Quot.inductionOn x ?_ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ ∀ (a : Prequotient F), ↑m (Quot.mk Setoid.r a) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r a) [PROOFSTEP] intro x [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Prequotient F ⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) [PROOFSTEP] induction x with | zero => erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero] | one => erw [quot_one, map_one (f := m), (descMorphism F s).map_one] | neg x ih => erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih] | of j x => exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x | add x y ih_x ih_y => erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y] | mul x y ih_x ih_y => erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Prequotient F ⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) [PROOFSTEP] induction x with | zero => erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero] | one => erw [quot_one, map_one (f := m), (descMorphism F s).map_one] | neg x ih => erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih] | of j x => exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x | add x y ih_x ih_y => erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y] | mul x y ih_x ih_y => erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y] [GOAL] case zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ ↑m (Quot.mk Setoid.r zero) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r zero) [PROOFSTEP] | zero => erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero] [GOAL] case zero J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ ↑m (Quot.mk Setoid.r zero) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r zero) [PROOFSTEP] erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero] [GOAL] case one J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ ↑m (Quot.mk Setoid.r one) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r one) [PROOFSTEP] | one => erw [quot_one, map_one (f := m), (descMorphism F s).map_one] [GOAL] case one J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ ↑m (Quot.mk Setoid.r one) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r one) [PROOFSTEP] erw [quot_one, map_one (f := m), (descMorphism F s).map_one] [GOAL] case neg J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Prequotient F ih : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) ⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (neg x)) [PROOFSTEP] | neg x ih => erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih] [GOAL] case neg J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Prequotient F ih : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) ⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (neg x)) [PROOFSTEP] erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih] [GOAL] case of J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j j : J x : ↑(F.obj j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (Prequotient.of j x)) [PROOFSTEP] | of j x => exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x [GOAL] case of J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j j : J x : ↑(F.obj j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (Prequotient.of j x)) [PROOFSTEP] exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x [GOAL] case add J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x y : Prequotient F ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) ⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (add x y)) [PROOFSTEP] | add x y ih_x ih_y => erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y] [GOAL] case add J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x y : Prequotient F ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) ⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (add x y)) [PROOFSTEP] erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y] [GOAL] case mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x y : Prequotient F ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) ⊢ ↑m (Quot.mk Setoid.r (mul x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (mul x y)) [PROOFSTEP] | mul x y ih_x ih_y => erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y] [GOAL] case mul J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCat s : Cocone F x✝ : ↑(colimitCocone F).pt m : ↑(colimitCocone F).pt →+* ↑s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x y : Prequotient F ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) ⊢ ↑m (Quot.mk Setoid.r (mul x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (mul x y)) [PROOFSTEP] erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y]
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.Colimits", "llama_tokens": 20427}
[GOAL] ⊢ ∀ {X' X : SemigroupCat} {Y : MonCat} (f : X' ⟶ X) (g : X ⟶ (forget₂ MonCat SemigroupCat).obj Y), ↑((fun S M => WithOne.lift.symm) X' Y).symm (f ≫ g) = adjoinOne.map f ≫ ↑((fun S M => WithOne.lift.symm) X Y).symm g [PROOFSTEP] intro S T M f g [GOAL] S T : SemigroupCat M : MonCat f : S ⟶ T g : T ⟶ (forget₂ MonCat SemigroupCat).obj M ⊢ ↑((fun S M => WithOne.lift.symm) S M).symm (f ≫ g) = adjoinOne.map f ≫ ↑((fun S M => WithOne.lift.symm) T M).symm g [PROOFSTEP] ext x [GOAL] case w S T : SemigroupCat M : MonCat f : S ⟶ T g : T ⟶ (forget₂ MonCat SemigroupCat).obj M x : ↑(adjoinOne.obj S) ⊢ ↑(↑((fun S M => WithOne.lift.symm) S M).symm (f ≫ g)) x = ↑(adjoinOne.map f ≫ ↑((fun S M => WithOne.lift.symm) T M).symm g) x [PROOFSTEP] simp only [Equiv.symm_symm, adjoinOne_map, coe_comp] [GOAL] case w S T : SemigroupCat M : MonCat f : S ⟶ T g : T ⟶ (forget₂ MonCat SemigroupCat).obj M x : ↑(adjoinOne.obj S) ⊢ ↑(↑WithOne.lift (f ≫ g)) x = ↑(WithOne.map f ≫ ↑WithOne.lift g) x [PROOFSTEP] simp_rw [WithOne.map] [GOAL] case w S T : SemigroupCat M : MonCat f : S ⟶ T g : T ⟶ (forget₂ MonCat SemigroupCat).obj M x : ↑(adjoinOne.obj S) ⊢ ↑(↑WithOne.lift (f ≫ g)) x = ↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f) ≫ ↑WithOne.lift g) x [PROOFSTEP] cases x [GOAL] case w.none S T : SemigroupCat M : MonCat f : S ⟶ T g : T ⟶ (forget₂ MonCat SemigroupCat).obj M ⊢ ↑(↑WithOne.lift (f ≫ g)) none = ↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f) ≫ ↑WithOne.lift g) none [PROOFSTEP] rfl [GOAL] case w.some S T : SemigroupCat M : MonCat f : S ⟶ T g : T ⟶ (forget₂ MonCat SemigroupCat).obj M val✝ : ↑S ⊢ ↑(↑WithOne.lift (f ≫ g)) (some val✝) = ↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f) ≫ ↑WithOne.lift g) (some val✝) [PROOFSTEP] simp [GOAL] case w.some S T : SemigroupCat M : MonCat f : S ⟶ T g : T ⟶ (forget₂ MonCat SemigroupCat).obj M val✝ : ↑S ⊢ ↑(↑WithOne.lift (f ≫ g)) (some val✝) = ↑(↑WithOne.lift g) (↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f)) (some val✝)) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Adjunctions", "llama_tokens": 1032}
[GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x y : (j : J) × ↑(F.obj j) h : Types.FilteredColimit.Rel (F ⋙ forget (ModuleCat R)) x y ⊢ colimitSMulAux F r x = colimitSMulAux F r y [PROOFSTEP] apply M.mk_eq [GOAL] case h R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x y : (j : J) × ↑(F.obj j) h : Types.FilteredColimit.Rel (F ⋙ forget (ModuleCat R)) x y ⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd [PROOFSTEP] obtain ⟨k, f, g, hfg⟩ := h [GOAL] case h.intro.intro.intro R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k hfg : (F ⋙ forget (ModuleCat R)).map f x.snd = (F ⋙ forget (ModuleCat R)).map g y.snd ⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd [PROOFSTEP] use k, f, g [GOAL] case h R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k hfg : (F ⋙ forget (ModuleCat R)).map f x.snd = (F ⋙ forget (ModuleCat R)).map g y.snd ⊢ ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd [PROOFSTEP] simp only [Functor.comp_obj, Functor.comp_map, forget_map] at hfg [GOAL] case h R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k hfg : ↑(F.map f) x.snd = ↑(F.map g) y.snd ⊢ ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd [PROOFSTEP] simp [hfg] [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x : ↑(M F) ⊢ ↑(M F) [PROOFSTEP] refine' Quot.lift (colimitSMulAux F r) _ x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x : ↑(M F) ⊢ ∀ (a b : (j : J) × ↑(F.obj j)), Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat) a b → colimitSMulAux F r a = colimitSMulAux F r b [PROOFSTEP] intro x y h [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x✝ : ↑(M F) x y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat) x y ⊢ colimitSMulAux F r x = colimitSMulAux F r y [PROOFSTEP] apply colimitSMulAux_eq_of_rel [GOAL] case h R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x✝ : ↑(M F) x y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat) x y ⊢ Types.FilteredColimit.Rel (F ⋙ forget (ModuleCat R)) x y [PROOFSTEP] apply Types.FilteredColimit.rel_of_quot_rel [GOAL] case h.a R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r : R x✝ : ↑(M F) x y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat) x y ⊢ Types.Quot.Rel (F ⋙ forget (ModuleCat R)) x y [PROOFSTEP] exact h [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R x : ↑(M F) ⊢ 1 • x = x [PROOFSTEP] refine' Quot.inductionOn x _ [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R x : ↑(M F) ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] clear x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] intro x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R x : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x [PROOFSTEP] cases' x with j x [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } [PROOFSTEP] erw [colimit_smul_mk_eq F 1 ⟨j, x⟩] [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := 1 • { fst := j, snd := x }.snd } = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } [PROOFSTEP] simp [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ M.mk F { fst := j, snd := x } = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } [PROOFSTEP] rfl -- Porting note: writing directly the `Module` instance makes things very slow. [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R x : ↑(M F) ⊢ 1 • x = x [PROOFSTEP] refine' Quot.inductionOn x _ [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R x : ↑(M F) ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] clear x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] intro x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R x : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x [PROOFSTEP] cases' x with j x [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ 1 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } [PROOFSTEP] erw [colimit_smul_mk_eq F 1 ⟨j, x⟩, one_smul] [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := { fst := j, snd := x }.snd } = Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R x : ↑(M F) ⊢ (r * s) • x = r • s • x [PROOFSTEP] refine' Quot.inductionOn x _ [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R x : ↑(M F) ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), (r * s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = r • s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] clear x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), (r * s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = r • s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] intro x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R x : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ (r * s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x = r • s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x [PROOFSTEP] cases' x with j x [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ (r * s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } = r • s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } [PROOFSTEP] erw [colimit_smul_mk_eq F (r * s) ⟨j, x⟩, colimit_smul_mk_eq F s ⟨j, x⟩, colimit_smul_mk_eq F r ⟨j, _⟩, mul_smul] [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F r : R ⊢ r • 0 = 0 [PROOFSTEP] erw [colimit_zero_eq _ (IsFiltered.Nonempty.some : J), colimit_smul_mk_eq, smul_zero] [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F r : R ⊢ M.mk F { fst := { fst := Nonempty.some (_ : Nonempty J), snd := 0 }.fst, snd := 0 } = AddMonCat.FilteredColimits.M.mk (((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) { fst := Nonempty.some (_ : Nonempty J), snd := 0 } [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F x : ↑(M F) ⊢ 0 • x = 0 [PROOFSTEP] refine' Quot.inductionOn x _ [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F x : ↑(M F) ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), 0 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = 0 [PROOFSTEP] clear x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), 0 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = 0 [PROOFSTEP] intro x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F x : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ 0 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x = 0 [PROOFSTEP] cases' x with j x [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ 0 • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } = 0 [PROOFSTEP] erw [colimit_smul_mk_eq, zero_smul, colimit_zero_eq _ j] [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝ : MulAction R ↑(M F) := colimitMulAction F j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := 0 } = AddMonCat.FilteredColimits.M.mk (((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) { fst := j, snd := 0 } [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R x : ↑(M F) ⊢ (r + s) • x = r • x + s • x [PROOFSTEP] refine' Quot.inductionOn x _ [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R x : ↑(M F) ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), (r + s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a + s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] clear x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), (r + s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a + s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a [PROOFSTEP] intro x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R x : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ (r + s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x + s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x [PROOFSTEP] cases' x with j x [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ (r + s) • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } + s • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x } [PROOFSTEP] erw [colimit_smul_mk_eq, _root_.add_smul, colimit_smul_mk_eq, colimit_smul_mk_eq, colimit_add_mk_eq _ ⟨j, _⟩ ⟨j, _⟩ j (𝟙 j) (𝟙 j), CategoryTheory.Functor.map_id, id_apply, id_apply] [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R r s : R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := r • { fst := j, snd := x }.snd + s • { fst := j, snd := x }.snd } = AddMonCat.FilteredColimits.M.mk (((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) { fst := j, snd := SMul.smul r { fst := j, snd := x }.snd + SMul.smul s { fst := j, snd := x }.snd } [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝¹ : MulAction R ↑(M F) := colimitMulAction F src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F r : R x y : ↑(M F) ⊢ r • (x + y) = r • x + r • y [PROOFSTEP] refine' Quot.induction_on₂ x y _ [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝¹ : MulAction R ↑(M F) := colimitMulAction F src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F r : R x y : ↑(M F) ⊢ ∀ (a b : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), r • (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a + Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) b) = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a + r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) b [PROOFSTEP] clear x y [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝¹ : MulAction R ↑(M F) := colimitMulAction F src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F r : R ⊢ ∀ (a b : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), r • (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a + Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) b) = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a + r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) b [PROOFSTEP] intro x y [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝¹ : MulAction R ↑(M F) := colimitMulAction F src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F r : R x y : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ r • (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x + Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) y) = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x + r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) y [PROOFSTEP] cases' x with i x [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝¹ : MulAction R ↑(M F) := colimitMulAction F src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F r : R y : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j i : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj i ⊢ r • (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := i, snd := x } + Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) y) = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := i, snd := x } + r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) y [PROOFSTEP] cases' y with j y [GOAL] case mk.mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝¹ : MulAction R ↑(M F) := colimitMulAction F src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F r : R i : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj i j : J y : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ r • (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := i, snd := x } + Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := y }) = r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := i, snd := x } + r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := y } [PROOFSTEP] erw [colimit_add_mk_eq _ ⟨i, _⟩ ⟨j, _⟩ (max' i j) (IsFiltered.leftToMax i j) (IsFiltered.rightToMax i j), colimit_smul_mk_eq, smul_add, colimit_smul_mk_eq, colimit_smul_mk_eq, colimit_add_mk_eq _ ⟨i, _⟩ ⟨j, _⟩ (max' i j) (IsFiltered.leftToMax i j) (IsFiltered.rightToMax i j), LinearMap.map_smul, LinearMap.map_smul] [GOAL] case mk.mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R src✝¹ : MulAction R ↑(M F) := colimitMulAction F src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F r : R i : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj i j : J y : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ M.mk F { fst := { fst := IsFiltered.max i j, snd := ↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat).map (IsFiltered.leftToMax i j)) { fst := i, snd := x }.snd + ↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat).map (IsFiltered.rightToMax i j)) { fst := j, snd := y }.snd }.fst, snd := r • ↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat).map (IsFiltered.leftToMax i j)) { fst := i, snd := x }.snd + r • ↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat).map (IsFiltered.rightToMax i j)) { fst := j, snd := y }.snd } = AddMonCat.FilteredColimits.M.mk (((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) { fst := IsFiltered.max i j, snd := r • ↑(F.map (IsFiltered.leftToMax i j)) { fst := i, snd := x }.snd + r • ↑(F.map (IsFiltered.rightToMax i j)) { fst := j, snd := y }.snd } [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R j : J src✝ : (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j ⟶ ((Functor.const J).obj (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).pt).obj j := NatTrans.app (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).ι j r : R x : ↑(F.obj j) ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j)), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j)), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } x [PROOFSTEP] erw [colimit_smul_mk_eq F r ⟨j, x⟩] [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R j : J src✝ : (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j ⟶ ((Functor.const J).obj (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).pt).obj j := NatTrans.app (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).ι j r : R x : ↑(F.obj j) ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j)), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • x) = M.mk F { fst := { fst := j, snd := x }.fst, snd := r • { fst := j, snd := x }.snd } [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R t : Cocone F src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶ ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt := IsColimit.desc (AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)) ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t) r : R x : ↑(colimit F) ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } x [PROOFSTEP] refine' Quot.inductionOn x _ [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R t : Cocone F src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶ ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt := IsColimit.desc (AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)) ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t) r : R x : ↑(colimit F) ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a) [PROOFSTEP] clear x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R t : Cocone F src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶ ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt := IsColimit.desc (AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)) ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t) r : R ⊢ ∀ (a : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) a) [PROOFSTEP] intro x [GOAL] R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R t : Cocone F src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶ ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt := IsColimit.desc (AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)) ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t) r : R x : (j : J) × ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) x) [PROOFSTEP] cases' x with j x [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R t : Cocone F src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶ ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt := IsColimit.desc (AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)) ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t) r : R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x }) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x }) [PROOFSTEP] erw [colimit_smul_mk_eq] [GOAL] case mk R : Type u inst✝² : Ring R J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ ModuleCatMax R t : Cocone F src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶ ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt := IsColimit.desc (AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)) ((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t) r : R j : J x : ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat).obj j ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (M.mk F { fst := { fst := j, snd := x }.fst, snd := r • { fst := j, snd := x }.snd }) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (Quot.mk (Types.Quot.Rel ((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget₂ AddGroupCat AddMonCat) ⋙ forget AddMonCat)) { fst := j, snd := x }) [PROOFSTEP] exact LinearMap.map_smul (t.ι.app j) r x
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.FilteredColimits", "llama_tokens": 20167}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat ⊢ Inhabited (ColimitType F) [PROOFSTEP] dsimp [ColimitType] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat ⊢ Inhabited (Quotient (colimitSetoid F)) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat ⊢ Monoid (ColimitType F) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat j j' : J f : j ⟶ j' ⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j [PROOFSTEP] ext [GOAL] case w J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat j j' : J f : j ⟶ j' x✝ : ↑(F.obj j) ⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝ [PROOFSTEP] apply Quot.sound [GOAL] case w.a J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat j j' : J f : j ⟶ j' x✝ : ↑(F.obj j) ⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝) [PROOFSTEP] apply Relation.map [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x [PROOFSTEP] rw [← cocone_naturality F f] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F ⊢ ColimitType F → ↑s.pt [PROOFSTEP] fapply Quot.lift [GOAL] case f J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F ⊢ Prequotient F → ↑s.pt [PROOFSTEP] exact descFunLift F s [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F ⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b [PROOFSTEP] intro x y r [GOAL] case a J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y : Prequotient F r : Setoid.r x y ⊢ descFunLift F s x = descFunLift F s y [PROOFSTEP] induction' r with _ _ _ _ h _ _ _ _ _ h₁ h₂ _ _ f x _ _ _ _ _ _ _ _ h _ _ _ _ h [GOAL] case a.refl J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] try simp -- symm [GOAL] case a.refl J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s x✝ = descFunLift F s x✝ [PROOFSTEP] simp -- symm [GOAL] case a.symm J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ y✝ : Prequotient F x✝ : Relation F x✝¹ y✝ h : descFunLift F s x✝¹ = descFunLift F s y✝ ⊢ descFunLift F s y✝ = descFunLift F s x✝¹ [PROOFSTEP] try simp -- symm [GOAL] case a.symm J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ y✝ : Prequotient F x✝ : Relation F x✝¹ y✝ h : descFunLift F s x✝¹ = descFunLift F s y✝ ⊢ descFunLift F s y✝ = descFunLift F s x✝¹ [PROOFSTEP] simp -- symm [GOAL] case a.trans J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝² y✝ z✝ : Prequotient F x✝¹ : Relation F x✝² y✝ x✝ : Relation F y✝ z✝ h₁ : descFunLift F s x✝² = descFunLift F s y✝ h₂ : descFunLift F s y✝ = descFunLift F s z✝ ⊢ descFunLift F s x✝² = descFunLift F s z✝ [PROOFSTEP] try simp -- symm [GOAL] case a.trans J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝² y✝ z✝ : Prequotient F x✝¹ : Relation F x✝² y✝ x✝ : Relation F y✝ z✝ h₁ : descFunLift F s x✝² = descFunLift F s y✝ h₂ : descFunLift F s y✝ = descFunLift F s z✝ ⊢ descFunLift F s x✝² = descFunLift F s z✝ [PROOFSTEP] simp -- symm [GOAL] case a.map J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x✝ y : Prequotient F j✝ j'✝ : J f : j✝ ⟶ j'✝ x : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j'✝ (↑(F.map f) x)) = descFunLift F s (Prequotient.of j✝ x) [PROOFSTEP] try simp -- symm [GOAL] case a.map J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x✝ y : Prequotient F j✝ j'✝ : J f : j✝ ⟶ j'✝ x : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j'✝ (↑(F.map f) x)) = descFunLift F s (Prequotient.of j✝ x) [PROOFSTEP] simp -- symm [GOAL] case a.mul J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y : Prequotient F j✝ : J x✝ y✝ : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j✝ (x✝ * y✝)) = descFunLift F s (mul (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝)) [PROOFSTEP] try simp -- symm [GOAL] case a.mul J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y : Prequotient F j✝ : J x✝ y✝ : ↑(F.obj j✝) ⊢ descFunLift F s (Prequotient.of j✝ (x✝ * y✝)) = descFunLift F s (mul (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝)) [PROOFSTEP] simp -- symm [GOAL] case a.one J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y : Prequotient F j✝ : J ⊢ descFunLift F s (Prequotient.of j✝ 1) = descFunLift F s one [PROOFSTEP] try simp -- symm [GOAL] case a.one J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y : Prequotient F j✝ : J ⊢ descFunLift F s (Prequotient.of j✝ 1) = descFunLift F s one [PROOFSTEP] simp -- symm [GOAL] case a.mul_1 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ x'✝ y✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ h : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x'✝ y✝) [PROOFSTEP] try simp -- symm [GOAL] case a.mul_1 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ x'✝ y✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ h : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x'✝ y✝) [PROOFSTEP] simp -- symm [GOAL] case a.mul_2 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ y✝ y'✝ : Prequotient F x✝ : Relation F y✝ y'✝ h : descFunLift F s y✝ = descFunLift F s y'✝ ⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x✝¹ y'✝) [PROOFSTEP] try simp -- symm [GOAL] case a.mul_2 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ y✝ y'✝ : Prequotient F x✝ : Relation F y✝ y'✝ h : descFunLift F s y✝ = descFunLift F s y'✝ ⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x✝¹ y'✝) [PROOFSTEP] simp -- symm [GOAL] case a.mul_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s (mul (mul x✝ y✝) z✝) = descFunLift F s (mul x✝ (mul y✝ z✝)) [PROOFSTEP] try simp -- symm [GOAL] case a.mul_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s (mul (mul x✝ y✝) z✝) = descFunLift F s (mul x✝ (mul y✝ z✝)) [PROOFSTEP] simp -- symm [GOAL] case a.one_mul J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (mul one x✝) = descFunLift F s x✝ [PROOFSTEP] try simp -- symm [GOAL] case a.one_mul J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (mul one x✝) = descFunLift F s x✝ [PROOFSTEP] simp -- symm [GOAL] case a.mul_one J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (mul x✝ one) = descFunLift F s x✝ [PROOFSTEP] try simp -- symm [GOAL] case a.mul_one J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ : Prequotient F ⊢ descFunLift F s (mul x✝ one) = descFunLift F s x✝ [PROOFSTEP] simp -- symm [GOAL] case a.symm J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ y✝ : Prequotient F x✝ : Relation F x✝¹ y✝ h : descFunLift F s x✝¹ = descFunLift F s y✝ ⊢ descFunLift F s y✝ = descFunLift F s x✝¹ [PROOFSTEP] exact h.symm [GOAL] case a.trans J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝² y✝ z✝ : Prequotient F x✝¹ : Relation F x✝² y✝ x✝ : Relation F y✝ z✝ h₁ : descFunLift F s x✝² = descFunLift F s y✝ h₂ : descFunLift F s y✝ = descFunLift F s z✝ ⊢ descFunLift F s x✝² = descFunLift F s z✝ [PROOFSTEP] exact h₁.trans h₂ [GOAL] case a.map J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x✝ y : Prequotient F j✝ j'✝ : J f : j✝ ⟶ j'✝ x : ↑(F.obj j✝) ⊢ ↑(NatTrans.app s.ι j'✝) (↑(F.map f) x) = ↑(NatTrans.app s.ι j✝) x [PROOFSTEP] exact s.w_apply f x [GOAL] case a.mul_1 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ x'✝ y✝ : Prequotient F x✝ : Relation F x✝¹ x'✝ h : descFunLift F s x✝¹ = descFunLift F s x'✝ ⊢ descFunLift F s x✝¹ * descFunLift F s y✝ = descFunLift F s x'✝ * descFunLift F s y✝ [PROOFSTEP] rw [h] -- mul_2 [GOAL] case a.mul_2 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝¹ y✝ y'✝ : Prequotient F x✝ : Relation F y✝ y'✝ h : descFunLift F s y✝ = descFunLift F s y'✝ ⊢ descFunLift F s x✝¹ * descFunLift F s y✝ = descFunLift F s x✝¹ * descFunLift F s y'✝ [PROOFSTEP] rw [h] -- mul_assoc [GOAL] case a.mul_assoc J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y x✝ y✝ z✝ : Prequotient F ⊢ descFunLift F s x✝ * descFunLift F s y✝ * descFunLift F s z✝ = descFunLift F s x✝ * (descFunLift F s y✝ * descFunLift F s z✝) [PROOFSTEP] rw [mul_assoc] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F x y : ↑(colimit F) ⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y [PROOFSTEP] induction x using Quot.inductionOn [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F y : ↑(colimit F) a✝ : Prequotient F ⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝ * y) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝) * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y [PROOFSTEP] induction y using Quot.inductionOn [GOAL] case h.h J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F a✝¹ a✝ : Prequotient F ⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) = OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝¹) * OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝) [PROOFSTEP] dsimp [descFun] [GOAL] case h.h J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F a✝¹ a✝ : Prequotient F ⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y) (Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) = descFunLift F s a✝¹ * descFunLift F s a✝ [PROOFSTEP] rw [← quot_mul] [GOAL] case h.h J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F a✝¹ a✝ : Prequotient F ⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y) (Quot.mk Setoid.r (mul a✝¹ a✝)) = descFunLift F s a✝¹ * descFunLift F s a✝ [PROOFSTEP] simp only [descFunLift] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ m = (fun s => descMorphism F s) s [PROOFSTEP] ext x [GOAL] case w J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : ↑(colimitCocone F).pt ⊢ ↑m x = ↑((fun s => descMorphism F s) s) x [PROOFSTEP] induction' x using Quot.inductionOn with x [GOAL] case w.h J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x : Prequotient F ⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) [PROOFSTEP] induction' x with j x x y hx hy [GOAL] case w.h.of J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j j : J x : ↑(F.obj j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (Prequotient.of j x)) [PROOFSTEP] change _ = s.ι.app j _ [GOAL] case w.h.of J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j j : J x : ↑(F.obj j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(NatTrans.app s.ι j) x [PROOFSTEP] rw [← w j] [GOAL] case w.h.of J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j j : J x : ↑(F.obj j) ⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(NatTrans.app (colimitCocone F).ι j ≫ m) x [PROOFSTEP] rfl [GOAL] case w.h.one J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ ↑m (Quot.mk Setoid.r one) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r one) [PROOFSTEP] rw [quot_one, map_one] [GOAL] case w.h.one J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ 1 = ↑((fun s => descMorphism F s) s) 1 [PROOFSTEP] rfl [GOAL] case w.h.mul J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x y : Prequotient F hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) ⊢ ↑m (Quot.mk Setoid.r (mul x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (mul x y)) [PROOFSTEP] rw [quot_mul, map_mul, hx, hy] [GOAL] case w.h.mul J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x y : Prequotient F hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) ⊢ ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) * ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x * Quot.mk Setoid.r y) [PROOFSTEP] dsimp [descMorphism, FunLike.coe, descFun] [GOAL] case w.h.mul J : Type v inst✝ : SmallCategory J F : J ⥤ MonCat s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j x y : Prequotient F hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) ⊢ descFunLift F s x * descFunLift F s y = Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y) (Quot.mk Setoid.r x * Quot.mk Setoid.r y) [PROOFSTEP] simp only [← quot_mul, descFunLift]
{"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Colimits", "llama_tokens": 7968}
[GOAL] X Y : MonCat ⊢ FunLike (↑X →* ↑Y) ↑X fun x => ↑Y [PROOFSTEP] infer_instance -- porting note: added [GOAL] G : Type u_1 inst✝ : Group G ⊢ Group ↑(of G) [PROOFSTEP] assumption [GOAL] ⊢ ConcreteCategory CommMonCat [PROOFSTEP] dsimp only [CommMonCat] [GOAL] ⊢ ConcreteCategory (Bundled CommMonoid) [PROOFSTEP] infer_instance [GOAL] X Y : CommMonCat ⊢ FunLike (↑X →* ↑Y) ↑X fun x => ↑Y [PROOFSTEP] infer_instance -- porting note: added [GOAL] R S : MonCat i : R ⟶ S r : ↑R h : r = 1 ⊢ ↑i r = 1 [PROOFSTEP] simp [h] [GOAL] R S : CommMonCat i : R ⟶ S r : ↑R h : r = 1 ⊢ ↑i r = 1 [PROOFSTEP] simp [h] -- We verify that when constructing a morphism in `CommMonCat`, -- when we construct the `toFun` field, the types are presented as `↑R`. [GOAL] R : CommMonCat x : ↑R ⊢ ↑R [PROOFSTEP] match_target (R : Type u) [GOAL] R : CommMonCat x : ↑R ⊢ ↑R [PROOFSTEP] guard_hyp x : (R : Type u) [GOAL] R : CommMonCat x : ↑R ⊢ ↑R [PROOFSTEP] exact x * x [GOAL] R : CommMonCat ⊢ (fun x => x * x) 1 = 1 [PROOFSTEP] simp [GOAL] R : CommMonCat x y : ↑R ⊢ OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } x * OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } y [PROOFSTEP] dsimp [GOAL] R : CommMonCat x y : ↑R ⊢ x * y * (x * y) = x * x * (y * y) [PROOFSTEP] rw [mul_assoc x y (x * y), ← mul_assoc y x y, mul_comm y x, mul_assoc, mul_assoc] [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget MonCat).map f) [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := MulEquiv.mk i.toEquiv (by aesop) [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f) ⊢ ∀ (x y : ↑X), Equiv.toFun i.toEquiv (x * y) = Equiv.toFun i.toEquiv x * Equiv.toFun i.toEquiv y [PROOFSTEP] aesop [GOAL] X✝ Y✝ : Type u X Y : MonCat f : X ⟶ Y x✝ : IsIso ((forget MonCat).map f) i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f) e : ↑X ≃* ↑Y := { toEquiv := i.toEquiv, map_mul' := (_ : ∀ (x_1 y : ↑X), ↑f (x_1 * y) = ↑f x_1 * ↑f y) } ⊢ IsIso f [PROOFSTEP] exact IsIso.of_iso e.toMonCatIso [GOAL] X✝ Y✝ : Type u X Y : CommMonCat f : X ⟶ Y x✝ : IsIso ((forget CommMonCat).map f) ⊢ IsIso f [PROOFSTEP] let i := asIso ((forget CommMonCat).map f) [GOAL] X✝ Y✝ : Type u X Y : CommMonCat f : X ⟶ Y x✝ : IsIso ((forget CommMonCat).map f) i : (forget CommMonCat).obj X ≅ (forget CommMonCat).obj Y := asIso ((forget CommMonCat).map f) ⊢ IsIso f [PROOFSTEP] let e : X ≃* Y := MulEquiv.mk i.toEquiv (MonoidHom.map_mul (show MonoidHom X Y from f)) [GOAL] X✝ Y✝ : Type u X Y : CommMonCat f : X ⟶ Y x✝ : IsIso ((forget CommMonCat).map f) i : (forget CommMonCat).obj X ≅ (forget CommMonCat).obj Y := asIso ((forget CommMonCat).map f) e : ↑X ≃* ↑Y := { toEquiv := i.toEquiv, map_mul' := (_ : ∀ (a b : ↑X), ↑(let_fun this := f; this) (a * b) = ↑(let_fun this := f; this) a * ↑(let_fun this := f; this) b) } ⊢ IsIso f [PROOFSTEP] exact IsIso.of_iso e.toCommMonCatIso
{"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Basic", "llama_tokens": 1705}
[GOAL] R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R ⊢ IsLimit (limitCone F) [PROOFSTEP] refine' IsLimit.ofFaithful (forget (AlgebraCat R)) (Types.limitConeIsLimit.{v, w} _) -- Porting note: in mathlib3 the function term -- `fun v => ⟨fun j => ((forget (AlgebraCat R)).mapCone s).π.app j v` -- was provided by unification, and the last argument `(fun s => _)` was `(fun s => rfl)`. (fun s => ⟨⟨⟨⟨fun v => ⟨fun j => ((forget (AlgebraCat R)).mapCone s).π.app j v, _⟩, _⟩, _⟩, _, _⟩, _⟩) (fun s => _) [GOAL] case refine'_1 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F v : ↑s.pt ⊢ (fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v) ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R)) [PROOFSTEP] intro j j' f [GOAL] case refine'_1 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F v : ↑s.pt j j' : J f : j ⟶ j' ⊢ (F ⋙ forget (AlgebraCatMax R)).map f ((fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v) j) = (fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v) j' [PROOFSTEP] exact FunLike.congr_fun (Cone.w s f) v [GOAL] case refine'_2 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1 [PROOFSTEP] apply Subtype.ext [GOAL] case refine'_2.a R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ ↑((fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1) = ↑1 [PROOFSTEP] ext j [GOAL] case refine'_2.a.h R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F j : J ⊢ ↑((fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1) j = ↑1 j [PROOFSTEP] simp [forget_map_eq_coe, AlgHom.map_one, Functor.mapCone_π_app] [GOAL] case refine'_2.a.h R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F j : J ⊢ 1 = ↑1 j [PROOFSTEP] rfl [GOAL] case refine'_3 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y [PROOFSTEP] intro x y [GOAL] case refine'_3 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F x y : ↑s.pt ⊢ OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y [PROOFSTEP] apply Subtype.ext [GOAL] case refine'_3.a R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F x y : ↑s.pt ⊢ ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y)) = ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) [PROOFSTEP] ext j [GOAL] case refine'_3.a.h R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F x y : ↑s.pt j : J ⊢ ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y)) j = ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) j [PROOFSTEP] simp [forget_map_eq_coe, AlgHom.map_mul, Functor.mapCone_π_app] [GOAL] case refine'_3.a.h R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F x y : ↑s.pt j : J ⊢ ↑(NatTrans.app s.π j) x * ↑(NatTrans.app s.π j) y = ↑({ val := fun j => ↑(NatTrans.app s.π j) x, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) x) } * { val := fun j => ↑(NatTrans.app s.π j) y, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) y) }) j [PROOFSTEP] rfl [GOAL] case refine'_4 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) 0 = 0 [PROOFSTEP] simp [forget_map_eq_coe, AlgHom.map_zero, Functor.mapCone_π_app] [GOAL] case refine'_4 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ { val := fun j => 0, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => 0) } = 0 [PROOFSTEP] rfl [GOAL] case refine'_5 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ ∀ (x y : ↑s.pt), OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y [PROOFSTEP] intro x y [GOAL] case refine'_5 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F x y : ↑s.pt ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y [PROOFSTEP] simp [forget_map_eq_coe, AlgHom.map_add, Functor.mapCone_π_app] [GOAL] case refine'_5 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F x y : ↑s.pt ⊢ { val := fun j => ↑(NatTrans.app s.π j) x + ↑(NatTrans.app s.π j) y, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) x + ↑(NatTrans.app s.π j) y) } = { val := fun j => ↑(NatTrans.app s.π j) x, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) x) } + { val := fun j => ↑(NatTrans.app s.π j) y, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) y) } [PROOFSTEP] rfl [GOAL] case refine'_6 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y) }) (↑(algebraMap R ↑s.pt) r) = ↑(algebraMap R ↑(limitCone F).pt) r [PROOFSTEP] intro r [GOAL] case refine'_6 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y) }) (↑(algebraMap R ↑s.pt) r) = ↑(algebraMap R ↑(limitCone F).pt) r [PROOFSTEP] apply Subtype.ext [GOAL] case refine'_6.a R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F r : R ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y) }) (↑(algebraMap R ↑s.pt) r)) = ↑(↑(algebraMap R ↑(limitCone F).pt) r) [PROOFSTEP] ext j [GOAL] case refine'_6.a.h R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F r : R j : J ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y) }) (↑(algebraMap R ↑s.pt) r)) j = ↑(↑(algebraMap R ↑(limitCone F).pt) r) j [PROOFSTEP] exact (s.π.app j).commutes r [GOAL] case refine'_7 R : Type u inst✝¹ : CommRing R J : Type v inst✝ : SmallCategory J F : J ⥤ AlgebraCatMax R s : Cone F ⊢ (forget (AlgebraCat R)).map ((fun s => { toRingHom := { toMonoidHom := { toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y) }, commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) }, map_mul' := (_ : ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }, map_one' := (_ : (fun v => { val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) }) 1 = 1) } y) }) y) }) (↑(algebraMap R ↑s.pt) r) = ↑(algebraMap R ↑(limitCone F).pt) r) }) s) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (AlgebraCat R))) ((forget (AlgebraCat R)).mapCone s) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.AlgebraCat.Limits", "llama_tokens": 50418}
[GOAL] R : Type u B : Type v inst✝² : CommRing R inst✝¹ : DecidableEq B inst✝ : Fintype B A : Matrix B B ℤ i : B h : A i i = 2 ⊢ adE R A (i, i) = 0 [PROOFSTEP] have h' : (-2 : ℤ).toNat = 0 := by rfl [GOAL] R : Type u B : Type v inst✝² : CommRing R inst✝¹ : DecidableEq B inst✝ : Fintype B A : Matrix B B ℤ i : B h : A i i = 2 ⊢ Int.toNat (-2) = 0 [PROOFSTEP] rfl [GOAL] R : Type u B : Type v inst✝² : CommRing R inst✝¹ : DecidableEq B inst✝ : Fintype B A : Matrix B B ℤ i : B h : A i i = 2 h' : Int.toNat (-2) = 0 ⊢ adE R A (i, i) = 0 [PROOFSTEP] simp [adE, h, h'] [GOAL] R : Type u B : Type v inst✝² : CommRing R inst✝¹ : DecidableEq B inst✝ : Fintype B A : Matrix B B ℤ i : B h : A i i = 2 ⊢ adF R A (i, i) = 0 [PROOFSTEP] have h' : (-2 : ℤ).toNat = 0 := by rfl [GOAL] R : Type u B : Type v inst✝² : CommRing R inst✝¹ : DecidableEq B inst✝ : Fintype B A : Matrix B B ℤ i : B h : A i i = 2 ⊢ Int.toNat (-2) = 0 [PROOFSTEP] rfl [GOAL] R : Type u B : Type v inst✝² : CommRing R inst✝¹ : DecidableEq B inst✝ : Fintype B A : Matrix B B ℤ i : B h : A i i = 2 h' : Int.toNat (-2) = 0 ⊢ adF R A (i, i) = 0 [PROOFSTEP] simp [adF, h, h']
{"mathlib_filename": "Mathlib.Algebra.Lie.CartanMatrix", "llama_tokens": 636}
[GOAL] R : Type u inst✝ : CommRing R M N P : ModuleCat R f : (MonoidalCategory.tensorLeft M).obj N ⟶ P ⊢ (fun f => (β_ M N).hom ≫ TensorProduct.lift f) ((fun f => LinearMap.compr₂ (TensorProduct.mk R ↑N ↑M) ((β_ N M).hom ≫ f)) f) = f [PROOFSTEP] apply TensorProduct.ext' [GOAL] case H R : Type u inst✝ : CommRing R M N P : ModuleCat R f : (MonoidalCategory.tensorLeft M).obj N ⟶ P ⊢ ∀ (x : ↑M) (y : ↑N), ↑((fun f => (β_ M N).hom ≫ TensorProduct.lift f) ((fun f => LinearMap.compr₂ (TensorProduct.mk R ↑N ↑M) ((β_ N M).hom ≫ f)) f)) (x ⊗ₜ[R] y) = ↑f (x ⊗ₜ[R] y) [PROOFSTEP] intro m n [GOAL] case H R : Type u inst✝ : CommRing R M N P : ModuleCat R f : (MonoidalCategory.tensorLeft M).obj N ⟶ P m : ↑M n : ↑N ⊢ ↑((fun f => (β_ M N).hom ≫ TensorProduct.lift f) ((fun f => LinearMap.compr₂ (TensorProduct.mk R ↑N ↑M) ((β_ N M).hom ≫ f)) f)) (m ⊗ₜ[R] n) = ↑f (m ⊗ₜ[R] n) [PROOFSTEP] rw [coe_comp, Function.comp_apply, MonoidalCategory.braiding_hom_apply, TensorProduct.lift.tmul, LinearMap.compr₂_apply, TensorProduct.mk_apply, coe_comp, Function.comp_apply, MonoidalCategory.braiding_hom_apply] [GOAL] R : Type u inst✝ : CommRing R M : ModuleCat R ⊢ ∀ {X' X Y : ModuleCat R} (f : X' ⟶ X) (g : X ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y), ↑((fun N P => monoidalClosedHomEquiv M N P) X' Y).symm (f ≫ g) = (MonoidalCategory.tensorLeft M).map f ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X Y).symm g [PROOFSTEP] intros [GOAL] R : Type u inst✝ : CommRing R M X'✝ X✝ Y✝ : ModuleCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y✝ ⊢ ↑((fun N P => monoidalClosedHomEquiv M N P) X'✝ Y✝).symm (f✝ ≫ g✝) = (MonoidalCategory.tensorLeft M).map f✝ ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X✝ Y✝).symm g✝ [PROOFSTEP] apply TensorProduct.ext' [GOAL] case H R : Type u inst✝ : CommRing R M X'✝ X✝ Y✝ : ModuleCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y✝ ⊢ ∀ (x : ↑M) (y : ↑X'✝), ↑(↑((fun N P => monoidalClosedHomEquiv M N P) X'✝ Y✝).symm (f✝ ≫ g✝)) (x ⊗ₜ[R] y) = ↑((MonoidalCategory.tensorLeft M).map f✝ ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X✝ Y✝).symm g✝) (x ⊗ₜ[R] y) [PROOFSTEP] intro m n [GOAL] case H R : Type u inst✝ : CommRing R M X'✝ X✝ Y✝ : ModuleCat R f✝ : X'✝ ⟶ X✝ g✝ : X✝ ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y✝ m : ↑M n : ↑X'✝ ⊢ ↑(↑((fun N P => monoidalClosedHomEquiv M N P) X'✝ Y✝).symm (f✝ ≫ g✝)) (m ⊗ₜ[R] n) = ↑((MonoidalCategory.tensorLeft M).map f✝ ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X✝ Y✝).symm g✝) (m ⊗ₜ[R] n) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R M N : ModuleCat R ⊢ NatTrans.app (ihom.ev M) N = ↑(TensorProduct.uncurry R (↑M) (↑M →ₗ[R] ↑N) ↑N) (LinearMap.flip LinearMap.id) [PROOFSTEP] apply TensorProduct.ext' [GOAL] case H R : Type u inst✝ : CommRing R M N : ModuleCat R ⊢ ∀ (x : ↑M) (y : ↑((ihom M).obj N)), ↑(NatTrans.app (ihom.ev M) N) (x ⊗ₜ[R] y) = ↑(↑(TensorProduct.uncurry R (↑M) (↑M →ₗ[R] ↑N) ↑N) (LinearMap.flip LinearMap.id)) (x ⊗ₜ[R] y) [PROOFSTEP] apply ModuleCat.monoidalClosed_uncurry
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Monoidal.Closed", "llama_tokens": 1663}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax j : J ⊢ Monoid ((F ⋙ forget MonCat).obj j) [PROOFSTEP] change Monoid (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax j : J ⊢ Monoid ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax a b : (j : J) → ↑(F.obj j) ah : a ∈ Functor.sections (F ⋙ forget MonCat) bh : b ∈ Functor.sections (F ⋙ forget MonCat) j j' : J f : j ⟶ j' ⊢ (F ⋙ forget MonCat).map f ((a * b) j) = (a * b) j' [PROOFSTEP] simp only [Functor.comp_map, MonoidHom.map_mul, Pi.mul_apply] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax a b : (j : J) → ↑(F.obj j) ah : a ∈ Functor.sections (F ⋙ forget MonCat) bh : b ∈ Functor.sections (F ⋙ forget MonCat) j j' : J f : j ⟶ j' ⊢ (forget MonCat).map (F.map f) (a j * b j) = a j' * b j' [PROOFSTEP] dsimp [Functor.sections] at ah bh [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax a b : (j : J) → ↑(F.obj j) ah : a ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'} bh : b ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'} j j' : J f : j ⟶ j' ⊢ (forget MonCat).map (F.map f) (a j * b j) = a j' * b j' [PROOFSTEP] rw [← ah f, ← bh f, forget_map, map_mul] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax j j' : J f : j ⟶ j' ⊢ (F ⋙ forget MonCat).map f (OfNat.ofNat 1 j) = OfNat.ofNat 1 j' [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax ⊢ IsLimit (limitCone F) [PROOFSTEP] refine IsLimit.ofFaithful (forget MonCatMax) (Types.limitConeIsLimit.{v, u} _) (fun s => ⟨⟨_, ?_⟩, ?_⟩) (fun s => rfl) [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax s : Cone F ⊢ { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 = NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } = 1 [PROOFSTEP] aesop_cat [GOAL] case refine_2 J : Type v inst✝ : SmallCategory J F : J ⥤ MonCatMax s : Cone F ⊢ ∀ (x y : ↑s.pt), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) v = NatTrans.app ((forget MonCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 = NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) v = NatTrans.app ((forget MonCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 = NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) v = NatTrans.app ((forget MonCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 = NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } = 1) } y [PROOFSTEP] aesop_cat [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommMonCatMax j : J ⊢ CommMonoid ((F ⋙ forget CommMonCatMax).obj j) [PROOFSTEP] change CommMonoid (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommMonCatMax j : J ⊢ CommMonoid ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommMonCatMax c' : Cone (F ⋙ forget₂ CommMonCat MonCatMax) t : IsLimit c' ⊢ (forget₂ CommMonCat MonCatMax).mapCone { pt := of (Types.limitCone (F ⋙ forget CommMonCat)).pt, π := NatTrans.mk (limitπMonoidHom (F ⋙ forget₂ CommMonCatMax MonCatMax)) } ≅ c' [PROOFSTEP] apply IsLimit.uniqueUpToIso (MonCat.HasLimits.limitConeIsLimit _) t [GOAL] J✝ : Type v inst✝ : SmallCategory J✝ J : Type v 𝒥 : Category.{v, v} J F : J ⥤ CommMonCatMax ⊢ PreservesLimit F (forget₂ CommMonCatMax MonCatMax) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Limits", "llama_tokens": 2323}
[GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R j : J ⊢ AddCommGroup ((F ⋙ forget (ModuleCat R)).obj j) [PROOFSTEP] change AddCommGroup (F.obj j) [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R j : J ⊢ AddCommGroup ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R j : J ⊢ Module R ((F ⋙ forget (ModuleCat R)).obj j) [PROOFSTEP] change Module R (F.obj j) [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R j : J ⊢ Module R ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R src✝ : AddSubgroup ((j : J) → ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat).obj j)) := AddGroupCat.sectionsAddSubgroup (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat) r : R s : (j : J) → ↑(F.obj j) sh : s ∈ { toAddSubsemigroup := { carrier := Functor.sections (F ⋙ forget (ModuleCat R)), add_mem' := (_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : ∀ {j j' : J} (f : j ⟶ j'), ((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget AddGroupCat).map f (OfNat.ofNat 0 j) = OfNat.ofNat 0 j') }.toAddSubsemigroup.carrier j j' : J f : j ⟶ j' ⊢ (F ⋙ forget (ModuleCat R)).map f ((r • s) j) = (r • s) j' [PROOFSTEP] simp only [forget_map, Functor.comp_map, Pi.smul_apply, map_smul] [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R src✝ : AddSubgroup ((j : J) → ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat).obj j)) := AddGroupCat.sectionsAddSubgroup (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat) r : R s : (j : J) → ↑(F.obj j) sh : s ∈ { toAddSubsemigroup := { carrier := Functor.sections (F ⋙ forget (ModuleCat R)), add_mem' := (_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : ∀ {j j' : J} (f : j ⟶ j'), ((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙ forget AddGroupCat).map f (OfNat.ofNat 0 j) = OfNat.ofNat 0 j') }.toAddSubsemigroup.carrier j j' : J f : j ⟶ j' ⊢ r • ↑(F.map f) (s j) = r • s j' [PROOFSTEP] dsimp [Functor.sections] at sh [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R src✝ : AddSubgroup ((j : J) → ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat).obj j)) := AddGroupCat.sectionsAddSubgroup (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat) r : R s : (j : J) → ↑(F.obj j) sh : s ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'} j j' : J f : j ⟶ j' ⊢ r • ↑(F.map f) (s j) = r • s j' [PROOFSTEP] rw [sh f] [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R ⊢ AddCommMonoid { x // x ∈ sectionsSubmodule F } [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R ⊢ AddCommGroup { x // x ∈ sectionsSubmodule F } [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R ⊢ Module R { x // x ∈ sectionsSubmodule F } [PROOFSTEP] infer_instance [GOAL] R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R ⊢ IsLimit (limitCone F) [PROOFSTEP] refine' IsLimit.ofFaithful (forget (ModuleCat R)) (Types.limitConeIsLimit.{v, w} _) (fun s => ⟨⟨(Types.limitConeIsLimit.{v, w} _).lift ((forget (ModuleCat R)).mapCone s), _⟩, _⟩) (fun s => rfl) [GOAL] case refine'_1 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F ⊢ ∀ (x y : ↑s.pt), IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x + IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y case refine'_2 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F ⊢ ∀ (r : R) (x : ↑s.pt), AddHom.toFun { toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s), map_add' := ?refine'_1 } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s), map_add' := ?refine'_1 } x [PROOFSTEP] all_goals intros dsimp [Types.limitConeIsLimit] simp rfl [GOAL] case refine'_1 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F ⊢ ∀ (x y : ↑s.pt), IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x + IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y [PROOFSTEP] intros [GOAL] case refine'_1 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F x✝ y✝ : ↑s.pt ⊢ IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x✝ + y✝) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x✝ + IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y✝ [PROOFSTEP] dsimp [Types.limitConeIsLimit] [GOAL] case refine'_1 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F x✝ y✝ : ↑s.pt ⊢ { val := fun j => ↑(NatTrans.app s.π j) (x✝ + y✝), property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) (x✝ + y✝) = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' (x✝ + y✝)) } = { val := fun j => ↑(NatTrans.app s.π j) x✝, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) } + { val := fun j => ↑(NatTrans.app s.π j) y✝, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) y✝ = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' y✝) } [PROOFSTEP] simp [GOAL] case refine'_1 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F x✝ y✝ : ↑s.pt ⊢ { val := fun j => ↑(NatTrans.app s.π j) x✝ + ↑(NatTrans.app s.π j) y✝, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (ModuleCat R))) fun j => ↑(NatTrans.app s.π j) x✝ + ↑(NatTrans.app s.π j) y✝) } = { val := fun j => ↑(NatTrans.app s.π j) x✝, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) } + { val := fun j => ↑(NatTrans.app s.π j) y✝, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) y✝ = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' y✝) } [PROOFSTEP] rfl [GOAL] case refine'_2 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F ⊢ ∀ (r : R) (x : ↑s.pt), AddHom.toFun { toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s), map_add' := (_ : ∀ (x y : ↑s.pt), IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x + IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s), map_add' := (_ : ∀ (x y : ↑s.pt), IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x + IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y) } x [PROOFSTEP] intros [GOAL] case refine'_2 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F r✝ : R x✝ : ↑s.pt ⊢ AddHom.toFun { toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s), map_add' := (_ : ∀ (x y : ↑s.pt), IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x + IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y) } (r✝ • x✝) = ↑(RingHom.id R) r✝ • AddHom.toFun { toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s), map_add' := (_ : ∀ (x y : ↑s.pt), IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x + IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y) } x✝ [PROOFSTEP] dsimp [Types.limitConeIsLimit] [GOAL] case refine'_2 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F r✝ : R x✝ : ↑s.pt ⊢ { val := fun j => ↑(NatTrans.app s.π j) (r✝ • x✝), property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) (r✝ • x✝) = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' (r✝ • x✝)) } = r✝ • { val := fun j => ↑(NatTrans.app s.π j) x✝, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) } [PROOFSTEP] simp [GOAL] case refine'_2 R : Type u inst✝¹ : Ring R J : Type v inst✝ : SmallCategory J F : J ⥤ ModuleCatMax R s : Cone F r✝ : R x✝ : ↑s.pt ⊢ { val := fun j => r✝ • ↑(NatTrans.app s.π j) x✝, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (ModuleCat R))) fun j => r✝ • ↑(NatTrans.app s.π j) x✝) } = r✝ • { val := fun j => ↑(NatTrans.app s.π j) x✝, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ = NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) } [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁵ : Ring R J : Type v inst✝⁴ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type v inst✝² : (i : ι) → AddCommGroup (G i) inst✝¹ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i : ι ⊢ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (𝟙 i) = 𝟙 ({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i) [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u inst✝⁵ : Ring R J : Type v inst✝⁴ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type v inst✝² : (i : ι) → AddCommGroup (G i) inst✝¹ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i : ι ⊢ ∀ (x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)), ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (𝟙 i)) x = ↑(𝟙 ({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)) x [PROOFSTEP] intro x [GOAL] case h R : Type u inst✝⁵ : Ring R J : Type v inst✝⁴ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type v inst✝² : (i : ι) → AddCommGroup (G i) inst✝¹ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i : ι x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i) ⊢ ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (𝟙 i)) x = ↑(𝟙 ({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)) x [PROOFSTEP] apply Module.DirectedSystem.map_self [GOAL] R : Type u inst✝⁵ : Ring R J : Type v inst✝⁴ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type v inst✝² : (i : ι) → AddCommGroup (G i) inst✝¹ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) X✝ Y✝ Z✝ : ι hij : X✝ ⟶ Y✝ hjk : Y✝ ⟶ Z✝ ⊢ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk) = { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u inst✝⁵ : Ring R J : Type v inst✝⁴ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type v inst✝² : (i : ι) → AddCommGroup (G i) inst✝¹ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) X✝ Y✝ Z✝ : ι hij : X✝ ⟶ Y✝ hjk : Y✝ ⟶ Z✝ ⊢ ∀ (x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj X✝)), ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk)) x = ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk) x [PROOFSTEP] intro x [GOAL] case h R : Type u inst✝⁵ : Ring R J : Type v inst✝⁴ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type v inst✝² : (i : ι) → AddCommGroup (G i) inst✝¹ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) X✝ Y✝ Z✝ : ι hij : X✝ ⟶ Y✝ hjk : Y✝ ⟶ Z✝ x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj X✝) ⊢ ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk)) x = ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk) x [PROOFSTEP] symm [GOAL] case h R : Type u inst✝⁵ : Ring R J : Type v inst✝⁴ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝³ : Preorder ι G : ι → Type v inst✝² : (i : ι) → AddCommGroup (G i) inst✝¹ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) X✝ Y✝ Z✝ : ι hij : X✝ ⟶ Y✝ hjk : Y✝ ⟶ Z✝ x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj X✝) ⊢ ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk) x = ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk)) x [PROOFSTEP] apply Module.DirectedSystem.map_map [GOAL] R : Type u inst✝⁶ : Ring R J : Type v inst✝⁵ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type v inst✝³ : (i : ι) → AddCommGroup (G i) inst✝² : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : DecidableEq ι x✝¹ x✝ : ι hij : x✝¹ ⟶ x✝ ⊢ (directLimitDiagram G f).map hij ≫ DirectLimit.of R ι G f x✝ = DirectLimit.of R ι G f x✝¹ ≫ ((Functor.const ι).obj (of R (DirectLimit G f))).map hij [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u inst✝⁶ : Ring R J : Type v inst✝⁵ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type v inst✝³ : (i : ι) → AddCommGroup (G i) inst✝² : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : DecidableEq ι x✝¹ x✝ : ι hij : x✝¹ ⟶ x✝ ⊢ ∀ (x : ↑((directLimitDiagram G f).obj x✝¹)), ↑((directLimitDiagram G f).map hij ≫ DirectLimit.of R ι G f x✝) x = ↑(DirectLimit.of R ι G f x✝¹ ≫ ((Functor.const ι).obj (of R (DirectLimit G f))).map hij) x [PROOFSTEP] intro x [GOAL] case h R : Type u inst✝⁶ : Ring R J : Type v inst✝⁵ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁴ : Preorder ι G : ι → Type v inst✝³ : (i : ι) → AddCommGroup (G i) inst✝² : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : DecidableEq ι x✝¹ x✝ : ι hij : x✝¹ ⟶ x✝ x : ↑((directLimitDiagram G f).obj x✝¹) ⊢ ↑((directLimitDiagram G f).map hij ≫ DirectLimit.of R ι G f x✝) x = ↑(DirectLimit.of R ι G f x✝¹ ≫ ((Functor.const ι).obj (of R (DirectLimit G f))).map hij) x [PROOFSTEP] exact DirectLimit.of_f [GOAL] R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) i j : ι h : i ≤ j x : G i ⊢ ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x [PROOFSTEP] rw [← s.w (homOfLE h)] [GOAL] R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) i j : ι h : i ≤ j x : G i ⊢ ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑((directLimitDiagram G f).map (homOfLE h) ≫ NatTrans.app s.ι j) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) i : ι ⊢ NatTrans.app (directLimitCocone G f).ι i ≫ (fun s => DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) s = NatTrans.app s.ι i [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) i : ι ⊢ ∀ (x : ↑((directLimitDiagram G f).obj i)), ↑(NatTrans.app (directLimitCocone G f).ι i ≫ (fun s => DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) s) x = ↑(NatTrans.app s.ι i) x [PROOFSTEP] intro x [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) i : ι x : ↑((directLimitDiagram G f).obj i) ⊢ ↑(NatTrans.app (directLimitCocone G f).ι i ≫ (fun s => DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) s) x = ↑(NatTrans.app s.ι i) x [PROOFSTEP] dsimp only [directLimitCocone, CategoryStruct.comp] [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) i : ι x : ↑((directLimitDiagram G f).obj i) ⊢ ↑(LinearMap.comp (DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) (DirectLimit.of R ι G f i)) x = ↑(NatTrans.app s.ι i) x [PROOFSTEP] rw [LinearMap.comp_apply] [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) i : ι x : ↑((directLimitDiagram G f).obj i) ⊢ ↑(DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) (↑(DirectLimit.of R ι G f i) x) = ↑(NatTrans.app s.ι i) x [PROOFSTEP] apply DirectLimit.lift_of [GOAL] R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j ⊢ m = (fun s => DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) s [PROOFSTEP] have : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) := by funext i rw [← h] rfl [GOAL] R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j ⊢ s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) [PROOFSTEP] funext i [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j i : ι ⊢ NatTrans.app s.ι i = LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) [PROOFSTEP] rw [← h] [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j i : ι ⊢ NatTrans.app (directLimitCocone G f).ι i ≫ m = LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) ⊢ m = (fun s => DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) s [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) ⊢ ∀ (x : ↑(directLimitCocone G f).pt), ↑m x = ↑((fun s => DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) s) x [PROOFSTEP] intro x [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) x : ↑(directLimitCocone G f).pt ⊢ ↑m x = ↑((fun s => DirectLimit.lift R ι G f s.ι.app (_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x)) s) x [PROOFSTEP] simp only [this] [GOAL] case h R : Type u inst✝⁸ : Ring R J : Type v inst✝⁷ : SmallCategory J ι : Type v dec_ι : DecidableEq ι inst✝⁶ : Preorder ι G : ι → Type v inst✝⁵ : (i : ι) → AddCommGroup (G i) inst✝⁴ : (i : ι) → Module R (G i) f : (i j : ι) → i ≤ j → G i →ₗ[R] G j inst✝³ : DirectedSystem G fun i j h => ↑(f i j h) inst✝² : DecidableEq ι inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 s : Cocone (directLimitDiagram G f) m : (directLimitCocone G f).pt ⟶ s.pt h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) x : ↑(directLimitCocone G f).pt ⊢ ↑m x = ↑(DirectLimit.lift R ι G f (fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)) (_ : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑((fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)) j) (↑(f i j hij) x) = ↑((fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)) i) x)) x [PROOFSTEP] apply Module.DirectLimit.lift_unique
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Limits", "llama_tokens": 14607}
[GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ LieRing L [PROOFSTEP] infer_instance [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ LieAlgebra R L [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Algebra.Lie.NonUnitalNonAssocAlgebra", "llama_tokens": 133}
[GOAL] R : Type u inst✝ : CommRing R X₁ X₂ Y₁ Y₂ : ModuleCat R f : X₁ ⟶ Y₁ g : X₂ ⟶ Y₂ ⊢ (f ⊗ g) ≫ (braiding Y₁ Y₂).hom = (braiding X₁ X₂).hom ≫ (g ⊗ f) [PROOFSTEP] apply TensorProduct.ext' [GOAL] case H R : Type u inst✝ : CommRing R X₁ X₂ Y₁ Y₂ : ModuleCat R f : X₁ ⟶ Y₁ g : X₂ ⟶ Y₂ ⊢ ∀ (x : ↑X₁) (y : ↑X₂), ↑((f ⊗ g) ≫ (braiding Y₁ Y₂).hom) (x ⊗ₜ[R] y) = ↑((braiding X₁ X₂).hom ≫ (g ⊗ f)) (x ⊗ₜ[R] y) [PROOFSTEP] intro x y [GOAL] case H R : Type u inst✝ : CommRing R X₁ X₂ Y₁ Y₂ : ModuleCat R f : X₁ ⟶ Y₁ g : X₂ ⟶ Y₂ x : ↑X₁ y : ↑X₂ ⊢ ↑((f ⊗ g) ≫ (braiding Y₁ Y₂).hom) (x ⊗ₜ[R] y) = ↑((braiding X₁ X₂).hom ≫ (g ⊗ f)) (x ⊗ₜ[R] y) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R X Y Z : ModuleCat R ⊢ (α_ X Y Z).hom ≫ (braiding X (Y ⊗ Z)).hom ≫ (α_ Y Z X).hom = ((braiding X Y).hom ⊗ 𝟙 Z) ≫ (α_ Y X Z).hom ≫ (𝟙 Y ⊗ (braiding X Z).hom) [PROOFSTEP] apply TensorProduct.ext_threefold [GOAL] case H R : Type u inst✝ : CommRing R X Y Z : ModuleCat R ⊢ ∀ (x : ↑X) (y : ↑Y) (z : ↑Z), ↑((α_ X Y Z).hom ≫ (braiding X (Y ⊗ Z)).hom ≫ (α_ Y Z X).hom) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑(((braiding X Y).hom ⊗ 𝟙 Z) ≫ (α_ Y X Z).hom ≫ (𝟙 Y ⊗ (braiding X Z).hom)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) [PROOFSTEP] intro x y z [GOAL] case H R : Type u inst✝ : CommRing R X Y Z : ModuleCat R x : ↑X y : ↑Y z : ↑Z ⊢ ↑((α_ X Y Z).hom ≫ (braiding X (Y ⊗ Z)).hom ≫ (α_ Y Z X).hom) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑(((braiding X Y).hom ⊗ 𝟙 Z) ≫ (α_ Y X Z).hom ≫ (𝟙 Y ⊗ (braiding X Z).hom)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R X Y Z : ModuleCat R ⊢ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv = (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y) [PROOFSTEP] apply (cancel_epi (α_ X Y Z).hom).1 [GOAL] R : Type u inst✝ : CommRing R X Y Z : ModuleCat R ⊢ (α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv = (α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y) [PROOFSTEP] apply TensorProduct.ext_threefold [GOAL] case H R : Type u inst✝ : CommRing R X Y Z : ModuleCat R ⊢ ∀ (x : ↑X) (y : ↑Y) (z : ↑Z), ↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) [PROOFSTEP] intro x y z [GOAL] case H R : Type u inst✝ : CommRing R X Y Z : ModuleCat R x : ↑X y : ↑Y z : ↑Z ⊢ ↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R x✝¹ x✝ : ModuleCat R ⊢ (β_ x✝¹ x✝).hom ≫ (β_ x✝ x✝¹).hom = 𝟙 (x✝¹ ⊗ x✝) [PROOFSTEP] apply TensorProduct.ext' [GOAL] case H R : Type u inst✝ : CommRing R x✝¹ x✝ : ModuleCat R ⊢ ∀ (x : ↑x✝¹) (y : ↑x✝), ↑((β_ x✝¹ x✝).hom ≫ (β_ x✝ x✝¹).hom) (x ⊗ₜ[R] y) = ↑(𝟙 (x✝¹ ⊗ x✝)) (x ⊗ₜ[R] y) [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Monoidal.Symmetric", "llama_tokens": 1860}
[GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M a✝ b✝ : M hm₁ : a✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} hm₂ : b✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} x : L ⊢ ⁅x, a✝ + b✝⁆ ∈ N [PROOFSTEP] rw [lie_add] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M a✝ b✝ : M hm₁ : a✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} hm₂ : b✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} x : L ⊢ ⁅x, a✝⁆ + ⁅x, b✝⁆ ∈ N [PROOFSTEP] exact N.add_mem' (hm₁ x) (hm₂ x) [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M x : L ⊢ ⁅x, 0⁆ ∈ N [PROOFSTEP] simp [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M t : R m : M hm : m ∈ { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N}, add_mem' := (_ : ∀ {a b : M}, a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier x : L ⊢ ⁅x, t • m⁆ ∈ N [PROOFSTEP] rw [lie_smul] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M t : R m : M hm : m ∈ { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N}, add_mem' := (_ : ∀ {a b : M}, a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier x : L ⊢ t • ⁅x, m⁆ ∈ N [PROOFSTEP] exact N.smul_mem' t (hm x) [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M x : L m : M hm : m ∈ { toAddSubmonoid := { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N}, add_mem' := (_ : ∀ {a b : M}, a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }, smul_mem' := (_ : ∀ (t : R) (m : M), m ∈ { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N}, add_mem' := (_ : ∀ {a b : M}, a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier → ∀ (x : L), ⁅x, t • m⁆ ∈ N) }.toAddSubmonoid.toAddSubsemigroup.carrier y : L ⊢ ⁅y, ⁅x, m⁆⁆ ∈ N [PROOFSTEP] rw [leibniz_lie] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M x : L m : M hm : m ∈ { toAddSubmonoid := { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N}, add_mem' := (_ : ∀ {a b : M}, a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }, smul_mem' := (_ : ∀ (t : R) (m : M), m ∈ { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N}, add_mem' := (_ : ∀ {a b : M}, a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier → ∀ (x : L), ⁅x, t • m⁆ ∈ N) }.toAddSubmonoid.toAddSubsemigroup.carrier y : L ⊢ ⁅⁅y, x⁆, m⁆ + ⁅x, ⁅y, m⁆⁆ ∈ N [PROOFSTEP] exact N.add_mem' (hm ⁅y, x⁆) (N.lie_mem (hm y)) [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M ⊢ N ≤ normalizer N [PROOFSTEP] intro m hm [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M m : M hm : m ∈ N ⊢ m ∈ normalizer N [PROOFSTEP] rw [mem_normalizer] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M m : M hm : m ∈ N ⊢ ∀ (x : L), ⁅x, m⁆ ∈ N [PROOFSTEP] exact fun x => N.lie_mem hm [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M ⊢ normalizer (N₁ ⊓ N₂) = normalizer N₁ ⊓ normalizer N₂ [PROOFSTEP] ext [GOAL] case h R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M m✝ : M ⊢ m✝ ∈ normalizer (N₁ ⊓ N₂) ↔ m✝ ∈ normalizer N₁ ⊓ normalizer N₂ [PROOFSTEP] simp [← forall_and] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M ⊢ Monotone normalizer [PROOFSTEP] intro N₁ N₂ h m hm [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁✝ N₂✝ N₁ N₂ : LieSubmodule R L M h : N₁ ≤ N₂ m : M hm : m ∈ normalizer N₁ ⊢ m ∈ normalizer N₂ [PROOFSTEP] rw [mem_normalizer] at hm ⊢ [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁✝ N₂✝ N₁ N₂ : LieSubmodule R L M h : N₁ ≤ N₂ m : M hm : ∀ (x : L), ⁅x, m⁆ ∈ N₁ ⊢ ∀ (x : L), ⁅x, m⁆ ∈ N₂ [PROOFSTEP] exact fun x => h (hm x) [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M f : M' →ₗ⁅R,L⁆ M ⊢ comap f (normalizer N) = normalizer (comap f N) [PROOFSTEP] ext [GOAL] case h R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ : LieSubmodule R L M f : M' →ₗ⁅R,L⁆ M m✝ : M' ⊢ m✝ ∈ comap f (normalizer N) ↔ m✝ ∈ normalizer (comap f N) [PROOFSTEP] simp [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ N' : LieSubmodule R L M ⊢ ⁅⊤, N⁆ ≤ N' ↔ N ≤ normalizer N' [PROOFSTEP] rw [lie_le_iff] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' N N₁ N₂ N' : LieSubmodule R L M ⊢ (∀ (x : L), x ∈ ⊤ → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N') ↔ N ≤ normalizer N' [PROOFSTEP] tauto [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L src✝ : LieSubmodule R { x // x ∈ H } L := LieSubmodule.normalizer (toLieSubmodule H) y z : L hy : y ∈ src✝.carrier hz : z ∈ src✝.carrier x : { x // x ∈ H } ⊢ ⁅x, ⁅y, z⁆⁆ ∈ toLieSubmodule H [PROOFSTEP] rw [coe_bracket_of_module, mem_toLieSubmodule, leibniz_lie, ← lie_skew y, ← sub_eq_add_neg] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L src✝ : LieSubmodule R { x // x ∈ H } L := LieSubmodule.normalizer (toLieSubmodule H) y z : L hy : y ∈ src✝.carrier hz : z ∈ src✝.carrier x : { x // x ∈ H } ⊢ ⁅⁅↑x, y⁆, z⁆ - ⁅⁅↑x, z⁆, y⁆ ∈ H [PROOFSTEP] exact H.sub_mem (hz ⟨_, hy x⟩) (hy ⟨_, hz x⟩) [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L ⊢ x ∈ normalizer H ↔ ∀ (y : L), y ∈ H → ⁅y, x⁆ ∈ H [PROOFSTEP] rw [Subtype.forall'] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L ⊢ x ∈ normalizer H ↔ ∀ (x_1 : { a // a ∈ H }), ⁅↑x_1, x⁆ ∈ H [PROOFSTEP] rfl [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L ⊢ x ∈ normalizer H ↔ ∀ (y : L), y ∈ H → ⁅x, y⁆ ∈ H [PROOFSTEP] rw [mem_normalizer_iff'] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L ⊢ (∀ (y : L), y ∈ H → ⁅y, x⁆ ∈ H) ↔ ∀ (y : L), y ∈ H → ⁅x, y⁆ ∈ H [PROOFSTEP] refine' forall₂_congr fun y hy => _ [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x y : L hy : y ∈ H ⊢ ⁅y, x⁆ ∈ H ↔ ⁅x, y⁆ ∈ H [PROOFSTEP] rw [← lie_skew, neg_mem_iff (G := L)] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x y z : L hx : x ∈ normalizer H hy : y ∈ Submodule.span R {x} ⊔ H.toSubmodule hz : z ∈ Submodule.span R {x} ⊔ H.toSubmodule ⊢ ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule [PROOFSTEP] rw [Submodule.mem_sup] at hy hz [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x y z : L hx : x ∈ normalizer H hy : ∃ y_1, y_1 ∈ Submodule.span R {x} ∧ ∃ z, z ∈ H.toSubmodule ∧ y_1 + z = y hz : ∃ y, y ∈ Submodule.span R {x} ∧ ∃ z_1, z_1 ∈ H.toSubmodule ∧ y + z_1 = z ⊢ ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule [PROOFSTEP] obtain ⟨u₁, hu₁, v, hv : v ∈ H, rfl⟩ := hy [GOAL] case intro.intro.intro.intro R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x z : L hx : x ∈ normalizer H hz : ∃ y, y ∈ Submodule.span R {x} ∧ ∃ z_1, z_1 ∈ H.toSubmodule ∧ y + z_1 = z u₁ : L hu₁ : u₁ ∈ Submodule.span R {x} v : L hv : v ∈ H ⊢ ⁅u₁ + v, z⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule [PROOFSTEP] obtain ⟨u₂, hu₂, w, hw : w ∈ H, rfl⟩ := hz [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L hx : x ∈ normalizer H u₁ : L hu₁ : u₁ ∈ Submodule.span R {x} v : L hv : v ∈ H u₂ : L hu₂ : u₂ ∈ Submodule.span R {x} w : L hw : w ∈ H ⊢ ⁅u₁ + v, u₂ + w⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule [PROOFSTEP] obtain ⟨t, rfl⟩ := Submodule.mem_span_singleton.mp hu₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L hx : x ∈ normalizer H v : L hv : v ∈ H u₂ : L hu₂ : u₂ ∈ Submodule.span R {x} w : L hw : w ∈ H t : R hu₁ : t • x ∈ Submodule.span R {x} ⊢ ⁅t • x + v, u₂ + w⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule [PROOFSTEP] obtain ⟨s, rfl⟩ := Submodule.mem_span_singleton.mp hu₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L hx : x ∈ normalizer H v : L hv : v ∈ H w : L hw : w ∈ H t : R hu₁ : t • x ∈ Submodule.span R {x} s : R hu₂ : s • x ∈ Submodule.span R {x} ⊢ ⁅t • x + v, s • x + w⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule [PROOFSTEP] apply Submodule.mem_sup_right [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L hx : x ∈ normalizer H v : L hv : v ∈ H w : L hw : w ∈ H t : R hu₁ : t • x ∈ Submodule.span R {x} s : R hu₂ : s • x ∈ Submodule.span R {x} ⊢ ⁅t • x + v, s • x + w⁆ ∈ H.toSubmodule [PROOFSTEP] simp only [LieSubalgebra.mem_coe_submodule, smul_lie, add_lie, zero_add, lie_add, smul_zero, lie_smul, lie_self] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L hx : x ∈ normalizer H v : L hv : v ∈ H w : L hw : w ∈ H t : R hu₁ : t • x ∈ Submodule.span R {x} s : R hu₂ : s • x ∈ Submodule.span R {x} ⊢ s • ⁅v, x⁆ + (t • ⁅x, w⁆ + ⁅v, w⁆) ∈ H [PROOFSTEP] refine' H.add_mem (H.smul_mem s _) (H.add_mem (H.smul_mem t _) (H.lie_mem hv hw)) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a.refine'_1 R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L hx : x ∈ normalizer H v : L hv : v ∈ H w : L hw : w ∈ H t : R hu₁ : t • x ∈ Submodule.span R {x} s : R hu₂ : s • x ∈ Submodule.span R {x} ⊢ ⁅v, x⁆ ∈ H case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a.refine'_2 R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x : L hx : x ∈ normalizer H v : L hv : v ∈ H w : L hw : w ∈ H t : R hu₁ : t • x ∈ Submodule.span R {x} s : R hu₂ : s • x ∈ Submodule.span R {x} ⊢ ⁅x, w⁆ ∈ H [PROOFSTEP] exacts [(H.mem_normalizer_iff' x).mp hx v hv, (H.mem_normalizer_iff x).mp hx w hw] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x y : L hx : x ∈ normalizer H hy : y ∈ H ⊢ ⁅x, y⁆ ∈ H [PROOFSTEP] rw [← lie_skew, neg_mem_iff (G := L)] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L x y : L hx : x ∈ normalizer H hy : y ∈ H ⊢ ⁅y, x⁆ ∈ H [PROOFSTEP] exact hx ⟨y, hy⟩ [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H K : LieSubalgebra R L h₁ : H ≤ K h₂ : K ≤ normalizer H ⊢ ∃ I, ↑R { x // x ∈ K } I = ofLe h₁ [PROOFSTEP] rw [exists_nested_lieIdeal_coe_eq_iff] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H K : LieSubalgebra R L h₁ : H ≤ K h₂ : K ≤ normalizer H ⊢ ∀ (x y : L), x ∈ K → y ∈ H → ⁅x, y⁆ ∈ H [PROOFSTEP] exact fun x y hx hy => ideal_in_normalizer (h₂ hx) hy [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L ⊢ normalizer H = H ↔ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) = ⊥ [PROOFSTEP] rw [LieSubmodule.eq_bot_iff] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L ⊢ normalizer H = H ↔ ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => le_antisymm _ H.le_normalizer⟩ [GOAL] case refine'_1 R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : normalizer H = H ⊢ ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 [PROOFSTEP] rintro ⟨x⟩ hx [GOAL] case refine'_1.mk R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : normalizer H = H m✝ : L ⧸ toLieSubmodule H x : L hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) ⊢ Quot.mk Setoid.r x = 0 [PROOFSTEP] suffices x ∈ H by rwa [Submodule.Quotient.quot_mk_eq_mk, Submodule.Quotient.mk_eq_zero, coe_toLieSubmodule, mem_coe_submodule] [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : normalizer H = H m✝ : L ⧸ toLieSubmodule H x : L hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) this : x ∈ H ⊢ Quot.mk Setoid.r x = 0 [PROOFSTEP] rwa [Submodule.Quotient.quot_mk_eq_mk, Submodule.Quotient.mk_eq_zero, coe_toLieSubmodule, mem_coe_submodule] [GOAL] case refine'_1.mk R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : normalizer H = H m✝ : L ⧸ toLieSubmodule H x : L hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) ⊢ x ∈ H [PROOFSTEP] rw [← h, H.mem_normalizer_iff'] [GOAL] case refine'_1.mk R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : normalizer H = H m✝ : L ⧸ toLieSubmodule H x : L hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) ⊢ ∀ (y : L), y ∈ H → ⁅y, x⁆ ∈ H [PROOFSTEP] intro y hy [GOAL] case refine'_1.mk R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : normalizer H = H m✝ : L ⧸ toLieSubmodule H x : L hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) y : L hy : y ∈ H ⊢ ⁅y, x⁆ ∈ H [PROOFSTEP] replace hx : ⁅_, LieSubmodule.Quotient.mk' _ x⁆ = 0 := hx ⟨y, hy⟩ [GOAL] case refine'_1.mk R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : normalizer H = H m✝ : L ⧸ toLieSubmodule H x y : L hy : y ∈ H hx : ⁅{ val := y, property := hy }, ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x⁆ = 0 ⊢ ⁅y, x⁆ ∈ H [PROOFSTEP] rwa [← LieModuleHom.map_lie, LieSubmodule.Quotient.mk_eq_zero] at hx [GOAL] case refine'_2 R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 ⊢ normalizer H ≤ H [PROOFSTEP] intro x hx [GOAL] case refine'_2 R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 x : L hx : x ∈ normalizer H ⊢ x ∈ H [PROOFSTEP] let y := LieSubmodule.Quotient.mk' H.toLieSubmodule x [GOAL] case refine'_2 R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 x : L hx : x ∈ normalizer H y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x ⊢ x ∈ H [PROOFSTEP] have hy : y ∈ LieModule.maxTrivSubmodule R H (L ⧸ H.toLieSubmodule) := by rintro ⟨z, hz⟩ rw [← LieModuleHom.map_lie, LieSubmodule.Quotient.mk_eq_zero, coe_bracket_of_module, Submodule.coe_mk, mem_toLieSubmodule] exact (H.mem_normalizer_iff' x).mp hx z hz [GOAL] R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 x : L hx : x ∈ normalizer H y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x ⊢ y ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) [PROOFSTEP] rintro ⟨z, hz⟩ [GOAL] case mk R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 x : L hx : x ∈ normalizer H y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x z : L hz : z ∈ H ⊢ ⁅{ val := z, property := hz }, y⁆ = 0 [PROOFSTEP] rw [← LieModuleHom.map_lie, LieSubmodule.Quotient.mk_eq_zero, coe_bracket_of_module, Submodule.coe_mk, mem_toLieSubmodule] [GOAL] case mk R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 x : L hx : x ∈ normalizer H y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x z : L hz : z ∈ H ⊢ ⁅z, x⁆ ∈ H [PROOFSTEP] exact (H.mem_normalizer_iff' x).mp hx z hz [GOAL] case refine'_2 R : Type u_1 L : Type u_2 M : Type u_3 M' : Type u_4 inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' H : LieSubalgebra R L h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0 x : L hx : x ∈ normalizer H y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x hy : y ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) ⊢ x ∈ H [PROOFSTEP] simpa using h y hy
{"mathlib_filename": "Mathlib.Algebra.Lie.Normalizer", "llama_tokens": 16999}
[GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j : J ⊢ 1 = M.mk F { fst := j, snd := 1 } [PROOFSTEP] apply M.mk_eq [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j : J ⊢ ∃ k f g, ↑(F.map f) { fst := Nonempty.some (_ : Nonempty J), snd := 1 }.snd = ↑(F.map g) { fst := j, snd := 1 }.snd [PROOFSTEP] refine' ⟨max' _ j, IsFiltered.leftToMax _ j, IsFiltered.rightToMax _ j, _⟩ [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j : J ⊢ ↑(F.map (IsFiltered.leftToMax { fst := Nonempty.some (_ : Nonempty J), snd := 1 }.fst j)) { fst := Nonempty.some (_ : Nonempty J), snd := 1 }.snd = ↑(F.map (IsFiltered.rightToMax { fst := Nonempty.some (_ : Nonempty J), snd := 1 }.fst j)) { fst := j, snd := 1 }.snd [PROOFSTEP] simp [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x x' y : (j : J) × ↑(F.obj j) hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) x x' ⊢ colimitMulAux F x y = colimitMulAux F x' y [PROOFSTEP] cases' x with j₁ x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x' y : (j : J) × ↑(F.obj j) j₁ : J x : ↑(F.obj j₁) hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := x } x' ⊢ colimitMulAux F { fst := j₁, snd := x } y = colimitMulAux F x' y [PROOFSTEP] cases' y with j₂ y [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x' : (j : J) × ↑(F.obj j) j₁ : J x : ↑(F.obj j₁) hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := x } x' j₂ : J y : ↑(F.obj j₂) ⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } = colimitMulAux F x' { fst := j₂, snd := y } [PROOFSTEP] cases' x' with j₃ x' [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := x } { fst := j₃, snd := x' } ⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } = colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y } [PROOFSTEP] obtain ⟨l, f, g, hfg⟩ := hxx' [GOAL] case mk.mk.mk.intro.intro.intro J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : (F ⋙ forget MonCat).map f { fst := j₁, snd := x }.snd = (F ⋙ forget MonCat).map g { fst := j₃, snd := x' }.snd ⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } = colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y } [PROOFSTEP] simp at hfg [GOAL] case mk.mk.mk.intro.intro.intro J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' ⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } = colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y } [PROOFSTEP] obtain ⟨s, α, β, γ, h₁, h₂, h₃⟩ := IsFiltered.tulip (IsFiltered.leftToMax j₁ j₂) (IsFiltered.rightToMax j₁ j₂) (IsFiltered.rightToMax j₃ j₂) (IsFiltered.leftToMax j₃ j₂) f g [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } = colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y } [PROOFSTEP] apply M.mk_eq [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ∃ k f g, ↑(F.map f) { fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₂, snd := y }.snd }.snd = ↑(F.map g) { fst := IsFiltered.max { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst)) { fst := j₃, snd := x' }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst)) { fst := j₂, snd := y }.snd }.snd [PROOFSTEP] use s, α, γ [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ↑(F.map α) { fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₂, snd := y }.snd }.snd = ↑(F.map γ) { fst := IsFiltered.max { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst)) { fst := j₃, snd := x' }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst)) { fst := j₂, snd := y }.snd }.snd [PROOFSTEP] dsimp [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) = ↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₃ j₂)) x' * ↑(F.map (IsFiltered.rightToMax j₃ j₂)) y) [PROOFSTEP] simp_rw [MonoidHom.map_mul] -- Porting note : Lean cannot seem to use lemmas from concrete categories directly [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x) * ↑(F.map α) (↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) = ↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₃ j₂)) x') * ↑(F.map γ) (↑(F.map (IsFiltered.rightToMax j₃ j₂)) y) [PROOFSTEP] change (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ = (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ↑(F.map (IsFiltered.leftToMax j₁ j₂) ≫ F.map α) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂) ≫ F.map α) y = ↑(F.map (IsFiltered.leftToMax j₃ j₂) ≫ F.map γ) x' * ↑(F.map (IsFiltered.rightToMax j₃ j₂) ≫ F.map γ) y [PROOFSTEP] simp_rw [← F.map_comp, h₁, h₂, h₃, F.map_comp] [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ↑(F.map f ≫ F.map β) x * ↑(F.map (IsFiltered.rightToMax j₃ j₂) ≫ F.map γ) y = ↑(F.map g ≫ F.map β) x' * ↑(F.map (IsFiltered.rightToMax j₃ j₂) ≫ F.map γ) y [PROOFSTEP] congr 1 [GOAL] case h.e_a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ↑(F.map f ≫ F.map β) x = ↑(F.map g ≫ F.map β) x' [PROOFSTEP] change F.map _ (F.map _ _) = F.map _ (F.map _ _) [GOAL] case h.e_a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J x : ↑(F.obj j₁) j₂ : J y : ↑(F.obj j₂) j₃ : J x' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := x }.fst ⟶ l g : { fst := j₃, snd := x' }.fst ⟶ l hfg : ↑(F.map f) x = ↑(F.map g) x' s : J α : IsFiltered.max j₁ j₂ ⟶ s β : l ⟶ s γ : IsFiltered.max j₃ j₂ ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β ⊢ ↑(F.map β) (↑(F.map f) x) = ↑(F.map β) (↑(F.map g) x') [PROOFSTEP] rw [hfg] [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x y y' : (j : J) × ↑(F.obj j) hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) y y' ⊢ colimitMulAux F x y = colimitMulAux F x y' [PROOFSTEP] cases' y with j₁ y [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x y' : (j : J) × ↑(F.obj j) j₁ : J y : ↑(F.obj j₁) hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := y } y' ⊢ colimitMulAux F x { fst := j₁, snd := y } = colimitMulAux F x y' [PROOFSTEP] cases' x with j₂ x [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J y' : (j : J) × ↑(F.obj j) j₁ : J y : ↑(F.obj j₁) hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := y } y' j₂ : J x : ↑(F.obj j₂) ⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } = colimitMulAux F { fst := j₂, snd := x } y' [PROOFSTEP] cases' y' with j₃ y' [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := y } { fst := j₃, snd := y' } ⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } = colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' } [PROOFSTEP] obtain ⟨l, f, g, hfg⟩ := hyy' [GOAL] case mk.mk.mk.intro.intro.intro J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : (F ⋙ forget MonCat).map f { fst := j₁, snd := y }.snd = (F ⋙ forget MonCat).map g { fst := j₃, snd := y' }.snd ⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } = colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' } [PROOFSTEP] simp at hfg [GOAL] case mk.mk.mk.intro.intro.intro J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' ⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } = colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' } [PROOFSTEP] obtain ⟨s, α, β, γ, h₁, h₂, h₃⟩ := IsFiltered.tulip (IsFiltered.rightToMax j₂ j₁) (IsFiltered.leftToMax j₂ j₁) (IsFiltered.leftToMax j₂ j₃) (IsFiltered.rightToMax j₂ j₃) f g [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } = colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' } [PROOFSTEP] apply M.mk_eq [GOAL] case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ∃ k f g, ↑(F.map f) { fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst)) { fst := j₂, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst)) { fst := j₁, snd := y }.snd }.snd = ↑(F.map g) { fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst)) { fst := j₂, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst)) { fst := j₃, snd := y' }.snd }.snd [PROOFSTEP] use s, α, γ [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ↑(F.map α) { fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst)) { fst := j₂, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst)) { fst := j₁, snd := y }.snd }.snd = ↑(F.map γ) { fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst)) { fst := j₂, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst)) { fst := j₃, snd := y' }.snd }.snd [PROOFSTEP] dsimp [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₂ j₁)) x * ↑(F.map (IsFiltered.rightToMax j₂ j₁)) y) = ↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₂ j₃)) x * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) y') [PROOFSTEP] simp_rw [MonoidHom.map_mul] -- Porting note : Lean cannot seem to use lemmas from concrete categories directly [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₂ j₁)) x) * ↑(F.map α) (↑(F.map (IsFiltered.rightToMax j₂ j₁)) y) = ↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₂ j₃)) x) * ↑(F.map γ) (↑(F.map (IsFiltered.rightToMax j₂ j₃)) y') [PROOFSTEP] change (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ = (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ↑(F.map (IsFiltered.leftToMax j₂ j₁) ≫ F.map α) x * ↑(F.map (IsFiltered.rightToMax j₂ j₁) ≫ F.map α) y = ↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map γ) x * ↑(F.map (IsFiltered.rightToMax j₂ j₃) ≫ F.map γ) y' [PROOFSTEP] simp_rw [← F.map_comp, h₁, h₂, h₃, F.map_comp] [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map γ) x * ↑(F.map f ≫ F.map β) y = ↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map γ) x * ↑(F.map g ≫ F.map β) y' [PROOFSTEP] congr 1 [GOAL] case h.e_a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ↑(F.map f ≫ F.map β) y = ↑(F.map g ≫ F.map β) y' [PROOFSTEP] change F.map _ (F.map _ _) = F.map _ (F.map _ _) [GOAL] case h.e_a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j₁ : J y : ↑(F.obj j₁) j₂ : J x : ↑(F.obj j₂) j₃ : J y' : ↑(F.obj j₃) l : J f : { fst := j₁, snd := y }.fst ⟶ l g : { fst := j₃, snd := y' }.fst ⟶ l hfg : ↑(F.map f) y = ↑(F.map g) y' s : J α : IsFiltered.max j₂ j₁ ⟶ s β : l ⟶ s γ : IsFiltered.max j₂ j₃ ⟶ s h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β ⊢ ↑(F.map β) (↑(F.map f) y) = ↑(F.map β) (↑(F.map g) y') [PROOFSTEP] rw [hfg] [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x y : M F ⊢ M F [PROOFSTEP] refine' Quot.lift₂ (colimitMulAux F) _ _ x y [GOAL] case refine'_1 J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x y : M F ⊢ ∀ (a b₁ b₂ : (j : J) × ↑(F.obj j)), Types.Quot.Rel (F ⋙ forget MonCat) b₁ b₂ → colimitMulAux F a b₁ = colimitMulAux F a b₂ [PROOFSTEP] intro x y y' h [GOAL] case refine'_1 J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x✝ y✝ : M F x y y' : (j : J) × ↑(F.obj j) h : Types.Quot.Rel (F ⋙ forget MonCat) y y' ⊢ colimitMulAux F x y = colimitMulAux F x y' [PROOFSTEP] apply colimitMulAux_eq_of_rel_right [GOAL] case refine'_1.hyy' J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x✝ y✝ : M F x y y' : (j : J) × ↑(F.obj j) h : Types.Quot.Rel (F ⋙ forget MonCat) y y' ⊢ Types.FilteredColimit.Rel (F ⋙ forget MonCat) y y' [PROOFSTEP] apply Types.FilteredColimit.rel_of_quot_rel [GOAL] case refine'_1.hyy'.a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x✝ y✝ : M F x y y' : (j : J) × ↑(F.obj j) h : Types.Quot.Rel (F ⋙ forget MonCat) y y' ⊢ Types.Quot.Rel (F ⋙ forget MonCat) y y' [PROOFSTEP] exact h [GOAL] case refine'_2 J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x y : M F ⊢ ∀ (a₁ a₂ b : (j : J) × ↑(F.obj j)), Types.Quot.Rel (F ⋙ forget MonCat) a₁ a₂ → colimitMulAux F a₁ b = colimitMulAux F a₂ b [PROOFSTEP] intro x x' y h [GOAL] case refine'_2 J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x✝ y✝ : M F x x' y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel (F ⋙ forget MonCat) x x' ⊢ colimitMulAux F x y = colimitMulAux F x' y [PROOFSTEP] apply colimitMulAux_eq_of_rel_left [GOAL] case refine'_2.hxx' J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x✝ y✝ : M F x x' y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel (F ⋙ forget MonCat) x x' ⊢ Types.FilteredColimit.Rel (F ⋙ forget MonCat) x x' [PROOFSTEP] apply Types.FilteredColimit.rel_of_quot_rel [GOAL] case refine'_2.hxx'.a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x✝ y✝ : M F x x' y : (j : J) × ↑(F.obj j) h : Types.Quot.Rel (F ⋙ forget MonCat) x x' ⊢ Types.Quot.Rel (F ⋙ forget MonCat) x x' [PROOFSTEP] exact h [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J x y : (j : J) × ↑(F.obj j) k : J f : x.fst ⟶ k g : y.fst ⟶ k ⊢ M.mk F x * M.mk F y = M.mk F { fst := k, snd := ↑(F.map f) x.snd * ↑(F.map g) y.snd } [PROOFSTEP] cases' x with j₁ x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J y : (j : J) × ↑(F.obj j) k : J g : y.fst ⟶ k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k ⊢ M.mk F { fst := j₁, snd := x } * M.mk F y = M.mk F { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) y.snd } [PROOFSTEP] cases' y with j₂ y [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k j₂ : J y : ↑(F.obj j₂) g : { fst := j₂, snd := y }.fst ⟶ k ⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } = M.mk F { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd } [PROOFSTEP] obtain ⟨s, α, β, h₁, h₂⟩ := IsFiltered.bowtie (IsFiltered.leftToMax j₁ j₂) f (IsFiltered.rightToMax j₁ j₂) g [GOAL] case mk.mk.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k j₂ : J y : ↑(F.obj j₂) g : { fst := j₂, snd := y }.fst ⟶ k s : J α : IsFiltered.max j₁ j₂ ⟶ s β : k ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β ⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } = M.mk F { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd } [PROOFSTEP] apply M.mk_eq [GOAL] case mk.mk.intro.intro.intro.intro.h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k j₂ : J y : ↑(F.obj j₂) g : { fst := j₂, snd := y }.fst ⟶ k s : J α : IsFiltered.max j₁ j₂ ⟶ s β : k ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β ⊢ ∃ k_1 f_1 g_1, ↑(F.map f_1) { fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₂, snd := y }.snd }.snd = ↑(F.map g_1) { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd }.snd [PROOFSTEP] use s, α, β [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k j₂ : J y : ↑(F.obj j₂) g : { fst := j₂, snd := y }.fst ⟶ k s : J α : IsFiltered.max j₁ j₂ ⟶ s β : k ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β ⊢ ↑(F.map α) { fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst)) { fst := j₂, snd := y }.snd }.snd = ↑(F.map β) { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd }.snd [PROOFSTEP] dsimp [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k j₂ : J y : ↑(F.obj j₂) g : { fst := j₂, snd := y }.fst ⟶ k s : J α : IsFiltered.max j₁ j₂ ⟶ s β : k ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β ⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) = ↑(F.map β) (↑(F.map f) x * ↑(F.map g) y) [PROOFSTEP] simp_rw [MonoidHom.map_mul] -- Porting note : Lean cannot seem to use lemmas from concrete categories directly [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k j₂ : J y : ↑(F.obj j₂) g : { fst := j₂, snd := y }.fst ⟶ k s : J α : IsFiltered.max j₁ j₂ ⟶ s β : k ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β ⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x) * ↑(F.map α) (↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) = ↑(F.map β) (↑(F.map f) x) * ↑(F.map β) (↑(F.map g) y) [PROOFSTEP] change (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ = (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ [GOAL] case h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J k j₁ : J x : ↑(F.obj j₁) f : { fst := j₁, snd := x }.fst ⟶ k j₂ : J y : ↑(F.obj j₂) g : { fst := j₂, snd := y }.fst ⟶ k s : J α : IsFiltered.max j₁ j₂ ⟶ s β : k ⟶ s h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β ⊢ ↑(F.map (IsFiltered.leftToMax j₁ j₂) ≫ F.map α) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂) ≫ F.map α) y = ↑(F.map f ≫ F.map β) x * ↑(F.map g ≫ F.map β) y [PROOFSTEP] simp_rw [← F.map_comp, h₁, h₂] [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x : M F ⊢ 1 * x = x [PROOFSTEP] refine Quot.inductionOn x ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x : M F ⊢ ∀ (a : (j : J) × (F ⋙ forget MonCat).obj j), 1 * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a [PROOFSTEP] intro x [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x✝ : M F x : (j : J) × (F ⋙ forget MonCat).obj j ⊢ 1 * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x [PROOFSTEP] cases' x with j x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x✝ : M F j : J x : (F ⋙ forget MonCat).obj j ⊢ 1 * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } [PROOFSTEP] rw [colimit_one_eq F j, colimit_mul_mk_eq F ⟨j, 1⟩ ⟨j, x⟩ j (𝟙 j) (𝟙 j), MonoidHom.map_one, one_mul, F.map_id] -- Porting note : `id_apply` does not work here, but the two sides are def-eq [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x✝ : M F j : J x : (F ⋙ forget MonCat).obj j ⊢ M.mk F { fst := j, snd := ↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := x }.snd } = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } [PROOFSTEP] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x : M F ⊢ x * 1 = x [PROOFSTEP] refine Quot.inductionOn x ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x : M F ⊢ ∀ (a : (j : J) × (F ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * 1 = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a [PROOFSTEP] intro x [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x✝ : M F x : (j : J) × (F ⋙ forget MonCat).obj j ⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x * 1 = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x [PROOFSTEP] cases' x with j x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x✝ : M F j : J x : (F ⋙ forget MonCat).obj j ⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } * 1 = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } [PROOFSTEP] rw [colimit_one_eq F j, colimit_mul_mk_eq F ⟨j, x⟩ ⟨j, 1⟩ j (𝟙 j) (𝟙 j), MonoidHom.map_one, mul_one, F.map_id] -- Porting note : `id_apply` does not work here, but the two sides are def-eq [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝¹ : One (M F) := colimitOne F src✝ : Mul (M F) := colimitMul F x✝ : M F j : J x : (F ⋙ forget MonCat).obj j ⊢ M.mk F { fst := j, snd := ↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := x }.snd } = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } [PROOFSTEP] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F x y z : M F ⊢ x * y * z = x * (y * z) [PROOFSTEP] refine Quot.induction_on₃ x y z ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F x y z : M F ⊢ ∀ (a b c : (j : J) × (F ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c) [PROOFSTEP] clear x y z [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F ⊢ ∀ (a b c : (j : J) × (F ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c) [PROOFSTEP] intro x y z [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F x y z : (j : J) × (F ⋙ forget MonCat).obj j ⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x * (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z) [PROOFSTEP] cases' x with j₁ x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F y z : (j : J) × (F ⋙ forget MonCat).obj j j₁ : J x : (F ⋙ forget MonCat).obj j₁ ⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z) [PROOFSTEP] cases' y with j₂ y [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F z : (j : J) × (F ⋙ forget MonCat).obj j j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ ⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z) [PROOFSTEP] cases' z with j₃ z [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ j₃ : J z : (F ⋙ forget MonCat).obj j₃ ⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₃, snd := z } = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } * (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₃, snd := z }) [PROOFSTEP] change M.mk F _ * M.mk F _ * M.mk F _ = M.mk F _ * M.mk F _ [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ j₃ : J z : (F ⋙ forget MonCat).obj j₃ ⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } * M.mk F { fst := j₃, snd := z } = M.mk F { fst := j₁, snd := x } * M.mk F { fst := IsFiltered.max { fst := j₂, snd := y }.fst { fst := j₃, snd := z }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := y }.fst { fst := j₃, snd := z }.fst)) { fst := j₂, snd := y }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := y }.fst { fst := j₃, snd := z }.fst)) { fst := j₃, snd := z }.snd } [PROOFSTEP] dsimp [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ j₃ : J z : (F ⋙ forget MonCat).obj j₃ ⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } * M.mk F { fst := j₃, snd := z } = M.mk F { fst := j₁, snd := x } * M.mk F { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z } [PROOFSTEP] rw [colimit_mul_mk_eq F ⟨j₁, x⟩ ⟨j₂, y⟩ (IsFiltered.max j₁ (IsFiltered.max j₂ j₃)) (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃)) (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax _ _), colimit_mul_mk_eq F ⟨(IsFiltered.max j₁ (IsFiltered.max j₂ j₃)), _⟩ ⟨j₃, z⟩ (IsFiltered.max j₁ (IsFiltered.max j₂ j₃)) (𝟙 _) (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax _ _), colimit_mul_mk_eq.{v, u} F ⟨j₁, x⟩ ⟨IsFiltered.max j₂ j₃, _⟩ _ (IsFiltered.leftToMax _ _) (IsFiltered.rightToMax _ _)] [GOAL] case mk.mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ j₃ : J z : (F ⋙ forget MonCat).obj j₃ ⊢ M.mk F { fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃), snd := ↑(F.map (𝟙 { fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃), snd := ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₂, snd := y }.snd }.fst)) { fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃), snd := ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₂, snd := y }.snd }.snd * ↑(F.map (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₃, snd := z }.snd } = M.mk F { fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst, snd := ↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst)) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst)) { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.snd } [PROOFSTEP] congr 2 [GOAL] case mk.mk.mk.e_a.e_snd J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ j₃ : J z : (F ⋙ forget MonCat).obj j₃ ⊢ ↑(F.map (𝟙 { fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃), snd := ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₂, snd := y }.snd }.fst)) { fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃), snd := ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₂, snd := y }.snd }.snd * ↑(F.map (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₃, snd := z }.snd = ↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst)) { fst := j₁, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst)) { fst := IsFiltered.max j₂ j₃, snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.snd [PROOFSTEP] dsimp only [GOAL] case mk.mk.mk.e_a.e_snd J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ j₃ : J z : (F ⋙ forget MonCat).obj j₃ ⊢ ↑(F.map (𝟙 (IsFiltered.max j₁ (IsFiltered.max j₂ j₃)))) (↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x * ↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) y) * ↑(F.map (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) z = ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x * ↑(F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) (↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z) [PROOFSTEP] rw [F.map_id, show ∀ x, (𝟙 (F.obj (IsFiltered.max j₁ (IsFiltered.max j₂ j₃)))) x = x from fun _ => rfl, mul_assoc, MonoidHom.map_mul, F.map_comp, F.map_comp] [GOAL] case mk.mk.mk.e_a.e_snd J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J src✝ : MulOneClass (M F) := colimitMulOneClass F j₁ : J x : (F ⋙ forget MonCat).obj j₁ j₂ : J y : (F ⋙ forget MonCat).obj j₂ j₃ : J z : (F ⋙ forget MonCat).obj j₃ ⊢ ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x * (↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃) ≫ F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) z) = ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x * (↑(F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) (↑(F.map (IsFiltered.leftToMax j₂ j₃)) y) * ↑(F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) (↑(F.map (IsFiltered.rightToMax j₂ j₃)) z)) [PROOFSTEP] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j : J x y : ↑(F.obj j) ⊢ OneHom.toFun { toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j, map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) } (x * y) = OneHom.toFun { toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j, map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) } x * OneHom.toFun { toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j, map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) } y [PROOFSTEP] convert (colimit_mul_mk_eq.{v, u} F ⟨j, x⟩ ⟨j, y⟩ j (𝟙 j) (𝟙 j)).symm [GOAL] case h.e'_2.h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j : J x y : ↑(F.obj j) e_1✝ : ↑(colimit F) = M F ⊢ OneHom.toFun { toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j, map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) } (x * y) = M.mk F { fst := j, snd := ↑(F.map (𝟙 j)) { fst := j, snd := x }.snd * ↑(F.map (𝟙 j)) { fst := j, snd := y }.snd } [PROOFSTEP] rw [F.map_id] [GOAL] case h.e'_2.h J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J j : J x y : ↑(F.obj j) e_1✝ : ↑(colimit F) = M F ⊢ OneHom.toFun { toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j, map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) } (x * y) = M.mk F { fst := j, snd := ↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := x }.snd * ↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := y }.snd } [PROOFSTEP] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F ⊢ IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1 [PROOFSTEP] rw [colimit_one_eq F IsFiltered.Nonempty.some] [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F ⊢ IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) (M.mk F { fst := Nonempty.some (_ : Nonempty J), snd := 1 }) = 1 [PROOFSTEP] exact MonoidHom.map_one _ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F x y : ↑(colimit F) ⊢ OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (x * y) = OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } x * OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } y [PROOFSTEP] refine Quot.induction_on₂ x y ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F x y : ↑(colimit F) ⊢ ∀ (a b : (j : J) × (F ⋙ forget MonCat).obj j), OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b) = OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a) * OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b) [PROOFSTEP] clear x y [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F ⊢ ∀ (a b : (j : J) × (F ⋙ forget MonCat).obj j), OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b) = OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a) * OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b) [PROOFSTEP] intro x y [GOAL] J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F x y : (j : J) × (F ⋙ forget MonCat).obj j ⊢ OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y) = OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x) * OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y) [PROOFSTEP] cases' x with i x [GOAL] case mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F y : (j : J) × (F ⋙ forget MonCat).obj j i : J x : (F ⋙ forget MonCat).obj i ⊢ OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y) = OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x }) * OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y) [PROOFSTEP] cases' y with j y [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F i : J x : (F ⋙ forget MonCat).obj i j : J y : (F ⋙ forget MonCat).obj j ⊢ OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x } * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := y }) = OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x }) * OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := y }) [PROOFSTEP] rw [colimit_mul_mk_eq F ⟨i, x⟩ ⟨j, y⟩ (max' i j) (IsFiltered.leftToMax i j) (IsFiltered.rightToMax i j)] [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F i : J x : (F ⋙ forget MonCat).obj i j : J y : (F ⋙ forget MonCat).obj j ⊢ OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (M.mk F { fst := IsFiltered.max i j, snd := ↑(F.map (IsFiltered.leftToMax i j)) { fst := i, snd := x }.snd * ↑(F.map (IsFiltered.rightToMax i j)) { fst := j, snd := y }.snd }) = OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x }) * OneHom.toFun { toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t), map_one' := (_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) } (Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := y }) [PROOFSTEP] dsimp [Types.colimitCoconeIsColimit] [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F i : J x : (F ⋙ forget MonCat).obj i j : J y : (F ⋙ forget MonCat).obj j ⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.leftToMax i j)) x * ↑(F.map (IsFiltered.rightToMax i j)) y) = ↑(NatTrans.app t.ι i) x * ↑(NatTrans.app t.ι j) y [PROOFSTEP] rw [MonoidHom.map_mul] -- Porting note : `rw` can't see through coercion is actually forgetful functor, -- so can't rewrite `t.w_apply` [GOAL] case mk.mk J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F i : J x : (F ⋙ forget MonCat).obj i j : J y : (F ⋙ forget MonCat).obj j ⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.leftToMax i j)) x) * ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.rightToMax i j)) y) = ↑(NatTrans.app t.ι i) x * ↑(NatTrans.app t.ι j) y [PROOFSTEP] congr 1 [GOAL] case mk.mk.e_a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F i : J x : (F ⋙ forget MonCat).obj i j : J y : (F ⋙ forget MonCat).obj j ⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.leftToMax i j)) x) = ↑(NatTrans.app t.ι i) x [PROOFSTEP] exact t.w_apply _ _ [GOAL] case mk.mk.e_a J : Type v inst✝¹ : SmallCategory J F : J ⥤ MonCat inst✝ : IsFiltered J t : Cocone F i : J x : (F ⋙ forget MonCat).obj i j : J y : (F ⋙ forget MonCat).obj j ⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.rightToMax i j)) y) = ↑(NatTrans.app t.ι j) y [PROOFSTEP] exact t.w_apply _ _ [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : ↑(M F) ⊢ x * y = y * x [PROOFSTEP] refine Quot.induction_on₂ x y ?_ [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : ↑(M F) ⊢ ∀ (a b : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a [PROOFSTEP] clear x y [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F ⊢ ∀ (a b : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j), Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a [PROOFSTEP] intro x y [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x [PROOFSTEP] let k := max' x.1 y.1 [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j k : J := IsFiltered.max x.fst y.fst ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x [PROOFSTEP] let f := IsFiltered.leftToMax x.1 y.1 [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j k : J := IsFiltered.max x.fst y.fst f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x [PROOFSTEP] let g := IsFiltered.rightToMax x.1 y.1 [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j k : J := IsFiltered.max x.fst y.fst f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst g : y.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.rightToMax x.fst y.fst ⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y = Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x [PROOFSTEP] rw [colimit_mul_mk_eq.{v, u} (F ⋙ forget₂ CommMonCat MonCat) x y k f g, colimit_mul_mk_eq.{v, u} (F ⋙ forget₂ CommMonCat MonCat) y x k g f] [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j k : J := IsFiltered.max x.fst y.fst f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst g : y.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.rightToMax x.fst y.fst ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat) { fst := k, snd := ↑((F ⋙ forget₂ CommMonCat MonCat).map f) x.snd * ↑((F ⋙ forget₂ CommMonCat MonCat).map g) y.snd } = MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat) { fst := k, snd := ↑((F ⋙ forget₂ CommMonCat MonCat).map g) y.snd * ↑((F ⋙ forget₂ CommMonCat MonCat).map f) x.snd } [PROOFSTEP] dsimp [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsFiltered J F : J ⥤ CommMonCat src✝ : MonCat := M F x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j k : J := IsFiltered.max x.fst y.fst f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst g : y.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.rightToMax x.fst y.fst ⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat) { fst := IsFiltered.max x.fst y.fst, snd := ↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.leftToMax x.fst y.fst))) x.snd * ↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.rightToMax x.fst y.fst))) y.snd } = MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat) { fst := IsFiltered.max x.fst y.fst, snd := ↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.rightToMax x.fst y.fst))) y.snd * ↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.leftToMax x.fst y.fst))) x.snd } [PROOFSTEP] rw [mul_comm]
{"mathlib_filename": "Mathlib.Algebra.Category.MonCat.FilteredColimits", "llama_tokens": 31107}
[GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x y : L ⊢ ↑χ ⁅x, y⁆ = 0 [PROOFSTEP] rw [LieHom.map_lie, LieRing.of_associative_ring_bracket, mul_comm, sub_self] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x y : L ⊢ ⁅↑χ x, ↑χ y⁆ = 0 [PROOFSTEP] rw [LieRing.of_associative_ring_bracket, mul_comm, sub_self] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ derivedSeries R L 1 ⊢ ↑χ x = 0 [PROOFSTEP] rw [derivedSeries_def, derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_zero, ← LieSubmodule.mem_coeSubmodule, LieSubmodule.lieIdeal_oper_eq_linear_span] at h [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ ↑χ x = 0 [PROOFSTEP] refine' Submodule.span_induction h _ _ _ _ [GOAL] case refine'_1 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ ∀ (x : L), x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → ↑χ x = 0 [PROOFSTEP] rintro y ⟨⟨z, hz⟩, ⟨⟨w, hw⟩, rfl⟩⟩ [GOAL] case refine'_1.intro.mk.intro.mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} z : L hz : z ∈ ⊤ w : L hw : w ∈ ⊤ ⊢ ↑χ ⁅↑{ val := z, property := hz }, ↑{ val := w, property := hw }⁆ = 0 [PROOFSTEP] apply lieCharacter_apply_lie [GOAL] case refine'_2 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ ↑χ 0 = 0 [PROOFSTEP] exact χ.map_zero [GOAL] case refine'_3 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ ∀ (x y : L), ↑χ x = 0 → ↑χ y = 0 → ↑χ (x + y) = 0 [PROOFSTEP] intro y z hy hz [GOAL] case refine'_3 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y z : L hy : ↑χ y = 0 hz : ↑χ z = 0 ⊢ ↑χ (y + z) = 0 [PROOFSTEP] rw [LieHom.map_add, hy, hz, add_zero] [GOAL] case refine'_4 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ ∀ (a : R) (x : L), ↑χ x = 0 → ↑χ (a • x) = 0 [PROOFSTEP] intro t y hy [GOAL] case refine'_4 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L χ : LieCharacter R L x : L h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} t : R y : L hy : ↑χ y = 0 ⊢ ↑χ (t • y) = 0 [PROOFSTEP] rw [LieHom.map_smul, hy, smul_zero] [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsLieAbelian L ψ : Module.Dual R L x y : L ⊢ AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] rw [LieModule.IsTrivial.trivial, LieRing.of_associative_ring_bracket, mul_comm, sub_self, LinearMap.toFun_eq_coe, LinearMap.map_zero] [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsLieAbelian L χ : LieCharacter R L ⊢ (fun ψ => { toLinearMap := { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }, map_lie' := (_ : ∀ {x y : L}, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom y⁆) }) ((fun χ => ↑χ) χ) = χ [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsLieAbelian L χ : LieCharacter R L x✝ : L ⊢ ↑((fun ψ => { toLinearMap := { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }, map_lie' := (_ : ∀ {x y : L}, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom y⁆) }) ((fun χ => ↑χ) χ)) x✝ = ↑χ x✝ [PROOFSTEP] rfl [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsLieAbelian L ψ : Module.Dual R L ⊢ (fun χ => ↑χ) ((fun ψ => { toLinearMap := { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }, map_lie' := (_ : ∀ {x y : L}, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom y⁆) }) ψ) = ψ [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsLieAbelian L ψ : Module.Dual R L x✝ : L ⊢ ↑((fun χ => ↑χ) ((fun ψ => { toLinearMap := { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }, map_lie' := (_ : ∀ {x y : L}, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := ψ.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom y⁆) }) ψ)) x✝ = ↑ψ x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Lie.Character", "llama_tokens": 4374}
[GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : Add ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance x✝² x✝¹ x✝ : ⨁ (i : ι), A i ⊢ x✝² * (x✝¹ + x✝) = x✝² * x✝¹ + x✝² * x✝ [PROOFSTEP] simp only [HMul.hMul, AddMonoidHom.map_add] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : Add ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance x✝² x✝¹ x✝ : ⨁ (i : ι), A i ⊢ (x✝² + x✝¹) * x✝ = x✝² * x✝ + x✝¹ * x✝ [PROOFSTEP] simp only [HMul.hMul, AddMonoidHom.map_add, AddMonoidHom.add_apply] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : Add ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance x✝ : ⨁ (i : ι), A i ⊢ 0 * x✝ = 0 [PROOFSTEP] simp only [HMul.hMul, map_zero, AddMonoidHom.zero_apply] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : Add ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance x✝ : ⨁ (i : ι), A i ⊢ x✝ * 0 = 0 [PROOFSTEP] simp only [HMul.hMul, AddMonoidHom.map_zero] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : Add ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A i j : ι a : A i b : A j ⊢ ↑(↑(mulHom A) (↑(of A i) a)) (↑(of A j) b) = ↑(of A (i + j)) (GradedMonoid.GMul.mul a b) [PROOFSTEP] unfold mulHom [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : Add ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A i j : ι a : A i b : A j ⊢ ↑(↑(toAddMonoid fun x => AddMonoidHom.flip (toAddMonoid fun x_1 => AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of A (x + x_1))) (gMulHom A)))) (↑(of A i) a)) (↑(of A j) b) = ↑(of A (i + j)) (GradedMonoid.GMul.mul a b) [PROOFSTEP] simp only [toAddMonoid_of, flip_apply, coe_comp, Function.comp_apply] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : Add ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A i j : ι a : A i b : A j ⊢ ↑(↑(↑compHom (of A (i + j))) (↑(gMulHom A) a)) b = ↑(of A (i + j)) (GradedMonoid.GMul.mul a b) [PROOFSTEP] rfl [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i ⊢ 1 * x = x [PROOFSTEP] suffices mulHom A One.one = AddMonoidHom.id (⨁ i, A i) from FunLike.congr_fun this x [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i ⊢ ↑(mulHom A) One.one = AddMonoidHom.id (⨁ (i : ι), A i) [PROOFSTEP] apply addHom_ext [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i ⊢ ∀ (i : ι) (y : A i), ↑(↑(mulHom A) One.one) (↑(of (fun i => A i) i) y) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) y) [PROOFSTEP] intro i xi [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i i : ι xi : A i ⊢ ↑(↑(mulHom A) One.one) (↑(of (fun i => A i) i) xi) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi) [PROOFSTEP] simp only [One.one] [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i i : ι xi : A i ⊢ ↑(↑(mulHom A) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one)) (↑(of (fun i => A i) i) xi) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi) [PROOFSTEP] rw [mulHom_of_of] [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i i : ι xi : A i ⊢ ↑(of A (0 + i)) (GradedMonoid.GMul.mul GradedMonoid.GOne.one xi) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi) [PROOFSTEP] exact of_eq_of_gradedMonoid_eq (one_mul <| GradedMonoid.mk i xi) [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i ⊢ x * 1 = x [PROOFSTEP] suffices (mulHom A).flip One.one = AddMonoidHom.id (⨁ i, A i) from FunLike.congr_fun this x [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i ⊢ ↑(AddMonoidHom.flip (mulHom A)) One.one = AddMonoidHom.id (⨁ (i : ι), A i) [PROOFSTEP] apply addHom_ext [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i ⊢ ∀ (i : ι) (y : A i), ↑(↑(AddMonoidHom.flip (mulHom A)) One.one) (↑(of (fun i => A i) i) y) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) y) [PROOFSTEP] intro i xi [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i i : ι xi : A i ⊢ ↑(↑(AddMonoidHom.flip (mulHom A)) One.one) (↑(of (fun i => A i) i) xi) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi) [PROOFSTEP] simp only [One.one] [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i i : ι xi : A i ⊢ ↑(↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one)) (↑(of (fun i => A i) i) xi) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi) [PROOFSTEP] rw [flip_apply, mulHom_of_of] [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A x : ⨁ (i : ι), A i i : ι xi : A i ⊢ ↑(of A (i + 0)) (GradedMonoid.GMul.mul xi GradedMonoid.GOne.one) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi) [PROOFSTEP] exact of_eq_of_gradedMonoid_eq (mul_one <| GradedMonoid.mk i xi) [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i ⊢ a * b * c = a * (b * c) [PROOFSTEP] suffices (mulHom A).compHom.comp (mulHom A) = (AddMonoidHom.compHom flipHom <| (mulHom A).flip.compHom.comp (mulHom A)).flip by have sol := FunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this a) b) c have aux : ∀ a b, (mulHom A) a b = a * b := fun _ _ ↦ rfl simp only [coe_comp, Function.comp_apply, AddMonoidHom.compHom_apply_apply, aux, flip_apply, AddMonoidHom.flipHom_apply] at sol exact sol [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i this : AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) = AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))) ⊢ a * b * c = a * (b * c) [PROOFSTEP] have sol := FunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this a) b) c [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i this : AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) = AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))) sol : ↑(↑(↑(AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A)) a) b) c = ↑(↑(↑(AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))) a) b) c ⊢ a * b * c = a * (b * c) [PROOFSTEP] have aux : ∀ a b, (mulHom A) a b = a * b := fun _ _ ↦ rfl [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i this : AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) = AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))) sol : ↑(↑(↑(AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A)) a) b) c = ↑(↑(↑(AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))) a) b) c aux : ∀ (a b : ⨁ (i : ι), A i), ↑(↑(mulHom A) a) b = a * b ⊢ a * b * c = a * (b * c) [PROOFSTEP] simp only [coe_comp, Function.comp_apply, AddMonoidHom.compHom_apply_apply, aux, flip_apply, AddMonoidHom.flipHom_apply] at sol [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i this : AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) = AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))) aux : ∀ (a b : ⨁ (i : ι), A i), ↑(↑(mulHom A) a) b = a * b sol : a * b * c = a * (b * c) ⊢ a * b * c = a * (b * c) [PROOFSTEP] exact sol [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i ⊢ AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) = AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))) [PROOFSTEP] ext ai ax bi bx ci cx [GOAL] case H.h.H.h.H.h ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i ai : ι ax : A ai bi : ι bx : A bi ci : ι cx : A ci ⊢ ↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A)) (of (fun i => A i) ai)) ax) (of (fun i => A i) bi)) bx) (of (fun i => A i) ci)) cx = ↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))) (of (fun i => A i) ai)) ax) (of (fun i => A i) bi)) bx) (of (fun i => A i) ci)) cx [PROOFSTEP] dsimp only [coe_comp, Function.comp_apply, AddMonoidHom.compHom_apply_apply, flip_apply, AddMonoidHom.flipHom_apply] [GOAL] case H.h.H.h.H.h ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i ai : ι ax : A ai bi : ι bx : A bi ci : ι cx : A ci ⊢ ↑(↑(mulHom A) (↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx))) (↑(of (fun i => A i) ci) cx) = ↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(↑(mulHom A) (↑(of (fun i => A i) bi) bx)) (↑(of (fun i => A i) ci) cx)) [PROOFSTEP] simp_rw [mulHom_of_of] [GOAL] case H.h.H.h.H.h ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a b c : ⨁ (i : ι), A i ai : ι ax : A ai bi : ι bx : A bi ci : ι cx : A ci ⊢ ↑(of A (ai + bi + ci)) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul ax bx) cx) = ↑(of A (ai + (bi + ci))) (GradedMonoid.GMul.mul ax (GradedMonoid.GMul.mul bx cx)) [PROOFSTEP] exact of_eq_of_gradedMonoid_eq (_root_.mul_assoc (GradedMonoid.mk ai ax) ⟨bi, bx⟩ ⟨ci, cx⟩) [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance ⊢ NatCast.natCast 0 = 0 [PROOFSTEP] simp only [GSemiring.natCast_zero, map_zero] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance n : ℕ ⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] simp_rw [GSemiring.natCast_succ] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance n : ℕ ⊢ ↑(of (fun i => A i) 0) (GSemiring.natCast n + GradedMonoid.GOne.one) = ↑(of (fun i => A i) 0) (GSemiring.natCast n) + 1 [PROOFSTEP] rw [map_add] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance n : ℕ ⊢ ↑(of (fun i => A i) 0) (GSemiring.natCast n) + ↑(of (fun i => A i) 0) GradedMonoid.GOne.one = ↑(of (fun i => A i) 0) (GSemiring.natCast n) + 1 [PROOFSTEP] rfl [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A i : ι a : A i n : ℕ ⊢ ↑(of A i) a ^ n = ↑(of A (n • i)) (GradedMonoid.GMonoid.gnpow n a) [PROOFSTEP] induction' n with n n_ih [GOAL] case zero ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A i : ι a : A i ⊢ ↑(of A i) a ^ Nat.zero = ↑(of A (Nat.zero • i)) (GradedMonoid.GMonoid.gnpow Nat.zero a) [PROOFSTEP] exact of_eq_of_gradedMonoid_eq (pow_zero <| GradedMonoid.mk _ a).symm [GOAL] case succ ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A i : ι a : A i n : ℕ n_ih : ↑(of A i) a ^ n = ↑(of A (n • i)) (GradedMonoid.GMonoid.gnpow n a) ⊢ ↑(of A i) a ^ Nat.succ n = ↑(of A (Nat.succ n • i)) (GradedMonoid.GMonoid.gnpow (Nat.succ n) a) [PROOFSTEP] rw [pow_succ, n_ih, of_mul_of a] [GOAL] case succ ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A i : ι a : A i n : ℕ n_ih : ↑(of A i) a ^ n = ↑(of A (n • i)) (GradedMonoid.GMonoid.gnpow n a) ⊢ ↑(of A (i + n • i)) (GradedMonoid.GMul.mul a (GradedMonoid.GMonoid.gnpow n a)) = ↑(of A (Nat.succ n • i)) (GradedMonoid.GMonoid.gnpow (Nat.succ n) a) [PROOFSTEP] exact of_eq_of_gradedMonoid_eq (pow_succ (GradedMonoid.mk _ a) n).symm [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A α : Type u_3 l : List α fι : α → ι fA : (a : α) → A (fι a) ⊢ ↑(of A (List.dProdIndex l fι)) (List.dProd l fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) l) [PROOFSTEP] induction' l with head tail [GOAL] case nil ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A α : Type u_3 fι : α → ι fA : (a : α) → A (fι a) ⊢ ↑(of A (List.dProdIndex [] fι)) (List.dProd [] fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) []) [PROOFSTEP] simp only [List.map_nil, List.prod_nil, List.dProd_nil] [GOAL] case nil ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A α : Type u_3 fι : α → ι fA : (a : α) → A (fι a) ⊢ ↑(of A (List.dProdIndex [] fι)) GradedMonoid.GOne.one = 1 [PROOFSTEP] rfl [GOAL] case cons ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A α : Type u_3 fι : α → ι fA : (a : α) → A (fι a) head : α tail : List α tail_ih✝ : ↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail) ⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (List.dProd (head :: tail) fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) (head :: tail)) [PROOFSTEP] rename_i ih [GOAL] case cons ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A α : Type u_3 fι : α → ι fA : (a : α) → A (fι a) head : α tail : List α ih : ↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail) ⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (List.dProd (head :: tail) fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) (head :: tail)) [PROOFSTEP] simp only [List.map_cons, List.prod_cons, List.dProd_cons, ← ih] [GOAL] case cons ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A α : Type u_3 fι : α → ι fA : (a : α) → A (fι a) head : α tail : List α ih : ↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail) ⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (GradedMonoid.GMul.mul (fA head) (List.dProd tail fι fA)) = ↑(of A (fι head)) (fA head) * ↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) [PROOFSTEP] rw [DirectSum.of_mul_of (fA head)] [GOAL] case cons ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A α : Type u_3 fι : α → ι fA : (a : α) → A (fι a) head : α tail : List α ih : ↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail) ⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (GradedMonoid.GMul.mul (fA head) (List.dProd tail fι fA)) = ↑(of A (fι head + List.dProdIndex tail fι)) (GradedMonoid.GMul.mul (fA head) (List.dProd tail fι fA)) [PROOFSTEP] rfl [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A n : ℕ fι : Fin n → ι fA : (a : Fin n) → A (fι a) ⊢ List.prod (List.ofFn fun a => ↑(of A (fι a)) (fA a)) = ↑(of A (List.dProdIndex (List.finRange n) fι)) (List.dProd (List.finRange n) fι fA) [PROOFSTEP] rw [List.ofFn_eq_map, ofList_dProd] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i ⊢ a * a' = DFinsupp.sum a fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj) [PROOFSTEP] change mulHom _ a a' = _ -- Porting note: I have no idea how the proof from ml3 worked it used to be -- simpa only [mul_hom, to_add_monoid, dfinsupp.lift_add_hom_apply, dfinsupp.sum_add_hom_apply, -- add_monoid_hom.dfinsupp_sum_apply, flip_apply, add_monoid_hom.dfinsupp_sum_add_hom_apply], [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i ⊢ ↑(↑(mulHom fun i => A i) a) a' = DFinsupp.sum a fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj) [PROOFSTEP] rw [mulHom, toAddMonoid, DFinsupp.liftAddHom_apply, DFinsupp.sumAddHom_apply, AddMonoidHom.dfinsupp_sum_apply] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i ⊢ (DFinsupp.sum a fun a b => ↑(↑(AddMonoidHom.flip (toAddMonoid fun x => AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (a + x))) (gMulHom fun i => A i)))) b) a') = DFinsupp.sum a fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj) [PROOFSTEP] apply congrArg _ [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i ⊢ (fun a b => ↑(↑(AddMonoidHom.flip (toAddMonoid fun x => AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (a + x))) (gMulHom fun i => A i)))) b) a') = fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj) [PROOFSTEP] funext x [GOAL] case h ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i x : ι ⊢ (fun b => ↑(↑(AddMonoidHom.flip (toAddMonoid fun x_1 => AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (x + x_1))) (gMulHom fun i => A i)))) b) a') = fun ai => DFinsupp.sum a' fun j aj => ↑(of A (x + j)) (GradedMonoid.GMul.mul ai aj) [PROOFSTEP] simp_rw [flip_apply] [GOAL] case h ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i x : ι ⊢ (fun b => ↑(↑(toAddMonoid fun x_1 => AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (x + x_1))) (gMulHom fun i => A i))) a') b) = fun ai => DFinsupp.sum a' fun j aj => ↑(of A (x + j)) (GradedMonoid.GMul.mul ai aj) [PROOFSTEP] erw [DFinsupp.sumAddHom_apply] [GOAL] case h ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i x : ι ⊢ (fun b => ↑(DFinsupp.sum a' fun x_1 => ↑((fun x_2 => AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (x + x_2))) (gMulHom fun i => A i))) x_1)) b) = fun ai => DFinsupp.sum a' fun j aj => ↑(of A (x + j)) (GradedMonoid.GMul.mul ai aj) [PROOFSTEP] simp only [gMulHom, AddMonoidHom.dfinsupp_sum_apply, flip_apply, coe_comp, AddMonoidHom.coe_mk, ZeroHom.coe_mk, Function.comp_apply, AddMonoidHom.compHom_apply_apply] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0) a a' : ⨁ (i : ι), A i ⊢ a * a' = ∑ ij in DFinsupp.support a ×ˢ DFinsupp.support a', ↑(of (fun i => (fun i => A i) i) (ij.fst + ij.snd)) (GradedMonoid.GMul.mul (↑a ij.fst) (↑a' ij.snd)) [PROOFSTEP] simp only [mul_eq_dfinsupp_sum, DFinsupp.sum, Finset.sum_product] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i ⊢ a * b = b * a [PROOFSTEP] suffices mulHom A = (mulHom A).flip by rw [← mulHom_apply, this, AddMonoidHom.flip_apply, mulHom_apply] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i this : mulHom A = AddMonoidHom.flip (mulHom A) ⊢ a * b = b * a [PROOFSTEP] rw [← mulHom_apply, this, AddMonoidHom.flip_apply, mulHom_apply] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i ⊢ mulHom A = AddMonoidHom.flip (mulHom A) [PROOFSTEP] apply addHom_ext [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i ⊢ ∀ (i : ι) (y : A i), ↑(mulHom A) (↑(of (fun i => A i) i) y) = ↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) i) y) [PROOFSTEP] intro ai ax [GOAL] case H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i ai : ι ax : A ai ⊢ ↑(mulHom A) (↑(of (fun i => A i) ai) ax) = ↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) ai) ax) [PROOFSTEP] apply addHom_ext [GOAL] case H.H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i ai : ι ax : A ai ⊢ ∀ (i : ι) (y : A i), ↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) i) y) = ↑(↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) i) y) [PROOFSTEP] intro bi bx [GOAL] case H.H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i ai : ι ax : A ai bi : ι bx : A bi ⊢ ↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx) = ↑(↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx) [PROOFSTEP] rw [AddMonoidHom.flip_apply, mulHom_of_of, mulHom_of_of] [GOAL] case H.H ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddCommMonoid ι inst✝ : GCommSemiring A a b : ⨁ (i : ι), A i ai : ι ax : A ai bi : ι bx : A bi ⊢ ↑(of A (ai + bi)) (GradedMonoid.GMul.mul ax bx) = ↑(of A (bi + ai)) (GradedMonoid.GMul.mul bx ax) [PROOFSTEP] exact of_eq_of_gradedMonoid_eq (GCommSemiring.mul_comm ⟨ai, ax⟩ ⟨bi, bx⟩) [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : AddZeroClass ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A i : ι ⊢ SMulWithZero (A 0) (A i) [PROOFSTEP] letI := SMulWithZero.compHom (⨁ i, A i) (of A 0).toZeroHom [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : AddZeroClass ι inst✝¹ : (i : ι) → AddCommMonoid (A i) inst✝ : GNonUnitalNonAssocSemiring A i : ι this : SMulWithZero (A 0) (⨁ (i : ι), A i) := SMulWithZero.compHom (⨁ (i : ι), A i) ↑(of A 0) ⊢ SMulWithZero (A 0) (A i) [PROOFSTEP] exact Function.Injective.smulWithZero (of A i).toZeroHom DFinsupp.single_injective (of_zero_smul A) [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a : A 0 ⊢ ↑(of A 0) (a ^ 0) = ↑(of A 0) a ^ 0 [PROOFSTEP] rw [pow_zero, pow_zero, DirectSum.of_zero_one] -- Porting note: Lean doesn't think this terminates if we only use `of_zero_pow` alone [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (A i) inst✝¹ : AddMonoid ι inst✝ : GSemiring A a : A 0 n : ℕ ⊢ ↑(of A 0) (a ^ (n + 1)) = ↑(of A 0) a ^ (n + 1) [PROOFSTEP] rw [pow_succ, pow_succ, of_zero_mul, of_zero_pow _ n] [GOAL] ι : Type u_1 inst✝³ : DecidableEq ι A : ι → Type u_2 inst✝² : (i : ι) → AddCommGroup (A i) inst✝¹ : AddMonoid ι inst✝ : GRing A n : ℤ ⊢ ↑(of A 0) ↑n = ↑n [PROOFSTEP] rfl [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f ⊢ ↑(toAddMonoid f) 1 = 1 [PROOFSTEP] change (toAddMonoid f) (of _ 0 _) = 1 [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f ⊢ ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1 [PROOFSTEP] rw [toAddMonoid_of] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f ⊢ ↑(f 0) GradedMonoid.GOne.one = 1 [PROOFSTEP] exact hone [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f ⊢ ∀ (x y : ⨁ (i : ι), A i), OneHom.toFun { toFun := ↑(toAddMonoid f), map_one' := (_ : ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1) } (x * y) = OneHom.toFun { toFun := ↑(toAddMonoid f), map_one' := (_ : ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1) } x * OneHom.toFun { toFun := ↑(toAddMonoid f), map_one' := (_ : ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1) } y [PROOFSTEP] rw [(toAddMonoid f).map_mul_iff] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f ⊢ AddMonoidHom.compr₂ AddMonoidHom.mul (toAddMonoid f) = AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (toAddMonoid f)) (toAddMonoid f) [PROOFSTEP] refine DirectSum.addHom_ext' (fun xi ↦ AddMonoidHom.ext (fun xv ↦ ?_)) [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f xi : ι xv : A xi ⊢ ↑(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (toAddMonoid f)) (of (fun i => A i) xi)) xv = ↑(AddMonoidHom.comp (AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (toAddMonoid f)) (toAddMonoid f)) (of (fun i => A i) xi)) xv [PROOFSTEP] refine DirectSum.addHom_ext' (fun yi ↦ AddMonoidHom.ext (fun yv ↦ ?_)) [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f xi : ι xv : A xi yi : ι yv : A yi ⊢ ↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (toAddMonoid f)) (of (fun i => A i) xi)) xv) (of (fun i => A i) yi)) yv = ↑(AddMonoidHom.comp (↑(AddMonoidHom.comp (AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (toAddMonoid f)) (toAddMonoid f)) (of (fun i => A i) xi)) xv) (of (fun i => A i) yi)) yv [PROOFSTEP] show toAddMonoid f (of A xi xv * of A yi yv) = toAddMonoid f (of A xi xv) * toAddMonoid f (of A yi yv) [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f xi : ι xv : A xi yi : ι yv : A yi ⊢ ↑(toAddMonoid f) (↑(of A xi) xv * ↑(of A yi) yv) = ↑(toAddMonoid f) (↑(of A xi) xv) * ↑(toAddMonoid f) (↑(of A yi) yv) [PROOFSTEP] simp_rw [of_mul_of, toAddMonoid_of] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : (i : ι) → A i →+ R hone : ↑(f 0) GradedMonoid.GOne.one = 1 hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f xi : ι xv : A xi yi : ι yv : A yi ⊢ ↑(f (xi + yi)) (GradedMonoid.GMul.mul xv yv) = ↑(f xi) xv * ↑(f yi) yv [PROOFSTEP] exact hmul _ _ [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R ⊢ {i : ι} → A i →+ R [PROOFSTEP] intro i [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R i : ι ⊢ A i →+ R [PROOFSTEP] exact (F : (⨁ i, A i) →+ R).comp (of _ i) [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R ⊢ ↑(AddMonoidHom.comp (↑F) (of A 0)) GradedMonoid.GOne.one = 1 [PROOFSTEP] simp only [AddMonoidHom.comp_apply] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R ⊢ ↑↑F (↑(of A 0) GradedMonoid.GOne.one) = 1 [PROOFSTEP] rw [← F.map_one] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R ⊢ ↑↑F (↑(of A 0) GradedMonoid.GOne.one) = ↑F 1 [PROOFSTEP] rfl [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R ⊢ ∀ {i j : ι} (ai : A i) (aj : A j), ↑(AddMonoidHom.comp (↑F) (of A (i + j))) (GradedMonoid.GMul.mul ai aj) = ↑(AddMonoidHom.comp (↑F) (of A i)) ai * ↑(AddMonoidHom.comp (↑F) (of A j)) aj [PROOFSTEP] intros i j ai aj [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R i j : ι ai : A i aj : A j ⊢ ↑(AddMonoidHom.comp (↑F) (of A (i + j))) (GradedMonoid.GMul.mul ai aj) = ↑(AddMonoidHom.comp (↑F) (of A i)) ai * ↑(AddMonoidHom.comp (↑F) (of A j)) aj [PROOFSTEP] simp [AddMonoidHom.comp_apply] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R i j : ι ai : A i aj : A j ⊢ ↑F (↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj)) = ↑F (↑(of A i) ai) * ↑F (↑(of A j) aj) [PROOFSTEP] rw [← F.map_mul (of A i ai), of_mul_of ai] [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : { f // ↑f GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), ↑f (GradedMonoid.GMul.mul ai aj) = ↑f ai * ↑f aj } ⊢ (fun F => { val := fun {i} => AddMonoidHom.comp (↑F) (of A i), property := (_ : (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) = (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai * (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) }) ((fun f => toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1) (_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj)) f) = f [PROOFSTEP] ext xi xv [GOAL] case a.h.h ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R f : { f // ↑f GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), ↑f (GradedMonoid.GMul.mul ai aj) = ↑f ai * ↑f aj } xi : ι xv : A xi ⊢ ↑↑((fun F => { val := fun {i} => AddMonoidHom.comp (↑F) (of A i), property := (_ : (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) = (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai * (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) }) ((fun f => toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1) (_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj)) f)) xv = ↑↑f xv [PROOFSTEP] exact toAddMonoid_of (fun _ => f.1) xi xv [GOAL] ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R ⊢ (fun f => toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1) (_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj)) ((fun F => { val := fun {i} => AddMonoidHom.comp (↑F) (of A i), property := (_ : (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) = (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai * (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) }) F) = F [PROOFSTEP] apply RingHom.coe_addMonoidHom_injective [GOAL] case a ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R ⊢ (fun f => ↑f) ((fun f => toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1) (_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj)) ((fun F => { val := fun {i} => AddMonoidHom.comp (↑F) (of A i), property := (_ : (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) = (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai * (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) }) F)) = (fun f => ↑f) F [PROOFSTEP] refine DirectSum.addHom_ext' (fun xi ↦ AddMonoidHom.ext (fun xv ↦ ?_)) [GOAL] case a ι : Type u_1 inst✝⁴ : DecidableEq ι A : ι → Type u_2 R : Type u_3 inst✝³ : (i : ι) → AddCommMonoid (A i) inst✝² : AddMonoid ι inst✝¹ : GSemiring A inst✝ : Semiring R F : (⨁ (i : ι), A i) →+* R xi : ι xv : A xi ⊢ ↑(AddMonoidHom.comp ((fun f => ↑f) ((fun f => toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1) (_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj)) ((fun F => { val := fun {i} => AddMonoidHom.comp (↑F) (of A i), property := (_ : (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) = (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai * (↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) }) F))) (of (fun i => A i) xi)) xv = ↑(AddMonoidHom.comp ((fun f => ↑f) F) (of (fun i => A i) xi)) xv [PROOFSTEP] simp only [RingHom.coe_addMonoidHom_mk, DirectSum.toAddMonoid_of, AddMonoidHom.mk_coe, AddMonoidHom.comp_apply, toSemiring_coe_addMonoidHom] [GOAL] ι : Type u_1 inst✝² : DecidableEq ι R : Type u_2 inst✝¹ : AddMonoid ι inst✝ : Semiring R i j : ι a b : R ⊢ ↑(of (fun x => R) i) a * ↑(of (fun i => R) j) b = ↑(of (fun i => R) (i + j)) (a * b) [PROOFSTEP] rw [DirectSum.of_mul_of, Mul.gMul_mul]
{"mathlib_filename": "Mathlib.Algebra.DirectSum.Ring", "llama_tokens": 21896}
[GOAL] R : Type u_1 L : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M x y z : L ⊢ ↑(↑(traceForm R L M) ⁅x, y⁆) z = ↑(↑(traceForm R L M) x) ⁅y, z⁆ [PROOFSTEP] calc traceForm R L M ⁅x, y⁆ z = trace R _ (φ ⁅x, y⁆ ∘ₗ φ z) := by simp only [traceForm_apply_apply] _ = trace R _ ((φ x * φ y - φ y * φ x) * φ z) := ?_ _ = trace R _ (φ x * (φ y * φ z)) - trace R _ (φ y * (φ x * φ z)) := ?_ _ = trace R _ (φ x * (φ y * φ z)) - trace R _ (φ x * (φ z * φ y)) := ?_ _ = traceForm R L M x ⁅y, z⁆ := ?_ [GOAL] R : Type u_1 L : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M x y z : L ⊢ ↑(↑(traceForm R L M) ⁅x, y⁆) z = ↑(trace R M) (LinearMap.comp (↑φ ⁅x, y⁆) (↑φ z)) [PROOFSTEP] simp only [traceForm_apply_apply] [GOAL] case calc_1 R : Type u_1 L : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M x y z : L ⊢ ↑(trace R M) (LinearMap.comp (↑φ ⁅x, y⁆) (↑φ z)) = ↑(trace R M) ((↑φ x * ↑φ y - ↑φ y * ↑φ x) * ↑φ z) [PROOFSTEP] simp only [LieHom.map_lie, Ring.lie_def, ← LinearMap.mul_eq_comp] [GOAL] case calc_2 R : Type u_1 L : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M x y z : L ⊢ ↑(trace R M) ((↑φ x * ↑φ y - ↑φ y * ↑φ x) * ↑φ z) = ↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ y * (↑φ x * ↑φ z)) [PROOFSTEP] simp only [sub_mul, mul_sub, map_sub, mul_assoc] [GOAL] case calc_3 R : Type u_1 L : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M x y z : L ⊢ ↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ y * (↑φ x * ↑φ z)) = ↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ x * (↑φ z * ↑φ y)) [PROOFSTEP] simp only [LinearMap.trace_mul_cycle' R (φ x) (φ z) (φ y)] [GOAL] case calc_4 R : Type u_1 L : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M x y z : L ⊢ ↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ x * (↑φ z * ↑φ y)) = ↑(↑(traceForm R L M) x) ⁅y, z⁆ [PROOFSTEP] simp only [traceForm_apply_apply, LieHom.map_lie, Ring.lie_def, mul_sub, map_sub, ← LinearMap.mul_eq_comp]
{"mathlib_filename": "Mathlib.Algebra.Lie.Killing", "llama_tokens": 1612}
[GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B ⊢ PushoutCocone f g [PROOFSTEP] letI := RingHom.toAlgebra f [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this : Algebra ↑R ↑A := RingHom.toAlgebra f ⊢ PushoutCocone f g [PROOFSTEP] letI := RingHom.toAlgebra g [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ PushoutCocone f g [PROOFSTEP] fapply Limits.PushoutCocone.mk [GOAL] case W R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ CommRingCat case inl R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ A ⟶ ?W case inr R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ B ⟶ ?W case eq R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ f ≫ ?inl = g ≫ ?inr [PROOFSTEP] show CommRingCat [GOAL] case W R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ CommRingCat case inl R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ A ⟶ let_fun this := ?W; this case inr R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ B ⟶ let_fun this := ?W; this case eq R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ f ≫ ?inl = g ≫ ?inr [PROOFSTEP] exact CommRingCat.of (A ⊗[R] B) [GOAL] case inl R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ A ⟶ let_fun this := of (↑A ⊗[↑R] ↑B); this case inr R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ B ⟶ let_fun this := of (↑A ⊗[↑R] ↑B); this case eq R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ f ≫ ?inl = g ≫ ?inr [PROOFSTEP] show A ⟶ _ [GOAL] case inl R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ A ⟶ let_fun this := of (↑A ⊗[↑R] ↑B); this case inr R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ B ⟶ let_fun this := of (↑A ⊗[↑R] ↑B); this case eq R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ (f ≫ let_fun this := ?inl; this) = g ≫ ?inr [PROOFSTEP] exact Algebra.TensorProduct.includeLeftRingHom [GOAL] case inr R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ B ⟶ let_fun this := of (↑A ⊗[↑R] ↑B); this case eq R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ (f ≫ let_fun this := Algebra.TensorProduct.includeLeftRingHom; this) = g ≫ ?inr [PROOFSTEP] show B ⟶ _ [GOAL] case inr R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ B ⟶ let_fun this := of (↑A ⊗[↑R] ↑B); this case eq R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ (f ≫ let_fun this := Algebra.TensorProduct.includeLeftRingHom; this) = g ≫ let_fun this := ?inr; this [PROOFSTEP] exact Algebra.TensorProduct.includeRight.toRingHom [GOAL] case eq R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ (f ≫ let_fun this := Algebra.TensorProduct.includeLeftRingHom; this) = g ≫ let_fun this := ↑Algebra.TensorProduct.includeRight; this [PROOFSTEP] ext r [GOAL] case eq.w R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g r : (forget CommRingCat).obj R ⊢ ↑(f ≫ let_fun this := Algebra.TensorProduct.includeLeftRingHom; this) r = ↑(g ≫ let_fun this := ↑Algebra.TensorProduct.includeRight; this) r [PROOFSTEP] trans algebraMap R (A ⊗[R] B) r [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g r : (forget CommRingCat).obj R ⊢ ↑(f ≫ let_fun this := Algebra.TensorProduct.includeLeftRingHom; this) r = ↑(algebraMap (↑R) (↑A ⊗[↑R] ↑B)) r [PROOFSTEP] exact Algebra.TensorProduct.includeLeft.commutes (R := R) r [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g r : (forget CommRingCat).obj R ⊢ ↑(algebraMap (↑R) (↑A ⊗[↑R] ↑B)) r = ↑(g ≫ let_fun this := ↑Algebra.TensorProduct.includeRight; this) r [PROOFSTEP] exact (Algebra.TensorProduct.includeRight.commutes (R := R) r).symm [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B ⊢ A ⟶ (pushoutCocone f g).pt [PROOFSTEP] letI := f.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this : Algebra ↑R ↑A := RingHom.toAlgebra f ⊢ A ⟶ (pushoutCocone f g).pt [PROOFSTEP] letI := g.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ A ⟶ (pushoutCocone f g).pt [PROOFSTEP] exact Algebra.TensorProduct.includeLeftRingHom [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B ⊢ B ⟶ (pushoutCocone f g).pt [PROOFSTEP] letI := f.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this : Algebra ↑R ↑A := RingHom.toAlgebra f ⊢ B ⟶ (pushoutCocone f g).pt [PROOFSTEP] letI := g.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ B ⟶ (pushoutCocone f g).pt [PROOFSTEP] exact Algebra.TensorProduct.includeRight.toRingHom [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B ⊢ CommRingCat [PROOFSTEP] letI := f.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this : Algebra ↑R ↑A := RingHom.toAlgebra f ⊢ CommRingCat [PROOFSTEP] letI := g.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ CommRingCat [PROOFSTEP] exact CommRingCat.of (A ⊗[R] B) [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] letI := RingHom.toAlgebra f [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this : Algebra ↑R ↑A := RingHom.toAlgebra f ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] letI := RingHom.toAlgebra g [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] letI := RingHom.toAlgebra (f ≫ s.inl) [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] let f' : A →ₐ[R] s.pt := { s.inl with commutes' := fun r => rfl } [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] let g' : B →ₐ[R] s.pt := { s.inr with commutes' := fun r => by change (g ≫ s.inr) r = (f ≫ s.inl) r congr 1 exact (s.ι.naturality Limits.WalkingSpan.Hom.snd).trans (s.ι.naturality Limits.WalkingSpan.Hom.fst).symm } -- Porting note : Lean has forget why `A ⊗[R] B` makes sense [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } src✝ : B ⟶ s.pt := PushoutCocone.inr s r : ↑R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }) (↑(algebraMap ↑R ↑B) r) = ↑(algebraMap ↑R ↑s.pt) r [PROOFSTEP] change (g ≫ s.inr) r = (f ≫ s.inl) r [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } src✝ : B ⟶ s.pt := PushoutCocone.inr s r : ↑R ⊢ ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r [PROOFSTEP] congr 1 [GOAL] case e_a R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } src✝ : B ⟶ s.pt := PushoutCocone.inr s r : ↑R ⊢ g ≫ PushoutCocone.inr s = f ≫ PushoutCocone.inl s [PROOFSTEP] exact (s.ι.naturality Limits.WalkingSpan.Hom.snd).trans (s.ι.naturality Limits.WalkingSpan.Hom.fst).symm [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] letI : Algebra R A := f.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this : Algebra ↑R ↑A := RingHom.toAlgebra f ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] letI : Algebra R B := g.toAlgebra [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g this✝¹ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] letI : Algebra R (pushoutCocone f g).pt := show Algebra R (A ⊗[R] B) by infer_instance -- The factor map is a ⊗ b ↦ f(a) * g(b). [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g this✝¹ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f this : Algebra ↑R ↑B := RingHom.toAlgebra g ⊢ Algebra (↑R) (↑A ⊗[↑R] ↑B) [PROOFSTEP] infer_instance -- The factor map is a ⊗ b ↦ f(a) * g(b). [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this ⊢ { l // PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l } [PROOFSTEP] use AlgHom.toRingHom (Algebra.TensorProduct.productMap f' g') [GOAL] case property R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this ⊢ PushoutCocone.inl (pushoutCocone f g) ≫ ↑(Algebra.TensorProduct.productMap f' g') = PushoutCocone.inl s ∧ PushoutCocone.inr (pushoutCocone f g) ≫ ↑(Algebra.TensorProduct.productMap f' g') = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s → PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = ↑(Algebra.TensorProduct.productMap f' g') [PROOFSTEP] simp only [pushoutCocone_inl, pushoutCocone_inr] [GOAL] case property R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this ⊢ Algebra.TensorProduct.includeLeftRingHom ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) = PushoutCocone.inl s ∧ ↑Algebra.TensorProduct.includeRight ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, Algebra.TensorProduct.includeLeftRingHom ≫ m = PushoutCocone.inl s → ↑Algebra.TensorProduct.includeRight ≫ m = PushoutCocone.inr s → m = ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) [PROOFSTEP] constructor [GOAL] case property.left R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this ⊢ Algebra.TensorProduct.includeLeftRingHom ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) = PushoutCocone.inl s [PROOFSTEP] ext x [GOAL] case property.left.w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj A ⊢ ↑(Algebra.TensorProduct.includeLeftRingHom ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })) x = ↑(PushoutCocone.inl s) x [PROOFSTEP] letI : Semiring ((forget CommRingCat).obj A) := A.str.toSemiring [GOAL] case property.left.w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj A this : Semiring ((forget CommRingCat).obj A) := Ring.toSemiring ⊢ ↑(Algebra.TensorProduct.includeLeftRingHom ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })) x = ↑(PushoutCocone.inl s) x [PROOFSTEP] letI : Algebra R ((forget CommRingCat).obj A) := show Algebra R A by infer_instance [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj A this : Semiring ((forget CommRingCat).obj A) := Ring.toSemiring ⊢ Algebra ↑R ↑A [PROOFSTEP] infer_instance [GOAL] case property.left.w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁶ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁵ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝⁴ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g this✝¹ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj A this✝ : Semiring ((forget CommRingCat).obj A) := Ring.toSemiring this : Algebra (↑R) ((forget CommRingCat).obj A) := let_fun this := inferInstance; this ⊢ ↑(Algebra.TensorProduct.includeLeftRingHom ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })) x = ↑(PushoutCocone.inl s) x [PROOFSTEP] exact Algebra.TensorProduct.productMap_left_apply _ _ x [GOAL] case property.right R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this ⊢ ↑Algebra.TensorProduct.includeRight ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) = PushoutCocone.inr s ∧ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, Algebra.TensorProduct.includeLeftRingHom ≫ m = PushoutCocone.inl s → ↑Algebra.TensorProduct.includeRight ≫ m = PushoutCocone.inr s → m = ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) [PROOFSTEP] constructor [GOAL] case property.right.left R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this ⊢ ↑Algebra.TensorProduct.includeRight ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) = PushoutCocone.inr s [PROOFSTEP] ext x [GOAL] case property.right.left.w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj B ⊢ ↑(↑Algebra.TensorProduct.includeRight ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })) x = ↑(PushoutCocone.inr s) x [PROOFSTEP] letI : Semiring ((forget CommRingCat).obj B) := B.str.toSemiring [GOAL] case property.right.left.w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj B this : Semiring ((forget CommRingCat).obj B) := Ring.toSemiring ⊢ ↑(↑Algebra.TensorProduct.includeRight ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })) x = ↑(PushoutCocone.inr s) x [PROOFSTEP] letI : Algebra R ((forget CommRingCat).obj B) := show Algebra R B by infer_instance [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj B this : Semiring ((forget CommRingCat).obj B) := Ring.toSemiring ⊢ Algebra ↑R ↑B [PROOFSTEP] infer_instance [GOAL] case property.right.left.w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁶ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁵ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝⁴ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g this✝¹ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this x : (forget CommRingCat).obj B this✝ : Semiring ((forget CommRingCat).obj B) := Ring.toSemiring this : Algebra (↑R) ((forget CommRingCat).obj B) := let_fun this := inferInstance; this ⊢ ↑(↑Algebra.TensorProduct.includeRight ≫ ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })) x = ↑(PushoutCocone.inr s) x [PROOFSTEP] exact Algebra.TensorProduct.productMap_right_apply _ _ x [GOAL] case property.right.right R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this ⊢ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt}, Algebra.TensorProduct.includeLeftRingHom ≫ m = PushoutCocone.inl s → ↑Algebra.TensorProduct.includeRight ≫ m = PushoutCocone.inr s → m = ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) [PROOFSTEP] intro h eq1 eq2 [GOAL] case property.right.right R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s ⊢ h = ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) [PROOFSTEP] let h' : A ⊗[R] B →ₐ[R] s.pt := { h with commutes' := fun r => by change h (f r ⊗ₜ[R] 1) = s.inl (f r) rw [← eq1] simp only [pushoutCocone_pt, coe_of, AlgHom.toRingHom_eq_coe] rfl } [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s r : ↑R ⊢ OneHom.toFun (↑↑{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }) (↑(algebraMap (↑R) (↑A ⊗[↑R] ↑B)) r) = ↑(algebraMap ↑R ↑s.pt) r [PROOFSTEP] change h (f r ⊗ₜ[R] 1) = s.inl (f r) [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s r : ↑R ⊢ ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r) [PROOFSTEP] rw [← eq1] [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s r : ↑R ⊢ ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(Algebra.TensorProduct.includeLeftRingHom ≫ h) (↑f r) [PROOFSTEP] simp only [pushoutCocone_pt, coe_of, AlgHom.toRingHom_eq_coe] [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s r : ↑R ⊢ ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(Algebra.TensorProduct.includeLeftRingHom ≫ h) (↑f r) [PROOFSTEP] rfl [GOAL] case property.right.right R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } ⊢ h = ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) [PROOFSTEP] suffices h' = Algebra.TensorProduct.productMap f' g' by ext x change h' x = Algebra.TensorProduct.productMap f' g' x rw [this] [GOAL] R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } this : h' = Algebra.TensorProduct.productMap f' g' ⊢ h = ↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) [PROOFSTEP] ext x [GOAL] case w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } this : h' = Algebra.TensorProduct.productMap f' g' x : (forget CommRingCat).obj (pushoutCocone f g).pt ⊢ ↑h x = ↑↑(Algebra.TensorProduct.productMap { toRingHom := { toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) }) (↑(algebraMap ↑R ↑A) r)) } { toRingHom := { toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) = OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) x [PROOFSTEP] change h' x = Algebra.TensorProduct.productMap f' g' x [GOAL] case w R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝ : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } this : h' = Algebra.TensorProduct.productMap f' g' x : (forget CommRingCat).obj (pushoutCocone f g).pt ⊢ ↑h' x = ↑(Algebra.TensorProduct.productMap f' g') x [PROOFSTEP] rw [this] [GOAL] case property.right.right R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } ⊢ h' = Algebra.TensorProduct.productMap f' g' [PROOFSTEP] apply Algebra.TensorProduct.ext' [GOAL] case property.right.right.H R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } ⊢ ∀ (a : ↑A) (b : ↑B), ↑h' (a ⊗ₜ[↑R] b) = ↑(Algebra.TensorProduct.productMap f' g') (a ⊗ₜ[↑R] b) [PROOFSTEP] intro a b [GOAL] case property.right.right.H R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } a : ↑A b : ↑B ⊢ ↑h' (a ⊗ₜ[↑R] b) = ↑(Algebra.TensorProduct.productMap f' g') (a ⊗ₜ[↑R] b) [PROOFSTEP] simp only [PushoutCocone.ι_app_left, pushoutCocone_pt, coe_of, RingHom.toMonoidHom_eq_coe, AlgHom.coe_mk, RingHom.coe_mk, MonoidHom.coe_coe, ← eq1, AlgHom.toRingHom_eq_coe, PushoutCocone.ι_app_right, ← eq2, Algebra.TensorProduct.productMap_apply_tmul] [GOAL] case property.right.right.H R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } a : ↑A b : ↑B ⊢ ↑h (a ⊗ₜ[↑R] b) = ↑(Algebra.TensorProduct.includeLeftRingHom ≫ h) a * ↑(↑Algebra.TensorProduct.includeRight ≫ h) b [PROOFSTEP] change _ = h (a ⊗ₜ 1) * h (1 ⊗ₜ b) [GOAL] case property.right.right.H R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } a : ↑A b : ↑B ⊢ ↑h (a ⊗ₜ[↑R] b) = ↑h (a ⊗ₜ[↑R] 1) * ↑h (1 ⊗ₜ[↑R] b) [PROOFSTEP] rw [← h.map_mul, Algebra.TensorProduct.tmul_mul_tmul, mul_one, one_mul] [GOAL] case property.right.right.H R A B : CommRingCat f : R ⟶ A g : R ⟶ B s : PushoutCocone f g this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s) f' : ↑A →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inl s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r) = OneHom.toFun (↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }) (↑(algebraMap ↑R ↑A) r)) } g' : ↑B →ₐ[↑R] ↑s.pt := let src := PushoutCocone.inr s; { toRingHom := { toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0), map_add' := (_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) }, commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) } this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g this : Algebra ↑R ↑(pushoutCocone f g).pt := let_fun this := inferInstance; this h : (pushoutCocone f g).pt ⟶ s.pt eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt := { toRingHom := { toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0), map_add' := (_ : ∀ (x y : ↑(pushoutCocone f g).pt), OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) }, commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) } a : ↑A b : ↑B ⊢ ↑h (a ⊗ₜ[↑R] b) = ↑h (a ⊗ₜ[↑R] b) [PROOFSTEP] rfl [GOAL] ⊢ IsTerminal (of PUnit) [PROOFSTEP] refine IsTerminal.ofUnique (h := fun X => ⟨⟨⟨⟨1, rfl⟩, fun _ _ => rfl⟩, ?_, ?_⟩, ?_⟩) [GOAL] case refine_1 X : CommRingCat ⊢ OneHom.toFun (↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) }, map_mul' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) = OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) }) 0 = 0 [PROOFSTEP] dsimp [GOAL] case refine_2 X : CommRingCat ⊢ ∀ (x y : ↑X), OneHom.toFun (↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) }, map_mul' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) = OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) }, map_mul' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) = OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) }) x + OneHom.toFun (↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) }, map_mul' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) = OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) }) y [PROOFSTEP] intros [GOAL] case refine_2 X : CommRingCat x✝ y✝ : ↑X ⊢ OneHom.toFun (↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) }, map_mul' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) = OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) }) (x✝ + y✝) = OneHom.toFun (↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) }, map_mul' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) = OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) }) x✝ + OneHom.toFun (↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) }, map_mul' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) = OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) }) y✝ [PROOFSTEP] dsimp [GOAL] case refine_3 X : CommRingCat ⊢ ∀ (a : X ⟶ of PUnit), a = default [PROOFSTEP] intros f [GOAL] case refine_3 X : CommRingCat f : X ⟶ of PUnit ⊢ f = default [PROOFSTEP] ext [GOAL] case refine_3.w X : CommRingCat f : X ⟶ of PUnit x✝ : (forget CommRingCat).obj X ⊢ ↑f x✝ = ↑default x✝ [PROOFSTEP] rfl [GOAL] ⊢ HasStrictTerminalObjects CommRingCat [PROOFSTEP] apply hasStrictTerminalObjects_of_terminal_is_strict (CommRingCat.of PUnit) [GOAL] ⊢ ∀ (A : CommRingCat) (f : of PUnit ⟶ A), IsIso f [PROOFSTEP] intro X f [GOAL] X : CommRingCat f : of PUnit ⟶ X ⊢ IsIso f [PROOFSTEP] refine ⟨⟨⟨1, rfl, fun _ _ => rfl⟩, by ext; rfl, ?_⟩⟩ [GOAL] X : CommRingCat f : of PUnit ⟶ X ⊢ f ≫ { toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0), map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } = 𝟙 (of PUnit) [PROOFSTEP] ext [GOAL] case w X : CommRingCat f : of PUnit ⟶ X x✝ : (forget CommRingCat).obj (of PUnit) ⊢ ↑(f ≫ { toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0), map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) }) x✝ = ↑(𝟙 (of PUnit)) x✝ [PROOFSTEP] rfl [GOAL] X : CommRingCat f : of PUnit ⟶ X ⊢ { toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0), map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫ f = 𝟙 X [PROOFSTEP] ext x [GOAL] case w X : CommRingCat f : of PUnit ⟶ X x : (forget CommRingCat).obj X ⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0), map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫ f) x = ↑(𝟙 X) x [PROOFSTEP] have e : (0 : X) = 1 := by rw [← f.map_one, ← f.map_zero] congr [GOAL] X : CommRingCat f : of PUnit ⟶ X x : (forget CommRingCat).obj X ⊢ 0 = 1 [PROOFSTEP] rw [← f.map_one, ← f.map_zero] [GOAL] X : CommRingCat f : of PUnit ⟶ X x : (forget CommRingCat).obj X ⊢ ↑f 0 = ↑f 1 [PROOFSTEP] congr [GOAL] case w X : CommRingCat f : of PUnit ⟶ X x : (forget CommRingCat).obj X e : 0 = 1 ⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0), map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫ f) x = ↑(𝟙 X) x [PROOFSTEP] replace e : 0 * x = 1 * x := congr_arg (· * x) e [GOAL] case w X : CommRingCat f : of PUnit ⟶ X x : (forget CommRingCat).obj X e : 0 * x = 1 * x ⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0), map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫ f) x = ↑(𝟙 X) x [PROOFSTEP] rw [one_mul, zero_mul, ← f.map_zero] at e [GOAL] case w X : CommRingCat f : of PUnit ⟶ X x : (forget CommRingCat).obj X e : ↑f 0 = x ⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0), map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫ f) x = ↑(𝟙 X) x [PROOFSTEP] exact e [GOAL] X : CommRingCat hX : IsTerminal X ⊢ Subsingleton PUnit [PROOFSTEP] infer_instance [GOAL] A B : CommRingCat c : Cone (pair A B) j : Discrete WalkingPair ⊢ (fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right })) c ≫ NatTrans.app (prodFan A B).π j = NatTrans.app c.π j [PROOFSTEP] ext [GOAL] case w A B : CommRingCat c : Cone (pair A B) j : Discrete WalkingPair x✝ : (forget CommRingCat).obj c.pt ⊢ ↑((fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right })) c ≫ NatTrans.app (prodFan A B).π j) x✝ = ↑(NatTrans.app c.π j) x✝ [PROOFSTEP] rcases j with ⟨⟨⟩⟩ [GOAL] case w.mk.left A B : CommRingCat c : Cone (pair A B) x✝ : (forget CommRingCat).obj c.pt ⊢ ↑((fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right })) c ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.left }) x✝ = ↑(NatTrans.app c.π { as := WalkingPair.left }) x✝ [PROOFSTEP] simp only [pair_obj_left, prodFan_pt, BinaryFan.π_app_left, BinaryFan.π_app_right, FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply] [GOAL] case w.mk.right A B : CommRingCat c : Cone (pair A B) x✝ : (forget CommRingCat).obj c.pt ⊢ ↑((fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right })) c ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.right }) x✝ = ↑(NatTrans.app c.π { as := WalkingPair.right }) x✝ [PROOFSTEP] simp only [pair_obj_left, prodFan_pt, BinaryFan.π_app_left, BinaryFan.π_app_right, FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply] [GOAL] case w.mk.left A B : CommRingCat c : Cone (pair A B) x✝ : (forget CommRingCat).obj c.pt ⊢ ↑(RingHom.prod (BinaryFan.fst c) (BinaryFan.snd c) ≫ BinaryFan.fst (prodFan A B)) x✝ = ↑(BinaryFan.fst c) x✝ [PROOFSTEP] rfl [GOAL] case w.mk.right A B : CommRingCat c : Cone (pair A B) x✝ : (forget CommRingCat).obj c.pt ⊢ ↑(RingHom.prod (BinaryFan.fst c) (BinaryFan.snd c) ≫ BinaryFan.snd (prodFan A B)) x✝ = ↑(BinaryFan.snd c) x✝ [PROOFSTEP] rfl [GOAL] A B : CommRingCat s : Cone (pair A B) m : s.pt ⟶ (prodFan A B).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j ⊢ m = (fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right })) s [PROOFSTEP] ext x [GOAL] case w A B : CommRingCat s : Cone (pair A B) m : s.pt ⟶ (prodFan A B).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j x : (forget CommRingCat).obj s.pt ⊢ ↑m x = ↑((fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right })) s) x [PROOFSTEP] change m x = (BinaryFan.fst s x, BinaryFan.snd s x) [GOAL] case w A B : CommRingCat s : Cone (pair A B) m : s.pt ⟶ (prodFan A B).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j x : (forget CommRingCat).obj s.pt ⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x) [PROOFSTEP] have eq1 := congr_hom (h ⟨WalkingPair.left⟩) x [GOAL] case w A B : CommRingCat s : Cone (pair A B) m : s.pt ⟶ (prodFan A B).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j x : (forget CommRingCat).obj s.pt eq1 : ↑(m ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.left }) x = ↑(NatTrans.app s.π { as := WalkingPair.left }) x ⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x) [PROOFSTEP] have eq2 := congr_hom (h ⟨WalkingPair.right⟩) x [GOAL] case w A B : CommRingCat s : Cone (pair A B) m : s.pt ⟶ (prodFan A B).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j x : (forget CommRingCat).obj s.pt eq1 : ↑(m ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.left }) x = ↑(NatTrans.app s.π { as := WalkingPair.left }) x eq2 : ↑(m ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.right }) x = ↑(NatTrans.app s.π { as := WalkingPair.right }) x ⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x) [PROOFSTEP] dsimp at eq1 eq2 [GOAL] case w A B : CommRingCat s : Cone (pair A B) m : s.pt ⟶ (prodFan A B).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j x : (forget CommRingCat).obj s.pt eq1 : ↑(m ≫ BinaryFan.fst (prodFan A B)) x = ↑(BinaryFan.fst s) x eq2 : ↑(m ≫ BinaryFan.snd (prodFan A B)) x = ↑(BinaryFan.snd s) x ⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x) [PROOFSTEP] rw [← eq1, ← eq2] [GOAL] case w A B : CommRingCat s : Cone (pair A B) m : s.pt ⟶ (prodFan A B).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j x : (forget CommRingCat).obj s.pt eq1 : ↑(m ≫ BinaryFan.fst (prodFan A B)) x = ↑(BinaryFan.fst s) x eq2 : ↑(m ≫ BinaryFan.snd (prodFan A B)) x = ↑(BinaryFan.snd s) x ⊢ ↑m x = (↑(m ≫ BinaryFan.fst (prodFan A B)) x, ↑(m ≫ BinaryFan.snd (prodFan A B)) x) [PROOFSTEP] rfl [GOAL] A B : CommRingCat f g : A ⟶ B ⊢ ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ f = ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ g [PROOFSTEP] ext ⟨x, e⟩ [GOAL] case w.mk A B : CommRingCat f g : A ⟶ B x : ↑A e : x ∈ RingHom.eqLocus f g ⊢ ↑(ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ f) { val := x, property := e } = ↑(ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ g) { val := x, property := e } [PROOFSTEP] simpa using e [GOAL] A B : CommRingCat f g : A ⟶ B ⊢ IsLimit (equalizerFork f g) [PROOFSTEP] fapply Fork.IsLimit.mk' [GOAL] case create A B : CommRingCat f g : A ⟶ B ⊢ (s : Fork f g) → { l // l ≫ Fork.ι (equalizerFork f g) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = l } [PROOFSTEP] intro s [GOAL] case create A B : CommRingCat f g : A ⟶ B s : Fork f g ⊢ { l // l ≫ Fork.ι (equalizerFork f g) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = l } [PROOFSTEP] haveI : SubsemiringClass (Subring A) ((parallelPair f g).obj WalkingParallelPair.zero) := show SubsemiringClass (Subring A) A by infer_instance [GOAL] A B : CommRingCat f g : A ⟶ B s : Fork f g ⊢ SubsemiringClass (Subring ↑A) ↑A [PROOFSTEP] infer_instance [GOAL] case create A B : CommRingCat f g : A ⟶ B s : Fork f g this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero) ⊢ { l // l ≫ Fork.ι (equalizerFork f g) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = l } [PROOFSTEP] use s.ι.codRestrict _ fun x => (ConcreteCategory.congr_hom s.condition x : _) [GOAL] case property A B : CommRingCat f g : A ⟶ B s : Fork f g this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero) ⊢ RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g) (_ : ∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) ≫ Fork.ι (equalizerFork f g) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g) (_ : ∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) [PROOFSTEP] constructor [GOAL] case property.left A B : CommRingCat f g : A ⟶ B s : Fork f g this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero) ⊢ RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g) (_ : ∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) ≫ Fork.ι (equalizerFork f g) = Fork.ι s [PROOFSTEP] ext [GOAL] case property.left.w A B : CommRingCat f g : A ⟶ B s : Fork f g this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero) x✝ : (forget CommRingCat).obj (((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero) ⊢ ↑(RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g) (_ : ∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) ≫ Fork.ι (equalizerFork f g)) x✝ = ↑(Fork.ι s) x✝ [PROOFSTEP] rfl [GOAL] case property.right A B : CommRingCat f g : A ⟶ B s : Fork f g this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero) ⊢ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g) (_ : ∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) [PROOFSTEP] intro m hm [GOAL] case property.right A B : CommRingCat f g : A ⟶ B s : Fork f g this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero) m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero hm : m ≫ Fork.ι (equalizerFork f g) = Fork.ι s ⊢ m = RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g) (_ : ∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) [PROOFSTEP] exact RingHom.ext fun x => Subtype.ext <| ConcreteCategory.congr_hom hm x [GOAL] A B : CommRingCat f g : A ⟶ B ⊢ IsLocalRingHom (Fork.ι (equalizerFork f g)) [PROOFSTEP] constructor [GOAL] case map_nonunit A B : CommRingCat f g : A ⟶ B ⊢ ∀ (a : ↑(((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero)), IsUnit (↑(Fork.ι (equalizerFork f g)) a) → IsUnit a [PROOFSTEP] rintro ⟨a, h₁ : _ = _⟩ (⟨⟨x, y, h₃, h₄⟩, rfl : x = _⟩ : IsUnit a) [GOAL] case map_nonunit.mk.intro.mk A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x ⊢ IsUnit { val := x, property := h₁ } [PROOFSTEP] have : y ∈ RingHom.eqLocus f g := by apply (f.isUnit_map ⟨⟨x, y, h₃, h₄⟩, rfl⟩ : IsUnit (f x)).mul_left_inj.mp conv_rhs => rw [h₁] rw [← f.map_mul, ← g.map_mul, h₄, f.map_one, g.map_one] [GOAL] A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x ⊢ y ∈ RingHom.eqLocus f g [PROOFSTEP] apply (f.isUnit_map ⟨⟨x, y, h₃, h₄⟩, rfl⟩ : IsUnit (f x)).mul_left_inj.mp [GOAL] A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x ⊢ ↑f y * ↑f x = ↑g y * ↑f x [PROOFSTEP] conv_rhs => rw [h₁] [GOAL] A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x | ↑g y * ↑f x [PROOFSTEP] rw [h₁] [GOAL] A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x | ↑g y * ↑f x [PROOFSTEP] rw [h₁] [GOAL] A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x | ↑g y * ↑f x [PROOFSTEP] rw [h₁] [GOAL] A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x ⊢ ↑f y * ↑f x = ↑g y * ↑g x [PROOFSTEP] rw [← f.map_mul, ← g.map_mul, h₄, f.map_one, g.map_one] [GOAL] case map_nonunit.mk.intro.mk A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x this : y ∈ RingHom.eqLocus f g ⊢ IsUnit { val := x, property := h₁ } [PROOFSTEP] rw [isUnit_iff_exists_inv] [GOAL] case map_nonunit.mk.intro.mk A B : CommRingCat f g : A ⟶ B x y : ↑A h₃ : x * y = 1 h₄ : y * x = 1 h₁ : ↑f x = ↑g x this : y ∈ RingHom.eqLocus f g ⊢ ∃ b, { val := x, property := h₁ } * b = 1 [PROOFSTEP] exact ⟨⟨y, this⟩, Subtype.eq h₃⟩ [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPair ⥤ CommRingCat ⊢ IsLocalRingHom (limit.π F WalkingParallelPair.zero) [PROOFSTEP] have := limMap_π (diagramIsoParallelPair F).hom WalkingParallelPair.zero [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPair ⥤ CommRingCat this : limMap (diagramIsoParallelPair F).hom ≫ limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) WalkingParallelPair.zero = limit.π F WalkingParallelPair.zero ≫ NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero ⊢ IsLocalRingHom (limit.π F WalkingParallelPair.zero) [PROOFSTEP] rw [← IsIso.comp_inv_eq] at this [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPair ⥤ CommRingCat this : (limMap (diagramIsoParallelPair F).hom ≫ limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) WalkingParallelPair.zero) ≫ inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) = limit.π F WalkingParallelPair.zero ⊢ IsLocalRingHom (limit.π F WalkingParallelPair.zero) [PROOFSTEP] rw [← this] [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPair ⥤ CommRingCat this : (limMap (diagramIsoParallelPair F).hom ≫ limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) WalkingParallelPair.zero) ≫ inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) = limit.π F WalkingParallelPair.zero ⊢ IsLocalRingHom ((limMap (diagramIsoParallelPair F).hom ≫ limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) WalkingParallelPair.zero) ≫ inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero)) [PROOFSTEP] rw [← limit.isoLimitCone_hom_π ⟨_, equalizerForkIsLimit (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)⟩ WalkingParallelPair.zero] [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPair ⥤ CommRingCat this : (limMap (diagramIsoParallelPair F).hom ≫ limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) WalkingParallelPair.zero) ≫ inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) = limit.π F WalkingParallelPair.zero ⊢ IsLocalRingHom ((limMap (diagramIsoParallelPair F).hom ≫ (limit.isoLimitCone { cone := equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right), isLimit := equalizerForkIsLimit (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right) }).hom ≫ NatTrans.app { cone := equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right), isLimit := equalizerForkIsLimit (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right) }.cone.π WalkingParallelPair.zero) ≫ inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero)) [PROOFSTEP] change IsLocalRingHom ((lim.map _ ≫ _ ≫ (equalizerFork _ _).ι) ≫ _) [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPair ⥤ CommRingCat this : (limMap (diagramIsoParallelPair F).hom ≫ limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) WalkingParallelPair.zero) ≫ inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) = limit.π F WalkingParallelPair.zero ⊢ IsLocalRingHom ((lim.map (diagramIsoParallelPair F).hom ≫ (limit.isoLimitCone { cone := equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right), isLimit := equalizerForkIsLimit (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right) }).hom ≫ Fork.ι (equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))) ≫ inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero)) [PROOFSTEP] infer_instance [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPairᵒᵖ ⥤ CommRingCat ⊢ IsLocalRingHom (limit.π F (op one)) [PROOFSTEP] have : _ = limit.π F (walkingParallelPairOpEquiv.functor.obj _) := (limit.isoLimitCone_inv_π ⟨_, IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv⟩ WalkingParallelPair.zero : _) [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPairᵒᵖ ⥤ CommRingCat this : (limit.isoLimitCone { cone := Cone.whisker walkingParallelPairOpEquiv.functor (limit.cone F), isLimit := IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv }).inv ≫ limit.π (walkingParallelPairOpEquiv.functor ⋙ F) zero = limit.π F (walkingParallelPairOpEquiv.functor.obj zero) ⊢ IsLocalRingHom (limit.π F (op one)) [PROOFSTEP] erw [← this] [GOAL] A B : CommRingCat f g : A ⟶ B F : WalkingParallelPairᵒᵖ ⥤ CommRingCat this : (limit.isoLimitCone { cone := Cone.whisker walkingParallelPairOpEquiv.functor (limit.cone F), isLimit := IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv }).inv ≫ limit.π (walkingParallelPairOpEquiv.functor ⋙ F) zero = limit.π F (walkingParallelPairOpEquiv.functor.obj zero) ⊢ IsLocalRingHom ((limit.isoLimitCone { cone := Cone.whisker walkingParallelPairOpEquiv.functor (limit.cone F), isLimit := IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv }).inv ≫ limit.π (walkingParallelPairOpEquiv.functor ⋙ F) zero) [PROOFSTEP] infer_instance [GOAL] A B C : CommRingCat f : A ⟶ C g : B ⟶ C ⊢ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫ f = ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫ g [PROOFSTEP] ext ⟨x, e⟩ [GOAL] case w.mk A B C : CommRingCat f : A ⟶ C g : B ⟶ C x : ↑A × ↑B e : x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) ⊢ ↑(ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫ f) { val := x, property := e } = ↑(ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫ g) { val := x, property := e } [PROOFSTEP] simpa [CommRingCat.ofHom] using e [GOAL] A B C : CommRingCat f : A ⟶ C g : B ⟶ C ⊢ IsLimit (pullbackCone f g) [PROOFSTEP] fapply PullbackCone.IsLimit.mk [GOAL] case lift A B C : CommRingCat f : A ⟶ C g : B ⟶ C ⊢ (s : PullbackCone f g) → s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } [PROOFSTEP] intro s [GOAL] case lift A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g ⊢ s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } [PROOFSTEP] apply (s.fst.prod s.snd).codRestrict [GOAL] case lift.h A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g ⊢ ∀ (x : ↑s.pt), ↑(RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) [PROOFSTEP] intro x [GOAL] case lift.h A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g x : ↑s.pt ⊢ ↑(RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) [PROOFSTEP] exact congr_arg (fun f : s.pt →+* C => f x) s.condition [GOAL] case fac_left A B C : CommRingCat f : A ⟶ C g : B ⟶ C ⊢ ∀ (s : PullbackCone f g), RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s [PROOFSTEP] intro s [GOAL] case fac_left A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g ⊢ RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s [PROOFSTEP] ext x [GOAL] case fac_left.w A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g x : (forget CommRingCat).obj s.pt ⊢ ↑(RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x = ↑(PullbackCone.fst s) x [PROOFSTEP] rfl [GOAL] case fac_right A B C : CommRingCat f : A ⟶ C g : B ⟶ C ⊢ ∀ (s : PullbackCone f g), RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s [PROOFSTEP] intro s [GOAL] case fac_right A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g ⊢ RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s [PROOFSTEP] ext x [GOAL] case fac_right.w A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g x : (forget CommRingCat).obj s.pt ⊢ ↑(RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x = ↑(PullbackCone.snd s) x [PROOFSTEP] rfl [GOAL] case uniq A B C : CommRingCat f : A ⟶ C g : B ⟶ C ⊢ ∀ (s : PullbackCone f g) (m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }), m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s → m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s → m = RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) [PROOFSTEP] intro s m e₁ e₂ [GOAL] case uniq A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } e₁ : m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s e₂ : m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s ⊢ m = RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) [PROOFSTEP] refine RingHom.ext fun (x : s.pt) => Subtype.ext ?_ [GOAL] case uniq A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } e₁ : m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s e₂ : m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s x : ↑s.pt ⊢ ↑(↑m x) = ↑(↑(RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))) (_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x)) x) [PROOFSTEP] change (m x).1 = (_, _) [GOAL] case uniq A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } e₁ : m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s e₂ : m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s x : ↑s.pt ⊢ ↑(↑m x) = (↑(PullbackCone.fst s) x, ↑(PullbackCone.snd s) x) [PROOFSTEP] have eq1 := (congr_arg (fun f : s.pt →+* A => f x) e₁ : _) [GOAL] case uniq A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } e₁ : m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s e₂ : m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s x : ↑s.pt eq1 : ↑(m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x = ↑(PullbackCone.fst s) x ⊢ ↑(↑m x) = (↑(PullbackCone.fst s) x, ↑(PullbackCone.snd s) x) [PROOFSTEP] have eq2 := (congr_arg (fun f : s.pt →+* B => f x) e₂ : _) [GOAL] case uniq A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } e₁ : m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s e₂ : m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s x : ↑s.pt eq1 : ↑(m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x = ↑(PullbackCone.fst s) x eq2 : ↑(m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x = ↑(PullbackCone.snd s) x ⊢ ↑(↑m x) = (↑(PullbackCone.fst s) x, ↑(PullbackCone.snd s) x) [PROOFSTEP] rw [← eq1, ← eq2] [GOAL] case uniq A B C : CommRingCat f : A ⟶ C g : B ⟶ C s : PullbackCone f g m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) } e₁ : m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.fst s e₂ : m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) = PullbackCone.snd s x : ↑s.pt eq1 : ↑(m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x = ↑(PullbackCone.fst s) x eq2 : ↑(m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x = ↑(PullbackCone.snd s) x ⊢ ↑(↑m x) = (↑(m ≫ ofHom (RingHom.comp (RingHom.fst ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x, ↑(m ≫ ofHom (RingHom.comp (RingHom.snd ↑A ↑B) (Subring.subtype (RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))))) x) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.Constructions", "llama_tokens": 75061}
[GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ IsSemisimple R L ↔ ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ [PROOFSTEP] rw [isSemisimple_iff_no_solvable_ideals] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ (∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥) ↔ ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ (∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥) → ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ [PROOFSTEP] intro h₁ I h₂ [GOAL] case mpr R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ (∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥) → ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥ [PROOFSTEP] intro h₁ I h₂ [GOAL] case mp R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h₁ : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥ I : LieIdeal R L h₂ : IsLieAbelian { x // x ∈ ↑I } ⊢ I = ⊥ [PROOFSTEP] haveI : IsLieAbelian I := h₂ [GOAL] case mp R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h₁ : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥ I : LieIdeal R L h₂ this : IsLieAbelian { x // x ∈ ↑I } ⊢ I = ⊥ [PROOFSTEP] apply h₁ [GOAL] case mp.a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h₁ : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥ I : LieIdeal R L h₂ this : IsLieAbelian { x // x ∈ ↑I } ⊢ IsSolvable R { x // x ∈ ↑I } [PROOFSTEP] exact LieAlgebra.ofAbelianIsSolvable R I [GOAL] case mpr R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ I : LieIdeal R L h₂ : IsSolvable R { x // x ∈ ↑I } ⊢ I = ⊥ [PROOFSTEP] haveI : IsSolvable R I := h₂ [GOAL] case mpr R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ I : LieIdeal R L h₂ this : IsSolvable R { x // x ∈ ↑I } ⊢ I = ⊥ [PROOFSTEP] rw [← abelian_of_solvable_ideal_eq_bot_iff] [GOAL] case mpr R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ I : LieIdeal R L h₂ this : IsSolvable R { x // x ∈ ↑I } ⊢ derivedAbelianOfIdeal I = ⊥ [PROOFSTEP] apply h₁ [GOAL] case mpr.a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ I : LieIdeal R L h₂ this : IsSolvable R { x // x ∈ ↑I } ⊢ IsLieAbelian { x // x ∈ ↑(derivedAbelianOfIdeal I) } [PROOFSTEP] exact abelian_derivedAbelianOfIdeal I [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : IsSemisimple R L ⊢ center R L = ⊥ [PROOFSTEP] rw [isSemisimple_iff_no_abelian_ideals] at h [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ ⊢ center R L = ⊥ [PROOFSTEP] apply h [GOAL] case a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ ⊢ IsLieAbelian { x // x ∈ ↑(center R L) } [PROOFSTEP] infer_instance [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : IsSimple R L ⊢ IsSemisimple R L [PROOFSTEP] rw [isSemisimple_iff_no_abelian_ideals] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : IsSimple R L ⊢ ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥ [PROOFSTEP] intro I hI [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : IsSimple R L I : LieIdeal R L hI : IsLieAbelian { x // x ∈ ↑I } ⊢ I = ⊥ [PROOFSTEP] obtain @⟨⟨h₁⟩, h₂⟩ := id h [GOAL] case mk.mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : IsSimple R L I : LieIdeal R L hI : IsLieAbelian { x // x ∈ ↑I } h₂ : ¬IsLieAbelian L h₁ : ∀ (N : LieSubmodule R L L), N ≠ ⊥ → N = ⊤ ⊢ I = ⊥ [PROOFSTEP] by_contra contra [GOAL] case mk.mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : IsSimple R L I : LieIdeal R L hI : IsLieAbelian { x // x ∈ ↑I } h₂ : ¬IsLieAbelian L h₁ : ∀ (N : LieSubmodule R L L), N ≠ ⊥ → N = ⊤ contra : ¬I = ⊥ ⊢ False [PROOFSTEP] rw [h₁ I contra, lie_abelian_iff_equiv_lie_abelian LieIdeal.topEquiv] at hI [GOAL] case mk.mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : IsSimple R L I : LieIdeal R L hI : IsLieAbelian L h₂ : ¬IsLieAbelian L h₁ : ∀ (N : LieSubmodule R L L), N ≠ ⊥ → N = ⊤ contra : ¬I = ⊥ ⊢ False [PROOFSTEP] exact h₂ hI [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L h : IsLieAbelian L ⊢ Subsingleton L [PROOFSTEP] rw [isLieAbelian_iff_center_eq_top R L, center_eq_bot_of_semisimple] at h [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L h : ⊥ = ⊤ ⊢ Subsingleton L [PROOFSTEP] exact (LieSubmodule.subsingleton_iff R L L).mp (subsingleton_of_bot_eq_top h) [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L ⊢ IsLieAbelian { x // x ∈ ↑(radical R L) } [PROOFSTEP] rw [IsSemisimple.semisimple] [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L ⊢ IsLieAbelian { x // x ∈ ↑⊥ } [PROOFSTEP] exact isLieAbelian_bot R L [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L ⊢ IsLieAbelian { x // x ∈ ↑(radical R L) } ↔ ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I } [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L ⊢ IsLieAbelian { x // x ∈ ↑(radical R L) } → ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I } [PROOFSTEP] rintro h₁ I h₂ [GOAL] case mp R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L h₁ : IsLieAbelian { x // x ∈ ↑(radical R L) } I : LieIdeal R L h₂ : IsSolvable R { x // x ∈ ↑I } ⊢ IsLieAbelian { x // x ∈ ↑I } [PROOFSTEP] rw [LieIdeal.solvable_iff_le_radical] at h₂ [GOAL] case mp R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L h₁ : IsLieAbelian { x // x ∈ ↑(radical R L) } I : LieIdeal R L h₂ : I ≤ radical R L ⊢ IsLieAbelian { x // x ∈ ↑I } [PROOFSTEP] exact (LieIdeal.homOfLe_injective h₂).isLieAbelian h₁ [GOAL] case mpr R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L ⊢ (∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I }) → IsLieAbelian { x // x ∈ ↑(radical R L) } [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L h : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I } ⊢ IsLieAbelian { x // x ∈ ↑(radical R L) } [PROOFSTEP] apply h [GOAL] case mpr.a R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L h : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I } ⊢ IsSolvable R { x // x ∈ ↑(radical R L) } [PROOFSTEP] infer_instance [GOAL] R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L ⊢ LieHom.ker (ad R L) = ⊥ [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.Lie.Semisimple", "llama_tokens": 4194}
[GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ↑⁅I, N⁆ = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] let s := {m : M | ∃ (x : ↥I) (n : ↥N), ⁅(x : L), (n : M)⁆ = m} [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] have aux : ∀ (y : L), ∀ m' ∈ Submodule.span R s, ⁅y, m'⁆ ∈ Submodule.span R s := by intro y m' hm' refine Submodule.span_induction (R := R) (M := M) (s := s) (p := fun m' ↦ ⁅y, m'⁆ ∈ Submodule.span R s) hm' ?_ ?_ ?_ ?_ · rintro m'' ⟨x, n, hm''⟩; rw [← hm'', leibniz_lie] refine Submodule.add_mem _ ?_ ?_ <;> apply Submodule.subset_span · use⟨⁅y, ↑x⁆, I.lie_mem x.property⟩, n · use x, ⟨⁅y, ↑n⁆, N.lie_mem n.property⟩ · simp only [lie_zero, Submodule.zero_mem] · intro m₁ m₂ hm₁ hm₂; rw [lie_add]; exact Submodule.add_mem _ hm₁ hm₂ · intro t m'' hm''; rw [lie_smul]; exact Submodule.smul_mem _ t hm'' [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s [PROOFSTEP] intro y m' hm' [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s ⊢ ⁅y, m'⁆ ∈ Submodule.span R s [PROOFSTEP] refine Submodule.span_induction (R := R) (M := M) (s := s) (p := fun m' ↦ ⁅y, m'⁆ ∈ Submodule.span R s) hm' ?_ ?_ ?_ ?_ [GOAL] case refine_1 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s ⊢ ∀ (x : M), x ∈ s → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x [PROOFSTEP] rintro m'' ⟨x, n, hm''⟩ [GOAL] case refine_1.intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m'' : M x : { x // x ∈ I } n : { x // x ∈ N } hm'' : ⁅↑x, ↑n⁆ = m'' ⊢ ⁅y, m''⁆ ∈ Submodule.span R s [PROOFSTEP] rw [← hm'', leibniz_lie] [GOAL] case refine_1.intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m'' : M x : { x // x ∈ I } n : { x // x ∈ N } hm'' : ⁅↑x, ↑n⁆ = m'' ⊢ ⁅⁅y, ↑x⁆, ↑n⁆ + ⁅↑x, ⁅y, ↑n⁆⁆ ∈ Submodule.span R s [PROOFSTEP] refine Submodule.add_mem _ ?_ ?_ [GOAL] case refine_1.intro.intro.refine_1 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m'' : M x : { x // x ∈ I } n : { x // x ∈ N } hm'' : ⁅↑x, ↑n⁆ = m'' ⊢ ⁅⁅y, ↑x⁆, ↑n⁆ ∈ Submodule.span R s [PROOFSTEP] apply Submodule.subset_span [GOAL] case refine_1.intro.intro.refine_2 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m'' : M x : { x // x ∈ I } n : { x // x ∈ N } hm'' : ⁅↑x, ↑n⁆ = m'' ⊢ ⁅↑x, ⁅y, ↑n⁆⁆ ∈ Submodule.span R s [PROOFSTEP] apply Submodule.subset_span [GOAL] case refine_1.intro.intro.refine_1.a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m'' : M x : { x // x ∈ I } n : { x // x ∈ N } hm'' : ⁅↑x, ↑n⁆ = m'' ⊢ ⁅⁅y, ↑x⁆, ↑n⁆ ∈ s [PROOFSTEP] use⟨⁅y, ↑x⁆, I.lie_mem x.property⟩, n [GOAL] case refine_1.intro.intro.refine_2.a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m'' : M x : { x // x ∈ I } n : { x // x ∈ N } hm'' : ⁅↑x, ↑n⁆ = m'' ⊢ ⁅↑x, ⁅y, ↑n⁆⁆ ∈ s [PROOFSTEP] use x, ⟨⁅y, ↑n⁆, N.lie_mem n.property⟩ [GOAL] case refine_2 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s ⊢ (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) 0 [PROOFSTEP] simp only [lie_zero, Submodule.zero_mem] [GOAL] case refine_3 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s ⊢ ∀ (x y_1 : M), (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) y_1 → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) (x + y_1) [PROOFSTEP] intro m₁ m₂ hm₁ hm₂ [GOAL] case refine_3 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m₁ m₂ : M hm₁ : ⁅y, m₁⁆ ∈ Submodule.span R s hm₂ : ⁅y, m₂⁆ ∈ Submodule.span R s ⊢ ⁅y, m₁ + m₂⁆ ∈ Submodule.span R s [PROOFSTEP] rw [lie_add] [GOAL] case refine_3 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s m₁ m₂ : M hm₁ : ⁅y, m₁⁆ ∈ Submodule.span R s hm₂ : ⁅y, m₂⁆ ∈ Submodule.span R s ⊢ ⁅y, m₁⁆ + ⁅y, m₂⁆ ∈ Submodule.span R s [PROOFSTEP] exact Submodule.add_mem _ hm₁ hm₂ [GOAL] case refine_4 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s ⊢ ∀ (a : R) (x : M), (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) (a • x) [PROOFSTEP] intro t m'' hm'' [GOAL] case refine_4 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s t : R m'' : M hm'' : ⁅y, m''⁆ ∈ Submodule.span R s ⊢ ⁅y, t • m''⁆ ∈ Submodule.span R s [PROOFSTEP] rw [lie_smul] [GOAL] case refine_4 R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} y : L m' : M hm' : m' ∈ Submodule.span R s t : R m'' : M hm'' : ⁅y, m''⁆ ∈ Submodule.span R s ⊢ t • ⁅y, m''⁆ ∈ Submodule.span R s [PROOFSTEP] exact Submodule.smul_mem _ t hm'' [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s ⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] change _ ≤ ({ Submodule.span R s with lie_mem := fun hm' => aux _ _ hm' } : LieSubmodule R L M) [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s ⊢ ⁅I, N⁆ ≤ let src := Submodule.span R s; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem := (_ : ∀ {x : L} {m : M}, m ∈ { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, m⁆ ∈ Submodule.span R s) } [PROOFSTEP] rw [lieIdeal_oper_eq_span, lieSpan_le] [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m} aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(let src := Submodule.span R s; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem := (_ : ∀ {x : L} {m : M}, m ∈ { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, m⁆ ∈ Submodule.span R s) }) [PROOFSTEP] exact Submodule.subset_span [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ ↑⁅I, N⁆ [PROOFSTEP] rw [lieIdeal_oper_eq_span] [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ ↑(lieSpan R L {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) [PROOFSTEP] apply submodule_span_le_lieSpan [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ↑⁅I, N⁆ = Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] rw [lieIdeal_oper_eq_linear_span] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] congr [GOAL] case e_s R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] ext m [GOAL] case e_s.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M ⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] constructor [GOAL] case e_s.h.mp R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M ⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] rintro ⟨⟨x, hx⟩, ⟨n, hn⟩, rfl⟩ [GOAL] case e_s.h.mp.intro.mk.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ x : L hx : x ∈ I n : M hn : n ∈ N ⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] exact ⟨x, hx, n, hn, rfl⟩ [GOAL] case e_s.h.mpr R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M ⊢ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} → m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro ⟨x, hx, n, hn, rfl⟩ [GOAL] case e_s.h.mpr.intro.intro.intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ x : L hx : x ∈ I n : M hn : n ∈ N ⊢ ⁅x, n⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] exact ⟨⟨x, hx⟩, ⟨n, hn⟩, rfl⟩ [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ N' ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N' [PROOFSTEP] rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N' ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N' [PROOFSTEP] refine' ⟨fun h x hx m hm => h ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩, _⟩ [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ (∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N') → {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N' [PROOFSTEP] rintro h _ ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩ [GOAL] case intro.mk.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N' x : L hx : x ∈ I m : M hm : m ∈ N ⊢ ⁅↑{ val := x, property := hx }, ↑{ val := m, property := hm }⁆ ∈ ↑N' [PROOFSTEP] exact h x hx m hm [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ x : { x // x ∈ I } m : { x // x ∈ N } ⊢ ⁅↑x, ↑m⁆ ∈ ⁅I, N⁆ [PROOFSTEP] rw [lieIdeal_oper_eq_span] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ x : { x // x ∈ I } m : { x // x ∈ N } ⊢ ⁅↑x, ↑m⁆ ∈ lieSpan R L {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] apply subset_lieSpan [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ x : { x // x ∈ I } m : { x // x ∈ N } ⊢ ⁅↑x, ↑m⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] use x, m [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, J⁆ = ⁅J, I⁆ [PROOFSTEP] suffices ∀ I J : LieIdeal R L, ⁅I, J⁆ ≤ ⁅J, I⁆ by exact le_antisymm (this I J) (this J I) [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ this : ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆ ⊢ ⁅I, J⁆ = ⁅J, I⁆ [PROOFSTEP] exact le_antisymm (this I J) (this J I) [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆ [PROOFSTEP] clear! I J [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M N₂ : LieSubmodule R L M₂ ⊢ ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆ [PROOFSTEP] intro I J [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M N₂ : LieSubmodule R L M₂ I J : LieIdeal R L ⊢ ⁅I, J⁆ ≤ ⁅J, I⁆ [PROOFSTEP] rw [lieIdeal_oper_eq_span, lieSpan_le] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M N₂ : LieSubmodule R L M₂ I J : LieIdeal R L ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⁅J, I⁆ [PROOFSTEP] rintro x ⟨y, z, h⟩ [GOAL] case intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M N₂ : LieSubmodule R L M₂ I J : LieIdeal R L x : L y : { x // x ∈ I } z : { x // x ∈ J } h : ⁅↑y, ↑z⁆ = x ⊢ x ∈ ↑⁅J, I⁆ [PROOFSTEP] rw [← h] [GOAL] case intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M N₂ : LieSubmodule R L M₂ I J : LieIdeal R L x : L y : { x // x ∈ I } z : { x // x ∈ J } h : ⁅↑y, ↑z⁆ = x ⊢ ⁅↑y, ↑z⁆ ∈ ↑⁅J, I⁆ [PROOFSTEP] rw [← lie_skew, ← lie_neg, ← LieSubmodule.coe_neg] [GOAL] case intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M N₂ : LieSubmodule R L M₂ I J : LieIdeal R L x : L y : { x // x ∈ I } z : { x // x ∈ J } h : ⁅↑y, ↑z⁆ = x ⊢ ⁅↑z, ↑(-y)⁆ ∈ ↑⁅J, I⁆ [PROOFSTEP] apply lie_coe_mem_lie [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ N [PROOFSTEP] rw [lieIdeal_oper_eq_span, lieSpan_le] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N [PROOFSTEP] rintro m ⟨x, n, hn⟩ [GOAL] case intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M x : { x // x ∈ I } n : { x // x ∈ N } hn : ⁅↑x, ↑n⁆ = m ⊢ m ∈ ↑N [PROOFSTEP] rw [← hn] [GOAL] case intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M x : { x // x ∈ I } n : { x // x ∈ N } hn : ⁅↑x, ↑n⁆ = m ⊢ ⁅↑x, ↑n⁆ ∈ ↑N [PROOFSTEP] exact N.lie_mem n.property [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, J⁆ ≤ I [PROOFSTEP] rw [lie_comm] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅J, I⁆ ≤ I [PROOFSTEP] exact lie_le_right I J [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, J⁆ ≤ I ⊓ J [PROOFSTEP] rw [le_inf_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, J⁆ ≤ I ∧ ⁅I, J⁆ ≤ J [PROOFSTEP] exact ⟨lie_le_left I J, lie_le_right J I⟩ [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, ⊥⁆ = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ∀ (m : M), m ∈ ⁅I, ⊥⁆ → m = 0 [PROOFSTEP] apply lie_le_right [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅⊥, N⁆ = ⊥ [PROOFSTEP] suffices ⁅(⊥ : LieIdeal R L), N⁆ ≤ ⊥ by exact le_bot_iff.mp this [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ this : ⁅⊥, N⁆ ≤ ⊥ ⊢ ⁅⊥, N⁆ = ⊥ [PROOFSTEP] exact le_bot_iff.mp this [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅⊥, N⁆ ≤ ⊥ [PROOFSTEP] rw [lieIdeal_oper_eq_span, lieSpan_le] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥ [PROOFSTEP] rintro m ⟨⟨x, hx⟩, n, hn⟩ [GOAL] case intro.mk.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M x : L hx : x ∈ ⊥ n : { x // x ∈ N } hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m ⊢ m ∈ ↑⊥ [PROOFSTEP] rw [← hn] [GOAL] case intro.mk.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M x : L hx : x ∈ ⊥ n : { x // x ∈ N } hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m ⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥ [PROOFSTEP] change x ∈ (⊥ : LieIdeal R L) at hx [GOAL] case intro.mk.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M x : L n : { x // x ∈ N } hx : x ∈ ⊥ hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m ⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥ [PROOFSTEP] rw [mem_bot] at hx [GOAL] case intro.mk.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ m : M x : L n : { x // x ∈ N } hx✝ : x ∈ ⊥ hx : x = 0 hn : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m ⊢ ⁅↑{ val := x, property := hx✝ }, ↑n⁆ ∈ ↑⊥ [PROOFSTEP] simp [hx] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ = ⊥ ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0 [PROOFSTEP] rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_eq_bot_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ (∀ (m : M), m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m = 0) ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0 [PROOFSTEP] refine' ⟨fun h x hx m hm => h ⁅x, m⁆ ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩, _⟩ [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ (∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0) → ∀ (m : M), m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m = 0 [PROOFSTEP] rintro h - ⟨⟨x, hx⟩, ⟨⟨n, hn⟩, rfl⟩⟩ [GOAL] case intro.mk.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0 x : L hx : x ∈ I n : M hn : n ∈ N ⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = 0 [PROOFSTEP] exact h x hx n hn [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N ≤ N' ⊢ ⁅I, N⁆ ≤ ⁅J, N'⁆ [PROOFSTEP] intro m h [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N ≤ N' m : M h : m ∈ ⁅I, N⁆ ⊢ m ∈ ⁅J, N'⁆ [PROOFSTEP] rw [lieIdeal_oper_eq_span, mem_lieSpan] at h [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N ≤ N' m : M h : ∀ (N_1 : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N_1 → m ∈ N_1 ⊢ m ∈ ⁅J, N'⁆ [PROOFSTEP] rw [lieIdeal_oper_eq_span, mem_lieSpan] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N ≤ N' m : M h : ∀ (N_1 : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N_1 → m ∈ N_1 ⊢ ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N [PROOFSTEP] intro N hN [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N✝ N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N✝ ≤ N' m : M h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N N : LieSubmodule R L M hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N ⊢ m ∈ N [PROOFSTEP] apply h [GOAL] case a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N✝ N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N✝ ≤ N' m : M h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N N : LieSubmodule R L M hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N [PROOFSTEP] rintro m' ⟨⟨x, hx⟩, ⟨n, hn⟩, hm⟩ [GOAL] case a.intro.mk.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N✝ N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N✝ ≤ N' m : M h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N N : LieSubmodule R L M hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N m' : M x : L hx : x ∈ I n : M hn : n ∈ N✝ hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m' ⊢ m' ∈ ↑N [PROOFSTEP] rw [← hm] [GOAL] case a.intro.mk.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N✝ N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N✝ ≤ N' m : M h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N N : LieSubmodule R L M hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N m' : M x : L hx : x ∈ I n : M hn : n ∈ N✝ hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m' ⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ ↑N [PROOFSTEP] apply hN [GOAL] case a.intro.mk.intro.mk.a R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N✝ N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h₁ : I ≤ J h₂ : N✝ ≤ N' m : M h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N N : LieSubmodule R L M hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N m' : M x : L hx : x ∈ I n : M hn : n ∈ N✝ hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m' ⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] use⟨x, h₁ hx⟩, ⟨n, h₂ hn⟩ [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆ [PROOFSTEP] have h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ := by rw [sup_le_iff]; constructor <;> apply mono_lie_right <;> [exact le_sup_left; exact le_sup_right] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ [PROOFSTEP] rw [sup_le_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆ ∧ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ [PROOFSTEP] constructor <;> apply mono_lie_right <;> [exact le_sup_left; exact le_sup_right] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆ ∧ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ [PROOFSTEP] constructor [GOAL] case left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆ [PROOFSTEP] apply mono_lie_right [GOAL] case right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ [PROOFSTEP] apply mono_lie_right [GOAL] case left.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ N ≤ N ⊔ N' [PROOFSTEP] exact le_sup_left [GOAL] case right.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ N' ≤ N ⊔ N' [PROOFSTEP] exact le_sup_right [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ ⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆ [PROOFSTEP] suffices ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆ by exact le_antisymm this h [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ this : ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆ ⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆ [PROOFSTEP] exact le_antisymm this h [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ ⊢ ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆ [PROOFSTEP] rw [lieIdeal_oper_eq_span, lieSpan_le] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(⁅I, N⁆ ⊔ ⁅I, N'⁆) [PROOFSTEP] rintro m ⟨x, ⟨n, hn⟩, h⟩ [GOAL] case intro.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m ⊢ m ∈ ↑(⁅I, N⁆ ⊔ ⁅I, N'⁆) [PROOFSTEP] erw [LieSubmodule.mem_sup] [GOAL] case intro.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m ⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m [PROOFSTEP] erw [LieSubmodule.mem_sup] at hn [GOAL] case intro.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn✝ : n ∈ N ⊔ N' hn : ∃ y, y ∈ N ∧ ∃ z, z ∈ N' ∧ y + z = n h : ⁅↑x, ↑{ val := n, property := hn✝ }⁆ = m ⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m [PROOFSTEP] rcases hn with ⟨n₁, hn₁, n₂, hn₂, hn'⟩ [GOAL] case intro.intro.mk.intro.intro.intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m n₁ : M hn₁ : n₁ ∈ N n₂ : M hn₂ : n₂ ∈ N' hn' : n₁ + n₂ = n ⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m [PROOFSTEP] use⁅(x : L), (⟨n₁, hn₁⟩ : N)⁆ [GOAL] case h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m n₁ : M hn₁ : n₁ ∈ N n₂ : M hn₂ : n₂ ∈ N' hn' : n₁ + n₂ = n ⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + z = m [PROOFSTEP] constructor [GOAL] case h.left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m n₁ : M hn₁ : n₁ ∈ N n₂ : M hn₂ : n₂ ∈ N' hn' : n₁ + n₂ = n ⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ ∈ ⁅I, N⁆ [PROOFSTEP] apply lie_coe_mem_lie [GOAL] case h.right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m n₁ : M hn₁ : n₁ ∈ N n₂ : M hn₂ : n₂ ∈ N' hn' : n₁ + n₂ = n ⊢ ∃ z, z ∈ ⁅I, N'⁆ ∧ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + z = m [PROOFSTEP] use⁅(x : L), (⟨n₂, hn₂⟩ : N')⁆ [GOAL] case h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m n₁ : M hn₁ : n₁ ∈ N n₂ : M hn₂ : n₂ ∈ N' hn' : n₁ + n₂ = n ⊢ ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ ∈ ⁅I, N'⁆ ∧ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ = m [PROOFSTEP] constructor [GOAL] case h.left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m n₁ : M hn₁ : n₁ ∈ N n₂ : M hn₂ : n₂ ∈ N' hn' : n₁ + n₂ = n ⊢ ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ ∈ ⁅I, N'⁆ [PROOFSTEP] apply lie_coe_mem_lie [GOAL] case h.right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ m : M x : { x // x ∈ I } n : M hn : n ∈ N ⊔ N' h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m n₁ : M hn₁ : n₁ ∈ N n₂ : M hn₂ : n₂ ∈ N' hn' : n₁ + n₂ = n ⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ = m [PROOFSTEP] simp [← h, ← hn'] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆ [PROOFSTEP] have h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ := by rw [sup_le_iff]; constructor <;> apply mono_lie_left <;> [exact le_sup_left; exact le_sup_right] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ [PROOFSTEP] rw [sup_le_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆ ∧ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ [PROOFSTEP] constructor <;> apply mono_lie_left <;> [exact le_sup_left; exact le_sup_right] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆ ∧ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ [PROOFSTEP] constructor [GOAL] case left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆ [PROOFSTEP] apply mono_lie_left [GOAL] case right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ [PROOFSTEP] apply mono_lie_left [GOAL] case left.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ I ≤ I ⊔ J [PROOFSTEP] exact le_sup_left [GOAL] case right.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ J ≤ I ⊔ J [PROOFSTEP] exact le_sup_right [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ ⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆ [PROOFSTEP] suffices ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆ by exact le_antisymm this h [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ this : ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆ ⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆ [PROOFSTEP] exact le_antisymm this h [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ ⊢ ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆ [PROOFSTEP] rw [lieIdeal_oper_eq_span, lieSpan_le] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(⁅I, N⁆ ⊔ ⁅J, N⁆) [PROOFSTEP] rintro m ⟨⟨x, hx⟩, n, h⟩ [GOAL] case intro.mk.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m ⊢ m ∈ ↑(⁅I, N⁆ ⊔ ⁅J, N⁆) [PROOFSTEP] erw [LieSubmodule.mem_sup] [GOAL] case intro.mk.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m ⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m [PROOFSTEP] erw [LieSubmodule.mem_sup] at hx [GOAL] case intro.mk.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx✝ : x ∈ I ⊔ J hx : ∃ y, y ∈ I ∧ ∃ z, z ∈ J ∧ y + z = x n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m ⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m [PROOFSTEP] rcases hx with ⟨x₁, hx₁, x₂, hx₂, hx'⟩ [GOAL] case intro.mk.intro.intro.intro.intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m x₁ : L hx₁ : x₁ ∈ I x₂ : L hx₂ : x₂ ∈ J hx' : x₁ + x₂ = x ⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m [PROOFSTEP] use⁅((⟨x₁, hx₁⟩ : I) : L), (n : N)⁆ [GOAL] case h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m x₁ : L hx₁ : x₁ ∈ I x₂ : L hx₂ : x₂ ∈ J hx' : x₁ + x₂ = x ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + z = m [PROOFSTEP] constructor [GOAL] case h.left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m x₁ : L hx₁ : x₁ ∈ I x₂ : L hx₂ : x₂ ∈ J hx' : x₁ + x₂ = x ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ ∈ ⁅I, N⁆ [PROOFSTEP] apply lie_coe_mem_lie [GOAL] case h.right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m x₁ : L hx₁ : x₁ ∈ I x₂ : L hx₂ : x₂ ∈ J hx' : x₁ + x₂ = x ⊢ ∃ z, z ∈ ⁅J, N⁆ ∧ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + z = m [PROOFSTEP] use⁅((⟨x₂, hx₂⟩ : J) : L), (n : N)⁆ [GOAL] case h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m x₁ : L hx₁ : x₁ ∈ I x₂ : L hx₂ : x₂ ∈ J hx' : x₁ + x₂ = x ⊢ ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ ∈ ⁅J, N⁆ ∧ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ = m [PROOFSTEP] constructor [GOAL] case h.left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m x₁ : L hx₁ : x₁ ∈ I x₂ : L hx₂ : x₂ ∈ J hx' : x₁ + x₂ = x ⊢ ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ ∈ ⁅J, N⁆ [PROOFSTEP] apply lie_coe_mem_lie [GOAL] case h.right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ m : M x : L hx : x ∈ I ⊔ J n : { x // x ∈ N } h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m x₁ : L hx₁ : x₁ ∈ I x₂ : L hx₂ : x₂ ∈ J hx' : x₁ + x₂ = x ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ = m [PROOFSTEP] simp [← h, ← hx'] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ⊓ ⁅I, N'⁆ [PROOFSTEP] rw [le_inf_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ∧ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆ [PROOFSTEP] constructor <;> apply mono_lie_right <;> [exact inf_le_left; exact inf_le_right] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ∧ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆ [PROOFSTEP] constructor [GOAL] case left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ [PROOFSTEP] apply mono_lie_right [GOAL] case right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆ [PROOFSTEP] apply mono_lie_right [GOAL] case left.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ N ⊓ N' ≤ N [PROOFSTEP] exact inf_le_left [GOAL] case right.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ N ⊓ N' ≤ N' [PROOFSTEP] exact inf_le_right [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ⊓ ⁅J, N⁆ [PROOFSTEP] rw [le_inf_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ∧ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆ [PROOFSTEP] constructor <;> apply mono_lie_left <;> [exact inf_le_left; exact inf_le_right] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ∧ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆ [PROOFSTEP] constructor [GOAL] case left R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ [PROOFSTEP] apply mono_lie_left [GOAL] case right R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆ [PROOFSTEP] apply mono_lie_left [GOAL] case left.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ I ⊓ J ≤ I [PROOFSTEP] exact inf_le_left [GOAL] case right.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ ⊢ I ⊓ J ≤ J [PROOFSTEP] exact inf_le_right [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ ⊢ map f ⁅I, N⁆ = ⁅I, map f N⁆ [PROOFSTEP] rw [← coe_toSubmodule_eq_iff, coeSubmodule_map, lieIdeal_oper_eq_linear_span, lieIdeal_oper_eq_linear_span, Submodule.map_span] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ ⊢ Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] congr [GOAL] case e_s R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ ⊢ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] ext m [GOAL] case e_s.h R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ m : M₂ ⊢ m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] constructor [GOAL] case e_s.h.mp R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ m : M₂ ⊢ m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro ⟨-, ⟨⟨x, ⟨n, hn⟩, rfl⟩, hm⟩⟩ [GOAL] case e_s.h.mp.intro.intro.intro.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ m : M₂ x : { x // x ∈ I } n : M hn : n ∈ N hm : ↑↑f ⁅↑x, ↑{ val := n, property := hn }⁆ = m ⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] simp only [LieModuleHom.coe_toLinearMap, LieModuleHom.map_lie] at hm [GOAL] case e_s.h.mp.intro.intro.intro.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ m : M₂ x : { x // x ∈ I } n : M hn : n ∈ N hm : ⁅↑x, ↑f n⁆ = m ⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] exact ⟨x, ⟨f n, (mem_map (f n)).mpr ⟨n, hn, rfl⟩⟩, hm⟩ [GOAL] case e_s.h.mpr R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ m : M₂ ⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro ⟨x, ⟨m₂, hm₂ : m₂ ∈ map f N⟩, rfl⟩ [GOAL] case e_s.h.mpr.intro.intro.mk R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ x : { x // x ∈ I } m₂ : M₂ hm₂ : m₂ ∈ map f N ⊢ ⁅↑x, ↑{ val := m₂, property := hm₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] obtain ⟨n, hn, rfl⟩ := (mem_map m₂).mp hm₂ [GOAL] case e_s.h.mpr.intro.intro.mk.intro.intro R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ x : { x // x ∈ I } n : M hn : n ∈ N hm₂ : ↑f n ∈ map f N ⊢ ⁅↑x, ↑{ val := ↑f n, property := hm₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] exact ⟨⁅x, n⁆, ⟨x, ⟨n, hn⟩, rfl⟩, by simp⟩ [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ x : { x // x ∈ I } n : M hn : n ∈ N hm₂ : ↑f n ∈ map f N ⊢ ↑↑f ⁅x, n⁆ = ⁅↑x, ↑{ val := ↑f n, property := hm₂ }⁆ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf : N₂ ≤ LieModuleHom.range f ⊢ map f (comap f N₂) = N₂ [PROOFSTEP] rw [SetLike.ext'_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf : N₂ ≤ LieModuleHom.range f ⊢ ↑(map f (comap f N₂)) = ↑N₂ [PROOFSTEP] exact Set.image_preimage_eq_of_subset hf [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf : LieModuleHom.ker f = ⊥ ⊢ comap f (map f N) = N [PROOFSTEP] rw [SetLike.ext'_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf : LieModuleHom.ker f = ⊥ ⊢ ↑(comap f (map f N)) = ↑N [PROOFSTEP] exact (N : Set M).preimage_image_eq (f.ker_eq_bot.mp hf) [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf₁ : LieModuleHom.ker f = ⊥ hf₂ : N₂ ≤ LieModuleHom.range f ⊢ comap f ⁅I, N₂⁆ = ⁅I, comap f N₂⁆ [PROOFSTEP] conv_lhs => rw [← map_comap_eq N₂ f hf₂] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf₁ : LieModuleHom.ker f = ⊥ hf₂ : N₂ ≤ LieModuleHom.range f | comap f ⁅I, N₂⁆ [PROOFSTEP] rw [← map_comap_eq N₂ f hf₂] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf₁ : LieModuleHom.ker f = ⊥ hf₂ : N₂ ≤ LieModuleHom.range f | comap f ⁅I, N₂⁆ [PROOFSTEP] rw [← map_comap_eq N₂ f hf₂] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf₁ : LieModuleHom.ker f = ⊥ hf₂ : N₂ ≤ LieModuleHom.range f | comap f ⁅I, N₂⁆ [PROOFSTEP] rw [← map_comap_eq N₂ f hf₂] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ hf₁ : LieModuleHom.ker f = ⊥ hf₂ : N₂ ≤ LieModuleHom.range f ⊢ comap f ⁅I, map f (comap f N₂)⁆ = ⁅I, comap f N₂⁆ [PROOFSTEP] rw [← map_bracket_eq, comap_map_eq _ f hf₁] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ ⊢ map (incl N) (comap (incl N) N') = N ⊓ N' [PROOFSTEP] rw [← coe_toSubmodule_eq_iff] [GOAL] R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ N N' : LieSubmodule R L M I J : LieIdeal R L N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ ⊢ ↑(map (incl N) (comap (incl N) N')) = ↑(N ⊓ N') [PROOFSTEP] exact (N : Submodule R M).map_comap_subtype N' [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ map f ⁅I₁, I₂⁆ ≤ ⁅map f I₁, map f I₂⁆ [PROOFSTEP] rw [map_le_iff_le_comap] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ ⁅I₁, I₂⁆ ≤ comap f ⁅map f I₁, map f I₂⁆ [PROOFSTEP] erw [LieSubmodule.lieSpan_le] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(comap f ⁅map f I₁, map f I₂⁆) [PROOFSTEP] intro x hx [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L x : L hx : x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊢ x ∈ ↑(comap f ⁅map f I₁, map f I₂⁆) [PROOFSTEP] obtain ⟨⟨y₁, hy₁⟩, ⟨y₂, hy₂⟩, hx⟩ := hx [GOAL] case intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L x y₁ : L hy₁ : y₁ ∈ I₁ y₂ : L hy₂ : y₂ ∈ I₂ hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x ⊢ x ∈ ↑(comap f ⁅map f I₁, map f I₂⁆) [PROOFSTEP] rw [← hx] [GOAL] case intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L x y₁ : L hy₁ : y₁ ∈ I₁ y₂ : L hy₂ : y₂ ∈ I₂ hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x ⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆) [PROOFSTEP] let fy₁ : ↥(map f I₁) := ⟨f y₁, mem_map hy₁⟩ [GOAL] case intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L x y₁ : L hy₁ : y₁ ∈ I₁ y₂ : L hy₂ : y₂ ∈ I₂ hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) } ⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆) [PROOFSTEP] let fy₂ : ↥(map f I₂) := ⟨f y₂, mem_map hy₂⟩ [GOAL] case intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L x y₁ : L hy₁ : y₁ ∈ I₁ y₂ : L hy₂ : y₂ ∈ I₂ hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) } fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) } ⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆) [PROOFSTEP] change _ ∈ comap f ⁅map f I₁, map f I₂⁆ [GOAL] case intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L x y₁ : L hy₁ : y₁ ∈ I₁ y₂ : L hy₂ : y₂ ∈ I₂ hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) } fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) } ⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ comap f ⁅map f I₁, map f I₂⁆ [PROOFSTEP] simp only [Submodule.coe_mk, mem_comap, LieHom.map_lie] [GOAL] case intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L x y₁ : L hy₁ : y₁ ∈ I₁ y₂ : L hy₂ : y₂ ∈ I₂ hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) } fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) } ⊢ ⁅↑f y₁, ↑f y₂⁆ ∈ ⁅map f I₁, map f I₂⁆ [PROOFSTEP] exact LieSubmodule.lie_coe_mem_lie _ _ fy₁ fy₂ [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f ⊢ map f ⁅I₁, I₂⁆ = ⁅map f I₁, map f I₂⁆ [PROOFSTEP] suffices ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆ by exact le_antisymm (map_bracket_le f) this [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f this : ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆ ⊢ map f ⁅I₁, I₂⁆ = ⁅map f I₁, map f I₂⁆ [PROOFSTEP] exact le_antisymm (map_bracket_le f) this [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f ⊢ ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆ [PROOFSTEP] rw [← LieSubmodule.coeSubmodule_le_coeSubmodule, coe_map_of_surjective h, LieSubmodule.lieIdeal_oper_eq_linear_span, LieSubmodule.lieIdeal_oper_eq_linear_span, LinearMap.map_span] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f ⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) [PROOFSTEP] apply Submodule.span_mono [GOAL] case h R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro x ⟨⟨z₁, h₁⟩, ⟨z₂, h₂⟩, rfl⟩ [GOAL] case h.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f z₁ : L' h₁ : z₁ ∈ map f I₁ z₂ : L' h₂ : z₂ ∈ map f I₂ ⊢ ⁅↑{ val := z₁, property := h₁ }, ↑{ val := z₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] obtain ⟨y₁, rfl⟩ := mem_map_of_surjective h h₁ [GOAL] case h.intro.mk.intro.mk.intro R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f z₂ : L' h₂ : z₂ ∈ map f I₂ y₁ : { x // x ∈ I₁ } h₁ : ↑f ↑y₁ ∈ map f I₁ ⊢ ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := z₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] obtain ⟨y₂, rfl⟩ := mem_map_of_surjective h h₂ [GOAL] case h.intro.mk.intro.mk.intro.intro R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f y₁ : { x // x ∈ I₁ } h₁ : ↑f ↑y₁ ∈ map f I₁ y₂ : { x // x ∈ I₂ } h₂ : ↑f ↑y₂ ∈ map f I₂ ⊢ ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := ↑f ↑y₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] exact ⟨⁅(y₁ : L), (y₂ : L)⁆, ⟨y₁, y₂, rfl⟩, by apply f.map_lie⟩ [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : Function.Surjective ↑f y₁ : { x // x ∈ I₁ } h₁ : ↑f ↑y₁ ∈ map f I₁ y₂ : { x // x ∈ I₂ } h₂ : ↑f ↑y₂ ∈ map f I₂ ⊢ ↑↑f ⁅↑y₁, ↑y₂⁆ = ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := ↑f ↑y₂, property := h₂ }⁆ [PROOFSTEP] apply f.map_lie [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' ⊢ ⁅comap f J₁, comap f J₂⁆ ≤ comap f ⁅J₁, J₂⁆ [PROOFSTEP] rw [← map_le_iff_le_comap] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' ⊢ map f ⁅comap f J₁, comap f J₂⁆ ≤ ⁅J₁, J₂⁆ [PROOFSTEP] exact le_trans (map_bracket_le f) (LieSubmodule.mono_lie _ _ _ _ map_comap_le map_comap_le) [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ map (incl I₁) (comap (incl I₁) I₂) = I₁ ⊓ I₂ [PROOFSTEP] conv_rhs => rw [← I₁.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | I₁ ⊓ I₂ [PROOFSTEP] rw [← I₁.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | I₁ ⊓ I₂ [PROOFSTEP] rw [← I₁.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | I₁ ⊓ I₂ [PROOFSTEP] rw [← I₁.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ map (incl I₁) (comap (incl I₁) I₂) = LieHom.idealRange (incl I₁) ⊓ I₂ [PROOFSTEP] rw [← map_comap_eq] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ LieHom.IsIdealMorphism (incl I₁) [PROOFSTEP] exact I₁.incl_isIdealMorphism [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ comap f ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆ = ⁅comap f J₁, comap f J₂⁆ ⊔ LieHom.ker f [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff, comap_coeSubmodule, LieSubmodule.sup_coe_toSubmodule, f.ker_coeSubmodule, ← Submodule.comap_map_eq, LieSubmodule.lieIdeal_oper_eq_linear_span, LieSubmodule.lieIdeal_oper_eq_linear_span, LinearMap.map_span] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ Submodule.comap (↑f) (Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) = Submodule.comap (↑f) (Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m})) [PROOFSTEP] congr [GOAL] case e_p.e_s R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] simp only [LieHom.coe_toLinearMap, Set.mem_setOf_eq] [GOAL] case e_p.e_s R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] ext y [GOAL] case e_p.e_s.h R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' ⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] constructor [GOAL] case e_p.e_s.h.mp R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' ⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩, hy⟩ [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁ x₂ : L' hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y ⊢ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rw [← hy] [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁ x₂ : L' hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] erw [LieSubmodule.mem_inf, f.mem_idealRange_iff h] at hx₁ hx₂ [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁✝ : x₁ ∈ LieHom.idealRange f ⊓ J₁ hx₁ : (∃ x, ↑f x = x₁) ∧ x₁ ∈ J₁ x₂ : L' hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂ hy : ⁅↑{ val := x₁, property := hx₁✝ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y ⊢ ⁅↑{ val := x₁, property := hx₁✝ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] obtain ⟨⟨z₁, hz₁⟩, hz₁'⟩ := hx₁ [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁ x₂ : L' hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂ hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y hz₁' : x₁ ∈ J₁ z₁ : L hz₁ : ↑f z₁ = x₁ ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rw [← hz₁] at hz₁' [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁ x₂ : L' hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂ hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y z₁ : L hz₁' : ↑f z₁ ∈ J₁ hz₁ : ↑f z₁ = x₁ ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] obtain ⟨⟨z₂, hz₂⟩, hz₂'⟩ := hx₂ [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁ x₂ : L' hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y z₁ : L hz₁' : ↑f z₁ ∈ J₁ hz₁ : ↑f z₁ = x₁ hz₂' : x₂ ∈ J₂ z₂ : L hz₂ : ↑f z₂ = x₂ ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rw [← hz₂] at hz₂' [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁ x₂ : L' hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y z₁ : L hz₁' : ↑f z₁ ∈ J₁ hz₁ : ↑f z₁ = x₁ z₂ : L hz₂' : ↑f z₂ ∈ J₂ hz₂ : ↑f z₂ = x₂ ⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] refine ⟨⁅z₁, z₂⁆, ⟨⟨z₁, hz₁'⟩, ⟨z₂, hz₂'⟩, rfl⟩, ?_⟩ [GOAL] case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y x₁ : L' hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁ x₂ : L' hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂ hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y z₁ : L hz₁' : ↑f z₁ ∈ J₁ hz₁ : ↑f z₁ = x₁ z₂ : L hz₂' : ↑f z₂ ∈ J₂ hz₂ : ↑f z₂ = x₂ ⊢ (fun a => ↑f a) ⁅z₁, z₂⁆ = ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ [PROOFSTEP] simp only [hz₁, hz₂, Submodule.coe_mk, LieHom.map_lie] [GOAL] case e_p.e_s.h.mpr R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' ⊢ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro ⟨x, ⟨⟨z₁, hz₁⟩, ⟨z₂, hz₂⟩, hx⟩, hy⟩ [GOAL] case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x ⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rw [← hy, ← hx] [GOAL] case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x ⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] have hz₁' : f z₁ ∈ f.idealRange ⊓ J₁ := by rw [LieSubmodule.mem_inf]; exact ⟨f.mem_idealRange, hz₁⟩ [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x ⊢ ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁ [PROOFSTEP] rw [LieSubmodule.mem_inf] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x ⊢ ↑f z₁ ∈ LieHom.idealRange f ∧ ↑f z₁ ∈ J₁ [PROOFSTEP] exact ⟨f.mem_idealRange, hz₁⟩ [GOAL] case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁ ⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] have hz₂' : f z₂ ∈ f.idealRange ⊓ J₂ := by rw [LieSubmodule.mem_inf]; exact ⟨f.mem_idealRange, hz₂⟩ [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁ ⊢ ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂ [PROOFSTEP] rw [LieSubmodule.mem_inf] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁ ⊢ ↑f z₂ ∈ LieHom.idealRange f ∧ ↑f z₂ ∈ J₂ [PROOFSTEP] exact ⟨f.mem_idealRange, hz₂⟩ [GOAL] case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁ hz₂' : ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂ ⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] use⟨f z₁, hz₁'⟩, ⟨f z₂, hz₂'⟩ [GOAL] case h R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f y : L' x : L hy : (fun a => ↑f a) x = y z₁ : L hz₁ : z₁ ∈ comap f J₁ z₂ : L hz₂ : z₂ ∈ comap f J₂ hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁ hz₂' : ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂ ⊢ ⁅↑{ val := ↑f z₁, property := hz₁' }, ↑{ val := ↑f z₂, property := hz₂' }⁆ = (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ [PROOFSTEP] simp only [Submodule.coe_mk, LieHom.map_lie] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ map f ⁅comap f J₁, comap f J₂⁆ = ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆ [PROOFSTEP] rw [← map_sup_ker_eq_map, ← comap_bracket_eq h, map_comap_eq h, inf_eq_right] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆ ≤ LieHom.idealRange f [PROOFSTEP] exact le_trans (LieSubmodule.lie_le_left _ _) inf_le_left [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ [PROOFSTEP] conv_rhs => congr next => skip rw [← I.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ [PROOFSTEP] congr next => skip rw [← I.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ [PROOFSTEP] congr next => skip rw [← I.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ [PROOFSTEP] congr [GOAL] case f R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | incl I case J R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | ⁅I ⊓ I₁, I ⊓ I₂⁆ [PROOFSTEP] next => skip [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | incl I [PROOFSTEP] skip [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | incl I [PROOFSTEP] skip [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | incl I [PROOFSTEP] skip [GOAL] case J R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L | ⁅I ⊓ I₁, I ⊓ I₂⁆ [PROOFSTEP] rw [← I.incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = comap (incl I) ⁅LieHom.idealRange (incl I) ⊓ I₁, LieHom.idealRange (incl I) ⊓ I₂⁆ [PROOFSTEP] rw [comap_bracket_eq] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = ⁅comap (incl I) I₁, comap (incl I) I₂⁆ ⊔ LieHom.ker (incl I) R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ LieHom.IsIdealMorphism (incl I) [PROOFSTEP] simp only [ker_incl, sup_bot_eq] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L ⊢ LieHom.IsIdealMorphism (incl I) [PROOFSTEP] exact I.incl_isIdealMorphism [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h₁ : I₁ ≤ I h₂ : I₂ ≤ I ⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = comap (incl I) ⁅I₁, I₂⁆ [PROOFSTEP] rw [comap_bracket_incl] [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h₁ : I₁ ≤ I h₂ : I₂ ≤ I ⊢ comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ = comap (incl I) ⁅I₁, I₂⁆ [PROOFSTEP] rw [← inf_eq_right] at h₁ h₂ [GOAL] R : Type u L : Type v L' : Type w₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h₁ : I ⊓ I₁ = I₁ h₂ : I ⊓ I₂ = I₂ ⊢ comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ = comap (incl I) ⁅I₁, I₂⁆ [PROOFSTEP] rw [h₁, h₂]
{"mathlib_filename": "Mathlib.Algebra.Lie.IdealOperations", "llama_tokens": 66675}
[GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ ⊢ D (k + l) I = D k (D l I) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L l : ℕ ⊢ D (Nat.zero + l) I = D Nat.zero (D l I) [PROOFSTEP] rw [Nat.zero_add, derivedSeriesOfIdeal_zero] [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L l k : ℕ ih : D (k + l) I = D k (D l I) ⊢ D (Nat.succ k + l) I = D (Nat.succ k) (D l I) [PROOFSTEP] rw [Nat.succ_add k l, derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_succ, ih] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L k l : ℕ h₁ : I ≤ J h₂ : l ≤ k ⊢ D k I ≤ D l J [PROOFSTEP] revert l [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L k : ℕ h₁ : I ≤ J ⊢ ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J ⊢ ∀ {l : ℕ}, l ≤ Nat.zero → D Nat.zero I ≤ D l J [PROOFSTEP] intro l h₂ [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J ⊢ ∀ {l : ℕ}, l ≤ Nat.succ k → D (Nat.succ k) I ≤ D l J [PROOFSTEP] intro l h₂ [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J l : ℕ h₂ : l ≤ Nat.zero ⊢ D Nat.zero I ≤ D l J [PROOFSTEP] rw [Nat.zero_eq, le_zero_iff] at h₂ [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J l : ℕ h₂ : l = 0 ⊢ D Nat.zero I ≤ D l J [PROOFSTEP] rw [h₂, derivedSeriesOfIdeal_zero] [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J l : ℕ h₂ : l = 0 ⊢ I ≤ D 0 J [PROOFSTEP] exact h₁ [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J l : ℕ h₂ : l ≤ Nat.succ k ⊢ D (Nat.succ k) I ≤ D l J [PROOFSTEP] have h : l = k.succ ∨ l ≤ k := by rwa [le_iff_eq_or_lt, Nat.lt_succ_iff] at h₂ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J l : ℕ h₂ : l ≤ Nat.succ k ⊢ l = Nat.succ k ∨ l ≤ k [PROOFSTEP] rwa [le_iff_eq_or_lt, Nat.lt_succ_iff] at h₂ [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J l : ℕ h₂ : l ≤ Nat.succ k h : l = Nat.succ k ∨ l ≤ k ⊢ D (Nat.succ k) I ≤ D l J [PROOFSTEP] cases' h with h h [GOAL] case succ.inl R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J l : ℕ h₂ : l ≤ Nat.succ k h : l = Nat.succ k ⊢ D (Nat.succ k) I ≤ D l J [PROOFSTEP] rw [h, derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_succ] [GOAL] case succ.inl R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J l : ℕ h₂ : l ≤ Nat.succ k h : l = Nat.succ k ⊢ ⁅D k I, D k I⁆ ≤ ⁅D k J, D k J⁆ [PROOFSTEP] exact LieSubmodule.mono_lie _ _ _ _ (ih (le_refl k)) (ih (le_refl k)) [GOAL] case succ.inr R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J l : ℕ h₂ : l ≤ Nat.succ k h : l ≤ k ⊢ D (Nat.succ k) I ≤ D l J [PROOFSTEP] rw [derivedSeriesOfIdeal_succ] [GOAL] case succ.inr R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L h₁ : I ≤ J k : ℕ ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J l : ℕ h₂ : l ≤ Nat.succ k h : l ≤ k ⊢ ⁅D k I, D k I⁆ ≤ D l J [PROOFSTEP] exact le_trans (LieSubmodule.lie_le_left _ _) (ih h) [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L J : LieIdeal R L k l : ℕ ⊢ D (k + l) (I + J) ≤ D k I + D l J [PROOFSTEP] let D₁ : LieIdeal R L →o LieIdeal R L := { toFun := fun I => ⁅I, I⁆ monotone' := fun I J h => LieSubmodule.mono_lie I J I J h h } [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L J : LieIdeal R L k l : ℕ D₁ : LieIdeal R L →o LieIdeal R L := { toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) } ⊢ D (k + l) (I + J) ≤ D k I + D l J [PROOFSTEP] have h₁ : ∀ I J : LieIdeal R L, D₁ (I ⊔ J) ≤ D₁ I ⊔ J := by simp [LieSubmodule.lie_le_right, LieSubmodule.lie_le_left, le_sup_of_le_right] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L J : LieIdeal R L k l : ℕ D₁ : LieIdeal R L →o LieIdeal R L := { toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) } ⊢ ∀ (I J : LieIdeal R L), ↑D₁ (I ⊔ J) ≤ ↑D₁ I ⊔ J [PROOFSTEP] simp [LieSubmodule.lie_le_right, LieSubmodule.lie_le_left, le_sup_of_le_right] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L J : LieIdeal R L k l : ℕ D₁ : LieIdeal R L →o LieIdeal R L := { toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) } h₁ : ∀ (I J : LieIdeal R L), ↑D₁ (I ⊔ J) ≤ ↑D₁ I ⊔ J ⊢ D (k + l) (I + J) ≤ D k I + D l J [PROOFSTEP] rw [← D₁.iterate_sup_le_sup_iff] at h₁ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L J : LieIdeal R L k l : ℕ D₁ : LieIdeal R L →o LieIdeal R L := { toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) } h₁ : ∀ (n₁ n₂ : ℕ) (a₁ a₂ : LieIdeal R L), (↑D₁)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑D₁)^[n₁] a₁ ⊔ (↑D₁)^[n₂] a₂ ⊢ D (k + l) (I + J) ≤ D k I + D l J [PROOFSTEP] exact h₁ k l I J [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ⊢ D k ⊥ = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ⊢ D k ⊥ ≤ ⊥ [PROOFSTEP] exact derivedSeriesOfIdeal_le_self ⊥ k [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L ⊢ IsLieAbelian { x // x ∈ ↑I } ↔ D 1 I = ⊥ [PROOFSTEP] rw [derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_zero, LieSubmodule.lie_abelian_iff_lie_self_eq_bot] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ ⊢ IsLieAbelian { x // x ∈ ↑(D k I) } ↔ D (k + 1) I = ⊥ [PROOFSTEP] rw [add_comm, derivedSeriesOfIdeal_add I 1 k, abelian_iff_derived_one_eq_bot] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ⊢ derivedSeries R { x // x ∈ ↑I } k = comap (incl I) (derivedSeriesOfIdeal R L k I) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L ⊢ derivedSeries R { x // x ∈ ↑I } Nat.zero = comap (incl I) (derivedSeriesOfIdeal R L Nat.zero I) [PROOFSTEP] simp only [Nat.zero_eq, derivedSeries_def, comap_incl_self, derivedSeriesOfIdeal_zero] [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ih : derivedSeries R { x // x ∈ ↑I } k = comap (incl I) (derivedSeriesOfIdeal R L k I) ⊢ derivedSeries R { x // x ∈ ↑I } (Nat.succ k) = comap (incl I) (derivedSeriesOfIdeal R L (Nat.succ k) I) [PROOFSTEP] simp only [derivedSeries_def, derivedSeriesOfIdeal_succ] at ih ⊢ [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ih : derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤ = comap (incl I) (derivedSeriesOfIdeal R L k I) ⊢ ⁅derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤, derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤⁆ = comap (incl I) ⁅derivedSeriesOfIdeal R L k I, derivedSeriesOfIdeal R L k I⁆ [PROOFSTEP] rw [ih] [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ih : derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤ = comap (incl I) (derivedSeriesOfIdeal R L k I) ⊢ ⁅comap (incl I) (derivedSeriesOfIdeal R L k I), comap (incl I) (derivedSeriesOfIdeal R L k I)⁆ = comap (incl I) ⁅derivedSeriesOfIdeal R L k I, derivedSeriesOfIdeal R L k I⁆ [PROOFSTEP] exact comap_bracket_incl_of_le I (derivedSeriesOfIdeal_le_self I k) (derivedSeriesOfIdeal_le_self I k) [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ⊢ map (incl I) (derivedSeries R { x // x ∈ ↑I } k) = derivedSeriesOfIdeal R L k I [PROOFSTEP] rw [derivedSeries_eq_derivedSeriesOfIdeal_comap, map_comap_incl, inf_eq_right] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ⊢ derivedSeriesOfIdeal R L k I ≤ I [PROOFSTEP] apply derivedSeriesOfIdeal_le_self [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ⊢ derivedSeries R { x // x ∈ ↑I } k = ⊥ ↔ derivedSeriesOfIdeal R L k I = ⊥ [PROOFSTEP] rw [← derivedSeries_eq_derivedSeriesOfIdeal_map, map_eq_bot_iff, ker_incl, eq_bot_iff] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L hI : derivedSeries R { x // x ∈ ↑I } k = ⊥ hJ : derivedSeries R { x // x ∈ ↑J } l = ⊥ ⊢ derivedSeries R { x // x ∈ ↑(I + J) } (k + l) = ⊥ [PROOFSTEP] rw [LieIdeal.derivedSeries_eq_bot_iff] at hI hJ ⊢ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L hI : derivedSeriesOfIdeal R L k I = ⊥ hJ : derivedSeriesOfIdeal R L l J = ⊥ ⊢ derivedSeriesOfIdeal R L (k + l) (I + J) = ⊥ [PROOFSTEP] rw [← le_bot_iff] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L hI : derivedSeriesOfIdeal R L k I = ⊥ hJ : derivedSeriesOfIdeal R L l J = ⊥ ⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥ [PROOFSTEP] let D := derivedSeriesOfIdeal R L [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L hI : derivedSeriesOfIdeal R L k I = ⊥ hJ : derivedSeriesOfIdeal R L l J = ⊥ D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L ⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥ [PROOFSTEP] change D k I = ⊥ at hI [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L hJ : derivedSeriesOfIdeal R L l J = ⊥ D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L hI : D k I = ⊥ ⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥ [PROOFSTEP] change D l J = ⊥ at hJ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L hI : D k I = ⊥ hJ : D l J = ⊥ ⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥ [PROOFSTEP] calc D (k + l) (I + J) ≤ D k I + D l J := derivedSeriesOfIdeal_add_le_add I J k l _ ≤ ⊥ := by rw [hI, hJ]; simp [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L hI : D k I = ⊥ hJ : D l J = ⊥ ⊢ D k I + D l J ≤ ⊥ [PROOFSTEP] rw [hI, hJ] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L k l : ℕ I J : LieIdeal R L D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L hI : D k I = ⊥ hJ : D l J = ⊥ ⊢ ⊥ + ⊥ ≤ ⊥ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ⊢ map f (derivedSeries R L' k) ≤ derivedSeries R L k [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L ⊢ map f (derivedSeries R L' Nat.zero) ≤ derivedSeries R L Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, derivedSeries_def, derivedSeriesOfIdeal_zero, le_top] [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ih : map f (derivedSeries R L' k) ≤ derivedSeries R L k ⊢ map f (derivedSeries R L' (Nat.succ k)) ≤ derivedSeries R L (Nat.succ k) [PROOFSTEP] simp only [derivedSeries_def, derivedSeriesOfIdeal_succ] at ih ⊢ [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ ih : map f (derivedSeriesOfIdeal R L' k ⊤) ≤ derivedSeriesOfIdeal R L k ⊤ ⊢ map f ⁅derivedSeriesOfIdeal R L' k ⊤, derivedSeriesOfIdeal R L' k ⊤⁆ ≤ ⁅derivedSeriesOfIdeal R L k ⊤, derivedSeriesOfIdeal R L k ⊤⁆ [PROOFSTEP] exact le_trans (map_bracket_le f) (LieSubmodule.mono_lie _ _ _ _ ih ih) [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L k : ℕ h : Function.Surjective ↑f ⊢ map f (derivedSeries R L' k) = derivedSeries R L k [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h : Function.Surjective ↑f ⊢ map f (derivedSeries R L' Nat.zero) = derivedSeries R L Nat.zero [PROOFSTEP] change (⊤ : LieIdeal R L').map f = ⊤ [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h : Function.Surjective ↑f ⊢ map f ⊤ = ⊤ [PROOFSTEP] rw [← f.idealRange_eq_map] [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h : Function.Surjective ↑f ⊢ LieHom.idealRange f = ⊤ [PROOFSTEP] exact f.idealRange_eq_top_of_surjective h [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h : Function.Surjective ↑f k : ℕ ih : map f (derivedSeries R L' k) = derivedSeries R L k ⊢ map f (derivedSeries R L' (Nat.succ k)) = derivedSeries R L (Nat.succ k) [PROOFSTEP] simp only [derivedSeries_def, map_bracket_eq f h, ih, derivedSeriesOfIdeal_succ] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } hJ : IsSolvable R { x // x ∈ ↑J } ⊢ IsSolvable R { x // x ∈ I + J } [PROOFSTEP] obtain ⟨k, hk⟩ := id hI [GOAL] case mk.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } hJ : IsSolvable R { x // x ∈ ↑J } k : ℕ hk : derivedSeries R { x // x ∈ ↑I } k = ⊥ ⊢ IsSolvable R { x // x ∈ I + J } [PROOFSTEP] obtain ⟨l, hl⟩ := id hJ [GOAL] case mk.intro.mk.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L I J : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } hJ : IsSolvable R { x // x ∈ ↑J } k : ℕ hk : derivedSeries R { x // x ∈ ↑I } k = ⊥ l : ℕ hl : derivedSeries R { x // x ∈ ↑J } l = ⊥ ⊢ IsSolvable R { x // x ∈ I + J } [PROOFSTEP] exact ⟨⟨k + l, LieIdeal.derivedSeries_add_eq_bot hk hl⟩⟩ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L h₂ : Injective ↑f ⊢ IsSolvable R L' [PROOFSTEP] obtain ⟨k, hk⟩ := id h₁ [GOAL] case mk.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L h₂ : Injective ↑f k : ℕ hk : derivedSeries R L k = ⊥ ⊢ IsSolvable R L' [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L h₂ : Injective ↑f k : ℕ hk : derivedSeries R L k = ⊥ ⊢ derivedSeries R L' k = ⊥ [PROOFSTEP] apply LieIdeal.bot_of_map_eq_bot h₂ [GOAL] case h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L h₂ : Injective ↑f k : ℕ hk : derivedSeries R L k = ⊥ ⊢ LieIdeal.map f (derivedSeries R L' k) = ⊥ [PROOFSTEP] rw [eq_bot_iff, ← hk] [GOAL] case h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L h₂ : Injective ↑f k : ℕ hk : derivedSeries R L k = ⊥ ⊢ LieIdeal.map f (derivedSeries R L' k) ≤ derivedSeries R L k [PROOFSTEP] apply LieIdeal.derivedSeries_map_le [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L' h₂ : Surjective ↑f ⊢ IsSolvable R L [PROOFSTEP] obtain ⟨k, hk⟩ := id h₁ [GOAL] case mk.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L' h₂ : Surjective ↑f k : ℕ hk : derivedSeries R L' k = ⊥ ⊢ IsSolvable R L [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L' h₂ : Surjective ↑f k : ℕ hk : derivedSeries R L' k = ⊥ ⊢ derivedSeries R L k = ⊥ [PROOFSTEP] rw [← LieIdeal.derivedSeries_map_eq k h₂, hk] [GOAL] case h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L h₁ : IsSolvable R L' h₂ : Surjective ↑f k : ℕ hk : derivedSeries R L' k = ⊥ ⊢ LieIdeal.map f ⊥ = ⊥ [PROOFSTEP] simp only [LieIdeal.map_eq_bot_iff, bot_le] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L e : L' ≃ₗ⁅R⁆ L ⊢ IsSolvable R L' ↔ IsSolvable R L [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L e : L' ≃ₗ⁅R⁆ L ⊢ IsSolvable R L' → IsSolvable R L [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L e : L' ≃ₗ⁅R⁆ L ⊢ IsSolvable R L → IsSolvable R L' [PROOFSTEP] intro h [GOAL] case mp R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L e : L' ≃ₗ⁅R⁆ L h : IsSolvable R L' ⊢ IsSolvable R L [PROOFSTEP] exact e.symm.injective.lieAlgebra_isSolvable [GOAL] case mpr R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L e : L' ≃ₗ⁅R⁆ L h : IsSolvable R L ⊢ IsSolvable R L' [PROOFSTEP] exact e.injective.lieAlgebra_isSolvable [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsLieAbelian L ⊢ IsSolvable R L [PROOFSTEP] use 1 [GOAL] case h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsLieAbelian L ⊢ derivedSeries R L 1 = ⊥ [PROOFSTEP] rw [← abelian_iff_derived_one_eq_bot, lie_abelian_iff_equiv_lie_abelian LieIdeal.topEquiv] [GOAL] case h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsLieAbelian L ⊢ IsLieAbelian L [PROOFSTEP] infer_instance [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsNoetherian R L ⊢ IsSolvable R { x // x ∈ ↑(radical R L) } [PROOFSTEP] have hwf := LieSubmodule.wellFounded_of_noetherian R L L [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsNoetherian R L hwf : WellFounded fun x x_1 => x > x_1 ⊢ IsSolvable R { x // x ∈ ↑(radical R L) } [PROOFSTEP] rw [← CompleteLattice.isSupClosedCompact_iff_wellFounded] at hwf [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsNoetherian R L hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L) ⊢ IsSolvable R { x // x ∈ ↑(radical R L) } [PROOFSTEP] refine' hwf {I : LieIdeal R L | IsSolvable R I} ⟨⊥, _⟩ fun I hI J hJ => _ [GOAL] case refine'_1 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I J : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsNoetherian R L hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L) ⊢ ⊥ ∈ {I | IsSolvable R { x // x ∈ ↑I }} [PROOFSTEP] exact LieAlgebra.isSolvableBot R L [GOAL] case refine'_2 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsNoetherian R L hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L) I : LieSubmodule R L L hI : I ∈ {I | IsSolvable R { x // x ∈ ↑I }} J : LieSubmodule R L L hJ : J ∈ {I | IsSolvable R { x // x ∈ ↑I }} ⊢ I ⊔ J ∈ {I | IsSolvable R { x // x ∈ ↑I }} [PROOFSTEP] rw [Set.mem_setOf_eq] at hI hJ ⊢ [GOAL] case refine'_2 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' I✝ J✝ : LieIdeal R L f : L' →ₗ⁅R⁆ L inst✝ : IsNoetherian R L hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L) I : LieSubmodule R L L hI : IsSolvable R { x // x ∈ ↑I } J : LieSubmodule R L L hJ : IsSolvable R { x // x ∈ ↑J } ⊢ IsSolvable R { x // x ∈ ↑(I ⊔ J) } [PROOFSTEP] apply LieAlgebra.isSolvableAdd R L [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ ⊢ derivedLengthOfIdeal R L I = k + 1 ↔ IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } ∧ derivedSeriesOfIdeal R L k I ≠ ⊥ [PROOFSTEP] rw [abelian_iff_derived_succ_eq_bot] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ ⊢ derivedLengthOfIdeal R L I = k + 1 ↔ derivedSeriesOfIdeal R L (k + 1) I = ⊥ ∧ derivedSeriesOfIdeal R L k I ≠ ⊥ [PROOFSTEP] let s := {k | derivedSeriesOfIdeal R L k I = ⊥} [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ derivedLengthOfIdeal R L I = k + 1 ↔ derivedSeriesOfIdeal R L (k + 1) I = ⊥ ∧ derivedSeriesOfIdeal R L k I ≠ ⊥ [PROOFSTEP] change sInf s = k + 1 ↔ k + 1 ∈ s ∧ k ∉ s [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s [PROOFSTEP] have hs : ∀ k₁ k₂ : ℕ, k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s := by intro k₁ k₂ h₁₂ h₁ suffices derivedSeriesOfIdeal R L k₂ I ≤ ⊥ by exact eq_bot_iff.mpr this change derivedSeriesOfIdeal R L k₁ I = ⊥ at h₁ ; rw [← h₁] exact derivedSeriesOfIdeal_antitone I h₁₂ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s [PROOFSTEP] intro k₁ k₂ h₁₂ h₁ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k₁ k₂ : ℕ h₁₂ : k₁ ≤ k₂ h₁ : k₁ ∈ s ⊢ k₂ ∈ s [PROOFSTEP] suffices derivedSeriesOfIdeal R L k₂ I ≤ ⊥ by exact eq_bot_iff.mpr this [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k₁ k₂ : ℕ h₁₂ : k₁ ≤ k₂ h₁ : k₁ ∈ s this : derivedSeriesOfIdeal R L k₂ I ≤ ⊥ ⊢ k₂ ∈ s [PROOFSTEP] exact eq_bot_iff.mpr this [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k₁ k₂ : ℕ h₁₂ : k₁ ≤ k₂ h₁ : k₁ ∈ s ⊢ derivedSeriesOfIdeal R L k₂ I ≤ ⊥ [PROOFSTEP] change derivedSeriesOfIdeal R L k₁ I = ⊥ at h₁ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k₁ k₂ : ℕ h₁₂ : k₁ ≤ k₂ h₁ : derivedSeriesOfIdeal R L k₁ I = ⊥ ⊢ derivedSeriesOfIdeal R L k₂ I ≤ ⊥ [PROOFSTEP] rw [← h₁] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k₁ k₂ : ℕ h₁₂ : k₁ ≤ k₂ h₁ : derivedSeriesOfIdeal R L k₁ I = ⊥ ⊢ derivedSeriesOfIdeal R L k₂ I ≤ derivedSeriesOfIdeal R L k₁ I [PROOFSTEP] exact derivedSeriesOfIdeal_antitone I h₁₂ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} hs : ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s ⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s [PROOFSTEP] exact Nat.sInf_upward_closed_eq_succ_iff hs k [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L ⊢ derivedLength R { x // x ∈ ↑I } = derivedLengthOfIdeal R L I [PROOFSTEP] let s₁ := {k | derivedSeries R I k = ⊥} [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥} ⊢ derivedLength R { x // x ∈ ↑I } = derivedLengthOfIdeal R L I [PROOFSTEP] let s₂ := {k | derivedSeriesOfIdeal R L k I = ⊥} [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥} s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ derivedLength R { x // x ∈ ↑I } = derivedLengthOfIdeal R L I [PROOFSTEP] change sInf s₁ = sInf s₂ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥} s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ sInf s₁ = sInf s₂ [PROOFSTEP] congr [GOAL] case e_a R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥} s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ s₁ = s₂ [PROOFSTEP] ext k [GOAL] case e_a.h R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥} s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k : ℕ ⊢ k ∈ s₁ ↔ k ∈ s₂ [PROOFSTEP] exact I.derivedSeries_eq_bot_iff k [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L ⊢ IsLieAbelian { x // x ∈ ↑(derivedAbelianOfIdeal I) } [PROOFSTEP] dsimp only [derivedAbelianOfIdeal] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L ⊢ IsLieAbelian { x // x ∈ ↑(match derivedLengthOfIdeal R L I with | 0 => ⊥ | Nat.succ k => derivedSeriesOfIdeal R L k I) } [PROOFSTEP] cases' h : derivedLengthOfIdeal R L I with k [GOAL] case zero R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h : derivedLengthOfIdeal R L I = Nat.zero ⊢ IsLieAbelian { x // x ∈ ↑(match Nat.zero with | 0 => ⊥ | Nat.succ k => derivedSeriesOfIdeal R L k I) } [PROOFSTEP] exact isLieAbelian_bot R L [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k ⊢ IsLieAbelian { x // x ∈ ↑(match Nat.succ k with | 0 => ⊥ | Nat.succ k => derivedSeriesOfIdeal R L k I) } [PROOFSTEP] rw [derivedSeries_of_derivedLength_succ] at h [GOAL] case succ R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L k : ℕ h : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } ∧ derivedSeriesOfIdeal R L k I ≠ ⊥ ⊢ IsLieAbelian { x // x ∈ ↑(match Nat.succ k with | 0 => ⊥ | Nat.succ k => derivedSeriesOfIdeal R L k I) } [PROOFSTEP] exact h.1 [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } ⊢ derivedLengthOfIdeal R L I = 0 ↔ I = ⊥ [PROOFSTEP] let s := {k | derivedSeriesOfIdeal R L k I = ⊥} [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ derivedLengthOfIdeal R L I = 0 ↔ I = ⊥ [PROOFSTEP] change sInf s = 0 ↔ _ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ sInf s = 0 ↔ I = ⊥ [PROOFSTEP] have hne : s ≠ ∅ := by obtain ⟨k, hk⟩ := id hI refine' Set.Nonempty.ne_empty ⟨k, _⟩ rw [derivedSeries_def, LieIdeal.derivedSeries_eq_bot_iff] at hk ; exact hk [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} ⊢ s ≠ ∅ [PROOFSTEP] obtain ⟨k, hk⟩ := id hI [GOAL] case mk.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k : ℕ hk : derivedSeries R { x // x ∈ ↑I } k = ⊥ ⊢ s ≠ ∅ [PROOFSTEP] refine' Set.Nonempty.ne_empty ⟨k, _⟩ [GOAL] case mk.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k : ℕ hk : derivedSeries R { x // x ∈ ↑I } k = ⊥ ⊢ k ∈ s [PROOFSTEP] rw [derivedSeries_def, LieIdeal.derivedSeries_eq_bot_iff] at hk [GOAL] case mk.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} k : ℕ hk : derivedSeriesOfIdeal R L k I = ⊥ ⊢ k ∈ s [PROOFSTEP] exact hk [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L hI : IsSolvable R { x // x ∈ ↑I } s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥} hne : s ≠ ∅ ⊢ sInf s = 0 ↔ I = ⊥ [PROOFSTEP] simp [hne] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h : IsSolvable R { x // x ∈ ↑I } ⊢ derivedAbelianOfIdeal I = ⊥ ↔ I = ⊥ [PROOFSTEP] dsimp only [derivedAbelianOfIdeal] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h : IsSolvable R { x // x ∈ ↑I } ⊢ (match derivedLengthOfIdeal R L I with | 0 => ⊥ | Nat.succ k => derivedSeriesOfIdeal R L k I) = ⊥ ↔ I = ⊥ [PROOFSTEP] split -- Porting note: Original tactic was `cases' h : derivedAbelianOfIdeal R L I with k` [GOAL] case h_1 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h : IsSolvable R { x // x ∈ ↑I } x✝ : ℕ heq✝ : derivedLengthOfIdeal R L I = 0 ⊢ ⊥ = ⊥ ↔ I = ⊥ [PROOFSTEP] rename_i h [GOAL] case h_1 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ : ℕ h : derivedLengthOfIdeal R L I = 0 ⊢ ⊥ = ⊥ ↔ I = ⊥ [PROOFSTEP] rw [derivedLength_zero] at h [GOAL] case h_1 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ : ℕ h : I = ⊥ ⊢ ⊥ = ⊥ ↔ I = ⊥ [PROOFSTEP] rw [h] [GOAL] case h_2 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h : IsSolvable R { x // x ∈ ↑I } x✝ k✝ : ℕ heq✝ : derivedLengthOfIdeal R L I = Nat.succ k✝ ⊢ derivedSeriesOfIdeal R L k✝ I = ⊥ ↔ I = ⊥ [PROOFSTEP] rename_i k h [GOAL] case h_2 R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k ⊢ derivedSeriesOfIdeal R L k I = ⊥ ↔ I = ⊥ [PROOFSTEP] obtain ⟨_, h₂⟩ := (derivedSeries_of_derivedLength_succ R L I k).mp h [GOAL] case h_2.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥ ⊢ derivedSeriesOfIdeal R L k I = ⊥ ↔ I = ⊥ [PROOFSTEP] have h₃ : I ≠ ⊥ := by intro contra; apply h₂; rw [contra]; apply derivedSeries_of_bot_eq_bot [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥ ⊢ I ≠ ⊥ [PROOFSTEP] intro contra [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥ contra : I = ⊥ ⊢ False [PROOFSTEP] apply h₂ [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥ contra : I = ⊥ ⊢ derivedSeriesOfIdeal R L k I = ⊥ [PROOFSTEP] rw [contra] [GOAL] R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥ contra : I = ⊥ ⊢ derivedSeriesOfIdeal R L k ⊥ = ⊥ [PROOFSTEP] apply derivedSeries_of_bot_eq_bot [GOAL] case h_2.intro R : Type u L : Type v M : Type w L' : Type w₁ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I✝ J : LieIdeal R L f : L' →ₗ⁅R⁆ L I : LieIdeal R L h✝ : IsSolvable R { x // x ∈ ↑I } x✝ k : ℕ h : derivedLengthOfIdeal R L I = Nat.succ k left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥ h₃ : I ≠ ⊥ ⊢ derivedSeriesOfIdeal R L k I = ⊥ ↔ I = ⊥ [PROOFSTEP] simp only [h₂, h₃]
{"mathlib_filename": "Mathlib.Algebra.Lie.Solvable", "llama_tokens": 25280}
[GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ ⁅x✝² + x✝¹, x✝⁆ = ⁅x✝², x✝⁆ + ⁅x✝¹, x✝⁆ [PROOFSTEP] simp only [Ring.lie_def, right_distrib, left_distrib] [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ x✝² * x✝ + x✝¹ * x✝ - (x✝ * x✝² + x✝ * x✝¹) = x✝² * x✝ - x✝ * x✝² + (x✝¹ * x✝ - x✝ * x✝¹) [PROOFSTEP] abel [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ x✝² * x✝ + x✝¹ * x✝ - (x✝ * x✝² + x✝ * x✝¹) = x✝² * x✝ - x✝ * x✝² + (x✝¹ * x✝ - x✝ * x✝¹) [PROOFSTEP] abel [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ ⁅x✝², x✝¹ + x✝⁆ = ⁅x✝², x✝¹⁆ + ⁅x✝², x✝⁆ [PROOFSTEP] simp only [Ring.lie_def, right_distrib, left_distrib] [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ x✝² * x✝¹ + x✝² * x✝ - (x✝¹ * x✝² + x✝ * x✝²) = x✝² * x✝¹ - x✝¹ * x✝² + (x✝² * x✝ - x✝ * x✝²) [PROOFSTEP] abel [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ x✝² * x✝¹ + x✝² * x✝ - (x✝¹ * x✝² + x✝ * x✝²) = x✝² * x✝¹ - x✝¹ * x✝² + (x✝² * x✝ - x✝ * x✝²) [PROOFSTEP] abel [GOAL] A : Type v inst✝ : Ring A ⊢ ∀ (x : A), ⁅x, x⁆ = 0 [PROOFSTEP] simp only [Ring.lie_def, forall_const, sub_self] [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ ⁅x✝², ⁅x✝¹, x✝⁆⁆ = ⁅⁅x✝², x✝¹⁆, x✝⁆ + ⁅x✝¹, ⁅x✝², x✝⁆⁆ [PROOFSTEP] simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc] [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ x✝² * (x✝¹ * x✝) - x✝² * (x✝ * x✝¹) - (x✝¹ * (x✝ * x✝²) - x✝ * (x✝¹ * x✝²)) = x✝² * (x✝¹ * x✝) - x✝¹ * (x✝² * x✝) - (x✝ * (x✝² * x✝¹) - x✝ * (x✝¹ * x✝²)) + (x✝¹ * (x✝² * x✝) - x✝¹ * (x✝ * x✝²) - (x✝² * (x✝ * x✝¹) - x✝ * (x✝² * x✝¹))) [PROOFSTEP] abel [GOAL] A : Type v inst✝ : Ring A x✝² x✝¹ x✝ : A ⊢ x✝² * (x✝¹ * x✝) - x✝² * (x✝ * x✝¹) - (x✝¹ * (x✝ * x✝²) - x✝ * (x✝¹ * x✝²)) = x✝² * (x✝¹ * x✝) - x✝¹ * (x✝² * x✝) - (x✝ * (x✝² * x✝¹) - x✝ * (x✝¹ * x✝²)) + (x✝¹ * (x✝² * x✝) - x✝¹ * (x✝ * x✝²) - (x✝² * (x✝ * x✝¹) - x✝ * (x✝² * x✝¹))) [PROOFSTEP] abel [GOAL] A : Type v inst✝² : Ring A M : Type w inst✝¹ : AddCommGroup M inst✝ : Module A M ⊢ ∀ (x y : A) (m : M), ⁅x, ⁅y, m⁆⁆ = ⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆ [PROOFSTEP] simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] [GOAL] A : Type v inst✝² : Ring A R : Type u inst✝¹ : CommRing R inst✝ : Algebra R A t : R x y : A ⊢ ⁅x, t • y⁆ = t • ⁅x, y⁆ [PROOFSTEP] rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] [GOAL] A : Type v inst✝⁶ : Ring A R : Type u inst✝⁵ : CommRing R inst✝⁴ : Algebra R A B : Type w C : Type w₁ inst✝³ : Ring B inst✝² : Ring C inst✝¹ : Algebra R B inst✝ : Algebra R C f : A →ₐ[R] B g : B →ₐ[R] C src✝ : A →ₗ[R] B := toLinearMap f x✝¹ x✝ : A ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x✝¹, x✝⁆ = ⁅AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x✝¹, AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x✝⁆ [PROOFSTEP] simp [LieRing.of_associative_ring_bracket] [GOAL] A : Type v inst✝⁶ : Ring A R : Type u inst✝⁵ : CommRing R inst✝⁴ : Algebra R A B : Type w C : Type w₁ inst✝³ : Ring B inst✝² : Ring C inst✝¹ : Algebra R B inst✝ : Algebra R C f✝ : A →ₐ[R] B g✝ : B →ₐ[R] C f g : A →ₐ[R] B h : toLieHom f = toLieHom g ⊢ f = g [PROOFSTEP] ext a [GOAL] case H A : Type v inst✝⁶ : Ring A R : Type u inst✝⁵ : CommRing R inst✝⁴ : Algebra R A B : Type w C : Type w₁ inst✝³ : Ring B inst✝² : Ring C inst✝¹ : Algebra R B inst✝ : Algebra R C f✝ : A →ₐ[R] B g✝ : B →ₐ[R] C f g : A →ₐ[R] B h : toLieHom f = toLieHom g a : A ⊢ ↑f a = ↑g a [PROOFSTEP] exact LieHom.congr_fun h a [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M x y : L ⊢ (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y [PROOFSTEP] ext m [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M x y : L m : M ⊢ ↑((fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y)) m = ↑((fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) m [PROOFSTEP] apply add_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M t : R x : L ⊢ AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x [PROOFSTEP] ext m [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M t : R x : L m : M ⊢ ↑(AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x)) m = ↑(↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x) m [PROOFSTEP] apply smul_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M x y : L ⊢ AddHom.toFun { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) }, map_smul' := (_ : ∀ (t : R) (x : L), AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) }, map_smul' := (_ : ∀ (t : R) (x : L), AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) }, map_smul' := (_ : ∀ (t : R) (x : L), AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x) }.toAddHom y⁆ [PROOFSTEP] ext m [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M x y : L m : M ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) }, map_smul' := (_ : ∀ (t : R) (x : L), AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x) }.toAddHom ⁅x, y⁆) m = ↑⁅AddHom.toFun { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) }, map_smul' := (_ : ∀ (t : R) (x : L), AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) }, map_smul' := (_ : ∀ (t : R) (x : L), AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }, map_add' := (_ : ∀ (x y : L), (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) (x + y) = (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) x + (fun x => { toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) }, map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) }) y) } x) }.toAddHom y⁆ m [PROOFSTEP] apply lie_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M ⊢ toEndomorphism R (Module.End R M) M = LieHom.id [PROOFSTEP] ext g m [GOAL] case h.h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M g : Module.End R M m : M ⊢ ↑(↑(toEndomorphism R (Module.End R M) M) g) m = ↑(↑LieHom.id g) m [PROOFSTEP] simp [lie_eq_smul] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M x : L ⊢ Submodule.map (↑(toEndomorphism R L M) x) ↑N ≤ ↑N [PROOFSTEP] rintro n ⟨m, hm, rfl⟩ [GOAL] case intro.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M x : L m : M hm : m ∈ ↑↑N ⊢ ↑(↑(toEndomorphism R L M) x) m ∈ ↑N [PROOFSTEP] exact N.lie_mem hm [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M x : L m : M hm : m ∈ ↑N ⊢ ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N [PROOFSTEP] simpa using N.lie_mem hm [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M x : L h : optParam (∀ (m : M) (hm : m ∈ ↑N), ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N) (_ : ∀ (m : M) (hm : m ∈ ↑N), ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N) ⊢ LinearMap.restrict (↑(toEndomorphism R L M) x) h = ↑(toEndomorphism R L { x // x ∈ ↑N }) x [PROOFSTEP] ext [GOAL] case h.a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M x : L h : optParam (∀ (m : M) (hm : m ∈ ↑N), ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N) (_ : ∀ (m : M) (hm : m ∈ ↑N), ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N) x✝ : { x // x ∈ ↑N } ⊢ ↑(↑(LinearMap.restrict (↑(toEndomorphism R L M) x) h) x✝) = ↑(↑(↑(toEndomorphism R L { x // x ∈ ↑N }) x) x✝) [PROOFSTEP] simp [LinearMap.restrict_apply] [GOAL] R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M A : Type v inst✝¹ : Ring A inst✝ : Algebra R A ⊢ ↑(ad R A) = LinearMap.mulLeft R - LinearMap.mulRight R [PROOFSTEP] ext a b [GOAL] case h.h R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M A : Type v inst✝¹ : Ring A inst✝ : Algebra R A a b : A ⊢ ↑(↑(ad R A) a) b = ↑((LinearMap.mulLeft R - LinearMap.mulRight R) a) b [PROOFSTEP] simp [LieRing.of_associative_ring_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L x : { x // x ∈ K } ⊢ LinearMap.comp (↑(ad R L) ↑x) ↑(incl K) = LinearMap.comp (↑(incl K)) (↑(ad R { x // x ∈ K }) x) [PROOFSTEP] ext y [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L x y : { x // x ∈ K } ⊢ ↑(LinearMap.comp (↑(ad R L) ↑x) ↑(incl K)) y = ↑(LinearMap.comp (↑(incl K)) (↑(ad R { x // x ∈ K }) x)) y [PROOFSTEP] simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] [GOAL] R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A' x y : A hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] change ⁅x, y⁆ ∈ A' [GOAL] R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A' x y : A hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ A' [PROOFSTEP] change x ∈ A' at hx [GOAL] R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A' x y : A hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hx : x ∈ A' ⊢ ⁅x, y⁆ ∈ A' [PROOFSTEP] change y ∈ A' at hy [GOAL] R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' ⊢ ⁅x, y⁆ ∈ A' [PROOFSTEP] rw [LieRing.of_associative_ring_bracket] [GOAL] R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' ⊢ x * y - y * x ∈ A' [PROOFSTEP] have hxy := A'.mul_mem hx hy [GOAL] R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' hxy : x * y ∈ A' ⊢ x * y - y * x ∈ A' [PROOFSTEP] have hyx := A'.mul_mem hy hx [GOAL] R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' hxy : x * y ∈ A' hyx : y * x ∈ A' ⊢ x * y - y * x ∈ A' [PROOFSTEP] exact Submodule.sub_mem (Subalgebra.toSubmodule A') hxy hyx [GOAL] R : Type u M₁ : Type v M₂ : Type w inst✝⁴ : CommRing R inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M₁ ≃ₗ[R] M₂ src✝ : Module.End R M₁ ≃ₗ[R] Module.End R M₂ := conj e f g : Module.End R M₁ ⊢ ↑(conj e) ⁅f, g⁆ = ⁅↑(conj e) f, ↑(conj e) g⁆ [PROOFSTEP] simp only [LieRing.of_associative_ring_bracket, LinearMap.mul_eq_comp, e.conj_comp, LinearEquiv.map_sub] [GOAL] R : Type u A₁ : Type v A₂ : Type w inst✝⁴ : CommRing R inst✝³ : Ring A₁ inst✝² : Ring A₂ inst✝¹ : Algebra R A₁ inst✝ : Algebra R A₂ e : A₁ ≃ₐ[R] A₂ src✝ : A₁ ≃ₗ[R] A₂ := toLinearEquiv e x y : A₁ ⊢ AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : ∀ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : ∀ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : ∀ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] have : e.toEquiv.toFun = e := rfl [GOAL] R : Type u A₁ : Type v A₂ : Type w inst✝⁴ : CommRing R inst✝³ : Ring A₁ inst✝² : Ring A₂ inst✝¹ : Algebra R A₁ inst✝ : Algebra R A₂ e : A₁ ≃ₐ[R] A₂ src✝ : A₁ ≃ₗ[R] A₂ := toLinearEquiv e x y : A₁ this : e.toFun = ↑e ⊢ AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : ∀ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : ∀ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : ∀ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] simp_rw [LieRing.of_associative_ring_bracket, this, map_sub, map_mul]
{"mathlib_filename": "Mathlib.Algebra.Lie.OfAssociative", "llama_tokens": 24312}
[GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y : L hx : x ∈ 0.carrier _hy : y ∈ 0.carrier ⊢ ⁅x, y⁆ ∈ 0.carrier [PROOFSTEP] rw [(Submodule.mem_bot R).1 hx, zero_lie] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y : L hx : x ∈ 0.carrier _hy : y ∈ 0.carrier ⊢ 0 ∈ 0.carrier [PROOFSTEP] exact Submodule.zero_mem 0 [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' L'' : LieSubalgebra R L h : (fun L' => L'.carrier) L' = (fun L' => L'.carrier) L'' ⊢ L' = L'' [PROOFSTEP] rcases L' with ⟨⟨⟩⟩ [GOAL] case mk.mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L'' : LieSubalgebra R L toAddSubmonoid✝ : AddSubmonoid L smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier lie_mem'✝ : ∀ {x y : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier h : (fun L' => L'.carrier) { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ } = (fun L' => L'.carrier) L'' ⊢ { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ } = L'' [PROOFSTEP] rcases L'' with ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L toAddSubmonoid✝¹ : AddSubmonoid L smul_mem'✝¹ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝¹.carrier → c • x ∈ toAddSubmonoid✝¹.carrier lie_mem'✝¹ : ∀ {x y : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier toAddSubmonoid✝ : AddSubmonoid L smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier lie_mem'✝ : ∀ {x y : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier h : (fun L' => L'.carrier) { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }, lie_mem' := lie_mem'✝¹ } = (fun L' => L'.carrier) { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ } ⊢ { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }, lie_mem' := lie_mem'✝¹ } = { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.mk.mk.e_toSubmodule.e_toAddSubmonoid R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L toAddSubmonoid✝¹ : AddSubmonoid L smul_mem'✝¹ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝¹.carrier → c • x ∈ toAddSubmonoid✝¹.carrier lie_mem'✝¹ : ∀ {x y : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier toAddSubmonoid✝ : AddSubmonoid L smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier lie_mem'✝ : ∀ {x y : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier h : (fun L' => L'.carrier) { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }, lie_mem' := lie_mem'✝¹ } = (fun L' => L'.carrier) { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ } ⊢ toAddSubmonoid✝¹ = toAddSubmonoid✝ [PROOFSTEP] exact SetLike.coe_injective' h [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L ⊢ ∀ (x y z : { x // x ∈ L' }), ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆ [PROOFSTEP] intros [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ y✝ z✝ : { x // x ∈ L' } ⊢ ⁅x✝ + y✝, z✝⁆ = ⁅x✝, z✝⁆ + ⁅y✝, z✝⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ y✝ z✝ : { x // x ∈ L' } ⊢ ↑⁅x✝ + y✝, z✝⁆ = ↑(⁅x✝, z✝⁆ + ⁅y✝, z✝⁆) [PROOFSTEP] apply add_lie [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L ⊢ ∀ (x y z : { x // x ∈ L' }), ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆ [PROOFSTEP] intros [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ y✝ z✝ : { x // x ∈ L' } ⊢ ⁅x✝, y✝ + z✝⁆ = ⁅x✝, y✝⁆ + ⁅x✝, z✝⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ y✝ z✝ : { x // x ∈ L' } ⊢ ↑⁅x✝, y✝ + z✝⁆ = ↑(⁅x✝, y✝⁆ + ⁅x✝, z✝⁆) [PROOFSTEP] apply lie_add [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L ⊢ ∀ (x : { x // x ∈ L' }), ⁅x, x⁆ = 0 [PROOFSTEP] intros [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ : { x // x ∈ L' } ⊢ ⁅x✝, x✝⁆ = 0 [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ : { x // x ∈ L' } ⊢ ↑⁅x✝, x✝⁆ = ↑0 [PROOFSTEP] apply lie_self [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L ⊢ ∀ (x y z : { x // x ∈ L' }), ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] intros [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ y✝ z✝ : { x // x ∈ L' } ⊢ ⁅x✝, ⁅y✝, z✝⁆⁆ = ⁅⁅x✝, y✝⁆, z✝⁆ + ⁅y✝, ⁅x✝, z✝⁆⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L x✝ y✝ z✝ : { x // x ∈ L' } ⊢ ↑⁅x✝, ⁅y✝, z✝⁆⁆ = ↑(⁅⁅x✝, y✝⁆, z✝⁆ + ⁅y✝, ⁅x✝, z✝⁆⁆) [PROOFSTEP] apply leibniz_lie [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L ⊢ ∀ (t : R) (x y : { x // x ∈ L' }), ⁅x, t • y⁆ = t • ⁅x, y⁆ [PROOFSTEP] { intros apply SetCoe.ext apply lie_smul } [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L ⊢ ∀ (t : R) (x y : { x // x ∈ L' }), ⁅x, t • y⁆ = t • ⁅x, y⁆ [PROOFSTEP] intros [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L t✝ : R x✝ y✝ : { x // x ∈ L' } ⊢ ⁅x✝, t✝ • y✝⁆ = t✝ • ⁅x✝, y✝⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L t✝ : R x✝ y✝ : { x // x ∈ L' } ⊢ ↑⁅x✝, t✝ • y✝⁆ = ↑(t✝ • ⁅x✝, y✝⁆) [PROOFSTEP] apply lie_smul [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L p : Submodule R L h : ∀ {x y : L}, x ∈ { toAddSubmonoid := p.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := p.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := p.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ { toSubmodule := { toAddSubmonoid := p.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) }, lie_mem' := h }.toSubmodule = p [PROOFSTEP] cases p [GOAL] case mk R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' : LieSubalgebra R L toAddSubmonoid✝ : AddSubmonoid L smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier h : ∀ {x y : L}, x ∈ { toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → c • x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → c • x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → c • x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ { toSubmodule := { toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → c • x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }, lie_mem' := h }.toSubmodule = { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ } [PROOFSTEP] rfl [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' L₁' L₂' : LieSubalgebra R L h : L₁'.toSubmodule = L₂'.toSubmodule ⊢ L₁' = L₂' [PROOFSTEP] rw [SetLike.ext'_iff] at h [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' L₁' L₂' : LieSubalgebra R L h✝ : L₁'.toSubmodule = L₂'.toSubmodule h : ↑L₁'.toSubmodule = ↑L₂'.toSubmodule ⊢ L₁' = L₂' [PROOFSTEP] rw [← coe_set_eq] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L L' L₁' L₂' : LieSubalgebra R L h✝ : L₁'.toSubmodule = L₂'.toSubmodule h : ↑L₁'.toSubmodule = ↑L₂'.toSubmodule ⊢ ↑L₁' = ↑L₂' [PROOFSTEP] exact h [GOAL] R : Type u L : Type v inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L L' : LieSubalgebra R L M : Type w inst✝⁷ : AddCommGroup M inst✝⁶ : LieRingModule L M N : Type w₁ inst✝⁵ : AddCommGroup N inst✝⁴ : LieRingModule L N inst✝³ : Module R N inst✝² : LieModule R L N inst✝¹ : Module R M inst✝ : LieModule R L M t : R x : { x // x ∈ L' } m : M ⊢ ⁅t • x, m⁆ = t • ⁅x, m⁆ [PROOFSTEP] simp only [coe_bracket_of_module, smul_lie, Submodule.coe_smul_of_tower] [GOAL] R : Type u L : Type v inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L L' : LieSubalgebra R L M : Type w inst✝⁷ : AddCommGroup M inst✝⁶ : LieRingModule L M N : Type w₁ inst✝⁵ : AddCommGroup N inst✝⁴ : LieRingModule L N inst✝³ : Module R N inst✝² : LieModule R L N inst✝¹ : Module R M inst✝ : LieModule R L M t : R x : { x // x ∈ L' } m : M ⊢ ⁅x, t • m⁆ = t • ⁅x, m⁆ [PROOFSTEP] simp only [coe_bracket_of_module, lie_smul] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ src✝ : Submodule R L₂ := LinearMap.range ↑f ⊢ ∀ {x y : L₂}, x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rintro - - ⟨x, rfl⟩ ⟨y, rfl⟩ [GOAL] case intro.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ src✝ : Submodule R L₂ := LinearMap.range ↑f x y : L ⊢ ⁅↑↑f x, ↑↑f y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] exact ⟨⁅x, y⁆, f.map_lie x y⟩ [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ src✝ : L →ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.rangeRestrict ↑f x y : L ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] apply Subtype.ext [GOAL] case a R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ src✝ : L →ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.rangeRestrict ↑f x y : L ⊢ ↑(AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆) = ↑⁅AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] exact f.map_lie x y [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ ⊢ Function.Surjective ↑(rangeRestrict f) [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ y : L₂ hy : y ∈ range f ⊢ ∃ a, ↑(rangeRestrict f) a = { val := y, property := hy } [PROOFSTEP] erw [mem_range] at hy [GOAL] case mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ y : L₂ hy✝ : y ∈ range f hy : ∃ y_1, ↑f y_1 = y ⊢ ∃ a, ↑(rangeRestrict f) a = { val := y, property := hy✝ } [PROOFSTEP] obtain ⟨x, rfl⟩ := hy [GOAL] case mk.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ x : L hy : ↑f x ∈ range f ⊢ ∃ a, ↑(rangeRestrict f) a = { val := ↑f x, property := hy } [PROOFSTEP] use x [GOAL] case h R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ x : L hy : ↑f x ∈ range f ⊢ ↑(rangeRestrict f) x = { val := ↑f x, property := hy } [PROOFSTEP] simp only [Subtype.mk_eq_mk, rangeRestrict_apply] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ h : Function.Injective ↑f x y : L hxy : ↑(rangeRestrict f) x = ↑(rangeRestrict f) y ⊢ x = y [PROOFSTEP] simp only [Subtype.mk_eq_mk, rangeRestrict_apply] at hxy [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ h : Function.Injective ↑f x y : L hxy : ↑f x = ↑f y ⊢ x = y [PROOFSTEP] exact h hxy [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ p : Submodule R L ⊢ (∃ K, K.toSubmodule = p) ↔ ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ p : Submodule R L ⊢ (∃ K, K.toSubmodule = p) → ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p [PROOFSTEP] rintro ⟨K, rfl⟩ _ _ [GOAL] case mp.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K : LieSubalgebra R L x✝ y✝ : L ⊢ x✝ ∈ K.toSubmodule → y✝ ∈ K.toSubmodule → ⁅x✝, y✝⁆ ∈ K.toSubmodule [PROOFSTEP] exact K.lie_mem' [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ p : Submodule R L ⊢ (∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p) → ∃ K, K.toSubmodule = p [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ p : Submodule R L h : ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p ⊢ ∃ K, K.toSubmodule = p [PROOFSTEP] use{ p with lie_mem' := h _ _ } [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ LieHom.range (incl K) = K [PROOFSTEP] rw [← coe_to_submodule_eq_iff] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ (LieHom.range (incl K)).toSubmodule = K.toSubmodule [PROOFSTEP] exact (K : Submodule R L).range_subtype [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] erw [Submodule.mem_map] at hx [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ hx : ∃ y, y ∈ K.toSubmodule ∧ ↑↑f y = x hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rcases hx with ⟨x', hx', hx⟩ [GOAL] case intro.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier x' : L hx' : x' ∈ K.toSubmodule hx : ↑↑f x' = x ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rw [← hx] [GOAL] case intro.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier x' : L hx' : x' ∈ K.toSubmodule hx : ↑↑f x' = x ⊢ ⁅↑↑f x', y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] erw [Submodule.mem_map] at hy [GOAL] case intro.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ hy : ∃ y_1, y_1 ∈ K.toSubmodule ∧ ↑↑f y_1 = y x' : L hx' : x' ∈ K.toSubmodule hx : ↑↑f x' = x ⊢ ⁅↑↑f x', y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rcases hy with ⟨y', hy', hy⟩ [GOAL] case intro.intro.intro.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ x' : L hx' : x' ∈ K.toSubmodule hx : ↑↑f x' = x y' : L hy' : y' ∈ K.toSubmodule hy : ↑↑f y' = y ⊢ ⁅↑↑f x', y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rw [← hy] [GOAL] case intro.intro.intro.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ x' : L hx' : x' ∈ K.toSubmodule hx : ↑↑f x' = x y' : L hy' : y' ∈ K.toSubmodule hy : ↑↑f y' = y ⊢ ⁅↑↑f x', ↑↑f y'⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] erw [Submodule.mem_map] [GOAL] case intro.intro.intro.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule x y : L₂ x' : L hx' : x' ∈ K.toSubmodule hx : ↑↑f x' = x y' : L hy' : y' ∈ K.toSubmodule hy : ↑↑f y' = y ⊢ ∃ y, y ∈ K.toSubmodule ∧ ↑↑f y = ⁅↑↑f x', ↑↑f y'⁆ [PROOFSTEP] exact ⟨⁅x', y'⁆, K.lie_mem hx' hy', f.map_lie x' y'⟩ [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L := Submodule.comap (↑f) K₂.toSubmodule x y : L hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] suffices ⁅f x, f y⁆ ∈ K₂ by simp [this] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L := Submodule.comap (↑f) K₂.toSubmodule x y : L hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier this : ⁅↑f x, ↑f y⁆ ∈ K₂ ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] simp [this] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : Submodule R L := Submodule.comap (↑f) K₂.toSubmodule x y : L hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅↑f x, ↑f y⁆ ∈ K₂ [PROOFSTEP] exact K₂.lie_mem hx hy [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ LieHom.range f = map f ⊤ [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ x✝ : L₂ ⊢ x✝ ∈ LieHom.range f ↔ x✝ ∈ map f ⊤ [PROOFSTEP] simp [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) src✝ : Submodule R L := sInf {x | ∃ s, s ∈ S ∧ s.toSubmodule = x} x y : L hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] simp only [Submodule.mem_carrier, mem_iInter, Submodule.sInf_coe, mem_setOf_eq, forall_apply_eq_imp_iff₂, exists_imp, and_imp] at hx hy ⊢ [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) src✝ : Submodule R L := sInf {x | ∃ s, s ∈ S ∧ s.toSubmodule = x} x y : L hx : ∀ (a : LieSubalgebra R L), a ∈ S → x ∈ ↑a.toSubmodule hy : ∀ (a : LieSubalgebra R L), a ∈ S → y ∈ ↑a.toSubmodule ⊢ ∀ (a : LieSubalgebra R L), a ∈ S → ⁅x, y⁆ ∈ ↑a.toSubmodule [PROOFSTEP] intro K hK [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K✝ K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) src✝ : Submodule R L := sInf {x | ∃ s, s ∈ S ∧ s.toSubmodule = x} x y : L hx : ∀ (a : LieSubalgebra R L), a ∈ S → x ∈ ↑a.toSubmodule hy : ∀ (a : LieSubalgebra R L), a ∈ S → y ∈ ↑a.toSubmodule K : LieSubalgebra R L hK : K ∈ S ⊢ ⁅x, y⁆ ∈ ↑K.toSubmodule [PROOFSTEP] exact K.lie_mem (hx K hK) (hy K hK) [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) ⊢ ↑(sInf S) = ⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s [PROOFSTEP] rw [← coe_to_submodule, sInf_coe_to_submodule, Submodule.sInf_coe] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) ⊢ ⋂ (p : Submodule R L) (_ : p ∈ {x | ∃ s, s ∈ S ∧ s.toSubmodule = x}), ↑p = ⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s [PROOFSTEP] ext x [GOAL] case h R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) x : L ⊢ x ∈ ⋂ (p : Submodule R L) (_ : p ∈ {x | ∃ s, s ∈ S ∧ s.toSubmodule = x}), ↑p ↔ x ∈ ⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s [PROOFSTEP] simp [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) ⊢ IsGLB S (sInf S) [PROOFSTEP] have h : ∀ K K' : LieSubalgebra R L, (K : Set L) ≤ K' ↔ K ≤ K' := by intros exact Iff.rfl [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) ⊢ ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K' [PROOFSTEP] intros [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) K✝ K'✝ : LieSubalgebra R L ⊢ ↑K✝ ≤ ↑K'✝ ↔ K✝ ≤ K'✝ [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) h : ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K' ⊢ IsGLB S (sInf S) [PROOFSTEP] apply IsGLB.of_image @h [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) h : ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K' ⊢ IsGLB ((fun x => ↑x) '' S) ↑(sInf S) [PROOFSTEP] simp only [sInf_coe] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ S : Set (LieSubalgebra R L) h : ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K' ⊢ IsGLB ((fun x => ↑x) '' S) (⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s) [PROOFSTEP] exact isGLB_biInf [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : CompleteLattice (LieSubalgebra R L) := completeLatticeOfInf (LieSubalgebra R L) (_ : ∀ (S : Set (LieSubalgebra R L)), IsGLB S (sInf S)) N : LieSubalgebra R L x✝ : L h : x✝ ∈ ⊥ ⊢ x✝ ∈ N [PROOFSTEP] rw [mem_bot] at h [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : CompleteLattice (LieSubalgebra R L) := completeLatticeOfInf (LieSubalgebra R L) (_ : ∀ (S : Set (LieSubalgebra R L)), IsGLB S (sInf S)) N : LieSubalgebra R L x✝ : L h : x✝ = 0 ⊢ x✝ ∈ N [PROOFSTEP] rw [h] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ src✝ : CompleteLattice (LieSubalgebra R L) := completeLatticeOfInf (LieSubalgebra R L) (_ : ∀ (S : Set (LieSubalgebra R L)), IsGLB S (sInf S)) N : LieSubalgebra R L x✝ : L h : x✝ = 0 ⊢ 0 ∈ N [PROOFSTEP] exact N.zero_mem' [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ x : L ⊢ x ∈ K ⊓ K' ↔ x ∈ K ∧ x ∈ K' [PROOFSTEP] rw [← mem_coe_submodule, ← mem_coe_submodule, ← mem_coe_submodule, inf_coe_to_submodule, Submodule.mem_inf] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ K = ⊥ ↔ ∀ (x : L), x ∈ K → x = 0 [PROOFSTEP] rw [_root_.eq_bot_iff] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ K ≤ ⊥ ↔ ∀ (x : L), x ∈ K → x = 0 [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ Subsingleton (LieSubalgebra R { x // x ∈ ⊥ }) [PROOFSTEP] apply subsingleton_of_bot_eq_top [GOAL] case hα R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ ⊥ = ⊤ [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case hα.h.mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ x : L hx : x ∈ ⊥ ⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤ [PROOFSTEP] change x ∈ ⊥ at hx [GOAL] case hα.h.mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ x : L hx : x ∈ ⊥ ⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤ [PROOFSTEP] rw [LieSubalgebra.mem_bot] at hx [GOAL] case hα.h.mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ x : L hx✝ : x ∈ ⊥ hx : x = 0 ⊢ { val := x, property := hx✝ } ∈ ⊥ ↔ { val := x, property := hx✝ } ∈ ⊤ [PROOFSTEP] subst hx [GOAL] case hα.h.mk R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ hx : 0 ∈ ⊥ ⊢ { val := 0, property := hx } ∈ ⊥ ↔ { val := 0, property := hx } ∈ ⊤ [PROOFSTEP] simp only [true_iff_iff, eq_self_iff_true, Submodule.mk_eq_zero, mem_bot, mem_top] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ ⊢ Subsingleton ↑↑⊥ [PROOFSTEP] simp [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' x y : { x // x ∈ K } ⊢ ↑(homOfLe h) x = ↑(homOfLe h) y → x = y [PROOFSTEP] simp only [homOfLe_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' x : { x // x ∈ K' } ⊢ x ∈ ofLe h ↔ ↑x ∈ K [PROOFSTEP] simp only [ofLe, homOfLe_apply, LieHom.mem_range] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' x : { x // x ∈ K' } ⊢ (∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x) ↔ ↑x ∈ K [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' x : { x // x ∈ K' } ⊢ (∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x) → ↑x ∈ K [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case mp.intro R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' y : { x // x ∈ K } ⊢ ↑{ val := ↑y, property := (_ : ↑y ∈ K') } ∈ K [PROOFSTEP] exact y.property [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' x : { x // x ∈ K' } ⊢ ↑x ∈ K → ∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h✝ : K ≤ K' x : { x // x ∈ K' } h : ↑x ∈ K ⊢ ∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x [PROOFSTEP] use⟨(x : L), h⟩ [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' ⊢ ofLe h = comap (incl K') K [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' x✝ : { x // x ∈ K' } ⊢ x✝ ∈ ofLe h ↔ x✝ ∈ comap (incl K') K [PROOFSTEP] rw [mem_ofLe] [GOAL] case h R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ h : K ≤ K' x✝ : { x // x ∈ K' } ⊢ ↑x✝ ∈ K ↔ x✝ ∈ comap (incl K') K [PROOFSTEP] rfl [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L x : L ⊢ x ∈ lieSpan R L s ↔ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → x ∈ K [PROOFSTEP] change x ∈ (lieSpan R L s : Set L) ↔ _ [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L x : L ⊢ x ∈ ↑(lieSpan R L s) ↔ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → x ∈ K [PROOFSTEP] erw [sInf_coe] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L x : L ⊢ x ∈ ⋂ (s_1 : LieSubalgebra R L) (_ : s_1 ∈ {N | s ⊆ ↑N}), ↑s_1 ↔ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → x ∈ K [PROOFSTEP] exact Set.mem_iInter₂ [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L ⊢ s ⊆ ↑(lieSpan R L s) [PROOFSTEP] intro m hm [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L m : L hm : m ∈ s ⊢ m ∈ ↑(lieSpan R L s) [PROOFSTEP] erw [mem_lieSpan] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L m : L hm : m ∈ s ⊢ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → m ∈ K [PROOFSTEP] intro K hK [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K✝ K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L m : L hm : m ∈ s K : LieSubalgebra R L hK : s ⊆ ↑K ⊢ m ∈ K [PROOFSTEP] exact hK hm [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L ⊢ Submodule.span R s ≤ (lieSpan R L s).toSubmodule [PROOFSTEP] rw [Submodule.span_le] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L ⊢ s ⊆ ↑(lieSpan R L s).toSubmodule [PROOFSTEP] apply subset_lieSpan [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K✝ K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L K : LieSubalgebra R L ⊢ lieSpan R L s ≤ K ↔ s ⊆ ↑K [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K✝ K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L K : LieSubalgebra R L ⊢ lieSpan R L s ≤ K → s ⊆ ↑K [PROOFSTEP] exact Set.Subset.trans subset_lieSpan [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K✝ K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L K : LieSubalgebra R L ⊢ s ⊆ ↑K → lieSpan R L s ≤ K [PROOFSTEP] intro hs m hm [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K✝ K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L K : LieSubalgebra R L hs : s ⊆ ↑K m : L hm : m ∈ lieSpan R L s ⊢ m ∈ K [PROOFSTEP] rw [mem_lieSpan] at hm [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K✝ K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L K : LieSubalgebra R L hs : s ⊆ ↑K m : L hm : ∀ (K : LieSubalgebra R L), s ⊆ ↑K → m ∈ K ⊢ m ∈ K [PROOFSTEP] exact hm _ hs [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s t : Set L h : s ⊆ t ⊢ lieSpan R L s ≤ lieSpan R L t [PROOFSTEP] rw [lieSpan_le] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s t : Set L h : s ⊆ t ⊢ s ⊆ ↑(lieSpan R L t) [PROOFSTEP] exact Set.Subset.trans h subset_lieSpan [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L ⊢ (lieSpan R L ↑p).toSubmodule = p ↔ ∃ K, K.toSubmodule = p [PROOFSTEP] rw [p.exists_lieSubalgebra_coe_eq_iff] [GOAL] R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L ⊢ (lieSpan R L ↑p).toSubmodule = p ↔ ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L ⊢ (lieSpan R L ↑p).toSubmodule = p → ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L ⊢ (∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p) → (lieSpan R L ↑p).toSubmodule = p [PROOFSTEP] intro h [GOAL] case mp R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L h : (lieSpan R L ↑p).toSubmodule = p ⊢ ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p [PROOFSTEP] intro x m hm [GOAL] case mp R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L h : (lieSpan R L ↑p).toSubmodule = p x m : L hm : x ∈ p ⊢ m ∈ p → ⁅x, m⁆ ∈ p [PROOFSTEP] rw [← h, mem_coe_submodule] [GOAL] case mp R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L h : (lieSpan R L ↑p).toSubmodule = p x m : L hm : x ∈ p ⊢ m ∈ lieSpan R L ↑p → ⁅x, m⁆ ∈ (lieSpan R L ↑p).toSubmodule [PROOFSTEP] exact lie_mem _ (subset_lieSpan hm) [GOAL] case mpr R : Type u L : Type v inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L L₂ : Type w inst✝¹ : LieRing L₂ inst✝ : LieAlgebra R L₂ f : L →ₗ⁅R⁆ L₂ K K' : LieSubalgebra R L K₂ : LieSubalgebra R L₂ s : Set L p : Submodule R L h : ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p ⊢ (lieSpan R L ↑p).toSubmodule = p [PROOFSTEP] rw [← coe_to_submodule_mk p @h, coe_to_submodule, coe_to_submodule_eq_iff, lieSpan_eq] [GOAL] R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ f : L₁ →ₗ⁅R⁆ L₂ h : Function.Injective ↑f ⊢ Function.Injective ↑↑f [PROOFSTEP] rwa [LieHom.coe_toLinearMap] [GOAL] R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ h : ↑L₁' = ↑L₁'' ⊢ L₁'.toSubmodule = L₁''.toSubmodule [PROOFSTEP] ext x [GOAL] case h R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ h : ↑L₁' = ↑L₁'' x : L₁ ⊢ x ∈ L₁'.toSubmodule ↔ x ∈ L₁''.toSubmodule [PROOFSTEP] change x ∈ (L₁' : Set L₁) ↔ x ∈ (L₁'' : Set L₁) [GOAL] case h R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ h : ↑L₁' = ↑L₁'' x : L₁ ⊢ x ∈ ↑L₁' ↔ x ∈ ↑L₁'' [PROOFSTEP] rw [h] [GOAL] R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ e : L₁ ≃ₗ⁅R⁆ L₂ src✝ : { x // x ∈ L₁''.toSubmodule } ≃ₗ[R] { x // x ∈ Submodule.map (↑(toLinearEquiv e)) L₁''.toSubmodule } := LinearEquiv.submoduleMap (toLinearEquiv e) L₁''.toSubmodule x y : { x // x ∈ L₁'' } ⊢ AddHom.toFun src✝.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ e : L₁ ≃ₗ⁅R⁆ L₂ src✝ : { x // x ∈ L₁''.toSubmodule } ≃ₗ[R] { x // x ∈ Submodule.map (↑(toLinearEquiv e)) L₁''.toSubmodule } := LinearEquiv.submoduleMap (toLinearEquiv e) L₁''.toSubmodule x y : { x // x ∈ L₁'' } ⊢ ↑(AddHom.toFun src✝.toAddHom ⁅x, y⁆) = ↑⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆ [PROOFSTEP] exact LieHom.map_lie (↑e : L₁ →ₗ⁅R⁆ L₂) ↑x ↑y [GOAL] R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ e : L₁ ≃ₗ⁅R⁆ L₂ h : LieSubalgebra.map e.toLieHom L₁' = L₂' ⊢ Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = L₂'.toSubmodule [PROOFSTEP] rw [← h] [GOAL] R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ e : L₁ ≃ₗ⁅R⁆ L₂ h : LieSubalgebra.map e.toLieHom L₁' = L₂' ⊢ Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = (LieSubalgebra.map e.toLieHom L₁').toSubmodule [PROOFSTEP] rfl [GOAL] R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ e : L₁ ≃ₗ⁅R⁆ L₂ h : LieSubalgebra.map e.toLieHom L₁' = L₂' src✝ : { x // x ∈ L₁'.toSubmodule } ≃ₗ[R] { x // x ∈ L₂'.toSubmodule } := LinearEquiv.ofSubmodules (toLinearEquiv e) L₁'.toSubmodule L₂'.toSubmodule (_ : Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = L₂'.toSubmodule) x y : { x // x ∈ L₁' } ⊢ AddHom.toFun src✝.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ L₁' L₁'' : LieSubalgebra R L₁ L₂' : LieSubalgebra R L₂ e : L₁ ≃ₗ⁅R⁆ L₂ h : LieSubalgebra.map e.toLieHom L₁' = L₂' src✝ : { x // x ∈ L₁'.toSubmodule } ≃ₗ[R] { x // x ∈ L₂'.toSubmodule } := LinearEquiv.ofSubmodules (toLinearEquiv e) L₁'.toSubmodule L₂'.toSubmodule (_ : Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = L₂'.toSubmodule) x y : { x // x ∈ L₁' } ⊢ ↑(AddHom.toFun src✝.toAddHom ⁅x, y⁆) = ↑⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆ [PROOFSTEP] exact LieHom.map_lie (↑e : L₁ →ₗ⁅R⁆ L₂) ↑x ↑y
{"mathlib_filename": "Mathlib.Algebra.Lie.Subalgebra", "llama_tokens": 29294}
[GOAL] a b : Cardinal.{u} n m : ℕ ⊢ IsUnit a ↔ a = 1 [PROOFSTEP] refine' ⟨fun h => _, by rintro rfl exact isUnit_one⟩ [GOAL] a b : Cardinal.{u} n m : ℕ ⊢ a = 1 → IsUnit a [PROOFSTEP] rintro rfl [GOAL] b : Cardinal.{u} n m : ℕ ⊢ IsUnit 1 [PROOFSTEP] exact isUnit_one [GOAL] a b : Cardinal.{u} n m : ℕ h : IsUnit a ⊢ a = 1 [PROOFSTEP] rcases eq_or_ne a 0 with (rfl | ha) [GOAL] case inl b : Cardinal.{u} n m : ℕ h : IsUnit 0 ⊢ 0 = 1 [PROOFSTEP] exact (not_isUnit_zero h).elim [GOAL] case inr a b : Cardinal.{u} n m : ℕ h : IsUnit a ha : a ≠ 0 ⊢ a = 1 [PROOFSTEP] rw [isUnit_iff_forall_dvd] at h [GOAL] case inr a b : Cardinal.{u} n m : ℕ h : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 ⊢ a = 1 [PROOFSTEP] cases' h 1 with t ht [GOAL] case inr.intro a b : Cardinal.{u} n m : ℕ h : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 t : Cardinal.{u} ht : 1 = a * t ⊢ a = 1 [PROOFSTEP] rw [eq_comm, mul_eq_one_iff'] at ht [GOAL] case inr.intro a b : Cardinal.{u} n m : ℕ h : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 t : Cardinal.{u} ht : a = 1 ∧ t = 1 ⊢ a = 1 [PROOFSTEP] exact ht.1 [GOAL] case inr.intro.ha a b : Cardinal.{u} n m : ℕ h : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 t : Cardinal.{u} ht : a * t = 1 ⊢ 1 ≤ a [PROOFSTEP] exact one_le_iff_ne_zero.mpr ha [GOAL] case inr.intro.hb a b : Cardinal.{u} n m : ℕ h : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 t : Cardinal.{u} ht : a * t = 1 ⊢ 1 ≤ t [PROOFSTEP] apply one_le_iff_ne_zero.mpr [GOAL] case inr.intro.hb a b : Cardinal.{u} n m : ℕ h : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 t : Cardinal.{u} ht : a * t = 1 ⊢ t ≠ 0 [PROOFSTEP] intro h [GOAL] case inr.intro.hb a b : Cardinal.{u} n m : ℕ h✝ : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 t : Cardinal.{u} ht : a * t = 1 h : t = 0 ⊢ False [PROOFSTEP] rw [h, mul_zero] at ht [GOAL] case inr.intro.hb a b : Cardinal.{u} n m : ℕ h✝ : ∀ (y : Cardinal.{u}), a ∣ y ha : a ≠ 0 t : Cardinal.{u} ht : 0 = 1 h : t = 0 ⊢ False [PROOFSTEP] exact zero_ne_one ht [GOAL] a✝ b✝ : Cardinal.{u} n m : ℕ a x : Cardinal.{u_1} b0 : x ≠ 0 b : Cardinal.{u_1} hab : x = a * b ⊢ a ≤ x [PROOFSTEP] simpa only [hab, mul_one] using mul_le_mul_left' (one_le_iff_ne_zero.2 fun h : b = 0 => b0 (by rwa [h, mul_zero] at hab )) a [GOAL] a✝ b✝ : Cardinal.{u} n m : ℕ a x : Cardinal.{u_1} b0 : x ≠ 0 b : Cardinal.{u_1} hab : x = a * b h : b = 0 ⊢ x = 0 [PROOFSTEP] rwa [h, mul_zero] at hab [GOAL] a b : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a ⊢ Prime a [PROOFSTEP] refine' ⟨(aleph0_pos.trans_le ha).ne', _, fun b c hbc => _⟩ [GOAL] case refine'_1 a b : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a ⊢ ¬IsUnit a [PROOFSTEP] rw [isUnit_iff] [GOAL] case refine'_1 a b : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a ⊢ ¬a = 1 [PROOFSTEP] exact (one_lt_aleph0.trans_le ha).ne' [GOAL] case refine'_2 a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] cases' eq_or_ne (b * c) 0 with hz hz [GOAL] case refine'_2.inl a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c = 0 ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] rcases mul_eq_zero.mp hz with (rfl | rfl) [GOAL] case refine'_2.inl.inl a b : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a c : Cardinal.{u} hbc : a ∣ 0 * c hz : 0 * c = 0 ⊢ a ∣ 0 ∨ a ∣ c [PROOFSTEP] simp [GOAL] case refine'_2.inl.inr a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b : Cardinal.{u} hbc : a ∣ b * 0 hz : b * 0 = 0 ⊢ a ∣ b ∨ a ∣ 0 [PROOFSTEP] simp [GOAL] case refine'_2.inr a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] wlog h : c ≤ b [GOAL] case refine'_2.inr.inr a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] cases le_total c b <;> [skip; rw [or_comm]] [GOAL] case refine'_2.inr.inr a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] cases le_total c b [GOAL] case refine'_2.inr.inr.inl a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] skip [GOAL] case refine'_2.inr.inr.inr a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] rw [or_comm] [GOAL] case refine'_2.inr.inr.inl a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] apply_assumption [GOAL] case refine'_2.inr.inr.inr a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c ⊢ a ∣ c ∨ a ∣ b [PROOFSTEP] apply_assumption [GOAL] case refine'_2.inr.inr.inl.b a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b hz_symm : 0 ≠ b * c ⊢ Cardinal.{u} case refine'_2.inr.inr.inl.n a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b hz_symm : 0 ≠ b * c ⊢ ℕ case refine'_2.inr.inr.inl.m a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b hz_symm : 0 ≠ b * c ⊢ ℕ case refine'_2.inr.inr.inl.ha a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b hz_symm : 0 ≠ b * c ⊢ ℵ₀ ≤ a case refine'_2.inr.inr.inl.hbc a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b hz_symm : 0 ≠ b * c ⊢ a ∣ b * c case refine'_2.inr.inr.inl.hz a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b hz_symm : 0 ≠ b * c ⊢ b * c ≠ 0 case refine'_2.inr.inr.inl.h a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : c ≤ b hz_symm : 0 ≠ b * c ⊢ c ≤ b case refine'_2.inr.inr.inr.b a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ Cardinal.{u} case refine'_2.inr.inr.inr.n a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ ℕ case refine'_2.inr.inr.inr.m a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ ℕ case refine'_2.inr.inr.inr.ha a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ ℵ₀ ≤ a case refine'_2.inr.inr.inr.hbc a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ a ∣ c * b case refine'_2.inr.inr.inr.hz a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ c * b ≠ 0 case refine'_2.inr.inr.inr.h a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ b ≤ c [PROOFSTEP] assumption' [GOAL] case refine'_2.inr.inr.inr.hbc a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ a ∣ c * b case refine'_2.inr.inr.inr.hz a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ c * b ≠ 0 [PROOFSTEP] all_goals rwa [mul_comm] [GOAL] case refine'_2.inr.inr.inr.hbc a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ a ∣ c * b [PROOFSTEP] rwa [mul_comm] [GOAL] case refine'_2.inr.inr.inr.hz a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c hz_symm : 0 ≠ b * c ⊢ c * b ≠ 0 [PROOFSTEP] rwa [mul_comm] [GOAL] a✝ a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 h : c ≤ b ⊢ a ∣ b ∨ a ∣ c [PROOFSTEP] left [GOAL] case h a✝ a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 h : c ≤ b ⊢ a ∣ b [PROOFSTEP] have habc := le_of_dvd hz hbc [GOAL] case h a✝ a b✝ : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 h : c ≤ b habc : a ≤ b * c ⊢ a ∣ b [PROOFSTEP] rwa [mul_eq_max' <| ha.trans <| habc, max_def', if_pos h] at hbc [GOAL] a b : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a ⊢ ¬Irreducible a [PROOFSTEP] rw [irreducible_iff, not_and_or] [GOAL] a b : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a ⊢ ¬¬IsUnit a ∨ ¬∀ (a_1 b : Cardinal.{u}), a = a_1 * b → IsUnit a_1 ∨ IsUnit b [PROOFSTEP] refine' Or.inr fun h => _ [GOAL] a b : Cardinal.{u} n m : ℕ ha : ℵ₀ ≤ a h : ∀ (a_1 b : Cardinal.{u}), a = a_1 * b → IsUnit a_1 ∨ IsUnit b ⊢ False [PROOFSTEP] simpa [mul_aleph0_eq ha, isUnit_iff, (one_lt_aleph0.trans_le ha).ne', one_lt_aleph0.ne'] using h a ℵ₀ [GOAL] a b : Cardinal.{u} n m : ℕ ⊢ ↑n ∣ ↑m ↔ n ∣ m [PROOFSTEP] refine' ⟨_, fun ⟨h, ht⟩ => ⟨h, by exact_mod_cast ht⟩⟩ [GOAL] a b : Cardinal.{u} n m : ℕ x✝ : n ∣ m h : ℕ ht : m = n * h ⊢ ↑m = ↑n * ↑h [PROOFSTEP] exact_mod_cast ht [GOAL] a b : Cardinal.{u} n m : ℕ ⊢ ↑n ∣ ↑m → n ∣ m [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k ⊢ n ∣ m [PROOFSTEP] have : ↑m < ℵ₀ := nat_lt_aleph0 m [GOAL] case intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k this : ↑m < ℵ₀ ⊢ n ∣ m [PROOFSTEP] rw [hk, mul_lt_aleph0_iff] at this [GOAL] case intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k this : ↑n = 0 ∨ k = 0 ∨ ↑n < ℵ₀ ∧ k < ℵ₀ ⊢ n ∣ m [PROOFSTEP] rcases this with (h | h | ⟨-, hk'⟩) [GOAL] case intro.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k h : ↑n = 0 ⊢ n ∣ m case intro.inr.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k h : k = 0 ⊢ n ∣ m case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m [PROOFSTEP] iterate 2 simp only [h, mul_zero, zero_mul, Nat.cast_eq_zero] at hk ; simp [hk] [GOAL] case intro.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k h : ↑n = 0 ⊢ n ∣ m case intro.inr.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k h : k = 0 ⊢ n ∣ m case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m [PROOFSTEP] simp only [h, mul_zero, zero_mul, Nat.cast_eq_zero] at hk [GOAL] case intro.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} h : ↑n = 0 hk : m = 0 ⊢ n ∣ m case intro.inr.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k h : k = 0 ⊢ n ∣ m case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m [PROOFSTEP] simp [hk] [GOAL] case intro.inr.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k h : k = 0 ⊢ n ∣ m case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m [PROOFSTEP] simp only [h, mul_zero, zero_mul, Nat.cast_eq_zero] at hk [GOAL] case intro.inr.inl a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} h : k = 0 hk : m = 0 ⊢ n ∣ m case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m [PROOFSTEP] simp [hk] [GOAL] case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m [PROOFSTEP] lift k to ℕ using hk' [GOAL] case intro.inr.inr.intro.intro a b : Cardinal.{u} n m k : ℕ hk : ↑m = ↑n * ↑k ⊢ n ∣ m [PROOFSTEP] exact ⟨k, by exact_mod_cast hk⟩ [GOAL] a b : Cardinal.{u} n m k : ℕ hk : ↑m = ↑n * ↑k ⊢ m = n * k [PROOFSTEP] exact_mod_cast hk [GOAL] a b : Cardinal.{u} n m : ℕ ⊢ Prime ↑n ↔ Nat.Prime n [PROOFSTEP] simp only [Prime, Nat.prime_iff] [GOAL] a b : Cardinal.{u} n m : ℕ ⊢ (↑n ≠ 0 ∧ ¬IsUnit ↑n ∧ ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b) ↔ n ≠ 0 ∧ ¬IsUnit n ∧ ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b [PROOFSTEP] refine' and_congr (by simp) (and_congr _ ⟨fun h b c hbc => _, fun h b c hbc => _⟩) [GOAL] a b : Cardinal.{u} n m : ℕ ⊢ ↑n ≠ 0 ↔ n ≠ 0 [PROOFSTEP] simp [GOAL] case refine'_1 a b : Cardinal.{u} n m : ℕ ⊢ ¬IsUnit ↑n ↔ ¬IsUnit n [PROOFSTEP] simp only [isUnit_iff, Nat.isUnit_iff] [GOAL] case refine'_1 a b : Cardinal.{u} n m : ℕ ⊢ ¬↑n = 1 ↔ ¬n = 1 [PROOFSTEP] exact_mod_cast Iff.rfl [GOAL] case refine'_2 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b b c : ℕ hbc : n ∣ b * c ⊢ n ∣ b ∨ n ∣ c [PROOFSTEP] exact_mod_cast h b c (by exact_mod_cast hbc) [GOAL] a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b b c : ℕ hbc : n ∣ b * c ⊢ ↑n ∣ ↑b * ↑c [PROOFSTEP] exact_mod_cast hbc [GOAL] case refine'_3 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] cases' lt_or_le (b * c) ℵ₀ with h' h' [GOAL] case refine'_3.inl a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : b * c < ℵ₀ ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] rcases mul_lt_aleph0_iff.mp h' with (rfl | rfl | ⟨hb, hc⟩) [GOAL] case refine'_3.inl.inl a b : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b c : Cardinal.{u_1} hbc : ↑n ∣ 0 * c h' : 0 * c < ℵ₀ ⊢ ↑n ∣ 0 ∨ ↑n ∣ c [PROOFSTEP] simp [GOAL] case refine'_3.inl.inr.inl a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b : Cardinal.{u_1} hbc : ↑n ∣ b * 0 h' : b * 0 < ℵ₀ ⊢ ↑n ∣ b ∨ ↑n ∣ 0 [PROOFSTEP] simp [GOAL] case refine'_3.inl.inr.inr.intro a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : b * c < ℵ₀ hb : b < ℵ₀ hc : c < ℵ₀ ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] lift b to ℕ using hb [GOAL] case refine'_3.inl.inr.inr.intro.intro a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b c : Cardinal.{u_1} hc : c < ℵ₀ b : ℕ hbc : ↑n ∣ ↑b * c h' : ↑b * c < ℵ₀ ⊢ ↑n ∣ ↑b ∨ ↑n ∣ c [PROOFSTEP] lift c to ℕ using hc [GOAL] case refine'_3.inl.inr.inr.intro.intro.intro a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : ℕ hbc : ↑n ∣ ↑b * ↑c h' : ↑b * ↑c < ℵ₀ ⊢ ↑n ∣ ↑b ∨ ↑n ∣ ↑c [PROOFSTEP] exact_mod_cast h b c (by exact_mod_cast hbc) [GOAL] a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : ℕ hbc : ↑n ∣ ↑b * ↑c h' : ↑b * ↑c < ℵ₀ ⊢ n ∣ b * c [PROOFSTEP] exact_mod_cast hbc [GOAL] case refine'_3.inr a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] rcases aleph0_le_mul_iff.mp h' with ⟨hb, hc, hℵ₀⟩ [GOAL] case refine'_3.inr.intro.intro a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] have hn : (n : Cardinal) ≠ 0 := by intro h rw [h, zero_dvd_iff, mul_eq_zero] at hbc cases hbc <;> contradiction [GOAL] a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c ⊢ ↑n ≠ 0 [PROOFSTEP] intro h [GOAL] a b✝ : Cardinal.{u} n m : ℕ h✝ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c h : ↑n = 0 ⊢ False [PROOFSTEP] rw [h, zero_dvd_iff, mul_eq_zero] at hbc [GOAL] a b✝ : Cardinal.{u} n m : ℕ h✝ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : b = 0 ∨ c = 0 h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c h : ↑n = 0 ⊢ False [PROOFSTEP] cases hbc [GOAL] case inl a b✝ : Cardinal.{u} n m : ℕ h✝¹ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c h : ↑n = 0 h✝ : b = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] case inr a b✝ : Cardinal.{u} n m : ℕ h✝¹ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c h : ↑n = 0 h✝ : c = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] case refine'_3.inr.intro.intro a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] wlog hℵ₀b : ℵ₀ ≤ b [GOAL] case refine'_3.inr.intro.intro.inr a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] refine' (this h c b _ _ hc hb hℵ₀.symm hn (hℵ₀.resolve_left hℵ₀b)).symm [GOAL] case refine'_3.inr.intro.intro.inr.refine'_1 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ Cardinal.{u} [PROOFSTEP] try assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_1 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ Cardinal.{u} [PROOFSTEP] assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_2 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ Cardinal.{u} [PROOFSTEP] try assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_2 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ Cardinal.{u} [PROOFSTEP] assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_3 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ℕ [PROOFSTEP] try assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_3 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ℕ [PROOFSTEP] assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_4 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ↑n ∣ c * b [PROOFSTEP] try assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_4 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ↑n ∣ c * b [PROOFSTEP] assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_5 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ℵ₀ ≤ c * b [PROOFSTEP] try assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_5 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ℵ₀ ≤ c * b [PROOFSTEP] assumption [GOAL] case refine'_3.inr.intro.intro.inr.refine'_4 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ↑n ∣ c * b case refine'_3.inr.intro.intro.inr.refine'_5 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ℵ₀ ≤ c * b n✝ : ℕ a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 hℵ₀b : ℵ₀ ≤ b ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] rwa [mul_comm] at hbc [GOAL] case refine'_3.inr.intro.intro.inr.refine'_5 a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 this : ∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ}, (∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) → ∀ (b c : Cardinal.{u_1}), ↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c hℵ₀b : ¬ℵ₀ ≤ b ⊢ ℵ₀ ≤ c * b n✝ : ℕ a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 hℵ₀b : ℵ₀ ≤ b ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] rwa [mul_comm] at h' [GOAL] n✝ : ℕ a b✝ : Cardinal.{u} n m : ℕ h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b b c : Cardinal.{u_1} hbc : ↑n ∣ b * c h' : ℵ₀ ≤ b * c hb : b ≠ 0 hc : c ≠ 0 hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c hn : ↑n ≠ 0 hℵ₀b : ℵ₀ ≤ b ⊢ ↑n ∣ b ∨ ↑n ∣ c [PROOFSTEP] exact Or.inl (dvd_of_le_of_aleph0_le hn ((nat_lt_aleph0 n).le.trans hℵ₀b) hℵ₀b) [GOAL] a✝ b : Cardinal.{u} n m : ℕ a : Cardinal.{u_1} ⊢ Prime a ↔ ℵ₀ ≤ a ∨ ∃ p, a = ↑p ∧ Nat.Prime p [PROOFSTEP] cases' le_or_lt ℵ₀ a with h h [GOAL] case inl a✝ b : Cardinal.{u} n m : ℕ a : Cardinal.{u_1} h : ℵ₀ ≤ a ⊢ Prime a ↔ ℵ₀ ≤ a ∨ ∃ p, a = ↑p ∧ Nat.Prime p [PROOFSTEP] simp [h] [GOAL] case inr a✝ b : Cardinal.{u} n m : ℕ a : Cardinal.{u_1} h : a < ℵ₀ ⊢ Prime a ↔ ℵ₀ ≤ a ∨ ∃ p, a = ↑p ∧ Nat.Prime p [PROOFSTEP] lift a to ℕ using id h [GOAL] case inr.intro a✝ b : Cardinal.{u} n m a : ℕ h : ↑a < ℵ₀ ⊢ Prime ↑a ↔ ℵ₀ ≤ ↑a ∨ ∃ p, ↑a = ↑p ∧ Nat.Prime p [PROOFSTEP] simp [not_le.mpr h] [GOAL] a✝ b : Cardinal.{u} n m : ℕ a : Cardinal.{u_1} ⊢ IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n, a = ↑n ∧ IsPrimePow n [PROOFSTEP] by_cases h : ℵ₀ ≤ a [GOAL] case pos a✝ b : Cardinal.{u} n m : ℕ a : Cardinal.{u_1} h : ℵ₀ ≤ a ⊢ IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n, a = ↑n ∧ IsPrimePow n [PROOFSTEP] simp [h, (prime_of_aleph0_le h).isPrimePow] [GOAL] case neg a✝ b : Cardinal.{u} n m : ℕ a : Cardinal.{u_1} h : ¬ℵ₀ ≤ a ⊢ IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n, a = ↑n ∧ IsPrimePow n [PROOFSTEP] simp only [h, Nat.cast_inj, exists_eq_left', false_or_iff, isPrimePow_nat_iff] [GOAL] case neg a✝ b : Cardinal.{u} n m : ℕ a : Cardinal.{u_1} h : ¬ℵ₀ ≤ a ⊢ IsPrimePow a ↔ ∃ n, a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] lift a to ℕ using not_le.mp h [GOAL] case neg.intro a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a ⊢ IsPrimePow ↑a ↔ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] rw [isPrimePow_def] [GOAL] case neg.intro a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a ⊢ (∃ p k, Prime p ∧ 0 < k ∧ p ^ k = ↑a) ↔ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] refine' ⟨_, fun ⟨n, han, p, k, hp, hk, h⟩ => ⟨p, k, nat_is_prime_iff.2 hp, hk, by rw [han]; exact_mod_cast h⟩⟩ [GOAL] a✝ b : Cardinal.{u} n✝ m a : ℕ h✝ : ¬ℵ₀ ≤ ↑a x✝ : ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n n : ℕ han : ↑a = ↑n p k : ℕ hp : Nat.Prime p hk : 0 < k h : p ^ k = n ⊢ ↑p ^ k = ↑a [PROOFSTEP] rw [han] [GOAL] a✝ b : Cardinal.{u} n✝ m a : ℕ h✝ : ¬ℵ₀ ≤ ↑a x✝ : ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n n : ℕ han : ↑a = ↑n p k : ℕ hp : Nat.Prime p hk : 0 < k h : p ^ k = n ⊢ ↑p ^ k = ↑n [PROOFSTEP] exact_mod_cast h [GOAL] case neg.intro a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a ⊢ (∃ p k, Prime p ∧ 0 < k ∧ p ^ k = ↑a) → ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] rintro ⟨p, k, hp, hk, hpk⟩ [GOAL] case neg.intro.intro.intro.intro.intro a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a p : Cardinal.{u_1} k : ℕ hp : Prime p hk : 0 < k hpk : p ^ k = ↑a ⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] have key : p ^ 1 ≤ ↑a := by rw [← hpk]; apply power_le_power_left hp.ne_zero; exact_mod_cast hk [GOAL] a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a p : Cardinal.{u_1} k : ℕ hp : Prime p hk : 0 < k hpk : p ^ k = ↑a ⊢ p ^ 1 ≤ ↑a [PROOFSTEP] rw [← hpk] [GOAL] a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a p : Cardinal.{u_1} k : ℕ hp : Prime p hk : 0 < k hpk : p ^ k = ↑a ⊢ p ^ 1 ≤ p ^ k [PROOFSTEP] apply power_le_power_left hp.ne_zero [GOAL] a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a p : Cardinal.{u_1} k : ℕ hp : Prime p hk : 0 < k hpk : p ^ k = ↑a ⊢ 1 ≤ ↑k [PROOFSTEP] exact_mod_cast hk [GOAL] case neg.intro.intro.intro.intro.intro a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a p : Cardinal.{u_1} k : ℕ hp : Prime p hk : 0 < k hpk : p ^ k = ↑a key : p ^ 1 ≤ ↑a ⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] rw [power_one] at key [GOAL] case neg.intro.intro.intro.intro.intro a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a p : Cardinal.{u_1} k : ℕ hp : Prime p hk : 0 < k hpk : p ^ k = ↑a key : p ≤ ↑a ⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] lift p to ℕ using key.trans_lt (nat_lt_aleph0 a) [GOAL] case neg.intro.intro.intro.intro.intro.intro a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a k : ℕ hk : 0 < k p : ℕ hp : Prime ↑p hpk : ↑p ^ k = ↑a key : ↑p ≤ ↑a ⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] exact ⟨a, rfl, p, k, nat_is_prime_iff.mp hp, hk, by exact_mod_cast hpk⟩ [GOAL] a✝ b : Cardinal.{u} n m a : ℕ h : ¬ℵ₀ ≤ ↑a k : ℕ hk : 0 < k p : ℕ hp : Prime ↑p hpk : ↑p ^ k = ↑a key : ↑p ≤ ↑a ⊢ p ^ k = a [PROOFSTEP] exact_mod_cast hpk
{"mathlib_filename": "Mathlib.SetTheory.Cardinal.Divisibility", "llama_tokens": 20826}
[GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ y : L ⊢ ∃ t z, z ∈ I ∧ y = t • x + z [PROOFSTEP] have hy : y ∈ (⊤ : Submodule R L) := Submodule.mem_top [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ y : L hy : y ∈ ⊤ ⊢ ∃ t z, z ∈ I ∧ y = t • x + z [PROOFSTEP] simp only [← hxI, Submodule.mem_sup, Submodule.mem_span_singleton] at hy [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ y : L hy : ∃ y_1, (∃ a, a • x = y_1) ∧ ∃ z, z ∈ (↑R L I).toSubmodule ∧ y_1 + z = y ⊢ ∃ t z, z ∈ I ∧ y = t • x + z [PROOFSTEP] obtain ⟨-, ⟨t, rfl⟩, z, hz, rfl⟩ := hy [GOAL] case intro.intro.intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ t : R z : L hz : z ∈ (↑R L I).toSubmodule ⊢ ∃ t_1 z_1, z_1 ∈ I ∧ t • x + z = t_1 • x + z_1 [PROOFSTEP] exact ⟨t, z, hz, rfl⟩ [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M ⊢ ↑⁅⊤, N⁆ = Submodule.map (↑(toEndomorphism R L M) x) ↑N ⊔ ↑⁅I, N⁆ [PROOFSTEP] simp only [lieIdeal_oper_eq_linear_span', Submodule.sup_span, mem_top, exists_prop, true_and, Submodule.map_coe, toEndomorphism_apply_apply] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M ⊢ Submodule.span R {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m} = Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}) [PROOFSTEP] refine' le_antisymm (Submodule.span_le.mpr _) (Submodule.span_mono fun z hz => _) [GOAL] case refine'_1 R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M ⊢ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m} ⊆ ↑(Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m})) [PROOFSTEP] rintro z ⟨y, n, hn : n ∈ N, rfl⟩ [GOAL] case refine'_1.intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M y : L n : M hn : n ∈ N ⊢ ⁅y, n⁆ ∈ ↑(Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m})) [PROOFSTEP] obtain ⟨t, z, hz, rfl⟩ := exists_smul_add_of_span_sup_eq_top hxI y [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M n : M hn : n ∈ N t : R z : L hz : z ∈ I ⊢ ⁅t • x + z, n⁆ ∈ ↑(Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m})) [PROOFSTEP] simp only [SetLike.mem_coe, Submodule.span_union, Submodule.mem_sup] [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M n : M hn : n ∈ N t : R z : L hz : z ∈ I ⊢ ∃ y, y ∈ Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N) ∧ ∃ z_1, z_1 ∈ Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} ∧ y + z_1 = ⁅t • x + z, n⁆ [PROOFSTEP] exact ⟨t • ⁅x, n⁆, Submodule.subset_span ⟨t • n, N.smul_mem' t hn, lie_smul t x n⟩, ⁅z, n⁆, Submodule.subset_span ⟨z, hz, n, hn, rfl⟩, by simp⟩ [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M n : M hn : n ∈ N t : R z : L hz : z ∈ I ⊢ t • ⁅x, n⁆ + ⁅z, n⁆ = ⁅t • x + z, n⁆ [PROOFSTEP] simp [GOAL] case refine'_2 R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M z : M hz : z ∈ (fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} ⊢ z ∈ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] rcases hz with (⟨m, hm, rfl⟩ | ⟨y, -, m, hm, rfl⟩) [GOAL] case refine'_2.inl.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M m : M hm : m ∈ ↑↑N ⊢ (fun a => ⁅x, a⁆) m ∈ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m} case refine'_2.inr.intro.intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ N : LieSubmodule R L M y : L m : M hm : m ∈ N ⊢ ⁅y, m⁆ ∈ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m} [PROOFSTEP] exacts [⟨x, m, hm, rfl⟩, ⟨y, m, hm, rfl⟩] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j ⊢ lowerCentralSeries R L M (i + n) ≤ LieIdeal.lcs I M (j + 1) [PROOFSTEP] suffices ∀ l, ((⊤ : LieIdeal R L).lcs M (i + l) : Submodule R M) ≤ (I.lcs M j : Submodule R M).map (toEndomorphism R L M x ^ l) ⊔ (I.lcs M (j + 1) : Submodule R M) by simpa only [bot_sup_eq, LieIdeal.incl_coe, Submodule.map_zero, hxn] using this n [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j this : ∀ (l : ℕ), ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) ⊢ lowerCentralSeries R L M (i + n) ≤ LieIdeal.lcs I M (j + 1) [PROOFSTEP] simpa only [bot_sup_eq, LieIdeal.incl_coe, Submodule.map_zero, hxn] using this n [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j ⊢ ∀ (l : ℕ), ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) [PROOFSTEP] intro l [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j l : ℕ ⊢ ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) [PROOFSTEP] induction' l with l ih [GOAL] case zero R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j ⊢ ↑(LieIdeal.lcs ⊤ M (i + Nat.zero)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ Nat.zero) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) [PROOFSTEP] simp only [Nat.zero_eq, add_zero, LieIdeal.lcs_succ, pow_zero, LinearMap.one_eq_id, Submodule.map_id] [GOAL] case zero R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j ⊢ ↑(LieIdeal.lcs ⊤ M i) ≤ ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆ [PROOFSTEP] exact le_sup_of_le_left hIM [GOAL] case succ R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j l : ℕ ih : ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) ⊢ ↑(LieIdeal.lcs ⊤ M (i + Nat.succ l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) [PROOFSTEP] simp only [LieIdeal.lcs_succ, i.add_succ l, lie_top_eq_of_span_sup_eq_top hxI, sup_le_iff] [GOAL] case succ R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j l : ℕ ih : ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) ⊢ Submodule.map (↑(toEndomorphism R L M) x) ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆ ∧ ↑⁅I, LieIdeal.lcs ⊤ M (i + l)⁆ ≤ Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆ [PROOFSTEP] refine' ⟨(Submodule.map_mono ih).trans _, le_sup_of_le_right _⟩ [GOAL] case succ.refine'_1 R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j l : ℕ ih : ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) ⊢ Submodule.map (↑(toEndomorphism R L M) x) (Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆ [PROOFSTEP] rw [Submodule.map_sup, ← Submodule.map_comp, ← LinearMap.mul_eq_comp, ← pow_succ, ← I.lcs_succ] [GOAL] case succ.refine'_1 R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j l : ℕ ih : ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) ⊢ Submodule.map (↑(toEndomorphism R L M) x ^ (l + 1)) ↑(LieIdeal.lcs I M j) ⊔ Submodule.map (↑(toEndomorphism R L M) x) ↑(LieIdeal.lcs I M (j + 1)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) [PROOFSTEP] exact sup_le_sup_left coe_map_toEndomorphism_le _ [GOAL] case succ.refine'_2 R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j l : ℕ ih : ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) ⊢ ↑⁅I, LieIdeal.lcs ⊤ M (i + l)⁆ ≤ ↑⁅I, LieIdeal.lcs I M j⁆ [PROOFSTEP] refine' le_trans (mono_lie_right _ _ I _) (mono_lie_right _ _ I hIM) [GOAL] case succ.refine'_2 R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n i j : ℕ hxn : ↑(toEndomorphism R L M) x ^ n = 0 hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j l : ℕ ih : ↑(LieIdeal.lcs ⊤ M (i + l)) ≤ Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1)) ⊢ LieIdeal.lcs ⊤ M (i + l) ≤ lowerCentralSeries R L M i [PROOFSTEP] exact antitone_lowerCentralSeries R L M le_self_add [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ hnp : _root_.IsNilpotent (↑(toEndomorphism R L M) x) hIM : LieModule.IsNilpotent R { x // x ∈ ↑I } M ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] obtain ⟨n, hn⟩ := hnp [GOAL] case intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ hIM : LieModule.IsNilpotent R { x // x ∈ ↑I } M n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] obtain ⟨k, hk⟩ := hIM [GOAL] case intro.mk.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] have hk' : I.lcs M k = ⊥ := by simp only [← coe_toSubmodule_eq_iff, I.coe_lcs_eq, hk, bot_coeSubmodule] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ ⊢ LieIdeal.lcs I M k = ⊥ [PROOFSTEP] simp only [← coe_toSubmodule_eq_iff, I.coe_lcs_eq, hk, bot_coeSubmodule] [GOAL] case intro.mk.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ hk' : LieIdeal.lcs I M k = ⊥ ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] suffices ∀ l, lowerCentralSeries R L M (l * n) ≤ I.lcs M l by use k * n simpa [hk'] using this k [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ hk' : LieIdeal.lcs I M k = ⊥ this : ∀ (l : ℕ), lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] use k * n [GOAL] case h R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ hk' : LieIdeal.lcs I M k = ⊥ this : ∀ (l : ℕ), lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l ⊢ lowerCentralSeries R L M (k * n) = ⊥ [PROOFSTEP] simpa [hk'] using this k [GOAL] case intro.mk.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ hk' : LieIdeal.lcs I M k = ⊥ ⊢ ∀ (l : ℕ), lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l [PROOFSTEP] intro l [GOAL] case intro.mk.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ hk' : LieIdeal.lcs I M k = ⊥ l : ℕ ⊢ lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l [PROOFSTEP] induction' l with l ih [GOAL] case intro.mk.intro.zero R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ hk' : LieIdeal.lcs I M k = ⊥ ⊢ lowerCentralSeries R L M (Nat.zero * n) ≤ LieIdeal.lcs I M Nat.zero [PROOFSTEP] simp [GOAL] case intro.mk.intro.succ R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x : L hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤ n : ℕ hn : ↑(toEndomorphism R L M) x ^ n = 0 k : ℕ hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥ hk' : LieIdeal.lcs I M k = ⊥ l : ℕ ih : lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l ⊢ lowerCentralSeries R L M (Nat.succ l * n) ≤ LieIdeal.lcs I M (Nat.succ l) [PROOFSTEP] exact (l.succ_mul n).symm ▸ lcs_le_lcs_of_is_nilpotent_span_sup_eq_top hxI hn ih [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M inst✝ : Subsingleton L ⊢ IsEngelian R L [PROOFSTEP] intro M _i1 _i2 _i3 _i4 _h [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : Subsingleton L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M _h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] use 1 [GOAL] case h R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : Subsingleton L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M _h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) ⊢ lowerCentralSeries R L M 1 = ⊥ [PROOFSTEP] suffices (⊤ : LieIdeal R L) = ⊥ by simp [this] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : Subsingleton L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M _h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) this : ⊤ = ⊥ ⊢ lowerCentralSeries R L M 1 = ⊥ [PROOFSTEP] simp [this] [GOAL] case h R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : Subsingleton L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M _h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) ⊢ ⊤ = ⊥ [PROOFSTEP] haveI := (LieSubmodule.subsingleton_iff R L L).mpr inferInstance [GOAL] case h R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : Subsingleton L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M _h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) this : Subsingleton (LieSubmodule R L L) ⊢ ⊤ = ⊥ [PROOFSTEP] apply Subsingleton.elim [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L ⊢ LieAlgebra.IsEngelian R L₂ [PROOFSTEP] intro M _i1 _i2 _i3 _i4 h' [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) ⊢ LieModule.IsNilpotent R L₂ M [PROOFSTEP] letI : LieRingModule L M := LieRingModule.compLieHom M f [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this : LieRingModule L M := LieRingModule.compLieHom M f ⊢ LieModule.IsNilpotent R L₂ M [PROOFSTEP] letI : LieModule R L M := compLieHom M f [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this✝ : LieRingModule L M := LieRingModule.compLieHom M f this : LieModule R L M := compLieHom M f ⊢ LieModule.IsNilpotent R L₂ M [PROOFSTEP] have hnp : ∀ x, IsNilpotent (toEndomorphism R L M x) := fun x => h' (f x) [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this✝ : LieRingModule L M := LieRingModule.compLieHom M f this : LieModule R L M := compLieHom M f hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x) ⊢ LieModule.IsNilpotent R L₂ M [PROOFSTEP] have surj_id : Function.Surjective (LinearMap.id : M →ₗ[R] M) := Function.surjective_id [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this✝ : LieRingModule L M := LieRingModule.compLieHom M f this : LieModule R L M := compLieHom M f hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x) surj_id : Surjective ↑LinearMap.id ⊢ LieModule.IsNilpotent R L₂ M [PROOFSTEP] haveI : LieModule.IsNilpotent R L M := h M hnp [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f this✝ : LieModule R L M := compLieHom M f hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x) surj_id : Surjective ↑LinearMap.id this : LieModule.IsNilpotent R L M ⊢ LieModule.IsNilpotent R L₂ M [PROOFSTEP] apply hf.lieModuleIsNilpotent surj_id [GOAL] case hfg R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f this✝ : LieModule R L M := compLieHom M f hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x) surj_id : Surjective ↑LinearMap.id this : LieModule.IsNilpotent R L M ⊢ ∀ (x : L) (m : M), ⁅↑f x, ↑LinearMap.id m⁆ = ↑LinearMap.id ⁅x, m⁆ [PROOFSTEP] intros [GOAL] case hfg R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f this✝ : LieModule R L M := compLieHom M f hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x) surj_id : Surjective ↑LinearMap.id this : LieModule.IsNilpotent R L M x✝ : L m✝ : M ⊢ ⁅↑f x✝, ↑LinearMap.id m✝⁆ = ↑LinearMap.id ⁅x✝, m✝⁆ [PROOFSTEP] simp only [LinearMap.id_coe, id_eq] [GOAL] case hfg R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ f : L →ₗ⁅R⁆ L₂ hf : Surjective ↑f h : LieAlgebra.IsEngelian R L M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L₂ M _i4 : LieModule R L₂ M h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x) this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f this✝ : LieModule R L M := compLieHom M f hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x) surj_id : Surjective ↑LinearMap.id this : LieModule.IsNilpotent R L M x✝ : L m✝ : M ⊢ ⁅↑f x✝, m✝⁆ = ⁅x✝, m✝⁆ [PROOFSTEP] rfl [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K ⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K' [PROOFSTEP] obtain ⟨x, hx₁, hx₂⟩ := SetLike.exists_of_lt hK₂ [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K ⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K' [PROOFSTEP] let K' : LieSubalgebra R L := { (R ∙ x) ⊔ (K : Submodule R L) with lie_mem' := fun {y z} => LieSubalgebra.lie_mem_sup_of_mem_normalizer hx₁ } [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } ⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K' [PROOFSTEP] have hxK' : x ∈ K' := Submodule.mem_sup_left (Submodule.subset_span (Set.mem_singleton _)) [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' ⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K' [PROOFSTEP] have hKK' : K ≤ K' := (LieSubalgebra.coe_submodule_le_coe_submodule K K').mp le_sup_right [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' ⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K' [PROOFSTEP] have hK' : K' ≤ K.normalizer := by rw [← LieSubalgebra.coe_submodule_le_coe_submodule] exact sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) hK₂.le [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' ⊢ K' ≤ LieSubalgebra.normalizer K [PROOFSTEP] rw [← LieSubalgebra.coe_submodule_le_coe_submodule] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' ⊢ K'.toSubmodule ≤ (LieSubalgebra.normalizer K).toSubmodule [PROOFSTEP] exact sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) hK₂.le [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K ⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K' [PROOFSTEP] refine' ⟨K', _, lt_iff_le_and_ne.mpr ⟨hKK', fun contra => hx₂ (contra.symm ▸ hxK')⟩⟩ [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K ⊢ IsEngelian R { x // x ∈ K' } [PROOFSTEP] intro M _i1 _i2 _i3 _i4 h [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) ⊢ LieModule.IsNilpotent R { x // x ∈ K' } M [PROOFSTEP] obtain ⟨I, hI₁ : (I : LieSubalgebra R K') = LieSubalgebra.ofLe hKK'⟩ := LieSubalgebra.exists_nested_lieIdeal_ofLe_normalizer hKK' hK' [GOAL] case intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) I : LieIdeal R { x // x ∈ K' } hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK' ⊢ LieModule.IsNilpotent R { x // x ∈ K' } M [PROOFSTEP] have hI₂ : (R ∙ (⟨x, hxK'⟩ : K')) ⊔ (LieSubmodule.toSubmodule I) = ⊤ := by rw [← LieIdeal.coe_to_lieSubalgebra_to_submodule R K' I, hI₁] apply Submodule.map_injective_of_injective (K' : Submodule R L).injective_subtype simp [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) I : LieIdeal R { x // x ∈ K' } hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK' ⊢ Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤ [PROOFSTEP] rw [← LieIdeal.coe_to_lieSubalgebra_to_submodule R K' I, hI₁] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) I : LieIdeal R { x // x ∈ K' } hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK' ⊢ Submodule.span R {{ val := x, property := hxK' }} ⊔ (LieSubalgebra.ofLe hKK').toSubmodule = ⊤ [PROOFSTEP] apply Submodule.map_injective_of_injective (K' : Submodule R L).injective_subtype [GOAL] case a R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) I : LieIdeal R { x // x ∈ K' } hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK' ⊢ Submodule.map (Submodule.subtype K'.toSubmodule) (Submodule.span R {{ val := x, property := hxK' }} ⊔ (LieSubalgebra.ofLe hKK').toSubmodule) = Submodule.map (Submodule.subtype K'.toSubmodule) ⊤ [PROOFSTEP] simp [GOAL] case intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) I : LieIdeal R { x // x ∈ K' } hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK' hI₂ : Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤ ⊢ LieModule.IsNilpotent R { x // x ∈ K' } M [PROOFSTEP] have e : K ≃ₗ⁅R⁆ I := (LieSubalgebra.equivOfLe hKK').trans (LieEquiv.ofEq _ _ ((LieSubalgebra.coe_set_eq _ _).mpr hI₁.symm)) [GOAL] case intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) I : LieIdeal R { x // x ∈ K' } hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK' hI₂ : Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤ e : { x // x ∈ K } ≃ₗ⁅R⁆ { x // x ∈ ↑I } ⊢ LieModule.IsNilpotent R { x // x ∈ K' } M [PROOFSTEP] have hI₃ : LieAlgebra.IsEngelian R I := e.isEngelian_iff.mp hK₁ [GOAL] case intro.intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M✝ inst✝² : Module R M✝ inst✝¹ : LieRingModule L M✝ inst✝ : LieModule R L M✝ K : LieSubalgebra R L hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K < LieSubalgebra.normalizer K x : L hx₁ : x ∈ LieSubalgebra.normalizer K hx₂ : ¬x ∈ K K' : LieSubalgebra R L := let src := Submodule.span R {x} ⊔ K.toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem' := (_ : ∀ {y z : L}, y ∈ Submodule.span R {x} ⊔ K.toSubmodule → z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) } hxK' : x ∈ K' hKK' : K ≤ K' hK' : K' ≤ LieSubalgebra.normalizer K M : Type u₄ _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule { x // x ∈ K' } M _i4 : LieModule R { x // x ∈ K' } M h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x) I : LieIdeal R { x // x ∈ K' } hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK' hI₂ : Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤ e : { x // x ∈ K } ≃ₗ⁅R⁆ { x // x ∈ ↑I } hI₃ : IsEngelian R { x // x ∈ ↑I } ⊢ LieModule.IsNilpotent R { x // x ∈ K' } M [PROOFSTEP] exact LieSubmodule.isNilpotentOfIsNilpotentSpanSupEqTop hI₂ (h _) (hI₃ _ fun x => h x) [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M inst✝ : IsNoetherian R L ⊢ IsEngelian R L [PROOFSTEP] intro M _i1 _i2 _i3 _i4 h [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] rw [← isNilpotent_range_toEndomorphism_iff] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) ⊢ LieModule.IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M [PROOFSTEP] let L' := (toEndomorphism R L M).range [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) ⊢ LieModule.IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M [PROOFSTEP] replace h : ∀ y : L', _root_.IsNilpotent (y : Module.End R M) [GOAL] case h R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) ⊢ ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y [PROOFSTEP] rintro ⟨-, ⟨y, rfl⟩⟩ [GOAL] case h.mk.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x) L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) y : L ⊢ _root_.IsNilpotent ↑{ val := ↑↑(toEndomorphism R L M) y, property := (_ : ∃ y_1, ↑↑(toEndomorphism R L M) y_1 = ↑↑(toEndomorphism R L M) y) } [PROOFSTEP] simp [h] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y ⊢ LieModule.IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M [PROOFSTEP] change LieModule.IsNilpotent R L' M [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y ⊢ LieModule.IsNilpotent R { x // x ∈ L' } M [PROOFSTEP] let s := {K : LieSubalgebra R L' | LieAlgebra.IsEngelian R K} [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} ⊢ LieModule.IsNilpotent R { x // x ∈ L' } M [PROOFSTEP] have hs : s.Nonempty := ⟨⊥, LieAlgebra.isEngelian_of_subsingleton⟩ [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s ⊢ LieModule.IsNilpotent R { x // x ∈ L' } M [PROOFSTEP] suffices ⊤ ∈ s by rw [← isNilpotent_of_top_iff] apply this M simp [LieSubalgebra.toEndomorphism_eq, h] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ⊤ ∈ s ⊢ LieModule.IsNilpotent R { x // x ∈ L' } M [PROOFSTEP] rw [← isNilpotent_of_top_iff] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ⊤ ∈ s ⊢ LieModule.IsNilpotent R { x // x ∈ ⊤ } M [PROOFSTEP] apply this M [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ⊤ ∈ s ⊢ ∀ (x : { x // x ∈ ⊤ }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ ⊤ } M) x) [PROOFSTEP] simp [LieSubalgebra.toEndomorphism_eq, h] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s ⊢ ⊤ ∈ s [PROOFSTEP] have : ∀ K ∈ s, K ≠ ⊤ → ∃ K' ∈ s, K < K' := by rintro K (hK₁ : LieAlgebra.IsEngelian R K) hK₂ apply LieAlgebra.exists_engelian_lieSubalgebra_of_lt_normalizer hK₁ apply lt_of_le_of_ne K.le_normalizer rw [Ne.def, eq_comm, K.normalizer_eq_self_iff, ← Ne.def, ← LieSubmodule.nontrivial_iff_ne_bot R K] have : Nontrivial (L' ⧸ K.toLieSubmodule) := by replace hK₂ : K.toLieSubmodule ≠ ⊤ := by rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ← LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff] exact Submodule.Quotient.nontrivial_of_lt_top _ hK₂.lt_top have : LieModule.IsNilpotent R K (L' ⧸ K.toLieSubmodule) := by -- Porting note: was refine' hK₁ _ fun x => _ apply hK₁ intro x have hx := LieAlgebra.isNilpotent_ad_of_isNilpotent (h x) apply Module.End.IsNilpotent.mapQ ?_ hx intro X HX simp only [LieSubalgebra.coe_toLieSubmodule, LieSubalgebra.mem_coe_submodule] at HX simp only [LieSubalgebra.coe_toLieSubmodule, Submodule.mem_comap, ad_apply, LieSubalgebra.mem_coe_submodule] exact LieSubalgebra.lie_mem K x.prop HX exact nontrivial_max_triv_of_isNilpotent R K (L' ⧸ K.toLieSubmodule) [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s ⊢ ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' [PROOFSTEP] rintro K (hK₁ : LieAlgebra.IsEngelian R K) hK₂ [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ ⊢ ∃ K', K' ∈ s ∧ K < K' [PROOFSTEP] apply LieAlgebra.exists_engelian_lieSubalgebra_of_lt_normalizer hK₁ [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ ⊢ K < LieSubalgebra.normalizer K [PROOFSTEP] apply lt_of_le_of_ne K.le_normalizer [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ ⊢ K ≠ LieSubalgebra.normalizer K [PROOFSTEP] rw [Ne.def, eq_comm, K.normalizer_eq_self_iff, ← Ne.def, ← LieSubmodule.nontrivial_iff_ne_bot R K] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ ⊢ Nontrivial { x // x ∈ ↑(maxTrivSubmodule R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) } [PROOFSTEP] have : Nontrivial (L' ⧸ K.toLieSubmodule) := by replace hK₂ : K.toLieSubmodule ≠ ⊤ := by rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ← LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff] exact Submodule.Quotient.nontrivial_of_lt_top _ hK₂.lt_top [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ ⊢ Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) [PROOFSTEP] replace hK₂ : K.toLieSubmodule ≠ ⊤ := by rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ← LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ ⊢ LieSubalgebra.toLieSubmodule K ≠ ⊤ [PROOFSTEP] rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ← LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : LieSubalgebra.toLieSubmodule K ≠ ⊤ ⊢ Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) [PROOFSTEP] exact Submodule.Quotient.nontrivial_of_lt_top _ hK₂.lt_top [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) ⊢ Nontrivial { x // x ∈ ↑(maxTrivSubmodule R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) } [PROOFSTEP] have : LieModule.IsNilpotent R K (L' ⧸ K.toLieSubmodule) := by -- Porting note: was refine' hK₁ _ fun x => _ apply hK₁ intro x have hx := LieAlgebra.isNilpotent_ad_of_isNilpotent (h x) apply Module.End.IsNilpotent.mapQ ?_ hx intro X HX simp only [LieSubalgebra.coe_toLieSubmodule, LieSubalgebra.mem_coe_submodule] at HX simp only [LieSubalgebra.coe_toLieSubmodule, Submodule.mem_comap, ad_apply, LieSubalgebra.mem_coe_submodule] exact LieSubalgebra.lie_mem K x.prop HX [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) ⊢ LieModule.IsNilpotent R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) [PROOFSTEP] apply hK₁ [GOAL] case x R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) ⊢ ∀ (x : { x // x ∈ K }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) x) [PROOFSTEP] intro x [GOAL] case x R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) x : { x // x ∈ K } ⊢ _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) x) [PROOFSTEP] have hx := LieAlgebra.isNilpotent_ad_of_isNilpotent (h x) [GOAL] case x R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) x : { x // x ∈ K } hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x) ⊢ _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) x) [PROOFSTEP] apply Module.End.IsNilpotent.mapQ ?_ hx [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) x : { x // x ∈ K } hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x) ⊢ ↑(LieSubalgebra.toLieSubmodule K) ≤ Submodule.comap (↑(ad R { x // x ∈ L' }) ↑x) ↑(LieSubalgebra.toLieSubmodule K) [PROOFSTEP] intro X HX [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) x : { x // x ∈ K } hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x) X : { x // x ∈ L' } HX : X ∈ ↑(LieSubalgebra.toLieSubmodule K) ⊢ X ∈ Submodule.comap (↑(ad R { x // x ∈ L' }) ↑x) ↑(LieSubalgebra.toLieSubmodule K) [PROOFSTEP] simp only [LieSubalgebra.coe_toLieSubmodule, LieSubalgebra.mem_coe_submodule] at HX [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) x : { x // x ∈ K } hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x) X : { x // x ∈ L' } HX : X ∈ K ⊢ X ∈ Submodule.comap (↑(ad R { x // x ∈ L' }) ↑x) ↑(LieSubalgebra.toLieSubmodule K) [PROOFSTEP] simp only [LieSubalgebra.coe_toLieSubmodule, Submodule.mem_comap, ad_apply, LieSubalgebra.mem_coe_submodule] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) x : { x // x ∈ K } hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x) X : { x // x ∈ L' } HX : X ∈ K ⊢ ⁅↑x, X⁆ ∈ K [PROOFSTEP] exact LieSubalgebra.lie_mem K x.prop HX [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s K : LieSubalgebra R { x // x ∈ L' } hK₁ : IsEngelian R { x // x ∈ K } hK₂ : K ≠ ⊤ this✝ : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) this : LieModule.IsNilpotent R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K) ⊢ Nontrivial { x // x ∈ ↑(maxTrivSubmodule R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) } [PROOFSTEP] exact nontrivial_max_triv_of_isNilpotent R K (L' ⧸ K.toLieSubmodule) [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' ⊢ ⊤ ∈ s [PROOFSTEP] haveI _i5 : IsNoetherian R L' := by -- Porting note: was -- isNoetherian_of_surjective L _ (LinearMap.range_rangeRestrict (toEndomorphism R L M)) -- abusing the relation between `LieHom.rangeRestrict` and `LinearMap.rangeRestrict` refine isNoetherian_of_surjective L (LieHom.rangeRestrict (toEndomorphism R L M)) ?_ simp only [LieHom.range_coeSubmodule, LieHom.coe_toLinearMap, LinearMap.range_eq_top] exact LieHom.surjective_rangeRestrict (toEndomorphism R L M) [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' ⊢ IsNoetherian R { x // x ∈ L' } [PROOFSTEP] refine isNoetherian_of_surjective L (LieHom.rangeRestrict (toEndomorphism R L M)) ?_ [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' ⊢ LinearMap.range ↑(LieHom.rangeRestrict (toEndomorphism R L M)) = ⊤ [PROOFSTEP] simp only [LieHom.range_coeSubmodule, LieHom.coe_toLinearMap, LinearMap.range_eq_top] [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' ⊢ Function.Surjective ↑(LieHom.rangeRestrict (toEndomorphism R L M)) [PROOFSTEP] exact LieHom.surjective_rangeRestrict (toEndomorphism R L M) [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' _i5 : IsNoetherian R { x // x ∈ L' } ⊢ ⊤ ∈ s [PROOFSTEP] obtain ⟨K, hK₁, hK₂⟩ := (LieSubalgebra.wellFounded_of_noetherian R L').has_min s hs [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' _i5 : IsNoetherian R { x // x ∈ L' } K : LieSubalgebra R { x // x ∈ L' } hK₁ : K ∈ s hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K ⊢ ⊤ ∈ s [PROOFSTEP] have hK₃ : K = ⊤ := by by_contra contra obtain ⟨K', hK'₁, hK'₂⟩ := this K hK₁ contra exact hK₂ K' hK'₁ hK'₂ [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' _i5 : IsNoetherian R { x // x ∈ L' } K : LieSubalgebra R { x // x ∈ L' } hK₁ : K ∈ s hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K ⊢ K = ⊤ [PROOFSTEP] by_contra contra [GOAL] R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' _i5 : IsNoetherian R { x // x ∈ L' } K : LieSubalgebra R { x // x ∈ L' } hK₁ : K ∈ s hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K contra : ¬K = ⊤ ⊢ False [PROOFSTEP] obtain ⟨K', hK'₁, hK'₂⟩ := this K hK₁ contra [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' _i5 : IsNoetherian R { x // x ∈ L' } K : LieSubalgebra R { x // x ∈ L' } hK₁ : K ∈ s hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K contra : ¬K = ⊤ K' : LieSubalgebra R { x // x ∈ L' } hK'₁ : K' ∈ s hK'₂ : K < K' ⊢ False [PROOFSTEP] exact hK₂ K' hK'₁ hK'₂ [GOAL] case intro.intro R : Type u₁ L : Type u₂ L₂ : Type u₃ M✝ : Type u₄ inst✝⁹ : CommRing R inst✝⁸ : LieRing L inst✝⁷ : LieAlgebra R L inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M✝ inst✝³ : Module R M✝ inst✝² : LieRingModule L M✝ inst✝¹ : LieModule R L M✝ inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M) h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }} hs : Set.Nonempty s this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K' _i5 : IsNoetherian R { x // x ∈ L' } K : LieSubalgebra R { x // x ∈ L' } hK₁ : K ∈ s hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K hK₃ : K = ⊤ ⊢ ⊤ ∈ s [PROOFSTEP] exact hK₃ ▸ hK₁
{"mathlib_filename": "Mathlib.Algebra.Lie.Engel", "llama_tokens": 45509}
[GOAL] α : Type u_1 a : Lists α l : Lists' α true ⊢ toList (cons a l) = a :: toList l [PROOFSTEP] simp [GOAL] α : Type u_1 l : List (Lists α) ⊢ toList (ofList l) = l [PROOFSTEP] induction l [GOAL] case nil α : Type u_1 ⊢ toList (ofList []) = [] [PROOFSTEP] simp [*] [GOAL] case cons α : Type u_1 head✝ : Lists α tail✝ : List (Lists α) tail_ih✝ : toList (ofList tail✝) = tail✝ ⊢ toList (ofList (head✝ :: tail✝)) = head✝ :: tail✝ [PROOFSTEP] simp [*] [GOAL] α : Type u_1 b : Bool h : true = b l : Lists' α b ⊢ Lists' α true [PROOFSTEP] rw [h] [GOAL] α : Type u_1 b : Bool h : true = b l : Lists' α b ⊢ Lists' α b [PROOFSTEP] exact l [GOAL] α : Type u_1 b : Bool h : true = b l : Lists' α b ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α b) l; ofList (toList l') = l' [PROOFSTEP] induction l with | atom => cases h | nil => simp | cons' b a _ IH => intro l' simpa [cons] using IH rfl [GOAL] α : Type u_1 b : Bool h : true = b l : Lists' α b ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α b) l; ofList (toList l') = l' [PROOFSTEP] induction l with | atom => cases h | nil => simp | cons' b a _ IH => intro l' simpa [cons] using IH rfl [GOAL] case atom α : Type u_1 b : Bool a✝ : α h : true = false ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α false) (atom a✝); ofList (toList l') = l' [PROOFSTEP] | atom => cases h [GOAL] case atom α : Type u_1 b : Bool a✝ : α h : true = false ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α false) (atom a✝); ofList (toList l') = l' [PROOFSTEP] cases h [GOAL] case nil α : Type u_1 b : Bool h : true = true ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) nil; ofList (toList l') = l' [PROOFSTEP] | nil => simp [GOAL] case nil α : Type u_1 b : Bool h : true = true ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) nil; ofList (toList l') = l' [PROOFSTEP] simp [GOAL] case cons' α : Type u_1 b✝¹ b✝ : Bool b : Lists' α b✝ a : Lists' α true a_ih✝ : ∀ (h : true = b✝), let l' := Eq.mpr (_ : Lists' α true = Lists' α b✝) b; ofList (toList l') = l' IH : ∀ (h : true = true), let l' := Eq.mpr (_ : Lists' α true = Lists' α true) a; ofList (toList l') = l' h : true = true ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) (cons' b a); ofList (toList l') = l' [PROOFSTEP] | cons' b a _ IH => intro l' simpa [cons] using IH rfl [GOAL] case cons' α : Type u_1 b✝¹ b✝ : Bool b : Lists' α b✝ a : Lists' α true a_ih✝ : ∀ (h : true = b✝), let l' := Eq.mpr (_ : Lists' α true = Lists' α b✝) b; ofList (toList l') = l' IH : ∀ (h : true = true), let l' := Eq.mpr (_ : Lists' α true = Lists' α true) a; ofList (toList l') = l' h : true = true ⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) (cons' b a); ofList (toList l') = l' [PROOFSTEP] intro l' [GOAL] case cons' α : Type u_1 b✝¹ b✝ : Bool b : Lists' α b✝ a : Lists' α true a_ih✝ : ∀ (h : true = b✝), let l' := Eq.mpr (_ : Lists' α true = Lists' α b✝) b; ofList (toList l') = l' IH : ∀ (h : true = true), let l' := Eq.mpr (_ : Lists' α true = Lists' α true) a; ofList (toList l') = l' h : true = true l' : Lists' α true := Eq.mpr (_ : Lists' α true = Lists' α true) (cons' b a) ⊢ ofList (toList l') = l' [PROOFSTEP] simpa [cons] using IH rfl [GOAL] α : Type u_1 a y : Lists α l : Lists' α true ⊢ a ∈ cons y l ↔ a ~ y ∨ a ∈ l [PROOFSTEP] simp [mem_def, or_and_right, exists_or] [GOAL] α : Type u_1 a : Lists α l₁ l₂ : Lists' α true ⊢ cons a l₁ ⊆ l₂ ↔ a ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] refine' ⟨fun h => _, fun ⟨⟨a', m, e⟩, s⟩ => Subset.cons e m s⟩ [GOAL] α : Type u_1 a : Lists α l₁ l₂ : Lists' α true h : cons a l₁ ⊆ l₂ ⊢ a ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] generalize h' : Lists'.cons a l₁ = l₁' at h [GOAL] α : Type u_1 a : Lists α l₁ l₂ l₁' : Lists' α true h' : cons a l₁ = l₁' h : l₁' ⊆ l₂ ⊢ a ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] cases' h with l a' a'' l l' e m s [GOAL] case nil α : Type u_1 a : Lists α l₁ l₂ : Lists' α true h' : cons a l₁ = nil ⊢ a ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] cases a [GOAL] case nil.mk α : Type u_1 l₁ l₂ : Lists' α true fst✝ : Bool snd✝ : Lists' α fst✝ h' : cons { fst := fst✝, snd := snd✝ } l₁ = nil ⊢ { fst := fst✝, snd := snd✝ } ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] cases h' [GOAL] case cons α : Type u_1 a : Lists α l₁ l₂ : Lists' α true a' a'' : Lists α l : Lists' α true e : a' ~ a'' h' : cons a l₁ = cons a' l m : a'' ∈ toList l₂ s : Subset l l₂ ⊢ a ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] cases a [GOAL] case cons.mk α : Type u_1 l₁ l₂ : Lists' α true a' a'' : Lists α l : Lists' α true e : a' ~ a'' m : a'' ∈ toList l₂ s : Subset l l₂ fst✝ : Bool snd✝ : Lists' α fst✝ h' : cons { fst := fst✝, snd := snd✝ } l₁ = cons a' l ⊢ { fst := fst✝, snd := snd✝ } ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] cases a' [GOAL] case cons.mk.mk α : Type u_1 l₁ l₂ : Lists' α true a'' : Lists α l : Lists' α true m : a'' ∈ toList l₂ s : Subset l l₂ fst✝¹ : Bool snd✝¹ : Lists' α fst✝¹ fst✝ : Bool snd✝ : Lists' α fst✝ e : { fst := fst✝, snd := snd✝ } ~ a'' h' : cons { fst := fst✝¹, snd := snd✝¹ } l₁ = cons { fst := fst✝, snd := snd✝ } l ⊢ { fst := fst✝¹, snd := snd✝¹ } ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] cases h' [GOAL] case cons.mk.mk.refl α : Type u_1 l₁ l₂ : Lists' α true a'' : Lists α m : a'' ∈ toList l₂ fst✝ : Bool snd✝ : Lists' α fst✝ e : { fst := fst✝, snd := snd✝ } ~ a'' s : Subset l₁ l₂ ⊢ { fst := fst✝, snd := snd✝ } ∈ l₂ ∧ l₁ ⊆ l₂ [PROOFSTEP] exact ⟨⟨_, m, e⟩, s⟩ [GOAL] α : Type u_1 l₁ l₂ : List (Lists α) h : l₁ ⊆ l₂ ⊢ ofList l₁ ⊆ ofList l₂ [PROOFSTEP] induction' l₁ with _ _ l₁_ih [GOAL] case nil α : Type u_1 l₁ l₂ : List (Lists α) h✝ : l₁ ⊆ l₂ h : [] ⊆ l₂ ⊢ ofList [] ⊆ ofList l₂ [PROOFSTEP] exact Subset.nil [GOAL] case cons α : Type u_1 l₁ l₂ : List (Lists α) h✝ : l₁ ⊆ l₂ head✝ : Lists α tail✝ : List (Lists α) l₁_ih : tail✝ ⊆ l₂ → ofList tail✝ ⊆ ofList l₂ h : head✝ :: tail✝ ⊆ l₂ ⊢ ofList (head✝ :: tail✝) ⊆ ofList l₂ [PROOFSTEP] refine' Subset.cons (Lists.Equiv.refl _) _ (l₁_ih (List.subset_of_cons_subset h)) [GOAL] case cons α : Type u_1 l₁ l₂ : List (Lists α) h✝ : l₁ ⊆ l₂ head✝ : Lists α tail✝ : List (Lists α) l₁_ih : tail✝ ⊆ l₂ → ofList tail✝ ⊆ ofList l₂ h : head✝ :: tail✝ ⊆ l₂ ⊢ head✝ ∈ toList (ofList l₂) [PROOFSTEP] simp at h [GOAL] case cons α : Type u_1 l₁ l₂ : List (Lists α) h✝ : l₁ ⊆ l₂ head✝ : Lists α tail✝ : List (Lists α) l₁_ih : tail✝ ⊆ l₂ → ofList tail✝ ⊆ ofList l₂ h : head✝ ∈ l₂ ∧ tail✝ ⊆ l₂ ⊢ head✝ ∈ toList (ofList l₂) [PROOFSTEP] simp [h] [GOAL] α : Type u_1 l : Lists' α true ⊢ l ⊆ l [PROOFSTEP] rw [← Lists'.of_toList l] [GOAL] α : Type u_1 l : Lists' α true ⊢ ofList (toList l) ⊆ ofList (toList l) [PROOFSTEP] exact ofList_subset (List.Subset.refl _) [GOAL] α : Type u_1 l : Lists' α true ⊢ l ⊆ nil → l = nil [PROOFSTEP] rw [← of_toList l] [GOAL] α : Type u_1 l : Lists' α true ⊢ ofList (toList l) ⊆ nil → ofList (toList l) = nil [PROOFSTEP] induction toList l [GOAL] case nil α : Type u_1 l : Lists' α true ⊢ ofList [] ⊆ nil → ofList [] = nil [PROOFSTEP] intro h [GOAL] case cons α : Type u_1 l : Lists' α true head✝ : Lists α tail✝ : List (Lists α) tail_ih✝ : ofList tail✝ ⊆ nil → ofList tail✝ = nil ⊢ ofList (head✝ :: tail✝) ⊆ nil → ofList (head✝ :: tail✝) = nil [PROOFSTEP] intro h [GOAL] case nil α : Type u_1 l : Lists' α true h : ofList [] ⊆ nil ⊢ ofList [] = nil [PROOFSTEP] rfl [GOAL] case cons α : Type u_1 l : Lists' α true head✝ : Lists α tail✝ : List (Lists α) tail_ih✝ : ofList tail✝ ⊆ nil → ofList tail✝ = nil h : ofList (head✝ :: tail✝) ⊆ nil ⊢ ofList (head✝ :: tail✝) = nil [PROOFSTEP] rcases cons_subset.1 h with ⟨⟨_, ⟨⟩, _⟩, _⟩ [GOAL] α : Type u_1 a : Lists α x✝ : Lists' α true h : a ∈ toList nil ⊢ a ∈ x✝ [PROOFSTEP] cases h [GOAL] α : Type u_1 a : Lists α b✝ : Bool a0 : Lists' α b✝ l0 l₂ : Lists' α true s : cons' a0 l0 ⊆ l₂ h : a ∈ toList (cons' a0 l0) ⊢ a ∈ l₂ [PROOFSTEP] cases' s with _ _ _ _ _ e m s [GOAL] case cons α : Type u_1 a : Lists α l0 l₂ : Lists' α true a✝ a'✝ : Lists α e : a✝ ~ a'✝ h : a ∈ toList (cons' a✝.snd l0) m : a'✝ ∈ toList l₂ s : Subset l0 l₂ ⊢ a ∈ l₂ [PROOFSTEP] simp only [toList, Sigma.eta, List.find?, List.mem_cons] at h [GOAL] case cons α : Type u_1 a : Lists α l0 l₂ : Lists' α true a✝ a'✝ : Lists α e : a✝ ~ a'✝ m : a'✝ ∈ toList l₂ s : Subset l0 l₂ h : a = a✝ ∨ a ∈ toList l0 ⊢ a ∈ l₂ [PROOFSTEP] rcases h with (rfl | h) [GOAL] case cons.inl α : Type u_1 a : Lists α l0 l₂ : Lists' α true a'✝ : Lists α m : a'✝ ∈ toList l₂ s : Subset l0 l₂ e : a ~ a'✝ ⊢ a ∈ l₂ [PROOFSTEP] exact ⟨_, m, e⟩ [GOAL] case cons.inr α : Type u_1 a : Lists α l0 l₂ : Lists' α true a✝ a'✝ : Lists α e : a✝ ~ a'✝ m : a'✝ ∈ toList l₂ s : Subset l0 l₂ h : a ∈ toList l0 ⊢ a ∈ l₂ [PROOFSTEP] exact mem_of_subset' s h [GOAL] α : Type u_1 l₁ l₂ : Lists' α true H : ∀ (a : Lists α), a ∈ toList l₁ → a ∈ l₂ ⊢ l₁ ⊆ l₂ [PROOFSTEP] rw [← of_toList l₁] [GOAL] α : Type u_1 l₁ l₂ : Lists' α true H : ∀ (a : Lists α), a ∈ toList l₁ → a ∈ l₂ ⊢ ofList (toList l₁) ⊆ l₂ [PROOFSTEP] revert H [GOAL] α : Type u_1 l₁ l₂ : Lists' α true ⊢ (∀ (a : Lists α), a ∈ toList l₁ → a ∈ l₂) → ofList (toList l₁) ⊆ l₂ [PROOFSTEP] induction' toList l₁ with h t t_ih [GOAL] case nil α : Type u_1 l₁ l₂ : Lists' α true ⊢ (∀ (a : Lists α), a ∈ [] → a ∈ l₂) → ofList [] ⊆ l₂ [PROOFSTEP] intro H [GOAL] case cons α : Type u_1 l₁ l₂ : Lists' α true h : Lists α t : List (Lists α) t_ih : (∀ (a : Lists α), a ∈ t → a ∈ l₂) → ofList t ⊆ l₂ ⊢ (∀ (a : Lists α), a ∈ h :: t → a ∈ l₂) → ofList (h :: t) ⊆ l₂ [PROOFSTEP] intro H [GOAL] case nil α : Type u_1 l₁ l₂ : Lists' α true H : ∀ (a : Lists α), a ∈ [] → a ∈ l₂ ⊢ ofList [] ⊆ l₂ [PROOFSTEP] exact Subset.nil [GOAL] case cons α : Type u_1 l₁ l₂ : Lists' α true h : Lists α t : List (Lists α) t_ih : (∀ (a : Lists α), a ∈ t → a ∈ l₂) → ofList t ⊆ l₂ H : ∀ (a : Lists α), a ∈ h :: t → a ∈ l₂ ⊢ ofList (h :: t) ⊆ l₂ [PROOFSTEP] simp only [ofList, List.find?, List.mem_cons, forall_eq_or_imp] at * [GOAL] case cons α : Type u_1 l₁ l₂ : Lists' α true h : Lists α t : List (Lists α) t_ih : (∀ (a : Lists α), a ∈ t → a ∈ l₂) → ofList t ⊆ l₂ H : h ∈ l₂ ∧ ∀ (a : Lists α), a ∈ t → a ∈ l₂ ⊢ cons h (ofList t) ⊆ l₂ [PROOFSTEP] exact cons_subset.2 ⟨H.1, t_ih H.2⟩ [GOAL] α : Type u_1 l : List (Lists α) ⊢ toList (ofList l) = l [PROOFSTEP] simp [ofList, of'] [GOAL] α : Type u_1 l : Lists' α true x✝ : IsList { fst := true, snd := l } ⊢ ofList (toList { fst := true, snd := l }) = { fst := true, snd := l } [PROOFSTEP] simp_all [ofList, of'] [GOAL] α : Type u_1 inst✝ : DecidableEq α ⊢ DecidableEq (Lists α) [PROOFSTEP] unfold Lists [GOAL] α : Type u_1 inst✝ : DecidableEq α ⊢ DecidableEq ((b : Bool) × Lists' α b) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝ : SizeOf α ⊢ SizeOf (Lists α) [PROOFSTEP] unfold Lists [GOAL] α : Type u_1 inst✝ : SizeOf α ⊢ SizeOf ((b : Bool) × Lists' α b) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) ⊢ PProd ((l : Lists α) → C l) ((l : Lists' α true) → D l) [PROOFSTEP] suffices ∀ {b} (l : Lists' α b), PProd (C ⟨_, l⟩) (match b, l with | true, l => D l | false, _ => PUnit) by exact ⟨fun ⟨b, l⟩ => (this _).1, fun l => (this l).2⟩ [GOAL] α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) this : {b : Bool} → (l : Lists' α b) → PProd (C { fst := b, snd := l }) (match b, l with | true, l => D l | false, x => PUnit) ⊢ PProd ((l : Lists α) → C l) ((l : Lists' α true) → D l) [PROOFSTEP] exact ⟨fun ⟨b, l⟩ => (this _).1, fun l => (this l).2⟩ [GOAL] α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) ⊢ {b : Bool} → (l : Lists' α b) → PProd (C { fst := b, snd := l }) (match b, l with | true, l => D l | false, x => PUnit) [PROOFSTEP] intros b l [GOAL] α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) b : Bool l : Lists' α b ⊢ PProd (C { fst := b, snd := l }) (match b, l with | true, l => D l | false, x => PUnit) [PROOFSTEP] induction' l with a b a l IH₁ IH [GOAL] case atom α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) b : Bool a : α ⊢ PProd (C { fst := false, snd := Lists'.atom a }) (match false, Lists'.atom a with | true, l => D l | false, x => PUnit) [PROOFSTEP] exact ⟨C0 _, ⟨⟩⟩ [GOAL] case nil α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) b : Bool ⊢ PProd (C { fst := true, snd := Lists'.nil }) (match true, Lists'.nil with | true, l => D l | false, x => PUnit) [PROOFSTEP] exact ⟨C1 _ D0, D0⟩ [GOAL] case cons' α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) b✝ b : Bool a : Lists' α b l : Lists' α true IH₁ : PProd (C { fst := b, snd := a }) (match b, a with | true, l => D l | false, x => PUnit) IH : PProd (C { fst := true, snd := l }) (match true, l with | true, l => D l | false, x => PUnit) ⊢ PProd (C { fst := true, snd := Lists'.cons' a l }) (match true, Lists'.cons' a l with | true, l => D l | false, x => PUnit) [PROOFSTEP] have : D (Lists'.cons' a l) := D1 ⟨_, _⟩ _ IH₁.1 IH.2 [GOAL] case cons' α : Type u_1 C : Lists α → Sort u_2 D : Lists' α true → Sort u_3 C0 : (a : α) → C (atom a) C1 : (l : Lists' α true) → D l → C (of' l) D0 : D Lists'.nil D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l) b✝ b : Bool a : Lists' α b l : Lists' α true IH₁ : PProd (C { fst := b, snd := a }) (match b, a with | true, l => D l | false, x => PUnit) IH : PProd (C { fst := true, snd := l }) (match true, l with | true, l => D l | false, x => PUnit) this : D (Lists'.cons' a l) ⊢ PProd (C { fst := true, snd := Lists'.cons' a l }) (match true, Lists'.cons' a l with | true, l => D l | false, x => PUnit) [PROOFSTEP] exact ⟨C1 _ this, this⟩ [GOAL] α : Type u_1 l₁ l₂ : Lists' α true ⊢ of' l₁ ~ of' l₂ ↔ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁ [PROOFSTEP] refine' ⟨fun h => _, fun ⟨h₁, h₂⟩ => Equiv.antisymm h₁ h₂⟩ [GOAL] α : Type u_1 l₁ l₂ : Lists' α true h : of' l₁ ~ of' l₂ ⊢ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁ [PROOFSTEP] cases' h with _ _ _ h₁ h₂ [GOAL] case refl α : Type u_1 l₁ : Lists' α true ⊢ l₁ ⊆ l₁ ∧ l₁ ⊆ l₁ [PROOFSTEP] simp [Lists'.Subset.refl] [GOAL] case antisymm α : Type u_1 l₁ l₂ : Lists' α true h₁ : Lists'.Subset l₁ l₂ h₂ : Lists'.Subset l₂ l₁ ⊢ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁ [PROOFSTEP] exact ⟨h₁, h₂⟩ [GOAL] α : Type u_1 a : α l : Lists α h : atom a ~ l ⊢ atom a = l [PROOFSTEP] cases h [GOAL] case refl α : Type u_1 a : α ⊢ atom a = atom a [PROOFSTEP] rfl [GOAL] α : Type u_1 l₁ l₂ : Lists α h : l₁ ~ l₂ ⊢ l₂ ~ l₁ [PROOFSTEP] cases' h with _ _ _ h₁ h₂ <;> [rfl; exact Equiv.antisymm h₂ h₁] [GOAL] α : Type u_1 l₁ l₂ : Lists