text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝¹ : Monoid α
inst✝ : HasDistribNeg α
a b : α
u : αˣ
⊢ -↑u * -↑u⁻¹ = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝¹ : Monoid α
inst✝ : HasDistribNeg α
a b : α
u : αˣ
⊢ -↑u⁻¹ * -↑u = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝¹ : Monoid α
inst✝ : HasDistribNeg α
a✝ b a : α
u : αˣ
⊢ -(a /ₚ u) = -a /ₚ u
[PROOFSTEP]
simp only [divp, neg_mul]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Ring α
a✝ b✝ a b : α
u : αˣ
⊢ a /ₚ u + b /ₚ u = (a + b) /ₚ u
[PROOFSTEP]
simp only [divp, add_mul]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Ring α
a✝ b✝ a b : α
u : αˣ
⊢ a /ₚ u - b /ₚ u = (a - b) /ₚ u
[PROOFSTEP]
rw [sub_eq_add_neg, sub_eq_add_neg, neg_divp, divp_add_divp_same]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Ring α
a✝ b✝ a b : α
u : αˣ
⊢ a + b /ₚ u = (a * ↑u + b) /ₚ u
[PROOFSTEP]
simp only [divp, add_mul, Units.mul_inv_cancel_right]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Ring α
a✝ b✝ a b : α
u : αˣ
⊢ a - b /ₚ u = (a * ↑u - b) /ₚ u
[PROOFSTEP]
simp only [divp, sub_mul, Units.mul_inv_cancel_right]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Ring α
a✝ b✝ a b : α
u : αˣ
⊢ a /ₚ u + b = (a + b * ↑u) /ₚ u
[PROOFSTEP]
simp only [divp, add_mul, Units.mul_inv_cancel_right]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Ring α
a✝ b✝ a b : α
u : αˣ
⊢ a /ₚ u - b = (a - b * ↑u) /ₚ u
[PROOFSTEP]
simp only [divp, sub_mul, sub_right_inj]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Ring α
a✝ b✝ a b : α
u : αˣ
⊢ b = b * ↑u * ↑u⁻¹
[PROOFSTEP]
rw [mul_assoc, Units.mul_inv, mul_one]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : CommRing α
a b : α
u₁ u₂ : αˣ
⊢ a /ₚ u₁ + b /ₚ u₂ = (a * ↑u₂ + ↑u₁ * b) /ₚ (u₁ * u₂)
[PROOFSTEP]
simp only [divp, add_mul, mul_inv_rev, val_mul]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : CommRing α
a b : α
u₁ u₂ : αˣ
⊢ a * ↑u₁⁻¹ + b * ↑u₂⁻¹ = a * ↑u₂ * (↑u₂⁻¹ * ↑u₁⁻¹) + ↑u₁ * b * (↑u₂⁻¹ * ↑u₁⁻¹)
[PROOFSTEP]
rw [mul_comm (↑u₁ * b), mul_comm b]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : CommRing α
a b : α
u₁ u₂ : αˣ
⊢ a * ↑u₁⁻¹ + ↑u₂⁻¹ * b = a * ↑u₂ * (↑u₂⁻¹ * ↑u₁⁻¹) + ↑u₂⁻¹ * ↑u₁⁻¹ * (↑u₁ * b)
[PROOFSTEP]
rw [← mul_assoc, ← mul_assoc, mul_assoc a, mul_assoc (↑u₂⁻¹ : α), mul_inv, inv_mul, mul_one, mul_one]
-- porting note: `assoc_rw` not ported: `assoc_rw [mul_inv, mul_inv, mul_one, mul_one]`
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : CommRing α
a b : α
u₁ u₂ : αˣ
⊢ a /ₚ u₁ - b /ₚ u₂ = (a * ↑u₂ - ↑u₁ * b) /ₚ (u₁ * u₂)
[PROOFSTEP]
simp only [sub_eq_add_neg, neg_divp, divp_add_divp, mul_neg]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Semiring R
a : Rˣ
b : R
⊢ ↑a + b = ↑a * (1 + ↑a⁻¹ * b)
[PROOFSTEP]
rw [mul_add, mul_one, ← mul_assoc, Units.mul_inv, one_mul]
| {"mathlib_filename": "Mathlib.Algebra.Ring.Units", "llama_tokens": 1674} |
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝³ : Semiring R₁
inst✝² : Semiring R₂
inst✝¹ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝ : RingHomInvPair σ σ'
x : R₁
⊢ ↑σ' (↑σ x) = x
[PROOFSTEP]
rw [← RingHom.comp_apply, comp_eq]
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝³ : Semiring R₁
inst✝² : Semiring R₂
inst✝¹ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝ : RingHomInvPair σ σ'
x : R₁
⊢ ↑(RingHom.id R₁) x = x
[PROOFSTEP]
simp
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝³ : Semiring R₁
inst✝² : Semiring R₂
inst✝¹ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝ : RingHomInvPair σ σ'
x : R₂
⊢ ↑σ (↑σ' x) = x
[PROOFSTEP]
rw [← RingHom.comp_apply, comp_eq₂]
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝³ : Semiring R₁
inst✝² : Semiring R₂
inst✝¹ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝ : RingHomInvPair σ σ'
x : R₂
⊢ ↑(RingHom.id R₂) x = x
[PROOFSTEP]
simp
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁴ : Semiring R₁
inst✝³ : Semiring R₂
inst✝² : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝¹ : RingHomInvPair σ σ'
σ₂₁ : R₂ →+* R₁
inst✝ : RingHomInvPair σ₁₂ σ₂₁
⊢ RingHom.comp σ₂₁ σ₁₂ = RingHom.id R₁
[PROOFSTEP]
simp only [comp_eq]
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁴ : Semiring R₁
inst✝³ : Semiring R₂
inst✝² : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝¹ : RingHomInvPair σ σ'
σ₂₁ : R₂ →+* R₁
inst✝ : RingHomInvPair σ₁₂ σ₂₁
⊢ RingHom.comp σ₁₂ σ₂₁ = RingHom.id R₂
[PROOFSTEP]
simp only [comp_eq₂]
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝² : Semiring R₁
inst✝¹ : Semiring R₂
inst✝ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
⊢ RingHom.comp σ₁₂ (RingHom.id R₁) = σ₁₂
[PROOFSTEP]
ext
[GOAL]
case a
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝² : Semiring R₁
inst✝¹ : Semiring R₂
inst✝ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
x✝ : R₁
⊢ ↑(RingHom.comp σ₁₂ (RingHom.id R₁)) x✝ = ↑σ₁₂ x✝
[PROOFSTEP]
simp
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝² : Semiring R₁
inst✝¹ : Semiring R₂
inst✝ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
⊢ RingHom.comp (RingHom.id R₂) σ₁₂ = σ₁₂
[PROOFSTEP]
ext
[GOAL]
case a
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝² : Semiring R₁
inst✝¹ : Semiring R₂
inst✝ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
x✝ : R₁
⊢ ↑(RingHom.comp (RingHom.id R₂) σ₁₂) x✝ = ↑σ₁₂ x✝
[PROOFSTEP]
simp
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁵ : Semiring R₁
inst✝⁴ : Semiring R₂
inst✝³ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝¹ : RingHomSurjective σ₁₂
inst✝ : RingHomSurjective σ₂₃
⊢ Function.Surjective ↑σ₁₃
[PROOFSTEP]
have := σ₂₃.surjective.comp σ₁₂.surjective
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁵ : Semiring R₁
inst✝⁴ : Semiring R₂
inst✝³ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
σ₁₃ : R₁ →+* R₃
σ : R₁ →+* R₂
σ' : R₂ →+* R₁
inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃
inst✝¹ : RingHomSurjective σ₁₂
inst✝ : RingHomSurjective σ₂₃
this : Function.Surjective (↑σ₂₃ ∘ ↑σ₁₂)
⊢ Function.Surjective ↑σ₁₃
[PROOFSTEP]
rwa [← RingHom.coe_comp, RingHomCompTriple.comp_eq] at this
| {"mathlib_filename": "Mathlib.Algebra.Ring.CompTypeclasses", "llama_tokens": 2178} |
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
⊢ ∀ (a b : R), a + b = b + a
[PROOFSTEP]
intro a b
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
⊢ a + b = b + a
[PROOFSTEP]
have h₁ : (1 + 1 : R) * (a + b) = a + (a + b) + b :=
by
rw [left_distrib]
simp only [right_distrib, one_mul, add_assoc]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
⊢ (1 + 1) * (a + b) = a + (a + b) + b
[PROOFSTEP]
rw [left_distrib]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
⊢ (1 + 1) * a + (1 + 1) * b = a + (a + b) + b
[PROOFSTEP]
simp only [right_distrib, one_mul, add_assoc]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
h₁ : (1 + 1) * (a + b) = a + (a + b) + b
⊢ a + b = b + a
[PROOFSTEP]
have h₂ : (1 + 1 : R) * (a + b) = a + (b + a) + b :=
by
rw [right_distrib]
simp only [left_distrib, one_mul, add_assoc]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
h₁ : (1 + 1) * (a + b) = a + (a + b) + b
⊢ (1 + 1) * (a + b) = a + (b + a) + b
[PROOFSTEP]
rw [right_distrib]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
h₁ : (1 + 1) * (a + b) = a + (a + b) + b
⊢ 1 * (a + b) + 1 * (a + b) = a + (b + a) + b
[PROOFSTEP]
simp only [left_distrib, one_mul, add_assoc]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
h₁ : (1 + 1) * (a + b) = a + (a + b) + b
h₂ : (1 + 1) * (a + b) = a + (b + a) + b
⊢ a + b = b + a
[PROOFSTEP]
have := h₁.symm.trans h₂
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this✝ : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
a b : R
h₁ : (1 + 1) * (a + b) = a + (a + b) + b
h₂ : (1 + 1) * (a + b) = a + (b + a) + b
this : a + (a + b) + b = a + (b + a) + b
⊢ a + b = b + a
[PROOFSTEP]
rwa [add_left_inj, add_right_inj] at this
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
a : R
⊢ 0 * a = 0
[PROOFSTEP]
have : 0 * a = 0 * a + 0 * a :=
calc
0 * a = (0 + 0) * a := by rw [zero_add]
_ = 0 * a + 0 * a := by rw [right_distrib]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
a : R
⊢ 0 * a = (0 + 0) * a
[PROOFSTEP]
rw [zero_add]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
a : R
⊢ (0 + 0) * a = 0 * a + 0 * a
[PROOFSTEP]
rw [right_distrib]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this✝ : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
a : R
this : 0 * a = 0 * a + 0 * a
⊢ 0 * a = 0
[PROOFSTEP]
rwa [self_eq_add_right] at this
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
zero_mul : ∀ (a : R), 0 * a = 0
a : R
⊢ a * 0 = 0
[PROOFSTEP]
have : a * 0 = a * 0 + a * 0 :=
calc
a * 0 = a * (0 + 0) := by rw [zero_add]
_ = a * 0 + a * 0 := by rw [left_distrib]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
zero_mul : ∀ (a : R), 0 * a = 0
a : R
⊢ a * 0 = a * (0 + 0)
[PROOFSTEP]
rw [zero_add]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
zero_mul : ∀ (a : R), 0 * a = 0
a : R
⊢ a * (0 + 0) = a * 0 + a * 0
[PROOFSTEP]
rw [left_distrib]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
one_mul : ∀ (a : R), 1 * a = a
mul_one : ∀ (a : R), a * 1 = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c
this✝ : AddGroup R := AddGroup.ofLeftAxioms add_assoc zero_add add_left_neg
add_comm : ∀ (a b : R), a + b = b + a
zero_mul : ∀ (a : R), 0 * a = 0
a : R
this : a * 0 = a * 0 + a * 0
⊢ a * 0 = 0
[PROOFSTEP]
rwa [self_eq_add_right] at this
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
mul_comm : ∀ (a b : R), a * b = b * a
one_mul : ∀ (a : R), 1 * a = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
a : R
⊢ a * 1 = a
[PROOFSTEP]
rw [mul_comm, one_mul]
[GOAL]
R : Type u
inst✝⁴ : Add R
inst✝³ : Mul R
inst✝² : Neg R
inst✝¹ : Zero R
inst✝ : One R
add_assoc : ∀ (a b c : R), a + b + c = a + (b + c)
zero_add : ∀ (a : R), 0 + a = a
add_left_neg : ∀ (a : R), -a + a = 0
mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c)
mul_comm : ∀ (a b : R), a * b = b * a
one_mul : ∀ (a : R), 1 * a = a
left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c
mul_one : ∀ (a : R), a * 1 = a
a b c : R
⊢ (a + b) * c = a * c + b * c
[PROOFSTEP]
rw [mul_comm, left_distrib, mul_comm, mul_comm b c]
| {"mathlib_filename": "Mathlib.Algebra.Ring.MinimalAxioms", "llama_tokens": 6446} |
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f g : X →[M'] Y
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
g : X →[M'] Y
toFun✝ : X → Y
map_smul'✝ : ∀ (m : M') (x : X), toFun✝ (m • x) = m • toFun✝ x
h : { toFun := toFun✝, map_smul' := map_smul'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_smul' := map_smul'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
toFun✝¹ : X → Y
map_smul'✝¹ : ∀ (m : M') (x : X), toFun✝¹ (m • x) = m • toFun✝¹ x
toFun✝ : X → Y
map_smul'✝ : ∀ (m : M') (x : X), toFun✝ (m • x) = m • toFun✝ x
h : { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }.toFun = { toFun := toFun✝, map_smul' := map_smul'✝ }.toFun
⊢ { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } = { toFun := toFun✝, map_smul' := map_smul'✝ }
[PROOFSTEP]
congr
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
g : Y →[M'] Z
f : X →[M'] Y
m : M'
x : X
⊢ ↑g (↑f (m • x)) = ↑g (m • ↑f x)
[PROOFSTEP]
rw [f.map_smul]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : X →[M'] Y
x : X
⊢ ↑(comp (MulActionHom.id M') f) x = ↑f x
[PROOFSTEP]
rw [comp_apply, id_apply]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : X →[M'] Y
x : X
⊢ ↑(comp f (MulActionHom.id M')) x = ↑f x
[PROOFSTEP]
rw [comp_apply, id_apply]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : A →[M] B
g : B → A
h₁ : Function.LeftInverse g ↑f
h₂ : Function.RightInverse g ↑f
m : M
x : B
⊢ g (m • x) = g (m • ↑f (g x))
[PROOFSTEP]
rw [h₂]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : A →[M] B
g : B → A
h₁ : Function.LeftInverse g ↑f
h₂ : Function.RightInverse g ↑f
m : M
x : B
⊢ g (m • ↑f (g x)) = g (↑f (m • g x))
[PROOFSTEP]
rw [f.map_smul]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : A →[M] B
g : B → A
h₁ : Function.LeftInverse g ↑f
h₂ : Function.RightInverse g ↑f
m : M
x : B
⊢ g (↑f (m • g x)) = m • g x
[PROOFSTEP]
rw [h₁]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f g : A →+[M] B
h : (fun m => m.toFun) f = (fun m => m.toFun) g
⊢ f = g
[PROOFSTEP]
rcases f with ⟨tF, _, _⟩
[GOAL]
case mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
g : A →+[M] B
tF : A →[M] B
map_zero'✝ : MulActionHom.toFun tF 0 = 0
map_add'✝ : ∀ (x y : A), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y
h : (fun m => m.toFun) { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ } = (fun m => m.toFun) g
⊢ { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ } = g
[PROOFSTEP]
rcases g with ⟨tG, _, _⟩
[GOAL]
case mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
tF : A →[M] B
map_zero'✝¹ : MulActionHom.toFun tF 0 = 0
map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y
tG : A →[M] B
map_zero'✝ : MulActionHom.toFun tG 0 = 0
map_add'✝ : ∀ (x y : A), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y
h :
(fun m => m.toFun) { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } =
(fun m => m.toFun) { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }
⊢ { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } =
{ toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }
[PROOFSTEP]
cases tF
[GOAL]
case mk.mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
tG : A →[M] B
map_zero'✝¹ : MulActionHom.toFun tG 0 = 0
map_add'✝¹ : ∀ (x y : A), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y
toFun✝ : A → B
map_smul'✝ : ∀ (m : M) (x : A), toFun✝ (m • x) = m • toFun✝ x
map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0
map_add'✝ :
∀ (x y : A),
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) =
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x +
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y
h :
(fun m => m.toFun)
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ } =
(fun m => m.toFun) { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }
⊢ { toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ } =
{ toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }
[PROOFSTEP]
cases tG
[GOAL]
case mk.mk.mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
toFun✝¹ : A → B
map_smul'✝¹ : ∀ (m : M) (x : A), toFun✝¹ (m • x) = m • toFun✝¹ x
map_zero'✝¹ : MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } 0 = 0
map_add'✝¹ :
∀ (x y : A),
MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } (x + y) =
MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } x +
MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } y
toFun✝ : A → B
map_smul'✝ : ∀ (m : M) (x : A), toFun✝ (m • x) = m • toFun✝ x
map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0
map_add'✝ :
∀ (x y : A),
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) =
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x +
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y
h :
(fun m => m.toFun)
{ toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ } =
(fun m => m.toFun)
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }
⊢ { toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ } =
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ }
[PROOFSTEP]
congr
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f g : A →+[M] B
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
ext a
[GOAL]
case a
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f g : A →+[M] B
h : ↑f = ↑g
a : A
⊢ ↑f a = ↑g a
[PROOFSTEP]
exact MulActionHom.congr_fun h a
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f g : A →+[M] B
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
ext a
[GOAL]
case a
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f g : A →+[M] B
h : ↑f = ↑g
a : A
⊢ ↑f a = ↑g a
[PROOFSTEP]
exact FunLike.congr_fun h a
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
x : A
⊢ ↑(DistribMulActionHom.id M) x = x
[PROOFSTEP]
rfl
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
src✝ : A →+ B := 0
m : M
x✝ : A
⊢ ZeroHom.toFun (↑src✝) (m • x✝) = m • ZeroHom.toFun (↑src✝) x✝
[PROOFSTEP]
change (0 : B) = m • (0 : B)
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
src✝ : A →+ B := 0
m : M
x✝ : A
⊢ 0 = m • 0
[PROOFSTEP]
rw [smul_zero]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : A →+[M] B
x : A
⊢ ↑(comp (DistribMulActionHom.id M) f) x = ↑f x
[PROOFSTEP]
rw [comp_apply, id_apply]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : A →+[M] B
x : A
⊢ ↑(comp f (DistribMulActionHom.id M)) x = ↑f x
[PROOFSTEP]
rw [comp_apply, id_apply]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²⁵ : SMul M' X
Y : Type u_3
inst✝²⁴ : SMul M' Y
Z : Type u_4
inst✝²³ : SMul M' Z
M : Type u_5
inst✝²² : Monoid M
A : Type u_6
inst✝²¹ : AddMonoid A
inst✝²⁰ : DistribMulAction M A
A' : Type u_7
inst✝¹⁹ : AddGroup A'
inst✝¹⁸ : DistribMulAction M A'
B : Type u_8
inst✝¹⁷ : AddMonoid B
inst✝¹⁶ : DistribMulAction M B
B' : Type u_9
inst✝¹⁵ : AddGroup B'
inst✝¹⁴ : DistribMulAction M B'
C : Type u_10
inst✝¹³ : AddMonoid C
inst✝¹² : DistribMulAction M C
R : Type u_11
inst✝¹¹ : Semiring R
inst✝¹⁰ : MulSemiringAction M R
R' : Type u_12
inst✝⁹ : Ring R'
inst✝⁸ : MulSemiringAction M R'
S : Type u_13
inst✝⁷ : Semiring S
inst✝⁶ : MulSemiringAction M S
S' : Type u_14
inst✝⁵ : Ring S'
inst✝⁴ : MulSemiringAction M S'
T : Type u_15
inst✝³ : Semiring T
inst✝² : MulSemiringAction M T
inst✝¹ : AddMonoid M'
inst✝ : DistribMulAction R M'
f g : R →+[R] M'
h : ↑f 1 = ↑g 1
⊢ f = g
[PROOFSTEP]
ext x
[GOAL]
case a
M' : Type u_1
X : Type u_2
inst✝²⁵ : SMul M' X
Y : Type u_3
inst✝²⁴ : SMul M' Y
Z : Type u_4
inst✝²³ : SMul M' Z
M : Type u_5
inst✝²² : Monoid M
A : Type u_6
inst✝²¹ : AddMonoid A
inst✝²⁰ : DistribMulAction M A
A' : Type u_7
inst✝¹⁹ : AddGroup A'
inst✝¹⁸ : DistribMulAction M A'
B : Type u_8
inst✝¹⁷ : AddMonoid B
inst✝¹⁶ : DistribMulAction M B
B' : Type u_9
inst✝¹⁵ : AddGroup B'
inst✝¹⁴ : DistribMulAction M B'
C : Type u_10
inst✝¹³ : AddMonoid C
inst✝¹² : DistribMulAction M C
R : Type u_11
inst✝¹¹ : Semiring R
inst✝¹⁰ : MulSemiringAction M R
R' : Type u_12
inst✝⁹ : Ring R'
inst✝⁸ : MulSemiringAction M R'
S : Type u_13
inst✝⁷ : Semiring S
inst✝⁶ : MulSemiringAction M S
S' : Type u_14
inst✝⁵ : Ring S'
inst✝⁴ : MulSemiringAction M S'
T : Type u_15
inst✝³ : Semiring T
inst✝² : MulSemiringAction M T
inst✝¹ : AddMonoid M'
inst✝ : DistribMulAction R M'
f g : R →+[R] M'
h : ↑f 1 = ↑g 1
x : R
⊢ ↑f x = ↑g x
[PROOFSTEP]
rw [← mul_one x, ← smul_eq_mul R, f.map_smul, g.map_smul, h]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f g : R →+*[M] S
h : (fun m => m.toFun) f = (fun m => m.toFun) g
⊢ f = g
[PROOFSTEP]
rcases f with ⟨⟨tF, _, _⟩, _, _⟩
[GOAL]
case mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
g : R →+*[M] S
tF : R →[M] S
map_zero'✝ : MulActionHom.toFun tF 0 = 0
map_add'✝ : ∀ (x y : R), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y
map_one'✝ :
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom 1 = 1
map_mul'✝ :
∀ (x y : R),
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) =
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x *
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y
h :
(fun m => m.toFun)
{ toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ } =
(fun m => m.toFun) g
⊢ { toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ } =
g
[PROOFSTEP]
rcases g with ⟨⟨tG, _, _⟩, _, _⟩
[GOAL]
case mk.mk.mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
tF : R →[M] S
map_zero'✝¹ : MulActionHom.toFun tF 0 = 0