α h : l₁ ~ l₂ ⊢ l₂ ~ l₁ [PROOFSTEP] cases' h with _ _ _ h₁ h₂ [GOAL] case refl α : Type u_1 l₁ : Lists α ⊢ l₁ ~ l₁ [PROOFSTEP] rfl [GOAL] case antisymm α : Type u_1 l₁✝ l₂✝ : Lists' α true h₁ : Lists'.Subset l₁✝ l₂✝ h₂ : Lists'.Subset l₂✝ l₁✝ ⊢ { fst := true, snd := l₂✝ } ~ { fst := true, snd := l₁✝ } [PROOFSTEP] exact Equiv.antisymm h₂ h₁ [GOAL] α : Type u_1 ⊢ ∀ {l₁ l₂ l₃ : Lists α}, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ [PROOFSTEP] let trans := fun l₁ : Lists α => ∀ ⦃l₂ l₃⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ [GOAL] α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ ⊢ ∀ {l₁ l₂ l₃ : Lists α}, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ [PROOFSTEP] suffices PProd (∀ l₁, trans l₁) (∀ (l : Lists' α true), ∀ l' ∈ l.toList, trans l') by exact this.1 [GOAL] α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ this : PProd (∀ (l₁ : Lists α), trans l₁) (∀ (l : Lists' α true) (l' : Lists α), l' ∈ Lists'.toList l → trans l') ⊢ ∀ {l₁ l₂ l₃ : Lists α}, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ [PROOFSTEP] exact this.1 [GOAL] α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ ⊢ PProd (∀ (l₁ : Lists α), trans l₁) (∀ (l : Lists' α true) (l' : Lists α), l' ∈ Lists'.toList l → trans l') [PROOFSTEP] apply inductionMut [GOAL] case C0 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ ⊢ ∀ (a : α), trans (atom a) [PROOFSTEP] intro a l₂ l₃ h₁ h₂ [GOAL] case C0 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ a : α l₂ l₃ : Lists α h₁ : atom a ~ l₂ h₂ : l₂ ~ l₃ ⊢ atom a ~ l₃ [PROOFSTEP] rwa [← equiv_atom.1 h₁] at h₂ [GOAL] case C1 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ ⊢ ∀ (l : Lists' α true), (∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l') → trans (of' l) [PROOFSTEP] intro l₁ IH l₂ l₃ h₁ h₂ [GOAL] case C1 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ l₃ : Lists α h₁ : of' l₁ ~ l₂ h₂ : l₂ ~ l₃ ⊢ of' l₁ ~ l₃ [PROOFSTEP] have h₁' := h₁ [GOAL] case C1 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ l₃ : Lists α h₁ : of' l₁ ~ l₂ h₂ : l₂ ~ l₃ h₁' : of' l₁ ~ l₂ ⊢ of' l₁ ~ l₃ [PROOFSTEP] have h₂' := h₂ [GOAL] case C1 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ l₃ : Lists α h₁ : of' l₁ ~ l₂ h₂ : l₂ ~ l₃ h₁' : of' l₁ ~ l₂ h₂' : l₂ ~ l₃ ⊢ of' l₁ ~ l₃ [PROOFSTEP] cases' h₁ with _ _ l₂ [GOAL] case C1.refl α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₃ : Lists α h₂ : of' l₁ ~ l₃ h₁' : of' l₁ ~ of' l₁ h₂' : of' l₁ ~ l₃ ⊢ of' l₁ ~ l₃ [PROOFSTEP] exact h₂ [GOAL] case C1.antisymm α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₃ : Lists α l₂ : Lists' α true a✝¹ : Lists'.Subset l₁ l₂ a✝ : Lists'.Subset l₂ l₁ h₂ : { fst := true, snd := l₂ } ~ l₃ h₁' : of' l₁ ~ { fst := true, snd := l₂ } h₂' : { fst := true, snd := l₂ } ~ l₃ ⊢ of' l₁ ~ l₃ [PROOFSTEP] cases' h₂ with _ _ l₃ [GOAL] case C1.antisymm.refl α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝¹ : Lists'.Subset l₁ l₂ a✝ : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₂ } ⊢ of' l₁ ~ { fst := true, snd := l₂ } [PROOFSTEP] exact h₁' [GOAL] case C1.antisymm.antisymm α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } ⊢ of' l₁ ~ { fst := true, snd := l₃ } [PROOFSTEP] cases' Equiv.antisymm_iff.1 h₁' with hl₁ hr₁ [GOAL] case C1.antisymm.antisymm.intro α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ ⊢ of' l₁ ~ { fst := true, snd := l₃ } [PROOFSTEP] cases' Equiv.antisymm_iff.1 h₂' with hl₂ hr₂ [GOAL] case C1.antisymm.antisymm.intro.intro α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ ⊢ of' l₁ ~ { fst := true, snd := l₃ } [PROOFSTEP] apply Equiv.antisymm_iff.2 [GOAL] case C1.antisymm.antisymm.intro.intro α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ ⊢ l₁ ⊆ l₃ ∧ l₃ ⊆ l₁ [PROOFSTEP] constructor [GOAL] case C1.antisymm.antisymm.intro.intro.left α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ ⊢ l₁ ⊆ l₃ [PROOFSTEP] apply Lists'.subset_def.2 [GOAL] case C1.antisymm.antisymm.intro.intro.right α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ ⊢ l₃ ⊆ l₁ [PROOFSTEP] apply Lists'.subset_def.2 [GOAL] case C1.antisymm.antisymm.intro.intro.left α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ ⊢ ∀ (a : Lists α), a ∈ Lists'.toList l₁ → a ∈ l₃ [PROOFSTEP] intro a₁ m₁ [GOAL] case C1.antisymm.antisymm.intro.intro.left α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ a₁ : Lists α m₁ : a₁ ∈ Lists'.toList l₁ ⊢ a₁ ∈ l₃ [PROOFSTEP] rcases Lists'.mem_of_subset' hl₁ m₁ with ⟨a₂, m₂, e₁₂⟩ [GOAL] case C1.antisymm.antisymm.intro.intro.left.intro.intro α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ a₁ : Lists α m₁ : a₁ ∈ Lists'.toList l₁ a₂ : Lists α m₂ : a₂ ∈ Lists'.toList l₂ e₁₂ : a₁ ~ a₂ ⊢ a₁ ∈ l₃ [PROOFSTEP] rcases Lists'.mem_of_subset' hl₂ m₂ with ⟨a₃, m₃, e₂₃⟩ [GOAL] case C1.antisymm.antisymm.intro.intro.left.intro.intro.intro.intro α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ a₁ : Lists α m₁ : a₁ ∈ Lists'.toList l₁ a₂ : Lists α m₂ : a₂ ∈ Lists'.toList l₂ e₁₂ : a₁ ~ a₂ a₃ : Lists α m₃ : a₃ ∈ Lists'.toList l₃ e₂₃ : a₂ ~ a₃ ⊢ a₁ ∈ l₃ [PROOFSTEP] exact ⟨a₃, m₃, IH _ m₁ e₁₂ e₂₃⟩ [GOAL] case C1.antisymm.antisymm.intro.intro.right α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ ⊢ ∀ (a : Lists α), a ∈ Lists'.toList l₃ → a ∈ l₁ [PROOFSTEP] intro a₃ m₃ [GOAL] case C1.antisymm.antisymm.intro.intro.right α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ a₃ : Lists α m₃ : a₃ ∈ Lists'.toList l₃ ⊢ a₃ ∈ l₁ [PROOFSTEP] rcases Lists'.mem_of_subset' hr₂ m₃ with ⟨a₂, m₂, e₃₂⟩ [GOAL] case C1.antisymm.antisymm.intro.intro.right.intro.intro α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ a₃ : Lists α m₃ : a₃ ∈ Lists'.toList l₃ a₂ : Lists α m₂ : a₂ ∈ Lists'.toList l₂ e₃₂ : a₃ ~ a₂ ⊢ a₃ ∈ l₁ [PROOFSTEP] rcases Lists'.mem_of_subset' hr₁ m₂ with ⟨a₁, m₁, e₂₁⟩ [GOAL] case C1.antisymm.antisymm.intro.intro.right.intro.intro.intro.intro α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ l₁ : Lists' α true IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l' l₂ : Lists' α true a✝³ : Lists'.Subset l₁ l₂ a✝² : Lists'.Subset l₂ l₁ h₁' : of' l₁ ~ { fst := true, snd := l₂ } l₃ : Lists' α true a✝¹ : Lists'.Subset l₂ l₃ a✝ : Lists'.Subset l₃ l₂ h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ } hl₁ : l₁ ⊆ l₂ hr₁ : l₂ ⊆ l₁ hl₂ : l₂ ⊆ l₃ hr₂ : l₃ ⊆ l₂ a₃ : Lists α m₃ : a₃ ∈ Lists'.toList l₃ a₂ : Lists α m₂ : a₂ ∈ Lists'.toList l₂ e₃₂ : a₃ ~ a₂ a₁ : Lists α m₁ : a₁ ∈ Lists'.toList l₁ e₂₁ : a₂ ~ a₁ ⊢ a₃ ∈ l₁ [PROOFSTEP] exact ⟨a₁, m₁, (IH _ m₁ e₂₁.symm e₃₂.symm).symm⟩ [GOAL] case D0 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ ⊢ ∀ (l' : Lists α), l' ∈ Lists'.toList Lists'.nil → trans l' [PROOFSTEP] rintro _ ⟨⟩ [GOAL] case D1 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ ⊢ ∀ (a : Lists α) (l : Lists' α true), trans a → (∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l') → ∀ (l' : Lists α), l' ∈ Lists'.toList (Lists'.cons a l) → trans l' [PROOFSTEP] intro a l IH₁ IH [GOAL] case D1 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ a : Lists α l : Lists' α true IH₁ : trans a IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l' ⊢ ∀ (l' : Lists α), l' ∈ Lists'.toList (Lists'.cons a l) → trans l' [PROOFSTEP] simp only [Lists'.toList, Sigma.eta, List.find?, List.mem_cons, forall_eq_or_imp] [GOAL] case D1 α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ a : Lists α l : Lists' α true IH₁ : trans a IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l' ⊢ (∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃) ∧ ∀ (a : Lists α), a ∈ Lists'.toList l → ∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃ [PROOFSTEP] constructor [GOAL] case D1.left α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ a : Lists α l : Lists' α true IH₁ : trans a IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l' ⊢ ∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃ [PROOFSTEP] intros l₂ l₃ h₁ h₂ [GOAL] case D1.left α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ a : Lists α l : Lists' α true IH₁ : trans a IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l' l₂ l₃ : Lists α h₁ : a ~ l₂ h₂ : l₂ ~ l₃ ⊢ a ~ l₃ [PROOFSTEP] exact IH₁ h₁ h₂ [GOAL] case D1.right α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ a : Lists α l : Lists' α true IH₁ : trans a IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l' ⊢ ∀ (a : Lists α), a ∈ Lists'.toList l → ∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃ [PROOFSTEP] intros a h₁ l₂ l₃ h₂ h₃ [GOAL] case D1.right α : Type u_1 trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ a✝ : Lists α l : Lists' α true IH₁ : trans a✝ IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l' a : Lists α h₁ : a ∈ Lists'.toList l l₂ l₃ : Lists α h₂ : a ~ l₂ h₃ : l₂ ~ l₃ ⊢ a ~ l₃ [PROOFSTEP] exact IH _ h₁ h₂ h₃ [GOAL] α : Type u_1 b : Bool l : Lists' α b ⊢ 0 < sizeOf l [PROOFSTEP] cases l [GOAL] case atom α : Type u_1 a✝ : α ⊢ 0 < sizeOf (Lists'.atom a✝) [PROOFSTEP] simp only [Lists'.atom.sizeOf_spec, Lists'.nil.sizeOf_spec, Lists'.cons'.sizeOf_spec, true_or, add_pos_iff] [GOAL] case nil α : Type u_1 ⊢ 0 < sizeOf Lists'.nil [PROOFSTEP] simp only [Lists'.atom.sizeOf_spec, Lists'.nil.sizeOf_spec, Lists'.cons'.sizeOf_spec, true_or, add_pos_iff] [GOAL] case cons' α : Type u_1 b✝ : Bool a✝¹ : Lists' α b✝ a✝ : Lists' α true ⊢ 0 < sizeOf (Lists'.cons' a✝¹ a✝) [PROOFSTEP] simp only [Lists'.atom.sizeOf_spec, Lists'.nil.sizeOf_spec, Lists'.cons'.sizeOf_spec, true_or, add_pos_iff] [GOAL] α : Type u_1 b : Bool a : Lists' α b l : Lists' α true ⊢ sizeOf { fst := b, snd := a } < sizeOf (Lists'.cons' a l) [PROOFSTEP] simp only [Sigma.mk.sizeOf_spec, Lists'.cons'.sizeOf_spec, lt_add_iff_pos_right] [GOAL] α : Type u_1 b : Bool a : Lists' α b l : Lists' α true ⊢ 0 < sizeOf l [PROOFSTEP] apply sizeof_pos [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : Lists' α false ⊢ { fst := false, snd := l₁ } ~ { fst := false, snd := l₂ } ↔ l₁ = l₂ [PROOFSTEP] cases l₁ [GOAL] case atom α : Type u_1 inst✝ : DecidableEq α l₂ : Lists' α false a✝ : α ⊢ { fst := false, snd := Lists'.atom a✝ } ~ { fst := false, snd := l₂ } ↔ Lists'.atom a✝ = l₂ [PROOFSTEP] apply equiv_atom.trans [GOAL] case atom α : Type u_1 inst✝ : DecidableEq α l₂ : Lists' α false a✝ : α ⊢ atom a✝ = { fst := false, snd := l₂ } ↔ Lists'.atom a✝ = l₂ [PROOFSTEP] simp [atom] [GOAL] case atom α : Type u_1 inst✝ : DecidableEq α l₂ : Lists' α false a✝ : α ⊢ { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := l₂ } ↔ Lists'.atom a✝ = l₂ [PROOFSTEP] constructor [GOAL] case atom.mp α : Type u_1 inst✝ : DecidableEq α l₂ : Lists' α false a✝ : α ⊢ { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := l₂ } → Lists'.atom a✝ = l₂ [PROOFSTEP] rintro ⟨rfl⟩ [GOAL] case atom.mp.refl α : Type u_1 inst✝ : DecidableEq α a✝ : α ⊢ Lists'.atom a✝ = Lists'.atom a✝ [PROOFSTEP] rfl [GOAL] case atom.mpr α : Type u_1 inst✝ : DecidableEq α l₂ : Lists' α false a✝ : α ⊢ Lists'.atom a✝ = l₂ → { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := l₂ } [PROOFSTEP] rintro ⟨rfl⟩ [GOAL] case atom.mpr.refl α : Type u_1 inst✝ : DecidableEq α a✝ : α ⊢ { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := Lists'.atom a✝ } [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ : Lists' α false l₂ : Lists' α true ⊢ ¬{ fst := false, snd := l₁ } ~ { fst := true, snd := l₂ } [PROOFSTEP] rintro ⟨⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ : Lists' α true l₂ : Lists' α false ⊢ ¬{ fst := true, snd := l₁ } ~ { fst := false, snd := l₂ } [PROOFSTEP] rintro ⟨⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : Lists' α true ⊢ Decidable ({ fst := true, snd := l₁ } ~ { fst := true, snd := l₂ }) [PROOFSTEP] haveI : Decidable (l₁ ⊆ l₂) := have : SizeOf.sizeOf l₁ + SizeOf.sizeOf l₂ < SizeOf.sizeOf (⟨true, l₁⟩ : Lists α) + SizeOf.sizeOf (⟨true, l₂⟩ : Lists α) := by decreasing_tactic Subset.decidable l₁ l₂ [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : Lists' α true ⊢ sizeOf l₁ + sizeOf l₂ < sizeOf { fst := true, snd := l₁ } + sizeOf { fst := true, snd := l₂ } [PROOFSTEP] decreasing_tactic [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : Lists' α true this : Decidable (l₁ ⊆ l₂) ⊢ Decidable ({ fst := true, snd := l₁ } ~ { fst := true, snd := l₂ }) [PROOFSTEP] haveI : Decidable (l₂ ⊆ l₁) := have : SizeOf.sizeOf l₂ + SizeOf.sizeOf l₁ < SizeOf.sizeOf (⟨true, l₁⟩ : Lists α) + SizeOf.sizeOf (⟨true, l₂⟩ : Lists α) := by decreasing_tactic Subset.decidable l₂ l₁ [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : Lists' α true this : Decidable (l₁ ⊆ l₂) ⊢ sizeOf l₂ + sizeOf l₁ < sizeOf { fst := true, snd := l₁ } + sizeOf { fst := true, snd := l₂ } [PROOFSTEP] decreasing_tactic [GOAL] α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : Lists' α true this✝ : Decidable (l₁ ⊆ l₂) this : Decidable (l₂ ⊆ l₁) ⊢ Decidable ({ fst := true, snd := l₁ } ~ { fst := true, snd := l₂ }) [PROOFSTEP] exact decidable_of_iff' _ Equiv.antisymm_iff [GOAL] α : Type u_1 inst✝ : DecidableEq α b : Bool a : Lists' α b l₁ l₂ : Lists' α true ⊢ Decidable (Lists'.cons' a l₁ ⊆ l₂) [PROOFSTEP] haveI := have : sizeOf (⟨b, a⟩ : Lists α) < 1 + 1 + sizeOf a + sizeOf l₁ := by simp [sizeof_pos] mem.decidable ⟨b, a⟩ l₂ [GOAL] α : Type u_1 inst✝ : DecidableEq α b : Bool a : Lists' α b l₁ l₂ : Lists' α true ⊢ sizeOf { fst := b, snd := a } < 1 + 1 + sizeOf a + sizeOf l₁ [PROOFSTEP] simp [sizeof_pos] [GOAL] α : Type u_1 inst✝ : DecidableEq α b : Bool a : Lists' α b l₁ l₂ : Lists' α true this : Decidable ({ fst := b, snd := a } ∈ l₂) ⊢ Decidable (Lists'.cons' a l₁ ⊆ l₂) [PROOFSTEP] haveI := have : SizeOf.sizeOf l₁ + SizeOf.sizeOf l₂ < SizeOf.sizeOf (Lists'.cons' a l₁) + SizeOf.sizeOf l₂ := by decreasing_tactic Subset.decidable l₁ l₂ [GOAL] α : Type u_1 inst✝ : DecidableEq α b : Bool a : Lists' α b l₁ l₂ : Lists' α true this : Decidable ({ fst := b, snd := a } ∈ l₂) ⊢ sizeOf l₁ + sizeOf l₂ < sizeOf (Lists'.cons' a l₁) + sizeOf l₂ [PROOFSTEP] decreasing_tactic [GOAL] α : Type u_1 inst✝ : DecidableEq α b : Bool a : Lists' α b l₁ l₂ : Lists' α true this✝ : Decidable ({ fst := b, snd := a } ∈ l₂) this : Decidable (l₁ ⊆ l₂) ⊢ Decidable (Lists'.cons' a l₁ ⊆ l₂) [PROOFSTEP] exact decidable_of_iff' _ (@Lists'.cons_subset _ ⟨_, _⟩ _ _) [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α ⊢ ¬a ∈ Lists'.nil [PROOFSTEP] rintro ⟨_, ⟨⟩, _⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α b✝ : Bool b : Lists' α b✝ l₂ : Lists' α true ⊢ Decidable (a ∈ Lists'.cons' b l₂) [PROOFSTEP] haveI := have : sizeOf (⟨_, b⟩ : Lists α) < 1 + 1 + sizeOf b + sizeOf l₂ := by simp [sizeof_pos] Equiv.decidable a ⟨_, b⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α b✝ : Bool b : Lists' α b✝ l₂ : Lists' α true ⊢ sizeOf { fst := b✝, snd := b } < 1 + 1 + sizeOf b + sizeOf l₂ [PROOFSTEP] simp [sizeof_pos] [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α b✝ : Bool b : Lists' α b✝ l₂ : Lists' α true this : Decidable (a ~ { fst := b✝, snd := b }) ⊢ Decidable (a ∈ Lists'.cons' b l₂) [PROOFSTEP] haveI := have : SizeOf.sizeOf a + SizeOf.sizeOf l₂ < SizeOf.sizeOf a + SizeOf.sizeOf (Lists'.cons' b l₂) := by decreasing_tactic mem.decidable a l₂ [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α b✝ : Bool b : Lists' α b✝ l₂ : Lists' α true this : Decidable (a ~ { fst := b✝, snd := b }) ⊢ sizeOf a + sizeOf l₂ < sizeOf a + sizeOf (Lists'.cons' b l₂) [PROOFSTEP] decreasing_tactic [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α b✝ : Bool b : Lists' α b✝ l₂ : Lists' α true this✝ : Decidable (a ~ { fst := b✝, snd := b }) this : Decidable (a ∈ l₂) ⊢ Decidable (a ∈ Lists'.cons' b l₂) [PROOFSTEP] refine' decidable_of_iff' (a ~ ⟨_, b⟩ ∨ a ∈ l₂) _ [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α b✝ : Bool b : Lists' α b✝ l₂ : Lists' α true this✝ : Decidable (a ~ { fst := b✝, snd := b }) this : Decidable (a ∈ l₂) ⊢ a ∈ Lists'.cons' b l₂ ↔ a ~ { fst := b✝, snd := b } ∨ a ∈ l₂ [PROOFSTEP] rw [← Lists'.mem_cons] [GOAL] α : Type u_1 inst✝ : DecidableEq α a : Lists α b✝ : Bool b : Lists' α b✝ l₂ : Lists' α true this✝ : Decidable (a ~ { fst := b✝, snd := b }) this : Decidable (a ∈ l₂) ⊢ a ∈ Lists'.cons' b l₂ ↔ a ∈ Lists'.cons { fst := b✝, snd := b } l₂ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : DecidableEq α ⊢ DecidableEq (Finsets α) [PROOFSTEP] unfold Finsets [GOAL] α : Type u_1 inst✝ : DecidableEq α ⊢ DecidableEq (Quotient Lists.instSetoidLists) [PROOFSTEP] exact (Quotient.decidableEq (d := fun _ _ => Lists.Equiv.decidable _ _))
{"mathlib_filename": "Mathlib.SetTheory.Lists", "llama_tokens": 20459}
[GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I : LieIdeal R L h : LieModule.IsTrivial L { x // x ∈ ↑I } x y : { x // x ∈ ↑I } ⊢ ⁅x, y⁆ = 0 [PROOFSTEP] apply h.trivial [GOAL] R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ f : L₁ →ₗ⁅R⁆ L₂ h₁ : Surjective ↑f h₂ : IsLieAbelian L₁ x y : L₂ ⊢ ⁅x, y⁆ = 0 [PROOFSTEP] obtain ⟨u, rfl⟩ := h₁ x [GOAL] case intro R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ f : L₁ →ₗ⁅R⁆ L₂ h₁ : Surjective ↑f h₂ : IsLieAbelian L₁ y : L₂ u : L₁ ⊢ ⁅↑f u, y⁆ = 0 [PROOFSTEP] obtain ⟨v, rfl⟩ := h₁ y [GOAL] case intro.intro R : Type u L₁ : Type v L₂ : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L₁ inst✝² : LieRing L₂ inst✝¹ : LieAlgebra R L₁ inst✝ : LieAlgebra R L₂ f : L₁ →ₗ⁅R⁆ L₂ h₁ : Surjective ↑f h₂ : IsLieAbelian L₁ u v : L₁ ⊢ ⁅↑f u, ↑f v⁆ = 0 [PROOFSTEP] rw [← LieHom.map_lie, trivial_lie_zero, LieHom.map_zero] [GOAL] A : Type v inst✝ : Ring A ⊢ (IsCommutative A fun x x_1 => x * x_1) ↔ IsLieAbelian A [PROOFSTEP] have h₁ : IsCommutative A (· * ·) ↔ ∀ a b : A, a * b = b * a := ⟨fun h => h.1, fun h => ⟨h⟩⟩ [GOAL] A : Type v inst✝ : Ring A h₁ : (IsCommutative A fun x x_1 => x * x_1) ↔ ∀ (a b : A), a * b = b * a ⊢ (IsCommutative A fun x x_1 => x * x_1) ↔ IsLieAbelian A [PROOFSTEP] have h₂ : IsLieAbelian A ↔ ∀ a b : A, ⁅a, b⁆ = 0 := ⟨fun h => h.1, fun h => ⟨h⟩⟩ [GOAL] A : Type v inst✝ : Ring A h₁ : (IsCommutative A fun x x_1 => x * x_1) ↔ ∀ (a b : A), a * b = b * a h₂ : IsLieAbelian A ↔ ∀ (a b : A), ⁅a, b⁆ = 0 ⊢ (IsCommutative A fun x x_1 => x * x_1) ↔ IsLieAbelian A [PROOFSTEP] simp only [h₁, h₂, LieRing.of_associative_ring_bracket, sub_eq_zero] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L x✝¹ x✝ : { x // x ∈ ↑⊥ } x : L hx : x ∈ ↑⊥ ⊢ ⁅{ val := x, property := hx }, x✝⁆ = 0 [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N x : L ⊢ x ∈ LieModule.ker R L M ↔ ∀ (m : M), ⁅x, m⁆ = 0 [PROOFSTEP] simp only [LieModule.ker, LieHom.mem_ker, LinearMap.ext_iff, LinearMap.zero_apply, toEndomorphism_apply_apply] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N x y : M hx : x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} hy : y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} z : L ⊢ ⁅z, x + y⁆ = 0 [PROOFSTEP] rw [lie_add, hx, hy, add_zero] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N c : R x : M hx : x ∈ { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ = 0}, add_mem' := (_ : ∀ {x y : M}, x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → ∀ (z : L), ⁅z, x + y⁆ = 0) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ = 0) }.toAddSubsemigroup.carrier y : L ⊢ ⁅y, c • x⁆ = 0 [PROOFSTEP] rw [lie_smul, hx, smul_zero] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N x : L m : M hm : m ∈ { toAddSubmonoid := { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ = 0}, add_mem' := (_ : ∀ {x y : M}, x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → ∀ (z : L), ⁅z, x + y⁆ = 0) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ = 0) }, smul_mem' := (_ : ∀ (c : R) (x : M), x ∈ { toAddSubsemigroup := { carrier := {m | ∀ (x : L), ⁅x, m⁆ = 0}, add_mem' := (_ : ∀ {x y : M}, x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → ∀ (z : L), ⁅z, x + y⁆ = 0) }, zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ = 0) }.toAddSubsemigroup.carrier → ∀ (y : L), ⁅y, c • x⁆ = 0) }.toAddSubmonoid.toAddSubsemigroup.carrier y : L ⊢ ⁅y, ⁅x, m⁆⁆ = 0 [PROOFSTEP] rw [hm, lie_zero] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N I : LieIdeal R L ⊢ ⁅I, maxTrivSubmodule R L M⁆ = ⊥ [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.lieIdeal_oper_eq_linear_span, LieSubmodule.bot_coeSubmodule, Submodule.span_eq_bot] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N I : LieIdeal R L ⊢ ∀ (x : M), x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → x = 0 [PROOFSTEP] rintro m ⟨⟨x, hx⟩, ⟨⟨m, hm⟩, rfl⟩⟩ [GOAL] case intro.mk.intro.mk R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N I : LieIdeal R L x : L hx : x ∈ I m : M hm : m ∈ maxTrivSubmodule R L M ⊢ ⁅↑{ val := x, property := hx }, ↑{ val := m, property := hm }⁆ = 0 [PROOFSTEP] exact hm x [GOAL] R : Type u L : Type v M : Type w N✝ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N✝ inst✝² : Module R N✝ inst✝¹ : LieRingModule L N✝ inst✝ : LieModule R L N✝ N : LieSubmodule R L M ⊢ N ≤ maxTrivSubmodule R L M ↔ ⁅⊤, N⁆ = ⊥ [PROOFSTEP] refine' ⟨fun h => _, fun h m hm => _⟩ [GOAL] case refine'_1 R : Type u L : Type v M : Type w N✝ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N✝ inst✝² : Module R N✝ inst✝¹ : LieRingModule L N✝ inst✝ : LieModule R L N✝ N : LieSubmodule R L M h : N ≤ maxTrivSubmodule R L M ⊢ ⁅⊤, N⁆ = ⊥ [PROOFSTEP] rw [← le_bot_iff, ← ideal_oper_maxTrivSubmodule_eq_bot R L M ⊤] [GOAL] case refine'_1 R : Type u L : Type v M : Type w N✝ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N✝ inst✝² : Module R N✝ inst✝¹ : LieRingModule L N✝ inst✝ : LieModule R L N✝ N : LieSubmodule R L M h : N ≤ maxTrivSubmodule R L M ⊢ ⁅⊤, N⁆ ≤ ⁅⊤, maxTrivSubmodule R L M⁆ [PROOFSTEP] exact LieSubmodule.mono_lie_right _ _ ⊤ h [GOAL] case refine'_2 R : Type u L : Type v M : Type w N✝ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N✝ inst✝² : Module R N✝ inst✝¹ : LieRingModule L N✝ inst✝ : LieModule R L N✝ N : LieSubmodule R L M h : ⁅⊤, N⁆ = ⊥ m : M hm : m ∈ N ⊢ m ∈ maxTrivSubmodule R L M [PROOFSTEP] rw [mem_maxTrivSubmodule] [GOAL] case refine'_2 R : Type u L : Type v M : Type w N✝ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N✝ inst✝² : Module R N✝ inst✝¹ : LieRingModule L N✝ inst✝ : LieModule R L N✝ N : LieSubmodule R L M h : ⁅⊤, N⁆ = ⊥ m : M hm : m ∈ N ⊢ ∀ (x : L), ⁅x, m⁆ = 0 [PROOFSTEP] rw [LieSubmodule.lie_eq_bot_iff] at h [GOAL] case refine'_2 R : Type u L : Type v M : Type w N✝ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N✝ inst✝² : Module R N✝ inst✝¹ : LieRingModule L N✝ inst✝ : LieModule R L N✝ N : LieSubmodule R L M h : ∀ (x : L), x ∈ ⊤ → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0 m : M hm : m ∈ N ⊢ ∀ (x : L), ⁅x, m⁆ = 0 [PROOFSTEP] exact fun x => h x (LieSubmodule.mem_top x) m hm [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N ⊢ IsTrivial L M ↔ maxTrivSubmodule R L M = ⊤ [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N ⊢ IsTrivial L M → maxTrivSubmodule R L M = ⊤ [PROOFSTEP] rintro ⟨h⟩ [GOAL] case mp.mk R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N h : ∀ (x : L) (m : M), ⁅x, m⁆ = 0 ⊢ maxTrivSubmodule R L M = ⊤ [PROOFSTEP] ext [GOAL] case mp.mk.h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N h : ∀ (x : L) (m : M), ⁅x, m⁆ = 0 m✝ : M ⊢ m✝ ∈ maxTrivSubmodule R L M ↔ m✝ ∈ ⊤ [PROOFSTEP] simp only [mem_maxTrivSubmodule, h, forall_const, LieSubmodule.mem_top] [GOAL] case mpr R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N ⊢ maxTrivSubmodule R L M = ⊤ → IsTrivial L M [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N h : maxTrivSubmodule R L M = ⊤ ⊢ IsTrivial L M [PROOFSTEP] constructor [GOAL] case mpr.trivial R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N h : maxTrivSubmodule R L M = ⊤ ⊢ ∀ (x : L) (m : M), ⁅x, m⁆ = 0 [PROOFSTEP] intro x m [GOAL] case mpr.trivial R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N h : maxTrivSubmodule R L M = ⊤ x : L m : M ⊢ ⁅x, m⁆ = 0 [PROOFSTEP] revert x [GOAL] case mpr.trivial R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N h : maxTrivSubmodule R L M = ⊤ m : M ⊢ ∀ (x : L), ⁅x, m⁆ = 0 [PROOFSTEP] rw [← mem_maxTrivSubmodule R L M, h] [GOAL] case mpr.trivial R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N h : maxTrivSubmodule R L M = ⊤ m : M ⊢ m ∈ ⊤ [PROOFSTEP] exact LieSubmodule.mem_top m [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N m n : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n [PROOFSTEP] simp [Function.comp_apply] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N m n : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ { val := ↑f ↑m + ↑f ↑n, property := (_ : (fun x => x ∈ ↑(maxTrivSubmodule R L N)) (↑f ↑m + ↑f ↑n)) } = { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) } + { val := ↑f ↑n, property := (_ : ∀ (x : L), ⁅x, ↑f ↑n⁆ = 0) } [PROOFSTEP] rfl -- Porting note: [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N t : R m : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ AddHom.toFun { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) } (t • m) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) } m [PROOFSTEP] simp [Function.comp_apply] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N t : R m : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ { val := t • ↑f ↑m, property := (_ : (fun x => x ∈ ↑(maxTrivSubmodule R L N)) (t • ↑f ↑m)) } = t • { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) } [PROOFSTEP] rfl -- these two were `by simpa` [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N x : L m : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ AddHom.toFun { toAddHom := { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }, map_smul' := (_ : ∀ (t : R) (m : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) } (t • m) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) } m) }.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun { toAddHom := { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }, map_smul' := (_ : ∀ (t : R) (m : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) } (t • m) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }, map_add' := (_ : ∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }), (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) = (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m + (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) } m) }.toAddHom m⁆ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N e : M ≃ₗ⁅R,L⁆ N src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } := maxTrivHom e.toLieModuleHom m : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ ↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom) (AddHom.toFun (↑{ toLinearMap := { toAddHom := { toFun := ↑(maxTrivHom e.toLieModuleHom), map_add' := (_ : ∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_lie' := (_ : ∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }}, AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom m) = m [PROOFSTEP] ext [GOAL] case a R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N e : M ≃ₗ⁅R,L⁆ N src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } := maxTrivHom e.toLieModuleHom m : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ ↑(↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom) (AddHom.toFun (↑{ toLinearMap := { toAddHom := { toFun := ↑(maxTrivHom e.toLieModuleHom), map_add' := (_ : ∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_lie' := (_ : ∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }}, AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom m)) = ↑m [PROOFSTEP] simp [LieModuleEquiv.coe_to_lieModuleHom] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N e : M ≃ₗ⁅R,L⁆ N src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } := maxTrivHom e.toLieModuleHom n : { x // x ∈ ↑(maxTrivSubmodule R L N) } ⊢ AddHom.toFun (↑{ toLinearMap := { toAddHom := { toFun := ↑(maxTrivHom e.toLieModuleHom), map_add' := (_ : ∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_lie' := (_ : ∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }}, AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom (↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom) n) = n [PROOFSTEP] ext [GOAL] case a R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N e : M ≃ₗ⁅R,L⁆ N src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } := maxTrivHom e.toLieModuleHom n : { x // x ∈ ↑(maxTrivSubmodule R L N) } ⊢ ↑(AddHom.toFun (↑{ toLinearMap := { toAddHom := { toFun := ↑(maxTrivHom e.toLieModuleHom), map_add' := (_ : ∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }, map_lie' := (_ : ∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }}, AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom (↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom) n)) = ↑n [PROOFSTEP] simp [LieModuleEquiv.coe_to_lieModuleHom] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N ⊢ maxTrivEquiv LieModuleEquiv.refl = LieModuleEquiv.refl [PROOFSTEP] ext [GOAL] case h.a R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N m✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } ⊢ ↑(↑(maxTrivEquiv LieModuleEquiv.refl) m✝) = ↑(↑LieModuleEquiv.refl m✝) [PROOFSTEP] simp only [coe_maxTrivEquiv_apply, LieModuleEquiv.refl_apply] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } x : L m : M ⊢ AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆ [PROOFSTEP] have hf : ⁅x, f.val⁆ m = 0 := by rw [f.property x, LinearMap.zero_apply] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } x : L m : M ⊢ ↑⁅x, ↑f⁆ m = 0 [PROOFSTEP] rw [f.property x, LinearMap.zero_apply] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } x : L m : M hf : ↑⁅x, ↑f⁆ m = 0 ⊢ AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆ [PROOFSTEP] rw [LieHom.lie_apply, sub_eq_zero, ← LinearMap.toFun_eq_coe] at hf [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } x : L m : M hf : ⁅x, AddHom.toFun (↑f).toAddHom m⁆ = AddHom.toFun (↑f).toAddHom ⁅x, m⁆ ⊢ AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆ [PROOFSTEP] exact hf.symm [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } ⊢ (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } m✝ : M ⊢ ↑((fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g)) m✝ = ↑((fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) m✝ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N F : R G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } ⊢ AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } (F • G) = ↑(RingHom.id R) F • AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } G [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N F : R G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } m✝ : M ⊢ ↑(AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } (F • G)) m✝ = ↑(↑(RingHom.id R) F • AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } G) m✝ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N F : M →ₗ⁅R,L⁆ N x : L ⊢ ⁅x, ↑F⁆ = 0 [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N F : M →ₗ⁅R,L⁆ N x : L x✝ : M ⊢ ↑⁅x, ↑F⁆ x✝ = ↑0 x✝ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) } ⊢ (fun F => { val := ↑F, property := (_ : ∀ (x : L), ⁅x, ↑F⁆ = 0) }) (AddHom.toFun { toAddHom := { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) }, map_smul' := (_ : ∀ (F : R) (G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } (F • G) = ↑(RingHom.id R) F • AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } G) }.toAddHom f) = f [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N F : M →ₗ⁅R,L⁆ N ⊢ AddHom.toFun { toAddHom := { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) }, map_smul' := (_ : ∀ (F : R) (G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } (F • G) = ↑(RingHom.id R) F • AddHom.toFun { toFun := fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }, map_add' := (_ : ∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }), (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) (f + g) = (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) f + (fun f => { toLinearMap := ↑f, map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) }) g) } G) }.toAddHom ((fun F => { val := ↑F, property := (_ : ∀ (x : L), ⁅x, ↑F⁆ = 0) }) F) = F [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) } ⊢ ↑(↑maxTrivLinearMapEquivLieModuleHom f) = ↑↑f [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) } x✝ : M ⊢ ↑(↑maxTrivLinearMapEquivLieModuleHom f) x✝ = ↑↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) } ⊢ ↑(↑maxTrivLinearMapEquivLieModuleHom f) = ↑f [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) } x✝ : M ⊢ ↑↑(↑maxTrivLinearMapEquivLieModuleHom f) x✝ = ↑↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N ⊢ LieModule.ker R L L = center R L [PROOFSTEP] ext y [GOAL] case h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N y : L ⊢ y ∈ LieModule.ker R L L ↔ y ∈ center R L [PROOFSTEP] simp only [LieModule.mem_maxTrivSubmodule, LieModule.mem_ker, ← lie_skew _ y, neg_eq_zero] [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L inst✝ : LieModule.IsTrivial L M ⊢ ⁅I, N⁆ = ⊥ [PROOFSTEP] suffices : ⁅I, N⁆ ≤ ⊥ [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L inst✝ : LieModule.IsTrivial L M this : ⁅I, N⁆ ≤ ⊥ ⊢ ⁅I, N⁆ = ⊥ case this R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L inst✝ : LieModule.IsTrivial L M ⊢ ⁅I, N⁆ ≤ ⊥ [PROOFSTEP] exact le_bot_iff.mp this [GOAL] case this R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L inst✝ : LieModule.IsTrivial L M ⊢ ⁅I, N⁆ ≤ ⊥ [PROOFSTEP] rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le] [GOAL] case this R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L inst✝ : LieModule.IsTrivial L M ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥ [PROOFSTEP] rintro m ⟨x, n, h⟩ [GOAL] case this.intro.intro R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L inst✝ : LieModule.IsTrivial L M m : M x : { x // x ∈ I } n : { x // x ∈ N } h : ⁅↑x, ↑n⁆ = m ⊢ m ∈ ↑⊥ [PROOFSTEP] rw [trivial_lie_zero] at h [GOAL] case this.intro.intro R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L inst✝ : LieModule.IsTrivial L M m : M x : { x // x ∈ I } n : { x // x ∈ N } h : 0 = m ⊢ m ∈ ↑⊥ [PROOFSTEP] simp [← h] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ IsLieAbelian { x // x ∈ ↑I } ↔ ⁅I, I⁆ = ⊥ [PROOFSTEP] simp only [_root_.eq_bot_iff, lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le, LieSubmodule.bot_coe, Set.subset_singleton_iff, Set.mem_setOf_eq, exists_imp] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ IsLieAbelian { x // x ∈ ↑I } ↔ ∀ (y : L) (x : { x // x ∈ I }) (x_1 : { x // x ∈ I }), ⁅↑x, ↑x_1⁆ = y → y = 0 [PROOFSTEP] refine' ⟨fun h z x y hz => hz.symm.trans (((I : LieSubalgebra R L).coe_bracket x y).symm.trans ((coe_zero_iff_zero _ _).mpr (by apply h.trivial))), fun h => ⟨fun x y => ((I : LieSubalgebra R L).coe_zero_iff_zero _).mp (h _ x y rfl)⟩⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L h : IsLieAbelian { x // x ∈ ↑I } z : L x : { x // x ∈ I } y : { x // x ∈ I } hz : ⁅↑x, ↑y⁆ = z ⊢ ⁅x, y⁆ = 0 [PROOFSTEP] apply h.trivial
{"mathlib_filename": "Mathlib.Algebra.Lie.Abelian", "llama_tokens": 25343}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax j : J ⊢ Semiring ((F ⋙ forget SemiRingCat).obj j) [PROOFSTEP] change Semiring (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax j : J ⊢ Semiring ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax ⊢ IsLimit (limitCone F) [PROOFSTEP] refine IsLimit.ofFaithful (forget SemiRingCatMax.{v, u}) (Types.limitConeIsLimit.{v, u} _) (fun s : Cone F => ofHom ⟨⟨⟨_, Subtype.ext <| funext fun j => by exact (s.π.app j).map_one⟩, fun x y => Subtype.ext <| funext fun j => by exact (s.π.app j).map_mul x y⟩, Subtype.ext <| funext fun j => by exact (s.π.app j).map_zero, fun x y => Subtype.ext <| funext fun j => by exact (s.π.app j).map_add x y⟩) fun s => rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax s : Cone F j : J ⊢ ↑{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } j = ↑1 j [PROOFSTEP] exact (s.π.app j).map_one [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax s : Cone F x y : ↑s.1 j : J ⊢ ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } (x * y)) j = ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } y) j [PROOFSTEP] exact (s.π.app j).map_mul x y [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax s : Cone F j : J ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } y) }) 0) j = ↑0 j [PROOFSTEP] exact (s.π.app j).map_zero [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax s : Cone F x y : ↑s.1 j : J ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } y) }) (x + y)) j = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } = 1) } y) }) y) j [PROOFSTEP] exact (s.π.app j).map_add x y [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax ⊢ IsLimit ((forget₂ SemiRingCat AddCommMonCat).mapCone (limitCone F)) [PROOFSTEP] apply AddCommMonCat.limitConeIsLimit.{v, u} [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ SemiRingCatMax ⊢ IsLimit ((forget₂ SemiRingCat MonCat).mapCone (limitCone F)) [PROOFSTEP] apply MonCat.HasLimits.limitConeIsLimit (F ⋙ forget₂ SemiRingCat MonCat.{max v u}) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommSemiRingCatMax j : J ⊢ CommSemiring ((F ⋙ forget CommSemiRingCat).obj j) [PROOFSTEP] change CommSemiring (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommSemiRingCatMax j : J ⊢ CommSemiring ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommSemiRingCatMax this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) := reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax c : Cone F := { pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt, π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) } c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) t : IsLimit c' ⊢ IsLimit { liftedCone := c, validLift := IsLimit.uniqueUpToIso (SemiRingCat.HasLimits.limitConeIsLimit (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax)) t }.liftedCone [PROOFSTEP] refine IsLimit.ofFaithful (forget₂ CommSemiRingCatMax.{v, u} SemiRingCatMax.{v, u}) (SemiRingCat.HasLimits.limitConeIsLimit.{v, u} _) (fun s : Cone F => CommSemiRingCat.ofHom ⟨⟨⟨_, Subtype.ext <| funext fun j => by exact (s.π.app j).map_one⟩, fun x y => Subtype.ext <| funext fun j => by exact (s.π.app j).map_mul x y⟩, Subtype.ext <| funext fun j => by exact (s.π.app j).map_zero, fun x y => Subtype.ext <| funext fun j => by exact (s.π.app j).map_add x y⟩) fun s => rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommSemiRingCatMax this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) := reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax c : Cone F := { pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt, π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) } c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) t : IsLimit c' s : Cone F j : J ⊢ ↑{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } j = ↑1 j [PROOFSTEP] exact (s.π.app j).map_one [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommSemiRingCatMax this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) := reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax c : Cone F := { pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt, π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) } c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) t : IsLimit c' s : Cone F x y : ↑s.1 j : J ⊢ ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } (x * y)) j = ↑(OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } y) j [PROOFSTEP] exact (s.π.app j).map_mul x y [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommSemiRingCatMax this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) := reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax c : Cone F := { pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt, π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) } c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) t : IsLimit c' s : Cone F j : J ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } y) }) 0) j = ↑0 j [PROOFSTEP] exact (s.π.app j).map_zero [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommSemiRingCatMax this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) := reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax c : Cone F := { pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt, π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) } c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) t : IsLimit c' s : Cone F x y : ↑s.1 j : J ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } y) }) (x + y)) j = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) }, map_mul' := (_ : ∀ (x y : ↑s.1), OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } (x * y) = OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } x * OneHom.toFun { toFun := fun v => { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) v = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' v) }, map_one' := (_ : { val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1, property := (_ : ∀ {j j' : J} (f : j ⟶ j'), (NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫ ((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f) 1 = NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) } = 1) } y) }) y) j [PROOFSTEP] exact (s.π.app j).map_add x y [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ RingCatMax j : J ⊢ Ring ((F ⋙ forget RingCat).obj j) [PROOFSTEP] change Ring (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ RingCatMax j : J ⊢ Ring ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ RingCatMax this : ReflectsIsomorphisms (forget₂ RingCatMax SemiRingCatMax) := reflectsIsomorphisms_forget₂ RingCatMax SemiRingCatMax c : Cone F := { pt := of (Types.limitCone (F ⋙ forget RingCatMax)).pt, π := NatTrans.mk fun x => SemiRingCat.ofHom (NatTrans.app (SemiRingCat.HasLimits.limitCone (F ⋙ forget₂ RingCat SemiRingCat)).π x) } c' : Cone (F ⋙ forget₂ RingCatMax SemiRingCatMax) t : IsLimit c' ⊢ (forget₂ RingCatMax SemiRingCatMax).mapCone c ≅ c' [PROOFSTEP] apply IsLimit.uniqueUpToIso (SemiRingCat.HasLimits.limitConeIsLimit _) t [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ RingCatMax this : ReflectsIsomorphisms (forget₂ RingCatMax SemiRingCatMax) := reflectsIsomorphisms_forget₂ RingCatMax SemiRingCatMax c : Cone F := { pt := of (Types.limitCone (F ⋙ forget RingCatMax)).pt, π := NatTrans.mk fun x => SemiRingCat.ofHom (NatTrans.app (SemiRingCat.HasLimits.limitCone (F ⋙ forget₂ RingCat SemiRingCat)).π x) } c' : Cone (F ⋙ forget₂ RingCatMax SemiRingCatMax) t : IsLimit c' ⊢ IsLimit ((forget₂ RingCat SemiRingCat).mapCone { liftedCone := c, validLift := IsLimit.uniqueUpToIso (SemiRingCat.HasLimits.limitConeIsLimit (F ⋙ forget₂ RingCatMax SemiRingCatMax)) t }.liftedCone) [PROOFSTEP] apply SemiRingCat.HasLimits.limitConeIsLimit _ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ RingCatMax ⊢ IsLimit ((forget₂ RingCatMax AddCommGroupCat).mapCone (limitCone F)) [PROOFSTEP] letI f := (F ⋙ forget₂ RingCatMax.{v, u} AddCommGroupCat.{max v u}) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ RingCatMax f : J ⥤ AddCommGroupCat := F ⋙ forget₂ RingCatMax AddCommGroupCat ⊢ IsLimit ((forget₂ RingCatMax AddCommGroupCat).mapCone (limitCone F)) [PROOFSTEP] apply AddCommGroupCat.limitConeIsLimit.{v, u} f [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCatMax j : J ⊢ CommRing ((F ⋙ forget CommRingCat).obj j) [PROOFSTEP] change CommRing (F.obj j) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCatMax j : J ⊢ CommRing ↑(F.obj j) [PROOFSTEP] infer_instance [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CommRingCatMax ⊢ IsLimit ((forget₂ CommRingCat CommSemiRingCat).mapCone (limitCone F)) [PROOFSTEP] apply CommSemiRingCat.limitConeIsLimit (F ⋙ forget₂ CommRingCat CommSemiRingCat.{max v u})
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.Limits", "llama_tokens": 22351}
[GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ L ⧸ I → L ⧸ I → L ⧸ I [PROOFSTEP] intro x y [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I ⊢ L ⧸ I [PROOFSTEP] apply Quotient.liftOn₂' x y fun x' y' => mk ⁅x', y'⁆ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I ⊢ ∀ (a₁ a₂ b₁ b₂ : L), Setoid.r a₁ b₁ → Setoid.r a₂ b₂ → mk ⁅a₁, a₂⁆ = mk ⁅b₁, b₂⁆ [PROOFSTEP] intro x₁ x₂ y₁ y₂ h₁ h₂ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : Setoid.r x₁ y₁ h₂ : Setoid.r x₂ y₂ ⊢ mk ⁅x₁, x₂⁆ = mk ⁅y₁, y₂⁆ [PROOFSTEP] apply (Submodule.Quotient.eq I.toSubmodule).2 [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : Setoid.r x₁ y₁ h₂ : Setoid.r x₂ y₂ ⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ ∈ ↑I [PROOFSTEP] rw [Submodule.quotientRel_r_def] at h₁ h₂ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : x₁ - y₁ ∈ ↑I h₂ : x₂ - y₂ ∈ ↑I ⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ ∈ ↑I [PROOFSTEP] have h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ := by simp [-lie_skew, sub_eq_add_neg, add_assoc] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : x₁ - y₁ ∈ ↑I h₂ : x₂ - y₂ ∈ ↑I ⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ [PROOFSTEP] simp [-lie_skew, sub_eq_add_neg, add_assoc] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : x₁ - y₁ ∈ ↑I h₂ : x₂ - y₂ ∈ ↑I h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ ⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ ∈ ↑I [PROOFSTEP] rw [h] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : x₁ - y₁ ∈ ↑I h₂ : x₂ - y₂ ∈ ↑I h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ ⊢ ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ ∈ ↑I [PROOFSTEP] apply Submodule.add_mem [GOAL] case h₁ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : x₁ - y₁ ∈ ↑I h₂ : x₂ - y₂ ∈ ↑I h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ ⊢ ⁅x₁, x₂ - y₂⁆ ∈ ↑I [PROOFSTEP] apply lie_mem_right R L I x₁ (x₂ - y₂) h₂ [GOAL] case h₂ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x y : L ⧸ I x₁ x₂ y₁ y₂ : L h₁ : x₁ - y₁ ∈ ↑I h₂ : x₂ - y₂ ∈ ↑I h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ ⊢ ⁅x₁ - y₁, y₂⁆ ∈ ↑I [PROOFSTEP] apply lie_mem_left R L I (x₁ - y₁) y₂ h₁ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ∀ (x y z : L ⧸ I), ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆ [PROOFSTEP] intro x' y' z' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I ⊢ ⁅x' + y', z'⁆ = ⁅x', z'⁆ + ⁅y', z'⁆ [PROOFSTEP] refine Quotient.inductionOn₃' x' y' z' ?_ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I ⊢ ∀ (a₁ a₂ a₃ : L), ⁅Quotient.mk'' a₁ + Quotient.mk'' a₂, Quotient.mk'' a₃⁆ = ⁅Quotient.mk'' a₁, Quotient.mk'' a₃⁆ + ⁅Quotient.mk'' a₂, Quotient.mk'' a₃⁆ [PROOFSTEP] intro x y z [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x + Quotient.mk'' y, Quotient.mk'' z⁆ = ⁅Quotient.mk'' x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆ [PROOFSTEP] repeat' first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x + Quotient.mk'' y, Quotient.mk'' z⁆ = ⁅Quotient.mk'' x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x + Quotient.mk'' y, Quotient.mk'' z⁆ = ⁅Quotient.mk'' x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + Quotient.mk'' y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + Quotient.mk'' y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅mk y, Quotient.mk'' z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅mk y, Quotient.mk'' z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = ⁅mk x, mk z⁆ + ⁅mk y, mk z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = ⁅mk x, mk z⁆ + ⁅mk y, mk z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = ⁅mk x, mk z⁆ + ⁅mk y, mk z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + ⁅mk y, mk z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + ⁅mk y, mk z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + ⁅mk y, mk z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Submodule.Quotient.mk (x + y), mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Submodule.Quotient.mk (x + y), mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Submodule.Quotient.mk (x + y), mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆ [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆) [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆) [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆) [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆) [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆) [PROOFSTEP] apply congr_arg [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆ [PROOFSTEP] apply add_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ∀ (x y z : L ⧸ I), ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆ [PROOFSTEP] intro x' y' z' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I ⊢ ⁅x', y' + z'⁆ = ⁅x', y'⁆ + ⁅x', z'⁆ [PROOFSTEP] refine Quotient.inductionOn₃' x' y' z' ?_ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I ⊢ ∀ (a₁ a₂ a₃ : L), ⁅Quotient.mk'' a₁, Quotient.mk'' a₂ + Quotient.mk'' a₃⁆ = ⁅Quotient.mk'' a₁, Quotient.mk'' a₂⁆ + ⁅Quotient.mk'' a₁, Quotient.mk'' a₃⁆ [PROOFSTEP] intro x y z [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x, Quotient.mk'' y + Quotient.mk'' z⁆ = ⁅Quotient.mk'' x, Quotient.mk'' y⁆ + ⁅Quotient.mk'' x, Quotient.mk'' z⁆ [PROOFSTEP] repeat' first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x, Quotient.mk'' y + Quotient.mk'' z⁆ = ⁅Quotient.mk'' x, Quotient.mk'' y⁆ + ⁅Quotient.mk'' x, Quotient.mk'' z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x, Quotient.mk'' y + Quotient.mk'' z⁆ = ⁅Quotient.mk'' x, Quotient.mk'' y⁆ + ⁅Quotient.mk'' x, Quotient.mk'' z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, Quotient.mk'' y + Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' y⁆ + ⁅mk x, Quotient.mk'' z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, Quotient.mk'' y + Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' y⁆ + ⁅mk x, Quotient.mk'' z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + Quotient.mk'' z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, Quotient.mk'' z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + Quotient.mk'' z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, Quotient.mk'' z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, mk z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, mk z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, mk z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + ⁅mk x, mk z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + ⁅mk x, mk z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + ⁅mk x, mk z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, Submodule.Quotient.mk (y + z)⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, Submodule.Quotient.mk (y + z)⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, Submodule.Quotient.mk (y + z)⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆ [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆) [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆) [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆) [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆) [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆) [PROOFSTEP] apply congr_arg [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆ [PROOFSTEP] apply lie_add [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ∀ (x : L ⧸ I), ⁅x, x⁆ = 0 [PROOFSTEP] intro x' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' : L ⧸ I ⊢ ⁅x', x'⁆ = 0 [PROOFSTEP] refine Quotient.inductionOn' x' ?_ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' : L ⧸ I ⊢ ∀ (a : L), ⁅Quotient.mk'' a, Quotient.mk'' a⁆ = 0 [PROOFSTEP] intro x [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' : L ⧸ I x : L ⊢ ⁅Quotient.mk'' x, Quotient.mk'' x⁆ = 0 [PROOFSTEP] rw [is_quotient_mk, ← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' : L ⧸ I x : L ⊢ mk ⁅x, x⁆ = 0 [PROOFSTEP] apply congr_arg [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' : L ⧸ I x : L ⊢ ⁅x, x⁆ = 0 [PROOFSTEP] apply lie_self [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ∀ (x y z : L ⧸ I), ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] intro x' y' z' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I ⊢ ⁅x', ⁅y', z'⁆⁆ = ⁅⁅x', y'⁆, z'⁆ + ⁅y', ⁅x', z'⁆⁆ [PROOFSTEP] refine Quotient.inductionOn₃' x' y' z' ?_ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I ⊢ ∀ (a₁ a₂ a₃ : L), ⁅Quotient.mk'' a₁, ⁅Quotient.mk'' a₂, Quotient.mk'' a₃⁆⁆ = ⁅⁅Quotient.mk'' a₁, Quotient.mk'' a₂⁆, Quotient.mk'' a₃⁆ + ⁅Quotient.mk'' a₂, ⁅Quotient.mk'' a₁, Quotient.mk'' a₃⁆⁆ [PROOFSTEP] intro x y z [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ = ⁅⁅Quotient.mk'' x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅Quotient.mk'' x, Quotient.mk'' z⁆⁆ [PROOFSTEP] repeat' first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ = ⁅⁅Quotient.mk'' x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅Quotient.mk'' x, Quotient.mk'' z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅Quotient.mk'' x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ = ⁅⁅Quotient.mk'' x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅Quotient.mk'' x, Quotient.mk'' z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ = ⁅⁅mk x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅mk x, Quotient.mk'' z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ = ⁅⁅mk x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅mk x, Quotient.mk'' z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, ⁅mk y, Quotient.mk'' z⁆⁆ = ⁅⁅mk x, mk y⁆, Quotient.mk'' z⁆ + ⁅mk y, ⁅mk x, Quotient.mk'' z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, ⁅mk y, Quotient.mk'' z⁆⁆ = ⁅⁅mk x, mk y⁆, Quotient.mk'' z⁆ + ⁅mk y, ⁅mk x, Quotient.mk'' z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, ⁅mk y, mk z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, ⁅mk y, mk z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, ⁅mk y, mk z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅mk x, mk ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅mk ⁅x, y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅mk ⁅x, y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅mk ⁅x, y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, mk ⁅x, z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, mk ⁅x, z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, mk ⁅x, z⁆⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆) [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆) [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆) [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆) [PROOFSTEP] rw [← Submodule.Quotient.mk_add (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆) [PROOFSTEP] apply congr_arg [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x' y' z' : L ⧸ I x y z : L ⊢ ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] apply leibniz_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ∀ (t : R) (x y : L ⧸ I), ⁅x, t • y⁆ = t • ⁅x, y⁆ [PROOFSTEP] intro t x' y' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I ⊢ ⁅x', t • y'⁆ = t • ⁅x', y'⁆ [PROOFSTEP] refine Quotient.inductionOn₂' x' y' ?_ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I ⊢ ∀ (a₁ a₂ : L), ⁅Quotient.mk'' a₁, t • Quotient.mk'' a₂⁆ = t • ⁅Quotient.mk'' a₁, Quotient.mk'' a₂⁆ [PROOFSTEP] intro x y [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅Quotient.mk'' x, t • Quotient.mk'' y⁆ = t • ⁅Quotient.mk'' x, Quotient.mk'' y⁆ [PROOFSTEP] repeat' first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅Quotient.mk'' x, t • Quotient.mk'' y⁆ = t • ⁅Quotient.mk'' x, Quotient.mk'' y⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅Quotient.mk'' x, t • Quotient.mk'' y⁆ = t • ⁅Quotient.mk'' x, Quotient.mk'' y⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • Quotient.mk'' y⁆ = t • ⁅mk x, Quotient.mk'' y⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • Quotient.mk'' y⁆ = t • ⁅mk x, Quotient.mk'' y⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • mk y⁆ = t • ⁅mk x, mk y⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • mk y⁆ = t • ⁅mk x, mk y⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • mk y⁆ = t • ⁅mk x, mk y⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, Submodule.Quotient.mk (t • y)⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, Submodule.Quotient.mk (t • y)⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅mk x, Submodule.Quotient.mk (t • y)⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆ [PROOFSTEP] rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆) [PROOFSTEP] first | rw [is_quotient_mk] | rw [← mk_bracket] | rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆) [PROOFSTEP] rw [is_quotient_mk] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆) [PROOFSTEP] rw [← mk_bracket] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆) [PROOFSTEP] rw [← Submodule.Quotient.mk_smul (R := R) (M := L)] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆) [PROOFSTEP] apply congr_arg [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L t : R x' y' : L ⧸ I x y : L ⊢ ⁅x, t • y⁆ = t • ⁅x, y⁆ [PROOFSTEP] apply lie_smul [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ LieModuleHom.ker (mk' N) = N [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L m✝ : M ⊢ m✝ ∈ LieModuleHom.ker (mk' N) ↔ m✝ ∈ N [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ map (mk' N) N' = ⊥ ↔ N' ≤ N [PROOFSTEP] rw [← LieModuleHom.le_ker_iff_map, mk'_ker] [GOAL] R : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' src✝ : (L ⧸ LinearMap.ker ↑f) ≃ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.quotKerEquivRange ↑f ⊢ ∀ {x y : L ⧸ ker f}, AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] rintro ⟨x⟩ ⟨y⟩ [GOAL] case mk.mk R : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' src✝ : (L ⧸ LinearMap.ker ↑f) ≃ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.quotKerEquivRange ↑f x✝ : L ⧸ ker f x : L y✝ : L ⧸ ker f y : L ⊢ AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅Quot.mk Setoid.r x, Quot.mk Setoid.r y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Quot.mk Setoid.r x), AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Quot.mk Setoid.r y)⁆ [PROOFSTEP] rw [← SetLike.coe_eq_coe, LieSubalgebra.coe_bracket] [GOAL] case mk.mk R : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' src✝ : (L ⧸ LinearMap.ker ↑f) ≃ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.quotKerEquivRange ↑f x✝ : L ⧸ ker f x : L y✝ : L ⧸ ker f y : L ⊢ ↑(AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅Quot.mk Setoid.r x, Quot.mk Setoid.r y⁆) = ⁅↑(AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Quot.mk Setoid.r x)), ↑(AddHom.toFun { toAddHom := { toFun := ↑(LinearMap.quotKerEquivRange ↑f), map_add' := (_ : ∀ (x y : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : L ⧸ LinearMap.ker ↑f), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Quot.mk Setoid.r y))⁆ [PROOFSTEP] simp only [Submodule.Quotient.quot_mk_eq_mk, LinearMap.quotKerEquivRange_apply_mk, ← LieSubmodule.Quotient.mk_bracket, coe_toLinearMap, map_lie]
{"mathlib_filename": "Mathlib.Algebra.Lie.Quotient", "llama_tokens": 36536}
[GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ lcs k N ≤ N [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ lcs Nat.zero N ≤ N [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : lcs k N ≤ N ⊢ lcs (Nat.succ k) N ≤ N [PROOFSTEP] simp only [lcs_succ] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : lcs k N ≤ N ⊢ ⁅⊤, lcs k N⁆ ≤ N [PROOFSTEP] exact (LieSubmodule.mono_lie_right _ _ ⊤ ih).trans (N.lie_le_right ⊤) [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ lowerCentralSeries R L { x // x ∈ ↑N } Nat.zero = comap (incl N) (lcs Nat.zero N) [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N) ⊢ lowerCentralSeries R L { x // x ∈ ↑N } (Nat.succ k) = comap (incl N) (lcs (Nat.succ k) N) [PROOFSTEP] simp only [lcs_succ, lowerCentralSeries_succ] at ih ⊢ [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N) ⊢ ⁅⊤, lowerCentralSeries R L { x // x ∈ ↑N } k⁆ = comap (incl N) ⁅⊤, lcs k N⁆ [PROOFSTEP] have : N.lcs k ≤ N.incl.range := by rw [N.range_incl] apply lcs_le_self [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N) ⊢ lcs k N ≤ LieModuleHom.range (incl N) [PROOFSTEP] rw [N.range_incl] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N) ⊢ lcs k N ≤ N [PROOFSTEP] apply lcs_le_self [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N) this : lcs k N ≤ LieModuleHom.range (incl N) ⊢ ⁅⊤, lowerCentralSeries R L { x // x ∈ ↑N } k⁆ = comap (incl N) ⁅⊤, lcs k N⁆ [PROOFSTEP] rw [ih, LieSubmodule.comap_bracket_eq _ _ N.incl N.ker_incl this] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ map (incl N) (lowerCentralSeries R L { x // x ∈ ↑N } k) = lcs k N [PROOFSTEP] rw [lowerCentralSeries_eq_lcs_comap, LieSubmodule.map_comap_incl, inf_eq_right] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ lcs k N ≤ N [PROOFSTEP] apply lcs_le_self [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ Antitone (lowerCentralSeries R L M) [PROOFSTEP] intro l k [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M l k : ℕ ⊢ l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l [PROOFSTEP] induction' k with k ih generalizing l [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M l✝ l : ℕ ⊢ l ≤ Nat.zero → lowerCentralSeries R L M Nat.zero ≤ lowerCentralSeries R L M l [PROOFSTEP] intro h [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M l✝ k : ℕ ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l l : ℕ ⊢ l ≤ Nat.succ k → lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l [PROOFSTEP] intro h [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M l✝ l : ℕ h : l ≤ Nat.zero ⊢ lowerCentralSeries R L M Nat.zero ≤ lowerCentralSeries R L M l [PROOFSTEP] exact (le_zero_iff.mp h).symm ▸ le_rfl [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M l✝ k : ℕ ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l l : ℕ h : l ≤ Nat.succ k ⊢ lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l [PROOFSTEP] rcases Nat.of_le_succ h with (hk | hk) [GOAL] case succ.inl R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M l✝ k : ℕ ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l l : ℕ h : l ≤ Nat.succ k hk : l ≤ k ⊢ lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l [PROOFSTEP] rw [lowerCentralSeries_succ] [GOAL] case succ.inl R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M l✝ k : ℕ ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l l : ℕ h : l ≤ Nat.succ k hk : l ≤ k ⊢ ⁅⊤, lowerCentralSeries R L M k⁆ ≤ lowerCentralSeries R L M l [PROOFSTEP] exact (LieSubmodule.mono_lie_right _ _ ⊤ (ih hk)).trans (LieSubmodule.lie_le_right _ _) [GOAL] case succ.inr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M l✝ k : ℕ ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l l : ℕ h : l ≤ Nat.succ k hk : l = Nat.succ k ⊢ lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l [PROOFSTEP] exact hk.symm ▸ le_rfl [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ IsTrivial L M ↔ lowerCentralSeries R L M 1 = ⊥ [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ IsTrivial L M → lowerCentralSeries R L M 1 = ⊥ [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ lowerCentralSeries R L M 1 = ⊥ → IsTrivial L M [PROOFSTEP] intro h [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : IsTrivial L M ⊢ lowerCentralSeries R L M 1 = ⊥ [PROOFSTEP] erw [eq_bot_iff, LieSubmodule.lieSpan_le] [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : IsTrivial L M ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥ [PROOFSTEP] rintro m ⟨x, n, hn⟩ [GOAL] case mp.intro.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : IsTrivial L M m : M x : { x // x ∈ ⊤ } n : { x // x ∈ ⊤ } hn : ⁅↑x, ↑n⁆ = m ⊢ m ∈ ↑⊥ [PROOFSTEP] rw [← hn, h.trivial] [GOAL] case mp.intro.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : IsTrivial L M m : M x : { x // x ∈ ⊤ } n : { x // x ∈ ⊤ } hn : ⁅↑x, ↑n⁆ = m ⊢ 0 ∈ ↑⊥ [PROOFSTEP] simp [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : lowerCentralSeries R L M 1 = ⊥ ⊢ IsTrivial L M [PROOFSTEP] rw [LieSubmodule.eq_bot_iff] at h [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0 ⊢ IsTrivial L M [PROOFSTEP] apply IsTrivial.mk [GOAL] case mpr.trivial R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0 ⊢ ∀ (x : L) (m : M), ⁅x, m⁆ = 0 [PROOFSTEP] intro x m [GOAL] case mpr.trivial R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0 x : L m : M ⊢ ⁅x, m⁆ = 0 [PROOFSTEP] apply h [GOAL] case mpr.trivial.a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0 x : L m : M ⊢ ⁅x, m⁆ ∈ lowerCentralSeries R L M 1 [PROOFSTEP] apply LieSubmodule.subset_lieSpan [GOAL] case mpr.trivial.a.a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0 x : L m : M ⊢ ⁅x, m⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] simp only [LieSubmodule.top_coe, Subtype.exists, LieSubmodule.mem_top, exists_prop, true_and, Set.mem_setOf] [GOAL] case mpr.trivial.a.a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0 x : L m : M ⊢ ∃ a a_1, ⁅a, a_1⁆ = ⁅x, m⁆ [PROOFSTEP] exact ⟨x, m, rfl⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x : L m : M k : ℕ ⊢ (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M x : L m : M ⊢ (↑(↑(toEndomorphism R L M) x))^[Nat.zero] m ∈ lowerCentralSeries R L M Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, Function.iterate_zero, lowerCentralSeries_zero, LieSubmodule.mem_top] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x : L m : M k : ℕ ih : (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k ⊢ (↑(↑(toEndomorphism R L M) x))^[Nat.succ k] m ∈ lowerCentralSeries R L M (Nat.succ k) [PROOFSTEP] simp only [lowerCentralSeries_succ, Function.comp_apply, Function.iterate_succ', toEndomorphism_apply_apply] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x : L m : M k : ℕ ih : (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k ⊢ ⁅x, (↑(↑(toEndomorphism R L M) x))^[k] m⁆ ∈ ⁅⊤, lowerCentralSeries R L M k⁆ [PROOFSTEP] exact LieSubmodule.lie_mem_lie _ _ (LieSubmodule.mem_top x) ih [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x y : L m : M k : ℕ ⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M x y : L m : M ⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.zero] m ∈ lowerCentralSeries R L M (2 * Nat.zero) case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x y : L m : M k : ℕ ih : (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k) ⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.succ k] m ∈ lowerCentralSeries R L M (2 * Nat.succ k) [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x y : L m : M k : ℕ ih : (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k) ⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.succ k] m ∈ lowerCentralSeries R L M (2 * Nat.succ k) [PROOFSTEP] have hk : 2 * k.succ = (2 * k + 1) + 1 := rfl [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x y : L m : M k : ℕ ih : (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k) hk : 2 * Nat.succ k = 2 * k + 1 + 1 ⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.succ k] m ∈ lowerCentralSeries R L M (2 * Nat.succ k) [PROOFSTEP] simp only [lowerCentralSeries_succ, Function.comp_apply, Function.iterate_succ', hk, toEndomorphism_apply_apply, LinearMap.coe_comp, toEndomorphism_apply_apply] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x y : L m : M k : ℕ ih : (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k) hk : 2 * Nat.succ k = 2 * k + 1 + 1 ⊢ ⁅x, ⁅y, (↑(↑(toEndomorphism R L M) x) ∘ ↑(↑(toEndomorphism R L M) y))^[k] m⁆⁆ ∈ ⁅⊤, ⁅⊤, lowerCentralSeries R L M (2 * k)⁆⁆ [PROOFSTEP] refine' LieSubmodule.lie_mem_lie _ _ (LieSubmodule.mem_top x) _ [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M x y : L m : M k : ℕ ih : (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k) hk : 2 * Nat.succ k = 2 * k + 1 + 1 ⊢ ⁅y, (↑(↑(toEndomorphism R L M) x) ∘ ↑(↑(toEndomorphism R L M) y))^[k] m⁆ ∈ ⁅⊤, lowerCentralSeries R L M (2 * k)⁆ [PROOFSTEP] exact LieSubmodule.lie_mem_lie _ _ (LieSubmodule.mem_top y) ih [GOAL] R : Type u L : Type v M : Type w inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ k : ℕ f : M →ₗ⁅R,L⁆ M₂ ⊢ LieSubmodule.map f (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L M₂ k [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M k : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ f : M →ₗ⁅R,L⁆ M₂ ⊢ LieSubmodule.map f (lowerCentralSeries R L M Nat.zero) ≤ lowerCentralSeries R L M₂ Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, lowerCentralSeries_zero, le_top] [GOAL] case succ R : Type u L : Type v M : Type w inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ f : M →ₗ⁅R,L⁆ M₂ k : ℕ ih : LieSubmodule.map f (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L M₂ k ⊢ LieSubmodule.map f (lowerCentralSeries R L M (Nat.succ k)) ≤ lowerCentralSeries R L M₂ (Nat.succ k) [PROOFSTEP] simp only [LieModule.lowerCentralSeries_succ, LieSubmodule.map_bracket_eq] [GOAL] case succ R : Type u L : Type v M : Type w inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L M₂ inst✝ : LieModule R L M₂ f : M →ₗ⁅R,L⁆ M₂ k : ℕ ih : LieSubmodule.map f (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L M₂ k ⊢ ⁅⊤, LieSubmodule.map f (lowerCentralSeries R L M k)⁆ ≤ ⁅⊤, lowerCentralSeries R L M₂ k⁆ [PROOFSTEP] exact LieSubmodule.mono_lie_right _ _ ⊤ ih [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ⊢ derivedSeries R L k ≤ lowerCentralSeries R L L k [PROOFSTEP] induction' k with k h [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ derivedSeries R L Nat.zero ≤ lowerCentralSeries R L L Nat.zero [PROOFSTEP] rw [derivedSeries_def, derivedSeriesOfIdeal_zero, lowerCentralSeries_zero] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ h : derivedSeries R L k ≤ lowerCentralSeries R L L k ⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k) [PROOFSTEP] have h' : derivedSeries R L k ≤ ⊤ := by simp only [le_top] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ h : derivedSeries R L k ≤ lowerCentralSeries R L L k ⊢ derivedSeries R L k ≤ ⊤ [PROOFSTEP] simp only [le_top] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ h : derivedSeries R L k ≤ lowerCentralSeries R L L k h' : derivedSeries R L k ≤ ⊤ ⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k) [PROOFSTEP] rw [derivedSeries_def, derivedSeriesOfIdeal_succ, lowerCentralSeries_succ] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ h : derivedSeries R L k ≤ lowerCentralSeries R L L k h' : derivedSeries R L k ≤ ⊤ ⊢ ⁅derivedSeriesOfIdeal R L k ⊤, derivedSeriesOfIdeal R L k ⊤⁆ ≤ ⁅⊤, lowerCentralSeries R L L k⁆ [PROOFSTEP] exact LieSubmodule.mono_lie _ _ _ _ h' h [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N✝ N : LieSubmodule R L M ⊢ IsNilpotent R L { x // x ∈ ↑N } ↔ ∃ k, LieSubmodule.lcs k N = ⊥ [PROOFSTEP] rw [isNilpotent_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N✝ N : LieSubmodule R L M ⊢ (∃ k, lowerCentralSeries R L { x // x ∈ ↑N } k = ⊥) ↔ ∃ k, LieSubmodule.lcs k N = ⊥ [PROOFSTEP] refine' exists_congr fun k => _ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M k : ℕ ⊢ lowerCentralSeries R L { x // x ∈ ↑N } k = ⊥ ↔ LieSubmodule.lcs k N = ⊥ [PROOFSTEP] rw [N.lowerCentralSeries_eq_lcs_comap k, LieSubmodule.comap_incl_eq_bot, inf_eq_right.mpr (N.lcs_le_self k)] [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsTrivial L M ⊢ ∃ k, lowerCentralSeries R L M k = ⊥ [PROOFSTEP] use 1 [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsTrivial L M ⊢ lowerCentralSeries R L M 1 = ⊥ [PROOFSTEP] change ⁅⊤, ⊤⁆ = ⊥ [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsTrivial L M ⊢ ⁅⊤, ⊤⁆ = ⊥ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M hM : IsNilpotent R L M ⊢ ∃ k, ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0 [PROOFSTEP] obtain ⟨k, hM⟩ := hM [GOAL] case mk.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ ∃ k, ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0 [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0 [PROOFSTEP] intro x [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hM : lowerCentralSeries R L M k = ⊥ x : L ⊢ ↑(toEndomorphism R L M) x ^ k = 0 [PROOFSTEP] ext m [GOAL] case h.h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hM : lowerCentralSeries R L M k = ⊥ x : L m : M ⊢ ↑(↑(toEndomorphism R L M) x ^ k) m = ↑0 m [PROOFSTEP] rw [LinearMap.pow_apply, LinearMap.zero_apply, ← @LieSubmodule.mem_bot R L M, ← hM] [GOAL] case h.h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hM : lowerCentralSeries R L M k = ⊥ x : L m : M ⊢ (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k [PROOFSTEP] exact iterate_toEndomorphism_mem_lowerCentralSeries R L M x m k [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x : L ⊢ _root_.IsNilpotent (↑(toEndomorphism R L M) x) [PROOFSTEP] change ∃ k, toEndomorphism R L M x ^ k = 0 [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x : L ⊢ ∃ k, ↑(toEndomorphism R L M) x ^ k = 0 [PROOFSTEP] have := exists_forall_pow_toEndomorphism_eq_zero R L M [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x : L this : ∃ k, ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0 ⊢ ∃ k, ↑(toEndomorphism R L M) x ^ k = 0 [PROOFSTEP] tauto [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L ⊢ _root_.IsNilpotent (LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)) [PROOFSTEP] obtain ⟨k, hM⟩ := exists_lowerCentralSeries_eq_bot_of_isNilpotent R L M [GOAL] case intro R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ _root_.IsNilpotent (LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)) [PROOFSTEP] replace hM : lowerCentralSeries R L M (2 * k) = ⊥ := by rw [eq_bot_iff, ← hM]; exact antitone_lowerCentralSeries R L M (by linarith) [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ lowerCentralSeries R L M (2 * k) = ⊥ [PROOFSTEP] rw [eq_bot_iff, ← hM] [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ lowerCentralSeries R L M (2 * k) ≤ lowerCentralSeries R L M k [PROOFSTEP] exact antitone_lowerCentralSeries R L M (by linarith) [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ k ≤ 2 * k [PROOFSTEP] linarith [GOAL] case intro R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ ⊢ _root_.IsNilpotent (LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)) [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ ⊢ LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y) ^ k = 0 [PROOFSTEP] ext m [GOAL] case h.h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ m : M ⊢ ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y) ^ k) m = ↑0 m [PROOFSTEP] rw [LinearMap.pow_apply, LinearMap.zero_apply, ← LieSubmodule.mem_bot (R := R) (L := L), ← hM] [GOAL] case h.h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ m : M ⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k) [PROOFSTEP] exact iterate_toEndomorphism_mem_lowerCentralSeries₂ R L M x y m k [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M ⊢ ⨅ (x : L), Module.End.maximalGeneralizedEigenspace (↑(toEndomorphism R L M) x) 0 = ⊤ [PROOFSTEP] ext m [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M m : M ⊢ m ∈ ⨅ (x : L), Module.End.maximalGeneralizedEigenspace (↑(toEndomorphism R L M) x) 0 ↔ m ∈ ⊤ [PROOFSTEP] simp only [Module.End.mem_maximalGeneralizedEigenspace, Submodule.mem_top, sub_zero, iff_true_iff, zero_smul, Submodule.mem_iInf] [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M m : M ⊢ ∀ (i : L), ∃ k, ↑(↑(toEndomorphism R L M) i ^ k) m = 0 [PROOFSTEP] intro x [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M m : M x : L ⊢ ∃ k, ↑(↑(toEndomorphism R L M) x ^ k) m = 0 [PROOFSTEP] obtain ⟨k, hk⟩ := exists_forall_pow_toEndomorphism_eq_zero R L M [GOAL] case h.intro R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M m : M x : L k : ℕ hk : ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0 ⊢ ∃ k, ↑(↑(toEndomorphism R L M) x ^ k) m = 0 [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M m : M x : L k : ℕ hk : ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0 ⊢ ↑(↑(toEndomorphism R L M) x ^ k) m = 0 [PROOFSTEP] rw [hk] [GOAL] case h R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M m : M x : L k : ℕ hk : ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0 ⊢ ↑0 m = 0 [PROOFSTEP] exact LinearMap.zero_apply m [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M h₂ : IsNilpotent R L (M ⧸ N) ⊢ IsNilpotent R L M [PROOFSTEP] obtain ⟨k, hk⟩ := h₂ [GOAL] case mk.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M k : ℕ hk : lowerCentralSeries R L (M ⧸ N) k = ⊥ ⊢ IsNilpotent R L M [PROOFSTEP] use k + 1 [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M k : ℕ hk : lowerCentralSeries R L (M ⧸ N) k = ⊥ ⊢ lowerCentralSeries R L M (k + 1) = ⊥ [PROOFSTEP] simp only [lowerCentralSeries_succ] [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M k : ℕ hk : lowerCentralSeries R L (M ⧸ N) k = ⊥ ⊢ ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥ [PROOFSTEP] suffices lowerCentralSeries R L M k ≤ N by replace this := LieSubmodule.mono_lie_right _ _ ⊤ (le_trans this h₁) rwa [ideal_oper_maxTrivSubmodule_eq_bot, le_bot_iff] at this [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M k : ℕ hk : lowerCentralSeries R L (M ⧸ N) k = ⊥ this : lowerCentralSeries R L M k ≤ N ⊢ ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥ [PROOFSTEP] replace this := LieSubmodule.mono_lie_right _ _ ⊤ (le_trans this h₁) [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M k : ℕ hk : lowerCentralSeries R L (M ⧸ N) k = ⊥ this : ⁅⊤, lowerCentralSeries R L M k⁆ ≤ ⁅⊤, maxTrivSubmodule R L M⁆ ⊢ ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥ [PROOFSTEP] rwa [ideal_oper_maxTrivSubmodule_eq_bot, le_bot_iff] at this [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M k : ℕ hk : lowerCentralSeries R L (M ⧸ N) k = ⊥ ⊢ lowerCentralSeries R L M k ≤ N [PROOFSTEP] rw [← LieSubmodule.Quotient.map_mk'_eq_bot_le, ← le_bot_iff, ← hk] [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N✝ N : LieSubmodule R L M h₁ : N ≤ maxTrivSubmodule R L M k : ℕ hk : lowerCentralSeries R L (M ⧸ N) k = ⊥ ⊢ LieSubmodule.map (LieSubmodule.Quotient.mk' N) (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L (M ⧸ N) k [PROOFSTEP] exact map_lowerCentralSeries_le k (LieSubmodule.Quotient.mk' N) [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M ⊢ nilpotencyLength R L M = 0 ↔ Subsingleton M [PROOFSTEP] let s := {k | lowerCentralSeries R L M k = ⊥} [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} ⊢ nilpotencyLength R L M = 0 ↔ Subsingleton M [PROOFSTEP] have hs : s.Nonempty := by obtain ⟨k, hk⟩ := (by infer_instance : IsNilpotent R L M) exact ⟨k, hk⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} ⊢ Set.Nonempty s [PROOFSTEP] obtain ⟨k, hk⟩ := (by infer_instance : IsNilpotent R L M) [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} ⊢ IsNilpotent R L M [PROOFSTEP] infer_instance [GOAL] case mk.intro R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} k : ℕ hk : lowerCentralSeries R L M k = ⊥ ⊢ Set.Nonempty s [PROOFSTEP] exact ⟨k, hk⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} hs : Set.Nonempty s ⊢ nilpotencyLength R L M = 0 ↔ Subsingleton M [PROOFSTEP] change sInf s = 0 ↔ _ [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} hs : Set.Nonempty s ⊢ sInf s = 0 ↔ Subsingleton M [PROOFSTEP] rw [← LieSubmodule.subsingleton_iff R L M, ← subsingleton_iff_bot_eq_top, ← lowerCentralSeries_zero, @eq_comm (LieSubmodule R L M)] [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} hs : Set.Nonempty s ⊢ sInf s = 0 ↔ lowerCentralSeries R L M 0 = ⊥ [PROOFSTEP] refine' ⟨fun h => h ▸ Nat.sInf_mem hs, fun h => _⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} hs : Set.Nonempty s h : lowerCentralSeries R L M 0 = ⊥ ⊢ sInf s = 0 [PROOFSTEP] rw [Nat.sInf_eq_zero] [GOAL] R : Type u L : Type v M : Type w inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝ : IsNilpotent R L M s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} hs : Set.Nonempty s h : lowerCentralSeries R L M 0 = ⊥ ⊢ 0 ∈ s ∨ s = ∅ [PROOFSTEP] exact Or.inl h [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ⊢ nilpotencyLength R L M = k + 1 ↔ lowerCentralSeries R L M (k + 1) = ⊥ ∧ lowerCentralSeries R L M k ≠ ⊥ [PROOFSTEP] let s := {k | lowerCentralSeries R L M k = ⊥} [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} ⊢ nilpotencyLength R L M = k + 1 ↔ lowerCentralSeries R L M (k + 1) = ⊥ ∧ lowerCentralSeries R L M k ≠ ⊥ [PROOFSTEP] change sInf s = k + 1 ↔ k + 1 ∈ s ∧ k ∉ s [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} ⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s [PROOFSTEP] have hs : ∀ k₁ k₂, k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s := by rintro k₁ k₂ h₁₂ (h₁ : lowerCentralSeries R L M k₁ = ⊥) exact eq_bot_iff.mpr (h₁ ▸ antitone_lowerCentralSeries R L M h₁₂) [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} ⊢ ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s [PROOFSTEP] rintro k₁ k₂ h₁₂ (h₁ : lowerCentralSeries R L M k₁ = ⊥) [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} k₁ k₂ : ℕ h₁₂ : k₁ ≤ k₂ h₁ : lowerCentralSeries R L M k₁ = ⊥ ⊢ k₂ ∈ s [PROOFSTEP] exact eq_bot_iff.mpr (h₁ ▸ antitone_lowerCentralSeries R L M h₁₂) [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥} hs : ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s ⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s [PROOFSTEP] exact Nat.sInf_upward_closed_eq_succ_iff hs k [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ lowerCentralSeriesLast R L M ≤ maxTrivSubmodule R L M [PROOFSTEP] rw [lowerCentralSeriesLast] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ (match nilpotencyLength R L M with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≤ maxTrivSubmodule R L M [PROOFSTEP] cases' h : nilpotencyLength R L M with k [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M h : nilpotencyLength R L M = Nat.zero ⊢ (match Nat.zero with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≤ maxTrivSubmodule R L M [PROOFSTEP] exact bot_le [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ h : nilpotencyLength R L M = Nat.succ k ⊢ (match Nat.succ k with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≤ maxTrivSubmodule R L M [PROOFSTEP] rw [le_max_triv_iff_bracket_eq_bot] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ h : nilpotencyLength R L M = Nat.succ k ⊢ ⁅⊤, match Nat.succ k with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k⁆ = ⊥ [PROOFSTEP] rw [nilpotencyLength_eq_succ_iff, lowerCentralSeries_succ] at h [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ h : ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥ ∧ lowerCentralSeries R L M k ≠ ⊥ ⊢ ⁅⊤, match Nat.succ k with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k⁆ = ⊥ [PROOFSTEP] exact h.1 [GOAL] R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent R L M ⊢ Nontrivial { x // x ∈ ↑(lowerCentralSeriesLast R L M) } [PROOFSTEP] rw [LieSubmodule.nontrivial_iff_ne_bot, lowerCentralSeriesLast] [GOAL] R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent R L M ⊢ (match nilpotencyLength R L M with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≠ ⊥ [PROOFSTEP] cases h : nilpotencyLength R L M [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent R L M h : nilpotencyLength R L M = Nat.zero ⊢ (match Nat.zero with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≠ ⊥ [PROOFSTEP] rw [nilpotencyLength_eq_zero_iff, ← not_nontrivial_iff_subsingleton] at h [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent R L M h : ¬Nontrivial M ⊢ (match Nat.zero with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≠ ⊥ [PROOFSTEP] contradiction [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent R L M n✝ : ℕ h : nilpotencyLength R L M = Nat.succ n✝ ⊢ (match Nat.succ n✝ with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≠ ⊥ [PROOFSTEP] rw [nilpotencyLength_eq_succ_iff] at h [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M k : ℕ N : LieSubmodule R L M inst✝¹ : Nontrivial M inst✝ : IsNilpotent R L M n✝ : ℕ h : lowerCentralSeries R L M (n✝ + 1) = ⊥ ∧ lowerCentralSeries R L M n✝ ≠ ⊥ ⊢ (match Nat.succ n✝ with | 0 => ⊥ | Nat.succ k => lowerCentralSeries R L M k) ≠ ⊥ [PROOFSTEP] exact h.2 [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M Nat.zero) = ↑(lowerCentralSeries R L M Nat.zero) [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) ⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M (Nat.succ k)) = ↑(lowerCentralSeries R L M (Nat.succ k)) [PROOFSTEP] simp only [lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', ← (lowerCentralSeries R (toEndomorphism R L M).range M k).mem_coeSubmodule, ih] [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) ⊢ Submodule.span R {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} = Submodule.span R {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] congr [GOAL] case succ.e_s R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) ⊢ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} = {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] ext m [GOAL] case succ.e_s.h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) m : M ⊢ m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} ↔ m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] constructor [GOAL] case succ.e_s.h.mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) m : M ⊢ m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} → m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] rintro ⟨⟨-, ⟨y, rfl⟩⟩, -, n, hn, rfl⟩ [GOAL] case succ.e_s.h.mp.intro.mk.intro.intro.intro.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) y : L n : M hn : n ∈ ↑(lowerCentralSeries R L M k) ⊢ ⁅{ val := ↑↑(toEndomorphism R L M) y, property := (_ : ∃ y_1, ↑↑(toEndomorphism R L M) y_1 = ↑↑(toEndomorphism R L M) y) }, n⁆ ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] exact ⟨y, LieSubmodule.mem_top _, n, hn, rfl⟩ [GOAL] case succ.e_s.h.mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) m : M ⊢ m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} → m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} [PROOFSTEP] rintro ⟨x, -, n, hn, rfl⟩ [GOAL] case succ.e_s.h.mpr.intro.intro.intro.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k) x : L n : M hn : n ∈ lowerCentralSeries R L M k ⊢ ⁅x, n⁆ ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} [PROOFSTEP] exact ⟨⟨toEndomorphism R L M x, LieHom.mem_range_self _ x⟩, LieSubmodule.mem_top _, n, hn, rfl⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M ↔ IsNilpotent R L M [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M → IsNilpotent R L M [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N : LieSubmodule R L M ⊢ IsNilpotent R L M → IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case mp.mk.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hk : lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k = ⊥ ⊢ IsNilpotent R L M [PROOFSTEP] use k [GOAL] case mpr.mk.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hk : lowerCentralSeries R L M k = ⊥ ⊢ IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hk : lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k = ⊥ ⊢ lowerCentralSeries R L M k = ⊥ [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff] at hk ⊢ [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hk : lowerCentralSeries R L M k = ⊥ ⊢ lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k = ⊥ [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff] at hk ⊢ [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hk : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑⊥ ⊢ ↑(lowerCentralSeries R L M k) = ↑⊥ [PROOFSTEP] simpa using hk [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M k : ℕ hk : ↑(lowerCentralSeries R L M k) = ↑⊥ ⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑⊥ [PROOFSTEP] simpa using hk [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ h : N₁ ≤ N₂ ⊢ ucs k N₁ ≤ ucs k N₂ [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N N₁ N₂ : LieSubmodule R L M h : N₁ ≤ N₂ ⊢ ucs Nat.zero N₁ ≤ ucs Nat.zero N₂ [PROOFSTEP] simpa [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M h : N₁ ≤ N₂ k : ℕ ih : ucs k N₁ ≤ ucs k N₂ ⊢ ucs (Nat.succ k) N₁ ≤ ucs (Nat.succ k) N₂ [PROOFSTEP] simp only [ucs_succ] -- Porting note: `mono` makes no progress [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M h : N₁ ≤ N₂ k : ℕ ih : ucs k N₁ ≤ ucs k N₂ ⊢ normalizer (ucs k N₁) ≤ normalizer (ucs k N₂) [PROOFSTEP] apply monotone_normalizer ih [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M h : normalizer N₁ = N₁ k : ℕ ⊢ ucs k N₁ = N₁ [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N N₁ N₂ : LieSubmodule R L M h : normalizer N₁ = N₁ ⊢ ucs Nat.zero N₁ = N₁ [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M h : normalizer N₁ = N₁ k : ℕ ih : ucs k N₁ = N₁ ⊢ ucs (Nat.succ k) N₁ = N₁ [PROOFSTEP] rwa [ucs_succ, ih] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M h : normalizer N₁ = N₁ k : ℕ ⊢ ucs k ⊥ ≤ N₁ [PROOFSTEP] rw [← ucs_eq_self_of_normalizer_eq_self h k] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M h : normalizer N₁ = N₁ k : ℕ ⊢ ucs k ⊥ ≤ ucs k N₁ [PROOFSTEP] mono [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M h : normalizer N₁ = N₁ k : ℕ h_symm : N₁ = normalizer N₁ ⊢ ⊥ ≤ N₁ [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M l k : ℕ ⊢ lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂ [PROOFSTEP] induction' k with k ih generalizing l [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N N₁ N₂ : LieSubmodule R L M l✝ l : ℕ ⊢ lcs (l + Nat.zero) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs Nat.zero N₂ [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M l✝ k : ℕ ih : ∀ (l : ℕ), lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂ l : ℕ ⊢ lcs (l + Nat.succ k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs (Nat.succ k) N₂ [PROOFSTEP] rw [(by abel : l + (k + 1) = l + 1 + k), ih, ucs_succ, lcs_succ, top_lie_le_iff_le_normalizer] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M l✝ k : ℕ ih : ∀ (l : ℕ), lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂ l : ℕ ⊢ l + (k + 1) = l + 1 + k [PROOFSTEP] abel [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M l✝ k : ℕ ih : ∀ (l : ℕ), lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂ l : ℕ ⊢ l + (k + 1) = l + 1 + k [PROOFSTEP] abel [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ ⊢ lcs k N₁ ≤ N₂ ↔ N₁ ≤ ucs k N₂ [PROOFSTEP] convert lcs_add_le_iff (R := R) (L := L) (M := M) 0 k [GOAL] case h.e'_1.h.e'_3.h.e'_10 R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ ⊢ k = 0 + k [PROOFSTEP] rw [zero_add] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ ⊢ ucs k N = ⊤ ↔ LieModule.lowerCentralSeries R L M k ≤ N [PROOFSTEP] rw [eq_top_iff, ← lcs_le_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ ⊢ lcs k ⊤ ≤ N ↔ LieModule.lowerCentralSeries R L M k ≤ N [PROOFSTEP] rfl [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N N₁ N₂ : LieSubmodule R L M ⊢ LieModule.IsNilpotent R L M ↔ ∃ k, ucs k ⊥ = ⊤ [PROOFSTEP] rw [LieModule.isNilpotent_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N N₁ N₂ : LieSubmodule R L M ⊢ (∃ k, LieModule.lowerCentralSeries R L M k = ⊥) ↔ ∃ k, ucs k ⊥ = ⊤ [PROOFSTEP] exact exists_congr fun k => by simp [ucs_eq_top_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ ⊢ LieModule.lowerCentralSeries R L M k = ⊥ ↔ ucs k ⊥ = ⊤ [PROOFSTEP] simp [ucs_eq_top_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ ⊢ comap (incl N) (ucs k ⊥) = ucs k ⊥ [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N N₁ N₂ : LieSubmodule R L M ⊢ comap (incl N) (ucs Nat.zero ⊥) = ucs Nat.zero ⊥ [PROOFSTEP] exact N.ker_incl [GOAL] case succ R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ : ℕ N N₁ N₂ : LieSubmodule R L M k : ℕ ih : comap (incl N) (ucs k ⊥) = ucs k ⊥ ⊢ comap (incl N) (ucs (Nat.succ k) ⊥) = ucs (Nat.succ k) ⊥ [PROOFSTEP] simp [← ih] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ N N₁ N₂ : LieSubmodule R L M ⊢ LieModule.IsNilpotent R L { x // x ∈ ↑N } ↔ ∃ k, N ≤ ucs k ⊥ [PROOFSTEP] simp_rw [LieModule.isNilpotent_iff_exists_ucs_eq_top, ← ucs_comap_incl, comap_incl_eq_top] [GOAL] R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ⊢ Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ ⊢ Submodule.map g ↑(lowerCentralSeries R L M Nat.zero) = ↑(lowerCentralSeries R L₂ M₂ Nat.zero) [PROOFSTEP] simpa [LinearMap.range_eq_top] [GOAL] case succ R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) ⊢ Submodule.map g ↑(lowerCentralSeries R L M (Nat.succ k)) = ↑(lowerCentralSeries R L₂ M₂ (Nat.succ k)) [PROOFSTEP] suffices g '' {m | ∃ (x : L) (n : _), n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} = {m | ∃ (x : L₂) (n : _), n ∈ lowerCentralSeries R L M k ∧ ⁅x, g n⁆ = m} by simp only [← LieSubmodule.mem_coeSubmodule] at this simp_rw [lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', Submodule.map_span, LieSubmodule.mem_top, true_and, ← LieSubmodule.mem_coeSubmodule, this, ← ih, Submodule.mem_map, exists_exists_and_eq_and] [GOAL] R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) this : ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} = {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m} ⊢ Submodule.map g ↑(lowerCentralSeries R L M (Nat.succ k)) = ↑(lowerCentralSeries R L₂ M₂ (Nat.succ k)) [PROOFSTEP] simp only [← LieSubmodule.mem_coeSubmodule] at this [GOAL] R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) this : (fun a => ↑g a) '' {m | ∃ x n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} = {m | ∃ x n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, ↑g n⁆ = m} ⊢ Submodule.map g ↑(lowerCentralSeries R L M (Nat.succ k)) = ↑(lowerCentralSeries R L₂ M₂ (Nat.succ k)) [PROOFSTEP] simp_rw [lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', Submodule.map_span, LieSubmodule.mem_top, true_and, ← LieSubmodule.mem_coeSubmodule, this, ← ih, Submodule.mem_map, exists_exists_and_eq_and] [GOAL] case succ R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) ⊢ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} = {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m} [PROOFSTEP] ext m₂ [GOAL] case succ.h R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) m₂ : M₂ ⊢ m₂ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} ↔ m₂ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m} [PROOFSTEP] constructor [GOAL] case succ.h.mp R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) m₂ : M₂ ⊢ m₂ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} → m₂ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m} [PROOFSTEP] rintro ⟨m, ⟨x, n, hn, rfl⟩, rfl⟩ [GOAL] case succ.h.mp.intro.intro.intro.intro.intro R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) x : L n : M hn : n ∈ lowerCentralSeries R L M k ⊢ ↑g ⁅x, n⁆ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m} [PROOFSTEP] exact ⟨f x, n, hn, hfg x n⟩ [GOAL] case succ.h.mpr R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) m₂ : M₂ ⊢ m₂ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m} → m₂ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] rintro ⟨x, n, hn, rfl⟩ [GOAL] case succ.h.mpr.intro.intro.intro R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) x : L₂ n : M hn : n ∈ lowerCentralSeries R L M k ⊢ ⁅x, ↑g n⁆ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] obtain ⟨y, rfl⟩ := hf x [GOAL] case succ.h.mpr.intro.intro.intro.intro R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ k : ℕ ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k) n : M hn : n ∈ lowerCentralSeries R L M k y : L ⊢ ⁅↑f y, ↑g n⁆ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] exact ⟨⁅y, n⁆, ⟨y, n, hn, rfl⟩, (hfg y n).symm⟩ [GOAL] R : Type u L : Type v M : Type w inst✝¹³ : CommRing R inst✝¹² : LieRing L inst✝¹¹ : LieAlgebra R L inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : LieRingModule L M inst✝⁷ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L₂ M₂ inst✝¹ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ inst✝ : LieModule.IsNilpotent R L M ⊢ LieModule.IsNilpotent R L₂ M₂ [PROOFSTEP] obtain ⟨k, hk⟩ := id (by infer_instance : IsNilpotent R L M) [GOAL] R : Type u L : Type v M : Type w inst✝¹³ : CommRing R inst✝¹² : LieRing L inst✝¹¹ : LieAlgebra R L inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : LieRingModule L M inst✝⁷ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L₂ M₂ inst✝¹ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ inst✝ : LieModule.IsNilpotent R L M ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] infer_instance [GOAL] case mk.intro R : Type u L : Type v M : Type w inst✝¹³ : CommRing R inst✝¹² : LieRing L inst✝¹¹ : LieAlgebra R L inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : LieRingModule L M inst✝⁷ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L₂ M₂ inst✝¹ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ inst✝ : LieModule.IsNilpotent R L M k : ℕ hk : lowerCentralSeries R L M k = ⊥ ⊢ LieModule.IsNilpotent R L₂ M₂ [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v M : Type w inst✝¹³ : CommRing R inst✝¹² : LieRing L inst✝¹¹ : LieAlgebra R L inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : LieRingModule L M inst✝⁷ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L₂ M₂ inst✝¹ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ inst✝ : LieModule.IsNilpotent R L M k : ℕ hk : lowerCentralSeries R L M k = ⊥ ⊢ lowerCentralSeries R L₂ M₂ k = ⊥ [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff] at hk ⊢ [GOAL] case h R : Type u L : Type v M : Type w inst✝¹³ : CommRing R inst✝¹² : LieRing L inst✝¹¹ : LieAlgebra R L inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : LieRingModule L M inst✝⁷ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁶ : LieRing L₂ inst✝⁵ : LieAlgebra R L₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L₂ M₂ inst✝¹ : LieModule R L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hf : Surjective ↑f hg : Surjective ↑g hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ inst✝ : LieModule.IsNilpotent R L M k : ℕ hk : ↑(lowerCentralSeries R L M k) = ↑⊥ ⊢ ↑(lowerCentralSeries R L₂ M₂ k) = ↑⊥ [PROOFSTEP] simp [← hf.lieModule_lcs_map_eq hg hfg k, hk] [GOAL] R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ ⊢ LieModule.IsNilpotent R L M ↔ LieModule.IsNilpotent R L₂ M₂ [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ ⊢ LieModule.IsNilpotent R L M → LieModule.IsNilpotent R L₂ M₂ [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ ⊢ LieModule.IsNilpotent R L₂ M₂ → LieModule.IsNilpotent R L M [PROOFSTEP] intro h [GOAL] case mp R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ h : LieModule.IsNilpotent R L M ⊢ LieModule.IsNilpotent R L₂ M₂ [PROOFSTEP] have hg : Surjective (g : M →ₗ[R] M₂) := g.surjective [GOAL] case mp R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg✝ : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ h : LieModule.IsNilpotent R L M hg : Surjective ↑↑g ⊢ LieModule.IsNilpotent R L₂ M₂ [PROOFSTEP] exact f.surjective.lieModuleIsNilpotent hg hfg [GOAL] case mpr R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ h : LieModule.IsNilpotent R L₂ M₂ ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] have hg : Surjective (g.symm : M₂ →ₗ[R] M) := g.symm.surjective [GOAL] case mpr R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg✝ : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ h : LieModule.IsNilpotent R L₂ M₂ hg : Surjective ↑↑(LinearEquiv.symm g) ⊢ LieModule.IsNilpotent R L M [PROOFSTEP] refine' f.symm.surjective.lieModuleIsNilpotent hg fun x m => _ [GOAL] case mpr R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M k : ℕ N : LieSubmodule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ inst✝ : LieModule R L₂ M₂ f✝ : L →ₗ⁅R⁆ L₂ g✝ : M →ₗ[R] M₂ hf : Surjective ↑f✝ hg✝ : Surjective ↑g✝ hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆ f : L ≃ₗ⁅R⁆ L₂ g : M ≃ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆ h : LieModule.IsNilpotent R L₂ M₂ hg : Surjective ↑↑(LinearEquiv.symm g) x : L₂ m : M₂ ⊢ ⁅↑(LieEquiv.symm f).toLieHom x, ↑↑(LinearEquiv.symm g) m⁆ = ↑↑(LinearEquiv.symm g) ⁅x, m⁆ [PROOFSTEP] rw [LinearEquiv.coe_coe, LieEquiv.coe_to_lieHom, ← g.symm_apply_apply ⁅f.symm x, g.symm m⁆, ← hfg, f.apply_symm_apply, g.apply_symm_apply] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L hL : LieModule.IsNilpotent R L L ⊢ IsSolvable R L [PROOFSTEP] obtain ⟨k, h⟩ : ∃ k, LieModule.lowerCentralSeries R L L k = ⊥ := hL.nilpotent [GOAL] case intro R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L hL : LieModule.IsNilpotent R L L k : ℕ h : LieModule.lowerCentralSeries R L L k = ⊥ ⊢ IsSolvable R L [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L hL : LieModule.IsNilpotent R L L k : ℕ h : LieModule.lowerCentralSeries R L L k = ⊥ ⊢ derivedSeries R L k = ⊥ [PROOFSTEP] rw [← le_bot_iff] at h ⊢ [GOAL] case h R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L hL : LieModule.IsNilpotent R L L k : ℕ h : LieModule.lowerCentralSeries R L L k ≤ ⊥ ⊢ derivedSeries R L k ≤ ⊥ [PROOFSTEP] exact le_trans (LieModule.derivedSeries_le_lowerCentralSeries R L k) h [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ⊢ ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L ⊢ ↑(lowerCentralSeries R L (L ⧸ I) Nat.zero) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) Nat.zero) [PROOFSTEP] simp only [Nat.zero_eq, LieModule.lowerCentralSeries_zero, LieSubmodule.top_coeSubmodule, LieIdeal.top_coe_lieSubalgebra, LieSubalgebra.top_coe_submodule] [GOAL] case succ R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) ⊢ ↑(lowerCentralSeries R L (L ⧸ I) (Nat.succ k)) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) (Nat.succ k)) [PROOFSTEP] simp only [LieModule.lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span] [GOAL] case succ R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) ⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] congr [GOAL] case succ.e_s R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] ext x [GOAL] case succ.e_s.h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) x : L ⧸ I ⊢ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] constructor [GOAL] case succ.e_s.h.mp R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) x : L ⧸ I ⊢ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro ⟨⟨y, -⟩, ⟨z, hz⟩, rfl : ⁅y, z⁆ = x⟩ [GOAL] case succ.e_s.h.mp.intro.mk.intro.mk R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) y : L z : L ⧸ I hz : z ∈ lowerCentralSeries R L (L ⧸ I) k ⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] erw [← LieSubmodule.mem_coeSubmodule, ih, LieSubmodule.mem_coeSubmodule] at hz [GOAL] case succ.e_s.h.mp.intro.mk.intro.mk R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) y : L z : L ⧸ I hz : z ∈ lowerCentralSeries R (L ⧸ I) (L ⧸ I) k ⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] exact ⟨⟨LieSubmodule.Quotient.mk y, LieSubmodule.mem_top _⟩, ⟨z, hz⟩, rfl⟩ [GOAL] case succ.e_s.h.mpr R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) x : L ⧸ I ⊢ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro ⟨⟨⟨y⟩, -⟩, ⟨z, hz⟩, rfl : ⁅y, z⁆ = x⟩ [GOAL] case succ.e_s.h.mpr.intro.mk.mk.intro.mk R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) val✝ : L ⧸ I y : L z : L ⧸ I hz : z ∈ lowerCentralSeries R (L ⧸ I) (L ⧸ I) k ⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] erw [← LieSubmodule.mem_coeSubmodule, ← ih, LieSubmodule.mem_coeSubmodule] at hz [GOAL] case succ.e_s.h.mpr.intro.mk.mk.intro.mk R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k) val✝ : L ⧸ I y : L z : L ⧸ I hz : z ∈ lowerCentralSeries R L (L ⧸ I) k ⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] exact ⟨⟨y, LieSubmodule.mem_top _⟩, ⟨z, hz⟩, rfl⟩ [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ⊢ ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L ⊢ ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } Nat.zero) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } Nat.zero) [PROOFSTEP] simp [GOAL] case succ R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k) ⊢ ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } (Nat.succ k)) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } (Nat.succ k)) [PROOFSTEP] simp only [LieModule.lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span] [GOAL] case succ R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k) ⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] apply Submodule.span_mono [GOAL] case succ.h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k) ⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] rintro x ⟨⟨y, -⟩, ⟨z, hz⟩, rfl : ⁅y, z⁆ = x⟩ [GOAL] case succ.h.intro.mk.intro.mk R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L k : ℕ ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k) y z : { x // x ∈ ↑I } hz : z ∈ lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k ⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} [PROOFSTEP] exact ⟨⟨y.val, LieSubmodule.mem_top _⟩, ⟨z, ih hz⟩, rfl⟩ [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L h₁ : I ≤ center R L h₂ : IsNilpotent R (L ⧸ I) ⊢ IsNilpotent R L [PROOFSTEP] suffices LieModule.IsNilpotent R L (L ⧸ I) by exact LieModule.nilpotentOfNilpotentQuotient R L L h₁ this [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L h₁ : I ≤ center R L h₂ : IsNilpotent R (L ⧸ I) this : LieModule.IsNilpotent R L (L ⧸ I) ⊢ IsNilpotent R L [PROOFSTEP] exact LieModule.nilpotentOfNilpotentQuotient R L L h₁ this [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L h₁ : I ≤ center R L h₂ : IsNilpotent R (L ⧸ I) ⊢ LieModule.IsNilpotent R L (L ⧸ I) [PROOFSTEP] obtain ⟨k, hk⟩ := h₂ [GOAL] case mk.intro R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L h₁ : I ≤ center R L k : ℕ hk : lowerCentralSeries R (L ⧸ I) (L ⧸ I) k = ⊥ ⊢ LieModule.IsNilpotent R L (L ⧸ I) [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' I : LieIdeal R L h₁ : I ≤ center R L k : ℕ hk : lowerCentralSeries R (L ⧸ I) (L ⧸ I) k = ⊥ ⊢ lowerCentralSeries R L (L ⧸ I) k = ⊥ [PROOFSTEP] simp [← LieSubmodule.coe_toSubmodule_eq_iff, coe_lowerCentralSeries_ideal_quot_eq, hk] [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' k : ℕ f : L →ₗ⁅R⁆ L' ⊢ map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' ⊢ map f (lowerCentralSeries R L L Nat.zero) ≤ lowerCentralSeries R L' L' Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, LieModule.lowerCentralSeries_zero, le_top] [GOAL] case succ R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' k : ℕ ih : map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k ⊢ map f (lowerCentralSeries R L L (Nat.succ k)) ≤ lowerCentralSeries R L' L' (Nat.succ k) [PROOFSTEP] simp only [LieModule.lowerCentralSeries_succ] [GOAL] case succ R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' k : ℕ ih : map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k ⊢ map f ⁅⊤, lowerCentralSeries R L L k⁆ ≤ ⁅⊤, lowerCentralSeries R L' L' k⁆ [PROOFSTEP] exact le_trans (LieIdeal.map_bracket_le f) (LieSubmodule.mono_lie _ _ _ _ le_top ih) [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' k : ℕ f : L →ₗ⁅R⁆ L' h : Function.Surjective ↑f ⊢ map f (lowerCentralSeries R L L k) = lowerCentralSeries R L' L' k [PROOFSTEP] have h' : (⊤ : LieIdeal R L).map f = ⊤ := by rw [← f.idealRange_eq_map] exact f.idealRange_eq_top_of_surjective h [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' k : ℕ f : L →ₗ⁅R⁆ L' h : Function.Surjective ↑f ⊢ map f ⊤ = ⊤ [PROOFSTEP] rw [← f.idealRange_eq_map] [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' k : ℕ f : L →ₗ⁅R⁆ L' h : Function.Surjective ↑f ⊢ LieHom.idealRange f = ⊤ [PROOFSTEP] exact f.idealRange_eq_top_of_surjective h [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' k : ℕ f : L →ₗ⁅R⁆ L' h : Function.Surjective ↑f h' : map f ⊤ = ⊤ ⊢ map f (lowerCentralSeries R L L k) = lowerCentralSeries R L' L' k [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' h : Function.Surjective ↑f h' : map f ⊤ = ⊤ ⊢ map f (lowerCentralSeries R L L Nat.zero) = lowerCentralSeries R L' L' Nat.zero [PROOFSTEP] simp only [LieModule.lowerCentralSeries_zero] [GOAL] case zero R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' h : Function.Surjective ↑f h' : map f ⊤ = ⊤ ⊢ map f ⊤ = ⊤ [PROOFSTEP] exact h' [GOAL] case succ R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' f : L →ₗ⁅R⁆ L' h : Function.Surjective ↑f h' : map f ⊤ = ⊤ k : ℕ ih : map f (lowerCentralSeries R L L k) = lowerCentralSeries R L' L' k ⊢ map f (lowerCentralSeries R L L (Nat.succ k)) = lowerCentralSeries R L' L' (Nat.succ k) [PROOFSTEP] simp only [LieModule.lowerCentralSeries_succ, LieIdeal.map_bracket_eq f h, ih, h'] [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L' f : L →ₗ⁅R⁆ L' h₂ : Injective ↑f ⊢ ∃ k, lowerCentralSeries R L L k = ⊥ [PROOFSTEP] obtain ⟨k, hk⟩ := id h₁ [GOAL] case mk.intro R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L' f : L →ₗ⁅R⁆ L' h₂ : Injective ↑f k : ℕ hk : lowerCentralSeries R L' L' k = ⊥ ⊢ ∃ k, lowerCentralSeries R L L k = ⊥ [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L' f : L →ₗ⁅R⁆ L' h₂ : Injective ↑f k : ℕ hk : lowerCentralSeries R L' L' k = ⊥ ⊢ lowerCentralSeries R L L k = ⊥ [PROOFSTEP] apply LieIdeal.bot_of_map_eq_bot h₂ [GOAL] case h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L' f : L →ₗ⁅R⁆ L' h₂ : Injective ↑f k : ℕ hk : lowerCentralSeries R L' L' k = ⊥ ⊢ LieIdeal.map f (lowerCentralSeries R L L k) = ⊥ [PROOFSTEP] rw [eq_bot_iff, ← hk] [GOAL] case h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L' f : L →ₗ⁅R⁆ L' h₂ : Injective ↑f k : ℕ hk : lowerCentralSeries R L' L' k = ⊥ ⊢ LieIdeal.map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k [PROOFSTEP] apply LieIdeal.map_lowerCentralSeries_le [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L f : L →ₗ⁅R⁆ L' h₂ : Surjective ↑f ⊢ ∃ k, lowerCentralSeries R L' L' k = ⊥ [PROOFSTEP] obtain ⟨k, hk⟩ := id h₁ [GOAL] case mk.intro R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L f : L →ₗ⁅R⁆ L' h₂ : Surjective ↑f k : ℕ hk : lowerCentralSeries R L L k = ⊥ ⊢ ∃ k, lowerCentralSeries R L' L' k = ⊥ [PROOFSTEP] use k [GOAL] case h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L f : L →ₗ⁅R⁆ L' h₂ : Surjective ↑f k : ℕ hk : lowerCentralSeries R L L k = ⊥ ⊢ lowerCentralSeries R L' L' k = ⊥ [PROOFSTEP] rw [← LieIdeal.lowerCentralSeries_map_eq k h₂, hk] [GOAL] case h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : LieAlgebra.IsNilpotent R L f : L →ₗ⁅R⁆ L' h₂ : Surjective ↑f k : ℕ hk : lowerCentralSeries R L L k = ⊥ ⊢ LieIdeal.map f ⊥ = ⊥ [PROOFSTEP] simp only [LieIdeal.map_eq_bot_iff, bot_le] [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' e : L ≃ₗ⁅R⁆ L' ⊢ LieAlgebra.IsNilpotent R L ↔ LieAlgebra.IsNilpotent R L' [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' e : L ≃ₗ⁅R⁆ L' ⊢ LieAlgebra.IsNilpotent R L → LieAlgebra.IsNilpotent R L' [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' e : L ≃ₗ⁅R⁆ L' ⊢ LieAlgebra.IsNilpotent R L' → LieAlgebra.IsNilpotent R L [PROOFSTEP] intro h [GOAL] case mp R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' e : L ≃ₗ⁅R⁆ L' h : LieAlgebra.IsNilpotent R L ⊢ LieAlgebra.IsNilpotent R L' [PROOFSTEP] exact e.symm.injective.lieAlgebra_isNilpotent [GOAL] case mpr R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' e : L ≃ₗ⁅R⁆ L' h : LieAlgebra.IsNilpotent R L' ⊢ LieAlgebra.IsNilpotent R L [PROOFSTEP] exact e.injective.lieAlgebra_isNilpotent [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' ⊢ IsNilpotent R { x // x ∈ LieHom.range (ad R L) } ↔ IsNilpotent R L [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h : IsNilpotent R { x // x ∈ LieHom.range (ad R L) } ⊢ IsNilpotent R L [PROOFSTEP] have : (ad R L).ker = center R L := by simp [GOAL] R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h : IsNilpotent R { x // x ∈ LieHom.range (ad R L) } ⊢ LieHom.ker (ad R L) = center R L [PROOFSTEP] simp [GOAL] case refine'_1 R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h : IsNilpotent R { x // x ∈ LieHom.range (ad R L) } this : LieHom.ker (ad R L) = center R L ⊢ IsNilpotent R L [PROOFSTEP] exact LieAlgebra.nilpotent_of_nilpotent_quotient (le_of_eq this) ((ad R L).quotKerEquivRange.nilpotent_iff_equiv_nilpotent.mpr h) [GOAL] case refine'_2 R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' ⊢ IsNilpotent R L → IsNilpotent R { x // x ∈ LieHom.range (ad R L) } [PROOFSTEP] intro h [GOAL] case refine'_2 R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h : IsNilpotent R L ⊢ IsNilpotent R { x // x ∈ LieHom.range (ad R L) } [PROOFSTEP] exact (ad R L).isNilpotent_range [GOAL] R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ ⊢ ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k : ℕ ⊢ ↑(lcs I M Nat.zero) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M Nat.zero) [PROOFSTEP] simp [GOAL] case succ R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) ⊢ ↑(lcs I M (Nat.succ k)) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M (Nat.succ k)) [PROOFSTEP] simp_rw [lowerCentralSeries_succ, lcs_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', ← (I.lcs M k).mem_coeSubmodule, ih, LieSubmodule.mem_coeSubmodule, LieSubmodule.mem_top, true_and, (I : LieSubalgebra R L).coe_bracket_of_module] [GOAL] case succ R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) ⊢ Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} = Submodule.span R {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m} [PROOFSTEP] congr [GOAL] case succ.e_s R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) ⊢ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} = {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m} [PROOFSTEP] ext m [GOAL] case succ.e_s.h R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) m : M ⊢ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} ↔ m ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m} [PROOFSTEP] constructor [GOAL] case succ.e_s.h.mp R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) m : M ⊢ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} → m ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m} [PROOFSTEP] rintro ⟨x, hx, m, hm, rfl⟩ [GOAL] case succ.e_s.h.mp.intro.intro.intro.intro R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) x : L hx : x ∈ I m : M hm : m ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ⊢ ⁅x, m⁆ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m} [PROOFSTEP] exact ⟨⟨x, hx⟩, m, hm, rfl⟩ [GOAL] case succ.e_s.h.mpr R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) m : M ⊢ m ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m} → m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] rintro ⟨⟨x, hx⟩, m, hm, rfl⟩ [GOAL] case succ.e_s.h.mpr.intro.mk.intro.intro R : Type u_1 L : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L I : LieIdeal R L M : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M k✝ k : ℕ ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k) x : L hx : x ∈ ↑I m : M hm : m ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ⊢ ⁅↑{ val := x, property := hx }, m⁆ ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} [PROOFSTEP] exact ⟨x, hx, m, hm, rfl⟩ [GOAL] R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A a : A h : IsNilpotent a ⊢ IsNilpotent (↑(LieAlgebra.ad R A) a) [PROOFSTEP] rw [LieAlgebra.ad_eq_lmul_left_sub_lmul_right] [GOAL] R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A a : A h : IsNilpotent a ⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a) [PROOFSTEP] have hl : IsNilpotent (LinearMap.mulLeft R a) := by rwa [LinearMap.isNilpotent_mulLeft_iff] [GOAL] R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A a : A h : IsNilpotent a ⊢ IsNilpotent (LinearMap.mulLeft R a) [PROOFSTEP] rwa [LinearMap.isNilpotent_mulLeft_iff] [GOAL] R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A a : A h : IsNilpotent a hl : IsNilpotent (LinearMap.mulLeft R a) ⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a) [PROOFSTEP] have hr : IsNilpotent (LinearMap.mulRight R a) := by rwa [LinearMap.isNilpotent_mulRight_iff] [GOAL] R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A a : A h : IsNilpotent a hl : IsNilpotent (LinearMap.mulLeft R a) ⊢ IsNilpotent (LinearMap.mulRight R a) [PROOFSTEP] rwa [LinearMap.isNilpotent_mulRight_iff] [GOAL] R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A a : A h : IsNilpotent a hl : IsNilpotent (LinearMap.mulLeft R a) hr : IsNilpotent (LinearMap.mulRight R a) ⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a) [PROOFSTEP] have := @LinearMap.commute_mulLeft_right R A _ _ _ _ _ a a [GOAL] R : Type u A : Type v inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A a : A h : IsNilpotent a hl : IsNilpotent (LinearMap.mulLeft R a) hr : IsNilpotent (LinearMap.mulRight R a) this : Commute (LinearMap.mulLeft R a) (LinearMap.mulRight R a) ⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a) [PROOFSTEP] exact this.isNilpotent_sub hl hr [GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Algebra R A L : Type v inst✝¹ : LieRing L inst✝ : LieAlgebra R L K : LieSubalgebra R L x : { x // x ∈ K } h : IsNilpotent (↑(LieAlgebra.ad R L) ↑x) ⊢ IsNilpotent (↑(LieAlgebra.ad R { x // x ∈ K }) x) [PROOFSTEP] obtain ⟨n, hn⟩ := h [GOAL] case intro R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Algebra R A L : Type v inst✝¹ : LieRing L inst✝ : LieAlgebra R L K : LieSubalgebra R L x : { x // x ∈ K } n : ℕ hn : ↑(LieAlgebra.ad R L) ↑x ^ n = 0 ⊢ IsNilpotent (↑(LieAlgebra.ad R { x // x ∈ K }) x) [PROOFSTEP] use n [GOAL] case h R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Algebra R A L : Type v inst✝¹ : LieRing L inst✝ : LieAlgebra R L K : LieSubalgebra R L x : { x // x ∈ K } n : ℕ hn : ↑(LieAlgebra.ad R L) ↑x ^ n = 0 ⊢ ↑(LieAlgebra.ad R { x // x ∈ K }) x ^ n = 0 [PROOFSTEP] exact LinearMap.submodule_pow_eq_zero_of_pow_eq_zero (K.ad_comp_incl_eq x) hn
{"mathlib_filename": "Mathlib.Algebra.Lie.Nilpotent", "llama_tokens": 60566}
[GOAL] R : Type u X : Type v inst✝ : CommRing R a b c : lib R X h : Rel R X b c ⊢ Rel R X (a + b) (a + c) [PROOFSTEP] rw [add_comm _ b, add_comm _ c] [GOAL] R : Type u X : Type v inst✝ : CommRing R a b c : lib R X h : Rel R X b c ⊢ Rel R X (b + a) (c + a) [PROOFSTEP] exact h.add_right _ [GOAL] R : Type u X : Type v inst✝ : CommRing R a b : lib R X h : Rel R X a b ⊢ Rel R X (-a) (-b) [PROOFSTEP] simpa only [neg_one_smul] using h.smul (-1) [GOAL] R : Type u X : Type v inst✝ : CommRing R a b c : lib R X h : Rel R X b c ⊢ Rel R X (a - b) (a - c) [PROOFSTEP] simpa only [sub_eq_add_neg] using h.neg.addLeft a [GOAL] R : Type u X : Type v inst✝ : CommRing R a b c : lib R X h : Rel R X a b ⊢ Rel R X (a - c) (b - c) [PROOFSTEP] simpa only [sub_eq_add_neg] using h.add_right (-c) [GOAL] R : Type u X : Type v inst✝³ : CommRing R S : Type u_1 inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : IsScalarTower S R R t : S a b : lib R X h : Rel R X a b ⊢ Rel R X (t • a) (t • b) [PROOFSTEP] rw [← smul_one_smul R t a, ← smul_one_smul R t b] [GOAL] R : Type u X : Type v inst✝³ : CommRing R S : Type u_1 inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : IsScalarTower S R R t : S a b : lib R X h : Rel R X a b ⊢ Rel R X ((t • 1) • a) ((t • 1) • b) [PROOFSTEP] exact h.smul _ [GOAL] R : Type u X : Type v inst✝ : CommRing R ⊢ Inhabited (FreeLieAlgebra R X) [PROOFSTEP] rw [FreeLieAlgebra] [GOAL] R : Type u X : Type v inst✝ : CommRing R ⊢ Inhabited (Quot (FreeLieAlgebra.Rel R X)) [PROOFSTEP] infer_instance [GOAL] R : Type u X : Type v inst✝ : CommRing R ⊢ ∀ (x y z : FreeLieAlgebra R X), ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆ [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ [GOAL] case mk.mk.mk R : Type u X : Type v inst✝ : CommRing R x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X z✝ : FreeLieAlgebra R X c : lib R X ⊢ ⁅Quot.mk (Rel R X) a + Quot.mk (Rel R X) b, Quot.mk (Rel R X) c⁆ = ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆ + ⁅Quot.mk (Rel R X) b, Quot.mk (Rel R X) c⁆ [PROOFSTEP] change Quot.mk _ _ = Quot.mk _ _ [GOAL] case mk.mk.mk R : Type u X : Type v inst✝ : CommRing R x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X z✝ : FreeLieAlgebra R X c : lib R X ⊢ Quot.mk (Rel R X) ((fun x x_1 => x * x_1) ((fun x x_1 => x + x_1) a b) c) = Quot.mk (Rel R X) ((fun x x_1 => x + x_1) ((fun x x_1 => x * x_1) a c) ((fun x x_1 => x * x_1) b c)) [PROOFSTEP] simp_rw [add_mul] [GOAL] R : Type u X : Type v inst✝ : CommRing R ⊢ ∀ (x y z : FreeLieAlgebra R X), ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆ [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ [GOAL] case mk.mk.mk R : Type u X : Type v inst✝ : CommRing R x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X z✝ : FreeLieAlgebra R X c : lib R X ⊢ ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b + Quot.mk (Rel R X) c⁆ = ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆ + ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆ [PROOFSTEP] change Quot.mk _ _ = Quot.mk _ _ [GOAL] case mk.mk.mk R : Type u X : Type v inst✝ : CommRing R x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X z✝ : FreeLieAlgebra R X c : lib R X ⊢ Quot.mk (Rel R X) ((fun x x_1 => x * x_1) a ((fun x x_1 => x + x_1) b c)) = Quot.mk (Rel R X) ((fun x x_1 => x + x_1) ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)) [PROOFSTEP] simp_rw [mul_add] [GOAL] R : Type u X : Type v inst✝ : CommRing R ⊢ ∀ (x : FreeLieAlgebra R X), ⁅x, x⁆ = 0 [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk R : Type u X : Type v inst✝ : CommRing R x✝ : FreeLieAlgebra R X a : lib R X ⊢ ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) a⁆ = 0 [PROOFSTEP] exact Quot.sound (Rel.lie_self a) [GOAL] R : Type u X : Type v inst✝ : CommRing R ⊢ ∀ (x y z : FreeLieAlgebra R X), ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ [GOAL] case mk.mk.mk R : Type u X : Type v inst✝ : CommRing R x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X z✝ : FreeLieAlgebra R X c : lib R X ⊢ ⁅Quot.mk (Rel R X) a, ⁅Quot.mk (Rel R X) b, Quot.mk (Rel R X) c⁆⁆ = ⁅⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆, Quot.mk (Rel R X) c⁆ + ⁅Quot.mk (Rel R X) b, ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆⁆ [PROOFSTEP] exact Quot.sound (Rel.leibniz_lie a b c) [GOAL] R : Type u X : Type v inst✝ : CommRing R ⊢ ∀ (t : R) (x y : FreeLieAlgebra R X), ⁅x, t • y⁆ = t • ⁅x, y⁆ [PROOFSTEP] rintro t ⟨a⟩ ⟨c⟩ [GOAL] case mk.mk R : Type u X : Type v inst✝ : CommRing R t : R x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X c : lib R X ⊢ ⁅Quot.mk (Rel R X) a, t • Quot.mk (Rel R X) c⁆ = t • ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆ [PROOFSTEP] change Quot.mk _ (a • t • c) = Quot.mk _ (t • a • c) [GOAL] case mk.mk R : Type u X : Type v inst✝ : CommRing R t : R x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X c : lib R X ⊢ Quot.mk (Rel R X) (a • t • c) = Quot.mk (Rel R X) (t • a • c) [PROOFSTEP] rw [← smul_comm] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b : lib R X h : Rel R X a b ⊢ ↑(liftAux R f) a = ↑(liftAux R f) b [PROOFSTEP] induction h [GOAL] case lie_self R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝ : lib R X ⊢ ↑(liftAux R f) (a✝ * a✝) = ↑(liftAux R f) 0 case leibniz_lie R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝ b✝ c✝ : lib R X ⊢ ↑(liftAux R f) (a✝ * (b✝ * c✝)) = ↑(liftAux R f) (a✝ * b✝ * c✝ + b✝ * (a✝ * c✝)) case smul R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b : lib R X t✝ : R a✝¹ b✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (t✝ • a✝¹) = ↑(liftAux R f) (t✝ • b✝) case add_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝) case mul_left R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X b✝ c✝ a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝ ⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝) case mul_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝) [PROOFSTEP] case lie_self a' => simp only [liftAux_map_mul, NonUnitalAlgHom.map_zero, lie_self] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' : lib R X ⊢ ↑(liftAux R f) (a' * a') = ↑(liftAux R f) 0 [PROOFSTEP] case lie_self a' => simp only [liftAux_map_mul, NonUnitalAlgHom.map_zero, lie_self] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' : lib R X ⊢ ↑(liftAux R f) (a' * a') = ↑(liftAux R f) 0 [PROOFSTEP] simp only [liftAux_map_mul, NonUnitalAlgHom.map_zero, lie_self] [GOAL] case leibniz_lie R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝ b✝ c✝ : lib R X ⊢ ↑(liftAux R f) (a✝ * (b✝ * c✝)) = ↑(liftAux R f) (a✝ * b✝ * c✝ + b✝ * (a✝ * c✝)) case smul R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b : lib R X t✝ : R a✝¹ b✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (t✝ • a✝¹) = ↑(liftAux R f) (t✝ • b✝) case add_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝) case mul_left R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X b✝ c✝ a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝ ⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝) case mul_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝) [PROOFSTEP] case leibniz_lie a' b' c' => simp only [liftAux_map_mul, liftAux_map_add, sub_add_cancel, lie_lie] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X ⊢ ↑(liftAux R f) (a' * (b' * c')) = ↑(liftAux R f) (a' * b' * c' + b' * (a' * c')) [PROOFSTEP] case leibniz_lie a' b' c' => simp only [liftAux_map_mul, liftAux_map_add, sub_add_cancel, lie_lie] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X ⊢ ↑(liftAux R f) (a' * (b' * c')) = ↑(liftAux R f) (a' * b' * c' + b' * (a' * c')) [PROOFSTEP] simp only [liftAux_map_mul, liftAux_map_add, sub_add_cancel, lie_lie] [GOAL] case smul R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b : lib R X t✝ : R a✝¹ b✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (t✝ • a✝¹) = ↑(liftAux R f) (t✝ • b✝) case add_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝) case mul_left R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X b✝ c✝ a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝ ⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝) case mul_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝) [PROOFSTEP] case smul t a' b' _ h₂ => simp only [liftAux_map_smul, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b : lib R X t : R a' b' : lib R X a✝ : Rel R X a' b' h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b' ⊢ ↑(liftAux R f) (t • a') = ↑(liftAux R f) (t • b') [PROOFSTEP] case smul t a' b' _ h₂ => simp only [liftAux_map_smul, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b : lib R X t : R a' b' : lib R X a✝ : Rel R X a' b' h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b' ⊢ ↑(liftAux R f) (t • a') = ↑(liftAux R f) (t • b') [PROOFSTEP] simp only [liftAux_map_smul, h₂] [GOAL] case add_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝) case mul_left R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X b✝ c✝ a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝ ⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝) case mul_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝) [PROOFSTEP] case add_right a' b' c' _ h₂ => simp only [liftAux_map_add, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X a✝ : Rel R X a' b' h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b' ⊢ ↑(liftAux R f) (a' + c') = ↑(liftAux R f) (b' + c') [PROOFSTEP] case add_right a' b' c' _ h₂ => simp only [liftAux_map_add, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X a✝ : Rel R X a' b' h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b' ⊢ ↑(liftAux R f) (a' + c') = ↑(liftAux R f) (b' + c') [PROOFSTEP] simp only [liftAux_map_add, h₂] [GOAL] case mul_left R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X b✝ c✝ a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝ ⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝) case mul_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝) [PROOFSTEP] case mul_left a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X a✝ : Rel R X b' c' h₂ : ↑(liftAux R f) b' = ↑(liftAux R f) c' ⊢ ↑(liftAux R f) (a' * b') = ↑(liftAux R f) (a' * c') [PROOFSTEP] case mul_left a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X a✝ : Rel R X b' c' h₂ : ↑(liftAux R f) b' = ↑(liftAux R f) c' ⊢ ↑(liftAux R f) (a' * b') = ↑(liftAux R f) (a' * c') [PROOFSTEP] simp only [liftAux_map_mul, h₂] [GOAL] case mul_right R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a✝¹ b✝ c✝ : lib R X a✝ : Rel R X a✝¹ b✝ a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝ ⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝) [PROOFSTEP] case mul_right a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X a✝ : Rel R X a' b' h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b' ⊢ ↑(liftAux R f) (a' * c') = ↑(liftAux R f) (b' * c') [PROOFSTEP] case mul_right a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L a b a' b' c' : lib R X a✝ : Rel R X a' b' h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b' ⊢ ↑(liftAux R f) (a' * c') = ↑(liftAux R f) (b' * c') [PROOFSTEP] simp only [liftAux_map_mul, h₂] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L ⊢ ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ [GOAL] case mk.mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X ⊢ (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (Quot.mk (Rel R X) a + Quot.mk (Rel R X) b) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (Quot.mk (Rel R X) a) + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (Quot.mk (Rel R X) b) [PROOFSTEP] rw [← liftAux_map_add] [GOAL] case mk.mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X ⊢ (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (Quot.mk (Rel R X) a + Quot.mk (Rel R X) b) = ↑(liftAux R f) (a + b) [PROOFSTEP] rfl [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L ⊢ ∀ (r : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x [PROOFSTEP] rintro t ⟨a⟩ [GOAL] case mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L t : R x✝ : FreeLieAlgebra R X a : lib R X ⊢ AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • Quot.mk (Rel R X) a) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (Quot.mk (Rel R X) a) [PROOFSTEP] rw [← liftAux_map_smul] [GOAL] case mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L t : R x✝ : FreeLieAlgebra R X a : lib R X ⊢ AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • Quot.mk (Rel R X) a) = ↑(liftAux ((fun x => R) t) f) (↑(RingHom.id R) t • a) [PROOFSTEP] rfl [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L ⊢ ∀ {x y : FreeLieAlgebra R X}, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom y⁆ [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ [GOAL] case mk.mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X ⊢ AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom (Quot.mk (Rel R X) a), AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom (Quot.mk (Rel R X) b)⁆ [PROOFSTEP] rw [← liftAux_map_mul] [GOAL] case mk.mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L x✝ : FreeLieAlgebra R X a : lib R X y✝ : FreeLieAlgebra R X b : lib R X ⊢ AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆ = ↑(liftAux R f) (a * b) [PROOFSTEP] rfl [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L ⊢ (fun F => ↑F ∘ of R) ((fun f => { toLinearMap := { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }, map_lie' := (_ : ∀ {x y : FreeLieAlgebra R X}, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom y⁆) }) f) = f [PROOFSTEP] ext x [GOAL] case h R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L x : X ⊢ (fun F => ↑F ∘ of R) ((fun f => { toLinearMap := { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }, map_lie' := (_ : ∀ {x y : FreeLieAlgebra R X}, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom y⁆) }) f) x = f x [PROOFSTEP] simp only [liftAux, of, Quot.liftOn_mk, LieHom.coe_mk, Function.comp_apply, lib.lift_of_apply] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L F : FreeLieAlgebra R X →ₗ⁅R⁆ L ⊢ (fun f => { toLinearMap := { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }, map_lie' := (_ : ∀ {x y : FreeLieAlgebra R X}, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom y⁆) }) ((fun F => ↑F ∘ of R) F) = F [PROOFSTEP] ext ⟨a⟩ [GOAL] case h.mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L F : FreeLieAlgebra R X →ₗ⁅R⁆ L x✝ : FreeLieAlgebra R X a : lib R X ⊢ ↑((fun f => { toLinearMap := { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }, map_lie' := (_ : ∀ {x y : FreeLieAlgebra R X}, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom y⁆) }) ((fun F => ↑F ∘ of R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) [PROOFSTEP] let F' := F.toNonUnitalAlgHom.comp (mk R) [GOAL] case h.mk R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L F : FreeLieAlgebra R X →ₗ⁅R⁆ L x✝ : FreeLieAlgebra R X a : lib R X F' : lib R X →ₙₐ[R] CommutatorRing L := NonUnitalAlgHom.comp (LieHom.toNonUnitalAlgHom F) (mk R) ⊢ ↑((fun f => { toLinearMap := { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }, map_lie' := (_ : ∀ {x y : FreeLieAlgebra R X}, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) }, map_smul' := (_ : ∀ (t : R) (x : FreeLieAlgebra R X), AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } (t • x) = ↑(RingHom.id R) t • AddHom.toFun { toFun := fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b), map_add' := (_ : ∀ (x y : FreeLieAlgebra R X), (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) (x + y) = (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) x + (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b)) y) } x) }.toAddHom y⁆) }) ((fun F => ↑F ∘ of R) F)) (Quot.mk (Rel R X) a) = ↑F (Quot.mk (Rel R X) a) [PROOFSTEP] exact NonUnitalAlgHom.congr_fun (lib.lift_comp_of R F') a [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L f : X → L x : X ⊢ ↑(↑(lift R) f) (of R x) = f x [PROOFSTEP] rw [← @Function.comp_apply _ _ _ (lift R f) (of R) x, of_comp_lift] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L F : FreeLieAlgebra R X →ₗ⁅R⁆ L ⊢ ↑(lift R) (↑F ∘ of R) = F [PROOFSTEP] rw [← lift_symm_apply] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L F : FreeLieAlgebra R X →ₗ⁅R⁆ L ⊢ ↑(lift R) (↑(lift R).symm F) = F [PROOFSTEP] exact (lift R).apply_symm_apply F [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L F₁ F₂ : FreeLieAlgebra R X →ₗ⁅R⁆ L h : ∀ (x : X), ↑F₁ (of R x) = ↑F₂ (of R x) ⊢ ↑(lift R).symm F₁ = ↑(lift R).symm F₂ [PROOFSTEP] ext [GOAL] case h R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L F₁ F₂ : FreeLieAlgebra R X →ₗ⁅R⁆ L h : ∀ (x : X), ↑F₁ (of R x) = ↑F₂ (of R x) x✝ : X ⊢ ↑(lift R).symm F₁ x✝ = ↑(lift R).symm F₂ x✝ [PROOFSTEP] simp [h] [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ AlgHom.comp (↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R))) (↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R)) = AlgHom.id R (FreeAlgebra R X) [PROOFSTEP] ext [GOAL] case w.h R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L x✝ : X ⊢ (↑(AlgHom.comp (↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R))) (↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R))) ∘ FreeAlgebra.ι R) x✝ = (↑(AlgHom.id R (FreeAlgebra R X)) ∘ FreeAlgebra.ι R) x✝ [PROOFSTEP] simp [GOAL] R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ AlgHom.comp (↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R)) (↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R))) = AlgHom.id R (UniversalEnvelopingAlgebra R (FreeLieAlgebra R X)) [PROOFSTEP] ext [GOAL] case h.h R : Type u X : Type v inst✝² : CommRing R L : Type w inst✝¹ : LieRing L inst✝ : LieAlgebra R L x✝ : X ⊢ ↑(LieHom.comp (AlgHom.toLieHom (AlgHom.comp (↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R)) (↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R))))) (UniversalEnvelopingAlgebra.ι R)) (of R x✝) = ↑(LieHom.comp (AlgHom.toLieHom (AlgHom.id R (UniversalEnvelopingAlgebra R (FreeLieAlgebra R X)))) (UniversalEnvelopingAlgebra.ι R)) (of R x✝) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.Lie.Free", "llama_tokens": 47786}
[GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 n : ℕ f : α ≃ Fin n ⊢ Nat.card α = n [PROOFSTEP] simpa only [card_eq_fintype_card, Fintype.card_fin] using card_congr f [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 h : Nat.card α ≠ 0 ⊢ α ≃ Fin (Nat.card α) [PROOFSTEP] cases fintypeOrInfinite α [GOAL] case inl α✝ : Type u_1 β : Type u_2 α : Type u_3 h : Nat.card α ≠ 0 val✝ : Fintype α ⊢ α ≃ Fin (Nat.card α) [PROOFSTEP] simpa only [card_eq_fintype_card] using Fintype.equivFin α [GOAL] case inr α✝ : Type u_1 β : Type u_2 α : Type u_3 h : Nat.card α ≠ 0 val✝ : Infinite α ⊢ α ≃ Fin (Nat.card α) [PROOFSTEP] simp only [card_eq_zero_of_infinite, ne_eq] at h [GOAL] α : Type u_1 β : Type u_2 a : α inst✝ : Subsingleton α ⊢ Nat.card α = 1 [PROOFSTEP] letI := Fintype.ofSubsingleton a [GOAL] α : Type u_1 β : Type u_2 a : α inst✝ : Subsingleton α this : Fintype α := Fintype.ofSubsingleton a ⊢ Nat.card α = 1 [PROOFSTEP] rw [card_eq_fintype_card, Fintype.card_ofSubsingleton a] [GOAL] α : Type u_1 β : Type u_2 inst✝ : IsEmpty α ⊢ Nat.card α = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Finite α inst✝ : Finite β ⊢ Nat.card (α ⊕ β) = Nat.card α + Nat.card β [PROOFSTEP] have := Fintype.ofFinite α [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Finite α inst✝ : Finite β this : Fintype α ⊢ Nat.card (α ⊕ β) = Nat.card α + Nat.card β [PROOFSTEP] have := Fintype.ofFinite β [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Finite α inst✝ : Finite β this✝ : Fintype α this : Fintype β ⊢ Nat.card (α ⊕ β) = Nat.card α + Nat.card β [PROOFSTEP] simp_rw [Nat.card_eq_fintype_card, Fintype.card_sum] [GOAL] α✝ : Type u_1 β✝ : Type u_2 α : Type u_3 β : Type u_4 ⊢ Nat.card (α × β) = Nat.card α * Nat.card β [PROOFSTEP] simp only [Nat.card, mk_prod, toNat_mul, toNat_lift] [GOAL] α : Type u_1 β✝ : Type u_2 β : α → Type u_3 inst✝ : Fintype α ⊢ Nat.card ((a : α) → β a) = ∏ a : α, Nat.card (β a) [PROOFSTEP] simp_rw [Nat.card, mk_pi, prod_eq_of_fintype, toNat_lift, toNat_finset_prod] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Finite α ⊢ Nat.card (α → β) = Nat.card β ^ Nat.card α [PROOFSTEP] haveI := Fintype.ofFinite α [GOAL] α : Type u_1 β : Type u_2 inst✝ : Finite α this : Fintype α ⊢ Nat.card (α → β) = Nat.card β ^ Nat.card α [PROOFSTEP] rw [Nat.card_pi, Finset.prod_const, Finset.card_univ, ← Nat.card_eq_fintype_card] [GOAL] α : Type u_1 β : Type u_2 n : ℕ ⊢ Nat.card (ZMod n) = n [PROOFSTEP] cases n [GOAL] case zero α : Type u_1 β : Type u_2 ⊢ Nat.card (ZMod zero) = zero [PROOFSTEP] exact @Nat.card_eq_zero_of_infinite _ Int.infinite [GOAL] case succ α : Type u_1 β : Type u_2 n✝ : ℕ ⊢ Nat.card (ZMod (succ n✝)) = succ n✝ [PROOFSTEP] rw [Nat.card_eq_fintype_card, ZMod.card] [GOAL] α✝ : Type u_1 β✝ : Type u_2 α : Type u_3 β : Type u_4 ⊢ card (α ⊕ β) = card α + card β [PROOFSTEP] simp only [PartENat.card, Cardinal.mk_sum, map_add, Cardinal.toPartENat_lift] [GOAL] α : Type u_1 β : Type u_2 n : ℕ c : Cardinal.{u_3} ⊢ ↑n ≤ ↑toPartENat c ↔ ↑n ≤ c [PROOFSTEP] rw [← toPartENat_cast n, toPartENat_le_iff_of_le_aleph0 (le_of_lt (nat_lt_aleph0 n))] [GOAL] α : Type u_1 β : Type u_2 c : Cardinal.{u_3} n : ℕ ⊢ ↑toPartENat c ≤ ↑n ↔ c ≤ ↑n [PROOFSTEP] rw [← toPartENat_cast n, toPartENat_le_iff_of_lt_aleph0 (nat_lt_aleph0 n)] [GOAL] α : Type u_1 β : Type u_2 n : ℕ c : Cardinal.{u_3} ⊢ ↑n = ↑toPartENat c ↔ ↑n = c [PROOFSTEP] rw [le_antisymm_iff, le_antisymm_iff, Cardinal.toPartENat_le_natCast_iff, Cardinal.natCast_le_toPartENat_iff] [GOAL] α : Type u_1 β : Type u_2 c : Cardinal.{u_3} n : ℕ ⊢ ↑toPartENat c = ↑n ↔ c = ↑n [PROOFSTEP] rw [eq_comm, Cardinal.natCast_eq_toPartENat_iff, eq_comm] [GOAL] α : Type u_1 β : Type u_2 n : ℕ c : Cardinal.{u_3} ⊢ ↑n < ↑toPartENat c ↔ ↑n < c [PROOFSTEP] simp only [← not_le, Cardinal.toPartENat_le_natCast_iff] [GOAL] α : Type u_1 β : Type u_2 n : ℕ c : Cardinal.{u_3} ⊢ ↑toPartENat c < ↑n ↔ c < ↑n [PROOFSTEP] simp only [← not_le, Cardinal.natCast_le_toPartENat_iff] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α = 0 ↔ IsEmpty α [PROOFSTEP] rw [← Cardinal.mk_eq_zero_iff] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α = 0 ↔ #α = 0 [PROOFSTEP] conv_rhs => rw [← Nat.cast_zero] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | #α = 0 [PROOFSTEP] rw [← Nat.cast_zero] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | #α = 0 [PROOFSTEP] rw [← Nat.cast_zero] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | #α = 0 [PROOFSTEP] rw [← Nat.cast_zero] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α = 0 ↔ #α = ↑0 [PROOFSTEP] simp only [← Cardinal.toPartENat_eq_natCast_iff] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α = 0 ↔ ↑toPartENat #α = ↑0 [PROOFSTEP] simp only [PartENat.card, Nat.cast_zero] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α ≤ 1 ↔ Subsingleton α [PROOFSTEP] rw [← le_one_iff_subsingleton] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α ≤ 1 ↔ #α ≤ 1 [PROOFSTEP] conv_rhs => rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | #α ≤ 1 [PROOFSTEP] rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | #α ≤ 1 [PROOFSTEP] rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | #α ≤ 1 [PROOFSTEP] rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α ≤ 1 ↔ #α ≤ ↑1 [PROOFSTEP] rw [← Cardinal.toPartENat_le_natCast_iff] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ card α ≤ 1 ↔ ↑toPartENat #α ≤ ↑1 [PROOFSTEP] simp only [PartENat.card, Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ 1 < card α ↔ Nontrivial α [PROOFSTEP] rw [← Cardinal.one_lt_iff_nontrivial] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ 1 < card α ↔ 1 < #α [PROOFSTEP] conv_rhs => rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | 1 < #α [PROOFSTEP] rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | 1 < #α [PROOFSTEP] rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 | 1 < #α [PROOFSTEP] rw [← Nat.cast_one] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ 1 < card α ↔ ↑1 < #α [PROOFSTEP] rw [← natCast_lt_toPartENat_iff] [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ⊢ 1 < card α ↔ ↑1 < ↑toPartENat #α [PROOFSTEP] simp only [PartENat.card, Nat.cast_one]
{"mathlib_filename": "Mathlib.SetTheory.Cardinal.Finite", "llama_tokens": 3383}
[GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g ⊢ ∃ h, Bijective h [PROOFSTEP] cases' isEmpty_or_nonempty β with hβ hβ [GOAL] case inl α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : IsEmpty β ⊢ ∃ h, Bijective h [PROOFSTEP] have : IsEmpty α := Function.isEmpty f [GOAL] case inl α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : IsEmpty β this : IsEmpty α ⊢ ∃ h, Bijective h [PROOFSTEP] exact ⟨_, ((Equiv.equivEmpty α).trans (Equiv.equivEmpty β).symm).bijective⟩ [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β ⊢ ∃ h, Bijective h [PROOFSTEP] set F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ monotone' := fun s t hst => compl_subset_compl.mpr <| image_subset _ <| compl_subset_compl.mpr <| image_subset _ hst } -- Porting note: dot notation `F.lfp` doesn't work here [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } ⊢ ∃ h, Bijective h [PROOFSTEP] set s : Set α := OrderHom.lfp F [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F ⊢ ∃ h, Bijective h [PROOFSTEP] have hs : (g '' (f '' s)ᶜ)ᶜ = s := F.map_lfp [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s ⊢ ∃ h, Bijective h [PROOFSTEP] have hns : g '' (f '' s)ᶜ = sᶜ := compl_injective (by simp [hs]) [GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s ⊢ (g '' (f '' s)ᶜ)ᶜ = sᶜᶜ [PROOFSTEP] simp [hs] [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ ⊢ ∃ h, Bijective h [PROOFSTEP] set g' := invFun g [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g ⊢ ∃ h, Bijective h [PROOFSTEP] have g'g : LeftInverse g' g := leftInverse_invFun hg [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g ⊢ ∃ h, Bijective h [PROOFSTEP] have hg'ns : g' '' sᶜ = (f '' s)ᶜ := by rw [← hns, g'g.image_image] [GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g ⊢ g' '' sᶜ = (f '' s)ᶜ [PROOFSTEP] rw [← hns, g'g.image_image] [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ ⊢ ∃ h, Bijective h [PROOFSTEP] set h : α → β := s.piecewise f g' [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' ⊢ ∃ h, Bijective h [PROOFSTEP] have : Surjective h := by rw [← range_iff_surjective, range_piecewise, hg'ns, union_compl_self] [GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' ⊢ Surjective h [PROOFSTEP] rw [← range_iff_surjective, range_piecewise, hg'ns, union_compl_self] [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h ⊢ ∃ h, Bijective h [PROOFSTEP] have : Injective h := by refine' (injective_piecewise_iff _).2 ⟨hf.injOn _, _, _⟩ · intro x hx y hy hxy obtain ⟨x', _, rfl⟩ : x ∈ g '' (f '' s)ᶜ := by rwa [hns] obtain ⟨y', _, rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns] rw [g'g _, g'g _] at hxy rw [hxy] · intro x hx y hy hxy obtain ⟨y', hy', rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns] rw [g'g _] at hxy exact hy' ⟨x, hx, hxy⟩ [GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h ⊢ Injective h [PROOFSTEP] refine' (injective_piecewise_iff _).2 ⟨hf.injOn _, _, _⟩ [GOAL] case refine'_1 α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h ⊢ InjOn g' sᶜ [PROOFSTEP] intro x hx y hy hxy [GOAL] case refine'_1 α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x : α hx : x ∈ sᶜ y : α hy : y ∈ sᶜ hxy : g' x = g' y ⊢ x = y [PROOFSTEP] obtain ⟨x', _, rfl⟩ : x ∈ g '' (f '' s)ᶜ := by rwa [hns] [GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x : α hx : x ∈ sᶜ y : α hy : y ∈ sᶜ hxy : g' x = g' y ⊢ x ∈ g '' (f '' s)ᶜ [PROOFSTEP] rwa [hns] [GOAL] case refine'_1.intro.intro α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h y : α hy : y ∈ sᶜ x' : β left✝ : x' ∈ (f '' s)ᶜ hx : g x' ∈ sᶜ hxy : g' (g x') = g' y ⊢ g x' = y [PROOFSTEP] obtain ⟨y', _, rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns] [GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h y : α hy : y ∈ sᶜ x' : β left✝ : x' ∈ (f '' s)ᶜ hx : g x' ∈ sᶜ hxy : g' (g x') = g' y ⊢ y ∈ g '' (f '' s)ᶜ [PROOFSTEP] rwa [hns] [GOAL] case refine'_1.intro.intro.intro.intro α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x' : β left✝¹ : x' ∈ (f '' s)ᶜ hx : g x' ∈ sᶜ y' : β left✝ : y' ∈ (f '' s)ᶜ hy : g y' ∈ sᶜ hxy : g' (g x') = g' (g y') ⊢ g x' = g y' [PROOFSTEP] rw [g'g _, g'g _] at hxy [GOAL] case refine'_1.intro.intro.intro.intro α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x' : β left✝¹ : x' ∈ (f '' s)ᶜ hx : g x' ∈ sᶜ y' : β left✝ : y' ∈ (f '' s)ᶜ hy : g y' ∈ sᶜ hxy : x' = y' ⊢ g x' = g y' [PROOFSTEP] rw [hxy] [GOAL] case refine'_2 α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h ⊢ ∀ (x : α), x ∈ s → ∀ (y : α), ¬y ∈ s → f x ≠ g' y [PROOFSTEP] intro x hx y hy hxy [GOAL] case refine'_2 α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x : α hx : x ∈ s y : α hy : ¬y ∈ s hxy : f x = g' y ⊢ False [PROOFSTEP] obtain ⟨y', hy', rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns] [GOAL] α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x : α hx : x ∈ s y : α hy : ¬y ∈ s hxy : f x = g' y ⊢ y ∈ g '' (f '' s)ᶜ [PROOFSTEP] rwa [hns] [GOAL] case refine'_2.intro.intro α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x : α hx : x ∈ s y' : β hy' : y' ∈ (f '' s)ᶜ hy : ¬g y' ∈ s hxy : f x = g' (g y') ⊢ False [PROOFSTEP] rw [g'g _] at hxy [GOAL] case refine'_2.intro.intro α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this : Surjective h x : α hx : x ∈ s y' : β hy' : y' ∈ (f '' s)ᶜ hy : ¬g y' ∈ s hxy : f x = y' ⊢ False [PROOFSTEP] exact hy' ⟨x, hx, hxy⟩ [GOAL] case inr α : Type u β : Type v f : α → β g : β → α hf : Injective f hg : Injective g hβ : Nonempty β F : Set α →o Set α := { toFun := fun s => (g '' (f '' s)ᶜ)ᶜ, monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) } s : Set α := ↑OrderHom.lfp F hs : (g '' (f '' s)ᶜ)ᶜ = s hns : g '' (f '' s)ᶜ = sᶜ g' : α → β := invFun g g'g : LeftInverse g' g hg'ns : g' '' sᶜ = (f '' s)ᶜ h : α → β := piecewise s f g' this✝ : Surjective h this : Injective h ⊢ ∃ h, Bijective h [PROOFSTEP] exact ⟨h, ‹Injective h›, ‹Surjective h›⟩ [GOAL] ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y ⊢ ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y [PROOFSTEP] simpa only [ne_eq, not_exists, not_forall, not_and] using h [GOAL] ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x : (i : ι) → β i hx : x ∈ insert f s y : (i : ι) → β i hy : y ∈ insert f s ⊢ ∀ (i : ι), x i = y i → x = y [PROOFSTEP] cases' hx with hx hx [GOAL] case inl ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x y : (i : ι) → β i hy : y ∈ insert f s hx : x = f ⊢ ∀ (i : ι), x i = y i → x = y [PROOFSTEP] cases' hy with hy hy [GOAL] case inr ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x y : (i : ι) → β i hy : y ∈ insert f s hx : x ∈ s ⊢ ∀ (i : ι), x i = y i → x = y [PROOFSTEP] cases' hy with hy hy [GOAL] case inl.inl ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x y : (i : ι) → β i hx : x = f hy : y = f ⊢ ∀ (i : ι), x i = y i → x = y [PROOFSTEP] simp [hx, hy] [GOAL] case inl.inr ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x y : (i : ι) → β i hx : x = f hy : y ∈ s ⊢ ∀ (i : ι), x i = y i → x = y [PROOFSTEP] subst x [GOAL] case inl.inr ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x y : (i : ι) → β i hy : y ∈ s ⊢ ∀ (i : ι), f i = y i → f = y [PROOFSTEP] exact fun i e => (hf i y hy e.symm).elim [GOAL] case inr.inl ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x y : (i : ι) → β i hx : x ∈ s hy : y = f ⊢ ∀ (i : ι), x i = y i → x = y [PROOFSTEP] subst y [GOAL] case inr.inl ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x : (i : ι) → β i hx : x ∈ s ⊢ ∀ (i : ι), x i = f i → x = f [PROOFSTEP] exact fun i e => (hf i x hx e).elim [GOAL] case inr.inr ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y f : (x : ι) → β x hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x x y : (i : ι) → β i hx : x ∈ s hy : y ∈ s ⊢ ∀ (i : ι), x i = y i → x = y [PROOFSTEP] exact hs x hx y hy [GOAL] ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s i : ι e : ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y f : β i → (i : ι) → β i hf : ∀ (x : β i), f x ∈ s ∧ f x i = x j : ι a b : β i e' : (fun a => f a j) a = (fun a => f a j) b ⊢ a = b [PROOFSTEP] let ⟨sa, ea⟩ := hf a [GOAL] ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s i : ι e : ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y f : β i → (i : ι) → β i hf : ∀ (x : β i), f x ∈ s ∧ f x i = x j : ι a b : β i e' : (fun a => f a j) a = (fun a => f a j) b sa : f a ∈ s ea : f a i = a ⊢ a = b [PROOFSTEP] let ⟨sb, eb⟩ := hf b [GOAL] ι : Type u β : ι → Type v I : Nonempty ι s : Set ((i : ι) → β i) hs : s ∈ Function.Embedding.sets β ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s i : ι e : ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y f : β i → (i : ι) → β i hf : ∀ (x : β i), f x ∈ s ∧ f x i = x j : ι a b : β i e' : (fun a => f a j) a = (fun a => f a j) b sa : f a ∈ s ea : f a i = a sb : f b ∈ s eb : f b i = b ⊢ a = b [PROOFSTEP] rw [← ea, ← eb, hs _ sa _ sb _ e']
{"mathlib_filename": "Mathlib.SetTheory.Cardinal.SchroederBernstein", "llama_tokens": 12034}
[GOAL] x y z✝ : ZFSet hx : IsTransitive x hy : IsTransitive y z : ZFSet hz : z ∈ x ∩ y w : ZFSet hw : w ∈ z ⊢ w ∈ x ∩ y [PROOFSTEP] rw [mem_inter] at hz ⊢ [GOAL] x y z✝ : ZFSet hx : IsTransitive x hy : IsTransitive y z : ZFSet hz : z ∈ x ∧ z ∈ y w : ZFSet hw : w ∈ z ⊢ w ∈ x ∧ w ∈ y [PROOFSTEP] exact ⟨hx.mem_trans hw hz.1, hy.mem_trans hw hz.2⟩ [GOAL] x y✝ z✝ : ZFSet h : IsTransitive x y : ZFSet hy : y ∈ ⋃₀ x z : ZFSet hz : z ∈ y ⊢ z ∈ ⋃₀ x [PROOFSTEP] rcases mem_sUnion.1 hy with ⟨w, hw, hw'⟩ [GOAL] case intro.intro x y✝ z✝ : ZFSet h : IsTransitive x y : ZFSet hy : y ∈ ⋃₀ x z : ZFSet hz : z ∈ y w : ZFSet hw : w ∈ x hw' : y ∈ w ⊢ z ∈ ⋃₀ x [PROOFSTEP] exact mem_sUnion_of_mem hz (h.mem_trans hw' hw) [GOAL] x y✝ z✝ : ZFSet H : ∀ (y : ZFSet), y ∈ x → IsTransitive y y : ZFSet hy : y ∈ ⋃₀ x z : ZFSet hz : z ∈ y ⊢ z ∈ ⋃₀ x [PROOFSTEP] rcases mem_sUnion.1 hy with ⟨w, hw, hw'⟩ [GOAL] case intro.intro x y✝ z✝ : ZFSet H : ∀ (y : ZFSet), y ∈ x → IsTransitive y y : ZFSet hy : y ∈ ⋃₀ x z : ZFSet hz : z ∈ y w : ZFSet hw : w ∈ x hw' : y ∈ w ⊢ z ∈ ⋃₀ x [PROOFSTEP] exact mem_sUnion_of_mem ((H w hw).mem_trans hz hw') hw [GOAL] x y z : ZFSet hx : IsTransitive x hy : IsTransitive y ⊢ IsTransitive (x ∪ y) [PROOFSTEP] rw [← sUnion_pair] [GOAL] x y z : ZFSet hx : IsTransitive x hy : IsTransitive y ⊢ IsTransitive (⋃₀ {x, y}) [PROOFSTEP] apply IsTransitive.sUnion' fun z => _ [GOAL] x y z : ZFSet hx : IsTransitive x hy : IsTransitive y ⊢ ∀ (z : ZFSet), z ∈ {x, y} → IsTransitive z [PROOFSTEP] intro [GOAL] x y z : ZFSet hx : IsTransitive x hy : IsTransitive y z✝ : ZFSet ⊢ z✝ ∈ {x, y} → IsTransitive z✝ [PROOFSTEP] rw [mem_pair] [GOAL] x y z : ZFSet hx : IsTransitive x hy : IsTransitive y z✝ : ZFSet ⊢ z✝ = x ∨ z✝ = y → IsTransitive z✝ [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl y z : ZFSet hy : IsTransitive y z✝ : ZFSet hx : IsTransitive z✝ ⊢ IsTransitive z✝ case inr x z : ZFSet hx : IsTransitive x z✝ : ZFSet hy : IsTransitive z✝ ⊢ IsTransitive z✝ [PROOFSTEP] assumption' [GOAL] x y✝ z✝ : ZFSet h : IsTransitive x y : ZFSet hy : y ∈ powerset x z : ZFSet hz : z ∈ y ⊢ z ∈ powerset x [PROOFSTEP] rw [mem_powerset] at hy ⊢ [GOAL] x y✝ z✝ : ZFSet h : IsTransitive x y : ZFSet hy : y ⊆ x z : ZFSet hz : z ∈ y ⊢ z ⊆ x [PROOFSTEP] exact h.subset_of_mem (hy hz) [GOAL] x y✝ z : ZFSet h : IsTransitive x y : ZFSet hy : y ∈ ⋃₀ x ⊢ y ∈ x [PROOFSTEP] rcases mem_sUnion.1 hy with ⟨z, hz, hz'⟩ [GOAL] case intro.intro x y✝ z✝ : ZFSet h : IsTransitive x y : ZFSet hy : y ∈ ⋃₀ x z : ZFSet hz : z ∈ x hz' : y ∈ z ⊢ y ∈ x [PROOFSTEP] exact h.mem_trans hz' hz
{"mathlib_filename": "Mathlib.SetTheory.ZFC.Ordinal", "llama_tokens": 1454}
[GOAL] α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ⊢ #↑t ≤ a [PROOFSTEP] rcases lt_or_le a ℵ₀ with ha | ha [GOAL] case inl α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ha : a < ℵ₀ ⊢ #↑t ≤ a [PROOFSTEP] obtain ⟨n, rfl⟩ : ∃ (n : ℕ), a = n := lt_aleph0.1 ha [GOAL] case inl.intro α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ ⊢ #↑t ≤ ↑n [PROOFSTEP] apply mk_le_iff_forall_finset_subset_card_le.2 (fun s hs ↦ ?_) [GOAL] α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t ⊢ Finset.card s ≤ n [PROOFSTEP] have A : ∀ x ∈ s, ∀ᶠ i in l, x ∈ f i := fun x hx ↦ ht x (hs hx) [GOAL] α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i ⊢ Finset.card s ≤ n [PROOFSTEP] have B : ∀ᶠ i in l, ∀ x ∈ s, x ∈ f i := (s.eventually_all).2 A [GOAL] α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i ⊢ Finset.card s ≤ n [PROOFSTEP] rcases B.exists with ⟨i, hi⟩ [GOAL] case intro α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i ⊢ Finset.card s ≤ n [PROOFSTEP] have : ∀ i, Fintype (f i) := fun i ↦ (lt_aleph0_iff_fintype.1 ((h'f i).trans_lt ha)).some [GOAL] case intro α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) ⊢ Finset.card s ≤ n [PROOFSTEP] let u : Finset α := (f i).toFinset [GOAL] case intro α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) ⊢ Finset.card s ≤ n [PROOFSTEP] have I1 : s.card ≤ u.card := by have : s ⊆ u := fun x hx ↦ by simpa only [Set.mem_toFinset] using hi x hx exact Finset.card_le_of_subset this [GOAL] α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) ⊢ Finset.card s ≤ Finset.card u [PROOFSTEP] have : s ⊆ u := fun x hx ↦ by simpa only [Set.mem_toFinset] using hi x hx [GOAL] α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) x : α hx : x ∈ s ⊢ x ∈ u [PROOFSTEP] simpa only [Set.mem_toFinset] using hi x hx [GOAL] α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this✝ : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) this : s ⊆ u ⊢ Finset.card s ≤ Finset.card u [PROOFSTEP] exact Finset.card_le_of_subset this [GOAL] case intro α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) I1 : Finset.card s ≤ Finset.card u ⊢ Finset.card s ≤ n [PROOFSTEP] have I2 : (u.card : Cardinal) ≤ n := by convert h'f i; simp only [Set.toFinset_card, mk_fintype] [GOAL] α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) I1 : Finset.card s ≤ Finset.card u ⊢ ↑(Finset.card u) ≤ ↑n [PROOFSTEP] convert h'f i [GOAL] case h.e'_3 α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) I1 : Finset.card s ≤ Finset.card u ⊢ ↑(Finset.card u) = #↑(f i) [PROOFSTEP] simp only [Set.toFinset_card, mk_fintype] [GOAL] case intro α ι : Type u inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i n : ℕ h'f : ∀ (i : ι), #↑(f i) ≤ ↑n ha : ↑n < ℵ₀ s : Finset α hs : ↑s ⊆ t A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i i : ι hi : ∀ (x : α), x ∈ s → x ∈ f i this : (i : ι) → Fintype ↑(f i) u : Finset α := toFinset (f i) I1 : Finset.card s ≤ Finset.card u I2 : ↑(Finset.card u) ≤ ↑n ⊢ Finset.card s ≤ n [PROOFSTEP] exact I1.trans (Nat.cast_le.1 I2) -- case `a` infinite: [GOAL] case inr α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ha : ℵ₀ ≤ a ⊢ #↑t ≤ a [PROOFSTEP] have : t ⊆ ⋃ i, f i := by intro x hx obtain ⟨i, hi⟩ : ∃ i, x ∈ f i := (ht x hx).exists exact mem_iUnion_of_mem i hi [GOAL] α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ha : ℵ₀ ≤ a ⊢ t ⊆ ⋃ (i : ι), f i [PROOFSTEP] intro x hx [GOAL] α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ha : ℵ₀ ≤ a x : α hx : x ∈ t ⊢ x ∈ ⋃ (i : ι), f i [PROOFSTEP] obtain ⟨i, hi⟩ : ∃ i, x ∈ f i := (ht x hx).exists [GOAL] case intro α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ha : ℵ₀ ≤ a x : α hx : x ∈ t i : ι hi : x ∈ f i ⊢ x ∈ ⋃ (i : ι), f i [PROOFSTEP] exact mem_iUnion_of_mem i hi [GOAL] case inr α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ha : ℵ₀ ≤ a this : t ⊆ ⋃ (i : ι), f i ⊢ #↑t ≤ a [PROOFSTEP] calc #t ≤ #(⋃ i, f i) := mk_le_mk_of_subset this _ ≤ sum (fun i ↦ #(f i)) := mk_iUnion_le_sum_mk _ ≤ sum (fun _ ↦ a) := (sum_le_sum _ _ h'f) _ = #ι * a := by simp _ ≤ ℵ₀ * a := (mul_le_mul_right' mk_le_aleph0 a) _ = a := aleph0_mul_eq ha [GOAL] α ι : Type u a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ha : ℵ₀ ≤ a this : t ⊆ ⋃ (i : ι), f i ⊢ (sum fun x => a) = #ι * a [PROOFSTEP] simp [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ⊢ #↑t ≤ a [PROOFSTEP] let g : ULift.{u, v} ι → Set (ULift.{v, u} α) := (ULift.down ⁻¹' ·) ∘ f ∘ ULift.down [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down ⊢ #↑t ≤ a [PROOFSTEP] suffices #(ULift.down.{v} ⁻¹' t) ≤ Cardinal.lift.{v, u} a by simpa [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down this : #↑(ULift.down ⁻¹' t) ≤ lift a ⊢ #↑t ≤ a [PROOFSTEP] simpa [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down ⊢ #↑(ULift.down ⁻¹' t) ≤ lift a [PROOFSTEP] let l' : Filter (ULift.{u} ι) := Filter.map ULift.up l [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down l' : Filter (ULift ι) := Filter.map ULift.up l ⊢ #↑(ULift.down ⁻¹' t) ≤ lift a [PROOFSTEP] have : NeBot l' := map_neBot [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down l' : Filter (ULift ι) := Filter.map ULift.up l this : NeBot l' ⊢ #↑(ULift.down ⁻¹' t) ≤ lift a [PROOFSTEP] apply mk_subtype_le_of_countable_eventually_mem_aux (ι := ULift.{u} ι) (l := l') (f := g) [GOAL] case ht α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down l' : Filter (ULift ι) := Filter.map ULift.up l this : NeBot l' ⊢ ∀ (x : ULift α), x ∈ ULift.down ⁻¹' t → ∀ᶠ (i : ULift ι) in l', x ∈ g i [PROOFSTEP] intro x hx [GOAL] case ht α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down l' : Filter (ULift ι) := Filter.map ULift.up l this : NeBot l' x : ULift α hx : x ∈ ULift.down ⁻¹' t ⊢ ∀ᶠ (i : ULift ι) in l', x ∈ g i [PROOFSTEP] simpa only [Function.comp_apply, mem_preimage, eventually_map] using ht _ hx [GOAL] case h'f α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down l' : Filter (ULift ι) := Filter.map ULift.up l this : NeBot l' ⊢ ∀ (i : ULift ι), #↑(g i) ≤ lift a [PROOFSTEP] intro i [GOAL] case h'f α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l t : Set α ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down l' : Filter (ULift ι) := Filter.map ULift.up l this : NeBot l' i : ULift ι ⊢ #↑(g i) ≤ lift a [PROOFSTEP] simpa using h'f i.down [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ⊢ #α ≤ a [PROOFSTEP] rw [← mk_univ] [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) ≤ a ⊢ #↑Set.univ ≤ a [PROOFSTEP] exact mk_subtype_le_of_countable_eventually_mem (l := l) (fun x _ ↦ ht x) h'f [GOAL] α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) = a ⊢ #α = a [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) = a ⊢ #α ≤ a [PROOFSTEP] apply mk_le_of_countable_eventually_mem ht (fun i ↦ (h'f i).le) [GOAL] case a α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) = a ⊢ a ≤ #α [PROOFSTEP] obtain ⟨i⟩ : Nonempty ι := nonempty_of_neBot l [GOAL] case a.intro α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) = a i : ι ⊢ a ≤ #α [PROOFSTEP] rw [← (h'f i)] [GOAL] case a.intro α : Type u ι : Type v a : Cardinal.{u} inst✝¹ : Countable ι f : ι → Set α l : Filter ι inst✝ : NeBot l ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i h'f : ∀ (i : ι), #↑(f i) = a i : ι ⊢ #↑(f i) ≤ #α [PROOFSTEP] exact mk_set_le (f i)
{"mathlib_filename": "Mathlib.SetTheory.Cardinal.CountableCover", "llama_tokens": 8950}
[GOAL] ⊢ lift 𝔠 = 𝔠 [PROOFSTEP] rw [← two_power_aleph0, lift_two_power, lift_aleph0, two_power_aleph0] [GOAL] c : Cardinal.{u} ⊢ 𝔠 ≤ lift c ↔ 𝔠 ≤ c [PROOFSTEP] rw [← lift_continuum.{u, v}, lift_le] [GOAL] c : Cardinal.{u} ⊢ lift c ≤ 𝔠 ↔ c ≤ 𝔠 [PROOFSTEP] rw [← lift_continuum.{u, v}, lift_le] [GOAL] c : Cardinal.{u} ⊢ 𝔠 < lift c ↔ 𝔠 < c [PROOFSTEP] rw [← lift_continuum.{u, v}, lift_lt] [GOAL] c : Cardinal.{u} ⊢ lift c < 𝔠 ↔ c < 𝔠 [PROOFSTEP] rw [← lift_continuum.{u, v}, lift_lt] [GOAL] ⊢ beth 1 = 𝔠 [PROOFSTEP] simpa using beth_succ 0 [GOAL] ⊢ #(Set ℕ) = 𝔠 [PROOFSTEP] simp [GOAL] ⊢ aleph 1 ≤ 𝔠 [PROOFSTEP] rw [← succ_aleph0] [GOAL] ⊢ Order.succ ℵ₀ ≤ 𝔠 [PROOFSTEP] exact Order.succ_le_of_lt aleph0_lt_continuum [GOAL] ⊢ 𝔠 ^ ℵ₀ = 𝔠 [PROOFSTEP] rw [← two_power_aleph0, ← power_mul, mul_eq_left le_rfl le_rfl aleph0_ne_zero]
{"mathlib_filename": "Mathlib.SetTheory.Cardinal.Continuum", "llama_tokens": 512}
[GOAL] R : Type u₁ L : Type u₂ inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ x y : L ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] suffices mkAlgHom R L (ιₜ ⁅x, y⁆ + ιₜ y * ιₜ x) = mkAlgHom R L (ιₜ x * ιₜ y) by rw [AlgHom.map_mul] at this ; simp [LieRing.of_associative_ring_bracket, ← this] [GOAL] R : Type u₁ L : Type u₂ inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ x y : L this : ↑(mkAlgHom R L) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(mkAlgHom R L) (↑ιₜ x * ↑ιₜ y) ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] rw [AlgHom.map_mul] at this [GOAL] R : Type u₁ L : Type u₂ inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ x y : L this : ↑(mkAlgHom R L) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(mkAlgHom R L) (↑ιₜ x) * ↑(mkAlgHom R L) (↑ιₜ y) ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : L), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆ [PROOFSTEP] simp [LieRing.of_associative_ring_bracket, ← this] [GOAL] R : Type u₁ L : Type u₂ inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ x y : L ⊢ ↑(mkAlgHom R L) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(mkAlgHom R L) (↑ιₜ x * ↑ιₜ y) [PROOFSTEP] exact RingQuot.mkAlgHom_rel _ (Rel.lie_compat x y) [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f✝ f : L →ₗ⁅R⁆ A ⊢ ∀ ⦃x y : TensorAlgebra R L⦄, Rel R L x y → ↑(↑(TensorAlgebra.lift R) ↑f) x = ↑(↑(TensorAlgebra.lift R) ↑f) y [PROOFSTEP] intro a b h [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f✝ f : L →ₗ⁅R⁆ A a b : TensorAlgebra R L h : Rel R L a b ⊢ ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b [PROOFSTEP] induction' h with x y [GOAL] case lie_compat R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f✝ f : L →ₗ⁅R⁆ A a b : TensorAlgebra R L x y : L ⊢ ↑(↑(TensorAlgebra.lift R) ↑f) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(↑(TensorAlgebra.lift R) ↑f) (↑ιₜ x * ↑ιₜ y) [PROOFSTEP] simp only [LieRing.of_associative_ring_bracket, map_add, TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap, LieHom.map_lie, map_mul, sub_add_cancel] [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f✝ f : L →ₗ⁅R⁆ A ⊢ (fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) ((fun f => ↑(RingQuot.liftAlgHom R) { val := ↑(TensorAlgebra.lift R) ↑f, property := (_ : ∀ ⦃a b : TensorAlgebra R L⦄, Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) }) f) = f [PROOFSTEP] ext -- Porting note: was -- simp only [ι, mkAlgHom, TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap, -- LinearMap.toFun_eq_coe, LinearMap.coe_comp, LieHom.coe_comp, AlgHom.coe_toLieHom, -- LieHom.coe_mk, Function.comp_apply, AlgHom.toLinearMap_apply, -- RingQuot.liftAlgHom_mkAlgHom_apply] [GOAL] case h R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f✝ f : L →ₗ⁅R⁆ A x✝ : L ⊢ ↑((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) ((fun f => ↑(RingQuot.liftAlgHom R) { val := ↑(TensorAlgebra.lift R) ↑f, property := (_ : ∀ ⦃a b : TensorAlgebra R L⦄, Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) }) f)) x✝ = ↑f x✝ [PROOFSTEP] simp only [LieHom.coe_comp, Function.comp_apply, AlgHom.coe_toLieHom, UniversalEnvelopingAlgebra.ι_apply, mkAlgHom] [GOAL] case h R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f✝ f : L →ₗ⁅R⁆ A x✝ : L ⊢ ↑(↑(RingQuot.liftAlgHom R) { val := ↑(TensorAlgebra.lift R) ↑f, property := (_ : ∀ ⦃a b : TensorAlgebra R L⦄, Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) }) (↑(RingQuot.mkAlgHom R (Rel R L)) (↑ιₜ x✝)) = ↑f x✝ [PROOFSTEP] rw [RingQuot.liftAlgHom_mkAlgHom_apply] [GOAL] case h R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f✝ f : L →ₗ⁅R⁆ A x✝ : L ⊢ ↑(↑(TensorAlgebra.lift R) ↑f) (↑ιₜ x✝) = ↑f x✝ [PROOFSTEP] simp only [TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap] [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A F : UniversalEnvelopingAlgebra R L →ₐ[R] A ⊢ (fun f => ↑(RingQuot.liftAlgHom R) { val := ↑(TensorAlgebra.lift R) ↑f, property := (_ : ∀ ⦃a b : TensorAlgebra R L⦄, Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) }) ((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) F) = F [PROOFSTEP] apply RingQuot.ringQuot_ext' [GOAL] case w R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A F : UniversalEnvelopingAlgebra R L →ₐ[R] A ⊢ AlgHom.comp ((fun f => ↑(RingQuot.liftAlgHom R) { val := ↑(TensorAlgebra.lift R) ↑f, property := (_ : ∀ ⦃a b : TensorAlgebra R L⦄, Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) }) ((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) F)) (RingQuot.mkAlgHom R (Rel R L)) = AlgHom.comp F (RingQuot.mkAlgHom R (Rel R L)) [PROOFSTEP] ext -- Porting note: was -- simp only [ι, mkAlgHom, TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap, -- LinearMap.toFun_eq_coe, LinearMap.coe_comp, LieHom.coe_linearMap_comp, -- AlgHom.comp_toLinearMap, Function.comp_apply, AlgHom.toLinearMap_apply, -- RingQuot.liftAlgHom_mkAlgHom_apply, AlgHom.coe_toLieHom, LieHom.coe_mk] [GOAL] case w.w.h R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A F : UniversalEnvelopingAlgebra R L →ₐ[R] A x✝ : L ⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp ((fun f => ↑(RingQuot.liftAlgHom R) { val := ↑(TensorAlgebra.lift R) ↑f, property := (_ : ∀ ⦃a b : TensorAlgebra R L⦄, Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) }) ((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) F)) (RingQuot.mkAlgHom R (Rel R L)))) ιₜ) x✝ = ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp F (RingQuot.mkAlgHom R (Rel R L)))) ιₜ) x✝ [PROOFSTEP] simp [mkAlgHom] [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A x : L ⊢ ↑(↑(lift R) f) (↑(ι R) x) = ↑f x [PROOFSTEP] rw [← Function.comp_apply (f := lift R f) (g := ι R) (x := x), ι_comp_lift] [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A x : L ⊢ ↑(↑(lift R) f) (↑(mkAlgHom R L) (↑ιₜ x)) = ↑f x [PROOFSTEP] simpa using lift_ι_apply R f x [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A ⊢ ↑g ∘ ↑(ι R) = ↑f ↔ g = ↑(lift R) f [PROOFSTEP] refine' Iff.trans _ (lift R).symm_apply_eq [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A ⊢ ↑g ∘ ↑(ι R) = ↑f ↔ ↑(lift R).symm g = f [PROOFSTEP] constructor [GOAL] case mp R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A ⊢ ↑g ∘ ↑(ι R) = ↑f → ↑(lift R).symm g = f [PROOFSTEP] intro h [GOAL] case mp R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A h : ↑g ∘ ↑(ι R) = ↑f ⊢ ↑(lift R).symm g = f [PROOFSTEP] ext [GOAL] case mp.h R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A h : ↑g ∘ ↑(ι R) = ↑f x✝ : L ⊢ ↑(↑(lift R).symm g) x✝ = ↑f x✝ [PROOFSTEP] simp [← h] [GOAL] case mpr R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A ⊢ ↑(lift R).symm g = f → ↑g ∘ ↑(ι R) = ↑f [PROOFSTEP] intro h [GOAL] case mpr R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A h : ↑(lift R).symm g = f ⊢ ↑g ∘ ↑(ι R) = ↑f [PROOFSTEP] ext [GOAL] case mpr.h R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g : UniversalEnvelopingAlgebra R L →ₐ[R] A h : ↑(lift R).symm g = f x✝ : L ⊢ (↑g ∘ ↑(ι R)) x✝ = ↑f x✝ [PROOFSTEP] simp [← h] [GOAL] R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g₁ g₂ : UniversalEnvelopingAlgebra R L →ₐ[R] A h : LieHom.comp (AlgHom.toLieHom g₁) (ι R) = LieHom.comp (AlgHom.toLieHom g₂) (ι R) ⊢ ↑(lift R).symm g₁ = ↑(lift R).symm g₂ [PROOFSTEP] ext [GOAL] case h R : Type u₁ L : Type u₂ inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L A : Type u₃ inst✝¹ : Ring A inst✝ : Algebra R A f : L →ₗ⁅R⁆ A g₁ g₂ : UniversalEnvelopingAlgebra R L →ₐ[R] A h : LieHom.comp (AlgHom.toLieHom g₁) (ι R) = LieHom.comp (AlgHom.toLieHom g₂) (ι R) x✝ : L ⊢ ↑(↑(lift R).symm g₁) x✝ = ↑(↑(lift R).symm g₂) x✝ [PROOFSTEP] simp [h]
{"mathlib_filename": "Mathlib.Algebra.Lie.UniversalEnveloping", "llama_tokens": 6692}
[GOAL] b : Ordinal.{?u.2} C : Ordinal.{?u.2} → Sort u_1 H0 : C 0 H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o o : Ordinal.{?u.2} ⊢ C o [PROOFSTEP] by_cases h : o = 0 [GOAL] case pos b : Ordinal.{?u.2} C : Ordinal.{?u.2} → Sort u_1 H0 : C 0 H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o o : Ordinal.{?u.2} h : o = 0 ⊢ C o [PROOFSTEP] rw [h] [GOAL] case pos b : Ordinal.{?u.2} C : Ordinal.{?u.2} → Sort u_1 H0 : C 0 H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o o : Ordinal.{?u.2} h : o = 0 ⊢ C 0 [PROOFSTEP] exact H0 [GOAL] case neg b : Ordinal.{?u.2} C : Ordinal.{?u.2} → Sort u_1 H0 : C 0 H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o o : Ordinal.{?u.2} h : ¬o = 0 ⊢ C o [PROOFSTEP] exact H o h (CNFRec _ H0 H (o % b ^ log b o)) [GOAL] b o : Ordinal.{u_2} h : ¬o = 0 ⊢ (invImage (fun a => a) wellFoundedRelation).1 (o % b ^ log b o) o [PROOFSTEP] exact mod_opow_log_lt_self b h [GOAL] C : Ordinal.{u_2} → Sort u_1 b : Ordinal.{u_2} H0 : C 0 H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o ⊢ CNFRec b H0 H 0 = H0 [PROOFSTEP] rw [CNFRec, dif_pos rfl] [GOAL] C : Ordinal.{u_2} → Sort u_1 b : Ordinal.{u_2} H0 : C 0 H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o ⊢ Eq.mpr (_ : C 0 = C 0) H0 = H0 [PROOFSTEP] rfl [GOAL] b o : Ordinal.{u_2} C : Ordinal.{u_2} → Sort u_1 ho : o ≠ 0 H0 : C 0 H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o ⊢ CNFRec b H0 H o = H o ho (CNFRec b H0 H (o % b ^ log b o)) [PROOFSTEP] rw [CNFRec, dif_neg ho] [GOAL] o : Ordinal.{u_1} ho : o ≠ 0 ⊢ CNF 0 o = [(0, o)] [PROOFSTEP] simp [CNF_ne_zero ho] [GOAL] o : Ordinal.{u_1} ho : o ≠ 0 ⊢ CNF 1 o = [(0, o)] [PROOFSTEP] simp [CNF_ne_zero ho] [GOAL] b o : Ordinal.{u_1} hb : b ≤ 1 ho : o ≠ 0 ⊢ CNF b o = [(0, o)] [PROOFSTEP] rcases le_one_iff.1 hb with (rfl | rfl) [GOAL] case inl o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 ≤ 1 ⊢ CNF 0 o = [(0, o)] [PROOFSTEP] exact zero_CNF ho [GOAL] case inr o : Ordinal.{u_1} ho : o ≠ 0 hb : 1 ≤ 1 ⊢ CNF 1 o = [(0, o)] [PROOFSTEP] exact one_CNF ho [GOAL] b o : Ordinal.{u_1} ho : o ≠ 0 hb : o < b ⊢ CNF b o = [(0, o)] [PROOFSTEP] simp only [CNF_ne_zero ho, log_eq_zero hb, opow_zero, div_one, mod_one, CNF_zero] [GOAL] b o : Ordinal.{u_1} ⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b 0) = 0 [PROOFSTEP] rw [CNF_zero] [GOAL] b o : Ordinal.{u_1} ⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 [] = 0 [PROOFSTEP] rfl [GOAL] b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b (o % b ^ log b o)) = o % b ^ log b o ⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b o) = o [PROOFSTEP] rw [CNF_ne_zero ho, foldr_cons, IH, div_add_mod] [GOAL] b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b o → x.fst ≤ log b o [PROOFSTEP] refine' CNFRec b _ (fun o ho H ↦ _) o [GOAL] case refine'_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.fst ≤ log b 0 [PROOFSTEP] rw [CNF_zero] [GOAL] case refine'_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ [] → x.fst ≤ log b 0 [PROOFSTEP] intro contra [GOAL] case refine'_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} contra : x ∈ [] ⊢ x.fst ≤ log b 0 [PROOFSTEP] contradiction [GOAL] case refine'_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b (o % b ^ log b o) ⊢ x ∈ CNF b o → x.fst ≤ log b o [PROOFSTEP] rw [CNF_ne_zero ho, mem_cons] [GOAL] case refine'_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b (o % b ^ log b o) ⊢ x = (log b o, o / b ^ log b o) ∨ x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b o [PROOFSTEP] rintro (rfl | h) [GOAL] case refine'_2.inl b o✝ o : Ordinal.{u} ho : o ≠ 0 H : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → (log b o, o / b ^ log b o).fst ≤ log b (o % b ^ log b o) ⊢ (log b o, o / b ^ log b o).fst ≤ log b o [PROOFSTEP] exact le_rfl [GOAL] case refine'_2.inr b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.fst ≤ log b o [PROOFSTEP] exact (H h).trans (log_mono_right _ (mod_opow_log_lt_self b ho).le) [GOAL] b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b o → 0 < x.snd [PROOFSTEP] refine' CNFRec b (by simp) (fun o ho IH ↦ _) o [GOAL] b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → 0 < x.snd [PROOFSTEP] simp [GOAL] b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.snd ⊢ x ∈ CNF b o → 0 < x.snd [PROOFSTEP] rw [CNF_ne_zero ho] [GOAL] b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.snd ⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → 0 < x.snd [PROOFSTEP] rintro (h | ⟨_, h⟩) [GOAL] case head b o✝ o : Ordinal.{u} ho : o ≠ 0 IH : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → 0 < (log b o, o / b ^ log b o).snd ⊢ 0 < (log b o, o / b ^ log b o).snd [PROOFSTEP] exact div_opow_log_pos b ho [GOAL] case tail b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.snd h : Mem x (CNF b (o % b ^ log b o)) ⊢ 0 < x.snd [PROOFSTEP] exact IH h [GOAL] b o : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b o → x.snd < b [PROOFSTEP] refine' CNFRec b _ (fun o ho IH ↦ _) o [GOAL] case refine'_1 b o : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.snd < b [PROOFSTEP] simp only [CNF_zero, not_mem_nil, IsEmpty.forall_iff] [GOAL] case refine'_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b ⊢ x ∈ CNF b o → x.snd < b [PROOFSTEP] rw [CNF_ne_zero ho] [GOAL] case refine'_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b ⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → x.snd < b [PROOFSTEP] intro h [GOAL] case refine'_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b h : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) ⊢ x.snd < b [PROOFSTEP] cases' (mem_cons.mp h) with h h [GOAL] case refine'_2.inl b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x = (log b o, o / b ^ log b o) ⊢ x.snd < b [PROOFSTEP] rw [h] [GOAL] case refine'_2.inl b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x = (log b o, o / b ^ log b o) ⊢ (log b o, o / b ^ log b o).snd < b [PROOFSTEP] simpa only using div_opow_log_lt o hb [GOAL] case refine'_2.inr b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.snd < b [PROOFSTEP] exact IH h [GOAL] b o : Ordinal.{u_1} ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) [PROOFSTEP] refine' CNFRec b _ (fun o ho IH ↦ _) o [GOAL] case refine'_1 b o : Ordinal.{u_1} ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b 0)) [PROOFSTEP] simp only [CNF_zero] [GOAL] case refine'_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) [PROOFSTEP] cases' le_or_lt b 1 with hb hb [GOAL] case refine'_2.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : b ≤ 1 ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) [PROOFSTEP] simp only [CNF_of_le_one hb ho, map] [GOAL] case refine'_2.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) [PROOFSTEP] cases' lt_or_le o b with hob hbo [GOAL] case refine'_2.inr.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hob : o < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) [PROOFSTEP] simp only [CNF_of_lt ho hob, map] [GOAL] case refine'_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) [PROOFSTEP] rw [CNF_ne_zero ho, map_cons, sorted_cons] [GOAL] case refine'_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ (∀ (b_1 : Ordinal.{u_1}), b_1 ∈ map Prod.fst (CNF b (o % b ^ log b o)) → (log b o, o / b ^ log b o).fst > b_1) ∧ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) [PROOFSTEP] refine' ⟨fun a H ↦ _, IH⟩ [GOAL] case refine'_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a : Ordinal.{u_1} H : a ∈ map Prod.fst (CNF b (o % b ^ log b o)) ⊢ (log b o, o / b ^ log b o).fst > a [PROOFSTEP] rw [mem_map] at H [GOAL] case refine'_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a : Ordinal.{u_1} H : ∃ a_1, a_1 ∈ CNF b (o % b ^ log b o) ∧ a_1.fst = a ⊢ (log b o, o / b ^ log b o).fst > a [PROOFSTEP] rcases H with ⟨⟨a, a'⟩, H, rfl⟩ [GOAL] case refine'_2.inr.inr.intro.mk.intro b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a a' : Ordinal.{u_1} H : (a, a') ∈ CNF b (o % b ^ log b o) ⊢ (log b o, o / b ^ log b o).fst > (a, a').fst [PROOFSTEP] exact (CNF_fst_le_log H).trans_lt (log_mod_opow_log_lt_log_self hb ho hbo)
{"mathlib_filename": "Mathlib.SetTheory.Ordinal.CantorNormalForm", "llama_tokens": 5800}
[GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ⊢ IsOpen {a} ↔ ¬IsLimit a [PROOFSTEP] refine' ⟨fun h ⟨h₀, hsucc⟩ => _, fun ha => _⟩ [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} h : IsOpen {a} x✝ : IsLimit a h₀ : a ≠ 0 hsucc : ∀ (a_1 : Ordinal.{u}), a_1 < a → succ a_1 < a ⊢ False [PROOFSTEP] obtain ⟨b, c, hbc, hbc'⟩ := (mem_nhds_iff_exists_Ioo_subset' ⟨0, Ordinal.pos_iff_ne_zero.2 h₀⟩ ⟨_, lt_succ a⟩).1 (h.mem_nhds rfl) [GOAL] case refine'_1.intro.intro.intro s : Set Ordinal.{u} a : Ordinal.{u} h : IsOpen {a} x✝ : IsLimit a h₀ : a ≠ 0 hsucc : ∀ (a_1 : Ordinal.{u}), a_1 < a → succ a_1 < a b c : Ordinal.{u} hbc : a ∈ Set.Ioo b c hbc' : Set.Ioo b c ⊆ {a} ⊢ False [PROOFSTEP] have hba := hsucc b hbc.1 [GOAL] case refine'_1.intro.intro.intro s : Set Ordinal.{u} a : Ordinal.{u} h : IsOpen {a} x✝ : IsLimit a h₀ : a ≠ 0 hsucc : ∀ (a_1 : Ordinal.{u}), a_1 < a → succ a_1 < a b c : Ordinal.{u} hbc : a ∈ Set.Ioo b c hbc' : Set.Ioo b c ⊆ {a} hba : succ b < a ⊢ False [PROOFSTEP] exact hba.ne (hbc' ⟨lt_succ b, hba.trans hbc.2⟩) [GOAL] case refine'_2 s : Set Ordinal.{u} a : Ordinal.{u} ha : ¬IsLimit a ⊢ IsOpen {a} [PROOFSTEP] rcases zero_or_succ_or_limit a with (rfl | ⟨b, rfl⟩ | ha') [GOAL] case refine'_2.inl s : Set Ordinal.{u} ha : ¬IsLimit 0 ⊢ IsOpen {0} [PROOFSTEP] rw [← bot_eq_zero, ← Set.Iic_bot, ← Iio_succ] [GOAL] case refine'_2.inl s : Set Ordinal.{u} ha : ¬IsLimit 0 ⊢ IsOpen (Set.Iio (succ ⊥)) [PROOFSTEP] exact isOpen_Iio [GOAL] case refine'_2.inr.inl.intro s : Set Ordinal.{u} b : Ordinal.{u} ha : ¬IsLimit (succ b) ⊢ IsOpen {succ b} [PROOFSTEP] rw [← Set.Icc_self, Icc_succ_left, ← Ioo_succ_right] [GOAL] case refine'_2.inr.inl.intro s : Set Ordinal.{u} b : Ordinal.{u} ha : ¬IsLimit (succ b) ⊢ IsOpen (Set.Ioo b (succ (succ b))) [PROOFSTEP] exact isOpen_Ioo [GOAL] case refine'_2.inr.inr s : Set Ordinal.{u} a : Ordinal.{u} ha : ¬IsLimit a ha' : IsLimit a ⊢ IsOpen {a} [PROOFSTEP] exact (ha ha').elim [GOAL] s : Set Ordinal.{u} a✝ : Ordinal.{u} a : Ordinal.{u_1} ⊢ 𝓝[Set.Iio a] a = 𝓝[{a}ᶜ] a [PROOFSTEP] rw [← nhds_left'_sup_nhds_right', nhds_right', sup_bot_eq] -- todo: generalize to a `SuccOrder` [GOAL] s : Set Ordinal.{u} a✝ : Ordinal.{u} a : Ordinal.{u_1} ⊢ 𝓝[Set.Iic a] a = 𝓝 a [PROOFSTEP] rw [← nhds_left_sup_nhds_right', nhds_right', sup_bot_eq] -- todo: generalize to a `SuccOrder` [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ⊢ IsOpen s ↔ ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s [PROOFSTEP] refine isOpen_iff_mem_nhds.trans <| forall₂_congr fun o ho => ?_ [GOAL] s : Set Ordinal.{u} a o : Ordinal.{u} ho : o ∈ s ⊢ s ∈ 𝓝 o ↔ IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s [PROOFSTEP] by_cases ho' : IsLimit o [GOAL] case pos s : Set Ordinal.{u} a o : Ordinal.{u} ho : o ∈ s ho' : IsLimit o ⊢ s ∈ 𝓝 o ↔ IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s [PROOFSTEP] simp only [(nhdsBasis_Ioc ho'.1).mem_iff, ho', true_implies] [GOAL] case pos s : Set Ordinal.{u} a o : Ordinal.{u} ho : o ∈ s ho' : IsLimit o ⊢ (∃ i, i < o ∧ Set.Ioc i o ⊆ s) ↔ ∃ a, a < o ∧ Set.Ioo a o ⊆ s [PROOFSTEP] refine exists_congr fun a => and_congr_right fun ha => ?_ [GOAL] case pos s : Set Ordinal.{u} a✝ o : Ordinal.{u} ho : o ∈ s ho' : IsLimit o a : Ordinal.{u} ha : a < o ⊢ Set.Ioc a o ⊆ s ↔ Set.Ioo a o ⊆ s [PROOFSTEP] simp only [← Set.Ioo_insert_right ha, Set.insert_subset_iff, ho, true_and] [GOAL] case neg s : Set Ordinal.{u} a o : Ordinal.{u} ho : o ∈ s ho' : ¬IsLimit o ⊢ s ∈ 𝓝 o ↔ IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s [PROOFSTEP] simp [nhds_eq_pure.2 ho', ho, ho'] [GOAL] s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} ⊢ TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} ⊢ a ∈ closure s → a ∈ closure (s ∩ Iic a) [PROOFSTEP] simp only [mem_closure_iff_nhdsWithin_neBot, inter_comm s, nhdsWithin_inter', nhds_left_eq_nhds] [GOAL] case tfae_1_to_2 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} ⊢ Filter.NeBot (𝓝[s] a) → Filter.NeBot (𝓝 a ⊓ Filter.principal s) [PROOFSTEP] exact id [GOAL] s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) ⊢ TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) ⊢ a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a [PROOFSTEP] intro h [GOAL] case tfae_2_to_3 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) h : a ∈ closure (s ∩ Iic a) ⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a [PROOFSTEP] cases' (s ∩ Iic a).eq_empty_or_nonempty with he hne [GOAL] case tfae_2_to_3.inl s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) h : a ∈ closure (s ∩ Iic a) he : s ∩ Iic a = ∅ ⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a [PROOFSTEP] simp [he] at h [GOAL] case tfae_2_to_3.inr s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) h : a ∈ closure (s ∩ Iic a) hne : Set.Nonempty (s ∩ Iic a) ⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a [PROOFSTEP] refine ⟨hne, (isLUB_of_mem_closure ?_ h).csSup_eq hne⟩ [GOAL] case tfae_2_to_3.inr s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) h : a ∈ closure (s ∩ Iic a) hne : Set.Nonempty (s ∩ Iic a) ⊢ a ∈ upperBounds (s ∩ Iic a) [PROOFSTEP] exact fun x hx => hx.2 [GOAL] s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a ⊢ TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a] [PROOFSTEP] tfae_have 3 → 4 [GOAL] case tfae_3_to_4 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a ⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a [PROOFSTEP] exact fun h => ⟨_, inter_subset_left _ _, h.1, bddAbove_Iic.mono (inter_subset_right _ _), h.2⟩ [GOAL] s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a ⊢ TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a] [PROOFSTEP] tfae_have 4 → 5 [GOAL] case tfae_4_to_5 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a ⊢ (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a [PROOFSTEP] rintro ⟨t, hts, hne, hbdd, rfl⟩ [GOAL] case tfae_4_to_5.intro.intro.intro.intro s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t ⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t [PROOFSTEP] have hlub : IsLUB t (sSup t) := isLUB_csSup hne hbdd [GOAL] case tfae_4_to_5.intro.intro.intro.intro s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) ⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t [PROOFSTEP] let ⟨y, hyt⟩ := hne [GOAL] case tfae_4_to_5.intro.intro.intro.intro s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t ⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t [PROOFSTEP] classical refine ⟨succ (sSup t), succ_ne_zero _, fun x _ => if x ∈ t then x else y, fun x _ => ?_, ?_⟩ · simp only split_ifs with h <;> exact hts ‹_› · refine le_antisymm (bsup_le fun x _ => ?_) (csSup_le hne fun x hx => ?_) · split_ifs <;> exact hlub.1 ‹_› · refine (if_pos hx).symm.trans_le (le_bsup _ _ <| (hlub.1 hx).trans_lt (lt_succ _)) [GOAL] case tfae_4_to_5.intro.intro.intro.intro s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t ⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t [PROOFSTEP] refine ⟨succ (sSup t), succ_ne_zero _, fun x _ => if x ∈ t then x else y, fun x _ => ?_, ?_⟩ [GOAL] case tfae_4_to_5.intro.intro.intro.intro.refine_1 s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} x✝ : x < succ (sSup t) ⊢ (fun x x_1 => if x ∈ t then x else y) x x✝ ∈ s [PROOFSTEP] simp only [GOAL] case tfae_4_to_5.intro.intro.intro.intro.refine_1 s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} x✝ : x < succ (sSup t) ⊢ (if x ∈ t then x else y) ∈ s [PROOFSTEP] split_ifs with h [GOAL] case pos s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} x✝ : x < succ (sSup t) h : x ∈ t ⊢ x ∈ s [PROOFSTEP] exact hts ‹_› [GOAL] case neg s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} x✝ : x < succ (sSup t) h : ¬x ∈ t ⊢ y ∈ s [PROOFSTEP] exact hts ‹_› [GOAL] case tfae_4_to_5.intro.intro.intro.intro.refine_2 s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t ⊢ (bsup (succ (sSup t)) fun x x_1 => if x ∈ t then x else y) = sSup t [PROOFSTEP] refine le_antisymm (bsup_le fun x _ => ?_) (csSup_le hne fun x hx => ?_) [GOAL] case tfae_4_to_5.intro.intro.intro.intro.refine_2.refine_1 s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} x✝ : x < succ (sSup t) ⊢ (if x ∈ t then x else y) ≤ sSup t [PROOFSTEP] split_ifs [GOAL] case pos s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} x✝ : x < succ (sSup t) h✝ : x ∈ t ⊢ x ≤ sSup t [PROOFSTEP] exact hlub.1 ‹_› [GOAL] case neg s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} x✝ : x < succ (sSup t) h✝ : ¬x ∈ t ⊢ y ≤ sSup t [PROOFSTEP] exact hlub.1 ‹_› [GOAL] case tfae_4_to_5.intro.intro.intro.intro.refine_2.refine_2 s✝ : Set Ordinal.{u} a : Ordinal.{u} s t : Set Ordinal.{u} hts : t ⊆ s hne : Set.Nonempty t hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} hx : x ∈ t ⊢ x ≤ bsup (succ (sSup t)) fun x x_1 => if x ∈ t then x else y [PROOFSTEP] refine (if_pos hx).symm.trans_le (le_bsup _ _ <| (hlub.1 hx).trans_lt (lt_succ _)) [GOAL] s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a ⊢ TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a] [PROOFSTEP] tfae_have 5 → 6 [GOAL] case tfae_5_to_6 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a ⊢ (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) → ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a [PROOFSTEP] rintro ⟨o, h₀, f, hfs, rfl⟩ [GOAL] case tfae_5_to_6.intro.intro.intro.intro s✝ : Set Ordinal.{u} a : Ordinal.{u} s : Set Ordinal.{u} o : Ordinal.{u} h₀ : o ≠ 0 f : (x : Ordinal.{u}) → x < o → Ordinal.{u} hfs : ∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s tfae_1_to_2 : bsup o f ∈ closure s → bsup o f ∈ closure (s ∩ Iic (bsup o f)) tfae_2_to_3 : bsup o f ∈ closure (s ∩ Iic (bsup o f)) → Set.Nonempty (s ∩ Iic (bsup o f)) ∧ sSup (s ∩ Iic (bsup o f)) = bsup o f tfae_3_to_4 : Set.Nonempty (s ∩ Iic (bsup o f)) ∧ sSup (s ∩ Iic (bsup o f)) = bsup o f → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = bsup o f tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = bsup o f) → ∃ o_1, o_1 ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o_1), f_1 x hx ∈ s) ∧ bsup o_1 f_1 = bsup o f ⊢ ∃ ι, Nonempty ι ∧ ∃ f_1, (∀ (i : ι), f_1 i ∈ s) ∧ sup f_1 = bsup o f [PROOFSTEP] exact ⟨_, out_nonempty_iff_ne_zero.2 h₀, familyOfBFamily o f, fun _ => hfs _ _, rfl⟩ [GOAL] s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a tfae_5_to_6 : (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) → ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a ⊢ TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a] [PROOFSTEP] tfae_have 6 → 1 [GOAL] case tfae_6_to_1 s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a tfae_5_to_6 : (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) → ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a ⊢ (∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a) → a ∈ closure s [PROOFSTEP] rintro ⟨ι, hne, f, hfs, rfl⟩ [GOAL] case tfae_6_to_1.intro.intro.intro.intro s✝ : Set Ordinal.{u} a : Ordinal.{u} s : Set Ordinal.{u} ι : Type u hne : Nonempty ι f : ι → Ordinal.{u} hfs : ∀ (i : ι), f i ∈ s tfae_1_to_2 : sup f ∈ closure s → sup f ∈ closure (s ∩ Iic (sup f)) tfae_2_to_3 : sup f ∈ closure (s ∩ Iic (sup f)) → Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f) → ∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f tfae_5_to_6 : (∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f) → ∃ ι_1, Nonempty ι_1 ∧ ∃ f_1, (∀ (i : ι_1), f_1 i ∈ s) ∧ sup f_1 = sup f ⊢ sup f ∈ closure s [PROOFSTEP] rw [sup, iSup] [GOAL] case tfae_6_to_1.intro.intro.intro.intro s✝ : Set Ordinal.{u} a : Ordinal.{u} s : Set Ordinal.{u} ι : Type u hne : Nonempty ι f : ι → Ordinal.{u} hfs : ∀ (i : ι), f i ∈ s tfae_1_to_2 : sup f ∈ closure s → sup f ∈ closure (s ∩ Iic (sup f)) tfae_2_to_3 : sup f ∈ closure (s ∩ Iic (sup f)) → Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f tfae_3_to_4 : Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f) → ∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f tfae_5_to_6 : (∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f) → ∃ ι_1, Nonempty ι_1 ∧ ∃ f_1, (∀ (i : ι_1), f_1 i ∈ s) ∧ sup f_1 = sup f ⊢ sSup (Set.range f) ∈ closure s [PROOFSTEP] exact closure_mono (range_subset_iff.2 hfs) <| csSup_mem_closure (range_nonempty f) (bddAbove_range.{u, u} f) [GOAL] s✝ : Set Ordinal.{u} a✝ a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a tfae_4_to_5 : (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a tfae_5_to_6 : (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) → ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a tfae_6_to_1 : (∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a) → a ∈ closure s ⊢ TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a] [PROOFSTEP] tfae_finish [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ⊢ (∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a) ↔ ∃ ι x f, (∀ (i : ι), f i ∈ s) ∧ sup f = a [PROOFSTEP] simp only [exists_prop] [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} hs : IsClosed s ⊢ a ∈ s ↔ ∃ ι _hι f, (∀ (i : ι), f i ∈ s) ∧ sup f = a [PROOFSTEP] rw [← mem_closure_iff_sup, hs.closure_eq] [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ⊢ (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) ↔ ∃ o _ho f, (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) ∧ bsup o f = a [PROOFSTEP] simp only [exists_prop] [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} hs : IsClosed s ⊢ a ∈ s ↔ ∃ o _ho f, (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) ∧ bsup o f = a [PROOFSTEP] rw [← mem_closure_iff_bsup, hs.closure_eq] [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ⊢ IsClosed s ↔ ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s [PROOFSTEP] use fun hs ι hι f hf => (mem_closed_iff_sup hs).2 ⟨ι, hι, f, hf, rfl⟩ [GOAL] case mpr s : Set Ordinal.{u} a : Ordinal.{u} ⊢ (∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) → IsClosed s [PROOFSTEP] rw [← closure_subset_iff_isClosed] [GOAL] case mpr s : Set Ordinal.{u} a : Ordinal.{u} ⊢ (∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) → closure s ⊆ s [PROOFSTEP] intro h x hx [GOAL] case mpr s : Set Ordinal.{u} a : Ordinal.{u} h : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s x : Ordinal.{u} hx : x ∈ closure s ⊢ x ∈ s [PROOFSTEP] rcases mem_closure_iff_sup.1 hx with ⟨ι, hι, f, hf, rfl⟩ [GOAL] case mpr.intro.intro.intro.intro s : Set Ordinal.{u} a : Ordinal.{u} h : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s hx : sup f ∈ closure s ⊢ sup f ∈ s [PROOFSTEP] exact h hι f hf [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ⊢ IsClosed s ↔ ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s [PROOFSTEP] rw [isClosed_iff_sup] [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ⊢ (∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) ↔ ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s [PROOFSTEP] refine' ⟨fun H o ho f hf => H (out_nonempty_iff_ne_zero.2 ho) _ _, fun H ι hι f hf => _⟩ [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} H : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s o : Ordinal.{u} ho : o ≠ 0 f : (a : Ordinal.{u}) → a < o → Ordinal.{u} hf : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s ⊢ ∀ (i : (Quotient.out o).α), familyOfBFamily o f i ∈ s [PROOFSTEP] exact fun i => hf _ _ [GOAL] case refine'_2 s : Set Ordinal.{u} a : Ordinal.{u} H : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s ⊢ sup f ∈ s [PROOFSTEP] rw [← bsup_eq_sup] [GOAL] case refine'_2 s : Set Ordinal.{u} a : Ordinal.{u} H : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s ⊢ bsup (type WellOrderingRel) (bfamilyOfFamily f) ∈ s [PROOFSTEP] apply H (type_ne_zero_iff_nonempty.2 hι) [GOAL] case refine'_2.a s : Set Ordinal.{u} a : Ordinal.{u} H : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s ⊢ ∀ (i : Ordinal.{u}) (hi : i < type WellOrderingRel), bfamilyOfFamily f i hi ∈ s [PROOFSTEP] exact fun i hi => hf _ [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ha : a ∈ frontier s ⊢ IsLimit a [PROOFSTEP] simp only [frontier_eq_closure_inter_closure, Set.mem_inter_iff, mem_closure_iff] at ha [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ha : (∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ) ⊢ IsLimit a [PROOFSTEP] by_contra h [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ha : (∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ) h : ¬IsLimit a ⊢ False [PROOFSTEP] rw [← isOpen_singleton_iff] at h [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} ha : (∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ) h : IsOpen {a} ⊢ False [PROOFSTEP] rcases ha.1 _ h rfl with ⟨b, hb, hb'⟩ [GOAL] case intro.intro s : Set Ordinal.{u} a : Ordinal.{u} ha : (∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ) h : IsOpen {a} b : Ordinal.{u} hb : b ∈ {a} hb' : b ∈ s ⊢ False [PROOFSTEP] rcases ha.2 _ h rfl with ⟨c, hc, hc'⟩ [GOAL] case intro.intro.intro.intro s : Set Ordinal.{u} a : Ordinal.{u} ha : (∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ) h : IsOpen {a} b : Ordinal.{u} hb : b ∈ {a} hb' : b ∈ s c : Ordinal.{u} hc : c ∈ {a} hc' : c ∈ sᶜ ⊢ False [PROOFSTEP] rw [Set.mem_singleton_iff] at * [GOAL] case intro.intro.intro.intro s : Set Ordinal.{u} a : Ordinal.{u} ha : (∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ) h : IsOpen {a} b : Ordinal.{u} hb : b = a hb' : b ∈ s c : Ordinal.{u} hc : c = a hc' : c ∈ sᶜ ⊢ False [PROOFSTEP] subst hb [GOAL] case intro.intro.intro.intro s : Set Ordinal.{u} b : Ordinal.{u} hb' : b ∈ s c : Ordinal.{u} hc' : c ∈ sᶜ ha : (∀ (o : Set Ordinal.{u}), IsOpen o → b ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → b ∈ o → Set.Nonempty (o ∩ sᶜ) h : IsOpen {b} hc : c = b ⊢ False [PROOFSTEP] subst hc [GOAL] case intro.intro.intro.intro s : Set Ordinal.{u} c : Ordinal.{u} hc' : c ∈ sᶜ hb' : c ∈ s ha : (∀ (o : Set Ordinal.{u}), IsOpen o → c ∈ o → Set.Nonempty (o ∩ s)) ∧ ∀ (o : Set Ordinal.{u}), IsOpen o → c ∈ o → Set.Nonempty (o ∩ sᶜ) h : IsOpen {c} ⊢ False [PROOFSTEP] exact hc' hb' [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} ⊢ IsNormal f ↔ StrictMono f ∧ Continuous f [PROOFSTEP] refine' ⟨fun h => ⟨h.strictMono, _⟩, _⟩ [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f ⊢ Continuous f [PROOFSTEP] rw [continuous_def] [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f ⊢ ∀ (s : Set Ordinal.{u}), IsOpen s → IsOpen (f ⁻¹' s) [PROOFSTEP] intro s hs [GOAL] case refine'_1 s✝ : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f s : Set Ordinal.{u} hs : IsOpen s ⊢ IsOpen (f ⁻¹' s) [PROOFSTEP] rw [isOpen_iff] at * [GOAL] case refine'_1 s✝ : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f s : Set Ordinal.{u} hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s ⊢ ∀ (o : Ordinal.{u}), o ∈ f ⁻¹' s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s [PROOFSTEP] intro o ho ho' [GOAL] case refine'_1 s✝ : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f s : Set Ordinal.{u} hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s o : Ordinal.{u} ho : o ∈ f ⁻¹' s ho' : IsLimit o ⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s [PROOFSTEP] rcases hs _ ho (h.isLimit ho') with ⟨a, ha, has⟩ [GOAL] case refine'_1.intro.intro s✝ : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f s : Set Ordinal.{u} hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s o : Ordinal.{u} ho : o ∈ f ⁻¹' s ho' : IsLimit o a : Ordinal.{u} ha : a < f o has : Set.Ioo a (f o) ⊆ s ⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s [PROOFSTEP] rw [← IsNormal.bsup_eq.{u, u} h ho', lt_bsup] at ha [GOAL] case refine'_1.intro.intro s✝ : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f s : Set Ordinal.{u} hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s o : Ordinal.{u} ho : o ∈ f ⁻¹' s ho' : IsLimit o a : Ordinal.{u} ha : ∃ i hi, a < f i has : Set.Ioo a (f o) ⊆ s ⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s [PROOFSTEP] rcases ha with ⟨b, hb, hab⟩ [GOAL] case refine'_1.intro.intro.intro.intro s✝ : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : IsNormal f s : Set Ordinal.{u} hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s o : Ordinal.{u} ho : o ∈ f ⁻¹' s ho' : IsLimit o a : Ordinal.{u} has : Set.Ioo a (f o) ⊆ s b : Ordinal.{u} hb : b < o hab : a < f b ⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s [PROOFSTEP] exact ⟨b, hb, fun c hc => Set.mem_preimage.2 (has ⟨hab.trans (h.strictMono hc.1), h.strictMono hc.2⟩)⟩ [GOAL] case refine'_2 s : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} ⊢ StrictMono f ∧ Continuous f → IsNormal f [PROOFSTEP] rw [isNormal_iff_strictMono_limit] [GOAL] case refine'_2 s : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} ⊢ StrictMono f ∧ Continuous f → StrictMono f ∧ ∀ (o : Ordinal.{u}), IsLimit o → ∀ (a : Ordinal.{u}), (∀ (b : Ordinal.{u}), b < o → f b ≤ a) → f o ≤ a [PROOFSTEP] rintro ⟨h, h'⟩ [GOAL] case refine'_2.intro s : Set Ordinal.{u} a : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h : StrictMono f h' : Continuous f ⊢ StrictMono f ∧ ∀ (o : Ordinal.{u}), IsLimit o → ∀ (a : Ordinal.{u}), (∀ (b : Ordinal.{u}), b < o → f b ≤ a) → f o ≤ a [PROOFSTEP] refine' ⟨h, fun o ho a h => _⟩ [GOAL] case refine'_2.intro s : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h✝ : StrictMono f h' : Continuous f o : Ordinal.{u} ho : IsLimit o a : Ordinal.{u} h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a ⊢ f o ≤ a [PROOFSTEP] suffices : o ∈ f ⁻¹' Set.Iic a [GOAL] case refine'_2.intro s : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h✝ : StrictMono f h' : Continuous f o : Ordinal.{u} ho : IsLimit o a : Ordinal.{u} h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a this : o ∈ f ⁻¹' Set.Iic a ⊢ f o ≤ a case this s : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h✝ : StrictMono f h' : Continuous f o : Ordinal.{u} ho : IsLimit o a : Ordinal.{u} h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a ⊢ o ∈ f ⁻¹' Set.Iic a [PROOFSTEP] exact Set.mem_preimage.1 this [GOAL] case this s : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h✝ : StrictMono f h' : Continuous f o : Ordinal.{u} ho : IsLimit o a : Ordinal.{u} h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a ⊢ o ∈ f ⁻¹' Set.Iic a [PROOFSTEP] rw [mem_closed_iff_sup (IsClosed.preimage h' (@isClosed_Iic _ _ _ _ a))] [GOAL] case this s : Set Ordinal.{u} a✝ : Ordinal.{u} f : Ordinal.{u} → Ordinal.{u} h✝ : StrictMono f h' : Continuous f o : Ordinal.{u} ho : IsLimit o a : Ordinal.{u} h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a ⊢ ∃ ι _hι f_1, (∀ (i : ι), f_1 i ∈ f ⁻¹' Set.Iic a) ∧ sup f_1 = o [PROOFSTEP] exact ⟨_, out_nonempty_iff_ne_zero.2 ho.1, typein (· < ·), fun i => h _ (typein_lt_self i), sup_typein_limit ho.2⟩ [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s ⊢ IsNormal (enumOrd s) ↔ IsClosed s [PROOFSTEP] have Hs := enumOrd_strictMono hs [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) ⊢ IsNormal (enumOrd s) ↔ IsClosed s [PROOFSTEP] refine' ⟨fun h => isClosed_iff_sup.2 fun {ι} hι f hf => _, fun h => (isNormal_iff_strictMono_limit _).2 ⟨Hs, fun a ha o H => _⟩⟩ [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s ⊢ sup f ∈ s [PROOFSTEP] let g : ι → Ordinal.{u} := fun i => (enumOrdOrderIso hs).symm ⟨_, hf i⟩ [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } ⊢ sup f ∈ s [PROOFSTEP] suffices enumOrd s (sup.{u, u} g) = sup.{u, u} f by rw [← this] exact enumOrd_mem hs _ [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } this : enumOrd s (sup g) = sup f ⊢ sup f ∈ s [PROOFSTEP] rw [← this] [GOAL] s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } this : enumOrd s (sup g) = sup f ⊢ enumOrd s (sup g) ∈ s [PROOFSTEP] exact enumOrd_mem hs _ [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } ⊢ enumOrd s (sup g) = sup f [PROOFSTEP] rw [@IsNormal.sup.{u, u, u} _ h ι g hι] [GOAL] case refine'_1 s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } ⊢ sup (enumOrd s ∘ g) = sup f [PROOFSTEP] congr [GOAL] case refine'_1.e_f s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } ⊢ enumOrd s ∘ g = f [PROOFSTEP] ext x [GOAL] case refine'_1.e_f.h s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } x : ι ⊢ (enumOrd s ∘ g) x = f x [PROOFSTEP] change ((enumOrdOrderIso hs) _).val = f x [GOAL] case refine'_1.e_f.h s : Set Ordinal.{u} a : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsNormal (enumOrd s) ι : Type u hι : Nonempty ι f : ι → Ordinal.{u} hf : ∀ (i : ι), f i ∈ s g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) } x : ι ⊢ ↑(↑(enumOrdOrderIso hs) (g x)) = f x [PROOFSTEP] rw [OrderIso.apply_symm_apply] [GOAL] case refine'_2 s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : IsClosed s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o ⊢ enumOrd s a ≤ o [PROOFSTEP] rw [isClosed_iff_bsup] at h [GOAL] case refine'_2 s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o ⊢ enumOrd s a ≤ o [PROOFSTEP] suffices : enumOrd s a ≤ bsup.{u, u} a fun b (_ : b < a) => enumOrd s b [GOAL] case refine'_2 s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o this : enumOrd s a ≤ bsup a fun b x => enumOrd s b ⊢ enumOrd s a ≤ o case this s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o ⊢ enumOrd s a ≤ bsup a fun b x => enumOrd s b [PROOFSTEP] exact this.trans (bsup_le H) [GOAL] case this s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o ⊢ enumOrd s a ≤ bsup a fun b x => enumOrd s b [PROOFSTEP] cases' enumOrd_surjective hs _ (h ha.1 (fun b _ => enumOrd s b) fun b _ => enumOrd_mem hs b) with b hb [GOAL] case this.intro s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o b : Ordinal.{u} hb : enumOrd s b = bsup a fun b x => enumOrd s b ⊢ enumOrd s a ≤ bsup a fun b x => enumOrd s b [PROOFSTEP] rw [← hb] [GOAL] case this.intro s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o b : Ordinal.{u} hb : enumOrd s b = bsup a fun b x => enumOrd s b ⊢ enumOrd s a ≤ enumOrd s b [PROOFSTEP] apply Hs.monotone [GOAL] case this.intro.a s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o b : Ordinal.{u} hb : enumOrd s b = bsup a fun b x => enumOrd s b ⊢ a ≤ b [PROOFSTEP] by_contra' hba [GOAL] case this.intro.a s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o b : Ordinal.{u} hb : enumOrd s b = bsup a fun b x => enumOrd s b hba : b < a ⊢ False [PROOFSTEP] apply (Hs (lt_succ b)).not_le [GOAL] case this.intro.a s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o b : Ordinal.{u} hb : enumOrd s b = bsup a fun b x => enumOrd s b hba : b < a ⊢ enumOrd s (succ b) ≤ enumOrd s b [PROOFSTEP] rw [hb] [GOAL] case this.intro.a s : Set Ordinal.{u} a✝ : Ordinal.{u} hs : Set.Unbounded (fun x x_1 => x < x_1) s Hs : StrictMono (enumOrd s) h : ∀ {o : Ordinal.{u}}, o ≠ 0 → ∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s a : Ordinal.{u} ha : IsLimit a o : Ordinal.{u} H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o b : Ordinal.{u} hb : enumOrd s b = bsup a fun b x => enumOrd s b hba : b < a ⊢ enumOrd s (succ b) ≤ bsup a fun b x => enumOrd s b [PROOFSTEP] exact le_bsup.{u, u} _ _ (ha.2 _ hba)
{"mathlib_filename": "Mathlib.SetTheory.Ordinal.Topology", "llama_tokens": 24697}
[GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' N O : LieSubmodule R L M h : (fun s => s.carrier) N = (fun s => s.carrier) O ⊢ N = O [PROOFSTEP] cases N [GOAL] case mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' O : LieSubmodule R L M toSubmodule✝ : Submodule R M lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier h : (fun s => s.carrier) { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = (fun s => s.carrier) O ⊢ { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = O [PROOFSTEP] cases O [GOAL] case mk.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M toSubmodule✝¹ : Submodule R M lie_mem✝¹ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝¹.carrier → ⁅x, m⁆ ∈ toSubmodule✝¹.carrier toSubmodule✝ : Submodule R M lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier h : (fun s => s.carrier) { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = (fun s => s.carrier) { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } ⊢ { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toSubmodule R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M toSubmodule✝¹ : Submodule R M lie_mem✝¹ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝¹.carrier → ⁅x, m⁆ ∈ toSubmodule✝¹.carrier toSubmodule✝ : Submodule R M lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier h : (fun s => s.carrier) { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = (fun s => s.carrier) { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } ⊢ toSubmodule✝¹ = toSubmodule✝ [PROOFSTEP] exact SetLike.coe_injective' h [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M src✝ : Submodule R M := 0 x : L m : M h : m ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, m⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rw [(Submodule.mem_bot R).1 h] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M src✝ : Submodule R M := 0 x : L m : M h : m ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, 0⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] apply lie_zero [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M p : Submodule R M h : ∀ {x : L} {m : M}, m ∈ { toAddSubmonoid := p.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, m⁆ ∈ { toAddSubmonoid := p.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ↑{ toSubmodule := { toAddSubmonoid := p.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ p.carrier → c • x ∈ p.carrier) }, lie_mem := h } = p [PROOFSTEP] cases p [GOAL] case mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M toAddSubmonoid✝ : AddSubmonoid M smul_mem'✝ : ∀ (c : R) {x : M}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier h : ∀ {x : L} {m : M}, m ∈ { toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → c • x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, m⁆ ∈ { toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → c • x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ↑{ toSubmodule := { toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier → c • x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }, lie_mem := h } = { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ } [PROOFSTEP] rfl [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' x y : LieSubmodule R L M h : ↑x = ↑y ⊢ x = y [PROOFSTEP] cases x [GOAL] case mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' y : LieSubmodule R L M toSubmodule✝ : Submodule R M lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier h : ↑{ toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = ↑y ⊢ { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = y [PROOFSTEP] cases y [GOAL] case mk.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M toSubmodule✝¹ : Submodule R M lie_mem✝¹ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝¹.carrier → ⁅x, m⁆ ∈ toSubmodule✝¹.carrier toSubmodule✝ : Submodule R M lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier h : ↑{ toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = ↑{ toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } ⊢ { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } [PROOFSTEP] congr [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M s : Set M hs : s = ↑N a✝ b✝ : M x : a✝ ∈ s y : b✝ ∈ s ⊢ a✝ + b✝ ∈ s [PROOFSTEP] rw [hs] at x y ⊢ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M s : Set M hs : s = ↑N a✝ b✝ : M x : a✝ ∈ ↑N y : b✝ ∈ ↑N ⊢ a✝ + b✝ ∈ ↑N [PROOFSTEP] exact N.add_mem' x y [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M s : Set M hs : s = ↑N ⊢ 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier [PROOFSTEP] exact hs.symm ▸ N.zero_mem' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M s : Set M hs : s = ↑N ⊢ ∀ (c : R) {x : M}, x ∈ { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier → c • x ∈ { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] exact hs.symm ▸ N.smul_mem' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M s : Set M hs : s = ↑N ⊢ ∀ {x : L} {m : M}, m ∈ { toAddSubmonoid := { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier → c • x ∈ { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, m⁆ ∈ { toAddSubmonoid := { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier → c • x ∈ { toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }, zero_mem' := (_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] exact hs.symm ▸ N.lie_mem [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M ⊢ ∀ (x y : L) (m : { x // x ∈ ↑N }), ⁅x + y, m⁆ = ⁅x, m⁆ + ⁅y, m⁆ [PROOFSTEP] intro x y m [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M x y : L m : { x // x ∈ ↑N } ⊢ ⁅x + y, m⁆ = ⁅x, m⁆ + ⁅y, m⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M x y : L m : { x // x ∈ ↑N } ⊢ ↑⁅x + y, m⁆ = ↑(⁅x, m⁆ + ⁅y, m⁆) [PROOFSTEP] apply add_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M ⊢ ∀ (x : L) (m n : { x // x ∈ ↑N }), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆ [PROOFSTEP] intro x m n [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M x : L m n : { x // x ∈ ↑N } ⊢ ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M x : L m n : { x // x ∈ ↑N } ⊢ ↑⁅x, m + n⁆ = ↑(⁅x, m⁆ + ⁅x, n⁆) [PROOFSTEP] apply lie_add [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M ⊢ ∀ (x y : L) (m : { x // x ∈ ↑N }), ⁅x, ⁅y, m⁆⁆ = ⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆ [PROOFSTEP] intro x y m [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M x y : L m : { x // x ∈ ↑N } ⊢ ⁅x, ⁅y, m⁆⁆ = ⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M x y : L m : { x // x ∈ ↑N } ⊢ ↑⁅x, ⁅y, m⁆⁆ = ↑(⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆) [PROOFSTEP] apply leibniz_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M ⊢ ∀ (t : R) (x : L) (m : { x // x ∈ ↑N }), ⁅t • x, m⁆ = t • ⁅x, m⁆ [PROOFSTEP] intro t x y [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M t : R x : L y : { x // x ∈ ↑N } ⊢ ⁅t • x, y⁆ = t • ⁅x, y⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M t : R x : L y : { x // x ∈ ↑N } ⊢ ↑⁅t • x, y⁆ = ↑(t • ⁅x, y⁆) [PROOFSTEP] apply smul_lie [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M ⊢ ∀ (t : R) (x : L) (m : { x // x ∈ ↑N }), ⁅x, t • m⁆ = t • ⁅x, m⁆ [PROOFSTEP] intro t x y [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M t : R x : L y : { x // x ∈ ↑N } ⊢ ⁅x, t • y⁆ = t • ⁅x, y⁆ [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M t : R x : L y : { x // x ∈ ↑N } ⊢ ↑⁅x, t • y⁆ = ↑(t • ⁅x, y⁆) [PROOFSTEP] apply lie_smul [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x y : L h : x ∈ I ⊢ ⁅x, y⁆ ∈ I [PROOFSTEP] rw [← lie_skew, ← neg_lie] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x y : L h : x ∈ I ⊢ ⁅-y, x⁆ ∈ I [PROOFSTEP] apply lie_mem_right [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L x y : L h : x ∈ I ⊢ x ∈ I [PROOFSTEP] assumption [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L src✝ : Submodule R L := ↑I ⊢ ∀ {x y : L}, x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] intro x y _ hy [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L src✝ : Submodule R L := ↑I x y : L a✝ : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] apply lie_mem_right [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M I : LieIdeal R L src✝ : Submodule R L := ↑I x y : L a✝ : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ y ∈ I [PROOFSTEP] exact hy [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M p : Submodule R M ⊢ (∃ N, ↑N = p) ↔ ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M p : Submodule R M ⊢ (∃ N, ↑N = p) → ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p [PROOFSTEP] rintro ⟨N, rfl⟩ _ _ [GOAL] case mp.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M x✝ : L m✝ : M ⊢ m✝ ∈ ↑N → ⁅x✝, m✝⁆ ∈ ↑N [PROOFSTEP] exact N.lie_mem [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M p : Submodule R M ⊢ (∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p) → ∃ N, ↑N = p [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M p : Submodule R M h : ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p ⊢ ∃ N, ↑N = p [PROOFSTEP] use{ p with lie_mem := @h } [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L ⊢ (∃ I, ↑R L I = K) ↔ ∀ (x y : L), y ∈ K → ⁅x, y⁆ ∈ K [PROOFSTEP] simp only [← coe_to_submodule_eq_iff, LieIdeal.coe_to_lieSubalgebra_to_submodule, Submodule.exists_lieSubmodule_coe_eq_iff L] -- Porting note: was `exact Iff.rfl` [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K : LieSubalgebra R L ⊢ (∀ (x m : L), m ∈ K.toSubmodule → ⁅x, m⁆ ∈ K.toSubmodule) ↔ ∀ (x y : L), y ∈ K → ⁅x, y⁆ ∈ K [PROOFSTEP] simp only [mem_coe_submodule] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K K' : LieSubalgebra R L h : K ≤ K' ⊢ (∃ I, ↑R { x // x ∈ K' } I = ofLe h) ↔ ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K [PROOFSTEP] simp only [exists_lieIdeal_coe_eq_iff, coe_bracket, mem_ofLe] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K K' : LieSubalgebra R L h : K ≤ K' ⊢ (∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K) ↔ ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K K' : LieSubalgebra R L h : K ≤ K' ⊢ (∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K) → ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K [PROOFSTEP] intro h' x y hx hy [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K K' : LieSubalgebra R L h : K ≤ K' h' : ∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K x y : L hx : x ∈ K' hy : y ∈ K ⊢ ⁅x, y⁆ ∈ K [PROOFSTEP] exact h' ⟨x, hx⟩ ⟨y, h hy⟩ hy [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K K' : LieSubalgebra R L h : K ≤ K' ⊢ (∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K) → ∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K [PROOFSTEP] rintro h' ⟨x, hx⟩ ⟨y, hy⟩ hy' [GOAL] case mpr.mk.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M K K' : LieSubalgebra R L h : K ≤ K' h' : ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K x : L hx : x ∈ K' y : L hy : y ∈ K' hy' : ↑{ val := y, property := hy } ∈ K ⊢ ⁅↑{ val := x, property := hx }, ↑{ val := y, property := hy }⁆ ∈ K [PROOFSTEP] exact h' x y hx hy' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) src✝ : Submodule R M := sInf {x | ∃ s, s ∈ S ∧ ↑s = x} x : L m : M h : m ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, m⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] simp only [Submodule.mem_carrier, mem_iInter, Submodule.sInf_coe, mem_setOf_eq, forall_apply_eq_imp_iff₂, forall_exists_index, and_imp] at h ⊢ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) src✝ : Submodule R M := sInf {x | ∃ s, s ∈ S ∧ ↑s = x} x : L m : M h : ∀ (a : LieSubmodule R L M), a ∈ S → m ∈ ↑↑a ⊢ ∀ (a : LieSubmodule R L M), a ∈ S → ⁅x, m⁆ ∈ ↑↑a [PROOFSTEP] intro N hN [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) src✝ : Submodule R M := sInf {x | ∃ s, s ∈ S ∧ ↑s = x} x : L m : M h : ∀ (a : LieSubmodule R L M), a ∈ S → m ∈ ↑↑a N : LieSubmodule R L M hN : N ∈ S ⊢ ⁅x, m⁆ ∈ ↑↑N [PROOFSTEP] apply N.lie_mem (h N hN) [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) ⊢ ↑(sInf S) = ⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule, sInf_coe_toSubmodule, Submodule.sInf_coe] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) ⊢ ⋂ (p : Submodule R M) (_ : p ∈ {x | ∃ s, s ∈ S ∧ ↑s = x}), ↑p = ⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s [PROOFSTEP] ext m [GOAL] case h R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) m : M ⊢ m ∈ ⋂ (p : Submodule R M) (_ : p ∈ {x | ∃ s, s ∈ S ∧ ↑s = x}), ↑p ↔ m ∈ ⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s [PROOFSTEP] simp only [mem_iInter, mem_setOf_eq, forall_apply_eq_imp_iff₂, exists_imp, and_imp, SetLike.mem_coe, mem_coeSubmodule] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) ⊢ IsGLB S (sInf S) [PROOFSTEP] have h : ∀ {N N' : LieSubmodule R L M}, (N : Set M) ≤ N' ↔ N ≤ N' := fun {_ _} ↦ Iff.rfl [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) h : ∀ {N N' : LieSubmodule R L M}, ↑N ≤ ↑N' ↔ N ≤ N' ⊢ IsGLB S (sInf S) [PROOFSTEP] apply IsGLB.of_image h [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) h : ∀ {N N' : LieSubmodule R L M}, ↑N ≤ ↑N' ↔ N ≤ N' ⊢ IsGLB ((fun {x} => ↑x) '' S) ↑(sInf S) [PROOFSTEP] simp only [sInf_coe] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L S : Set (LieSubmodule R L M) h : ∀ {N N' : LieSubmodule R L M}, ↑N ≤ ↑N' ↔ N ≤ N' ⊢ IsGLB ((fun {x} => ↑x) '' S) (⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s) [PROOFSTEP] exact isGLB_biInf [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L src✝¹ : PartialOrder (LieSubmodule R L M) := SetLike.instPartialOrder src✝ : CompleteLattice (LieSubmodule R L M) := completeLatticeOfInf (LieSubmodule R L M) (_ : ∀ (S : Set (LieSubmodule R L M)), IsGLB S (sInf S)) N : LieSubmodule R L M x✝ : M h : x✝ ∈ ⊥ ⊢ x✝ ∈ N [PROOFSTEP] rw [mem_bot] at h [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L src✝¹ : PartialOrder (LieSubmodule R L M) := SetLike.instPartialOrder src✝ : CompleteLattice (LieSubmodule R L M) := completeLatticeOfInf (LieSubmodule R L M) (_ : ∀ (S : Set (LieSubmodule R L M)), IsGLB S (sInf S)) N : LieSubmodule R L M x✝ : M h : x✝ = 0 ⊢ x✝ ∈ N [PROOFSTEP] rw [h] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L src✝¹ : PartialOrder (LieSubmodule R L M) := SetLike.instPartialOrder src✝ : CompleteLattice (LieSubmodule R L M) := completeLatticeOfInf (LieSubmodule R L M) (_ : ∀ (S : Set (LieSubmodule R L M)), IsGLB S (sInf S)) N : LieSubmodule R L M x✝ : M h : x✝ = 0 ⊢ 0 ∈ N [PROOFSTEP] exact N.zero_mem' [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ↑(N ⊔ N') = ↑N ⊔ ↑N' [PROOFSTEP] have aux : ∀ {x : L} {m}, m ∈ (N ⊔ N' : Submodule R M) → ⁅x, m⁆ ∈ (N ⊔ N' : Submodule R M) := by simp only [Submodule.mem_sup] rintro x m ⟨y, hy, z, hz, rfl⟩ refine' ⟨⁅x, y⁆, N.lie_mem hy, ⁅x, z⁆, N'.lie_mem hz, (lie_add _ _ _).symm⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' [PROOFSTEP] simp only [Submodule.mem_sup] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ∀ {x : L} {m : M}, (∃ y, y ∈ ↑N ∧ ∃ z, z ∈ ↑N' ∧ y + z = m) → ∃ y, y ∈ ↑N ∧ ∃ z, z ∈ ↑N' ∧ y + z = ⁅x, m⁆ [PROOFSTEP] rintro x m ⟨y, hy, z, hz, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x : L y : M hy : y ∈ ↑N z : M hz : z ∈ ↑N' ⊢ ∃ y_1, y_1 ∈ ↑N ∧ ∃ z_1, z_1 ∈ ↑N' ∧ y_1 + z_1 = ⁅x, y + z⁆ [PROOFSTEP] refine' ⟨⁅x, y⁆, N.lie_mem hy, ⁅x, z⁆, N'.lie_mem hz, (lie_add _ _ _).symm⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' ⊢ ↑(N ⊔ N') = ↑N ⊔ ↑N' [PROOFSTEP] refine' le_antisymm (sInf_le ⟨{ (N ⊔ N' : Submodule R M) with lie_mem := aux }, _⟩) _ -- Porting note: rewrote proof [GOAL] case refine'_1 R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' ⊢ (let src := ↑N ⊔ ↑N'; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem := (_ : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N') }) ∈ {x | N ≤ x ∧ N' ≤ x} ∧ ↑(let src := ↑N ⊔ ↑N'; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem := (_ : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N') }) = ↑N ⊔ ↑N' [PROOFSTEP] simp only [← coeSubmodule_le_coeSubmodule, mem_setOf_eq, and_true_iff] [GOAL] case refine'_1 R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' ⊢ ↑N ≤ { toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) } ∧ ↑N' ≤ { toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) } [PROOFSTEP] constructor [GOAL] case refine'_1.left R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' ⊢ ↑N ≤ { toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) } [PROOFSTEP] intro x hx [GOAL] case refine'_1.right R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' ⊢ ↑N' ≤ { toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) } [PROOFSTEP] intro x hx [GOAL] case refine'_1.left R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' x : M hx : x ∈ ↑N ⊢ x ∈ { toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) } [PROOFSTEP] simp [Submodule.mem_sup_left hx, hx, Submodule.mem_sup_right hx] [GOAL] case refine'_1.right R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' x : M hx : x ∈ ↑N' ⊢ x ∈ { toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) } [PROOFSTEP] simp [Submodule.mem_sup_left hx, hx, Submodule.mem_sup_right hx] [GOAL] case refine'_2 R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N' ⊢ ↑N ⊔ ↑N' ≤ ↑(N ⊔ N') [PROOFSTEP] simp [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x : M ⊢ x ∈ N ⊓ N' ↔ x ∈ N ∧ x ∈ N' [PROOFSTEP] rw [← mem_coeSubmodule, ← mem_coeSubmodule, ← mem_coeSubmodule, inf_coe_toSubmodule, Submodule.mem_inf] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x : M ⊢ x ∈ N ⊔ N' ↔ ∃ y, y ∈ N ∧ ∃ z, z ∈ N' ∧ y + z = x [PROOFSTEP] rw [← mem_coeSubmodule, sup_coe_toSubmodule, Submodule.mem_sup] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x : M ⊢ (∃ y, y ∈ ↑N ∧ ∃ z, z ∈ ↑N' ∧ y + z = x) ↔ ∃ y, y ∈ N ∧ ∃ z, z ∈ N' ∧ y + z = x [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ N = ⊥ ↔ ∀ (m : M), m ∈ N → m = 0 [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ N ≤ ⊥ ↔ ∀ (m : M), m ∈ N → m = 0 [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ Subsingleton (LieSubmodule R L { x // x ∈ ↑⊥ }) [PROOFSTEP] apply subsingleton_of_bot_eq_top [GOAL] case hα R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ ⊥ = ⊤ [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case hα.h.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x : M hx : x ∈ ↑⊥ ⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤ [PROOFSTEP] change x ∈ ⊥ at hx [GOAL] case hα.h.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x : M hx : x ∈ ⊥ ⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤ [PROOFSTEP] rw [Submodule.mem_bot] at hx [GOAL] case hα.h.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x : M hx✝ : x ∈ ⊥ hx : x = 0 ⊢ { val := x, property := hx✝ } ∈ ⊥ ↔ { val := x, property := hx✝ } ∈ ⊤ [PROOFSTEP] subst hx [GOAL] case hα.h.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L hx : 0 ∈ ⊥ ⊢ { val := 0, property := hx } ∈ ⊥ ↔ { val := 0, property := hx } ∈ ⊤ [PROOFSTEP] simp only [true_iff_iff, eq_self_iff_true, Submodule.mk_eq_zero, LieSubmodule.mem_bot, mem_top] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x✝² x✝¹ x✝ : LieSubmodule R L M ⊢ x✝² ≤ x✝ → (x✝² ⊔ x✝¹) ⊓ x✝ ≤ x✝² ⊔ x✝¹ ⊓ x✝ [PROOFSTEP] simp only [← coeSubmodule_le_coeSubmodule, sup_coe_toSubmodule, inf_coe_toSubmodule] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L x✝² x✝¹ x✝ : LieSubmodule R L M ⊢ ↑x✝² ≤ ↑x✝ → (↑x✝² ⊔ ↑x✝¹) ⊓ ↑x✝ ≤ ↑x✝² ⊔ ↑x✝¹ ⊓ ↑x✝ [PROOFSTEP] exact IsModularLattice.sup_inf_le_assoc_of_le _ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L ⊢ Subsingleton (LieSubmodule R L M) ↔ Subsingleton (Submodule R M) [PROOFSTEP] rw [← subsingleton_iff_bot_eq_top, ← subsingleton_iff_bot_eq_top, ← coe_toSubmodule_eq_iff, top_coeSubmodule, bot_coeSubmodule] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L N : LieSubmodule R L M ⊢ Nontrivial { x // x ∈ ↑N } ↔ N ≠ ⊥ [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L N : LieSubmodule R L M ⊢ Nontrivial { x // x ∈ ↑N } → N ≠ ⊥ [PROOFSTEP] contrapose! [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L N : LieSubmodule R L M ⊢ N ≠ ⊥ → Nontrivial { x // x ∈ ↑N } [PROOFSTEP] contrapose! [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L N : LieSubmodule R L M ⊢ N = ⊥ → ¬Nontrivial { x // x ∈ ↑N } [PROOFSTEP] rintro rfl ⟨⟨m₁, h₁ : m₁ ∈ (⊥ : LieSubmodule R L M)⟩, ⟨m₂, h₂ : m₂ ∈ (⊥ : LieSubmodule R L M)⟩, h₁₂⟩ [GOAL] case mp.mk.intro.mk.intro.mk R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L m₁ : M h₁ : m₁ ∈ ⊥ m₂ : M h₂ : m₂ ∈ ⊥ h₁₂ : { val := m₁, property := h₁ } ≠ { val := m₂, property := h₂ } ⊢ False [PROOFSTEP] simp [(LieSubmodule.mem_bot _).mp h₁, (LieSubmodule.mem_bot _).mp h₂] at h₁₂ [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L N : LieSubmodule R L M ⊢ ¬Nontrivial { x // x ∈ ↑N } → N = ⊥ [PROOFSTEP] rw [not_nontrivial_iff_subsingleton, LieSubmodule.eq_bot_iff] [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L N : LieSubmodule R L M ⊢ Subsingleton { x // x ∈ ↑N } → ∀ (m : M), m ∈ N → m = 0 [PROOFSTEP] rintro ⟨h⟩ m hm [GOAL] case mpr.intro R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L N : LieSubmodule R L M h : ∀ (a b : { x // x ∈ ↑N }), a = b m : M hm : m ∈ N ⊢ m = 0 [PROOFSTEP] simpa using h ⟨m, hm⟩ ⟨_, N.zero_mem⟩ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L h : N ≤ N' x y : { x // x ∈ ↑N } ⊢ ↑(homOfLe h) x = ↑(homOfLe h) y → x = y [PROOFSTEP] simp only [homOfLe_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M x : M ⊢ x ∈ lieSpan R L s ↔ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → x ∈ N [PROOFSTEP] change x ∈ (lieSpan R L s : Set M) ↔ _ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M x : M ⊢ x ∈ ↑(lieSpan R L s) ↔ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → x ∈ N [PROOFSTEP] erw [sInf_coe] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M x : M ⊢ x ∈ ⋂ (s_1 : LieSubmodule R L M) (_ : s_1 ∈ {N | s ⊆ ↑N}), ↑s_1 ↔ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → x ∈ N [PROOFSTEP] exact mem_iInter₂ [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M ⊢ s ⊆ ↑(lieSpan R L s) [PROOFSTEP] intro m hm [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M m : M hm : m ∈ s ⊢ m ∈ ↑(lieSpan R L s) [PROOFSTEP] erw [mem_lieSpan] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M m : M hm : m ∈ s ⊢ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → m ∈ N [PROOFSTEP] intro N hN [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L s : Set M m : M hm : m ∈ s N : LieSubmodule R L M hN : s ⊆ ↑N ⊢ m ∈ N [PROOFSTEP] exact hN hm [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M ⊢ Submodule.span R s ≤ ↑(lieSpan R L s) [PROOFSTEP] rw [Submodule.span_le] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M ⊢ s ⊆ ↑↑(lieSpan R L s) [PROOFSTEP] apply subset_lieSpan [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L s : Set M N : LieSubmodule R L M ⊢ lieSpan R L s ≤ N ↔ s ⊆ ↑N [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L s : Set M N : LieSubmodule R L M ⊢ lieSpan R L s ≤ N → s ⊆ ↑N [PROOFSTEP] exact Subset.trans subset_lieSpan [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L s : Set M N : LieSubmodule R L M ⊢ s ⊆ ↑N → lieSpan R L s ≤ N [PROOFSTEP] intro hs m hm [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L s : Set M N : LieSubmodule R L M hs : s ⊆ ↑N m : M hm : m ∈ lieSpan R L s ⊢ m ∈ N [PROOFSTEP] rw [mem_lieSpan] at hm [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N✝ N' : LieSubmodule R L M I J : LieIdeal R L s : Set M N : LieSubmodule R L M hs : s ⊆ ↑N m : M hm : ∀ (N : LieSubmodule R L M), s ⊆ ↑N → m ∈ N ⊢ m ∈ N [PROOFSTEP] exact hm _ hs [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s t : Set M h : s ⊆ t ⊢ lieSpan R L s ≤ lieSpan R L t [PROOFSTEP] rw [lieSpan_le] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s t : Set M h : s ⊆ t ⊢ s ⊆ ↑(lieSpan R L t) [PROOFSTEP] exact Subset.trans h subset_lieSpan [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M ⊢ ↑(lieSpan R L ↑p) = p ↔ ∃ N, ↑N = p [PROOFSTEP] rw [p.exists_lieSubmodule_coe_eq_iff L] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M ⊢ ↑(lieSpan R L ↑p) = p ↔ ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M ⊢ ↑(lieSpan R L ↑p) = p → ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p [PROOFSTEP] intro h [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M ⊢ (∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p) → ↑(lieSpan R L ↑p) = p [PROOFSTEP] intro h [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M h : ↑(lieSpan R L ↑p) = p ⊢ ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p [PROOFSTEP] intro x m hm [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M h : ↑(lieSpan R L ↑p) = p x : L m : M hm : m ∈ p ⊢ ⁅x, m⁆ ∈ p [PROOFSTEP] rw [← h, mem_coeSubmodule] [GOAL] case mp R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M h : ↑(lieSpan R L ↑p) = p x : L m : M hm : m ∈ p ⊢ ⁅x, m⁆ ∈ lieSpan R L ↑p [PROOFSTEP] exact lie_mem _ (subset_lieSpan hm) [GOAL] case mpr R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M p : Submodule R M h : ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p ⊢ ↑(lieSpan R L ↑p) = p [PROOFSTEP] rw [← coe_toSubmodule_mk p @h, coe_toSubmodule, coe_toSubmodule_eq_iff, lieSpan_eq] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N N' : LieSubmodule R L M I J : LieIdeal R L s : Set M ⊢ lieSpan R L s = ⊥ ↔ ∀ (m : M), m ∈ s → m = 0 [PROOFSTEP] rw [_root_.eq_bot_iff, lieSpan_le, bot_coe, subset_singleton_iff] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M' := Submodule.map ↑f ↑N x : L m' : M' h : m' ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, m'⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] rcases h with ⟨m, hm, hfm⟩ [GOAL] case intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M' := Submodule.map ↑f ↑N x : L m' : M' m : M hm : m ∈ ↑↑N hfm : ↑↑f m = m' ⊢ ⁅x, m'⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] use⁅x, m⁆ [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M' := Submodule.map ↑f ↑N x : L m' : M' m : M hm : m ∈ ↑↑N hfm : ↑↑f m = m' ⊢ ⁅x, m⁆ ∈ ↑↑N ∧ ↑↑f ⁅x, m⁆ = ⁅x, m'⁆ [PROOFSTEP] constructor [GOAL] case h.left R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M' := Submodule.map ↑f ↑N x : L m' : M' m : M hm : m ∈ ↑↑N hfm : ↑↑f m = m' ⊢ ⁅x, m⁆ ∈ ↑↑N [PROOFSTEP] apply N.lie_mem hm [GOAL] case h.right R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M' := Submodule.map ↑f ↑N x : L m' : M' m : M hm : m ∈ ↑↑N hfm : ↑↑f m = m' ⊢ ↑↑f ⁅x, m⁆ = ⁅x, m'⁆ [PROOFSTEP] norm_cast at hfm [GOAL] case h.right R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M' := Submodule.map ↑f ↑N x : L m' : M' m : M hm : m ∈ ↑↑N hfm : ↑f m = m' ⊢ ↑↑f ⁅x, m⁆ = ⁅x, m'⁆ [PROOFSTEP] simp [hfm] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M := Submodule.comap ↑f ↑N' x : L m : M h : m ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, m⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] suffices ⁅x, f m⁆ ∈ N' by simp [this] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M := Submodule.comap ↑f ↑N' x : L m : M h : m ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier this : ⁅x, ↑f m⁆ ∈ N' ⊢ ⁅x, m⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] simp [this] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' src✝ : Submodule R M := Submodule.comap ↑f ↑N' x : L m : M h : m ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, ↑f m⁆ ∈ N' [PROOFSTEP] apply N'.lie_mem h [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' ⊢ comap (incl N) N₂ = ⊤ ↔ N ≤ N₂ [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.coeSubmodule_comap, LieSubmodule.incl_coe, LieSubmodule.top_coeSubmodule, Submodule.comap_subtype_eq_top, coeSubmodule_le_coeSubmodule] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : M →ₗ⁅R,L⁆ M' N N₂ : LieSubmodule R L M N' : LieSubmodule R L M' ⊢ comap (incl N) N₂ = ⊥ ↔ N ⊓ N₂ = ⊥ [PROOFSTEP] simp only [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.coeSubmodule_comap, LieSubmodule.incl_coe, LieSubmodule.bot_coeSubmodule, ← Submodule.disjoint_iff_comap_eq_bot, disjoint_iff, inf_coe_toSubmodule] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule x y : L h : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] suffices ⁅f x, f y⁆ ∈ J by simp only [AddSubsemigroup.mem_carrier, AddSubmonoid.mem_toSubsemigroup, Submodule.mem_toAddSubmonoid, Submodule.mem_comap, LieHom.coe_toLinearMap, LieHom.map_lie, LieSubalgebra.mem_coe_submodule] exact this [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule x y : L h : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier this : ⁅↑f x, ↑f y⁆ ∈ J ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] simp only [AddSubsemigroup.mem_carrier, AddSubmonoid.mem_toSubsemigroup, Submodule.mem_toAddSubmonoid, Submodule.mem_comap, LieHom.coe_toLinearMap, LieHom.map_lie, LieSubalgebra.mem_coe_submodule] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule x y : L h : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier this : ⁅↑f x, ↑f y⁆ ∈ J ⊢ ⁅↑f x, ↑f y⁆ ∈ ↑R L' J [PROOFSTEP] exact this [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule x y : L h : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅↑f x, ↑f y⁆ ∈ J [PROOFSTEP] apply J.lie_mem h [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' h : ↑(map f I) = ↑f '' ↑I ⊢ ↑(map f I) = Submodule.map ↑f ↑I [PROOFSTEP] rw [SetLike.ext'_iff, LieSubmodule.coe_toSubmodule, h, Submodule.map_coe] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' h : ↑(map f I) = ↑f '' ↑I ⊢ ↑f '' ↑I = ↑↑f '' ↑↑I [PROOFSTEP] rfl [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' x : L hx : x ∈ I ⊢ ↑f x ∈ map f I [PROOFSTEP] apply LieSubmodule.subset_lieSpan [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' x : L hx : x ∈ I ⊢ ↑f x ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] use x [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' x : L hx : x ∈ I ⊢ x ∈ ↑(↑R L I).toSubmodule ∧ ↑↑f x = ↑f x [PROOFSTEP] exact ⟨hx, rfl⟩ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' ⊢ map f I ≤ J ↔ I ≤ comap f J [PROOFSTEP] rw [map_le] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' ⊢ ↑f '' ↑I ⊆ ↑J ↔ I ≤ comap f J [PROOFSTEP] exact Set.image_subset_iff [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' ⊢ map f (comap f J) ≤ J [PROOFSTEP] rw [map_le_iff_le_comap] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' ⊢ I ≤ comap f (map f I) [PROOFSTEP] rw [← map_le_iff_le_comap] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂✝ : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : I₁ ≤ I₂ ⊢ map f I₁ ≤ map f I₂ [PROOFSTEP] rw [SetLike.le_def] at h [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂✝ : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : ∀ ⦃x : L⦄, x ∈ I₁ → x ∈ I₂ ⊢ map f I₁ ≤ map f I₂ [PROOFSTEP] apply LieSubmodule.lieSpan_mono (Set.image_subset (⇑f) h) [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : J₁ ≤ J₂ ⊢ comap f J₁ ≤ comap f J₂ [PROOFSTEP] rw [← SetLike.coe_subset_coe] at h ⊢ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : ↑J₁ ⊆ ↑J₂ ⊢ ↑(comap f J₁) ⊆ ↑(comap f J₂) [PROOFSTEP] dsimp only [SetLike.coe] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J J₁ J₂ : LieIdeal R L' h : ↑J₁ ⊆ ↑J₂ ⊢ (↑(comap f J₁)).toAddSubmonoid.toAddSubsemigroup.carrier ⊆ (↑(comap f J₂)).toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] exact Set.preimage_mono h [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' h : ↑f '' ↑I = ↑J ⊢ map f I = J [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' h : ↑f '' ↑I = ↑J ⊢ map f I ≤ J [PROOFSTEP] erw [LieSubmodule.lieSpan_le, Submodule.map_coe, h] [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' h : ↑f '' ↑I = ↑J ⊢ J ≤ map f I [PROOFSTEP] rw [← SetLike.coe_subset_coe, ← h] [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' h : ↑f '' ↑I = ↑J ⊢ ↑f '' ↑I ⊆ ↑(map f I) [PROOFSTEP] exact LieSubmodule.subset_lieSpan [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' ⊢ Subsingleton (LieIdeal R { x // x ∈ ↑⊥ }) [PROOFSTEP] apply subsingleton_of_bot_eq_top [GOAL] case hα R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' ⊢ ⊥ = ⊤ [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case hα.h.mk R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' x : L hx : x ∈ ↑⊥ ⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤ [PROOFSTEP] change x ∈ (⊥ : LieIdeal _ _) at hx [GOAL] case hα.h.mk R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' x : L hx : x ∈ ⊥ ⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤ [PROOFSTEP] rw [LieSubmodule.mem_bot] at hx [GOAL] case hα.h.mk R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' x : L hx✝ : x ∈ ⊥ hx : x = 0 ⊢ { val := x, property := hx✝ } ∈ ⊥ ↔ { val := x, property := hx✝ } ∈ ⊤ [PROOFSTEP] subst hx [GOAL] case hα.h.mk R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I I₂ : LieIdeal R L J : LieIdeal R L' hx : 0 ∈ ⊥ ⊢ { val := 0, property := hx } ∈ ⊥ ↔ { val := 0, property := hx } ∈ ⊤ [PROOFSTEP] simp only [Submodule.mk_eq_zero, LieSubmodule.mem_bot, LieSubmodule.mem_top] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ idealRange f = LieIdeal.map f ⊤ [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' m✝ : L' ⊢ m✝ ∈ idealRange f ↔ m✝ ∈ LieIdeal.map f ⊤ [PROOFSTEP] simp only [idealRange, range_eq_map] [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' m✝ : L' ⊢ m✝ ∈ LieSubmodule.lieSpan R L' ↑(LieSubalgebra.map f ⊤) ↔ m✝ ∈ LieIdeal.map f ⊤ [PROOFSTEP] rfl [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ IsIdealMorphism f ↔ ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z [PROOFSTEP] simp only [isIdealMorphism_def, idealRange_eq_lieSpan_range, ← LieSubalgebra.coe_to_submodule_eq_iff, ← f.range.coe_to_submodule, LieIdeal.coe_to_lieSubalgebra_to_submodule, LieSubmodule.coe_lieSpan_submodule_eq_iff, LieSubalgebra.mem_coe_submodule, mem_range, exists_imp, Submodule.exists_lieSubmodule_coe_eq_iff] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ (∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆) ↔ ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ (∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆) → ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z [PROOFSTEP] intro h x y [GOAL] case mp R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆ x : L' y : L ⊢ ∃ z, ⁅x, ↑f y⁆ = ↑f z [PROOFSTEP] obtain ⟨z, hz⟩ := h x (f y) y rfl [GOAL] case mp.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆ x : L' y z : L hz : ↑f z = ⁅x, ↑f y⁆ ⊢ ∃ z, ⁅x, ↑f y⁆ = ↑f z [PROOFSTEP] use z [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆ x : L' y z : L hz : ↑f z = ⁅x, ↑f y⁆ ⊢ ⁅x, ↑f y⁆ = ↑f z [PROOFSTEP] exact hz.symm [GOAL] case mpr R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ (∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z) → ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆ [PROOFSTEP] intro h x y z hz [GOAL] case mpr R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z x y : L' z : L hz : ↑f z = y ⊢ ∃ y_1, ↑f y_1 = ⁅x, y⁆ [PROOFSTEP] obtain ⟨w, hw⟩ := h x z [GOAL] case mpr.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z x y : L' z : L hz : ↑f z = y w : L hw : ⁅x, ↑f z⁆ = ↑f w ⊢ ∃ y_1, ↑f y_1 = ⁅x, y⁆ [PROOFSTEP] use w [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z x y : L' z : L hz : ↑f z = y w : L hw : ⁅x, ↑f z⁆ = ↑f w ⊢ ↑f w = ⁅x, y⁆ [PROOFSTEP] rw [← hw, hz] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ LieIdeal.map f I ≤ idealRange f [PROOFSTEP] rw [f.idealRange_eq_map] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ LieIdeal.map f I ≤ LieIdeal.map f ⊤ [PROOFSTEP] exact LieIdeal.map_mono le_top [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L ⊢ x ∈ ↑(ker f) ↔ ↑f x = 0 [PROOFSTEP] simp only [ker_coeSubmodule, LinearMap.mem_ker, coe_toLinearMap] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L ⊢ ↑f x ∈ idealRange f [PROOFSTEP] rw [idealRange_eq_map] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L ⊢ ↑f x ∈ LieIdeal.map f ⊤ [PROOFSTEP] exact LieIdeal.mem_map (LieSubmodule.mem_top x) [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : IsIdealMorphism f y : L' ⊢ y ∈ idealRange f ↔ ∃ x, ↑f x = y [PROOFSTEP] rw [f.isIdealMorphism_def] at h [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ↑R L' (idealRange f) = range f y : L' ⊢ y ∈ idealRange f ↔ ∃ x, ↑f x = y [PROOFSTEP] rw [← LieSubmodule.mem_coe, ← LieIdeal.coe_toSubalgebra, h, f.range_coe, Set.mem_range] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ I ≤ ker f ↔ ∀ (x : L), x ∈ I → ↑f x = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ I ≤ ker f → ∀ (x : L), x ∈ I → ↑f x = 0 [PROOFSTEP] intro h x hx [GOAL] case mpr R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ (∀ (x : L), x ∈ I → ↑f x = 0) → I ≤ ker f [PROOFSTEP] intro h x hx [GOAL] case mp R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : I ≤ ker f x : L hx : x ∈ I ⊢ ↑f x = 0 [PROOFSTEP] specialize h hx [GOAL] case mp R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L hx : x ∈ I h : x ∈ ker f ⊢ ↑f x = 0 [PROOFSTEP] rw [mem_ker] at h [GOAL] case mp R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L hx : x ∈ I h : ↑f x = 0 ⊢ ↑f x = 0 [PROOFSTEP] exact h [GOAL] case mpr R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x : L), x ∈ I → ↑f x = 0 x : L hx : x ∈ I ⊢ x ∈ ker f [PROOFSTEP] rw [mem_ker] [GOAL] case mpr R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ∀ (x : L), x ∈ I → ↑f x = 0 x : L hx : x ∈ I ⊢ ↑f x = 0 [PROOFSTEP] apply h x hx [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ ker f = ⊥ ↔ Function.Injective ↑f [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff, ker_coeSubmodule, LieSubmodule.bot_coeSubmodule, LinearMap.ker_eq_bot, coe_toLinearMap] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ range f = ⊤ ↔ Function.Surjective ↑f [PROOFSTEP] rw [← LieSubalgebra.coe_to_submodule_eq_iff, range_coeSubmodule, LieSubalgebra.top_coe_submodule] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ LinearMap.range ↑f = ⊤ ↔ Function.Surjective ↑f [PROOFSTEP] exact LinearMap.range_eq_top [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f ⊢ idealRange f = ⊤ [PROOFSTEP] rw [← f.range_eq_top] at h [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : range f = ⊤ ⊢ idealRange f = ⊤ [PROOFSTEP] rw [idealRange_eq_lieSpan_range, h, ← LieSubalgebra.coe_to_submodule, ← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.top_coeSubmodule, LieSubalgebra.top_coe_submodule, LieSubmodule.coe_lieSpan_submodule_eq_iff] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : range f = ⊤ ⊢ ∃ N, ↑N = ⊤ [PROOFSTEP] use⊤ [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : range f = ⊤ ⊢ ↑⊤ = ⊤ [PROOFSTEP] exact LieSubmodule.top_coeSubmodule [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f ⊢ IsIdealMorphism f [PROOFSTEP] rw [isIdealMorphism_def, f.idealRange_eq_top_of_surjective h, f.range_eq_top.mpr h, LieIdeal.top_coe_lieSubalgebra] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ map f I = ⊥ ↔ I ≤ LieHom.ker f [PROOFSTEP] rw [← le_bot_iff] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ map f I ≤ ⊥ ↔ I ≤ LieHom.ker f [PROOFSTEP] exact LieIdeal.map_le_iff_le_comap [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f ⊢ ↑(map f I) = Submodule.map ↑f ↑I [PROOFSTEP] let J : LieIdeal R L' := { (I : Submodule R L).map (f : L →ₗ[R] L') with lie_mem := fun {x y} hy ↦ by have hy' : ∃ x : L, x ∈ I ∧ f x = y := by simpa [hy] obtain ⟨z₂, hz₂, rfl⟩ := hy' obtain ⟨z₁, rfl⟩ := h x simp only [LieHom.coe_toLinearMap, SetLike.mem_coe, Set.mem_image, LieSubmodule.mem_coeSubmodule, Submodule.mem_carrier, Submodule.map_coe] use⁅z₁, z₂⁆ exact ⟨I.lie_mem hz₂, f.map_lie z₁ z₂⟩ } [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule x y : L' hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] have hy' : ∃ x : L, x ∈ I ∧ f x = y := by simpa [hy] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule x y : L' hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ∃ x, x ∈ I ∧ ↑f x = y [PROOFSTEP] simpa [hy] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule x y : L' hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy' : ∃ x, x ∈ I ∧ ↑f x = y ⊢ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] obtain ⟨z₂, hz₂, rfl⟩ := hy' [GOAL] case intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule x : L' z₂ : L hz₂ : z₂ ∈ I hy : ↑f z₂ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊢ ⁅x, ↑f z₂⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] obtain ⟨z₁, rfl⟩ := h x [GOAL] case intro.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule z₂ : L hz₂ : z₂ ∈ I hy : ↑f z₂ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier z₁ : L ⊢ ⁅↑f z₁, ↑f z₂⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier [PROOFSTEP] simp only [LieHom.coe_toLinearMap, SetLike.mem_coe, Set.mem_image, LieSubmodule.mem_coeSubmodule, Submodule.mem_carrier, Submodule.map_coe] [GOAL] case intro.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule z₂ : L hz₂ : z₂ ∈ I hy : ↑f z₂ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier z₁ : L ⊢ ∃ x, x ∈ (↑R L I).toSubmodule ∧ ↑f x = ⁅↑f z₁, ↑f z₂⁆ [PROOFSTEP] use⁅z₁, z₂⁆ [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : Function.Surjective ↑f src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule z₂ : L hz₂ : z₂ ∈ I hy : ↑f z₂ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier z₁ : L ⊢ ⁅z₁, z₂⁆ ∈ (↑R L I).toSubmodule ∧ ↑f ⁅z₁, z₂⁆ = ⁅↑f z₁, ↑f z₂⁆ [PROOFSTEP] exact ⟨I.lie_mem hz₂, f.map_lie z₁ z₂⟩ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J✝ : LieIdeal R L' h : Function.Surjective ↑f J : LieIdeal R L' := let src := Submodule.map (↑f) (↑R L I).toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem := (_ : ∀ {x y : L'}, y ∈ { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier) } ⊢ ↑(map f I) = Submodule.map ↑f ↑I [PROOFSTEP] erw [LieSubmodule.coe_lieSpan_submodule_eq_iff] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J✝ : LieIdeal R L' h : Function.Surjective ↑f J : LieIdeal R L' := let src := Submodule.map (↑f) (↑R L I).toSubmodule; { toSubmodule := { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) }, lie_mem := (_ : ∀ {x y : L'}, y ∈ { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier → ⁅x, y⁆ ∈ { toAddSubmonoid := src.toAddSubmonoid, smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier) } ⊢ ∃ N, ↑N = Submodule.map (↑f) (↑R L I).toSubmodule [PROOFSTEP] use J [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' y : L' h₁ : Function.Surjective ↑f h₂ : y ∈ map f I ⊢ ∃ x, ↑f ↑x = y [PROOFSTEP] rw [← LieSubmodule.mem_coeSubmodule, coe_map_of_surjective h₁, Submodule.mem_map] at h₂ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' y : L' h₁ : Function.Surjective ↑f h₂ : ∃ y_1, y_1 ∈ ↑I ∧ ↑↑f y_1 = y ⊢ ∃ x, ↑f ↑x = y [PROOFSTEP] obtain ⟨x, hx, rfl⟩ := h₂ [GOAL] case intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h₁ : Function.Surjective ↑f x : L hx : x ∈ ↑I ⊢ ∃ x_1, ↑f ↑x_1 = ↑↑f x [PROOFSTEP] use⟨x, hx⟩ [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h₁ : Function.Surjective ↑f x : L hx : x ∈ ↑I ⊢ ↑f ↑{ val := x, property := hx } = ↑↑f x [PROOFSTEP] rfl [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I✝ : LieIdeal R L J : LieIdeal R L' I : LieIdeal R L h₁ : Function.Injective ↑f h₂ : map f I = ⊥ ⊢ I = ⊥ [PROOFSTEP] rw [← f.ker_eq_bot] at h₁ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I✝ : LieIdeal R L J : LieIdeal R L' I : LieIdeal R L h₁ : LieHom.ker f = ⊥ h₂ : map f I = ⊥ ⊢ I = ⊥ [PROOFSTEP] change comap f ⊥ = ⊥ at h₁ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I✝ : LieIdeal R L J : LieIdeal R L' I : LieIdeal R L h₂ : map f I = ⊥ h₁ : comap f ⊥ = ⊥ ⊢ I = ⊥ [PROOFSTEP] rw [eq_bot_iff, map_le_iff_le_comap, h₁] at h₂ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I✝ : LieIdeal R L J : LieIdeal R L' I : LieIdeal R L h₂ : I ≤ ⊥ h₁ : comap f ⊥ = ⊥ ⊢ I = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I✝ : LieIdeal R L J : LieIdeal R L' I : LieIdeal R L h₂ : I ≤ ⊥ h₁ : comap f ⊥ = ⊥ ⊢ I ≤ ⊥ [PROOFSTEP] exact h₂ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' I₁ I₂ : LieIdeal R L h : I₁ ≤ I₂ x y : { x // x ∈ ↑I₁ } ⊢ ↑(homOfLe h) x = ↑(homOfLe h) y → x = y [PROOFSTEP] simp only [homOfLe_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ map f (I ⊔ LieHom.ker f) = map f I [PROOFSTEP] suffices LieIdeal.map f (I ⊔ f.ker) ≤ LieIdeal.map f I by exact le_antisymm this (LieIdeal.map_mono le_sup_left) [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' this : map f (I ⊔ LieHom.ker f) ≤ map f I ⊢ map f (I ⊔ LieHom.ker f) = map f I [PROOFSTEP] exact le_antisymm this (LieIdeal.map_mono le_sup_left) [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ map f (I ⊔ LieHom.ker f) ≤ map f I [PROOFSTEP] apply LieSubmodule.lieSpan_mono [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ ↑(Submodule.map (↑f) (↑R L (I ⊔ LieHom.ker f)).toSubmodule) ⊆ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] rintro x ⟨y, hy₁, hy₂⟩ [GOAL] case h.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L' y : L hy₁ : y ∈ ↑(↑R L (I ⊔ LieHom.ker f)).toSubmodule hy₂ : ↑↑f y = x ⊢ x ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] rw [← hy₂] [GOAL] case h.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L' y : L hy₁ : y ∈ ↑(↑R L (I ⊔ LieHom.ker f)).toSubmodule hy₂ : ↑↑f y = x ⊢ ↑↑f y ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] erw [LieSubmodule.mem_sup] at hy₁ [GOAL] case h.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L' y : L hy₁ : ∃ y_1, y_1 ∈ I ∧ ∃ z, z ∈ LieHom.ker f ∧ y_1 + z = y hy₂ : ↑↑f y = x ⊢ ↑↑f y ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] obtain ⟨z₁, hz₁, z₂, hz₂, hy⟩ := hy₁ [GOAL] case h.intro.intro.intro.intro.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L' y : L hy₂ : ↑↑f y = x z₁ : L hz₁ : z₁ ∈ I z₂ : L hz₂ : z₂ ∈ LieHom.ker f hy : z₁ + z₂ = y ⊢ ↑↑f y ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] rw [← hy] [GOAL] case h.intro.intro.intro.intro.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L' y : L hy₂ : ↑↑f y = x z₁ : L hz₁ : z₁ ∈ I z₂ : L hz₂ : z₂ ∈ LieHom.ker f hy : z₁ + z₂ = y ⊢ ↑↑f (z₁ + z₂) ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] rw [f.coe_toLinearMap, f.map_add, f.mem_ker.mp hz₂, add_zero] [GOAL] case h.intro.intro.intro.intro.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' x : L' y : L hy₂ : ↑↑f y = x z₁ : L hz₁ : z₁ ∈ I z₂ : L hz₂ : z₂ ∈ LieHom.ker f hy : z₁ + z₂ = y ⊢ ↑f z₁ ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule) [PROOFSTEP] exact ⟨z₁, hz₁, rfl⟩ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ map f I ⊔ map f (LieHom.ker f) = map f I [PROOFSTEP] simpa using map_sup_ker_eq_map (f := f) [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ map f (comap f J) = LieHom.idealRange f ⊓ J [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ map f (comap f J) ≤ LieHom.idealRange f ⊓ J [PROOFSTEP] rw [le_inf_iff] [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ map f (comap f J) ≤ LieHom.idealRange f ∧ map f (comap f J) ≤ J [PROOFSTEP] exact ⟨f.map_le_idealRange _, map_comap_le⟩ [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : LieHom.IsIdealMorphism f ⊢ LieHom.idealRange f ⊓ J ≤ map f (comap f J) [PROOFSTEP] rw [f.isIdealMorphism_def] at h [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ↑R L' (LieHom.idealRange f) = LieHom.range f ⊢ LieHom.idealRange f ⊓ J ≤ map f (comap f J) [PROOFSTEP] rw [← SetLike.coe_subset_coe, LieSubmodule.inf_coe, ← coe_toSubalgebra, h] [GOAL] case a R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ↑R L' (LieHom.idealRange f) = LieHom.range f ⊢ ↑(LieHom.range f) ∩ ↑J ⊆ ↑(map f (comap f J)) [PROOFSTEP] rintro y ⟨⟨x, h₁⟩, h₂⟩ [GOAL] case a.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ↑R L' (LieHom.idealRange f) = LieHom.range f y : L' h₂ : y ∈ ↑J x : L h₁ : ↑↑f x = y ⊢ y ∈ ↑(map f (comap f J)) [PROOFSTEP] rw [← h₁] at h₂ ⊢ [GOAL] case a.intro.intro R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ↑R L' (LieHom.idealRange f) = LieHom.range f y : L' x : L h₂ : ↑↑f x ∈ ↑J h₁ : ↑↑f x = y ⊢ ↑↑f x ∈ ↑(map f (comap f J)) [PROOFSTEP] exact mem_map h₂ [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' h : ↑(map f I) = ↑f '' ↑I ⊢ comap f (map f I) = I ⊔ LieHom.ker f [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff, comap_coeSubmodule, I.map_coeSubmodule f h, LieSubmodule.sup_coe_toSubmodule, f.ker_coeSubmodule, Submodule.comap_map_eq] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ comap (incl I) I = ⊤ [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' m✝ : { x // x ∈ ↑I } ⊢ m✝ ∈ comap (incl I) I ↔ m✝ ∈ ⊤ [PROOFSTEP] simp -- porting note: `ext; simp` works also in mathlib3, though the proof used to be -- rw [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.top_coeSubmodule, -- LieIdeal.comap_coeSubmodule, LieIdeal.incl_coe, Submodule.comap_subtype_self] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ LieHom.ker (incl I) = ⊥ [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' m✝ : { x // x ∈ ↑I } ⊢ m✝ ∈ LieHom.ker (incl I) ↔ m✝ ∈ ⊥ [PROOFSTEP] simp -- porting note: `ext; simp` works also in mathlib3, though the proof used to be -- rw [← LieSubmodule.coe_toSubmodule_eq_iff, I.incl.ker_coeSubmodule, -- LieSubmodule.bot_coeSubmodule, incl_coe, Submodule.ker_subtype] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ LieHom.idealRange (incl I) = I [PROOFSTEP] rw [LieHom.idealRange_eq_lieSpan_range, ← LieSubalgebra.coe_to_submodule, ← LieSubmodule.coe_toSubmodule_eq_iff, incl_range, coe_to_lieSubalgebra_to_submodule, LieSubmodule.coe_lieSpan_submodule_eq_iff] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ ∃ N, ↑N = ↑I [PROOFSTEP] use I [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ LieHom.IsIdealMorphism (incl I) [PROOFSTEP] rw [I.incl.isIdealMorphism_def, incl_idealRange] [GOAL] R : Type u L : Type v L' : Type w₂ M : Type w M' : Type w₁ inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : LieRing L' inst✝⁸ : LieAlgebra R L' inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup M' inst✝² : Module R M' inst✝¹ : LieRingModule L M' inst✝ : LieModule R L M' f : L →ₗ⁅R⁆ L' I : LieIdeal R L J : LieIdeal R L' ⊢ ↑R L I = LieHom.range (incl I) [PROOFSTEP] exact (I : LieSubalgebra R L).incl_range.symm [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N ⊢ ker f = ⊥ ↔ Function.Injective ↑f [PROOFSTEP] rw [← LieSubmodule.coe_toSubmodule_eq_iff, ker_coeSubmodule, LieSubmodule.bot_coeSubmodule, LinearMap.ker_eq_bot, coe_toLinearMap] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N ⊢ comp f (LieSubmodule.incl (ker f)) = 0 [PROOFSTEP] ext ⟨m, hm⟩ [GOAL] case h.mk R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N m : M hm : m ∈ ↑(ker f) ⊢ ↑(comp f (LieSubmodule.incl (ker f))) { val := m, property := hm } = ↑0 { val := m, property := hm } [PROOFSTEP] exact (mem_ker m).mp hm [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N M' : LieSubmodule R L M ⊢ M' ≤ ker f ↔ LieSubmodule.map f M' = ⊥ [PROOFSTEP] rw [ker, eq_bot_iff, LieSubmodule.map_le_iff_le_comap] [GOAL] R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N ⊢ LieSubmodule.map f ⊤ = range f [PROOFSTEP] ext [GOAL] case h R : Type u L : Type v M : Type w N : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : LieAlgebra R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : LieRingModule L M inst✝⁴ : LieModule R L M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : LieRingModule L N inst✝ : LieModule R L N f : M →ₗ⁅R,L⁆ N m✝ : N ⊢ m✝ ∈ LieSubmodule.map f ⊤ ↔ m✝ ∈ range f [PROOFSTEP] simp [LieSubmodule.mem_map] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M ⊢ LieModuleHom.ker (incl N) = ⊥ [PROOFSTEP] simp [← LieSubmodule.coe_toSubmodule_eq_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M ⊢ LieModuleHom.range (incl N) = N [PROOFSTEP] simp [← LieSubmodule.coe_toSubmodule_eq_iff] [GOAL] R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M N : LieSubmodule R L M ⊢ comap (incl N) N = ⊤ [PROOFSTEP] simp [← LieSubmodule.coe_toSubmodule_eq_iff] [GOAL] R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L src✝ : { x // x ∈ ⊤ } →ₗ⁅R⁆ L := incl ⊤ x : { x // x ∈ ⊤ } ⊢ (fun x => { val := x, property := (_ : x ∈ Set.univ) }) (AddHom.toFun (↑{ toLinearMap := ↑src✝, map_lie' := (_ : ∀ {x y : { x // x ∈ ⊤ }}, AddHom.toFun src✝.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆) }).toAddHom x) = x [PROOFSTEP] ext [GOAL] case a R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L src✝ : { x // x ∈ ⊤ } →ₗ⁅R⁆ L := incl ⊤ x : { x // x ∈ ⊤ } ⊢ ↑((fun x => { val := x, property := (_ : x ∈ Set.univ) }) (AddHom.toFun (↑{ toLinearMap := ↑src✝, map_lie' := (_ : ∀ {x y : { x // x ∈ ⊤ }}, AddHom.toFun src✝.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆) }).toAddHom x)) = ↑x [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Lie.Submodule", "llama_tokens": 72343}
[GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsRefl α r c : Cardinal.{u_1} ⊢ c ≤ cof r ↔ ∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S [PROOFSTEP] rw [cof, le_csInf_iff'' (cof_nonempty r)] [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsRefl α r c : Cardinal.{u_1} ⊢ (∀ (b : Cardinal.{u_1}), b ∈ {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c} → c ≤ b) ↔ ∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S [PROOFSTEP] use fun H S h => H _ ⟨S, h, rfl⟩ [GOAL] case mpr α : Type u_1 r✝ r : α → α → Prop inst✝ : IsRefl α r c : Cardinal.{u_1} ⊢ (∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S) → ∀ (b : Cardinal.{u_1}), b ∈ {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c} → c ≤ b [PROOFSTEP] rintro H d ⟨S, h, rfl⟩ [GOAL] case mpr.intro.intro α : Type u_1 r✝ r : α → α → Prop inst✝ : IsRefl α r c : Cardinal.{u_1} H : ∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S S : Set α h : ∀ (a : α), ∃ b, b ∈ S ∧ r a b ⊢ c ≤ #↑S [PROOFSTEP] exact H h [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : IsRefl β s f : r ≃r s ⊢ Cardinal.lift (cof r) ≤ Cardinal.lift (cof s) [PROOFSTEP] rw [Order.cof, Order.cof, lift_sInf, lift_sInf, le_csInf_iff'' (nonempty_image_iff.2 (Order.cof_nonempty s))] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : IsRefl β s f : r ≃r s ⊢ ∀ (b : Cardinal.{max u v}), b ∈ Cardinal.lift '' {c | ∃ S, (∀ (a : β), ∃ b, b ∈ S ∧ s a b) ∧ #↑S = c} → sInf (Cardinal.lift '' {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c}) ≤ b [PROOFSTEP] rintro - ⟨-, ⟨u, H, rfl⟩, rfl⟩ [GOAL] case intro.intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : IsRefl β s f : r ≃r s u : Set β H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b ⊢ sInf (Cardinal.lift '' {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c}) ≤ Cardinal.lift #↑u [PROOFSTEP] apply csInf_le' [GOAL] case intro.intro.intro.intro.h α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : IsRefl β s f : r ≃r s u : Set β H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b ⊢ Cardinal.lift #↑u ∈ Cardinal.lift '' {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c} [PROOFSTEP] refine' ⟨_, ⟨f.symm '' u, fun a => _, rfl⟩, lift_mk_eq.{u, v, max u v}.2 ⟨(f.symm.toEquiv.image u).symm⟩⟩ [GOAL] case intro.intro.intro.intro.h α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : IsRefl β s f : r ≃r s u : Set β H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b a : α ⊢ ∃ b, b ∈ ↑(RelIso.symm f) '' u ∧ r a b [PROOFSTEP] rcases H (f a) with ⟨b, hb, hb'⟩ [GOAL] case intro.intro.intro.intro.h.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : IsRefl β s f : r ≃r s u : Set β H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b a : α b : β hb : b ∈ u hb' : s (↑f a) b ⊢ ∃ b, b ∈ ↑(RelIso.symm f) '' u ∧ r a b [PROOFSTEP] refine' ⟨f.symm b, mem_image_of_mem _ hb, f.map_rel_iff.1 _⟩ [GOAL] case intro.intro.intro.intro.h.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : IsRefl β s f : r ≃r s u : Set β H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b a : α b : β hb : b ∈ u hb' : s (↑f a) b ⊢ s (↑f a) (↑f (↑(RelIso.symm f) b)) [PROOFSTEP] rwa [RelIso.apply_symm_apply] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} ⊢ ∀ (a b : WellOrder), a ≈ b → (fun a => StrictOrder.cof a.r) a = (fun a => StrictOrder.cof a.r) b [PROOFSTEP] rintro ⟨α, r, wo₁⟩ ⟨β, s, wo₂⟩ ⟨⟨f, hf⟩⟩ [GOAL] case mk.mk.intro.mk α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b ⊢ (fun a => StrictOrder.cof a.r) { α := α, r := r, wo := wo₁ } = (fun a => StrictOrder.cof a.r) { α := β, r := s, wo := wo₂ } [PROOFSTEP] haveI := wo₁ [GOAL] case mk.mk.intro.mk α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this : IsWellOrder α r ⊢ (fun a => StrictOrder.cof a.r) { α := α, r := r, wo := wo₁ } = (fun a => StrictOrder.cof a.r) { α := β, r := s, wo := wo₂ } [PROOFSTEP] haveI := wo₂ [GOAL] case mk.mk.intro.mk α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ (fun a => StrictOrder.cof a.r) { α := α, r := r, wo := wo₁ } = (fun a => StrictOrder.cof a.r) { α := β, r := s, wo := wo₂ } [PROOFSTEP] dsimp only [GOAL] case mk.mk.intro.mk α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ StrictOrder.cof r = StrictOrder.cof s [PROOFSTEP] apply @RelIso.cof_eq _ _ _ _ ?_ ?_ [GOAL] case mk.mk.intro.mk α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ swap rᶜ ≃r swap sᶜ [PROOFSTEP] constructor [GOAL] case mk.mk.intro.mk.map_rel_iff' α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ ∀ {a b : α}, swap sᶜ (↑?mk.mk.intro.mk.toEquiv a) (↑?mk.mk.intro.mk.toEquiv b) ↔ swap rᶜ a b case mk.mk.intro.mk.toEquiv α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ α ≃ β [PROOFSTEP] exact @fun a b => not_iff_not.2 hf [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ IsRefl α (swap rᶜ) [PROOFSTEP] dsimp only [swap] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ IsRefl α fun y x => rᶜ x y [PROOFSTEP] exact ⟨fun _ => irrefl _⟩ [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ IsRefl β (swap sᶜ) [PROOFSTEP] dsimp only [swap] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop wo₁ : IsWellOrder α r β : Type u s : β → β → Prop wo₂ : IsWellOrder β s f : α ≃ β hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b this✝ : IsWellOrder α r this : IsWellOrder β s ⊢ IsRefl β fun y x => sᶜ x y [PROOFSTEP] exact ⟨fun _ => irrefl _⟩ [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsWellOrder α r c : Cardinal.{u_1} ⊢ (∀ (S : Set α), Unbounded r S → c ≤ #↑S) → ∀ (b : Cardinal.{u_1}), b ∈ {c | ∃ S, Unbounded r S ∧ #↑S = c} → c ≤ b [PROOFSTEP] rintro H d ⟨S, h, rfl⟩ [GOAL] case intro.intro α : Type u_1 r : α → α → Prop inst✝ : IsWellOrder α r c : Cardinal.{u_1} H : ∀ (S : Set α), Unbounded r S → c ≤ #↑S S : Set α h : Unbounded r S ⊢ c ≤ #↑S [PROOFSTEP] exact H _ h [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsWellOrder α r S : Set α ⊢ #↑S < cof (type r) → Bounded r S [PROOFSTEP] simpa using not_imp_not.2 cof_type_le [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r ⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r)) [PROOFSTEP] let ⟨S, hS, e⟩ := cof_eq r [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) ⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r)) [PROOFSTEP] let ⟨s, _, e'⟩ := Cardinal.ord_eq S [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s ⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r)) [PROOFSTEP] let T : Set α := {a | ∃ aS : a ∈ S, ∀ b : S, s b ⟨_, aS⟩ → r b a} [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} ⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r)) [PROOFSTEP] suffices : Unbounded r T [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T ⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r)) [PROOFSTEP] refine' ⟨T, this, le_antisymm _ (Cardinal.ord_le.2 <| cof_type_le this)⟩ [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T ⊢ type (Subrel r T) ≤ ord (cof (type r)) [PROOFSTEP] rw [← e, e'] [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T ⊢ type (Subrel r T) ≤ type s [PROOFSTEP] refine' (RelEmbedding.ofMonotone (fun a : T => (⟨a, let ⟨aS, _⟩ := a.2 aS⟩ : S)) fun a b h => _).ordinal_type_le [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a b : ↑T h : Subrel r T a b ⊢ s ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) a) ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) b) [PROOFSTEP] rcases a with ⟨a, aS, ha⟩ [GOAL] case mk.intro α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T b : ↑T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } b ⊢ s ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }) ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) b) [PROOFSTEP] rcases b with ⟨b, bS, hb⟩ [GOAL] case mk.intro.mk.intro α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a b : α bS : b ∈ S hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } { val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ⊢ s ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }) ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) { val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) }) [PROOFSTEP] change s ⟨a, _⟩ ⟨b, _⟩ [GOAL] case mk.intro.mk.intro α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a b : α bS : b ∈ S hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } { val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ⊢ s { val := a, property := (_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) } { val := b, property := (_ : ↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈ S) } [PROOFSTEP] refine' ((trichotomous_of s _ _).resolve_left fun hn => _).resolve_left _ [GOAL] case mk.intro.mk.intro.refine'_1 α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a b : α bS : b ∈ S hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } { val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } hn : s { val := b, property := (_ : ↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈ S) } { val := a, property := (_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) } ⊢ False [PROOFSTEP] exact asymm h (ha _ hn) [GOAL] case mk.intro.mk.intro.refine'_2 α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a b : α bS : b ∈ S hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } { val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ⊢ ¬{ val := b, property := (_ : ↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈ S) } = { val := a, property := (_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) } [PROOFSTEP] intro e [GOAL] case mk.intro.mk.intro.refine'_2 α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e✝ : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a b : α bS : b ∈ S hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } { val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } e : { val := b, property := (_ : ↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈ S) } = { val := a, property := (_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) } ⊢ False [PROOFSTEP] injection e with e [GOAL] case mk.intro.mk.intro.refine'_2 α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e✝ : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a b : α bS : b ∈ S hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } { val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } e : b = a ⊢ False [PROOFSTEP] subst b [GOAL] case mk.intro.mk.intro.refine'_2 α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} this : Unbounded r T a : α aS : a ∈ S ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a bS : a ∈ S hb : ∀ (b : ↑S), s b { val := a, property := bS } → r (↑b) a h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ⊢ False [PROOFSTEP] exact irrefl _ h [GOAL] case this α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} ⊢ Unbounded r T [PROOFSTEP] intro a [GOAL] case this α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α ⊢ ∃ b, b ∈ T ∧ ¬r b a [PROOFSTEP] have : {b : S | ¬r b a}.Nonempty := let ⟨b, bS, ba⟩ := hS a ⟨⟨b, bS⟩, ba⟩ [GOAL] case this α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} ⊢ ∃ b, b ∈ T ∧ ¬r b a [PROOFSTEP] let b := (IsWellFounded.wf : WellFounded s).min _ this [GOAL] case this α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this ⊢ ∃ b, b ∈ T ∧ ¬r b a [PROOFSTEP] have ba : ¬r b a := IsWellFounded.wf.min_mem _ this [GOAL] case this α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this ba : ¬r (↑b) a ⊢ ∃ b, b ∈ T ∧ ¬r b a [PROOFSTEP] refine' ⟨b, ⟨b.2, fun c => not_imp_not.1 fun h => _⟩, ba⟩ [GOAL] case this α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this ba : ¬r (↑b) a c : ↑S h : ¬r ↑c ↑b ⊢ ¬s c { val := ↑b, property := (_ : ↑b ∈ S) } [PROOFSTEP] rw [show ∀ b : S, (⟨b, b.2⟩ : S) = b by intro b; cases b; rfl] [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this ba : ¬r (↑b) a c : ↑S h : ¬r ↑c ↑b ⊢ ∀ (b : ↑S), { val := ↑b, property := (_ : ↑b ∈ S) } = b [PROOFSTEP] intro b [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} b✝ : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this ba : ¬r (↑b✝) a c : ↑S h : ¬r ↑c ↑b✝ b : ↑S ⊢ { val := ↑b, property := (_ : ↑b ∈ S) } = b [PROOFSTEP] cases b [GOAL] case mk α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this ba : ¬r (↑b) a c : ↑S h : ¬r ↑c ↑b val✝ : α property✝ : val✝ ∈ S ⊢ { val := ↑{ val := val✝, property := property✝ }, property := (_ : ↑{ val := val✝, property := property✝ } ∈ S) } = { val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] case this α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r S : Set α hS : Unbounded r S e : #↑S = cof (type r) s : ↑S → ↑S → Prop w✝ : IsWellOrder (↑S) s e' : ord #↑S = type s T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a} a : α this : Set.Nonempty {b | ¬r (↑b) a} b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this ba : ¬r (↑b) a c : ↑S h : ¬r ↑c ↑b ⊢ ¬s c b [PROOFSTEP] exact IsWellFounded.wf.not_lt_min _ this (IsOrderConnected.neg_trans h ba) [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} ⊢ cof o = sInf {a | ∃ ι f, lsub f = o ∧ #ι = a} [PROOFSTEP] refine' le_antisymm (le_csInf (cof_lsub_def_nonempty o) _) (csInf_le' _) [GOAL] case refine'_1 α : Type u_1 r : α → α → Prop o : Ordinal.{u} ⊢ ∀ (b : Cardinal.{u}), b ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a} → cof o ≤ b [PROOFSTEP] rintro a ⟨ι, f, hf, rfl⟩ [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o ⊢ cof o ≤ #ι [PROOFSTEP] rw [← type_lt o] [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o ⊢ cof (type fun x x_1 => x < x_1) ≤ #ι [PROOFSTEP] refine' (cof_type_le fun a => _).trans (@mk_le_of_injective _ _ (fun s : typein ((· < ·) : o.out.α → o.out.α → Prop) ⁻¹' Set.range f => Classical.choose s.prop) fun s t hst => by let H := congr_arg f hst rwa [Classical.choose_spec s.prop, Classical.choose_spec t.prop, typein_inj, Subtype.coe_inj] at H ) [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o s t : ↑((typein fun x x_1 => x < x_1) ⁻¹' range f) hst : (fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) s = (fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) t ⊢ s = t [PROOFSTEP] let H := congr_arg f hst [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o s t : ↑((typein fun x x_1 => x < x_1) ⁻¹' range f) hst : (fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) s = (fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) t H : f ((fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) s) = f ((fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) t) := congr_arg f hst ⊢ s = t [PROOFSTEP] rwa [Classical.choose_spec s.prop, Classical.choose_spec t.prop, typein_inj, Subtype.coe_inj] at H [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α ⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a [PROOFSTEP] have := typein_lt_self a [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α this : typein (fun x x_1 => x < x_1) a < o ⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a [PROOFSTEP] simp_rw [← hf, lt_lsub_iff] at this [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α this : ∃ i, typein (fun x x_1 => x < x_1) a ≤ f i ⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a [PROOFSTEP] cases' this with i hi [GOAL] case refine'_1.intro.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α i : ι hi : typein (fun x x_1 => x < x_1) a ≤ f i ⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a [PROOFSTEP] refine' ⟨enum (· < ·) (f i) _, _, _⟩ [GOAL] case refine'_1.intro.intro.intro.intro.refine'_1 α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α i : ι hi : typein (fun x x_1 => x < x_1) a ≤ f i ⊢ f i < type fun x x_1 => x < x_1 [PROOFSTEP] rw [type_lt, ← hf] [GOAL] case refine'_1.intro.intro.intro.intro.refine'_1 α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α i : ι hi : typein (fun x x_1 => x < x_1) a ≤ f i ⊢ f i < lsub f [PROOFSTEP] apply lt_lsub [GOAL] case refine'_1.intro.intro.intro.intro.refine'_2 α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α i : ι hi : typein (fun x x_1 => x < x_1) a ≤ f i ⊢ enum (fun x x_1 => x < x_1) (f i) (_ : f i < type fun x x_1 => x < x_1) ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f [PROOFSTEP] rw [mem_preimage, typein_enum] [GOAL] case refine'_1.intro.intro.intro.intro.refine'_2 α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α i : ι hi : typein (fun x x_1 => x < x_1) a ≤ f i ⊢ f i ∈ range f [PROOFSTEP] exact mem_range_self i [GOAL] case refine'_1.intro.intro.intro.intro.refine'_3 α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o a : (Quotient.out o).α i : ι hi : typein (fun x x_1 => x < x_1) a ≤ f i ⊢ ¬enum (fun x x_1 => x < x_1) (f i) (_ : f i < type fun x x_1 => x < x_1) < a [PROOFSTEP] rwa [← typein_le_typein, typein_enum] [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop o : Ordinal.{u} ⊢ cof o ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a} [PROOFSTEP] rcases cof_eq (· < · : (Quotient.out o).α → (Quotient.out o).α → Prop) with ⟨S, hS, hS'⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} S : Set (Quotient.out o).α hS : Unbounded (fun x x_1 => x < x_1) S hS' : #↑S = cof (type fun x x_1 => x < x_1) ⊢ cof o ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a} [PROOFSTEP] let f : S → Ordinal := fun s => typein LT.lt s.val [GOAL] case refine'_2.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} S : Set (Quotient.out o).α hS : Unbounded (fun x x_1 => x < x_1) S hS' : #↑S = cof (type fun x x_1 => x < x_1) f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s ⊢ cof o ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a} [PROOFSTEP] refine' ⟨S, f, le_antisymm (lsub_le fun i => typein_lt_self i) (le_of_forall_lt fun a ha => _), by rwa [type_lt o] at hS' ⟩ [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} S : Set (Quotient.out o).α hS : Unbounded (fun x x_1 => x < x_1) S hS' : #↑S = cof (type fun x x_1 => x < x_1) f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s ⊢ #↑S = cof o [PROOFSTEP] rwa [type_lt o] at hS' [GOAL] case refine'_2.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} S : Set (Quotient.out o).α hS : Unbounded (fun x x_1 => x < x_1) S hS' : #↑S = cof (type fun x x_1 => x < x_1) f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s a : Ordinal.{u} ha : a < o ⊢ a < lsub f [PROOFSTEP] rw [← type_lt o] at ha [GOAL] case refine'_2.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} S : Set (Quotient.out o).α hS : Unbounded (fun x x_1 => x < x_1) S hS' : #↑S = cof (type fun x x_1 => x < x_1) f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s a : Ordinal.{u} ha : a < type fun x x_1 => x < x_1 ⊢ a < lsub f [PROOFSTEP] rcases hS (enum (· < ·) a ha) with ⟨b, hb, hb'⟩ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} S : Set (Quotient.out o).α hS : Unbounded (fun x x_1 => x < x_1) S hS' : #↑S = cof (type fun x x_1 => x < x_1) f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s a : Ordinal.{u} ha : a < type fun x x_1 => x < x_1 b : (Quotient.out o).α hb : b ∈ S hb' : ¬(fun x x_1 => x < x_1) b (enum (fun x x_1 => x < x_1) a ha) ⊢ a < lsub f [PROOFSTEP] rw [← typein_le_typein, typein_enum] at hb' [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} S : Set (Quotient.out o).α hS : Unbounded (fun x x_1 => x < x_1) S hS' : #↑S = cof (type fun x x_1 => x < x_1) f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s a : Ordinal.