map_add'✝¹ : ∀ (x y : R), MulActionHom.toFun tF (x + y) = MulActionHom.toFun tF x + MulActionHom.toFun tF y
map_one'✝¹ :
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom 1 = 1
map_mul'✝¹ :
∀ (x y : R),
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom
(x * y) =
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x *
MulActionHom.toFun { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y
tG : R →[M] S
map_zero'✝ : MulActionHom.toFun tG 0 = 0
map_add'✝ : ∀ (x y : R), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y
map_one'✝ :
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom 1 = 1
map_mul'✝ :
∀ (x y : R),
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom (x * y) =
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom x *
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ }.toMulActionHom y
h :
(fun m => m.toFun)
{ toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun m => m.toFun)
{ toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ { toDistribMulActionHom := { toMulActionHom := tF, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
{ toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ }
[PROOFSTEP]
cases tF
[GOAL]
case mk.mk.mk.mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
tG : R →[M] S
map_zero'✝¹ : MulActionHom.toFun tG 0 = 0
map_add'✝¹ : ∀ (x y : R), MulActionHom.toFun tG (x + y) = MulActionHom.toFun tG x + MulActionHom.toFun tG y
map_one'✝¹ :
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom 1 = 1
map_mul'✝¹ :
∀ (x y : R),
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom
(x * y) =
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom x *
MulActionHom.toFun { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }.toMulActionHom y
toFun✝ : R → S
map_smul'✝ : ∀ (m : M) (x : R), toFun✝ (m • x) = m • toFun✝ x
map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0
map_add'✝ :
∀ (x y : R),
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) =
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x +
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y
map_one'✝ :
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
1 =
1
map_mul'✝ :
∀ (x y : R),
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
y
h :
(fun m => m.toFun)
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ } =
(fun m => m.toFun)
{ toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ }
⊢ {
toDistribMulActionHom :=
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ } =
{ toDistribMulActionHom := { toMulActionHom := tG, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ }
[PROOFSTEP]
cases tG
[GOAL]
case mk.mk.mk.mk.mk.mk
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
toFun✝¹ : R → S
map_smul'✝¹ : ∀ (m : M) (x : R), toFun✝¹ (m • x) = m • toFun✝¹ x
map_zero'✝¹ : MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } 0 = 0
map_add'✝¹ :
∀ (x y : R),
MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } (x + y) =
MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } x +
MulActionHom.toFun { toFun := toFun✝¹, map_smul' := map_smul'✝¹ } y
map_one'✝¹ :
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
1 =
1
map_mul'✝¹ :
∀ (x y : R),
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
y
toFun✝ : R → S
map_smul'✝ : ∀ (m : M) (x : R), toFun✝ (m • x) = m • toFun✝ x
map_zero'✝ : MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } 0 = 0
map_add'✝ :
∀ (x y : R),
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } (x + y) =
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } x +
MulActionHom.toFun { toFun := toFun✝, map_smul' := map_smul'✝ } y
map_one'✝ :
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
1 =
1
map_mul'✝ :
∀ (x y : R),
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
y
h :
(fun m => m.toFun)
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun m => m.toFun)
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ {
toDistribMulActionHom :=
{ toMulActionHom := { toFun := toFun✝¹, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := toFun✝, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_one' := map_one'✝, map_mul' := map_mul'✝ }
[PROOFSTEP]
congr
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : R →+*[M] S
x : R
⊢ ↑(comp (MulSemiringActionHom.id M) f) x = ↑f x
[PROOFSTEP]
rw [comp_apply, id_apply]
[GOAL]
M' : Type u_1
X : Type u_2
inst✝²³ : SMul M' X
Y : Type u_3
inst✝²² : SMul M' Y
Z : Type u_4
inst✝²¹ : SMul M' Z
M : Type u_5
inst✝²⁰ : Monoid M
A : Type u_6
inst✝¹⁹ : AddMonoid A
inst✝¹⁸ : DistribMulAction M A
A' : Type u_7
inst✝¹⁷ : AddGroup A'
inst✝¹⁶ : DistribMulAction M A'
B : Type u_8
inst✝¹⁵ : AddMonoid B
inst✝¹⁴ : DistribMulAction M B
B' : Type u_9
inst✝¹³ : AddGroup B'
inst✝¹² : DistribMulAction M B'
C : Type u_10
inst✝¹¹ : AddMonoid C
inst✝¹⁰ : DistribMulAction M C
R : Type u_11
inst✝⁹ : Semiring R
inst✝⁸ : MulSemiringAction M R
R' : Type u_12
inst✝⁷ : Ring R'
inst✝⁶ : MulSemiringAction M R'
S : Type u_13
inst✝⁵ : Semiring S
inst✝⁴ : MulSemiringAction M S
S' : Type u_14
inst✝³ : Ring S'
inst✝² : MulSemiringAction M S'
T : Type u_15
inst✝¹ : Semiring T
inst✝ : MulSemiringAction M T
f : R →+*[M] S
x : R
⊢ ↑(comp f (MulSemiringActionHom.id M)) x = ↑f x
[PROOFSTEP]
rw [comp_apply, id_apply]
| {"mathlib_filename": "Mathlib.Algebra.Hom.GroupAction", "llama_tokens": 21824} |
[GOAL]
R : Type u_1
inst✝ : Semigroup R
a b : R
ab : IsLeftRegular (a * b)
⊢ Function.Injective (?m.3122 ab ∘ fun x => b * x)
[PROOFSTEP]
rwa [comp_mul_left a b]
[GOAL]
R : Type u_1
inst✝ : Semigroup R
a b : R
ab : IsRightRegular (b * a)
⊢ IsRightRegular b
[PROOFSTEP]
refine' fun x y xy => ab (_ : x * (b * a) = y * (b * a))
[GOAL]
R : Type u_1
inst✝ : Semigroup R
a b : R
ab : IsRightRegular (b * a)
x y : R
xy : (fun x => x * b) x = (fun x => x * b) y
⊢ x * (b * a) = y * (b * a)
[PROOFSTEP]
rw [← mul_assoc, ← mul_assoc]
[GOAL]
R : Type u_1
inst✝ : Semigroup R
a b : R
ab : IsRightRegular (b * a)
x y : R
xy : (fun x => x * b) x = (fun x => x * b) y
⊢ x * b * a = y * b * a
[PROOFSTEP]
exact congr_fun (congr_arg (· * ·) xy) a
[GOAL]
R : Type u_1
inst✝ : Semigroup R
a b : R
⊢ IsRegular (a * b) ∧ IsRegular (b * a) ↔ IsRegular a ∧ IsRegular b
[PROOFSTEP]
refine' ⟨_, _⟩
[GOAL]
case refine'_1
R : Type u_1
inst✝ : Semigroup R
a b : R
⊢ IsRegular (a * b) ∧ IsRegular (b * a) → IsRegular a ∧ IsRegular b
[PROOFSTEP]
rintro ⟨ab, ba⟩
[GOAL]
case refine'_1.intro
R : Type u_1
inst✝ : Semigroup R
a b : R
ab : IsRegular (a * b)
ba : IsRegular (b * a)
⊢ IsRegular a ∧ IsRegular b
[PROOFSTEP]
exact
⟨⟨IsLeftRegular.of_mul ba.left, IsRightRegular.of_mul ab.right⟩,
⟨IsLeftRegular.of_mul ab.left, IsRightRegular.of_mul ba.right⟩⟩
[GOAL]
case refine'_2
R : Type u_1
inst✝ : Semigroup R
a b : R
⊢ IsRegular a ∧ IsRegular b → IsRegular (a * b) ∧ IsRegular (b * a)
[PROOFSTEP]
rintro ⟨ha, hb⟩
[GOAL]
case refine'_2.intro
R : Type u_1
inst✝ : Semigroup R
a b : R
ha : IsRegular a
hb : IsRegular b
⊢ IsRegular (a * b) ∧ IsRegular (b * a)
[PROOFSTEP]
exact
⟨⟨(mul_isLeftRegular_iff _ ha.left).mpr hb.left, (mul_isRightRegular_iff _ hb.right).mpr ha.right⟩,
⟨(mul_isLeftRegular_iff _ hb.left).mpr ha.left, (mul_isRightRegular_iff _ ha.right).mpr hb.right⟩⟩
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
⊢ ¬IsLeftRegular 0 ↔ Nontrivial R
[PROOFSTEP]
rw [nontrivial_iff, not_iff_comm, isLeftRegular_zero_iff_subsingleton, subsingleton_iff]
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
⊢ (¬∃ x y, x ≠ y) ↔ ∀ (x y : R), x = y
[PROOFSTEP]
push_neg
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
⊢ (∀ (x y : R), x = y) ↔ ∀ (x y : R), x = y
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
⊢ ¬IsRightRegular 0 ↔ Nontrivial R
[PROOFSTEP]
rw [nontrivial_iff, not_iff_comm, isRightRegular_zero_iff_subsingleton, subsingleton_iff]
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
⊢ (¬∃ x y, x ≠ y) ↔ ∀ (x y : R), x = y
[PROOFSTEP]
push_neg
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
⊢ (∀ (x y : R), x = y) ↔ ∀ (x y : R), x = y
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u_1
inst✝¹ : MulZeroClass R
a b : R
inst✝ : Nontrivial R
la : IsLeftRegular a
⊢ a ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
inst✝¹ : MulZeroClass R
b : R
inst✝ : Nontrivial R
la : IsLeftRegular 0
⊢ False
[PROOFSTEP]
rcases exists_pair_ne R with ⟨x, y, xy⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝¹ : MulZeroClass R
b : R
inst✝ : Nontrivial R
la : IsLeftRegular 0
x y : R
xy : x ≠ y
⊢ False
[PROOFSTEP]
refine'
xy
(la (_ : 0 * x = 0 * y))
-- Porting note: lean4 seems to need the type signature
[GOAL]
case intro.intro
R : Type u_1
inst✝¹ : MulZeroClass R
b : R
inst✝ : Nontrivial R
la : IsLeftRegular 0
x y : R
xy : x ≠ y
⊢ 0 * x = 0 * y
[PROOFSTEP]
rw [zero_mul, zero_mul]
[GOAL]
R : Type u_1
inst✝¹ : MulZeroClass R
a b : R
inst✝ : Nontrivial R
ra : IsRightRegular a
⊢ a ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
inst✝¹ : MulZeroClass R
b : R
inst✝ : Nontrivial R
ra : IsRightRegular 0
⊢ False
[PROOFSTEP]
rcases exists_pair_ne R with ⟨x, y, xy⟩
[GOAL]
case intro.intro
R : Type u_1
inst✝¹ : MulZeroClass R
b : R
inst✝ : Nontrivial R
ra : IsRightRegular 0
x y : R
xy : x ≠ y
⊢ False
[PROOFSTEP]
refine' xy (ra (_ : x * 0 = y * 0))
[GOAL]
case intro.intro
R : Type u_1
inst✝¹ : MulZeroClass R
b : R
inst✝ : Nontrivial R
ra : IsRightRegular 0
x y : R
xy : x ≠ y
⊢ x * 0 = y * 0
[PROOFSTEP]
rw [mul_zero, mul_zero]
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
hb : IsLeftRegular b
⊢ b * a = 0 ↔ a = 0
[PROOFSTEP]
nth_rw 1 [← mul_zero b]
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
hb : IsLeftRegular b
⊢ b * a = b * 0 ↔ a = 0
[PROOFSTEP]
exact ⟨fun h ↦ hb h, fun ha ↦ by rw [ha, mul_zero]⟩
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
hb : IsLeftRegular b
ha : a = 0
⊢ b * a = b * 0
[PROOFSTEP]
rw [ha, mul_zero]
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
hb : IsRightRegular b
⊢ a * b = 0 ↔ a = 0
[PROOFSTEP]
nth_rw 1 [← zero_mul b]
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
hb : IsRightRegular b
⊢ a * b = 0 * b ↔ a = 0
[PROOFSTEP]
exact ⟨fun h ↦ hb h, fun ha ↦ by rw [ha, zero_mul]⟩
[GOAL]
R : Type u_1
inst✝ : MulZeroClass R
a b : R
hb : IsRightRegular b
ha : a = 0
⊢ a * b = 0 * b
[PROOFSTEP]
rw [ha, zero_mul]
[GOAL]
R : Type u_1
inst✝ : CommSemigroup R
a b : R
⊢ IsRegular (a * b) ↔ IsRegular a ∧ IsRegular b
[PROOFSTEP]
refine' Iff.trans _ isRegular_mul_and_mul_iff
[GOAL]
R : Type u_1
inst✝ : CommSemigroup R
a b : R
⊢ IsRegular (a * b) ↔ IsRegular (a * b) ∧ IsRegular (b * a)
[PROOFSTEP]
refine' ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩
[GOAL]
R : Type u_1
inst✝ : CommSemigroup R
a b : R
ab : IsRegular (a * b)
⊢ IsRegular (b * a)
[PROOFSTEP]
rwa [mul_comm]
[GOAL]
R : Type u_1
inst✝ : Monoid R
a b : R
h : b * a = 1
⊢ IsLeftRegular (?m.12942 h * a)
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
inst✝ : Monoid R
a b : R
h : b * a = 1
⊢ IsLeftRegular 1
[PROOFSTEP]
exact isRegular_one.left
[GOAL]
R : Type u_1
inst✝ : Monoid R
a b : R
h : a * b = 1
⊢ IsRightRegular (a * ?m.13480 h)
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
inst✝ : Monoid R
a b : R
h : a * b = 1
⊢ IsRightRegular 1
[PROOFSTEP]
exact isRegular_one.right
[GOAL]
R : Type u_1
inst✝ : Monoid R
a b : R
ua : IsUnit a
⊢ IsRegular a
[PROOFSTEP]
rcases ua with ⟨a, rfl⟩
[GOAL]
case intro
R : Type u_1
inst✝ : Monoid R
b : R
a : Rˣ
⊢ IsRegular ↑a
[PROOFSTEP]
exact Units.isRegular a
| {"mathlib_filename": "Mathlib.Algebra.Regular.Basic", "llama_tokens": 3086} |
[GOAL]
α : Type u_1
inst✝¹ : Group α
inst✝ : HasDistribNeg α
a : α
⊢ (-a)⁻¹ = -a⁻¹
[PROOFSTEP]
rw [eq_comm, eq_inv_iff_mul_eq_one, neg_mul, mul_neg, neg_neg, mul_left_inv]
[GOAL]
α : Type u_1
inst✝ : NonUnitalCommRing α
a b✝ c✝ b c x : α
h : x * x - b * x + c = 0
⊢ ∃ y, y * y - b * y + c = 0 ∧ x + y = b ∧ x * y = c
[PROOFSTEP]
have : c = x * (b - x) := (eq_neg_of_add_eq_zero_right h).trans (by simp [mul_sub, mul_comm])
[GOAL]
α : Type u_1
inst✝ : NonUnitalCommRing α
a b✝ c✝ b c x : α
h : x * x - b * x + c = 0
⊢ -(x * x - b * x) = x * (b - x)
[PROOFSTEP]
simp [mul_sub, mul_comm]
[GOAL]
α : Type u_1
inst✝ : NonUnitalCommRing α
a b✝ c✝ b c x : α
h : x * x - b * x + c = 0
this : c = x * (b - x)
⊢ ∃ y, y * y - b * y + c = 0 ∧ x + y = b ∧ x * y = c
[PROOFSTEP]
refine' ⟨b - x, _, by simp, by rw [this]⟩
[GOAL]
α : Type u_1
inst✝ : NonUnitalCommRing α
a b✝ c✝ b c x : α
h : x * x - b * x + c = 0
this : c = x * (b - x)
⊢ x + (b - x) = b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : NonUnitalCommRing α
a b✝ c✝ b c x : α
h : x * x - b * x + c = 0
this : c = x * (b - x)
⊢ x * (b - x) = c
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
inst✝ : NonUnitalCommRing α
a b✝ c✝ b c x : α
h : x * x - b * x + c = 0
this : c = x * (b - x)
⊢ (b - x) * (b - x) - b * (b - x) + c = 0
[PROOFSTEP]
rw [this, sub_add, ← sub_mul, sub_self]
[GOAL]
α : Type u_1
inst✝¹ : NonAssocRing α
inst✝ : Nontrivial α
a : α
h : a + 1 = a
⊢ a + 1 = a + 0
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
inst✝¹ : NonAssocRing α
inst✝ : Nontrivial α
a : α
h : a - 1 = a
⊢ a + -1 = a + -0
[PROOFSTEP]
simp [← sub_eq_add_neg, h]
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * y = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * y = 0
hx : x = 0
⊢ x = 0 ∨ y = 0
case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsLeftCancelMulZero α x y : α h : x * y = 0 hx : ¬x = 0 ⊢ x = 0 ∨ y = 0
[PROOFSTEP]
{ left
exact hx
}
[GOAL]
case pos
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * y = 0
hx : x = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
left
[GOAL]
case pos.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * y = 0
hx : x = 0
⊢ x = 0
[PROOFSTEP]
exact hx
[GOAL]
case neg
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * y = 0
hx : ¬x = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
{ right
rw [← sub_zero (x * y), ← mul_zero x, ← mul_sub] at h
have := (IsLeftCancelMulZero.mul_left_cancel_of_ne_zero) hx h
rwa [sub_zero] at this
}
[GOAL]
case neg
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * y = 0
hx : ¬x = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
right
[GOAL]
case neg.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * y = 0
hx : ¬x = 0
⊢ y = 0
[PROOFSTEP]
rw [← sub_zero (x * y), ← mul_zero x, ← mul_sub] at h
[GOAL]
case neg.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * (y - 0) = x * 0
hx : ¬x = 0
⊢ y = 0
[PROOFSTEP]
have := (IsLeftCancelMulZero.mul_left_cancel_of_ne_zero) hx h
[GOAL]
case neg.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsLeftCancelMulZero α
x y : α
h : x * (y - 0) = x * 0
hx : ¬x = 0
this : y - 0 = 0
⊢ y = 0
[PROOFSTEP]
rwa [sub_zero] at this
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : x * y = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : x * y = 0
hy : y = 0
⊢ x = 0 ∨ y = 0
case neg α : Type u_1 inst✝¹ : Ring α inst✝ : IsRightCancelMulZero α x y : α h : x * y = 0 hy : ¬y = 0 ⊢ x = 0 ∨ y = 0
[PROOFSTEP]
{ right
exact hy
}
[GOAL]
case pos
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : x * y = 0
hy : y = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
right
[GOAL]
case pos.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : x * y = 0
hy : y = 0
⊢ y = 0
[PROOFSTEP]
exact hy
[GOAL]
case neg
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : x * y = 0
hy : ¬y = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
{ left
rw [← sub_zero (x * y), ← zero_mul y, ← sub_mul] at h
have := (IsRightCancelMulZero.mul_right_cancel_of_ne_zero) hy h
rwa [sub_zero] at this
}
[GOAL]
case neg
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : x * y = 0
hy : ¬y = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
left
[GOAL]
case neg.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : x * y = 0
hy : ¬y = 0
⊢ x = 0
[PROOFSTEP]
rw [← sub_zero (x * y), ← zero_mul y, ← sub_mul] at h
[GOAL]
case neg.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : (x - 0) * y = 0 * y
hy : ¬y = 0
⊢ x = 0
[PROOFSTEP]
have := (IsRightCancelMulZero.mul_right_cancel_of_ne_zero) hy h
[GOAL]
case neg.h
α : Type u_1
inst✝¹ : Ring α
inst✝ : IsRightCancelMulZero α
x y : α
h : (x - 0) * y = 0 * y
hy : ¬y = 0
this : x - 0 = 0
⊢ x = 0
[PROOFSTEP]
rwa [sub_zero] at this
[GOAL]
α : Type ?u.21715
inst✝¹ : Ring α
inst✝ : NoZeroDivisors α
a✝ b✝ c✝ : α
ha : a✝ ≠ 0
h : a✝ * b✝ = a✝ * c✝
⊢ b✝ = c✝
[PROOFSTEP]
rw [← sub_eq_zero, ← mul_sub] at h
[GOAL]
α : Type ?u.21715
inst✝¹ : Ring α
inst✝ : NoZeroDivisors α
a✝ b✝ c✝ : α
ha : a✝ ≠ 0
h✝ : a✝ * b✝ = a✝ * c✝
h : a✝ * (b✝ - c✝) = 0
⊢ b✝ = c✝
[PROOFSTEP]
exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_left ha)
[GOAL]
α : Type ?u.21715
inst✝¹ : Ring α
inst✝ : NoZeroDivisors α
a✝ b✝ c✝ : α
hb : b✝ ≠ 0
h : a✝ * b✝ = c✝ * b✝
⊢ a✝ = c✝
[PROOFSTEP]
rw [← sub_eq_zero, ← sub_mul] at h
[GOAL]
α : Type ?u.21715
inst✝¹ : Ring α
inst✝ : NoZeroDivisors α
a✝ b✝ c✝ : α
hb : b✝ ≠ 0
h✝ : a✝ * b✝ = c✝ * b✝
h : (a✝ - c✝) * b✝ = 0
⊢ a✝ = c✝
[PROOFSTEP]
exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_right hb)
| {"mathlib_filename": "Mathlib.Algebra.Ring.Basic", "llama_tokens": 3338} |
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Distrib R
a x y x' y' : R
h : SemiconjBy a x y
h' : SemiconjBy a x' y'
⊢ SemiconjBy a (x + x') (y + y')
[PROOFSTEP]
simp only [SemiconjBy, left_distrib, right_distrib, h.eq, h'.eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : Distrib R
a b x y : R
ha : SemiconjBy a x y
hb : SemiconjBy b x y
⊢ SemiconjBy (a + b) x y
[PROOFSTEP]
simp only [SemiconjBy, left_distrib, right_distrib, ha.eq, hb.eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝¹ : Mul R
inst✝ : HasDistribNeg R
a x y : R
h : SemiconjBy a x y
⊢ SemiconjBy a (-x) (-y)
[PROOFSTEP]
simp only [SemiconjBy, h.eq, neg_mul, mul_neg]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝¹ : Mul R
inst✝ : HasDistribNeg R
a x y : R
h : SemiconjBy a x y
⊢ SemiconjBy (-a) x y
[PROOFSTEP]
simp only [SemiconjBy, h.eq, neg_mul, mul_neg]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : NonUnitalNonAssocRing R
a b x y x' y' : R
h : SemiconjBy a x y
h' : SemiconjBy a x' y'
⊢ SemiconjBy a (x - x') (y - y')
[PROOFSTEP]
simpa only [sub_eq_add_neg] using h.add_right h'.neg_right
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type x
inst✝ : NonUnitalNonAssocRing R
a b x y x' y' : R
ha : SemiconjBy a x y
hb : SemiconjBy b x y
⊢ SemiconjBy (a - b) x y
[PROOFSTEP]
simpa only [sub_eq_add_neg] using ha.add_left hb.neg_left
| {"mathlib_filename": "Mathlib.Algebra.Ring.Semiconj", "llama_tokens": 671} |
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Zero R
inst✝¹ : Zero M
inst✝ : ZeroHomClass F R M
f : F
r : R
neZero : NeZero (↑f r)
h : r = 0
⊢ ↑f r = 0
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
R : Type u_9
M : Type u_10
inst✝² : Zero R
inst✝¹ : Zero M
inst✝ : ZeroHomClass F R M
f : F
r : R
neZero : NeZero (↑f r)
h : r = 0
⊢ ↑f 0 = 0
[PROOFSTEP]
exact ZeroHomClass.map_zero f
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
R : Type u_9
M : Type u_10
inst✝³ : Zero R
r : R
inst✝² : NeZero r
inst✝¹ : Zero M
inst✝ : ZeroHomClass F R M
f : F
hf : Function.Injective ↑f
⊢ ↑f r ≠ 0
[PROOFSTEP]
rw [← ZeroHomClass.map_zero f]
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
R : Type u_9
M : Type u_10
inst✝³ : Zero R
r : R
inst✝² : NeZero r
inst✝¹ : Zero M
inst✝ : ZeroHomClass F R M
f : F
hf : Function.Injective ↑f
⊢ ↑f r ≠ ↑f 0
[PROOFSTEP]
exact hf.ne NeZero.out
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : One M
inst✝ : One N
f g : OneHom M N
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : One M
inst✝ : One N
g : OneHom M N
toFun✝ : M → N
map_one'✝ : toFun✝ 1 = 1
h : { toFun := toFun✝, map_one' := map_one'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_one' := map_one'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : One M
inst✝ : One N
toFun✝¹ : M → N
map_one'✝¹ : toFun✝¹ 1 = 1
toFun✝ : M → N
map_one'✝ : toFun✝ 1 = 1
h : { toFun := toFun✝¹, map_one' := map_one'✝¹ }.toFun = { toFun := toFun✝, map_one' := map_one'✝ }.toFun
⊢ { toFun := toFun✝¹, map_one' := map_one'✝¹ } = { toFun := toFun✝, map_one' := map_one'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : Mul M
inst✝ : Mul N
f g : M →ₙ* N
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : Mul M
inst✝ : Mul N
g : M →ₙ* N
toFun✝ : M → N
map_mul'✝ : ∀ (x y : M), toFun✝ (x * y) = toFun✝ x * toFun✝ y
h : { toFun := toFun✝, map_mul' := map_mul'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_mul' := map_mul'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : Mul M
inst✝ : Mul N
toFun✝¹ : M → N
map_mul'✝¹ : ∀ (x y : M), toFun✝¹ (x * y) = toFun✝¹ x * toFun✝¹ y
toFun✝ : M → N
map_mul'✝ : ∀ (x y : M), toFun✝ (x * y) = toFun✝ x * toFun✝ y
h : { toFun := toFun✝¹, map_mul' := map_mul'✝¹ }.toFun = { toFun := toFun✝, map_mul' := map_mul'✝ }.toFun
⊢ { toFun := toFun✝¹, map_mul' := map_mul'✝¹ } = { toFun := toFun✝, map_mul' := map_mul'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulOneClass M
inst✝ : MulOneClass N
f g : M →* N
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulOneClass M
inst✝ : MulOneClass N
g : M →* N
toOneHom✝ : OneHom M N
map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y
h : (fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } = (fun f => f.toFun) g
⊢ { toOneHom := toOneHom✝, map_mul' := map_mul'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulOneClass M
inst✝ : MulOneClass N
toOneHom✝¹ : OneHom M N
map_mul'✝¹ : ∀ (x y : M), OneHom.toFun toOneHom✝¹ (x * y) = OneHom.toFun toOneHom✝¹ x * OneHom.toFun toOneHom✝¹ y
toOneHom✝ : OneHom M N
map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y
h :
(fun f => f.toFun) { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ }
⊢ { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } = { toOneHom := toOneHom✝, map_mul' := map_mul'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toOneHom
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulOneClass M
inst✝ : MulOneClass N
toOneHom✝¹ : OneHom M N
map_mul'✝¹ : ∀ (x y : M), OneHom.toFun toOneHom✝¹ (x * y) = OneHom.toFun toOneHom✝¹ x * OneHom.toFun toOneHom✝¹ y
toOneHom✝ : OneHom M N
map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y
h :
(fun f => f.toFun) { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ }
⊢ toOneHom✝¹ = toOneHom✝
[PROOFSTEP]
apply FunLike.coe_injective'
[GOAL]
case mk.mk.e_toOneHom.a
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulOneClass M
inst✝ : MulOneClass N
toOneHom✝¹ : OneHom M N
map_mul'✝¹ : ∀ (x y : M), OneHom.toFun toOneHom✝¹ (x * y) = OneHom.toFun toOneHom✝¹ x * OneHom.toFun toOneHom✝¹ y
toOneHom✝ : OneHom M N
map_mul'✝ : ∀ (x y : M), OneHom.toFun toOneHom✝ (x * y) = OneHom.toFun toOneHom✝ x * OneHom.toFun toOneHom✝ y
h :
(fun f => f.toFun) { toOneHom := toOneHom✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toOneHom := toOneHom✝, map_mul' := map_mul'✝ }
⊢ ↑toOneHom✝¹ = ↑toOneHom✝
[PROOFSTEP]
exact h
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MonoidHomClass F M N
f : F
a b : M
h : a * b = 1
⊢ ↑f a * ↑f b = 1
[PROOFSTEP]
rw [← map_mul, h, map_one]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : MulOneClass M
inst✝³ : MulOneClass N
inst✝² : DivInvMonoid G
inst✝¹ : DivInvMonoid H
inst✝ : MonoidHomClass F G H
f : F
hf : ∀ (a : G), ↑f a⁻¹ = (↑f a)⁻¹
a b : G
⊢ ↑f (a / b) = ↑f a / ↑f b
[PROOFSTEP]
rw [div_eq_mul_inv, div_eq_mul_inv, map_mul, hf]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : MulOneClass M
inst✝³ : MulOneClass N
inst✝² : Group G
inst✝¹ : DivisionMonoid H
inst✝ : MonoidHomClass F G H
f : F
a b : G
⊢ ↑f (a * b⁻¹) = ↑f a * (↑f b)⁻¹
[PROOFSTEP]
rw [map_mul, map_inv]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : MulOneClass M
inst✝³ : MulOneClass N
inst✝² : Monoid G
inst✝¹ : Monoid H
inst✝ : MonoidHomClass F G H
f : F
a : G
⊢ ↑f (a ^ 0) = ↑f a ^ 0
[PROOFSTEP]
rw [pow_zero, pow_zero, map_one]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : MulOneClass M
inst✝³ : MulOneClass N
inst✝² : Monoid G
inst✝¹ : Monoid H
inst✝ : MonoidHomClass F G H
f : F
a : G
n : ℕ
⊢ ↑f (a ^ (n + 1)) = ↑f a ^ (n + 1)
[PROOFSTEP]
rw [pow_succ, pow_succ, map_mul, map_pow f a n]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : MulOneClass M
inst✝³ : MulOneClass N
inst✝² : DivInvMonoid G
inst✝¹ : DivInvMonoid H
inst✝ : MonoidHomClass F G H
f : F
hf : ∀ (x : G), ↑f x⁻¹ = (↑f x)⁻¹
a : G
n : ℕ
⊢ ↑f (a ^ ↑n) = ↑f a ^ ↑n
[PROOFSTEP]
rw [zpow_ofNat, map_pow, zpow_ofNat]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : MulOneClass M
inst✝³ : MulOneClass N
inst✝² : DivInvMonoid G
inst✝¹ : DivInvMonoid H
inst✝ : MonoidHomClass F G H
f : F
hf : ∀ (x : G), ↑f x⁻¹ = (↑f x)⁻¹
a : G
n : ℕ
⊢ ↑f (a ^ Int.negSucc n) = ↑f a ^ Int.negSucc n
[PROOFSTEP]
rw [zpow_negSucc, hf, map_pow, ← zpow_negSucc, ← zpow_negSucc]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulZeroOneClass M
inst✝ : MulZeroOneClass N
f g : M →*₀ N
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulZeroOneClass M
inst✝ : MulZeroOneClass N
g : M →*₀ N
toZeroHom✝ : ZeroHom M N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h : (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = (fun f => f.toFun) g
⊢ { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulZeroOneClass M
inst✝ : MulZeroOneClass N
toZeroHom✝¹ : ZeroHom M N
map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1
map_mul'✝¹ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y
toZeroHom✝ : ZeroHom M N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h :
(fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
{ toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toZeroHom
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulZeroOneClass M
inst✝ : MulZeroOneClass N
toZeroHom✝¹ : ZeroHom M N
map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1
map_mul'✝¹ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y
toZeroHom✝ : ZeroHom M N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h :
(fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ toZeroHom✝¹ = toZeroHom✝
[PROOFSTEP]
apply FunLike.coe_injective'
[GOAL]
case mk.mk.e_toZeroHom.a
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulZeroOneClass M
inst✝ : MulZeroOneClass N
toZeroHom✝¹ : ZeroHom M N
map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1
map_mul'✝¹ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y
toZeroHom✝ : ZeroHom M N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h :
(fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ ↑toZeroHom✝¹ = ↑toZeroHom✝
[PROOFSTEP]
exact h
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : One M
inst✝¹ : One N
inst✝ : One P
hnp : OneHom N P
hmn : OneHom M N
⊢ (↑hnp ∘ ↑hmn) 1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
hnp : N →ₙ* P
hmn : M →ₙ* N
x y : M
⊢ (↑hnp ∘ ↑hmn) (x * y) = (↑hnp ∘ ↑hmn) x * (↑hnp ∘ ↑hmn) y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
hnp : N →* P
hmn : M →* N
⊢ (↑hnp ∘ ↑hmn) 1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
hnp : N →* P
hmn : M →* N
⊢ ∀ (x y : M),
OneHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_one' := (_ : ↑hnp (↑hmn 1) = 1) } (x * y) =
OneHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_one' := (_ : ↑hnp (↑hmn 1) = 1) } x *
OneHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_one' := (_ : ↑hnp (↑hmn 1) = 1) } y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulZeroOneClass M
inst✝¹ : MulZeroOneClass N
inst✝ : MulZeroOneClass P
hnp : N →*₀ P
hmn : M →*₀ N
⊢ (↑hnp ∘ ↑hmn) 0 = 0
[PROOFSTEP]
rw [Function.comp_apply, map_zero, map_zero]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulZeroOneClass M
inst✝¹ : MulZeroOneClass N
inst✝ : MulZeroOneClass P
hnp : N →*₀ P
hmn : M →*₀ N
⊢ ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } 1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulZeroOneClass M
inst✝¹ : MulZeroOneClass N
inst✝ : MulZeroOneClass P
hnp : N →*₀ P
hmn : M →*₀ N
⊢ ∀ (x y : M),
ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } (x * y) =
ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } x *
ZeroHom.toFun { toFun := ↑hnp ∘ ↑hmn, map_zero' := (_ : (↑hnp ∘ ↑hmn) 0 = 0) } y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : One M
inst✝¹ : One N
inst✝ : One P
g : OneHom N P
f₁ f₂ : OneHom M N
hg : Function.Injective ↑g
h : comp g f₁ = comp g f₂
x : M
⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x)
[PROOFSTEP]
rw [← OneHom.comp_apply, h, OneHom.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
g : N →ₙ* P
f₁ f₂ : M →ₙ* N
hg : Function.Injective ↑g
h : comp g f₁ = comp g f₂
x : M
⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x)
[PROOFSTEP]
rw [← MulHom.comp_apply, h, MulHom.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
g : N →* P
f₁ f₂ : M →* N
hg : Function.Injective ↑g
h : comp g f₁ = comp g f₂
x : M
⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x)
[PROOFSTEP]
rw [← MonoidHom.comp_apply, h, MonoidHom.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : MulZeroOneClass M
inst✝¹ : MulZeroOneClass N
inst✝ : MulZeroOneClass P
g : N →*₀ P
f₁ f₂ : M →*₀ N
hg : Function.Injective ↑g
h : comp g f₁ = comp g f₂
x : M
⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x)
[PROOFSTEP]
rw [← MonoidWithZeroHom.comp_apply, h, MonoidWithZeroHom.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : One M
inst✝¹ : One N
inst✝ : One P
f : OneHom N P
⊢ comp f 1 = 1
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : One M
inst✝¹ : One N
inst✝ : One P
f : OneHom N P
x✝ : M
⊢ ↑(comp f 1) x✝ = ↑1 x✝
[PROOFSTEP]
simp only [OneHom.map_one, OneHom.coe_comp, Function.comp_apply, OneHom.one_apply]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : Mul M
inst✝ : CommSemigroup N
f g : M →ₙ* N
x y : M
⊢ (fun m => ↑f m * ↑g m) (x * y) = (fun m => ↑f m * ↑g m) x * (fun m => ↑f m * ↑g m) y
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : Mul M
inst✝ : CommSemigroup N
f g : M →ₙ* N
x y : M
⊢ (fun m => ↑f m * ↑g m) (x * y) = (fun m => ↑f m * ↑g m) x * (fun m => ↑f m * ↑g m) y
[PROOFSTEP]
show f (x * y) * g (x * y) = f x * g x * (f y * g y)
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : Mul M
inst✝ : CommSemigroup N
f g : M →ₙ* N
x y : M
⊢ ↑f (x * y) * ↑g (x * y) = ↑f x * ↑g x * (↑f y * ↑g y)
[PROOFSTEP]
rw [f.map_mul, g.map_mul, ← mul_assoc, ← mul_assoc, mul_right_comm (f x)]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : Mul M
inst✝¹ : CommSemigroup N
inst✝ : CommSemigroup P
g : N →ₙ* P
f₁ f₂ : M →ₙ* N
⊢ comp g (f₁ * f₂) = comp g f₁ * comp g f₂
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : Mul M
inst✝¹ : CommSemigroup N
inst✝ : CommSemigroup P
g : N →ₙ* P
f₁ f₂ : M →ₙ* N
x✝ : M
⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝
[PROOFSTEP]
simp only [mul_apply, Function.comp_apply, map_mul, coe_comp]
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N✝ : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H
M : Type ?u.198672
N : Type ?u.198675
inst✝¹ : MulOneClass M
inst✝ : CommMonoid N
f g : M →* N
⊢ ↑f 1 * ↑g 1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N✝ : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H
M : Type ?u.198672
N : Type ?u.198675
inst✝¹ : MulOneClass M
inst✝ : CommMonoid N
f g : M →* N
x y : M
⊢ OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } (x * y) =
OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } x *
OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } y
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N✝ : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H
M : Type ?u.198672
N : Type ?u.198675
inst✝¹ : MulOneClass M
inst✝ : CommMonoid N
f g : M →* N
x y : M
⊢ OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } (x * y) =
OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } x *
OneHom.toFun { toFun := fun m => ↑f m * ↑g m, map_one' := (_ : ↑f 1 * ↑g 1 = 1) } y
[PROOFSTEP]
show f (x * y) * g (x * y) = f x * g x * (f y * g y)
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N✝ : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H
M : Type ?u.198672
N : Type ?u.198675
inst✝¹ : MulOneClass M
inst✝ : CommMonoid N
f g : M →* N
x y : M
⊢ ↑f (x * y) * ↑g (x * y) = ↑f x * ↑g x * (↑f y * ↑g y)
[PROOFSTEP]
rw [f.map_mul, g.map_mul, ← mul_assoc, ← mul_assoc, mul_right_comm (f x)]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : Group G
inst✝³ : CommGroup H
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
f : N →* P
⊢ comp f 1 = 1
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : Group G
inst✝³ : CommGroup H
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
f : N →* P
x✝ : M
⊢ ↑(comp f 1) x✝ = ↑1 x✝
[PROOFSTEP]
simp only [map_one, coe_comp, Function.comp_apply, one_apply]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : Group G
inst✝³ : CommGroup H
inst✝² : MulOneClass M
inst✝¹ : CommMonoid N
inst✝ : CommMonoid P
g : N →* P
f₁ f₂ : M →* N
⊢ comp g (f₁ * f₂) = comp g f₁ * comp g f₂
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : Group G
inst✝³ : CommGroup H
inst✝² : MulOneClass M
inst✝¹ : CommMonoid N
inst✝ : CommMonoid P
g : N →* P
f₁ f₂ : M →* N
x✝ : M
⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝
[PROOFSTEP]
simp only [mul_apply, Function.comp_apply, map_mul, coe_comp]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H
inst✝¹ : Group α
inst✝ : DivisionMonoid β
f : α →* β
g h : α
⊢ ↑f (g * h⁻¹) = ↑f g * (↑f h)⁻¹
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G✝ : Type u_6
H✝ : Type u_7
F : Type u_8
inst✝⁴ : Group G✝
inst✝³ : CommGroup H✝
G : Type u_9
H : Type u_10
inst✝² : Group G
inst✝¹ : MulOneClass H
inst✝ : MonoidHomClass F G H
f : F
h : ∀ (a : G), ↑f a = 1 → a = 1
x y : G
hxy : ↑f x = ↑f y
⊢ ↑f (x * y⁻¹) = 1
[PROOFSTEP]
rw [map_mul, hxy, ← map_mul, mul_inv_self, map_one]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝² : Group G
inst✝¹ : CommGroup H
inst✝ : MulOneClass M
f : M → G
map_mul : ∀ (a b : M), f (a * b) = f a * f b
⊢ f 1 * ?m.224335 f map_mul = ?m.224335 f map_mul
[PROOFSTEP]
rw [← map_mul, mul_one]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H✝ : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H✝
inst✝¹ : MulOneClass M
H : Type u_9
inst✝ : Group H
f : G → H
map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹
x y : G
⊢ f (x * y) = f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹
[PROOFSTEP]
{simp only [one_mul, inv_one, ← map_div, inv_inv]
}
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H✝ : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H✝
inst✝¹ : MulOneClass M
H : Type u_9
inst✝ : Group H
f : G → H
map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹
x y : G
⊢ f (x * y) = f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹
[PROOFSTEP]
simp only [one_mul, inv_one, ← map_div, inv_inv]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H✝ : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H✝
inst✝¹ : MulOneClass M
H : Type u_9
inst✝ : Group H
f : G → H
map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹
x y : G
⊢ f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹ = f x * f y
[PROOFSTEP]
{ simp only [map_div]
simp only [mul_right_inv, one_mul, inv_inv]
}
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H✝ : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H✝
inst✝¹ : MulOneClass M
H : Type u_9
inst✝ : Group H
f : G → H
map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹
x y : G
⊢ f x * (f (1 * 1⁻¹ * y⁻¹))⁻¹ = f x * f y
[PROOFSTEP]
simp only [map_div]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H✝ : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H✝
inst✝¹ : MulOneClass M
H : Type u_9
inst✝ : Group H
f : G → H
map_div : ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹
x y : G
⊢ f x * (f 1 * (f 1)⁻¹ * (f y)⁻¹)⁻¹ = f x * f y
[PROOFSTEP]
simp only [mul_right_inv, one_mul, inv_inv]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H✝ : Type u_7
F : Type u_8
inst✝³ : Group G
inst✝² : CommGroup H✝
inst✝¹ : MulOneClass M
H : Type u_9
inst✝ : Group H
f : G → H
hf : ∀ (x y : G), f (x / y) = f x / f y
⊢ ∀ (a b : G), f (a * b⁻¹) = f a * (f b)⁻¹
[PROOFSTEP]
simpa only [div_eq_mul_inv] using hf
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G✝ : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : Group G✝
inst✝³ : CommGroup H
inst✝² : MulOneClass M✝
M : Type ?u.229390
G : Type ?u.229393
inst✝¹ : MulOneClass M
inst✝ : CommGroup G
f : M →* G
a b : M
⊢ (↑f (a * b))⁻¹ = (↑f a)⁻¹ * (↑f b)⁻¹
[PROOFSTEP]
rw [← mul_inv, f.map_mul]
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N✝ : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁵ : Group G
inst✝⁴ : CommGroup H
inst✝³ : MulOneClass M✝
M : Type u_9
N : Type u_10
A : Type u_11
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : CommGroup A
φ : N →* A
ψ : M →* N
⊢ comp φ⁻¹ ψ = (comp φ ψ)⁻¹
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
M✝ : Type u_3
N✝ : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁵ : Group G
inst✝⁴ : CommGroup H
inst✝³ : MulOneClass M✝
M : Type u_9
N : Type u_10
A : Type u_11
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : CommGroup A
φ : N →* A
ψ : M →* N
x✝ : M
⊢ ↑(comp φ⁻¹ ψ) x✝ = ↑(comp φ ψ)⁻¹ x✝
[PROOFSTEP]
simp only [Function.comp_apply, inv_apply, coe_comp]
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁵ : Group G
inst✝⁴ : CommGroup H
inst✝³ : MulOneClass M✝
M : Type u_9
A : Type u_10
B : Type u_11
inst✝² : MulOneClass M
inst✝¹ : CommGroup A
inst✝ : CommGroup B
φ : A →* B
ψ : M →* A
⊢ comp φ ψ⁻¹ = (comp φ ψ)⁻¹
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝⁵ : Group G
inst✝⁴ : CommGroup H
inst✝³ : MulOneClass M✝
M : Type u_9
A : Type u_10
B : Type u_11
inst✝² : MulOneClass M
inst✝¹ : CommGroup A
inst✝ : CommGroup B
φ : A →* B
ψ : M →* A
x✝ : M
⊢ ↑(comp φ ψ⁻¹) x✝ = ↑(comp φ ψ)⁻¹ x✝
[PROOFSTEP]
simp only [Function.comp_apply, inv_apply, map_inv, coe_comp]
[GOAL]
α : Type u_1
β : Type u_2
M✝ : Type u_3
N : Type u_4
P : Type u_5
G✝ : Type u_6
H : Type u_7
F : Type u_8
inst✝⁴ : Group G✝
inst✝³ : CommGroup H
inst✝² : MulOneClass M✝
M : Type ?u.233732
G : Type ?u.233735
inst✝¹ : MulOneClass M
inst✝ : CommGroup G
f g : M →* G
a b : M
⊢ ↑f (a * b) / ↑g (a * b) = ↑f a / ↑g a * (↑f b / ↑g b)
[PROOFSTEP]
simp [div_eq_mul_inv, mul_assoc, mul_left_comm, mul_comm]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulZeroOneClass M
inst✝ : CommMonoidWithZero N
f g : M →*₀ N
src✝ : M →* N := ↑f * ↑g
⊢ (fun a => ↑f a * ↑g a) 0 = 0
[PROOFSTEP]
dsimp only []
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
P : Type u_5
G : Type u_6
H : Type u_7
F : Type u_8
inst✝¹ : MulZeroOneClass M
inst✝ : CommMonoidWithZero N
f g : M →*₀ N
src✝ : M →* N := ↑f * ↑g
⊢ ↑f 0 * ↑g 0 = 0
[PROOFSTEP]
rw [map_zero, zero_mul]
| {"mathlib_filename": "Mathlib.Algebra.Hom.Group", "llama_tokens": 14747} |
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
⊢ Function.Injective fun f => f.toFun
[PROOFSTEP]
rintro ⟨⟨⟨f, _⟩, _⟩, _⟩ ⟨⟨⟨g, _⟩, _⟩, _⟩ h
[GOAL]
case mk.mk.mk.mk.mk.mk
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A → B