{u} ha : a < type fun x x_1 => x < x_1 b : (Quotient.out o).α hb : b ∈ S hb' : a ≤ typein LT.lt b ⊢ a < lsub f [PROOFSTEP] exact hb'.trans_lt (lt_lsub.{u, u} f ⟨b, hb⟩) [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{v} ⊢ Cardinal.lift (cof o) = cof (lift o) [PROOFSTEP] refine' inductionOn o _ [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{v} ⊢ ∀ (α : Type v) (r : α → α → Prop) [inst : IsWellOrder α r], Cardinal.lift (cof (type r)) = cof (lift (type r)) [PROOFSTEP] intro α r _ [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r ⊢ Cardinal.lift (cof (type r)) = cof (lift (type r)) [PROOFSTEP] apply le_antisymm [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r ⊢ Cardinal.lift (cof (type r)) ≤ cof (lift (type r)) [PROOFSTEP] refine' le_cof_type.2 fun S H => _ [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set (ULift { α := α, r := r, wo := inst✝ }.α) H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S ⊢ Cardinal.lift (cof (type r)) ≤ #↑S [PROOFSTEP] have : Cardinal.lift.{u, v} #(ULift.up ⁻¹' S) ≤ #(S : Type (max u v)) := by rw [← Cardinal.lift_umax.{v, u}, ← Cardinal.lift_id'.{v, u} #S] refine mk_preimage_of_injective_lift.{v, max u v} ULift.up S (ULift.up_injective.{u, v}) [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set (ULift { α := α, r := r, wo := inst✝ }.α) H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S ⊢ Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ #↑S [PROOFSTEP] rw [← Cardinal.lift_umax.{v, u}, ← Cardinal.lift_id'.{v, u} #S] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set (ULift { α := α, r := r, wo := inst✝ }.α) H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S ⊢ Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ Cardinal.lift #↑S [PROOFSTEP] refine mk_preimage_of_injective_lift.{v, max u v} ULift.up S (ULift.up_injective.{u, v}) [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set (ULift { α := α, r := r, wo := inst✝ }.α) H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S this : Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ #↑S ⊢ Cardinal.lift (cof (type r)) ≤ #↑S [PROOFSTEP] refine' (Cardinal.lift_le.2 <| cof_type_le _).trans this [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set (ULift { α := α, r := r, wo := inst✝ }.α) H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S this : Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ #↑S ⊢ Unbounded r (ULift.up ⁻¹' S) [PROOFSTEP] exact fun a => let ⟨⟨b⟩, bs, br⟩ := H ⟨a⟩ ⟨b, bs, br⟩ [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r ⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r)) [PROOFSTEP] rcases cof_eq r with ⟨S, H, e'⟩ [GOAL] case a.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set α H : Unbounded r S e' : #↑S = cof (type r) ⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r)) [PROOFSTEP] have : #(ULift.down.{u, v} ⁻¹' S) ≤ Cardinal.lift.{u, v} #S := ⟨⟨fun ⟨⟨x⟩, h⟩ => ⟨⟨x, h⟩⟩, fun ⟨⟨x⟩, h₁⟩ ⟨⟨y⟩, h₂⟩ e => by simp at e ; congr⟩⟩ [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set α H : Unbounded r S e' : #↑S = cof (type r) x✝¹ x✝ : ↑(ULift.down ⁻¹' S) x : α h₁ : { down := x } ∈ ULift.down ⁻¹' S y : α h₂ : { down := y } ∈ ULift.down ⁻¹' S e : (fun x => match x with | { val := { down := x }, property := h } => { down := { val := x, property := h } }) { val := { down := x }, property := h₁ } = (fun x => match x with | { val := { down := x }, property := h } => { down := { val := x, property := h } }) { val := { down := y }, property := h₂ } ⊢ { val := { down := x }, property := h₁ } = { val := { down := y }, property := h₂ } [PROOFSTEP] simp at e [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set α H : Unbounded r S e' : #↑S = cof (type r) x✝¹ x✝ : ↑(ULift.down ⁻¹' S) x : α h₁ : { down := x } ∈ ULift.down ⁻¹' S y : α h₂ : { down := y } ∈ ULift.down ⁻¹' S e : x = y ⊢ { val := { down := x }, property := h₁ } = { val := { down := y }, property := h₂ } [PROOFSTEP] congr [GOAL] case a.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set α H : Unbounded r S e' : #↑S = cof (type r) this : #↑(ULift.down ⁻¹' S) ≤ Cardinal.lift #↑S ⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r)) [PROOFSTEP] rw [e'] at this [GOAL] case a.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set α H : Unbounded r S e' : #↑S = cof (type r) this : #↑(ULift.down ⁻¹' S) ≤ Cardinal.lift (cof (type r)) ⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r)) [PROOFSTEP] refine' (cof_type_le _).trans this [GOAL] case a.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{v} α : Type v r : α → α → Prop inst✝ : IsWellOrder α r S : Set α H : Unbounded r S e' : #↑S = cof (type r) this : #↑(ULift.down ⁻¹' S) ≤ Cardinal.lift (cof (type r)) ⊢ Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) (ULift.down ⁻¹' S) [PROOFSTEP] exact fun ⟨a⟩ => let ⟨b, bs, br⟩ := H a ⟨⟨b⟩, bs, br⟩ [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ cof o ≤ card o [PROOFSTEP] rw [cof_eq_sInf_lsub] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ sInf {a | ∃ ι f, lsub f = o ∧ #ι = a} ≤ card o [PROOFSTEP] exact csInf_le' card_mem_cof [GOAL] α : Type u_1 r : α → α → Prop c : Cardinal.{u_2} ⊢ cof (ord c) ≤ c [PROOFSTEP] simpa using cof_le_card c.ord [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} ⊢ ∃ ι f, lsub f = o ∧ #ι = cof o [PROOFSTEP] rw [cof_eq_sInf_lsub] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} ⊢ ∃ ι f, lsub f = o ∧ #ι = sInf {a | ∃ ι f, lsub f = o ∧ #ι = a} [PROOFSTEP] exact csInf_mem (cof_lsub_def_nonempty o) [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} ⊢ cof (lsub f) ≤ #ι [PROOFSTEP] rw [cof_eq_sInf_lsub] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} ⊢ sInf {a | ∃ ι_1 f_1, lsub f_1 = lsub f ∧ #ι_1 = a} ≤ #ι [PROOFSTEP] exact csInf_le' ⟨ι, f, rfl, rfl⟩ [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} ⊢ cof (lsub f) ≤ Cardinal.lift #ι [PROOFSTEP] rw [← mk_uLift.{u, v}] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} ⊢ cof (lsub f) ≤ #(ULift ι) [PROOFSTEP] convert cof_lsub_le.{max u v} fun i : ULift.{v, u} ι => f i.down [GOAL] case h.e'_3.h.e'_1 α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} ⊢ lsub f = lsub fun i => f i.down [PROOFSTEP] exact lsub_eq_of_range_eq.{u, max u v, max u v} (Set.ext fun x => ⟨fun ⟨i, hi⟩ => ⟨ULift.up.{v, u} i, hi⟩, fun ⟨i, hi⟩ => ⟨_, hi⟩⟩) [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} a : Cardinal.{u} ⊢ a ≤ cof o ↔ ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι [PROOFSTEP] rw [cof_eq_sInf_lsub] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} a : Cardinal.{u} ⊢ a ≤ sInf {a | ∃ ι f, lsub f = o ∧ #ι = a} ↔ ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι [PROOFSTEP] exact (le_csInf_iff'' (cof_lsub_def_nonempty o)).trans ⟨fun H ι f hf => H _ ⟨ι, f, hf, rfl⟩, fun H b ⟨ι, f, hf, hb⟩ => by rw [← hb] exact H _ hf⟩ [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} a : Cardinal.{u} H : ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι b : Cardinal.{u} x✝ : b ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o hb : #ι = b ⊢ a ≤ b [PROOFSTEP] rw [← hb] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} a : Cardinal.{u} H : ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι b : Cardinal.{u} x✝ : b ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o hb : #ι = b ⊢ a ≤ #ι [PROOFSTEP] exact H _ hf [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} c : Ordinal.{max u v} hι : Cardinal.lift #ι < cof c hf : ∀ (i : ι), f i < c h : lsub f = c ⊢ False [PROOFSTEP] subst h [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} hι : Cardinal.lift #ι < cof (lsub f) hf : ∀ (i : ι), f i < lsub f ⊢ False [PROOFSTEP] exact (cof_lsub_le_lift.{u, v} f).not_lt hι [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} c : Ordinal.{u} hι : #ι < cof c ⊢ Cardinal.lift #ι < cof c [PROOFSTEP] rwa [(#ι).lift_id] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} H : ∀ (i : ι), f i < sup f ⊢ cof (sup f) ≤ Cardinal.lift #ι [PROOFSTEP] rw [← sup_eq_lsub_iff_lt_sup.{u, v}] at H [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} H : (sup fun i => f i) = lsub fun i => f i ⊢ cof (sup f) ≤ Cardinal.lift #ι [PROOFSTEP] rw [H] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} H : (sup fun i => f i) = lsub fun i => f i ⊢ cof (lsub fun i => f i) ≤ Cardinal.lift #ι [PROOFSTEP] exact cof_lsub_le_lift f [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} H : ∀ (i : ι), f i < sup f ⊢ cof (sup f) ≤ #ι [PROOFSTEP] rw [← (#ι).lift_id] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} H : ∀ (i : ι), f i < sup f ⊢ cof (sup f) ≤ Cardinal.lift #ι [PROOFSTEP] exact cof_sup_le_lift H [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} c : Ordinal.{u} hι : #ι < cof c ⊢ Cardinal.lift #ι < cof c [PROOFSTEP] rwa [(#ι).lift_id] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Cardinal.{max u v} c : Cardinal.{max u v} hι : Cardinal.lift #ι < cof (ord c) hf : ∀ (i : ι), f i < c ⊢ iSup f < c [PROOFSTEP] rw [← ord_lt_ord, iSup_ord (Cardinal.bddAbove_range.{u, v} _)] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Cardinal.{max u v} c : Cardinal.{max u v} hι : Cardinal.lift #ι < cof (ord c) hf : ∀ (i : ι), f i < c ⊢ ⨆ (i : ι), ord (f i) < ord c [PROOFSTEP] refine' sup_lt_ord_lift hι fun i => _ [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Cardinal.{max u v} c : Cardinal.{max u v} hι : Cardinal.lift #ι < cof (ord c) hf : ∀ (i : ι), f i < c i : ι ⊢ ord (f i) < ord c [PROOFSTEP] rw [ord_lt_ord] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Cardinal.{max u v} c : Cardinal.{max u v} hι : Cardinal.lift #ι < cof (ord c) hf : ∀ (i : ι), f i < c i : ι ⊢ f i < c [PROOFSTEP] apply hf [GOAL] α : Type u_1 r : α → α → Prop ι : Type u_2 f : ι → Cardinal.{u_2} c : Cardinal.{u_2} hι : #ι < cof (ord c) ⊢ Cardinal.lift #ι < cof (ord c) [PROOFSTEP] rwa [(#ι).lift_id] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c a : Ordinal.{max u v} ha : a < c ⊢ nfpFamily f a < c [PROOFSTEP] refine' sup_lt_ord_lift ((Cardinal.lift_le.2 (mk_list_le_max ι)).trans_lt _) fun l => _ [GOAL] case refine'_1 α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c a : Ordinal.{max u v} ha : a < c ⊢ Cardinal.lift (max ℵ₀ #ι) < cof c [PROOFSTEP] rw [lift_max] [GOAL] case refine'_1 α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c a : Ordinal.{max u v} ha : a < c ⊢ max (Cardinal.lift ℵ₀) (Cardinal.lift #ι) < cof c [PROOFSTEP] apply max_lt _ hc' [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c a : Ordinal.{max u v} ha : a < c ⊢ Cardinal.lift ℵ₀ < cof c [PROOFSTEP] rwa [Cardinal.lift_aleph0] [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c a : Ordinal.{max u v} ha : a < c l : List ι ⊢ List.foldr f a l < c [PROOFSTEP] induction' l with i l H [GOAL] case refine'_2.nil α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c a : Ordinal.{max u v} ha : a < c ⊢ List.foldr f a [] < c [PROOFSTEP] exact ha [GOAL] case refine'_2.cons α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c a : Ordinal.{max u v} ha : a < c i : ι l : List ι H : List.foldr f a l < c ⊢ List.foldr f a (i :: l) < c [PROOFSTEP] exact hf _ _ H [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} → Ordinal.{u} c : Ordinal.{u} hc : ℵ₀ < cof c hc' : #ι < cof c hf : ∀ (i : ι) (b : Ordinal.{u}), b < c → f i b < c a : Ordinal.{u} ⊢ Cardinal.lift #ι < cof c [PROOFSTEP] rwa [(#ι).lift_id] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} → Ordinal.{max u v} c : Ordinal.{max u v} hc : ℵ₀ < cof c hc' : Cardinal.lift (card o) < cof c hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{max u v}), b < c → f i hi b < c a : Ordinal.{max u v} ⊢ Cardinal.lift #(Quotient.out o).α < cof c [PROOFSTEP] rwa [mk_ordinal_out] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u} c : Ordinal.{u} hc : ℵ₀ < cof c hc' : card o < cof c hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{u}), b < c → f i hi b < c a : Ordinal.{u} ⊢ Cardinal.lift (card o) < cof c [PROOFSTEP] rwa [o.card.lift_id] [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} c : Ordinal.{u_2} hc : ℵ₀ < cof c hf : ∀ (i : Ordinal.{u_2}), i < c → f i < c a : Ordinal.{u_2} ⊢ Cardinal.lift #Unit < cof c [PROOFSTEP] simpa using Cardinal.one_lt_aleph0.trans hc [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} ⊢ ∃ f, blsub (ord (cof o)) f = o [PROOFSTEP] rcases exists_lsub_cof o with ⟨ι, f, hf, hι⟩ [GOAL] case intro.intro.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o hι : #ι = cof o ⊢ ∃ f, blsub (ord (cof o)) f = o [PROOFSTEP] rcases Cardinal.ord_eq ι with ⟨r, hr, hι'⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = o hι : #ι = cof o r : ι → ι → Prop hr : IsWellOrder ι r hι' : ord #ι = type r ⊢ ∃ f, blsub (ord (cof o)) f = o [PROOFSTEP] rw [← @blsub_eq_lsub' ι r hr] at hf [GOAL] case intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hι : #ι = cof o r : ι → ι → Prop hr : IsWellOrder ι r hf : blsub (type r) (bfamilyOfFamily' r f) = o hι' : ord #ι = type r ⊢ ∃ f, blsub (ord (cof o)) f = o [PROOFSTEP] rw [← hι, hι'] [GOAL] case intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop o : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hι : #ι = cof o r : ι → ι → Prop hr : IsWellOrder ι r hf : blsub (type r) (bfamilyOfFamily' r f) = o hι' : ord #ι = type r ⊢ ∃ f, blsub (type r) f = o [PROOFSTEP] exact ⟨_, hf⟩ [GOAL] α : Type u_1 r : α → α → Prop b : Ordinal.{u} a : Cardinal.{u} H : ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = b → a ≤ #ι o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} hf : blsub o f = b ⊢ a ≤ card o [PROOFSTEP] simpa using H _ hf [GOAL] α : Type u_1 r : α → α → Prop b : Ordinal.{u} a : Cardinal.{u} H : ∀ {o : Ordinal.{u}} (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), blsub o f = b → a ≤ card o ι : Type u f : ι → Ordinal.{u} hf : lsub f = b ⊢ a ≤ #ι [PROOFSTEP] rcases Cardinal.ord_eq ι with ⟨r, hr, hι'⟩ [GOAL] case intro.intro α : Type u_1 r✝ : α → α → Prop b : Ordinal.{u} a : Cardinal.{u} H : ∀ {o : Ordinal.{u}} (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), blsub o f = b → a ≤ card o ι : Type u f : ι → Ordinal.{u} hf : lsub f = b r : ι → ι → Prop hr : IsWellOrder ι r hι' : ord #ι = type r ⊢ a ≤ #ι [PROOFSTEP] rw [← @blsub_eq_lsub' ι r hr] at hf [GOAL] case intro.intro α : Type u_1 r✝ : α → α → Prop b : Ordinal.{u} a : Cardinal.{u} H : ∀ {o : Ordinal.{u}} (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), blsub o f = b → a ≤ card o ι : Type u f : ι → Ordinal.{u} r : ι → ι → Prop hr : IsWellOrder ι r hf : blsub (type r) (bfamilyOfFamily' r f) = b hι' : ord #ι = type r ⊢ a ≤ #ι [PROOFSTEP] simpa using H _ hf [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} ⊢ cof (blsub o f) ≤ Cardinal.lift (card o) [PROOFSTEP] rw [← mk_ordinal_out o] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} ⊢ cof (blsub o f) ≤ Cardinal.lift #(Quotient.out o).α [PROOFSTEP] exact cof_lsub_le_lift _ [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} ⊢ cof (blsub o f) ≤ card o [PROOFSTEP] rw [← o.card.lift_id] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} ⊢ cof (blsub o f) ≤ Cardinal.lift (card o) [PROOFSTEP] exact cof_blsub_le_lift f [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} c : Ordinal.{max u v} ho : Cardinal.lift (card o) < cof c hf : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi < c h : blsub o f = c ⊢ cof c ≤ Cardinal.lift (card o) [PROOFSTEP] simpa [← iSup_ord, hf, h] using cof_blsub_le_lift.{u, v} f [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} c : Ordinal.{u} ho : card o < cof c hf : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi < c ⊢ Cardinal.lift (card o) < cof c [PROOFSTEP] rwa [o.card.lift_id] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} H : ∀ (i : Ordinal.{u}) (h : i < o), f i h < bsup o f ⊢ cof (bsup o f) ≤ Cardinal.lift (card o) [PROOFSTEP] rw [← bsup_eq_blsub_iff_lt_bsup.{u, v}] at H [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} H : (bsup o fun i h => f i h) = blsub o fun i h => f i h ⊢ cof (bsup o f) ≤ Cardinal.lift (card o) [PROOFSTEP] rw [H] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} H : (bsup o fun i h => f i h) = blsub o fun i h => f i h ⊢ cof (blsub o fun i h => f i h) ≤ Cardinal.lift (card o) [PROOFSTEP] exact cof_blsub_le_lift.{u, v} f [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} ⊢ (∀ (i : Ordinal.{u}) (h : i < o), f i h < bsup o f) → cof (bsup o f) ≤ card o [PROOFSTEP] rw [← o.card.lift_id] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} ⊢ (∀ (i : Ordinal.{u}) (h : i < o), f i h < bsup o f) → cof (bsup o f) ≤ Cardinal.lift (card o) [PROOFSTEP] exact cof_bsup_le_lift [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} c : Ordinal.{u} ho : card o < cof c ⊢ Cardinal.lift (card o) < cof c [PROOFSTEP] rwa [o.card.lift_id] [GOAL] α : Type u_1 r : α → α → Prop ⊢ cof 0 = 0 [PROOFSTEP] refine LE.le.antisymm ?_ (Cardinal.zero_le _) [GOAL] α : Type u_1 r : α → α → Prop ⊢ cof 0 ≤ 0 [PROOFSTEP] rw [← card_zero] [GOAL] α : Type u_1 r : α → α → Prop ⊢ cof 0 ≤ card 0 [PROOFSTEP] exact cof_le_card 0 [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} e : o = 0 ⊢ cof o = 0 [PROOFSTEP] simp [e] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ cof (succ o) = 1 [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ cof (succ o) ≤ 1 [PROOFSTEP] refine' inductionOn o fun α r _ => _ [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ cof (succ (type r)) ≤ 1 [PROOFSTEP] change cof (type _) ≤ _ [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ 1 [PROOFSTEP] rw [← (_ : #_ = 1)] [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ #?m.43749 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ Type u_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ #?m.43749 = 1 [PROOFSTEP] apply cof_type_le [GOAL] case a.h α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ Unbounded (Sum.Lex r EmptyRelation) ?a.S✝ [PROOFSTEP] refine' fun a => ⟨Sum.inr PUnit.unit, Set.mem_singleton _, _⟩ [GOAL] case a.h α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r a : α ⊕ PUnit ⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) a [PROOFSTEP] rcases a with (a | ⟨⟨⟨⟩⟩⟩) [GOAL] case a.h.inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r a : α ⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) (Sum.inl a) [PROOFSTEP] simp [EmptyRelation] [GOAL] case a.h.inr.unit α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) (Sum.inr PUnit.unit) [PROOFSTEP] simp [EmptyRelation] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ #↑{Sum.inr PUnit.unit} = 1 [PROOFSTEP] rw [Cardinal.mk_fintype, Set.card_singleton] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ ↑1 = 1 [PROOFSTEP] simp [GOAL] case a α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ 1 ≤ cof (succ o) [PROOFSTEP] rw [← Cardinal.succ_zero, succ_le_iff] [GOAL] case a α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ 0 < cof (succ o) [PROOFSTEP] simpa [lt_iff_le_and_ne, Cardinal.zero_le] using fun h => succ_ne_zero o (cof_eq_zero.1 (Eq.symm h)) [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 ⊢ ∃ a, type r = succ a [PROOFSTEP] skip [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 ⊢ ∃ a, type r = succ a [PROOFSTEP] rcases cof_eq r with ⟨S, hl, e⟩ [GOAL] case intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = cof (type r) ⊢ ∃ a, type r = succ a [PROOFSTEP] rw [z] at e [GOAL] case intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 ⊢ ∃ a, type r = succ a [PROOFSTEP] cases' mk_ne_zero_iff.1 (by rw [e]; exact one_ne_zero) with a [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 ⊢ #?m.47546 ≠ 0 [PROOFSTEP] rw [e] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] case intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S ⊢ ∃ a, type r = succ a [PROOFSTEP] refine' ⟨typein r a, Eq.symm <| Quotient.sound ⟨RelIso.ofSurjective (RelEmbedding.ofMonotone _ fun x y => _) fun x => _⟩⟩ [GOAL] case intro.intro.intro.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S ⊢ ↑{b | r b ↑a} ⊕ PUnit → α [PROOFSTEP] apply Sum.rec <;> [exact Subtype.val; exact fun _ => a] [GOAL] case intro.intro.intro.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S ⊢ ↑{b | r b ↑a} ⊕ PUnit → α [PROOFSTEP] apply Sum.rec [GOAL] case intro.intro.intro.refine'_1.inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S ⊢ ↑{b | r b ↑a} → α [PROOFSTEP] exact Subtype.val [GOAL] case intro.intro.intro.refine'_1.inr α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S ⊢ PUnit → α [PROOFSTEP] exact fun _ => a [GOAL] case intro.intro.intro.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x y : ↑{b | r b ↑a} ⊕ PUnit ⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y → r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y) [PROOFSTEP] rcases x with (x | ⟨⟨⟨⟩⟩⟩) [GOAL] case intro.intro.intro.refine'_2.inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S y : ↑{b | r b ↑a} ⊕ PUnit x : ↑{b | r b ↑a} ⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inl x) y → r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl x)) (Sum.rec Subtype.val (fun x => ↑a) y) [PROOFSTEP] rcases y with (y | ⟨⟨⟨⟩⟩⟩) [GOAL] case intro.intro.intro.refine'_2.inr.unit α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S y : ↑{b | r b ↑a} ⊕ PUnit ⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inr PUnit.unit) y → r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) (Sum.rec Subtype.val (fun x => ↑a) y) [PROOFSTEP] rcases y with (y | ⟨⟨⟨⟩⟩⟩) [GOAL] case intro.intro.intro.refine'_2.inl.inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x y : ↑{b | r b ↑a} ⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inl x) (Sum.inl y) → r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl x)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl y)) [PROOFSTEP] simp [Subrel, Order.Preimage, EmptyRelation] [GOAL] case intro.intro.intro.refine'_2.inl.inr.unit α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : ↑{b | r b ↑a} ⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inl x) (Sum.inr PUnit.unit) → r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl x)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) [PROOFSTEP] simp [Subrel, Order.Preimage, EmptyRelation] [GOAL] case intro.intro.intro.refine'_2.inr.unit.inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S y : ↑{b | r b ↑a} ⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inr PUnit.unit) (Sum.inl y) → r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl y)) [PROOFSTEP] simp [Subrel, Order.Preimage, EmptyRelation] [GOAL] case intro.intro.intro.refine'_2.inr.unit.inr.unit α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S ⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inr PUnit.unit) (Sum.inr PUnit.unit) → r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) [PROOFSTEP] simp [Subrel, Order.Preimage, EmptyRelation] [GOAL] case intro.intro.intro.refine'_2.inl.inr.unit α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : ↑{b | r b ↑a} ⊢ r ↑x ↑a [PROOFSTEP] exact x.2 [GOAL] case intro.intro.intro.refine'_3 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α ⊢ ∃ a_1, ↑(RelEmbedding.ofMonotone (Sum.rec Subtype.val fun x => ↑a) (_ : ∀ (x y : ↑{b | r b ↑a} ⊕ PUnit), Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y → r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y))) a_1 = x [PROOFSTEP] suffices : r x a ∨ ∃ _ : PUnit.{u}, ↑a = x [GOAL] case intro.intro.intro.refine'_3 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α this : r x ↑a ∨ ∃ x_1, ↑a = x ⊢ ∃ a_1, ↑(RelEmbedding.ofMonotone (Sum.rec Subtype.val fun x => ↑a) (_ : ∀ (x y : ↑{b | r b ↑a} ⊕ PUnit), Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y → r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y))) a_1 = x [PROOFSTEP] convert this [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α this : r x ↑a ∨ ∃ x_1, ↑a = x ⊢ (∃ a_1, ↑(RelEmbedding.ofMonotone (Sum.rec Subtype.val fun x => ↑a) (_ : ∀ (x y : ↑{b | r b ↑a} ⊕ PUnit), Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y → r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y))) a_1 = x) ↔ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] dsimp [RelEmbedding.ofMonotone] [GOAL] case a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α this : r x ↑a ∨ ∃ x_1, ↑a = x ⊢ (∃ a_1, Sum.rec Subtype.val (fun x => ↑a) a_1 = x) ↔ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] simp [GOAL] case this α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α ⊢ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] rcases trichotomous_of r x a with (h | h | h) [GOAL] case this.inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α h : r x ↑a ⊢ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] exact Or.inl h [GOAL] case this.inr.inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α h : x = ↑a ⊢ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] exact Or.inr ⟨PUnit.unit, h.symm⟩ [GOAL] case this.inr.inr α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α h : r (↑a) x ⊢ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] rcases hl x with ⟨a', aS, hn⟩ [GOAL] case this.inr.inr.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α h : r (↑a) x a' : α aS : a' ∈ S hn : ¬r a' x ⊢ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] rw [(_ : ↑a = a')] at h [GOAL] case this.inr.inr.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x a' : α h : r a' x aS : a' ∈ S hn : ¬r a' x ⊢ r x ↑a ∨ ∃ x_1, ↑a = x [PROOFSTEP] exact absurd h hn [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α h : r (↑a) x a' : α aS : a' ∈ S hn : ¬r a' x ⊢ ↑a = a' [PROOFSTEP] refine' congr_arg Subtype.val (_ : a = ⟨a', aS⟩) [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α h : r (↑a) x a' : α aS : a' ∈ S hn : ¬r a' x ⊢ a = { val := a', property := aS } [PROOFSTEP] haveI := le_one_iff_subsingleton.1 (le_of_eq e) [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : cof (type r) = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : α h : r (↑a) x a' : α aS : a' ∈ S hn : ¬r a' x this : Subsingleton ↑S ⊢ a = { val := a', property := aS } [PROOFSTEP] apply Subsingleton.elim [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} x✝ : ∃ a, o = succ a a : Ordinal.{u} e : o = succ a ⊢ cof o = 1 [PROOFSTEP] simp [e] [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f ⊢ ord (cof a) ≤ o [PROOFSTEP] rw [← hf.2.2] [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f ⊢ ord (cof (blsub o f)) ≤ o [PROOFSTEP] exact (ord_le_ord.2 (cof_blsub_le f)).trans (ord_card_le o) [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f i : Ordinal.{u} hi : i < ord (cof a) ⊢ ord (cof a) ≤ o [PROOFSTEP] rw [hf.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f ⊢ IsFundamentalSequence a (ord (cof a)) fun i hi => f i (_ : i < o) [PROOFSTEP] have H := hf.cof_eq [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f H : ord (cof a) = o ⊢ IsFundamentalSequence a (ord (cof a)) fun i hi => f i (_ : i < o) [PROOFSTEP] subst H [GOAL] α : Type u_1 r : α → α → Prop a : Ordinal.{u} f : (b : Ordinal.{u}) → b < ord (cof a) → Ordinal.{u} hf : IsFundamentalSequence a (ord (cof a)) f ⊢ IsFundamentalSequence a (ord (cof a)) fun i hi => f i (_ : i < ord (cof a)) [PROOFSTEP] exact hf [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o → Ordinal.{u} f : (b : Ordinal.{u_2}) → b < 0 → Ordinal.{u_2} ⊢ 0 ≤ ord (cof 0) [PROOFSTEP] rw [cof_zero, ord_zero] [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} ⊢ IsFundamentalSequence (succ o) 1 fun x x => o [PROOFSTEP] refine' ⟨_, @fun i j hi hj h => _, blsub_const Ordinal.one_ne_zero o⟩ [GOAL] case refine'_1 α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} ⊢ 1 ≤ ord (cof (succ o)) [PROOFSTEP] rw [cof_succ, ord_one] [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} i j : Ordinal.{u} hi : i < 1 hj : j < 1 h : i < j ⊢ (fun x x => o) i hi < (fun x x => o) j hj [PROOFSTEP] rw [lt_one_iff_zero] at hi hj [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} i j : Ordinal.{u} hi✝ : i < 1 hi : i = 0 hj✝ : j < 1 hj : j = 0 h : i < j ⊢ (fun x x => o) i hi✝ < (fun x x => o) j hj✝ [PROOFSTEP] rw [hi, hj] at h [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} i j : Ordinal.{u} hi✝ : i < 1 hi : i = 0 hj✝ : j < 1 hj : j = 0 h : 0 < 0 ⊢ (fun x x => o) i hi✝ < (fun x x => o) j hj✝ [PROOFSTEP] exact h.false.elim [GOAL] α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f i j : Ordinal.{u} hi : i < o hj : j < o hij : i ≤ j ⊢ f i hi ≤ f j hj [PROOFSTEP] rcases lt_or_eq_of_le hij with (hij | rfl) [GOAL] case inl α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f i j : Ordinal.{u} hi : i < o hj : j < o hij✝ : i ≤ j hij : i < j ⊢ f i hi ≤ f j hj [PROOFSTEP] exact (hf.2.1 hi hj hij).le [GOAL] case inr α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f i : Ordinal.{u} hi hj : i < o hij : i ≤ i ⊢ f i hi ≤ f i hj [PROOFSTEP] rfl [GOAL] α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g i : Ordinal.{u} hi : i < o' ⊢ g i hi < o [PROOFSTEP] rw [← hg.2.2] [GOAL] α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g i : Ordinal.{u} hi : i < o' ⊢ g i hi < blsub o' g [PROOFSTEP] apply lt_blsub [GOAL] α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g ⊢ IsFundamentalSequence a o' fun i hi => f (g i hi) (_ : g i hi < o) [PROOFSTEP] refine' ⟨_, @fun i j _ _ h => hf.2.1 _ _ (hg.2.1 _ _ h), _⟩ [GOAL] case refine'_1 α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g ⊢ o' ≤ ord (cof a) [PROOFSTEP] rw [hf.cof_eq] [GOAL] case refine'_1 α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g ⊢ o' ≤ o [PROOFSTEP] exact hg.1.trans (ord_cof_le o) [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g ⊢ (blsub o' fun i hi => f (g i hi) (_ : g i hi < o)) = a [PROOFSTEP] rw [@blsub_comp.{u, u, u} o _ f (@IsFundamentalSequence.monotone _ _ f hf)] [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g ⊢ blsub o f = a case refine'_2.hg α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g ⊢ (blsub o' fun i hi => g i hi) = o [PROOFSTEP] exact hf.2.2 [GOAL] case refine'_2.hg α : Type u_1 r : α → α → Prop a✝ o✝ : Ordinal.{u} f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u} a o o' : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f g : (b : Ordinal.{u}) → b < o' → Ordinal.{u} hg : IsFundamentalSequence o o' g ⊢ (blsub o' fun i hi => g i hi) = o [PROOFSTEP] exact hg.2.2 [GOAL] α : Type u_1 r : α → α → Prop a : Ordinal.{u} ⊢ ∃ f, IsFundamentalSequence a (ord (cof a)) f [PROOFSTEP] suffices h : ∃ o f, IsFundamentalSequence a o f [GOAL] α : Type u_1 r : α → α → Prop a : Ordinal.{u} h : ∃ o f, IsFundamentalSequence a o f ⊢ ∃ f, IsFundamentalSequence a (ord (cof a)) f [PROOFSTEP] rcases h with ⟨o, f, hf⟩ [GOAL] case intro.intro α : Type u_1 r : α → α → Prop a o : Ordinal.{u} f : (b : Ordinal.{u}) → b < o → Ordinal.{u} hf : IsFundamentalSequence a o f ⊢ ∃ f, IsFundamentalSequence a (ord (cof a)) f [PROOFSTEP] exact ⟨_, hf.ord_cof⟩ [GOAL] case h α : Type u_1 r : α → α → Prop a : Ordinal.{u} ⊢ ∃ o f, IsFundamentalSequence a o f [PROOFSTEP] rcases exists_lsub_cof a with ⟨ι, f, hf, hι⟩ [GOAL] case h.intro.intro.intro α : Type u_1 r : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a ⊢ ∃ o f, IsFundamentalSequence a o f [PROOFSTEP] rcases ord_eq ι with ⟨r, wo, hr⟩ [GOAL] case h.intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r ⊢ ∃ o f, IsFundamentalSequence a o f [PROOFSTEP] haveI := wo [GOAL] case h.intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this : IsWellOrder ι r ⊢ ∃ o f, IsFundamentalSequence a o f [PROOFSTEP] let r' := Subrel r {i | ∀ j, r j i → f j < f i} [GOAL] case h.intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} ⊢ ∃ o f, IsFundamentalSequence a o f [PROOFSTEP] let hrr' : r' ↪r r := Subrel.relEmbedding _ _ [GOAL] case h.intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} ⊢ ∃ o f, IsFundamentalSequence a o f [PROOFSTEP] haveI := hrr'.isWellOrder [GOAL] case h.intro.intro.intro.intro.intro α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' ⊢ ∃ o f, IsFundamentalSequence a o f [PROOFSTEP] refine' ⟨_, _, hrr'.ordinal_type_le.trans _, @fun i j _ h _ => (enum r' j h).prop _ _, le_antisymm (blsub_le fun i hi => lsub_le_iff.1 hf.le _) _⟩ [GOAL] case h.intro.intro.intro.intro.intro.refine'_1 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' ⊢ type r ≤ ord (cof a) [PROOFSTEP] rw [← hι, hr] [GOAL] case h.intro.intro.intro.intro.intro.refine'_2 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i j : Ordinal.{u} x✝¹ : i < type r' h : j < type r' x✝ : i < j ⊢ r ↑(enum r' i x✝¹) ↑(enum r' j h) [PROOFSTEP] change r (hrr'.1 _) (hrr'.1 _) [GOAL] case h.intro.intro.intro.intro.intro.refine'_2 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i j : Ordinal.{u} x✝¹ : i < type r' h : j < type r' x✝ : i < j ⊢ r (↑hrr'.toEmbedding (enum r' i x✝¹)) (↑hrr'.toEmbedding (enum r' j h)) [PROOFSTEP] rwa [hrr'.2, @enum_lt_enum _ r'] [GOAL] case h.intro.intro.intro.intro.intro.refine'_3 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' ⊢ a ≤ blsub (type r') fun j h => f ↑(enum r' j h) [PROOFSTEP] rw [← hf, lsub_le_iff] [GOAL] case h.intro.intro.intro.intro.intro.refine'_3 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' ⊢ ∀ (i : ι), f i < blsub (type r') fun j h => f ↑(enum r' j h) [PROOFSTEP] intro i [GOAL] case h.intro.intro.intro.intro.intro.refine'_3 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι ⊢ f i < blsub (type r') fun j h => f ↑(enum r' j h) [PROOFSTEP] suffices h : ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f i) i' hi' [GOAL] case h.intro.intro.intro.intro.intro.refine'_3 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi' ⊢ f i < blsub (type r') fun j h => f ↑(enum r' j h) [PROOFSTEP] rcases h with ⟨i', hi', hfg⟩ [GOAL] case h.intro.intro.intro.intro.intro.refine'_3.intro.intro α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι i' : Ordinal.{u} hi' : i' < type r' hfg : f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi' ⊢ f i < blsub (type r') fun j h => f ↑(enum r' j h) [PROOFSTEP] exact hfg.trans_lt (lt_blsub _ _ _) [GOAL] case h α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι ⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi' [PROOFSTEP] by_cases h : ∀ j, r j i → f j < f i [GOAL] case pos α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∀ (j : ι), r j i → f j < f i ⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi' [PROOFSTEP] refine' ⟨typein r' ⟨i, h⟩, typein_lt_type _ _, _⟩ [GOAL] case pos α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∀ (j : ι), r j i → f j < f i ⊢ f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) (typein r' { val := i, property := h }) (_ : typein r' { val := i, property := h } < type r') [PROOFSTEP] rw [bfamilyOfFamily'_typein] [GOAL] case neg α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ¬∀ (j : ι), r j i → f j < f i ⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi' [PROOFSTEP] push_neg at h [GOAL] case neg α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∃ j, r j i ∧ f i ≤ f j ⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi' [PROOFSTEP] cases' wo.wf.min_mem _ h with hji hij [GOAL] case neg.intro α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∃ j, r j i ∧ f i ≤ f j hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) ⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi' [PROOFSTEP] refine' ⟨typein r' ⟨_, fun k hkj => lt_of_lt_of_le _ hij⟩, typein_lt_type _ _, _⟩ [GOAL] case neg.intro.refine'_1 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∃ j, r j i ∧ f i ≤ f j hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) k : ι hkj : r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) ⊢ f k < f i [PROOFSTEP] by_contra' H [GOAL] case neg.intro.refine'_1 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∃ j, r j i ∧ f i ≤ f j hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) k : ι hkj : r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) H : f i ≤ f k ⊢ False [PROOFSTEP] exact (wo.wf.not_lt_min _ h ⟨IsTrans.trans _ _ _ hkj hji, H⟩) hkj [GOAL] case neg.intro.refine'_2 α : Type u_1 r✝ : α → α → Prop a : Ordinal.{u} ι : Type u f : ι → Ordinal.{u} hf : lsub f = a hι : #ι = cof a r : ι → ι → Prop wo : IsWellOrder ι r hr : ord #ι = type r this✝ : IsWellOrder ι r r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop := Subrel r {i | ∀ (j : ι), r j i → f j < f i} hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i} this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r' i : ι h : ∃ j, r j i ∧ f i ≤ f j hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) ⊢ f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) (typein r' { val := WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h, property := (_ : ∀ (k : ι), r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) → f k < f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)) }) (_ : typein r' { val := WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h, property := (_ : ∀ (k : ι), r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) → f k < f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)) } < type r') [PROOFSTEP] rwa [bfamilyOfFamily'_typein] [GOAL] α : Type u_1 r : α → α → Prop a : Ordinal.{u} ⊢ cof (ord (cof a)) = cof a [PROOFSTEP] cases' exists_fundamental_sequence a with f hf [GOAL] case intro α : Type u_1 r : α → α → Prop a : Ordinal.{u} f : (b : Ordinal.{u}) → b < ord (cof a) → Ordinal.{u} hf : IsFundamentalSequence a (ord (cof a)) f ⊢ cof (ord (cof a)) = cof a [PROOFSTEP] cases' exists_fundamental_sequence a.cof.ord with g hg [GOAL] case intro.intro α : Type u_1 r : α → α → Prop a : Ordinal.{u} f : (b : Ordinal.{u}) → b < ord (cof a) → Ordinal.{u} hf : IsFundamentalSequence a (ord (cof a)) f g : (b : Ordinal.{u}) → b < ord (cof (ord (cof a))) → Ordinal.{u} hg : IsFundamentalSequence (ord (cof a)) (ord (cof (ord (cof a)))) g ⊢ cof (ord (cof a)) = cof a [PROOFSTEP] exact ord_injective (hf.trans hg).cof_eq.symm [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ⊢ IsFundamentalSequence (f a) o fun b hb => f (g b hb) [PROOFSTEP] refine' ⟨_, @fun i j _ _ h => hf.strictMono (hg.2.1 _ _ h), _⟩ [GOAL] case refine'_1 α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ⊢ o ≤ ord (cof (f a)) [PROOFSTEP] rcases exists_lsub_cof (f a) with ⟨ι, f', hf', hι⟩ [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) ⊢ o ≤ ord (cof (f a)) [PROOFSTEP] rw [← hg.cof_eq, ord_le_ord, ← hι] [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) ⊢ cof a ≤ #ι [PROOFSTEP] suffices (lsub.{u, u} fun i => sInf {b : Ordinal | f' i ≤ f b}) = a by rw [← this] apply cof_lsub_le [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) this : (lsub fun i => sInf {b | f' i ≤ f b}) = a ⊢ cof a ≤ #ι [PROOFSTEP] rw [← this] [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) this : (lsub fun i => sInf {b | f' i ≤ f b}) = a ⊢ cof (lsub fun i => sInf {b | f' i ≤ f b}) ≤ #ι [PROOFSTEP] apply cof_lsub_le [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) ⊢ (lsub fun i => sInf {b | f' i ≤ f b}) = a [PROOFSTEP] have H : ∀ i, ∃ b < a, f' i ≤ f b := fun i => by have := lt_lsub.{u, u} f' i rw [hf', ← IsNormal.blsub_eq.{u, u} hf ha, lt_blsub_iff] at this simpa using this [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) i : ι ⊢ ∃ b, b < a ∧ f' i ≤ f b [PROOFSTEP] have := lt_lsub.{u, u} f' i [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) i : ι this : f' i < lsub f' ⊢ ∃ b, b < a ∧ f' i ≤ f b [PROOFSTEP] rw [hf', ← IsNormal.blsub_eq.{u, u} hf ha, lt_blsub_iff] at this [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) i : ι this : ∃ i_1 hi, f' i ≤ f i_1 ⊢ ∃ b, b < a ∧ f' i ≤ f b [PROOFSTEP] simpa using this [GOAL] case refine'_1.intro.intro.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b ⊢ (lsub fun i => sInf {b | f' i ≤ f b}) = a [PROOFSTEP] refine' (lsub_le fun i => _).antisymm (le_of_forall_lt fun b hb => _) [GOAL] case refine'_1.intro.intro.intro.refine'_1 α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b i : ι ⊢ sInf {b | f' i ≤ f b} < a [PROOFSTEP] rcases H i with ⟨b, hb, hb'⟩ [GOAL] case refine'_1.intro.intro.intro.refine'_1.intro.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b i : ι b : Ordinal.{u} hb : b < a hb' : f' i ≤ f b ⊢ sInf {b | f' i ≤ f b} < a [PROOFSTEP] exact lt_of_le_of_lt (csInf_le' hb') hb [GOAL] case refine'_1.intro.intro.intro.refine'_2 α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b b : Ordinal.{u} hb : b < a ⊢ b < lsub fun i => sInf {b | f' i ≤ f b} [PROOFSTEP] have := hf.strictMono hb [GOAL] case refine'_1.intro.intro.intro.refine'_2 α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b b : Ordinal.{u} hb : b < a this : f b < f a ⊢ b < lsub fun i => sInf {b | f' i ≤ f b} [PROOFSTEP] rw [← hf', lt_lsub_iff] at this [GOAL] case refine'_1.intro.intro.intro.refine'_2 α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b b : Ordinal.{u} hb : b < a this : ∃ i, f b ≤ f' i ⊢ b < lsub fun i => sInf {b | f' i ≤ f b} [PROOFSTEP] cases' this with i hi [GOAL] case refine'_1.intro.intro.intro.refine'_2.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b b : Ordinal.{u} hb : b < a i : ι hi : f b ≤ f' i ⊢ b < lsub fun i => sInf {b | f' i ≤ f b} [PROOFSTEP] rcases H i with ⟨b, _, hb⟩ [GOAL] case refine'_1.intro.intro.intro.refine'_2.intro.intro.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b b✝ : Ordinal.{u} hb✝ : b✝ < a i : ι hi : f b✝ ≤ f' i b : Ordinal.{u} left✝ : b < a hb : f' i ≤ f b ⊢ b✝ < lsub fun i => sInf {b | f' i ≤ f b} [PROOFSTEP] exact ((le_csInf_iff'' ⟨b, by exact hb⟩).2 fun c hc => hf.strictMono.le_iff_le.1 (hi.trans hc)).trans_lt (lt_lsub _ i) [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ι : Type u f' : ι → Ordinal.{u} hf' : lsub f' = f a hι : #ι = cof (f a) H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b b✝ : Ordinal.{u} hb✝ : b✝ < a i : ι hi : f b✝ ≤ f' i b : Ordinal.{u} left✝ : b < a hb : f' i ≤ f b ⊢ b ∈ fun c => Quot.lift (fun a₁ => Quotient.lift ((fun x x_1 => match x with | { α := α, r := r, wo := wo } => match x_1 with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) a₁) (_ : ∀ (a b : WellOrder), a ≈ b → (match a₁ with | { α := α, r := r, wo := wo } => match a with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) = match a₁ with | { α := α, r := r, wo := wo } => match b with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) (f c)) (_ : ∀ (a b : WellOrder), a ≈ b → (fun a₁ => Quotient.lift (fun x => match a₁ with | { α := α, r := r, wo := wo } => match x with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) (_ : ∀ (a b : WellOrder), a ≈ b → (fun x x_1 => match x with | { α := α, r := r, wo := wo } => match x_1 with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) a₁ a = (fun x x_1 => match x with | { α := α, r := r, wo := wo } => match x_1 with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) a₁ b) (f c)) a = (fun a₁ => Quotient.lift (fun x => match a₁ with | { α := α, r := r, wo := wo } => match x with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) (_ : ∀ (a b : WellOrder), a ≈ b → (fun x x_1 => match x with | { α := α, r := r, wo := wo } => match x_1 with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) a₁ a = (fun x x_1 => match x with | { α := α, r := r, wo := wo } => match x_1 with | { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) a₁ b) (f c)) b) (f' i) [PROOFSTEP] exact hb [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ⊢ (blsub o fun b hb => f (g b hb)) = f a [PROOFSTEP] rw [@blsub_comp.{u, u, u} a _ (fun b _ => f b) (@fun i j _ _ h => hf.strictMono.monotone h) g hg.2.2] [GOAL] case refine'_2 α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} hf : IsNormal f a o : Ordinal.{u} ha : IsLimit a g : (b : Ordinal.{u}) → b < o → Ordinal.{u} hg : IsFundamentalSequence a o g ⊢ (blsub a fun b x => f b) = f a [PROOFSTEP] exact IsNormal.blsub_eq.{u, u} hf ha [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} hf : IsNormal f a : Ordinal.{u_2} ⊢ cof a ≤ cof (f a) [PROOFSTEP] rcases zero_or_succ_or_limit a with (rfl | ⟨b, rfl⟩ | ha) [GOAL] case inl α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} hf : IsNormal f ⊢ cof 0 ≤ cof (f 0) [PROOFSTEP] rw [cof_zero] [GOAL] case inl α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} hf : IsNormal f ⊢ 0 ≤ cof (f 0) [PROOFSTEP] exact zero_le _ [GOAL] case inr.inl.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} hf : IsNormal f b : Ordinal.{u_2} ⊢ cof (succ b) ≤ cof (f (succ b)) [PROOFSTEP] rw [cof_succ, Cardinal.one_le_iff_ne_zero, cof_ne_zero, ← Ordinal.pos_iff_ne_zero] [GOAL] case inr.inl.intro α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} hf : IsNormal f b : Ordinal.{u_2} ⊢ 0 < f (succ b) [PROOFSTEP] exact (Ordinal.zero_le (f b)).trans_lt (hf.1 b) [GOAL] case inr.inr α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} hf : IsNormal f a : Ordinal.{u_2} ha : IsLimit a ⊢ cof a ≤ cof (f a) [PROOFSTEP] rw [hf.cof_eq ha] [GOAL] α : Type u_1 r : α → α → Prop a b : Ordinal.{u_2} h : b ≠ 0 ⊢ cof (a + b) = cof b [PROOFSTEP] rcases zero_or_succ_or_limit b with (rfl | ⟨c, rfl⟩ | hb) [GOAL] case inl α : Type u_1 r : α → α → Prop a : Ordinal.{u_2} h : 0 ≠ 0 ⊢ cof (a + 0) = cof 0 [PROOFSTEP] contradiction [GOAL] case inr.inl.intro α : Type u_1 r : α → α → Prop a c : Ordinal.{u_2} h : succ c ≠ 0 ⊢ cof (a + succ c) = cof (succ c) [PROOFSTEP] rw [add_succ, cof_succ, cof_succ] [GOAL] case inr.inr α : Type u_1 r : α → α → Prop a b : Ordinal.{u_2} h : b ≠ 0 hb : IsLimit b ⊢ cof (a + b) = cof b [PROOFSTEP] exact (add_isNormal a).cof_eq hb [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ ℵ₀ ≤ cof o ↔ IsLimit o [PROOFSTEP] rcases zero_or_succ_or_limit o with (rfl | ⟨o, rfl⟩ | l) [GOAL] case inl α : Type u_1 r : α → α → Prop ⊢ ℵ₀ ≤ cof 0 ↔ IsLimit 0 [PROOFSTEP] simp [not_zero_isLimit, Cardinal.aleph0_ne_zero] [GOAL] case inr.inl.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ ℵ₀ ≤ cof (succ o) ↔ IsLimit (succ o) [PROOFSTEP] simp [not_succ_isLimit, Cardinal.one_lt_aleph0] [GOAL] case inr.inr α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o ⊢ ℵ₀ ≤ cof o ↔ IsLimit o [PROOFSTEP] simp [l] [GOAL] case inr.inr α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o ⊢ ℵ₀ ≤ cof o [PROOFSTEP] refine' le_of_not_lt fun h => _ [GOAL] case inr.inr α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ ⊢ False [PROOFSTEP] cases' Cardinal.lt_aleph0.1 h with n e [GOAL] case inr.inr.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ n : ℕ e : cof o = ↑n ⊢ False [PROOFSTEP] have := cof_cof o [GOAL] case inr.inr.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ n : ℕ e : cof o = ↑n this : cof (ord (cof o)) = cof o ⊢ False [PROOFSTEP] rw [e, ord_nat] at this [GOAL] case inr.inr.intro α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ n : ℕ e : cof o = ↑n this : cof ↑n = ↑n ⊢ False [PROOFSTEP] cases n [GOAL] case inr.inr.intro.zero α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ e : cof o = ↑Nat.zero this : cof ↑Nat.zero = ↑Nat.zero ⊢ False [PROOFSTEP] simp at e [GOAL] case inr.inr.intro.zero α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ this : cof ↑Nat.zero = ↑Nat.zero e : o = 0 ⊢ False [PROOFSTEP] simp [e, not_zero_isLimit] at l [GOAL] case inr.inr.intro.succ α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ n✝ : ℕ e : cof o = ↑(Nat.succ n✝) this : cof ↑(Nat.succ n✝) = ↑(Nat.succ n✝) ⊢ False [PROOFSTEP] rw [nat_cast_succ, cof_succ] at this [GOAL] case inr.inr.intro.succ α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ n✝ : ℕ e : cof o = ↑(Nat.succ n✝) this : 1 = ↑(Nat.succ n✝) ⊢ False [PROOFSTEP] rw [← this, cof_eq_one_iff_is_succ] at e [GOAL] case inr.inr.intro.succ α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} l : IsLimit o h : cof o < ℵ₀ n✝ : ℕ e : ∃ a, o = succ a this : 1 = ↑(Nat.succ n✝) ⊢ False [PROOFSTEP] rcases e with ⟨a, rfl⟩ [GOAL] case inr.inr.intro.succ.intro α : Type u_1 r : α → α → Prop n✝ : ℕ this : 1 = ↑(Nat.succ n✝) a : Ordinal.{u_2} l : IsLimit (succ a) h : cof (succ a) < ℵ₀ ⊢ False [PROOFSTEP] exact not_succ_isLimit _ l [GOAL] α : Type u_1 r : α → α → Prop ⊢ cof ω ≤ ℵ₀ [PROOFSTEP] rw [← card_omega] [GOAL] α : Type u_1 r : α → α → Prop ⊢ cof ω ≤ card ω [PROOFSTEP] apply cof_le_card [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r h✝ : IsLimit (type r) S : Set α H : Unbounded r S e : #↑S = cof (type r) a : α a' : α := enum r (succ (typein r a)) (_ : succ (typein r a) < type r) b : α h : b ∈ S ab : ¬r b a' ⊢ typein r a < typein r a' [PROOFSTEP] rw [typein_enum] [GOAL] α : Type u_1 r✝ r : α → α → Prop inst✝ : IsWellOrder α r h✝ : IsLimit (type r) S : Set α H : Unbounded r S e : #↑S = cof (type r) a : α a' : α := enum r (succ (typein r a)) (_ : succ (typein r a) < type r) b : α h : b ∈ S ab : ¬r b a' ⊢ typein r a < succ (typein r a) [PROOFSTEP] exact lt_succ (typein _ _) [GOAL] α : Type u_1 r : α → α → Prop ⊢ Cardinal.univ ≤ cof univ [PROOFSTEP] refine' le_of_forall_lt fun c h => _ [GOAL] α : Type u_1 r : α → α → Prop c : Cardinal.{max (u + 1) v} h : c < Cardinal.univ ⊢ c < cof univ [PROOFSTEP] rcases lt_univ'.1 h with ⟨c, rfl⟩ [GOAL] case intro α : Type u_1 r : α → α → Prop c : Cardinal.{u} h : Cardinal.lift c < Cardinal.univ ⊢ Cardinal.lift c < cof univ [PROOFSTEP] rcases@cof_eq Ordinal.{u} (· < ·) _ with ⟨S, H, Se⟩ [GOAL] case intro.intro.intro α : Type u_1 r : α → α → Prop c : Cardinal.{u} h : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) ⊢ Cardinal.lift c < cof univ [PROOFSTEP] rw [univ, ← lift_cof, ← Cardinal.lift_lift.{u + 1, v, u}, Cardinal.lift_lt, ← Se] [GOAL] case intro.intro.intro α : Type u_1 r : α → α → Prop c : Cardinal.{u} h : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) ⊢ Cardinal.lift c < #↑S [PROOFSTEP] refine' lt_of_not_ge fun h => _ [GOAL] case intro.intro.intro α : Type u_1 r : α → α → Prop c : Cardinal.{u} h✝ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h : Cardinal.lift c ≥ #↑S ⊢ False [PROOFSTEP] cases' Cardinal.lift_down h with a e [GOAL] case intro.intro.intro.intro α : Type u_1 r : α → α → Prop c : Cardinal.{u} h✝ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e : Cardinal.lift a = #↑S ⊢ False [PROOFSTEP] refine' Quotient.inductionOn a (fun α e => _) e [GOAL] case intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S ⊢ False [PROOFSTEP] cases' Quotient.exact e with f [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f : ULift α ≃ ↑S ⊢ False [PROOFSTEP] have f := Equiv.ulift.symm.trans f [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f✝ : ULift α ≃ ↑S f : α ≃ ↑S ⊢ False [PROOFSTEP] let g a := (f a).1 [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f✝ : ULift α ≃ ↑S f : α ≃ ↑S g : α → Ordinal.{u} := fun a => ↑(↑f a) ⊢ False [PROOFSTEP] let o := succ (sup.{u, u} g) [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f✝ : ULift α ≃ ↑S f : α ≃ ↑S g : α → Ordinal.{u} := fun a => ↑(↑f a) o : Ordinal.{u} := succ (sup g) ⊢ False [PROOFSTEP] rcases H o with ⟨b, h, l⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝¹ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h✝ : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f✝ : ULift α ≃ ↑S f : α ≃ ↑S g : α → Ordinal.{u} := fun a => ↑(↑f a) o : Ordinal.{u} := succ (sup g) b : Ordinal.{u} h : b ∈ S l : ¬(fun x x_1 => x < x_1) b o ⊢ False [PROOFSTEP] refine' l (lt_succ_iff.2 _) [GOAL] case intro.intro.intro.intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝¹ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h✝ : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f✝ : ULift α ≃ ↑S f : α ≃ ↑S g : α → Ordinal.{u} := fun a => ↑(↑f a) o : Ordinal.{u} := succ (sup g) b : Ordinal.{u} h : b ∈ S l : ¬(fun x x_1 => x < x_1) b o ⊢ b ≤ sup g [PROOFSTEP] rw [← show g (f.symm ⟨b, h⟩) = b by simp] [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝¹ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h✝ : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f✝ : ULift α ≃ ↑S f : α ≃ ↑S g : α → Ordinal.{u} := fun a => ↑(↑f a) o : Ordinal.{u} := succ (sup g) b : Ordinal.{u} h : b ∈ S l : ¬(fun x x_1 => x < x_1) b o ⊢ g (↑f.symm { val := b, property := h }) = b [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.intro.intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h✝¹ : Cardinal.lift c < Cardinal.univ S : Set Ordinal.{u} H : Unbounded (fun x x_1 => x < x_1) S Se : #↑S = cof (type fun x x_1 => x < x_1) h✝ : Cardinal.lift c ≥ #↑S a : Cardinal.{u} e✝ : Cardinal.lift a = #↑S α : Type u e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S f✝ : ULift α ≃ ↑S f : α ≃ ↑S g : α → Ordinal.{u} := fun a => ↑(↑f a) o : Ordinal.{u} := succ (sup g) b : Ordinal.{u} h : b ∈ S l : ¬(fun x x_1 => x < x_1) b o ⊢ g (↑f.symm { val := b, property := h }) ≤ sup g [PROOFSTEP] apply le_sup [GOAL] α : Type u_1 r✝ r : α → α → Prop wo : IsWellOrder α r s : Set (Set α) h₁ : Unbounded r (⋃₀ s) h₂ : #↑s < StrictOrder.cof r ⊢ ∃ x, x ∈ s ∧ Unbounded r x [PROOFSTEP] by_contra' h [GOAL] α : Type u_1 r✝ r : α → α → Prop wo : IsWellOrder α r s : Set (Set α) h₁ : Unbounded r (⋃₀ s) h₂ : #↑s < StrictOrder.cof r h : ∀ (x : Set α), x ∈ s → ¬Unbounded r x ⊢ False [PROOFSTEP] simp_rw [not_unbounded_iff] at h [GOAL] α : Type u_1 r✝ r : α → α → Prop wo : IsWellOrder α r s : Set (Set α) h₁ : Unbounded r (⋃₀ s) h₂ : #↑s < StrictOrder.cof r h : ∀ (x : Set α), x ∈ s → Bounded r x ⊢ False [PROOFSTEP] let f : s → α := fun x : s => wo.wf.sup x (h x.1 x.2) [GOAL] α : Type u_1 r✝ r : α → α → Prop wo : IsWellOrder α r s : Set (Set α) h₁ : Unbounded r (⋃₀ s) h₂ : #↑s < StrictOrder.cof r h : ∀ (x : Set α), x ∈ s → Bounded r x f : ↑s → α := fun x => WellFounded.sup (_ : WellFounded r) ↑x (_ : Bounded r ↑x) ⊢ False [PROOFSTEP] refine' h₂.not_le (le_trans (csInf_le' ⟨range f, fun x => _, rfl⟩) mk_range_le) [GOAL] α : Type u_1 r✝ r : α → α → Prop wo : IsWellOrder α r s : Set (Set α) h₁ : Unbounded r (⋃₀ s) h₂ : #↑s < StrictOrder.cof r h : ∀ (x : Set α), x ∈ s → Bounded r x f : ↑s → α := fun x => WellFounded.sup (_ : WellFounded r) ↑x (_ : Bounded r ↑x) x : α ⊢ ∃ b, b ∈ range f ∧ swap rᶜ x b [PROOFSTEP] rcases h₁ x with ⟨y, ⟨c, hc, hy⟩, hxy⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 r✝ r : α → α → Prop wo : IsWellOrder α r s : Set (Set α) h₁ : Unbounded r (⋃₀ s) h₂ : #↑s < StrictOrder.cof r h : ∀ (x : Set α), x ∈ s → Bounded r x f : ↑s → α := fun x => WellFounded.sup (_ : WellFounded r) ↑x (_ : Bounded r ↑x) x y : α hxy : ¬r y x c : Set α hc : c ∈ s hy : y ∈ c ⊢ ∃ b, b ∈ range f ∧ swap rᶜ x b [PROOFSTEP] exact ⟨f ⟨c, hc⟩, mem_range_self _, fun hxz => hxy (Trans.trans (wo.wf.lt_sup _ hy) hxz)⟩ [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α β : Type u r : α → α → Prop wo : IsWellOrder α r s : β → Set α h₁ : Unbounded r (⋃ (x : β), s x) h₂ : #β < StrictOrder.cof r ⊢ ∃ x, Unbounded r (s x) [PROOFSTEP] rw [← sUnion_range] at h₁ [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α β : Type u r : α → α → Prop wo : IsWellOrder α r s : β → Set α h₁ : Unbounded r (⋃₀ range fun x => s x) h₂ : #β < StrictOrder.cof r ⊢ ∃ x, Unbounded r (s x) [PROOFSTEP] rcases unbounded_of_unbounded_sUnion r h₁ (mk_range_le.trans_lt h₂) with ⟨_, ⟨x, rfl⟩, u⟩ [GOAL] case intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α β : Type u r : α → α → Prop wo : IsWellOrder α r s : β → Set α h₁ : Unbounded r (⋃₀ range fun x => s x) h₂ : #β < StrictOrder.cof r x : β u : Unbounded r ((fun x => s x) x) ⊢ ∃ x, Unbounded r (s x) [PROOFSTEP] exact ⟨x, u⟩ [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) ⊢ ∃ a, #↑(f ⁻¹' {a}) = #β [PROOFSTEP] have : ∃ a, #β ≤ #(f ⁻¹' { a }) := by by_contra' h apply mk_univ.not_lt rw [← preimage_univ, ← iUnion_of_singleton, preimage_iUnion] exact mk_iUnion_le_sum_mk.trans_lt ((sum_le_iSup _).trans_lt <| mul_lt_of_lt h₁ (h₂.trans_le <| cof_ord_le _) (iSup_lt h₂ h)) [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) ⊢ ∃ a, #β ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] by_contra' h [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β ⊢ False [PROOFSTEP] apply mk_univ.not_lt [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β ⊢ #↑Set.univ < #?m.111025 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β ⊢ Type ?u.111024 [PROOFSTEP] rw [← preimage_univ, ← iUnion_of_singleton, preimage_iUnion] [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β ⊢ #↑(⋃ (i : ?m.111092), ?m.111093 ⁻¹' {i}) < #?m.111090 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β ⊢ Type ?u.111087 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β ⊢ Type ?u.111088 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β ⊢ ?m.111090 → ?m.111092 [PROOFSTEP] exact mk_iUnion_le_sum_mk.trans_lt ((sum_le_iSup _).trans_lt <| mul_lt_of_lt h₁ (h₂.trans_le <| cof_ord_le _) (iSup_lt h₂ h)) [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) this : ∃ a, #β ≤ #↑(f ⁻¹' {a}) ⊢ ∃ a, #↑(f ⁻¹' {a}) = #β [PROOFSTEP] cases' this with x h [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) x : α h : #β ≤ #↑(f ⁻¹' {x}) ⊢ ∃ a, #↑(f ⁻¹' {a}) = #β [PROOFSTEP] refine' ⟨x, h.antisymm' _⟩ [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) x : α h : #β ≤ #↑(f ⁻¹' {x}) ⊢ #↑(f ⁻¹' {x}) ≤ #β [PROOFSTEP] rw [le_mk_iff_exists_set] [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < cof (ord #β) x : α h : #β ≤ #↑(f ⁻¹' {x}) ⊢ ∃ p, #↑p = #↑(f ⁻¹' {x}) [PROOFSTEP] exact ⟨_, rfl⟩ [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α θ : Cardinal.{u} hθ : θ ≤ #β h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) ⊢ ∃ a, θ ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] rcases le_mk_iff_exists_set.1 hθ with ⟨s, rfl⟩ [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α s : Set β hθ : #↑s ≤ #β h₁ : ℵ₀ ≤ #↑s h₂ : #α < cof (ord #↑s) ⊢ ∃ a, #↑s ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] cases' infinite_pigeonhole (f ∘ Subtype.val : s → α) h₁ h₂ with a ha [GOAL] case intro.intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α s : Set β hθ : #↑s ≤ #β h₁ : ℵ₀ ≤ #↑s h₂ : #α < cof (ord #↑s) a : α ha : #↑(f ∘ Subtype.val ⁻¹' {a}) = #↑s ⊢ ∃ a, #↑s ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] use a [GOAL] case h α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α s : Set β hθ : #↑s ≤ #β h₁ : ℵ₀ ≤ #↑s h₂ : #α < cof (ord #↑s) a : α ha : #↑(f ∘ Subtype.val ⁻¹' {a}) = #↑s ⊢ #↑s ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] rw [← ha, @preimage_comp _ _ _ Subtype.val f] [GOAL] case h α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α s : Set β hθ : #↑s ≤ #β h₁ : ℵ₀ ≤ #↑s h₂ : #α < cof (ord #↑s) a : α ha : #↑(f ∘ Subtype.val ⁻¹' {a}) = #↑s ⊢ #↑(Subtype.val ⁻¹' (f ⁻¹' {a})) ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] exact mk_preimage_of_injective _ _ Subtype.val_injective [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) ⊢ ∃ a t h, θ ≤ #↑t ∧ ∀ ⦃x : β⦄ (hx : x ∈ t), f { val := x, property := (_ : x ∈ s) } = a [PROOFSTEP] cases' infinite_pigeonhole_card f θ hθ h₁ h₂ with a ha [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) ⊢ ∃ a t h, θ ≤ #↑t ∧ ∀ ⦃x : β⦄ (hx : x ∈ t), f { val := x, property := (_ : x ∈ s) } = a [PROOFSTEP] refine' ⟨a, {x | ∃ h, f ⟨x, h⟩ = a}, _, _, _⟩ [GOAL] case intro.refine'_1 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) ⊢ {x | ∃ h, f { val := x, property := h } = a} ⊆ s [PROOFSTEP] rintro x ⟨hx, _⟩ [GOAL] case intro.refine'_1.intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) x : β hx : x ∈ s h✝ : f { val := x, property := hx } = a ⊢ x ∈ s [PROOFSTEP] exact hx [GOAL] case intro.refine'_2 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) ⊢ θ ≤ #↑{x | ∃ h, f { val := x, property := h } = a} [PROOFSTEP] refine' ha.trans (ge_of_eq <| Quotient.sound ⟨Equiv.trans _ (Equiv.subtypeSubtypeEquivSubtypeExists _ _).symm⟩) [GOAL] case intro.refine'_2 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) ⊢ ↑{x | ∃ h, f { val := x, property := h } = a} ≃ { a_1 // ∃ h, { val := a_1, property := h } ∈ f ⁻¹' {a} } [PROOFSTEP] simp only [coe_eq_subtype, mem_singleton_iff, mem_preimage, mem_setOf_eq] [GOAL] case intro.refine'_2 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) ⊢ { x // ∃ h, f { val := x, property := h } = a } ≃ { a_1 // ∃ h, f { val := a_1, property := (_ : a_1 ∈ s) } = a } [PROOFSTEP] rfl [GOAL] case intro.refine'_3 α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) ⊢ ∀ ⦃x : β⦄ (hx : x ∈ {x | ∃ h, f { val := x, property := h } = a}), f { val := x, property := (_ : x ∈ s) } = a [PROOFSTEP] rintro x ⟨_, hx'⟩ [GOAL] case intro.refine'_3.intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u s : Set β f : ↑s → α θ : Cardinal.{u} hθ : θ ≤ #↑s h₁ : ℵ₀ ≤ θ h₂ : #α < cof (ord θ) a : α ha : θ ≤ #↑(f ⁻¹' {a}) x : β w✝ : x ∈ s hx' : f { val := x, property := w✝ } = a ⊢ f { val := x, property := (_ : x ∈ s) } = a [PROOFSTEP] exact hx' [GOAL] α : Type u_1 r : α → α → Prop x : Cardinal.{u_2} hx : x < ℵ₀ ⊢ 2 ^ x < ℵ₀ [PROOFSTEP] rcases lt_aleph0.1 hx with ⟨n, rfl⟩ [GOAL] case intro α : Type u_1 r : α → α → Prop n : ℕ hx : ↑n < ℵ₀ ⊢ 2 ^ ↑n < ℵ₀ [PROOFSTEP] exact_mod_cast nat_lt_aleph0 (2 ^ n) [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} H : IsSuccLimit o ⊢ IsStrongLimit (beth o) [PROOFSTEP] rcases eq_or_ne o 0 with (rfl | h) [GOAL] case inl α : Type u_1 r : α → α → Prop H : IsSuccLimit 0 ⊢ IsStrongLimit (beth 0) [PROOFSTEP] rw [beth_zero] [GOAL] case inl α : Type u_1 r : α → α → Prop H : IsSuccLimit 0 ⊢ IsStrongLimit ℵ₀ [PROOFSTEP] exact isStrongLimit_aleph0 [GOAL] case inr α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} H : IsSuccLimit o h : o ≠ 0 ⊢ IsStrongLimit (beth o) [PROOFSTEP] refine' ⟨beth_ne_zero o, fun a ha => _⟩ [GOAL] case inr α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} H : IsSuccLimit o h : o ≠ 0 a : Cardinal.{u_2} ha : a < beth o ⊢ 2 ^ a < beth o [PROOFSTEP] rw [beth_limit ⟨h, isSuccLimit_iff_succ_lt.1 H⟩] at ha [GOAL] case inr α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} H : IsSuccLimit o h : o ≠ 0 a : Cardinal.{u_2} ha : a < ⨆ (a : ↑(Iio o)), beth ↑a ⊢ 2 ^ a < beth o [PROOFSTEP] rcases exists_lt_of_lt_ciSup' ha with ⟨⟨i, hi⟩, ha⟩ [GOAL] case inr.intro.mk α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} H : IsSuccLimit o h : o ≠ 0 a : Cardinal.{u_2} ha✝ : a < ⨆ (a : ↑(Iio o)), beth ↑a i : Ordinal.{u_2} hi : i ∈ Iio o ha : a < beth ↑{ val := i, property := hi } ⊢ 2 ^ a < beth o [PROOFSTEP] have := power_le_power_left two_ne_zero ha.le [GOAL] case inr.intro.mk α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} H : IsSuccLimit o h : o ≠ 0 a : Cardinal.{u_2} ha✝ : a < ⨆ (a : ↑(Iio o)), beth ↑a i : Ordinal.{u_2} hi : i ∈ Iio o ha : a < beth ↑{ val := i, property := hi } this : 2 ^ a ≤ 2 ^ beth ↑{ val := i, property := hi } ⊢ 2 ^ a < beth o [PROOFSTEP] rw [← beth_succ] at this [GOAL] case inr.intro.mk α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} H : IsSuccLimit o h : o ≠ 0 a : Cardinal.{u_2} ha✝ : a < ⨆ (a : ↑(Iio o)), beth ↑a i : Ordinal.{u_2} hi : i ∈ Iio o ha : a < beth ↑{ val := i, property := hi } this : 2 ^ a ≤ beth (succ ↑{ val := i, property := hi }) ⊢ 2 ^ a < beth o [PROOFSTEP] exact this.trans_lt (beth_lt.2 (H.succ_lt hi)) [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ⊢ #{ s // Bounded r s } = #α [PROOFSTEP] rcases eq_or_ne (#α) 0 with (ha | ha) [GOAL] case inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α = 0 ⊢ #{ s // Bounded r s } = #α [PROOFSTEP] rw [ha] [GOAL] case inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α = 0 ⊢ #{ s // Bounded r s } = 0 [PROOFSTEP] haveI := mk_eq_zero_iff.1 ha [GOAL] case inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α = 0 this : IsEmpty α ⊢ #{ s // Bounded r s } = 0 [PROOFSTEP] rw [mk_eq_zero_iff] [GOAL] case inl α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α = 0 this : IsEmpty α ⊢ IsEmpty { s // Bounded r s } [PROOFSTEP] constructor [GOAL] case inl.false α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α = 0 this : IsEmpty α ⊢ { s // Bounded r s } → False [PROOFSTEP] rintro ⟨s, hs⟩ [GOAL] case inl.false.mk α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α = 0 this : IsEmpty α s : Set α hs : Bounded r s ⊢ False [PROOFSTEP] exact (not_unbounded_iff s).2 hs (unbounded_of_isEmpty s) [GOAL] case inr α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α ≠ 0 ⊢ #{ s // Bounded r s } = #α [PROOFSTEP] have h' : IsStrongLimit #α := ⟨ha, h⟩ [GOAL] case inr α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha : #α ≠ 0 h' : IsStrongLimit #α ⊢ #{ s // Bounded r s } = #α [PROOFSTEP] have ha := h'.isLimit.aleph0_le [GOAL] case inr α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α ⊢ #{ s // Bounded r s } = #α [PROOFSTEP] apply le_antisymm [GOAL] case inr.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α ⊢ #{ s // Bounded r s } ≤ #α [PROOFSTEP] have : {s : Set α | Bounded r s} = ⋃ i, 𝒫{j | r j i} := setOf_exists _ [GOAL] case inr.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} ⊢ #{ s // Bounded r s } ≤ #α [PROOFSTEP] rw [← coe_setOf, this] [GOAL] case inr.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} ⊢ #↑(⋃ (i : α), 𝒫{j | r j i}) ≤ #α [PROOFSTEP] refine mk_iUnion_le_sum_mk.trans ((sum_le_iSup (fun i => #(𝒫{j | r j i}))).trans ((mul_le_max_of_aleph0_le_left ha).trans ?_)) [GOAL] case inr.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} ⊢ max (#α) (⨆ (i : α), #↑(𝒫{j | r j i})) ≤ #α [PROOFSTEP] rw [max_eq_left] [GOAL] case inr.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} ⊢ ⨆ (i : α), #↑(𝒫{j | r j i}) ≤ #α [PROOFSTEP] apply ciSup_le' _ [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} ⊢ ∀ (i : α), #↑(𝒫{j | r j i}) ≤ #α [PROOFSTEP] intro i [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} i : α ⊢ #↑(𝒫{j | r j i}) ≤ #α [PROOFSTEP] rw [mk_powerset] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} i : α ⊢ 2 ^ #↑{j | r j i} ≤ #α [PROOFSTEP] apply (h'.two_power_lt _).le [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} i : α ⊢ #↑{j | r j i} < #α [PROOFSTEP] rw [coe_setOf, card_typein, ← lt_ord, hr] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i} i : α ⊢ typein (fun x => r x) i < type r [PROOFSTEP] apply typein_lt_type [GOAL] case inr.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α ⊢ #α ≤ #{ s // Bounded r s } [PROOFSTEP] refine' @mk_le_of_injective α _ (fun x => Subtype.mk { x } _) _ [GOAL] case inr.a.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α x : α ⊢ Bounded r {x} [PROOFSTEP] apply bounded_singleton [GOAL] case inr.a.refine'_1.hr α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α x : α ⊢ Ordinal.IsLimit (type r) [PROOFSTEP] rw [← hr] [GOAL] case inr.a.refine'_1.hr α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α x : α ⊢ Ordinal.IsLimit (ord #α) [PROOFSTEP] apply ord_isLimit ha [GOAL] case inr.a.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α ⊢ Injective fun x => { val := {x}, property := (_ : Bounded r {x}) } [PROOFSTEP] intro a b hab [GOAL] case inr.a.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α r : α → α → Prop inst✝ : IsWellOrder α r hr : ord #α = type r ha✝ : #α ≠ 0 h' : IsStrongLimit #α ha : ℵ₀ ≤ #α a b : α hab : (fun x => { val := {x}, property := (_ : Bounded r {x}) }) a = (fun x => { val := {x}, property := (_ : Bounded r {x}) }) b ⊢ a = b [PROOFSTEP] simpa [singleton_eq_singleton_iff] using hab [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α [PROOFSTEP] rcases eq_or_ne (#α) 0 with (ha | ha) [GOAL] case inl α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α = 0 ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α [PROOFSTEP] rw [ha] [GOAL] case inl α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α = 0 ⊢ #{ s // #↑s < Ordinal.cof (ord 0) } = 0 [PROOFSTEP] simp [fun s => (Cardinal.zero_le s).not_lt] [GOAL] case inr α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α [PROOFSTEP] have h' : IsStrongLimit #α := ⟨ha, h⟩ [GOAL] case inr α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α [PROOFSTEP] rcases ord_eq α with ⟨r, wo, hr⟩ [GOAL] case inr.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α [PROOFSTEP] haveI := wo [GOAL] case inr.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α [PROOFSTEP] apply le_antisymm [GOAL] case inr.intro.intro.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } ≤ #α [PROOFSTEP] conv_rhs => rw [← mk_bounded_subset h hr] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r | #α [PROOFSTEP] rw [← mk_bounded_subset h hr] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r | #α [PROOFSTEP] rw [← mk_bounded_subset h hr] [GOAL] α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r | #α [PROOFSTEP] rw [← mk_bounded_subset h hr] [GOAL] case inr.intro.intro.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r ⊢ #{ s // #↑s < Ordinal.cof (ord #α) } ≤ #{ s // Bounded r s } [PROOFSTEP] apply mk_le_mk_of_subset [GOAL] case inr.intro.intro.a.h α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r ⊢ (fun x => Quotient.liftOn₂ (#↑x) (Ordinal.cof (ord #α)) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ∧ ¬Quotient.liftOn₂ (Ordinal.cof (ord #α)) (#↑x) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1) ⊆ fun x => ∃ a, ∀ (b : α), b ∈ x → r b a [PROOFSTEP] intro s hs [GOAL] case inr.intro.intro.a.h α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r s : Set α hs : s ∈ fun x => Quotient.liftOn₂ (#↑x) (Ordinal.cof (ord #α)) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ∧ ¬Quotient.liftOn₂ (Ordinal.cof (ord #α)) (#↑x) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ⊢ s ∈ fun x => ∃ a, ∀ (b : α), b ∈ x → r b a [PROOFSTEP] rw [hr] at hs [GOAL] case inr.intro.intro.a.h α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r s : Set α hs : s ∈ fun x => Quotient.liftOn₂ (#↑x) (Ordinal.cof (type r)) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ∧ ¬Quotient.liftOn₂ (Ordinal.cof (type r)) (#↑x) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ⊢ s ∈ fun x => ∃ a, ∀ (b : α), b ∈ x → r b a [PROOFSTEP] exact lt_cof_type hs [GOAL] case inr.intro.intro.a α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r ⊢ #α ≤ #{ s // #↑s < Ordinal.cof (ord #α) } [PROOFSTEP] refine' @mk_le_of_injective α _ (fun x => Subtype.mk { x } _) _ [GOAL] case inr.intro.intro.a.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r x : α ⊢ #↑{x} < Ordinal.cof (ord #α) [PROOFSTEP] rw [mk_singleton] [GOAL] case inr.intro.intro.a.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r x : α ⊢ 1 < Ordinal.cof (ord #α) [PROOFSTEP] exact one_lt_aleph0.trans_le (aleph0_le_cof.2 (ord_isLimit h'.isLimit.aleph0_le)) [GOAL] case inr.intro.intro.a.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r ⊢ Injective fun x => { val := {x}, property := (_ : #↑{x} < Ordinal.cof (ord #α)) } [PROOFSTEP] intro a b hab [GOAL] case inr.intro.intro.a.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop α : Type u_2 h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α ha : #α ≠ 0 h' : IsStrongLimit #α r : α → α → Prop wo : IsWellOrder α r hr : ord #α = type r this : IsWellOrder α r a b : α hab : (fun x => { val := {x}, property := (_ : #↑{x} < Ordinal.cof (ord #α)) }) a = (fun x => { val := {x}, property := (_ : #↑{x} < Ordinal.cof (ord #α)) }) b ⊢ a = b [PROOFSTEP] simpa [singleton_eq_singleton_iff] using hab [GOAL] α : Type u_1 r : α → α → Prop c : Cardinal.{u_2} H : IsRegular c ⊢ 0 < ord c [PROOFSTEP] rw [Cardinal.lt_ord, card_zero] [GOAL] α : Type u_1 r : α → α → Prop c : Cardinal.{u_2} H : IsRegular c ⊢ 0 < c [PROOFSTEP] exact H.pos [GOAL] α : Type u_1 r : α → α → Prop ⊢ ℵ₀ ≤ Ordinal.cof (ord ℵ₀) [PROOFSTEP] simp [GOAL] α : Type u_1 r : α → α → Prop c : Cardinal.{u} h : ℵ₀ ≤ c ⊢ c < Ordinal.cof (ord (succ c)) [PROOFSTEP] cases' Quotient.exists_rep (@succ Cardinal _ _ c) with α αe [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : Quotient.mk isEquivalent α = succ c ⊢ c < Ordinal.cof (ord (succ c)) [PROOFSTEP] simp at αe [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c ⊢ c < Ordinal.cof (ord (succ c)) [PROOFSTEP] rcases ord_eq α with ⟨r, wo, re⟩ [GOAL] case intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r ⊢ c < Ordinal.cof (ord (succ c)) [PROOFSTEP] skip [GOAL] case intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r ⊢ c < Ordinal.cof (ord (succ c)) [PROOFSTEP] have := ord_isLimit (h.trans (le_succ _)) [GOAL] case intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (ord (succ c)) ⊢ c < Ordinal.cof (ord (succ c)) [PROOFSTEP] rw [← αe, re] at this ⊢ [GOAL] case intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) ⊢ c < Ordinal.cof (type r) [PROOFSTEP] rcases cof_eq' r this with ⟨S, H, Se⟩ [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) ⊢ c < Ordinal.cof (type r) [PROOFSTEP] rw [← Se] [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) ⊢ c < #↑S [PROOFSTEP] apply lt_imp_lt_of_le_imp_le fun h => mul_le_mul_right' h c [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) ⊢ c * c < #↑S * c [PROOFSTEP] rw [mul_eq_self h, ← succ_le_iff, ← αe, ← sum_const'] [GOAL] case intro.intro.intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) ⊢ #α ≤ sum fun x => c [PROOFSTEP] refine' le_trans _ (sum_le_sum (fun (x : S) => card (typein r (x : α))) _ fun i => _) [GOAL] case intro.intro.intro.intro.intro.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) ⊢ #α ≤ sum fun x => card (typein r ↑x) [PROOFSTEP] simp only [← card_typein, ← mk_sigma] [GOAL] case intro.intro.intro.intro.intro.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) ⊢ #α ≤ #((i : ↑S) × { y // r y ↑i }) [PROOFSTEP] exact ⟨Embedding.ofSurjective (fun x => x.2.1) fun a => let ⟨b, h, ab⟩ := H a ⟨⟨⟨_, h⟩, _, ab⟩, rfl⟩⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) i : ↑S ⊢ (fun x => card (typein r ↑x)) i ≤ c [PROOFSTEP] rw [← lt_succ_iff, ← lt_ord, ← αe, re] [GOAL] case intro.intro.intro.intro.intro.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} h : ℵ₀ ≤ c α : Type u αe : #α = succ c r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) i : ↑S ⊢ typein r ↑i < type r [PROOFSTEP] apply typein_lt_type [GOAL] α : Type u_1 r : α → α → Prop ⊢ IsRegular (aleph 1) [PROOFSTEP] rw [← succ_aleph0] [GOAL] α : Type u_1 r : α → α → Prop ⊢ IsRegular (succ ℵ₀) [PROOFSTEP] exact isRegular_succ le_rfl [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} h : ω ≤ o ⊢ IsRegular (aleph' (succ o)) [PROOFSTEP] rw [aleph'_succ] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} h : ω ≤ o ⊢ IsRegular (succ (aleph' o)) [PROOFSTEP] exact isRegular_succ (aleph0_le_aleph'.2 h) [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ IsRegular (aleph (succ o)) [PROOFSTEP] rw [aleph_succ] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u_2} ⊢ IsRegular (succ (aleph o)) [PROOFSTEP] exact isRegular_succ (aleph0_le_aleph o) [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α w : #α < #β w' : ℵ₀ ≤ #α ⊢ ∃ a, #α < #↑(f ⁻¹' {a}) [PROOFSTEP] simp_rw [← succ_le_iff] [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u f : β → α w : #α < #β w' : ℵ₀ ≤ #α ⊢ ∃ a, succ #α ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] exact Ordinal.infinite_pigeonhole_card f (succ #α) (succ_le_of_lt w) (w'.trans (lt_succ _).le) ((lt_succ _).trans_le (isRegular_succ w').2.ge) [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u_2 f : β → α w : #α < #β w' : Infinite α ⊢ ∃ a, Infinite ↑(f ⁻¹' {a}) [PROOFSTEP] simp_rw [Cardinal.infinite_iff] at w' ⊢ [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u_2 f : β → α w : #α < #β w' : ℵ₀ ≤ #α ⊢ ∃ a, ℵ₀ ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] cases' infinite_pigeonhole_card_lt f w w' with a ha [GOAL] case intro α✝ : Type u_1 r : α✝ → α✝ → Prop β α : Type u_2 f : β → α w : #α < #β w' : ℵ₀ ≤ #α a : α ha : #α < #↑(f ⁻¹' {a}) ⊢ ∃ a, ℵ₀ ≤ #↑(f ⁻¹' {a}) [PROOFSTEP] exact ⟨a, w'.trans ha.le⟩ [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ ⊢ #β ≤ #↑(range f) [PROOFSTEP] have k : _root_.Infinite (range f) := by rw [infinite_coe_iff] apply mt (union_finset_finite_of_range_finite f) rw [w] exact infinite_univ [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ ⊢ Infinite ↑(range f) [PROOFSTEP] rw [infinite_coe_iff] [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ ⊢ Set.Infinite (range f) [PROOFSTEP] apply mt (union_finset_finite_of_range_finite f) [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ ⊢ ¬Set.Finite (⋃ (a : α), ↑(f a)) [PROOFSTEP] rw [w] [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ ⊢ ¬Set.Finite ⊤ [PROOFSTEP] exact infinite_univ [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) ⊢ #β ≤ #↑(range f) [PROOFSTEP] by_contra h [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : ¬#β ≤ #↑(range f) ⊢ False [PROOFSTEP] simp only [not_le] at h [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β ⊢ False [PROOFSTEP] let u : ∀ b, ∃ a, b ∈ f a := fun b => by simpa using (w.ge : _) (Set.mem_univ b) [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β b : β ⊢ ∃ a, b ∈ f a [PROOFSTEP] simpa using (w.ge : _) (Set.mem_univ b) [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) ⊢ False [PROOFSTEP] let u' : β → range f := fun b => ⟨f (u b).choose, by simp⟩ [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) b : β ⊢ f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f [PROOFSTEP] simp [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } ⊢ False [PROOFSTEP] have v' : ∀ a, u' ⁻¹' {⟨f a, by simp⟩} ≤ f a := by rintro a p m simp at m rw [← m] apply fun b => (u b).choose_spec [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } a : α ⊢ f a ∈ range f [PROOFSTEP] simp [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } ⊢ ∀ (a : α), u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }} ≤ ↑(f a) [PROOFSTEP] rintro a p m [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } a : α p : β m : p ∈ u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }} ⊢ p ∈ ↑(f a) [PROOFSTEP] simp at m [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } a : α p : β m : f (Exists.choose (_ : ∃ a, p ∈ f a)) = f a ⊢ p ∈ ↑(f a) [PROOFSTEP] rw [← m] [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } a : α p : β m : f (Exists.choose (_ : ∃ a, p ∈ f a)) = f a ⊢ p ∈ ↑(f (Exists.choose (_ : ∃ a, p ∈ f a))) [PROOFSTEP] apply fun b => (u b).choose_spec [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } v' : ∀ (a : α), u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }} ≤ ↑(f a) ⊢ False [PROOFSTEP] obtain ⟨⟨-, ⟨a, rfl⟩⟩, p⟩ := exists_infinite_fiber u' h k [GOAL] case intro.mk.intro α✝ : Type u_1 r : α✝ → α✝ → Prop α : Type u_2 β : Type u_3 inst✝ : Infinite β f : α → Finset β w : ⋃ (a : α), ↑(f a) = ⊤ k : Infinite ↑(range f) h : #↑(range f) < #β u : ∀ (b : β), ∃ a, b ∈ f a := fun b => Eq.mp (Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3 (congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4))) (Eq.ge w (mem_univ b)) u' : β → ↑(range f) := fun b => { val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) } v' : ∀ (a : α), u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }} ≤ ↑(f a) a : α p : Infinite ↑(u' ⁻¹' {{ val := f a, property := (_ : ∃ y, f y = f a) }}) ⊢ False [PROOFSTEP] exact (@Infinite.of_injective _ _ p (inclusion (v' a)) (inclusion_injective _)).false [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c ⊢ lift #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type (max u_2 u_3) f : ι → Ordinal.{max u_2 u_3} c : Cardinal.{max u_2 u_3} hc : IsRegular c hι : #ι < c ⊢ #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c ⊢ lift #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type (max u_2 u_3) f : ι → Ordinal.{max u_2 u_3} c : Cardinal.{max u_2 u_3} hc : IsRegular c hι : #ι < c ⊢ #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c ho : lift (card o) < c ⊢ lift (card o) < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{max u_2 u_3} f : (a : Ordinal.{max u_2 u_3}) → a < o → Ordinal.{max u_2 u_3} c : Cardinal.{max u_2 u_3} hc : IsRegular c ho : card o < c ⊢ card o < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift (card o) < c ⊢ lift (card o) < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{max u_2 u_3} f : (a : Ordinal.{max u_2 u_3}) → a < o → Ordinal.{max u_2 u_3} c : Cardinal.{max u_2 u_3} hc : IsRegular c hι : card o < c ⊢ card o < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Cardinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c ⊢ lift #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u_2 f : ι → Cardinal.{u_2} c : Cardinal.{u_2} hc : IsRegular c hι : #ι < c ⊢ #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Cardinal.{u} c : Cardinal.{u} hc : IsRegular c hι : #ι < c ⊢ lift #ι < c [PROOFSTEP] rwa [lift_id] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ha : a < ord c ⊢ nfpFamily f a < ord c [PROOFSTEP] apply nfpFamily_lt_ord_lift.{u, v} _ _ hf ha [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ha : a < ord c ⊢ ℵ₀ < Ordinal.cof (ord c) [PROOFSTEP] rw [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ha : a < ord c ⊢ lift #ι < Ordinal.cof (ord c) [PROOFSTEP] rw [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ha : a < ord c ⊢ ℵ₀ < c α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ha : a < ord c ⊢ lift #ι < c [PROOFSTEP] exact lt_of_le_of_ne hc.1 hc'.symm [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ha : a < ord c ⊢ lift #ι < c [PROOFSTEP] exact hι [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} → Ordinal.{u} c : Cardinal.{u} hc : IsRegular c hι : #ι < c hc' : c ≠ ℵ₀ a : Ordinal.{u} hf : ∀ (i : ι) (b : Ordinal.{u}), b < ord c → f i b < ord c ⊢ lift #ι < c [PROOFSTEP] rwa [lift_id] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c ho : lift (card o) < c hc' : c ≠ ℵ₀ hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{max u v}), b < ord c → f i hi b < ord c a : Ordinal.{max u v} ⊢ lift #(Quotient.out o).α < c [PROOFSTEP] rwa [mk_ordinal_out] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u} c : Cardinal.{u} hc : IsRegular c ho : card o < c hc' : c ≠ ℵ₀ hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{u}), b < ord c → f i hi b < ord c a : Ordinal.{u} ⊢ lift (card o) < c [PROOFSTEP] rwa [lift_id] [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} c : Cardinal.{u_2} hc : IsRegular c hc' : c ≠ ℵ₀ hf : ∀ (i : Ordinal.{u_2}), i < ord c → f i < ord c a : Ordinal.{u_2} ⊢ ℵ₀ < Ordinal.cof (ord c) [PROOFSTEP] rw [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u_2} → Ordinal.{u_2} c : Cardinal.{u_2} hc : IsRegular c hc' : c ≠ ℵ₀ hf : ∀ (i : Ordinal.{u_2}), i < ord c → f i < ord c a : Ordinal.{u_2} ⊢ ℵ₀ < c [PROOFSTEP] exact lt_of_le_of_ne hc.1 hc'.symm [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ⊢ a < ord c → derivFamily f a < ord c [PROOFSTEP] have hω : ℵ₀ < c.ord.cof := by rw [hc.cof_eq] exact lt_of_le_of_ne hc.1 hc'.symm [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ⊢ ℵ₀ < Ordinal.cof (ord c) [PROOFSTEP] rw [hc.cof_eq] [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} ⊢ ℵ₀ < c [PROOFSTEP] exact lt_of_le_of_ne hc.1 hc'.symm [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} hω : ℵ₀ < Ordinal.cof (ord c) ⊢ a < ord c → derivFamily f a < ord c [PROOFSTEP] induction a using limitRecOn with | H₁ => rw [derivFamily_zero] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf | H₂ b hb => intro hb' rw [derivFamily_succ] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb'))) | H₃ b hb H => intro hb' rw [derivFamily_limit f hb] exact bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' => H o' ho' (ho'.trans hb') [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c a : Ordinal.{max u v} hω : ℵ₀ < Ordinal.cof (ord c) ⊢ a < ord c → derivFamily f a < ord c [PROOFSTEP] induction a using limitRecOn with | H₁ => rw [derivFamily_zero] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf | H₂ b hb => intro hb' rw [derivFamily_succ] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb'))) | H₃ b hb H => intro hb' rw [derivFamily_limit f hb] exact bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' => H o' ho' (ho'.trans hb') [GOAL] case H₁ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) ⊢ 0 < ord c → derivFamily f 0 < ord c [PROOFSTEP] | H₁ => rw [derivFamily_zero] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf [GOAL] case H₁ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) ⊢ 0 < ord c → derivFamily f 0 < ord c [PROOFSTEP] rw [derivFamily_zero] [GOAL] case H₁ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) ⊢ 0 < ord c → nfpFamily f 0 < ord c [PROOFSTEP] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) ⊢ lift #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] case H₂ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : b < ord c → derivFamily f b < ord c ⊢ succ b < ord c → derivFamily f (succ b) < ord c [PROOFSTEP] | H₂ b hb => intro hb' rw [derivFamily_succ] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb'))) [GOAL] case H₂ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : b < ord c → derivFamily f b < ord c ⊢ succ b < ord c → derivFamily f (succ b) < ord c [PROOFSTEP] intro hb' [GOAL] case H₂ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : b < ord c → derivFamily f b < ord c hb' : succ b < ord c ⊢ derivFamily f (succ b) < ord c [PROOFSTEP] rw [derivFamily_succ] [GOAL] case H₂ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : b < ord c → derivFamily f b < ord c hb' : succ b < ord c ⊢ nfpFamily f (succ (derivFamily f b)) < ord c [PROOFSTEP] exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb'))) [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : b < ord c → derivFamily f b < ord c hb' : succ b < ord c ⊢ lift #ι < Ordinal.cof (ord c) [PROOFSTEP] rwa [hc.cof_eq] [GOAL] case H₃ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : Ordinal.IsLimit b H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c ⊢ b < ord c → derivFamily f b < ord c [PROOFSTEP] | H₃ b hb H => intro hb' rw [derivFamily_limit f hb] exact bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' => H o' ho' (ho'.trans hb') [GOAL] case H₃ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : Ordinal.IsLimit b H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c ⊢ b < ord c → derivFamily f b < ord c [PROOFSTEP] intro hb' [GOAL] case H₃ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : Ordinal.IsLimit b H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c hb' : b < ord c ⊢ derivFamily f b < ord c [PROOFSTEP] rw [derivFamily_limit f hb] [GOAL] case H₃ α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c hω : ℵ₀ < Ordinal.cof (ord c) b : Ordinal.{max u v} hb : Ordinal.IsLimit b H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c hb' : b < ord c ⊢ (bsup b fun a x => derivFamily f a) < ord c [PROOFSTEP] exact bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' => H o' ho' (ho'.trans hb') [GOAL] α : Type u_1 r : α → α → Prop ι : Type u f : ι → Ordinal.{u} → Ordinal.{u} c : Cardinal.{u} hc : IsRegular c hι : #ι < c hc' : c ≠ ℵ₀ hf : ∀ (i : ι) (b : Ordinal.{u}), b < ord c → f i b < ord c a : Ordinal.{u} ⊢ lift #ι < c [PROOFSTEP] rwa [lift_id] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} → Ordinal.{max u v} c : Cardinal.{max u v} hc : IsRegular c hι : lift (card o) < c hc' : c ≠ ℵ₀ hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{max u v}), b < ord c → f i hi b < ord c a : Ordinal.{max u v} ⊢ lift #(Quotient.out o).α < c [PROOFSTEP] rwa [mk_ordinal_out] [GOAL] α : Type u_1 r : α → α → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u} c : Cardinal.{u} hc : IsRegular c hι : card o < c hc' : c ≠ ℵ₀ hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{u}), b < ord c → f i hi b < ord c a : Ordinal.{u} ⊢ lift (card o) < c [PROOFSTEP] rwa [lift_id] [GOAL] α : Type u_1 r : α → α → Prop f : Ordinal.{u} → Ordinal.{u} c : Cardinal.{u} hc : IsRegular c hc' : c ≠ ℵ₀ hf : ∀ (i : Ordinal.{u}), i < ord c → f i < ord c a : Ordinal.{u} ⊢ lift #Unit < c [PROOFSTEP] simpa using Cardinal.one_lt_aleph0.trans (lt_of_le_of_ne hc.1 hc'.symm) [GOAL] α : Type u_1 r : α → α → Prop ⊢ ℵ₀ < univ [PROOFSTEP] simpa using lift_lt_univ' ℵ₀ [GOAL] α : Type u_1 r : α → α → Prop ⊢ univ ≤ Ordinal.cof (ord univ) [PROOFSTEP] simp [GOAL] α : Type u_1 r : α → α → Prop c : Cardinal.{max (u + 1) v} h : c < univ ⊢ 2 ^ c < univ [PROOFSTEP] rcases lt_univ'.1 h with ⟨c, rfl⟩ [GOAL] case intro α : Type u_1 r : α → α → Prop c : Cardinal.{u} h : lift c < univ ⊢ 2 ^ lift c < univ [PROOFSTEP] rw [← lift_two_power.{u, max (u + 1) v}] [GOAL] case intro α : Type u_1 r : α → α → Prop c : Cardinal.{u} h : lift c < univ ⊢ lift (2 ^ c) < univ [PROOFSTEP] apply lift_lt_univ' [GOAL] α✝ : Type u_1 r : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α ⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α)) [PROOFSTEP] rcases ord_eq α with ⟨r, wo, re⟩ [GOAL] case intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r ⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α)) [PROOFSTEP] skip [GOAL] case intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r ⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α)) [PROOFSTEP] have := ord_isLimit h [GOAL] case intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (ord (Quotient.mk isEquivalent α)) ⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α)) [PROOFSTEP] rw [mk'_def, re] at this ⊢ [GOAL] case intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) ⊢ #α < #α ^ Ordinal.cof (type r) [PROOFSTEP] rcases cof_eq' r this with ⟨S, H, Se⟩ [GOAL] case intro.intro.intro.intro α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) ⊢ #α < #α ^ Ordinal.cof (type r) [PROOFSTEP] have := sum_lt_prod (fun a : S => #{ x // r x a }) (fun _ => #α) fun i => ?_ [GOAL] case intro.intro.intro.intro.refine_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this✝ : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) this : (sum fun a => #{ x // r x ↑a }) < prod fun x => #α ⊢ #α < #α ^ Ordinal.cof (type r) [PROOFSTEP] simp only [Cardinal.prod_const, Cardinal.lift_id, ← Se, ← mk_sigma, power_def] at this ⊢ [GOAL] case intro.intro.intro.intro.refine_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this✝ : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α) ⊢ #α < #(↑S → α) [PROOFSTEP] refine' lt_of_le_of_lt _ this [GOAL] case intro.intro.intro.intro.refine_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this✝ : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α) ⊢ #α ≤ #((i : ↑S) × { x // r x ↑i }) [PROOFSTEP] refine' ⟨Embedding.ofSurjective _ _⟩ [GOAL] case intro.intro.intro.intro.refine_2.refine'_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this✝ : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α) ⊢ (i : ↑S) × { x // r x ↑i } → α [PROOFSTEP] exact fun x => x.2.1 [GOAL] case intro.intro.intro.intro.refine_2.refine'_2 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this✝ : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α) ⊢ Surjective fun x => ↑x.snd [PROOFSTEP] exact fun a => let ⟨b, h, ab⟩ := H a ⟨⟨⟨_, h⟩, _, ab⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.refine_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) i : ↑S ⊢ (fun a => #{ x // r x ↑a }) i < (fun x => #α) i [PROOFSTEP] have := typein_lt_type r i [GOAL] case intro.intro.intro.intro.refine_1 α✝ : Type u_1 r✝ : α✝ → α✝ → Prop c : Cardinal.{u} α : Type u h : ℵ₀ ≤ Quotient.mk isEquivalent α r : α → α → Prop wo : IsWellOrder α r re : ord #α = type r this✝ : Ordinal.IsLimit (type r) S : Set α H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b Se : #↑S = Ordinal.cof (type r) i : ↑S this : typein r ↑i < type r ⊢ (fun a => #{ x // r x ↑a }) i < (fun x => #α) i [PROOFSTEP] rwa [← re, lt_ord] at this [GOAL] α : Type u_1 r : α → α → Prop a b : Cardinal.{u_2} ha : ℵ₀ ≤ a b1 : 1 < b ⊢ a < Ordinal.cof (ord (b ^ a)) [PROOFSTEP] have b0 : b ≠ 0 := (zero_lt_one.trans b1).ne' [GOAL] α : Type u_1 r : α → α → Prop a b : Cardinal.{u_2} ha : ℵ₀ ≤ a b1 : 1 < b b0 : b ≠ 0 ⊢ a < Ordinal.cof (ord (b ^ a)) [PROOFSTEP] apply lt_imp_lt_of_le_imp_le (power_le_power_left <| power_ne_zero a b0) [GOAL] α : Type u_1 r : α → α → Prop a b : Cardinal.{u_2} ha : ℵ₀ ≤ a b1 : 1 < b b0 : b ≠ 0 ⊢ (b ^ a) ^ a < (b ^ a) ^ Ordinal.cof (ord (b ^ a)) [PROOFSTEP] rw [← power_mul, mul_eq_self ha] [GOAL] α : Type u_1 r : α → α → Prop a b : Cardinal.{u_2} ha : ℵ₀ ≤ a b1 : 1 < b b0 : b ≠ 0 ⊢ b ^ a < (b ^ a) ^ Ordinal.cof (ord (b ^ a)) [PROOFSTEP] exact lt_power_cof (ha.trans <| (cantor' _ b1).le)
{"mathlib_filename": "Mathlib.SetTheory.Cardinal.Cofinality", "llama_tokens": 93081}