map_smul'✝¹ : ∀ (m : R) (x : A), f (m • x) = m • f x
map_zero'✝¹ : MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } 0 = 0
map_add'✝¹ :
∀ (x y : A),
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } (x + y) =
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } x +
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } y
map_mul'✝¹ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
y
g : A → B
map_smul'✝ : ∀ (m : R) (x : A), g (m • x) = m • g x
map_zero'✝ : MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } 0 = 0
map_add'✝ :
∀ (x y : A),
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } (x + y) =
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } x +
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } y
map_mul'✝ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
y
h :
(fun f => f.toFun)
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ } =
(fun f => f.toFun)
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_mul' := map_mul'✝ }
⊢ {
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ } =
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_mul' := map_mul'✝ }
[PROOFSTEP]
congr
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
⊢ Function.Injective FunLike.coe
[PROOFSTEP]
rintro ⟨⟨⟨f, _⟩, _⟩, _⟩ ⟨⟨⟨g, _⟩, _⟩, _⟩ h
[GOAL]
case mk.mk.mk.mk.mk.mk
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A → B
map_smul'✝¹ : ∀ (m : R) (x : A), f (m • x) = m • f x
map_zero'✝¹ : MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } 0 = 0
map_add'✝¹ :
∀ (x y : A),
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } (x + y) =
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } x +
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } y
map_mul'✝¹ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
y
g : A → B
map_smul'✝ : ∀ (m : R) (x : A), g (m • x) = m • g x
map_zero'✝ : MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } 0 = 0
map_add'✝ :
∀ (x y : A),
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } (x + y) =
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } x +
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } y
map_mul'✝ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
y
h :
↑{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ } =
↑{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_mul' := map_mul'✝ }
⊢ {
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ } =
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝, map_add' := map_add'✝ },
map_mul' := map_mul'✝ }
[PROOFSTEP]
congr
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f g : A →ₙₐ[R] B
⊢ f = g → ∀ (x : A), ↑f x = ↑g x
[PROOFSTEP]
rintro rfl x
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
x : A
⊢ ↑f x = ↑f x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x
h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0
h₃ :
∀ (x y : A),
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) =
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y
h₄ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x *
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y
⊢ { toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ } =
f
[PROOFSTEP]
rfl
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f g : A →ₙₐ[R] B
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
ext a
[GOAL]
case h
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f g : A →ₙₐ[R] B
h : ↑f = ↑g
a : A
⊢ ↑f a = ↑g a
[PROOFSTEP]
exact DistribMulActionHom.congr_fun h a
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f g : A →ₙₐ[R] B
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
ext a
[GOAL]
case h
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f g : A →ₙₐ[R] B
h : ↑f = ↑g
a : A
⊢ ↑f a = ↑g a
[PROOFSTEP]
exact FunLike.congr_fun h a
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x
h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0
h₃ :
∀ (x y : A),
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) =
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y
h₄ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x *
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y
⊢ ↑{ toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ } =
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x
h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0
h₃ :
∀ (x y : A),
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) =
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y
h₄ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x *
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y
⊢ ↑{ toDistribMulActionHom := { toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ } =
{ toFun := ↑f, map_mul' := h₄ }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
src✝ : A →+[R] B := 0
⊢ ∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := src✝.toMulActionHom, map_zero' := (_ : MulActionHom.toFun src✝.toMulActionHom 0 = 0),
map_add' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x + y) =
MulActionHom.toFun src✝.toMulActionHom x +
MulActionHom.toFun src✝.toMulActionHom y) }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := src✝.toMulActionHom, map_zero' := (_ : MulActionHom.toFun src✝.toMulActionHom 0 = 0),
map_add' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x + y) =
MulActionHom.toFun src✝.toMulActionHom x +
MulActionHom.toFun src✝.toMulActionHom y) }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := src✝.toMulActionHom, map_zero' := (_ : MulActionHom.toFun src✝.toMulActionHom 0 = 0),
map_add' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x + y) =
MulActionHom.toFun src✝.toMulActionHom x +
MulActionHom.toFun src✝.toMulActionHom y) }.toMulActionHom
y
[PROOFSTEP]
simp
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
g : A →ₙₐ[R] C
c : R
x : A
⊢ Pi.prod (↑f) (↑g) (c • x) = c • Pi.prod (↑f) (↑g) x
[PROOFSTEP]
simp only [Pi.prod, Prod.smul_mk, map_smul, RingHom.id_apply]
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
g : A →ₙₐ[R] C
⊢ MulActionHom.toFun
{ toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) }
0 =
0
[PROOFSTEP]
simp only [Pi.prod, Prod.zero_eq_mk, map_zero]
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
g : A →ₙₐ[R] C
x y : A
⊢ MulActionHom.toFun
{ toFun := Pi.prod ↑f ↑g, map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) }
(x + y) =
MulActionHom.toFun
{ toFun := Pi.prod ↑f ↑g,
map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) }
x +
MulActionHom.toFun
{ toFun := Pi.prod ↑f ↑g,
map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) }
y
[PROOFSTEP]
simp only [Pi.prod, Prod.mk_add_mk, map_add]
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
g : A →ₙₐ[R] C
x y : A
⊢ MulActionHom.toFun
{
toMulActionHom :=
{ toFun := Pi.prod ↑f ↑g,
map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) },
map_zero' := (_ : (↑f 0, ↑g 0) = (0, 0)),
map_add' := (_ : ∀ (x y : A), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }.toMulActionHom
(x * y) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := Pi.prod ↑f ↑g,
map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) },
map_zero' := (_ : (↑f 0, ↑g 0) = (0, 0)),
map_add' := (_ : ∀ (x y : A), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }.toMulActionHom
x *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := Pi.prod ↑f ↑g,
map_smul' := (_ : ∀ (c : R) (x : A), (↑f (c • x), ↑g (c • x)) = (c • ↑f x, c • ↑g x)) },
map_zero' := (_ : (↑f 0, ↑g 0) = (0, 0)),
map_add' := (_ : ∀ (x y : A), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) }.toMulActionHom
y
[PROOFSTEP]
simp only [Pi.prod, Prod.mk_mul_mk, map_mul]
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
g : A →ₙₐ[R] C
⊢ comp (fst R B C) (prod f g) = f
[PROOFSTEP]
rfl
[GOAL]
R : Type u
A : Type v
B : Type w
C : Type w₁
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : NonUnitalNonAssocSemiring B
inst✝² : DistribMulAction R B
inst✝¹ : NonUnitalNonAssocSemiring C
inst✝ : DistribMulAction R C
f : A →ₙₐ[R] B
g : A →ₙₐ[R] C
⊢ comp (snd R B C) (prod f g) = g
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Hom.NonUnitalAlg", "llama_tokens": 8654} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝⁵ : Mul R
inst✝⁴ : Mul S
inst✝³ : Add R
inst✝² : Add S
inst✝¹ : Mul S'
inst✝ : Add S'
e f : R ≃+* S
h₁ : (fun f => f.toFun) e = (fun f => f.toFun) f
h₂ : (fun f => f.invFun) e = (fun f => f.invFun) f
⊢ e = f
[PROOFSTEP]
cases e
[GOAL]
case mk
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝⁵ : Mul R
inst✝⁴ : Mul S
inst✝³ : Add R
inst✝² : Add S
inst✝¹ : Mul S'
inst✝ : Add S'
f : R ≃+* S
toEquiv✝ : R ≃ S
map_mul'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x * y) = Equiv.toFun toEquiv✝ x * Equiv.toFun toEquiv✝ y
map_add'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x + y) = Equiv.toFun toEquiv✝ x + Equiv.toFun toEquiv✝ y
h₁ : (fun f => f.toFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } = (fun f => f.toFun) f
h₂ : (fun f => f.invFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } = (fun f => f.invFun) f
⊢ { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ } = f
[PROOFSTEP]
cases f
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝⁵ : Mul R
inst✝⁴ : Mul S
inst✝³ : Add R
inst✝² : Add S
inst✝¹ : Mul S'
inst✝ : Add S'
toEquiv✝¹ : R ≃ S
map_mul'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x * y) = Equiv.toFun toEquiv✝¹ x * Equiv.toFun toEquiv✝¹ y
map_add'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x + y) = Equiv.toFun toEquiv✝¹ x + Equiv.toFun toEquiv✝¹ y
toEquiv✝ : R ≃ S
map_mul'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x * y) = Equiv.toFun toEquiv✝ x * Equiv.toFun toEquiv✝ y
map_add'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x + y) = Equiv.toFun toEquiv✝ x + Equiv.toFun toEquiv✝ y
h₁ :
(fun f => f.toFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } =
(fun f => f.toFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ }
h₂ :
(fun f => f.invFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } =
(fun f => f.invFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ }
⊢ { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } =
{ toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toEquiv
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝⁵ : Mul R
inst✝⁴ : Mul S
inst✝³ : Add R
inst✝² : Add S
inst✝¹ : Mul S'
inst✝ : Add S'
toEquiv✝¹ : R ≃ S
map_mul'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x * y) = Equiv.toFun toEquiv✝¹ x * Equiv.toFun toEquiv✝¹ y
map_add'✝¹ : ∀ (x y : R), Equiv.toFun toEquiv✝¹ (x + y) = Equiv.toFun toEquiv✝¹ x + Equiv.toFun toEquiv✝¹ y
toEquiv✝ : R ≃ S
map_mul'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x * y) = Equiv.toFun toEquiv✝ x * Equiv.toFun toEquiv✝ y
map_add'✝ : ∀ (x y : R), Equiv.toFun toEquiv✝ (x + y) = Equiv.toFun toEquiv✝ x + Equiv.toFun toEquiv✝ y
h₁ :
(fun f => f.toFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } =
(fun f => f.toFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ }
h₂ :
(fun f => f.invFun) { toEquiv := toEquiv✝¹, map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ } =
(fun f => f.invFun) { toEquiv := toEquiv✝, map_mul' := map_mul'✝, map_add' := map_add'✝ }
⊢ toEquiv✝¹ = toEquiv✝
[PROOFSTEP]
apply Equiv.coe_fn_injective h₁
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
α : Type ?u.47054
β : Type ?u.47060
inst✝³ : Add α
inst✝² : Mul α
inst✝¹ : Add β
inst✝ : Mul β
f : α ≃+* β
⊢ (fun f =>
let src := ↑AddEquiv.mulOp.symm (toAddEquiv f);
let src_1 := ↑MulEquiv.op.symm (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : α),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : α), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
((fun f =>
let src := ↑AddEquiv.mulOp (toAddEquiv f);
let src_1 := ↑MulEquiv.op (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
α : Type ?u.47054
β : Type ?u.47060
inst✝³ : Add α
inst✝² : Mul α
inst✝¹ : Add β
inst✝ : Mul β
f : α ≃+* β
x✝ : α
⊢ ↑((fun f =>
let src := ↑AddEquiv.mulOp.symm (toAddEquiv f);
let src_1 := ↑MulEquiv.op.symm (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : α),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : α),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
((fun f =>
let src := ↑AddEquiv.mulOp (toAddEquiv f);
let src_1 := ↑MulEquiv.op (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
f))
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
α : Type ?u.47054
β : Type ?u.47060
inst✝³ : Add α
inst✝² : Mul α
inst✝¹ : Add β
inst✝ : Mul β
f : αᵐᵒᵖ ≃+* βᵐᵒᵖ
⊢ (fun f =>
let src := ↑AddEquiv.mulOp (toAddEquiv f);
let src_1 := ↑MulEquiv.op (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
((fun f =>
let src := ↑AddEquiv.mulOp.symm (toAddEquiv f);
let src_1 := ↑MulEquiv.op.symm (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : α),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : α), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
α : Type ?u.47054
β : Type ?u.47060
inst✝³ : Add α
inst✝² : Mul α
inst✝¹ : Add β
inst✝ : Mul β
f : αᵐᵒᵖ ≃+* βᵐᵒᵖ
x✝ : αᵐᵒᵖ
⊢ ↑((fun f =>
let src := ↑AddEquiv.mulOp (toAddEquiv f);
let src_1 := ↑MulEquiv.op (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : αᵐᵒᵖ),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
((fun f =>
let src := ↑AddEquiv.mulOp.symm (toAddEquiv f);
let src_1 := ↑MulEquiv.op.symm (toMulEquiv f);
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : α),
Equiv.toFun src_1.toEquiv (x * y) = Equiv.toFun src_1.toEquiv x * Equiv.toFun src_1.toEquiv y),
map_add' :=
(_ :
∀ (x y : α),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) })
f))
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝¹ : NonAssocRing R
inst✝ : NonAssocRing S
f : R ≃+* S
x✝ y x : R
⊢ ↑f x = -1 ↔ x = -1
[PROOFSTEP]
rw [← neg_eq_iff_eq_neg, ← neg_eq_iff_eq_neg, ← map_neg, RingEquiv.map_eq_one_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R✝ : Type u_4
S✝ : Type u_5
S' : Type u_6
inst✝⁴ : NonUnitalNonAssocSemiring R✝
inst✝³ : NonUnitalNonAssocSemiring S✝
inst✝² : NonUnitalNonAssocSemiring S'
R : Type u_7
S : Type u_8
inst✝¹ : NonUnitalNonAssocSemiring R
inst✝ : NonUnitalNonAssocSemiring S
f g : R ≃+* S
h : f = g
⊢ ↑f = ↑g
[PROOFSTEP]
rw [h]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : NonUnitalNonAssocSemiring S
inst✝ : NonUnitalNonAssocSemiring S'
e : R ≃+* S
⊢ NonUnitalRingHom.comp (toNonUnitalRingHom e) (toNonUnitalRingHom (RingEquiv.symm e)) = NonUnitalRingHom.id S
[PROOFSTEP]
ext
[GOAL]
case a
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : NonUnitalNonAssocSemiring S
inst✝ : NonUnitalNonAssocSemiring S'
e : R ≃+* S
x✝ : S
⊢ ↑(NonUnitalRingHom.comp (toNonUnitalRingHom e) (toNonUnitalRingHom (RingEquiv.symm e))) x✝ =
↑(NonUnitalRingHom.id S) x✝
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : NonUnitalNonAssocSemiring S
inst✝ : NonUnitalNonAssocSemiring S'
e : R ≃+* S
⊢ NonUnitalRingHom.comp (toNonUnitalRingHom (RingEquiv.symm e)) (toNonUnitalRingHom e) = NonUnitalRingHom.id R
[PROOFSTEP]
ext
[GOAL]
case a
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : NonUnitalNonAssocSemiring S
inst✝ : NonUnitalNonAssocSemiring S'
e : R ≃+* S
x✝ : R
⊢ ↑(NonUnitalRingHom.comp (toNonUnitalRingHom (RingEquiv.symm e)) (toNonUnitalRingHom e)) x✝ =
↑(NonUnitalRingHom.id R) x✝
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R✝ : Type u_4
S✝ : Type u_5
S' : Type u_6
inst✝⁴ : NonAssocSemiring R✝
inst✝³ : NonAssocSemiring S✝
inst✝² : NonAssocSemiring S'
R : Type u_7
S : Type u_8
inst✝¹ : NonAssocSemiring R
inst✝ : NonAssocSemiring S
f g : R ≃+* S
h : f = g
⊢ ↑f = ↑g
[PROOFSTEP]
rw [h]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonAssocSemiring R
inst✝¹ : NonAssocSemiring S
inst✝ : NonAssocSemiring S'
e : R ≃+* S
⊢ RingHom.comp (toRingHom e) (toRingHom (RingEquiv.symm e)) = RingHom.id S
[PROOFSTEP]
ext
[GOAL]
case a
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonAssocSemiring R
inst✝¹ : NonAssocSemiring S
inst✝ : NonAssocSemiring S'
e : R ≃+* S
x✝ : S
⊢ ↑(RingHom.comp (toRingHom e) (toRingHom (RingEquiv.symm e))) x✝ = ↑(RingHom.id S) x✝
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonAssocSemiring R
inst✝¹ : NonAssocSemiring S
inst✝ : NonAssocSemiring S'
e : R ≃+* S
⊢ RingHom.comp (toRingHom (RingEquiv.symm e)) (toRingHom e) = RingHom.id R
[PROOFSTEP]
ext
[GOAL]
case a
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
inst✝² : NonAssocSemiring R
inst✝¹ : NonAssocSemiring S
inst✝ : NonAssocSemiring S'
e : R ≃+* S
x✝ : R
⊢ ↑(RingHom.comp (toRingHom (RingEquiv.symm e)) (toRingHom e)) x✝ = ↑(RingHom.id R) x✝
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
A : Type u_7
B : Type u_8
inst✝¹ : Semiring A
inst✝ : Semiring B
hB : IsField B
e : A ≃* B
x y : A
⊢ ↑e (x * y) = ↑e (y * x)
[PROOFSTEP]
rw [map_mul, map_mul, hB.mul_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
A : Type u_7
B : Type u_8
inst✝¹ : Semiring A
inst✝ : Semiring B
hB : IsField B
e : A ≃* B
a✝ : A
h : a✝ ≠ 0
⊢ ∃ b, a✝ * b = 1
[PROOFSTEP]
obtain ⟨a', he⟩ := hB.mul_inv_cancel ((e.injective.ne h).trans_eq <| map_zero e)
[GOAL]
case intro
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
A : Type u_7
B : Type u_8
inst✝¹ : Semiring A
inst✝ : Semiring B
hB : IsField B
e : A ≃* B
a✝ : A
h : a✝ ≠ 0
a' : B
he : ↑e a✝ * a' = 1
⊢ ∃ b, a✝ * b = 1
[PROOFSTEP]
exact ⟨e.symm a', e.injective <| by rw [map_mul, map_one, e.apply_symm_apply, he]⟩
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
R : Type u_4
S : Type u_5
S' : Type u_6
A : Type u_7
B : Type u_8
inst✝¹ : Semiring A
inst✝ : Semiring B
hB : IsField B
e : A ≃* B
a✝ : A
h : a✝ ≠ 0
a' : B
he : ↑e a✝ * a' = 1
⊢ ↑e (a✝ * ↑(symm e) a') = ↑e 1
[PROOFSTEP]
rw [map_mul, map_one, e.apply_symm_apply, he]
| {"mathlib_filename": "Mathlib.Algebra.Ring.Equiv", "llama_tokens": 6777} |
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
rla : IsLeftRegular a
⊢ IsLeftRegular (a ^ n)
[PROOFSTEP]
simp only [IsLeftRegular, ← mul_left_iterate, rla.iterate n]
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
rra : IsRightRegular a
⊢ IsRightRegular (a ^ n)
[PROOFSTEP]
rw [IsRightRegular, ← mul_right_iterate]
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
rra : IsRightRegular a
⊢ Function.Injective (fun x => x * a)^[n]
[PROOFSTEP]
exact rra.iterate n
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
n0 : 0 < n
⊢ IsLeftRegular (a ^ n) ↔ IsLeftRegular a
[PROOFSTEP]
refine' ⟨_, IsLeftRegular.pow n⟩
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
n0 : 0 < n
⊢ IsLeftRegular (a ^ n) → IsLeftRegular a
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos n0, pow_succ']
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
n0 : 0 < n
⊢ IsLeftRegular (a ^ Nat.pred n * a) → IsLeftRegular a
[PROOFSTEP]
exact IsLeftRegular.of_mul
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
n0 : 0 < n
⊢ IsRightRegular (a ^ n) ↔ IsRightRegular a
[PROOFSTEP]
refine' ⟨_, IsRightRegular.pow n⟩
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
n0 : 0 < n
⊢ IsRightRegular (a ^ n) → IsRightRegular a
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos n0, pow_succ]
[GOAL]
R : Type u_1
a b : R
inst✝ : Monoid R
n : ℕ
n0 : 0 < n
⊢ IsRightRegular (a * a ^ Nat.pred n) → IsRightRegular a
[PROOFSTEP]
exact IsRightRegular.of_mul
| {"mathlib_filename": "Mathlib.Algebra.Regular.Pow", "llama_tokens": 721} |
[GOAL]
M N : GroupWithZeroCat
f g : M ⟶ N
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
M N : GroupWithZeroCat
g : M ⟶ N
toZeroHom✝ : ZeroHom ↑M ↑N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h : (fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = (fun f => f.toFun) g
⊢ { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
M N : GroupWithZeroCat
toZeroHom✝¹ : ZeroHom ↑M ↑N
map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1
map_mul'✝¹ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y
toZeroHom✝ : ZeroHom ↑M ↑N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h :
(fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
{ toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toZeroHom
M N : GroupWithZeroCat
toZeroHom✝¹ : ZeroHom ↑M ↑N
map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1
map_mul'✝¹ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y
toZeroHom✝ : ZeroHom ↑M ↑N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h :
(fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ toZeroHom✝¹ = toZeroHom✝
[PROOFSTEP]
apply FunLike.coe_injective'
[GOAL]
case mk.mk.e_toZeroHom.a
M N : GroupWithZeroCat
toZeroHom✝¹ : ZeroHom ↑M ↑N
map_one'✝¹ : ZeroHom.toFun toZeroHom✝¹ 1 = 1
map_mul'✝¹ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝¹ (x * y) = ZeroHom.toFun toZeroHom✝¹ x * ZeroHom.toFun toZeroHom✝¹ y
toZeroHom✝ : ZeroHom ↑M ↑N
map_one'✝ : ZeroHom.toFun toZeroHom✝ 1 = 1
map_mul'✝ : ∀ (x y : ↑M), ZeroHom.toFun toZeroHom✝ (x * y) = ZeroHom.toFun toZeroHom✝ x * ZeroHom.toFun toZeroHom✝ y
h :
(fun f => f.toFun) { toZeroHom := toZeroHom✝¹, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ } =
(fun f => f.toFun) { toZeroHom := toZeroHom✝, map_one' := map_one'✝, map_mul' := map_mul'✝ }
⊢ ↑toZeroHom✝¹ = ↑toZeroHom✝
[PROOFSTEP]
exact h
[GOAL]
α β : GroupWithZeroCat
e : ↑α ≃* ↑β
⊢ ↑e ≫ ↑(MulEquiv.symm e) = 𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : GroupWithZeroCat
e : ↑α ≃* ↑β
x✝ : (forget GroupWithZeroCat).obj α
⊢ ↑(↑e ≫ ↑(MulEquiv.symm e)) x✝ = ↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : GroupWithZeroCat
e : ↑α ≃* ↑β
⊢ ↑(MulEquiv.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : GroupWithZeroCat
e : ↑α ≃* ↑β
x✝ : (forget GroupWithZeroCat).obj β
⊢ ↑(↑(MulEquiv.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupWithZeroCat", "llama_tokens": 1805} |
[GOAL]
α : Type u
inst✝ : MulZeroClass α
x✝ : ULift α
⊢ ↑Equiv.ulift (0 * x✝) = ↑Equiv.ulift 0
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝ : MulZeroClass α
x✝ : ULift α
⊢ ↑Equiv.ulift (x✝ * 0) = ↑Equiv.ulift 0
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝ : Distrib α
x✝² x✝¹ x✝ : ULift α
⊢ ↑Equiv.ulift (x✝² * (x✝¹ + x✝)) = ↑Equiv.ulift (x✝² * x✝¹ + x✝² * x✝)
[PROOFSTEP]
simp [left_distrib]
[GOAL]
α : Type u
inst✝ : Distrib α
x✝² x✝¹ x✝ : ULift α
⊢ ↑Equiv.ulift ((x✝² + x✝¹) * x✝) = ↑Equiv.ulift (x✝² * x✝ + x✝¹ * x✝)
[PROOFSTEP]
simp [right_distrib]
| {"mathlib_filename": "Mathlib.Algebra.Ring.ULift", "llama_tokens": 360} |
[GOAL]
M : Type u_1
inst✝² : Monoid M
R : Type u_2
inst✝¹ : Semiring R
inst✝ : MulSemiringAction M R
m : M
⊢ HSMul.hSMul m = map (MulSemiringAction.toRingHom M R m)
[PROOFSTEP]
suffices DistribMulAction.toAddMonoidHom R[X] m = (mapRingHom (MulSemiringAction.toRingHom M R m)).toAddMonoidHom
by
ext1 r
exact FunLike.congr_fun this r
[GOAL]
M : Type u_1
inst✝² : Monoid M
R : Type u_2
inst✝¹ : Semiring R
inst✝ : MulSemiringAction M R
m : M
this : DistribMulAction.toAddMonoidHom R[X] m = RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m))
⊢ HSMul.hSMul m = map (MulSemiringAction.toRingHom M R m)
[PROOFSTEP]
ext1 r
[GOAL]
case h
M : Type u_1
inst✝² : Monoid M
R : Type u_2
inst✝¹ : Semiring R
inst✝ : MulSemiringAction M R
m : M
this : DistribMulAction.toAddMonoidHom R[X] m = RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m))
r : R[X]
⊢ m • r = map (MulSemiringAction.toRingHom M R m) r
[PROOFSTEP]
exact FunLike.congr_fun this r
[GOAL]
M : Type u_1
inst✝² : Monoid M
R : Type u_2
inst✝¹ : Semiring R
inst✝ : MulSemiringAction M R
m : M
⊢ DistribMulAction.toAddMonoidHom R[X] m = RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m))
[PROOFSTEP]
ext n r : 2
[GOAL]
case h.h
M : Type u_1
inst✝² : Monoid M
R : Type u_2
inst✝¹ : Semiring R
inst✝ : MulSemiringAction M R
m : M
n : ℕ
r : R
⊢ ↑(AddMonoidHom.comp (DistribMulAction.toAddMonoidHom R[X] m) (LinearMap.toAddMonoidHom (monomial n))) r =
↑(AddMonoidHom.comp (RingHom.toAddMonoidHom (mapRingHom (MulSemiringAction.toRingHom M R m)))
(LinearMap.toAddMonoidHom (monomial n)))
r
[PROOFSTEP]
change m • monomial n r = map (MulSemiringAction.toRingHom M R m) (monomial n r)
[GOAL]
case h.h
M : Type u_1
inst✝² : Monoid M
R : Type u_2
inst✝¹ : Semiring R
inst✝ : MulSemiringAction M R
m : M
n : ℕ
r : R
⊢ m • ↑(monomial n) r = map (MulSemiringAction.toRingHom M R m) (↑(monomial n) r)
[PROOFSTEP]
rw [Polynomial.map_monomial, Polynomial.smul_monomial, MulSemiringAction.toRingHom_apply]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
R : Type u_2
inst✝³ : Semiring R
inst✝² : MulSemiringAction M R
S : Type u_3
inst✝¹ : CommSemiring S
inst✝ : MulSemiringAction M S
m : M
f : S[X]
x r : S
⊢ eval (m • x) (m • ↑C r) = m • eval x (↑C r)
[PROOFSTEP]
rw [smul_C, eval_C, eval_C]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
R : Type u_2
inst✝³ : Semiring R
inst✝² : MulSemiringAction M R
S : Type u_3
inst✝¹ : CommSemiring S
inst✝ : MulSemiringAction M S
m : M
f✝ : S[X]
x : S
f g : S[X]
ihf : eval (m • x) (m • f) = m • eval x f
ihg : eval (m • x) (m • g) = m • eval x g
⊢ eval (m • x) (m • (f + g)) = m • eval x (f + g)
[PROOFSTEP]
rw [smul_add, eval_add, ihf, ihg, eval_add, smul_add]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
R : Type u_2
inst✝³ : Semiring R
inst✝² : MulSemiringAction M R
S : Type u_3
inst✝¹ : CommSemiring S
inst✝ : MulSemiringAction M S
m : M
f : S[X]
x : S
n : ℕ
r : S
x✝ : eval (m • x) (m • (↑C r * X ^ n)) = m • eval x (↑C r * X ^ n)
⊢ eval (m • x) (m • (↑C r * X ^ (n + 1))) = m • eval x (↑C r * X ^ (n + 1))
[PROOFSTEP]
rw [smul_mul', smul_pow', smul_C, smul_X, eval_mul, eval_C, eval_pow, eval_X, eval_mul, eval_C, eval_pow, eval_X,
smul_mul', smul_pow']
[GOAL]
M : Type u_1
inst✝⁶ : Monoid M
R : Type u_2
inst✝⁵ : Semiring R
inst✝⁴ : MulSemiringAction M R
S : Type u_3
inst✝³ : CommSemiring S
inst✝² : MulSemiringAction M S
G : Type u_4
inst✝¹ : Group G
inst✝ : MulSemiringAction G S
g : G
f : S[X]
x : S
⊢ eval (g • x) f = g • eval x (g⁻¹ • f)
[PROOFSTEP]
rw [← smul_eval_smul, smul_inv_smul]
[GOAL]
M : Type u_1
inst✝⁶ : Monoid M
R : Type u_2
inst✝⁵ : Semiring R
inst✝⁴ : MulSemiringAction M R
S : Type u_3
inst✝³ : CommSemiring S
inst✝² : MulSemiringAction M S
G : Type u_4
inst✝¹ : Group G
inst✝ : MulSemiringAction G S
g : G
f : S[X]
x : S
⊢ eval x (g • f) = g • eval (g⁻¹ • x) f
[PROOFSTEP]
rw [← smul_eval_smul, smul_inv_smul]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
G : Type u_2
inst✝³ : Group G
inst✝² : Fintype G
R : Type u_3
inst✝¹ : CommRing R
inst✝ : MulSemiringAction G R
x : R
⊢ ↑↑↑(aeval x) (X - ↑C (ofQuotientStabilizer G x ↑1)) = 0
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
G : Type u_2
inst✝³ : Group G
inst✝² : Fintype G
R : Type u_3
inst✝¹ : CommRing R
inst✝ : MulSemiringAction G R
x : R
g : G
g' : G ⧸ stabilizer G x
⊢ g • (X - ↑C (ofQuotientStabilizer G x g')) = X - ↑C (ofQuotientStabilizer G x ((fun x_1 x_2 => x_1 • x_2) g g'))
[PROOFSTEP]
rw [ofQuotientStabilizer_smul, smul_sub, Polynomial.smul_X, Polynomial.smul_C]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
G : Type u_2
inst✝³ : Group G
inst✝² : Fintype G
R : Type u_3
inst✝¹ : CommRing R
inst✝ : MulSemiringAction G R
x : R
g : G
n : ℕ
⊢ g • Polynomial.coeff (prodXSubSmul G R x) n = Polynomial.coeff (prodXSubSmul G R x) n
[PROOFSTEP]
rw [← Polynomial.coeff_smul, prodXSubSmul.smul]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
P : Type u_2
inst✝³ : CommSemiring P
inst✝² : MulSemiringAction M P
Q : Type u_3
inst✝¹ : CommSemiring Q
inst✝ : MulSemiringAction M Q
g : P →+*[M] Q
m : M
p : P[X]
b : P
⊢ map (↑g) (m • ↑C b) = m • map (↑g) (↑C b)
[PROOFSTEP]
rw [smul_C, map_C, coe_fn_coe, g.map_smul, map_C, coe_fn_coe, smul_C]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
P : Type u_2
inst✝³ : CommSemiring P
inst✝² : MulSemiringAction M P
Q : Type u_3
inst✝¹ : CommSemiring Q
inst✝ : MulSemiringAction M Q
g : P →+*[M] Q
m : M
p✝ p q : P[X]
ihp : map (↑g) (m • p) = m • map (↑g) p
ihq : map (↑g) (m • q) = m • map (↑g) q
⊢ map (↑g) (m • (p + q)) = m • map (↑g) (p + q)
[PROOFSTEP]
rw [smul_add, Polynomial.map_add, ihp, ihq, Polynomial.map_add, smul_add]
[GOAL]
M : Type u_1
inst✝⁴ : Monoid M
P : Type u_2
inst✝³ : CommSemiring P
inst✝² : MulSemiringAction M P
Q : Type u_3
inst✝¹ : CommSemiring Q
inst✝ : MulSemiringAction M Q
g : P →+*[M] Q
m : M
p : P[X]
n : ℕ
b : P
x✝ : map (↑g) (m • (↑C b * X ^ n)) = m • map (↑g) (↑C b * X ^ n)
⊢ map (↑g) (m • (↑C b * X ^ (n + 1))) = m • map (↑g) (↑C b * X ^ (n + 1))
[PROOFSTEP]
rw [smul_mul', smul_C, smul_pow', smul_X, Polynomial.map_mul, map_C, Polynomial.map_pow, map_X, coe_fn_coe, g.map_smul,
Polynomial.map_mul, map_C, Polynomial.map_pow, map_X, smul_mul', smul_C, smul_pow', smul_X, coe_fn_coe]
-- porting note: added `.toRingHom`
| {"mathlib_filename": "Mathlib.Algebra.Polynomial.GroupRingAction", "llama_tokens": 3130} |
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Subobject", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : NonUnitalNonAssocSemiring S
inst✝ : NonUnitalNonAssocSemiring T
f✝ : R →ₙ+* S
g : R →ₙ+* T
f : R →ₙ+* S × T
x : R
⊢ ↑(NonUnitalRingHom.prod (comp (fst S T) f) (comp (snd S T) f)) x = ↑f x
[PROOFSTEP]
simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝² : NonAssocSemiring R
inst✝¹ : NonAssocSemiring S
inst✝ : NonAssocSemiring T
f✝ : R →+* S
g : R →+* T
f : R →+* S × T
x : R
⊢ ↑(RingHom.prod (comp (fst S T) f) (comp (snd S T) f)) x = ↑f x
[PROOFSTEP]
simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
x : R × S
⊢ (fun x => (x, 0)) x.fst = x
[PROOFSTEP]
cases x
[GOAL]
case mk
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
fst✝ : R
snd✝ : S
⊢ (fun x => (x, 0)) (fst✝, snd✝).fst = (fst✝, snd✝)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
⊢ ∀ (x y : R),
Equiv.toFun
{ toFun := fun x => (x, 0), invFun := Prod.fst,
left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst),
right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) }
(x * y) =
Equiv.toFun
{ toFun := fun x => (x, 0), invFun := Prod.fst,
left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst),
right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) }
x *
Equiv.toFun
{ toFun := fun x => (x, 0), invFun := Prod.fst,
left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst),
right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) }
y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
⊢ ∀ (x y : R),
Equiv.toFun
{ toFun := fun x => (x, 0), invFun := Prod.fst,
left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst),
right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) }
(x + y) =
Equiv.toFun
{ toFun := fun x => (x, 0), invFun := Prod.fst,
left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst),
right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) }
x +
Equiv.toFun
{ toFun := fun x => (x, 0), invFun := Prod.fst,
left_inv := (_ : ∀ (x : R), ((fun x => (x, 0)) x).fst = ((fun x => (x, 0)) x).fst),
right_inv := (_ : ∀ (x : R × S), (fun x => (x, 0)) x.fst = x) }
y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
x : S × R
⊢ (fun x => (0, x)) x.snd = x
[PROOFSTEP]
cases x
[GOAL]
case mk
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
fst✝ : S
snd✝ : R
⊢ (fun x => (0, x)) (fst✝, snd✝).snd = (fst✝, snd✝)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
⊢ ∀ (x y : R),
Equiv.toFun
{ toFun := fun x => (0, x), invFun := Prod.snd,
left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd),
right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) }
(x * y) =
Equiv.toFun
{ toFun := fun x => (0, x), invFun := Prod.snd,
left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd),
right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) }
x *
Equiv.toFun
{ toFun := fun x => (0, x), invFun := Prod.snd,
left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd),
right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) }
y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
R' : Type u_4
S : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
inst✝⁴ : NonAssocSemiring R
inst✝³ : NonAssocSemiring S
inst✝² : NonAssocSemiring R'
inst✝¹ : NonAssocSemiring S'
inst✝ : Subsingleton S
⊢ ∀ (x y : R),
Equiv.toFun
{ toFun := fun x => (0, x), invFun := Prod.snd,
left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd),
right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) }
(x + y) =
Equiv.toFun
{ toFun := fun x => (0, x), invFun := Prod.snd,
left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd),
right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) }
x +
Equiv.toFun
{ toFun := fun x => (0, x), invFun := Prod.snd,
left_inv := (_ : ∀ (x : R), ((fun x => (0, x)) x).snd = ((fun x => (0, x)) x).snd),
right_inv := (_ : ∀ (x : S × R), (fun x => (0, x)) x.snd = x) }
y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
R✝ : Type u_3
R' : Type u_4
S✝ : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
R : Type u_9
S : Type u_10
inst✝⁴ : Ring R
inst✝³ : Ring S
inst✝² : IsDomain (R × S)
inst✝¹ : Nontrivial R
inst✝ : Nontrivial S
⊢ False
[PROOFSTEP]
have := NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero (show ((0 : R), (1 : S)) * (1, 0) = 0 by simp)
[GOAL]
α : Type u_1
β : Type u_2
R✝ : Type u_3
R' : Type u_4
S✝ : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
R : Type u_9
S : Type u_10
inst✝⁴ : Ring R
inst✝³ : Ring S
inst✝² : IsDomain (R × S)
inst✝¹ : Nontrivial R
inst✝ : Nontrivial S
⊢ (0, 1) * (1, 0) = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
R✝ : Type u_3
R' : Type u_4
S✝ : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
R : Type u_9
S : Type u_10
inst✝⁴ : Ring R
inst✝³ : Ring S
inst✝² : IsDomain (R × S)
inst✝¹ : Nontrivial R
inst✝ : Nontrivial S
this : (0, 1) = 0 ∨ (1, 0) = 0
⊢ False
[PROOFSTEP]
rw [Prod.mk_eq_zero, Prod.mk_eq_zero] at this
[GOAL]
α : Type u_1
β : Type u_2
R✝ : Type u_3
R' : Type u_4
S✝ : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
R : Type u_9
S : Type u_10
inst✝⁴ : Ring R
inst✝³ : Ring S
inst✝² : IsDomain (R × S)
inst✝¹ : Nontrivial R
inst✝ : Nontrivial S
this : 0 = 0 ∧ 1 = 0 ∨ 1 = 0 ∧ 0 = 0
⊢ False
[PROOFSTEP]
rcases this with (⟨_, h⟩ | ⟨h, _⟩)
[GOAL]
case inl.intro
α : Type u_1
β : Type u_2
R✝ : Type u_3
R' : Type u_4
S✝ : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
R : Type u_9
S : Type u_10
inst✝⁴ : Ring R
inst✝³ : Ring S
inst✝² : IsDomain (R × S)
inst✝¹ : Nontrivial R
inst✝ : Nontrivial S
left✝ : 0 = 0
h : 1 = 0
⊢ False
[PROOFSTEP]
exact zero_ne_one h.symm
[GOAL]
case inr.intro
α : Type u_1
β : Type u_2
R✝ : Type u_3
R' : Type u_4
S✝ : Type u_5
S' : Type u_6
T : Type u_7
T' : Type u_8
R : Type u_9
S : Type u_10
inst✝⁴ : Ring R
inst✝³ : Ring S
inst✝² : IsDomain (R × S)
inst✝¹ : Nontrivial R
inst✝ : Nontrivial S
h : 1 = 0
right✝ : 0 = 0
⊢ False
[PROOFSTEP]
exact zero_ne_one h.symm
| {"mathlib_filename": "Mathlib.Algebra.Ring.Prod", "llama_tokens": 4235} |
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Preadditive", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a + a = 0
[PROOFSTEP]
have : a + a = a + a + (a + a) :=
calc
a + a = (a + a) * (a + a) := by rw [mul_self]
_ = a * a + a * a + (a * a + a * a) := by rw [add_mul, mul_add]
_ = a + a + (a + a) := by rw [mul_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a + a = (a + a) * (a + a)
[PROOFSTEP]
rw [mul_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ (a + a) * (a + a) = a * a + a * a + (a * a + a * a)
[PROOFSTEP]
rw [add_mul, mul_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a * a + a * a + (a * a + a * a) = a + a + (a + a)
[PROOFSTEP]
rw [mul_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
this : a + a = a + a + (a + a)
⊢ a + a = 0
[PROOFSTEP]
rwa [self_eq_add_left] at this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ -a = -a + 0
[PROOFSTEP]
rw [add_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ -a + 0 = -a + -a + a
[PROOFSTEP]
rw [← neg_add_self, add_assoc]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ -a + -a + a = a
[PROOFSTEP]
rw [add_self, zero_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a = -b ↔ a = b
[PROOFSTEP]
rw [neg_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a * b + b * a = 0
[PROOFSTEP]
have : a + b = a + b + (a * b + b * a) :=
calc
a + b = (a + b) * (a + b) := by rw [mul_self]
_ = a * a + a * b + (b * a + b * b) := by rw [add_mul, mul_add, mul_add]
_ = a + a * b + (b * a + b) := by simp only [mul_self]
_ = a + b + (a * b + b * a) := by abel
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a + b = (a + b) * (a + b)
[PROOFSTEP]
rw [mul_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ (a + b) * (a + b) = a * a + a * b + (b * a + b * b)
[PROOFSTEP]
rw [add_mul, mul_add, mul_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a * a + a * b + (b * a + b * b) = a + a * b + (b * a + b)
[PROOFSTEP]
simp only [mul_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a + a * b + (b * a + b) = a + b + (a * b + b * a)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a + a * b + (b * a + b) = a + b + (a * b + b * a)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
this : a + b = a + b + (a * b + b * a)
⊢ a * b + b * a = 0
[PROOFSTEP]
rwa [self_eq_add_right] at this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a - b = a + b
[PROOFSTEP]
rw [sub_eq_add_neg, add_right_inj, neg_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a b : α
⊢ a * (1 + a) = 0
[PROOFSTEP]
rw [mul_add, mul_one, mul_self, add_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : BooleanRing α
a✝ b✝ : α
src✝ : BooleanRing α := inferInstance
a b : α
⊢ a * b = b * a
[PROOFSTEP]
rw [← add_eq_zero', mul_add_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a ⊔ b = b ⊔ a
[PROOFSTEP]
dsimp only [(· ⊔ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a + b + a * b = b + a + b * a
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a ⊓ b = b ⊓ a
[PROOFSTEP]
dsimp only [(· ⊓ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a * b = b * a
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
[PROOFSTEP]
dsimp only [(· ⊔ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ a + b + a * b + c + (a + b + a * b) * c = a + (b + c + b * c) + a * (b + c + b * c)
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
[PROOFSTEP]
dsimp only [(· ⊓ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a ⊔ a ⊓ b = a
[PROOFSTEP]
dsimp only [(· ⊔ ·), (· ⊓ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a + a * b + a * (a * b) = a
[PROOFSTEP]
rw [← mul_assoc, mul_self, add_assoc, add_self, add_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a ⊓ (a ⊔ b) = a
[PROOFSTEP]
dsimp only [(· ⊔ ·), (· ⊓ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a * (a + b + a * b) = a
[PROOFSTEP]
rw [mul_add, mul_add, mul_self, ← mul_assoc, mul_self, add_assoc, add_self, add_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ (a + b + a * b) * (a + c + a * c) =
a * a + b * c + a * (b * c) + (a * b + a * a * b) + (a * c + a * a * c) + (a * b * c + a * a * b * c)
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ a * a + b * c + a * (b * c) + (a * b + a * a * b) + (a * c + a * a * c) + (a * b * c + a * a * b * c) =
a + b * c + a * (b * c)
[PROOFSTEP]
simp only [mul_self, add_self, add_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) ⊔ (a ⊔ b ⊓ c) = a ⊔ b ⊓ c
[PROOFSTEP]
dsimp only [(· ⊔ ·), (· ⊓ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b c : α
⊢ (a + b + a * b) * (a + c + a * c) + (a + b * c + a * (b * c)) +
(a + b + a * b) * (a + c + a * c) * (a + b * c + a * (b * c)) =
a + b * c + a * (b * c)
[PROOFSTEP]
rw [le_sup_inf_aux, add_self, mul_self, zero_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
src✝ : Lattice α :=
Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
(_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a)
(_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a)
a : α
⊢ a * (1 + a) + 0 + a * (1 + a) * 0 = 0
[PROOFSTEP]
norm_num [mul_add, mul_self, add_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
src✝ : Lattice α :=
Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
(_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a)
(_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a)
a : α
⊢ ⊤ ≤ a ⊔ aᶜ
[PROOFSTEP]
change 1 + (a + (1 + a) + a * (1 + a)) + 1 * (a + (1 + a) + a * (1 + a)) = a + (1 + a) + a * (1 + a)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
src✝ : Lattice α :=
Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
(_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a)
(_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a)
a : α
⊢ 1 + (a + (1 + a) + a * (1 + a)) + 1 * (a + (1 + a) + a * (1 + a)) = a + (1 + a) + a * (1 + a)
[PROOFSTEP]
norm_num [mul_add, mul_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
src✝ : Lattice α :=
Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
(_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a)
(_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a)
a : α
⊢ 1 + (a + (1 + a)) = 0
[PROOFSTEP]
rw [← add_assoc, add_self]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
src✝ : Lattice α :=
Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
(_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a)
(_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a)
a : α
⊢ a + 1 + a * 1 = 1
[PROOFSTEP]
rw [mul_one, (add_comm a 1), add_assoc, add_self, add_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
src✝ : Lattice α :=
Lattice.mk' (_ : ∀ (a b : α), a ⊔ b = b ⊔ a) (_ : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c))
(_ : ∀ (a b : α), a ⊓ b = b ⊓ a) (_ : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (_ : ∀ (a b : α), a ⊔ a ⊓ b = a)
(_ : ∀ (a b : α), a ⊓ (a ⊔ b) = a)
a : α
⊢ 0 + a + 0 * a = a
[PROOFSTEP]
rw [zero_mul, zero_add, add_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ (a + b + a * b) * (1 + a * b) = a + b + (a * b + a * b * (a * b)) + (a * (b * b) + a * a * b)
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : α
⊢ a + b + (a * b + a * b * (a * b)) + (a * (b * b) + a * a * b) = a + b
[PROOFSTEP]
simp only [mul_self, add_self, add_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : AsBoolAlg α
⊢ ↑ofBoolAlg (a ∆ b) = ↑ofBoolAlg a + ↑ofBoolAlg b
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
a b : AsBoolAlg α
⊢ ↑ofBoolAlg ((a ⊔ b) \ (a ⊓ b)) = ↑ofBoolAlg a + ↑ofBoolAlg b
[PROOFSTEP]
exact of_boolalg_symmDiff_aux _ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
f : α →+* β
a b : AsBoolAlg α
⊢ (↑toBoolAlg ∘ ↑f ∘ ↑ofBoolAlg) (a ⊔ b) = (↑toBoolAlg ∘ ↑f ∘ ↑ofBoolAlg) a ⊔ (↑toBoolAlg ∘ ↑f ∘ ↑ofBoolAlg) b
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : BooleanRing α
inst✝¹ : BooleanRing β
inst✝ : BooleanRing γ
f : α →+* β
a b : AsBoolAlg α
⊢ ↑toBoolAlg (↑f (↑ofBoolAlg a + ↑ofBoolAlg b + ↑ofBoolAlg a * ↑ofBoolAlg b)) =
↑toBoolAlg (↑f (↑ofBoolAlg a)) ⊔ ↑toBoolAlg (↑f (↑ofBoolAlg b))
[PROOFSTEP]
simp_rw [map_add f, map_mul f, toBoolAlg_add_add_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a : Bool
⊢ a * 0 = 0
[PROOFSTEP]
cases a
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
⊢ false * 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
⊢ true * 0 = 0
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Ring.BooleanRing", "llama_tokens": 6475} |
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
s : Fork f 0
⊢ ↑s.pt →+ ↑G
[PROOFSTEP]
exact Fork.ι s
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
s : Fork f 0
c : ↑s.pt
⊢ ↑f (↑(Fork.ι s) c) = 0
[PROOFSTEP]
exact FunLike.congr_fun s.condition c
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
x✝ : Fork f 0
⊢ (fun s => codRestrict (Fork.ι s) (ker f) (_ : ∀ (c : ↑s.pt), ↑(Fork.ι s) c ∈ ker f)) x✝ ≫ Fork.ι (kernelCone f) =
Fork.ι x✝
[PROOFSTEP]
rfl
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
x✝¹ : Fork f 0
x✝ : x✝¹.pt ⟶ (kernelCone f).pt
h : x✝ ≫ Fork.ι (kernelCone f) = Fork.ι x✝¹
x : ↑x✝¹.pt
⊢ ↑(↑x✝ x) = ↑(↑((fun s => codRestrict (Fork.ι s) (ker f) (_ : ∀ (c : ↑s.pt), ↑(Fork.ι s) c ∈ ker f)) x✝¹) x)
[PROOFSTEP]
exact FunLike.congr_fun h x
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
x✝¹ : Cofork f 0
x✝ : (cokernelCocone f).pt ⟶ x✝¹.pt
h : Cofork.π (cokernelCocone f) ≫ x✝ = Cofork.π x✝¹
this : Epi (Cofork.π (cokernelCocone f))
⊢ ?m.55829 x✝¹ x✝ h this ≫ x✝ =
?m.55829 x✝¹ x✝ h this ≫ (fun s => lift (range f) (Cofork.π s) (_ : range f ≤ ker (Cofork.π s))) x✝¹
[PROOFSTEP]
simpa only [parallelPair_obj_one] using h
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Kernels", "llama_tokens": 653} |
[GOAL]
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
⊢ Exact f g ↔ AddMonoidHom.range f = AddMonoidHom.ker g
[PROOFSTEP]
rw [Abelian.exact_iff' f g (kernelIsLimit _) (cokernelIsColimit _)]
[GOAL]
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
⊢ f ≫ g = 0 ∧ Fork.ι (kernelCone g) ≫ Cofork.π (cokernelCocone f) = 0 ↔ AddMonoidHom.range f = AddMonoidHom.ker g
[PROOFSTEP]
exact
⟨fun h =>
((AddMonoidHom.range_le_ker_iff _ _).mpr h.left).antisymm ((QuotientAddGroup.ker_le_range_iff _ _).mpr h.right),
fun h => ⟨(AddMonoidHom.range_le_ker_iff _ _).mp h.le, (QuotientAddGroup.ker_le_range_iff _ _).mp h.symm.le⟩⟩
[GOAL]
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
⊢ PreservesFiniteLimits colim
[PROOFSTEP]
refine Functor.preservesFiniteLimitsOfMapExact _ fun F G H η γ h => (exact_iff _ _).mpr (le_antisymm ?_ ?_)
[GOAL]
case refine_1
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : Exact η γ
⊢ AddMonoidHom.range (colim.map η) ≤ AddMonoidHom.ker (colim.map γ)
case refine_2
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : Exact η γ
⊢ AddMonoidHom.ker (colim.map γ) ≤ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
all_goals replace h : ∀ j : J, Exact (η.app j) (γ.app j) := fun j => Functor.map_exact ((evaluation _ _).obj j) η γ h
[GOAL]
case refine_1
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : Exact η γ
⊢ AddMonoidHom.range (colim.map η) ≤ AddMonoidHom.ker (colim.map γ)
[PROOFSTEP]
replace h : ∀ j : J, Exact (η.app j) (γ.app j) := fun j => Functor.map_exact ((evaluation _ _).obj j) η γ h
[GOAL]
case refine_2
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : Exact η γ
⊢ AddMonoidHom.ker (colim.map γ) ≤ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
replace h : ∀ j : J, Exact (η.app j) (γ.app j) := fun j => Functor.map_exact ((evaluation _ _).obj j) η γ h
[GOAL]
case refine_1
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
⊢ AddMonoidHom.range (colim.map η) ≤ AddMonoidHom.ker (colim.map γ)
[PROOFSTEP]
rw [AddMonoidHom.range_le_ker_iff, ← comp_def]
[GOAL]
case refine_1
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
⊢ colim.map η ≫ colim.map γ = 0
[PROOFSTEP]
exact colimit.hom_ext fun j => by simp [reassoc_of% (h j).w]
[GOAL]
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
⊢ colimit.ι F j ≫ colim.map η ≫ colim.map γ = colimit.ι F j ≫ 0
[PROOFSTEP]
simp [reassoc_of% (h j).w]
[GOAL]
case refine_2
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
⊢ AddMonoidHom.ker (colim.map γ) ≤ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
intro x (hx : _ = _)
[GOAL]
case refine_2
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
x : ↑(colim.obj G)
hx : ↑(colim.map γ) x = 0
⊢ x ∈ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
rcases Concrete.colimit_exists_rep G x with ⟨j, y, rfl⟩
[GOAL]
case refine_2.intro.intro
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx : ↑(colim.map γ) (↑(colimit.ι G j) y) = 0
⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
erw [← comp_apply, colimit.ι_map, comp_apply, ← map_zero (by exact colimit.ι H j : H.obj j →+ ↑(colimit H))] at hx
[GOAL]
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0
⊢ ↑(H.obj j) →+ ↑(colimit H)
[PROOFSTEP]
exact colimit.ι H j
[GOAL]
case refine_2.intro.intro
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0
hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0
⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
rcases Concrete.colimit_exists_of_rep_eq H _ _ hx with ⟨k, e₁, e₂, hk : _ = H.map e₂ 0⟩
[GOAL]
case refine_2.intro.intro.intro.intro.intro
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0
hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0
k : J
e₁ e₂ : j ⟶ k
hk : ↑(H.map e₁) (↑(NatTrans.app γ j) y) = ↑(H.map e₂) 0
⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
rw [map_zero, ← comp_apply, ← NatTrans.naturality, comp_apply] at hk
[GOAL]
case refine_2.intro.intro.intro.intro.intro
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0
hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0
k : J
e₁ e₂ : j ⟶ k
hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0
⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
rcases((exact_iff _ _).mp <| h k).ge hk with ⟨t, ht⟩
[GOAL]
case refine_2.intro.intro.intro.intro.intro.intro
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0
hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0
k : J
e₁ e₂ : j ⟶ k
hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0
t : ↑(F.obj k)
ht : ↑(NatTrans.app η k) t = ↑(G.map e₁) y
⊢ ↑(colimit.ι G j) y ∈ AddMonoidHom.range (colim.map η)
[PROOFSTEP]
use colimit.ι F k t
[GOAL]
case h
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0
hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0
k : J
e₁ e₂ : j ⟶ k
hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0
t : ↑(F.obj k)
ht : ↑(NatTrans.app η k) t = ↑(G.map e₁) y
⊢ ↑(colim.map η) (↑(colimit.ι F k) t) = ↑(colimit.ι G j) y
[PROOFSTEP]
erw [← comp_apply, colimit.ι_map, comp_apply, ht]
[GOAL]
case h
X Y Z : AddCommGroupCat
f : X ⟶ Y
g : Y ⟶ Z
J : Type u
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F G H : J ⥤ AddCommGroupCat
η : F ⟶ G
γ : G ⟶ H
h : ∀ (j : J), Exact (NatTrans.app η j) (NatTrans.app γ j)
j : J
y : (forget AddCommGroupCat).obj (G.obj j)
hx✝ : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = 0
hx : ↑(colimit.ι H j) (↑(NatTrans.app γ j) y) = ↑(colimit.ι H j) 0
k : J
e₁ e₂ : j ⟶ k
hk : ↑(NatTrans.app γ k) (↑(G.map e₁) y) = 0
t : ↑(F.obj k)
ht : ↑(NatTrans.app η k) t = ↑(G.map e₁) y
⊢ ↑(colimit.ι G k) (↑(G.map e₁) y) = ↑(colimit.ι G j) y
[PROOFSTEP]
exact colimit.w_apply G e₁ y
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Abelian", "llama_tokens": 4481} |
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
⊢ factorThruImage f ≫ ι f = f
[PROOFSTEP]
ext
[GOAL]
case w
G H : AddCommGroupCat
f : G ⟶ H
x✝ : ↑G
⊢ ↑(factorThruImage f ≫ ι f) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
⊢ (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0
[PROOFSTEP]
haveI := F'.m_mono
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
this : Mono F'.m
⊢ (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0 = 0
[PROOFSTEP]
apply injective_of_mono F'.m
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
this : Mono F'.m
⊢ ↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f))) 0) =
↑F'.m 0
[PROOFSTEP]
change (F'.e ≫ F'.m) _ = _
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
this : Mono F'.m
⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑0) (_ : ↑0 ∈ AddMonoidHom.range f)) = ↑F'.m 0
[PROOFSTEP]
rw [F'.fac, AddMonoidHom.map_zero]
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
this : Mono F'.m
⊢ ↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑0) (_ : ↑0 ∈ AddMonoidHom.range f)) = 0
[PROOFSTEP]
exact (Classical.indefiniteDescription (fun y => f y = 0) _).2
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
⊢ ∀ (x y : ↑(image f)),
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
(x + y) =
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
x +
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
y
[PROOFSTEP]
intro x y
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
(x + y) =
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
x +
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
y
[PROOFSTEP]
haveI := F'.m_mono
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
(x + y) =
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
x +
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
y
[PROOFSTEP]
apply injective_of_mono F'.m
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ↑F'.m
(ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
(x + y)) =
↑F'.m
(ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
x +
ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
y)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ↑F'.m
(ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
(x + y)) =
↑F'.m
(ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
x) +
↑F'.m
(ZeroHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)),
map_zero' :=
(_ :
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)))
0 =
0) }
y)
[PROOFSTEP]
change (F'.e ≫ F'.m) _ = (F'.e ≫ F'.m) _ + (F'.e ≫ F'.m) _
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ↑(F'.e ≫ F'.m)
↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(x + y)) (_ : ↑(x + y) ∈ AddMonoidHom.range f)) =
↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) +
↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f))
[PROOFSTEP]
rw [F'.fac]
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ↑f ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(x + y)) (_ : ↑(x + y) ∈ AddMonoidHom.range f)) =
↑f ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) +
↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f))
[PROOFSTEP]
rw [(Classical.indefiniteDescription (fun z => f z = _) _).2]
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ↑(x + y) =
↑f ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) +
↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f))
[PROOFSTEP]
rw [(Classical.indefiniteDescription (fun z => f z = _) _).2]
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ↑(x + y) = ↑x + ↑f ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ AddMonoidHom.range f))
[PROOFSTEP]
rw [(Classical.indefiniteDescription (fun z => f z = _) _).2]
[GOAL]
case a
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
this : Mono F'.m
⊢ ↑(x + y) = ↑x + ↑y
[PROOFSTEP]
rfl
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
⊢ lift F' ≫ F'.m = ι f
[PROOFSTEP]
ext x
[GOAL]
case w
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x : ↑(image f)
⊢ ↑(lift F' ≫ F'.m) x = ↑(ι f) x
[PROOFSTEP]
change (F'.e ≫ F'.m) _ = _
[GOAL]
case w
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x : ↑(image f)
⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ AddMonoidHom.range f)) = ↑(ι f) x
[PROOFSTEP]
rw [F'.fac, (Classical.indefiniteDescription _ x.2).2]
[GOAL]
case w
G H : AddCommGroupCat
f : G ⟶ H
F' : MonoFactorisation f
x : ↑(image f)
⊢ ↑x = ↑(ι f) x
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Images", "llama_tokens": 4541} |
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b : R
s : S
inst✝³ : SMul R M
inst✝² : SMul R S
inst✝¹ : SMul S M
inst✝ : IsScalarTower R S M
a : R
ab : IsSMulRegular M (a • s)
c d : M
cd : ((fun m => a • m) ∘ fun x => s • x) c = ((fun m => a • m) ∘ fun x => s • x) d
⊢ c = d
[PROOFSTEP]
dsimp only [Function.comp] at cd
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b : R
s : S
inst✝³ : SMul R M
inst✝² : SMul R S
inst✝¹ : SMul S M
inst✝ : IsScalarTower R S M
a : R
ab : IsSMulRegular M (a • s)
c d : M
cd : a • s • c = a • s • d
⊢ c = d
[PROOFSTEP]
rw [← smul_assoc, ← smul_assoc] at cd
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b : R
s : S
inst✝³ : SMul R M
inst✝² : SMul R S
inst✝¹ : SMul S M
inst✝ : IsScalarTower R S M
a : R
ab : IsSMulRegular M (a • s)
c d : M
cd✝¹ : a • s • c = a • s • d
cd✝ : (a • s) • c = a • s • d
cd : (a • s) • c = (a • s) • d
⊢ c = d
[PROOFSTEP]
exact ab cd
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁵ : SMul R M
inst✝⁴ : SMul R S
inst✝³ : SMul S M
inst✝² : IsScalarTower R S M
inst✝¹ : Mul R
inst✝ : IsScalarTower R R M
ab : IsSMulRegular M (a * b)
⊢ IsSMulRegular M b
[PROOFSTEP]
rw [← smul_eq_mul] at ab
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁵ : SMul R M
inst✝⁴ : SMul R S
inst✝³ : SMul S M
inst✝² : IsScalarTower R S M
inst✝¹ : Mul R
inst✝ : IsScalarTower R R M
ab : IsSMulRegular M (a • b)
⊢ IsSMulRegular M b
[PROOFSTEP]
exact ab.of_smul _
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁵ : SMul R M
inst✝⁴ : SMul R S
inst✝³ : SMul S M
inst✝² : IsScalarTower R S M
inst✝¹ : Mul R
inst✝ : IsScalarTower R R M
⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
[PROOFSTEP]
refine' ⟨_, _⟩
[GOAL]
case refine'_1
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁵ : SMul R M
inst✝⁴ : SMul R S
inst✝³ : SMul S M
inst✝² : IsScalarTower R S M
inst✝¹ : Mul R
inst✝ : IsScalarTower R R M
⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) → IsSMulRegular M a ∧ IsSMulRegular M b
[PROOFSTEP]
rintro ⟨ab, ba⟩
[GOAL]
case refine'_1.intro
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁵ : SMul R M
inst✝⁴ : SMul R S
inst✝³ : SMul S M
inst✝² : IsScalarTower R S M
inst✝¹ : Mul R
inst✝ : IsScalarTower R R M
ab : IsSMulRegular M (a * b)
ba : IsSMulRegular M (b * a)
⊢ IsSMulRegular M a ∧ IsSMulRegular M b
[PROOFSTEP]
refine' ⟨ba.of_mul, ab.of_mul⟩
[GOAL]
case refine'_2
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁵ : SMul R M
inst✝⁴ : SMul R S
inst✝³ : SMul S M
inst✝² : IsScalarTower R S M
inst✝¹ : Mul R
inst✝ : IsScalarTower R R M
⊢ IsSMulRegular M a ∧ IsSMulRegular M b → IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a)
[PROOFSTEP]
rintro ⟨ha, hb⟩
[GOAL]
case refine'_2.intro
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁵ : SMul R M
inst✝⁴ : SMul R S
inst✝³ : SMul S M
inst✝² : IsScalarTower R S M
inst✝¹ : Mul R
inst✝ : IsScalarTower R R M
ha : IsSMulRegular M a
hb : IsSMulRegular M b
⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a)
[PROOFSTEP]
exact ⟨ha.mul hb, hb.mul ha⟩
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b✝ : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
a b : M
ab : (fun x => 1 • x) a = (fun x => 1 • x) b
⊢ a = b
[PROOFSTEP]
dsimp only [Function.comp] at ab
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b✝ : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
a b : M
ab : 1 • a = 1 • b
⊢ a = b
[PROOFSTEP]
rw [one_smul, one_smul] at ab
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b✝ : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
a b : M
ab : a = b
⊢ a = b
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
h : a * b = 1
⊢ IsSMulRegular M (?m.10326 h * b)
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
h : a * b = 1
⊢ IsSMulRegular M 1
[PROOFSTEP]
exact one M
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
n : ℕ
ra : IsSMulRegular M a
⊢ IsSMulRegular M (a ^ n)
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
ra : IsSMulRegular M a
⊢ IsSMulRegular M (a ^ Nat.zero)
[PROOFSTEP]
rw [pow_zero]
[GOAL]
case zero
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
ra : IsSMulRegular M a
⊢ IsSMulRegular M 1
[PROOFSTEP]
simp only [one]
[GOAL]
case succ
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
ra : IsSMulRegular M a
n : ℕ
hn : IsSMulRegular M (a ^ n)
⊢ IsSMulRegular M (a ^ Nat.succ n)
[PROOFSTEP]
rw [pow_succ]
[GOAL]
case succ
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
ra : IsSMulRegular M a
n : ℕ
hn : IsSMulRegular M (a ^ n)
⊢ IsSMulRegular M (a * a ^ n)
[PROOFSTEP]
exact (ra.smul_iff (a ^ n)).mpr hn
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
n : ℕ
n0 : 0 < n
⊢ IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a
[PROOFSTEP]
refine' ⟨_, pow n⟩
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
n : ℕ
n0 : 0 < n
⊢ IsSMulRegular M (a ^ n) → IsSMulRegular M a
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
n : ℕ
n0 : 0 < n
⊢ IsSMulRegular M (a ^ Nat.pred n • a) → IsSMulRegular M a
[PROOFSTEP]
exact of_smul _
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁴ : Monoid S
inst✝³ : SMul R M
inst✝² : SMul R S
inst✝¹ : MulAction S M
inst✝ : IsScalarTower R S M
h : a • s = 1
⊢ IsSMulRegular M (a • s)
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁴ : Monoid S
inst✝³ : SMul R M
inst✝² : SMul R S
inst✝¹ : MulAction S M
inst✝ : IsScalarTower R S M
h : a • s = 1
⊢ IsSMulRegular M 1
[PROOFSTEP]
exact one M
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b✝ : R
s : S
inst✝⁶ : MonoidWithZero R
inst✝⁵ : MonoidWithZero S
inst✝⁴ : Zero M
inst✝³ : MulActionWithZero R M
inst✝² : MulActionWithZero R S
inst✝¹ : MulActionWithZero S M
inst✝ : IsScalarTower R S M
h : IsSMulRegular M 0
a b : M
⊢ (fun x => 0 • x) a = (fun x => 0 • x) b
[PROOFSTEP]
dsimp only [Function.comp]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b✝ : R
s : S
inst✝⁶ : MonoidWithZero R
inst✝⁵ : MonoidWithZero S
inst✝⁴ : Zero M
inst✝³ : MulActionWithZero R M
inst✝² : MulActionWithZero R S
inst✝¹ : MulActionWithZero S M
inst✝ : IsScalarTower R S M
h : IsSMulRegular M 0
a b : M
⊢ 0 • a = 0 • b
[PROOFSTEP]
repeat' rw [MulActionWithZero.zero_smul]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b✝ : R
s : S
inst✝⁶ : MonoidWithZero R
inst✝⁵ : MonoidWithZero S
inst✝⁴ : Zero M
inst✝³ : MulActionWithZero R M
inst✝² : MulActionWithZero R S
inst✝¹ : MulActionWithZero S M
inst✝ : IsScalarTower R S M
h : IsSMulRegular M 0
a b : M
⊢ 0 • a = 0 • b
[PROOFSTEP]
rw [MulActionWithZero.zero_smul]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a✝ b✝ : R
s : S
inst✝⁶ : MonoidWithZero R
inst✝⁵ : MonoidWithZero S
inst✝⁴ : Zero M
inst✝³ : MulActionWithZero R M
inst✝² : MulActionWithZero R S
inst✝¹ : MulActionWithZero S M
inst✝ : IsScalarTower R S M
h : IsSMulRegular M 0
a b : M
⊢ 0 = 0 • b
[PROOFSTEP]
rw [MulActionWithZero.zero_smul]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁶ : MonoidWithZero R
inst✝⁵ : MonoidWithZero S
inst✝⁴ : Zero M
inst✝³ : MulActionWithZero R M
inst✝² : MulActionWithZero R S
inst✝¹ : MulActionWithZero S M
inst✝ : IsScalarTower R S M
⊢ ¬IsSMulRegular M 0 ↔ Nontrivial M
[PROOFSTEP]
rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁶ : MonoidWithZero R
inst✝⁵ : MonoidWithZero S
inst✝⁴ : Zero M
inst✝³ : MulActionWithZero R M
inst✝² : MulActionWithZero R S
inst✝¹ : MulActionWithZero S M
inst✝ : IsScalarTower R S M
⊢ (¬∃ x y, x ≠ y) ↔ ∀ (x y : M), x = y
[PROOFSTEP]
push_neg
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝⁶ : MonoidWithZero R
inst✝⁵ : MonoidWithZero S
inst✝⁴ : Zero M
inst✝³ : MulActionWithZero R M
inst✝² : MulActionWithZero R S
inst✝¹ : MulActionWithZero S M
inst✝ : IsScalarTower R S M
⊢ (∀ (x y : M), x = y) ↔ ∀ (x y : M), x = y
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝² : CommSemigroup R
inst✝¹ : SMul R M
inst✝ : IsScalarTower R R M
⊢ IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
[PROOFSTEP]
rw [← mul_and_mul_iff]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝² : CommSemigroup R
inst✝¹ : SMul R M
inst✝ : IsScalarTower R R M
⊢ IsSMulRegular M (a * b) ↔ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a)
[PROOFSTEP]
exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝² : CommSemigroup R
inst✝¹ : SMul R M
inst✝ : IsScalarTower R R M
ab : IsSMulRegular M (a * b)
⊢ IsSMulRegular M (b * a)
[PROOFSTEP]
rwa [mul_comm]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
G : Type u_4
inst✝¹ : Group G
inst✝ : MulAction G R
g : G
⊢ IsSMulRegular R g
[PROOFSTEP]
intro x y h
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
G : Type u_4
inst✝¹ : Group G
inst✝ : MulAction G R
g : G
x y : R
h : (fun x => g • x) x = (fun x => g • x) y
⊢ x = y
[PROOFSTEP]
convert congr_arg (g⁻¹ • ·) h using 1
[GOAL]
case h.e'_2
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
G : Type u_4
inst✝¹ : Group G
inst✝ : MulAction G R
g : G
x y : R
h : (fun x => g • x) x = (fun x => g • x) y
⊢ x = g⁻¹ • (fun x => g • x) x
[PROOFSTEP]
simp [← smul_assoc]
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
G : Type u_4
inst✝¹ : Group G
inst✝ : MulAction G R
g : G
x y : R
h : (fun x => g • x) x = (fun x => g • x) y
⊢ y = g⁻¹ • (fun x => g • x) y
[PROOFSTEP]
simp [← smul_assoc]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
a b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
ua : IsUnit a
⊢ IsSMulRegular M a
[PROOFSTEP]
rcases ua with ⟨a, rfl⟩
[GOAL]
case intro
R : Type u_1
S : Type u_2
M : Type u_3
b : R
s : S
inst✝¹ : Monoid R
inst✝ : MulAction R M
a : Rˣ
⊢ IsSMulRegular M ↑a
[PROOFSTEP]
exact a.isSMulRegular M
| {"mathlib_filename": "Mathlib.Algebra.Regular.SMul", "llama_tokens": 5539} |
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x y : (j : J) × ↑(F.obj j)
h : Types.FilteredColimit.Rel (F ⋙ forget GroupCat) x y
⊢ colimitInvAux F x = colimitInvAux F y
[PROOFSTEP]
apply G.mk_eq
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x y : (j : J) × ↑(F.obj j)
h : Types.FilteredColimit.Rel (F ⋙ forget GroupCat) x y
⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := x.snd⁻¹ }.snd = ↑(F.map g) { fst := y.fst, snd := y.snd⁻¹ }.snd
[PROOFSTEP]
obtain ⟨k, f, g, hfg⟩ := h
[GOAL]
case h.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x y : (j : J) × ↑(F.obj j)
k : J
f : x.fst ⟶ k
g : y.fst ⟶ k
hfg : (F ⋙ forget GroupCat).map f x.snd = (F ⋙ forget GroupCat).map g y.snd
⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := x.snd⁻¹ }.snd = ↑(F.map g) { fst := y.fst, snd := y.snd⁻¹ }.snd
[PROOFSTEP]
use k, f, g
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x y : (j : J) × ↑(F.obj j)
k : J
f : x.fst ⟶ k
g : y.fst ⟶ k
hfg : (F ⋙ forget GroupCat).map f x.snd = (F ⋙ forget GroupCat).map g y.snd
⊢ ↑(F.map f) { fst := x.fst, snd := x.snd⁻¹ }.snd = ↑(F.map g) { fst := y.fst, snd := y.snd⁻¹ }.snd
[PROOFSTEP]
rw [MonoidHom.map_inv, MonoidHom.map_inv, inv_inj]
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x y : (j : J) × ↑(F.obj j)
k : J
f : x.fst ⟶ k
g : y.fst ⟶ k
hfg : (F ⋙ forget GroupCat).map f x.snd = (F ⋙ forget GroupCat).map g y.snd
⊢ ↑(F.map f) x.snd = ↑(F.map g) y.snd
[PROOFSTEP]
exact hfg
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x : ↑(G F)
⊢ ↑(G F)
[PROOFSTEP]
refine' Quot.lift (colimitInvAux.{v, u} F) _ x
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x : ↑(G F)
⊢ ∀ (a b : (j : J) × ↑(F.obj j)),
Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) a b → colimitInvAux F a = colimitInvAux F b
[PROOFSTEP]
intro x y h
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x✝ : ↑(G F)
x y : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) x y
⊢ colimitInvAux F x = colimitInvAux F y
[PROOFSTEP]
apply colimitInvAux_eq_of_rel
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x✝ : ↑(G F)
x y : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) x y
⊢ Types.FilteredColimit.Rel (F ⋙ forget GroupCat) x y
[PROOFSTEP]
apply Types.FilteredColimit.rel_of_quot_rel
[GOAL]
case h.a
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
x✝ : ↑(G F)
x y : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat) x y
⊢ Types.Quot.Rel (F ⋙ forget GroupCat) x y
[PROOFSTEP]
exact h
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
src✝¹ : Inv ↑(G F) := colimitInv F
src✝ : Monoid ↑(G F) := (G F).str
x : ↑(G F)
⊢ x⁻¹ * x = 1
[PROOFSTEP]
refine Quot.inductionOn x ?_
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
src✝¹ : Inv ↑(G F) := colimitInv F
src✝ : Monoid ↑(G F) := (G F).str
x : ↑(G F)
⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j),
(Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a)⁻¹ *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a =
1
[PROOFSTEP]
clear x
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
src✝¹ : Inv ↑(G F) := colimitInv F
src✝ : Monoid ↑(G F) := (G F).str
⊢ ∀ (a : (j : J) × ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j),
(Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a)⁻¹ *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) a =
1
[PROOFSTEP]
intro x
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
src✝¹ : Inv ↑(G F) := colimitInv F
src✝ : Monoid ↑(G F) := (G F).str
x : (j : J) × ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j
⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) x)⁻¹ *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) x =
1
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
src✝¹ : Inv ↑(G F) := colimitInv F
src✝ : Monoid ↑(G F) := (G F).str
j : J
x : ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j
⊢ (Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) { fst := j, snd := x })⁻¹ *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat)) { fst := j, snd := x } =
1
[PROOFSTEP]
erw [colimit_inv_mk_eq, colimit_mul_mk_eq (F ⋙ forget₂ GroupCat MonCat.{max v u}) ⟨j, _⟩ ⟨j, _⟩ j (𝟙 j) (𝟙 j),
colimit_one_eq (F ⋙ forget₂ GroupCat MonCat.{max v u}) j]
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
src✝¹ : Inv ↑(G F) := colimitInv F
src✝ : Monoid ↑(G F) := (G F).str
j : J
x : ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j
⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat)
{ fst := j,
snd :=
↑((F ⋙ forget₂ GroupCat MonCat).map (𝟙 j)) { fst := j, snd := { fst := j, snd := x }.snd⁻¹ }.snd *
↑((F ⋙ forget₂ GroupCat MonCat).map (𝟙 j)) { fst := j, snd := x }.snd } =
MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat) { fst := j, snd := 1 }
[PROOFSTEP]
dsimp
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ GroupCat
src✝¹ : Inv ↑(G F) := colimitInv F
src✝ : Monoid ↑(G F) := (G F).str
j : J
x : ((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).obj j
⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat)
{ fst := j,
snd := ↑((forget₂ GroupCat MonCat).map (F.map (𝟙 j))) x⁻¹ * ↑((forget₂ GroupCat MonCat).map (F.map (𝟙 j))) x } =
MonCat.FilteredColimits.M.mk (F ⋙ forget₂ GroupCat MonCat) { fst := j, snd := 1 }
[PROOFSTEP]
erw [CategoryTheory.Functor.map_id, mul_left_inv]
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.FilteredColimits", "llama_tokens": 3107} |
[GOAL]
G H : AddCommGroupCat
⊢ ∀ ⦃X Y : Discrete WalkingPair⦄ (f : X ⟶ Y),
((Functor.const (Discrete WalkingPair)).obj (of (↑G × ↑H))).map f ≫
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H))
Y =
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H)) X ≫
(pair G H).map f
[PROOFSTEP]
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟨⟩⟩⟩
[GOAL]
case mk.left.mk.left.up.up.refl
G H : AddCommGroupCat
⊢ ((Functor.const (Discrete WalkingPair)).obj (of (↑G × ↑H))).map
{ down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } } ≫
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H))
{ as := WalkingPair.left } =
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H))
{ as := WalkingPair.left } ≫
(pair G H).map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } }
[PROOFSTEP]
rfl
[GOAL]
case mk.right.mk.right.up.up.refl
G H : AddCommGroupCat
⊢ ((Functor.const (Discrete WalkingPair)).obj (of (↑G × ↑H))).map
{ down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } } ≫
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H))
{ as := WalkingPair.right } =
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H))
{ as := WalkingPair.right } ≫
(pair G H).map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } }
[PROOFSTEP]
rfl
[GOAL]
G H : AddCommGroupCat
⊢ ∀ (s : Cone (pair G H)) (j : Discrete WalkingPair),
(fun s =>
AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left })
(NatTrans.app s.π { as := WalkingPair.right }))
s ≫
NatTrans.app
{ pt := of (↑G × ↑H),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j =>
WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π
j =
NatTrans.app s.π j
[PROOFSTEP]
rintro s (⟨⟩ | ⟨⟩)
[GOAL]
case mk.left
G H : AddCommGroupCat
s : Cone (pair G H)
⊢ (fun s =>
AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left })
(NatTrans.app s.π { as := WalkingPair.right }))
s ≫
NatTrans.app
{ pt := of (↑G × ↑H),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π
{ as := WalkingPair.left } =
NatTrans.app s.π { as := WalkingPair.left }
[PROOFSTEP]
rfl
[GOAL]
case mk.right
G H : AddCommGroupCat
s : Cone (pair G H)
⊢ (fun s =>
AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left })
(NatTrans.app s.π { as := WalkingPair.right }))
s ≫
NatTrans.app
{ pt := of (↑G × ↑H),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π
{ as := WalkingPair.right } =
NatTrans.app s.π { as := WalkingPair.right }
[PROOFSTEP]
rfl
[GOAL]
G H : AddCommGroupCat
s : Cone (pair G H)
m :
s.pt ⟶
{ pt := of (↑G × ↑H),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.pt
w :
∀ (j : Discrete WalkingPair),
m ≫
NatTrans.app
{ pt := of (↑G × ↑H),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j =>
WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π
j =
NatTrans.app s.π j
⊢ m =
(fun s =>
AddMonoidHom.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right }))
s
[PROOFSTEP]
simp_rw [← w ⟨WalkingPair.left⟩, ← w ⟨WalkingPair.right⟩]
[GOAL]
G H : AddCommGroupCat
s : Cone (pair G H)
m :
s.pt ⟶
{ pt := of (↑G × ↑H),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.pt
w :
∀ (j : Discrete WalkingPair),
m ≫
NatTrans.app
{ pt := of (↑G × ↑H),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j =>
WalkingPair.casesOn j (AddMonoidHom.fst ↑G ↑H) (AddMonoidHom.snd ↑G ↑H) }.π
j =
NatTrans.app s.π j
⊢ m = AddMonoidHom.prod (m ≫ AddMonoidHom.fst ↑G ↑H) (m ≫ AddMonoidHom.snd ↑G ↑H)
[PROOFSTEP]
rfl
[GOAL]
J : Type w
f : J → AddCommGroupCat
s : Fan f
⊢ (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0
[PROOFSTEP]
simp only [Functor.const_obj_obj, map_zero]
[GOAL]
J : Type w
f : J → AddCommGroupCat
s : Fan f
⊢ (fun j => 0) = 0
[PROOFSTEP]
rfl
[GOAL]
J : Type w
f : J → AddCommGroupCat
s : Fan f
x y : ↑s.pt
⊢ ZeroHom.toFun
{ toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x,
map_zero' := (_ : (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0) }
(x + y) =
ZeroHom.toFun
{ toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x,
map_zero' := (_ : (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0) }
x +
ZeroHom.toFun
{ toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x,
map_zero' := (_ : (fun x j => ↑(NatTrans.app s.π { as := j }) x) 0 = 0) }
y
[PROOFSTEP]
simp only [Functor.const_obj_obj, map_add]
[GOAL]
J : Type w
f : J → AddCommGroupCat
s : Fan f
x y : ↑s.pt
⊢ (fun j => ↑(NatTrans.app s.π { as := j }) x + ↑(NatTrans.app s.π { as := j }) y) =
(fun j => ↑(NatTrans.app s.π { as := j }) x) + fun j => ↑(NatTrans.app s.π { as := j }) y
[PROOFSTEP]
rfl
[GOAL]
J : Type w
f : J → AddCommGroupCat
s : Cone (Discrete.functor f)
m :
s.pt ⟶ { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.pt
w :
∀ (j : Discrete J),
m ≫
NatTrans.app
{ pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.π
j =
NatTrans.app s.π j
⊢ m = lift f s
[PROOFSTEP]
ext x
[GOAL]
case w
J : Type w
f : J → AddCommGroupCat
s : Cone (Discrete.functor f)
m :
s.pt ⟶ { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.pt
w :
∀ (j : Discrete J),
m ≫
NatTrans.app
{ pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.π
j =
NatTrans.app s.π j
x : ↑s.pt
⊢ ↑m x = ↑(lift f s) x
[PROOFSTEP]
funext j
[GOAL]
case w.h
J : Type w
f : J → AddCommGroupCat
s : Cone (Discrete.functor f)
m :
s.pt ⟶ { pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.pt
w :
∀ (j : Discrete J),
m ≫
NatTrans.app
{ pt := of ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => Pi.evalAddMonoidHom (fun j => ↑(f j)) j.as }.π
j =
NatTrans.app s.π j
x : ↑s.pt
j : J
⊢ ↑m x j = ↑(lift f s) x j
[PROOFSTEP]
exact congr_arg (fun g : s.pt ⟶ f j => (g : s.pt → f j) x) (w ⟨j⟩)
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Biproducts", "llama_tokens": 3292} |
[GOAL]
A B : ModuleCat ℤ
f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B
n : ℤ
x : ↑A
⊢ AddHom.toFun
{ toFun := ↑f,
map_add' :=
(_ :
∀ (a b : ↑A),
↑(let_fun this := f;
this)
(a + b) =
↑(let_fun this := f;
this)
a +
↑(let_fun this := f;
this)
b) }
(n • x) =
↑(RingHom.id ℤ) n •
AddHom.toFun
{ toFun := ↑f,
map_add' :=
(_ :
∀ (a b : ↑A),
↑(let_fun this := f;
this)
(a + b) =
↑(let_fun this := f;
this)
a +
↑(let_fun this := f;
this)
b) }
x
[PROOFSTEP]
convert AddMonoidHom.map_zsmul (show A.carrier →+ B.carrier from f) x n
[GOAL]
case h.e'_2.h.e'_1.h.e'_4.h.e'_3
A B : ModuleCat ℤ
f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B
n : ℤ
x : ↑A
⊢ SMulZeroClass.toSMul = SubNegMonoid.SMulInt
[PROOFSTEP]
ext
[GOAL]
case h.e'_3.h.e'_4.h.e'_3
A B : ModuleCat ℤ
f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B
n : ℤ
x : ↑A
⊢ SMulZeroClass.toSMul = SubNegMonoid.SMulInt
[PROOFSTEP]
ext
[GOAL]
case h.e'_2.h.e'_1.h.e'_4.h.e'_3.smul.h.h
A B : ModuleCat ℤ
f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B
n : ℤ
x : ↑A
x✝¹ : ℤ
x✝ : ↑A
⊢ SMul.smul x✝¹ x✝ = SMul.smul x✝¹ x✝
[PROOFSTEP]
apply int_smul_eq_zsmul
[GOAL]
case h.e'_3.h.e'_4.h.e'_3.smul.h.h
A B : ModuleCat ℤ
f : (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj A ⟶ (forget₂ (ModuleCat ℤ) AddCommGroupCat).obj B
n : ℤ
x : ↑A
x✝¹ : (fun x => ℤ) n
x✝ : ↑B
⊢ SMul.smul x✝¹ x✝ = SMul.smul x✝¹ x✝
[PROOFSTEP]
apply int_smul_eq_zsmul
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.ZModuleEquivalence", "llama_tokens": 898} |
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
inst✝ : (i : I) → Distrib (f i)
⊢ ∀ (a b c : (i : I) → f i), a * (b + c) = a * b + a * c
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
inst✝ : (i : I) → Distrib (f i)
a✝ b✝ c✝ : (i : I) → f i
⊢ a✝ * (b✝ + c✝) = a✝ * b✝ + a✝ * c✝
[PROOFSTEP]
ext
[GOAL]
case h
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
inst✝ : (i : I) → Distrib (f i)
a✝ b✝ c✝ : (i : I) → f i
x✝ : I
⊢ (a✝ * (b✝ + c✝)) x✝ = (a✝ * b✝ + a✝ * c✝) x✝
[PROOFSTEP]
exact mul_add _ _ _
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
inst✝ : (i : I) → Distrib (f i)
⊢ ∀ (a b c : (i : I) → f i), (a + b) * c = a * c + b * c
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
inst✝ : (i : I) → Distrib (f i)
a✝ b✝ c✝ : (i : I) → f i
⊢ (a✝ + b✝) * c✝ = a✝ * c✝ + b✝ * c✝
[PROOFSTEP]
ext
[GOAL]
case h
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
inst✝ : (i : I) → Distrib (f i)
a✝ b✝ c✝ : (i : I) → f i
x✝ : I
⊢ ((a✝ + b✝) * c✝) x✝ = (a✝ * c✝ + b✝ * c✝) x✝
[PROOFSTEP]
exact add_mul _ _ _
| {"mathlib_filename": "Mathlib.Algebra.Ring.Pi", "llama_tokens": 724} |
[GOAL]
⊢ ConcreteCategory BoolRingCat
[PROOFSTEP]
dsimp [BoolRingCat]
[GOAL]
⊢ ConcreteCategory (Bundled BooleanRing)
[PROOFSTEP]
infer_instance
-- Porting note: disabled `simps`
-- Invalid simp lemma BoolRingCat.hasForgetToCommRing_forget₂_obj_str_add.
-- The given definition is not a constructor application:
-- inferInstance.1
-- @[simps]
[GOAL]
α β : BoolRingCat
e : ↑α ≃+* ↑β
⊢ ↑e ≫ ↑(RingEquiv.symm e) = 𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : BoolRingCat
e : ↑α ≃+* ↑β
x✝ : (forget BoolRingCat).obj α
⊢ ↑(↑e ≫ ↑(RingEquiv.symm e)) x✝ = ↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : BoolRingCat
e : ↑α ≃+* ↑β
⊢ ↑(RingEquiv.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : BoolRingCat
e : ↑α ≃+* ↑β
x✝ : (forget BoolRingCat).obj β
⊢ ↑(↑(RingEquiv.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Algebra.Category.BoolRingCat", "llama_tokens": 467} |
[GOAL]
R : Type u
inst✝² : Ring R
X Y : ModuleCat R
f : X ⟶ Y
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
hf : LinearMap.ker f = ⊥
⊢ Function.Injective ↑f
[PROOFSTEP]
convert LinearMap.ker_eq_bot.1 hf
[GOAL]
R : Type u
inst✝² : Ring R
X Y : ModuleCat R
f : X ⟶ Y
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ Mono f ↔ Function.Injective ↑f
[PROOFSTEP]
rw [mono_iff_ker_eq_bot, LinearMap.ker_eq_bot]
[GOAL]
R : Type u
inst✝² : Ring R
X Y : ModuleCat R
f : X ⟶ Y
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
⊢ Epi f ↔ Function.Surjective ↑f
[PROOFSTEP]
rw [epi_iff_range_eq_top, LinearMap.range_eq_top]
[GOAL]
R : Type u
inst✝² : Ring R
X Y : ModuleCat R
f✝ : X ⟶ Y
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
X✝ Y✝ : ModuleCat R
f : X✝ ⟶ Y✝
hf : Epi f
⊢ Epi ((forget (ModuleCat R)).map f)
[PROOFSTEP]
erw [CategoryTheory.epi_iff_surjective, ← epi_iff_surjective]
[GOAL]
R : Type u
inst✝² : Ring R
X Y : ModuleCat R
f✝ : X ⟶ Y
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
X✝ Y✝ : ModuleCat R
f : X✝ ⟶ Y✝
hf : Epi f
⊢ Epi f
[PROOFSTEP]
exact hf
[GOAL]
R : Type u
inst✝² : Ring R
X Y : ModuleCat R
f✝ : X ⟶ Y
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
X✝ Y✝ : ModuleCat R
f : X✝ ⟶ Y✝
hf : Mono f
⊢ Mono ((forget (ModuleCat R)).map f)
[PROOFSTEP]
erw [CategoryTheory.mono_iff_injective, ← mono_iff_injective]
[GOAL]
R : Type u
inst✝² : Ring R
X Y : ModuleCat R
f✝ : X ⟶ Y
M : Type v
inst✝¹ : AddCommGroup M
inst✝ : Module R M
X✝ Y✝ : ModuleCat R
f : X✝ ⟶ Y✝
hf : Mono f
⊢ Mono f
[PROOFSTEP]
exact hf
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.EpiMono", "llama_tokens": 810} |
[GOAL]
R : Type u
inst✝ : Ring R
ι : Type v
Z : ι → ModuleCatMax R
s : Cone (Discrete.functor Z)
j : Discrete ι
⊢ (fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s ≫ NatTrans.app (productCone Z).π j =
NatTrans.app s.π j
[PROOFSTEP]
cases j
[GOAL]
case mk
R : Type u
inst✝ : Ring R
ι : Type v
Z : ι → ModuleCatMax R
s : Cone (Discrete.functor Z)
as✝ : ι
⊢ (fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s ≫ NatTrans.app (productCone Z).π { as := as✝ } =
NatTrans.app s.π { as := as✝ }
[PROOFSTEP]
aesop
[GOAL]
R : Type u
inst✝ : Ring R
ι : Type v
Z : ι → ModuleCatMax R
s : Cone (Discrete.functor Z)
m : s.pt ⟶ (productCone Z).pt
w : ∀ (j : Discrete ι), m ≫ NatTrans.app (productCone Z).π j = NatTrans.app s.π j
⊢ m = (fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝ : Ring R
ι : Type v
Z : ι → ModuleCatMax R
s : Cone (Discrete.functor Z)
m : s.pt ⟶ (productCone Z).pt
w : ∀ (j : Discrete ι), m ≫ NatTrans.app (productCone Z).π j = NatTrans.app s.π j
x : ↑s.pt
⊢ ↑m x = ↑((fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s) x
[PROOFSTEP]
funext i
[GOAL]
case h.h
R : Type u
inst✝ : Ring R
ι : Type v
Z : ι → ModuleCatMax R
s : Cone (Discrete.functor Z)
m : s.pt ⟶ (productCone Z).pt
w : ∀ (j : Discrete ι), m ≫ NatTrans.app (productCone Z).π j = NatTrans.app s.π j
x : ↑s.pt
i : ι
⊢ ↑m x i = ↑((fun s => LinearMap.pi fun j => NatTrans.app s.π { as := j }) s) x i
[PROOFSTEP]
exact LinearMap.congr_fun (w ⟨i⟩) x
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Products", "llama_tokens": 715} |
[GOAL]
G : GroupCat
inst✝ : Subsingleton ↑G
⊢ IsZero G
[PROOFSTEP]
refine' ⟨fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩⟩
[GOAL]
case refine'_1
G : GroupCat
inst✝ : Subsingleton ↑G
X : GroupCat
f : G ⟶ X
⊢ f = default
[PROOFSTEP]
ext x
[GOAL]
case refine'_1.w
G : GroupCat
inst✝ : Subsingleton ↑G
X : GroupCat
f : G ⟶ X
x : ↑G
⊢ ↑f x = ↑default x
[PROOFSTEP]
have : x = 1 := Subsingleton.elim _ _
[GOAL]
case refine'_1.w
G : GroupCat
inst✝ : Subsingleton ↑G
X : GroupCat
f : G ⟶ X
x : ↑G
this : x = 1
⊢ ↑f x = ↑default x
[PROOFSTEP]
rw [this, map_one, map_one]
[GOAL]
case refine'_2
G : GroupCat
inst✝ : Subsingleton ↑G
X : GroupCat
f : X ⟶ G
⊢ f = default
[PROOFSTEP]
ext
[GOAL]
case refine'_2.w
G : GroupCat
inst✝ : Subsingleton ↑G
X : GroupCat
f : X ⟶ G
x✝ : ↑X
⊢ ↑f x✝ = ↑default x✝
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
G : CommGroupCat
inst✝ : Subsingleton ↑G
⊢ IsZero G
[PROOFSTEP]
refine' ⟨fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨1⟩, fun f => _⟩⟩⟩
[GOAL]
case refine'_1
G : CommGroupCat
inst✝ : Subsingleton ↑G
X : CommGroupCat
f : G ⟶ X
⊢ f = default
[PROOFSTEP]
ext x
[GOAL]
case refine'_1.w
G : CommGroupCat
inst✝ : Subsingleton ↑G
X : CommGroupCat
f : G ⟶ X
x : ↑G
⊢ ↑f x = ↑default x
[PROOFSTEP]
have : x = 1 := Subsingleton.elim _ _
[GOAL]
case refine'_1.w
G : CommGroupCat
inst✝ : Subsingleton ↑G
X : CommGroupCat
f : G ⟶ X
x : ↑G
this : x = 1
⊢ ↑f x = ↑default x
[PROOFSTEP]
rw [this, map_one, map_one]
[GOAL]
case refine'_2
G : CommGroupCat
inst✝ : Subsingleton ↑G
X : CommGroupCat
f : X ⟶ G
⊢ f = default
[PROOFSTEP]
ext
[GOAL]
case refine'_2.w
G : CommGroupCat
inst✝ : Subsingleton ↑G
X : CommGroupCat
f : X ⟶ G
x✝ : ↑X
⊢ ↑f x✝ = ↑default x✝
[PROOFSTEP]
apply Subsingleton.elim
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Zero", "llama_tokens": 879} |
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j : J
⊢ coconeFun F j 0 = 0
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j : J
⊢ Setoid.r (Prequotient.of j 0) zero
[PROOFSTEP]
apply Relation.zero
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j : J
⊢ ∀ (x y : ↑(F.obj j)),
ZeroHom.toFun
{ toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) }
(x + y) =
ZeroHom.toFun
{ toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) }
x +
ZeroHom.toFun
{ toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } y
[PROOFSTEP]
intros
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j : J
x✝ y✝ : ↑(F.obj j)
⊢ ZeroHom.toFun
{ toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) }
(x✝ + y✝) =
ZeroHom.toFun
{ toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) }
x✝ +
ZeroHom.toFun
{ toFun := coconeFun F j, map_zero' := (_ : Quot.mk Setoid.r (Prequotient.of j 0) = Quot.mk Setoid.r zero) } y✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j : J
x✝ y✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j (x✝ + y✝)) (add (Prequotient.of j x✝) (Prequotient.of j y✝))
[PROOFSTEP]
apply Relation.add
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j j' : J
f : j ⟶ j'
⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j
[PROOFSTEP]
ext
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case w.a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝)
[PROOFSTEP]
apply Relation.map
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x
[PROOFSTEP]
rw [← cocone_naturality F f]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
⊢ ColimitType F → ↑s.pt
[PROOFSTEP]
fapply Quot.lift
[GOAL]
case f
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
⊢ Prequotient F → ↑s.pt
[PROOFSTEP]
exact descFunLift F s
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b
[PROOFSTEP]
intro x y r
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
r : Setoid.r x y
⊢ descFunLift F s x = descFunLift F s y
[PROOFSTEP]
induction r with
| refl => rfl
| symm _ _ _ r_ih => exact r_ih.symm
| trans _ _ _ _ _ r_ih_h r_ih_k => exact Eq.trans r_ih_h r_ih_k
| map j j' f x => simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x
| zero => simp
| neg => simp
| add => simp
| neg_1 _ _ _ r_ih => dsimp; rw [r_ih]
| add_1 _ _ _ _ r_ih => dsimp; rw [r_ih]
| add_2 _ _ _ _ r_ih => dsimp; rw [r_ih]
| zero_add => dsimp; rw [zero_add]
| add_zero => dsimp; rw [add_zero]
| add_left_neg => dsimp; rw [add_left_neg]
| add_comm => dsimp; rw [add_comm]
| add_assoc => dsimp; rw [add_assoc]
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
r : Setoid.r x y
⊢ descFunLift F s x = descFunLift F s y
[PROOFSTEP]
induction r with
| refl => rfl
| symm _ _ _ r_ih => exact r_ih.symm
| trans _ _ _ _ _ r_ih_h r_ih_k => exact Eq.trans r_ih_h r_ih_k
| map j j' f x => simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x
| zero => simp
| neg => simp
| add => simp
| neg_1 _ _ _ r_ih => dsimp; rw [r_ih]
| add_1 _ _ _ _ r_ih => dsimp; rw [r_ih]
| add_2 _ _ _ _ r_ih => dsimp; rw [r_ih]
| zero_add => dsimp; rw [zero_add]
| add_zero => dsimp; rw [add_zero]
| add_left_neg => dsimp; rw [add_left_neg]
| add_comm => dsimp; rw [add_comm]
| add_assoc => dsimp; rw [add_assoc]
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
| refl => rfl
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
rfl
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
r_ih : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
| symm _ _ _ r_ih => exact r_ih.symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
r_ih : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
exact r_ih.symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
r_ih_h : descFunLift F s x✝² = descFunLift F s y✝
r_ih_k : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
| trans _ _ _ _ _ r_ih_h r_ih_k => exact Eq.trans r_ih_h r_ih_k
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
r_ih_h : descFunLift F s x✝² = descFunLift F s y✝
r_ih_k : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
exact Eq.trans r_ih_h r_ih_k
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x✝ y : Prequotient F
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x)
[PROOFSTEP]
| map j j' f x => simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x✝ y : Prequotient F
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x)
[PROOFSTEP]
simpa only [descFunLift, Functor.const_obj_obj] using FunLike.congr_fun (s.ι.naturality f) x
[GOAL]
case a.zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
j✝ : J
⊢ descFunLift F s (Prequotient.of j✝ 0) = descFunLift F s zero
[PROOFSTEP]
| zero => simp
[GOAL]
case a.zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
j✝ : J
⊢ descFunLift F s (Prequotient.of j✝ 0) = descFunLift F s zero
[PROOFSTEP]
simp
[GOAL]
case a.neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (-x✝)) = descFunLift F s (neg (Prequotient.of j✝ x✝))
[PROOFSTEP]
| neg => simp
[GOAL]
case a.neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (-x✝)) = descFunLift F s (neg (Prequotient.of j✝ x✝))
[PROOFSTEP]
simp
[GOAL]
case a.add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ y✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (x✝ + y✝)) = descFunLift F s (add (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝))
[PROOFSTEP]
| add => simp
[GOAL]
case a.add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ y✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (x✝ + y✝)) = descFunLift F s (add (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝))
[PROOFSTEP]
simp
[GOAL]
case a.neg_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ x'✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (neg x✝¹) = descFunLift F s (neg x'✝)
[PROOFSTEP]
| neg_1 _ _ _ r_ih => dsimp; rw [r_ih]
[GOAL]
case a.neg_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ x'✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (neg x✝¹) = descFunLift F s (neg x'✝)
[PROOFSTEP]
dsimp
[GOAL]
case a.neg_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ x'✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ -descFunLift F s x✝¹ = -descFunLift F s x'✝
[PROOFSTEP]
rw [r_ih]
[GOAL]
case a.add_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x'✝ y✝)
[PROOFSTEP]
| add_1 _ _ _ _ r_ih => dsimp; rw [r_ih]
[GOAL]
case a.add_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x'✝ y✝)
[PROOFSTEP]
dsimp
[GOAL]
case a.add_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
r_ih : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s x✝¹ + descFunLift F s y✝ = descFunLift F s x'✝ + descFunLift F s y✝
[PROOFSTEP]
rw [r_ih]
[GOAL]
case a.add_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
r_ih : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x✝¹ y'✝)
[PROOFSTEP]
| add_2 _ _ _ _ r_ih => dsimp; rw [r_ih]
[GOAL]
case a.add_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
r_ih : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s (add x✝¹ y✝) = descFunLift F s (add x✝¹ y'✝)
[PROOFSTEP]
dsimp
[GOAL]
case a.add_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
r_ih : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s x✝¹ + descFunLift F s y✝ = descFunLift F s x✝¹ + descFunLift F s y'✝
[PROOFSTEP]
rw [r_ih]
[GOAL]
case a.zero_add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝
[PROOFSTEP]
| zero_add => dsimp; rw [zero_add]
[GOAL]
case a.zero_add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝
[PROOFSTEP]
dsimp
[GOAL]
case a.zero_add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ 0 + descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
rw [zero_add]
[GOAL]
case a.add_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝
[PROOFSTEP]
| add_zero => dsimp; rw [add_zero]
[GOAL]
case a.add_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝
[PROOFSTEP]
dsimp
[GOAL]
case a.add_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ + 0 = descFunLift F s x✝
[PROOFSTEP]
rw [add_zero]
[GOAL]
case a.add_left_neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero
[PROOFSTEP]
| add_left_neg => dsimp; rw [add_left_neg]
[GOAL]
case a.add_left_neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero
[PROOFSTEP]
dsimp
[GOAL]
case a.add_left_neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ : Prequotient F
⊢ -descFunLift F s x✝ + descFunLift F s x✝ = 0
[PROOFSTEP]
rw [add_left_neg]
[GOAL]
case a.add_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ y✝ : Prequotient F
⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝)
[PROOFSTEP]
| add_comm => dsimp; rw [add_comm]
[GOAL]
case a.add_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ y✝ : Prequotient F
⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝)
[PROOFSTEP]
dsimp
[GOAL]
case a.add_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ y✝ : Prequotient F
⊢ descFunLift F s x✝ + descFunLift F s y✝ = descFunLift F s y✝ + descFunLift F s x✝
[PROOFSTEP]
rw [add_comm]
[GOAL]
case a.add_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝))
[PROOFSTEP]
| add_assoc => dsimp; rw [add_assoc]
[GOAL]
case a.add_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝))
[PROOFSTEP]
dsimp
[GOAL]
case a.add_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s x✝ + descFunLift F s y✝ + descFunLift F s z✝ =
descFunLift F s x✝ + (descFunLift F s y✝ + descFunLift F s z✝)
[PROOFSTEP]
rw [add_assoc]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : ↑(colimit F)
x✝¹ x✝ : Prequotient F
⊢ ZeroHom.toFun { toFun := descFun F s, map_zero' := (_ : descFun F s 0 = descFun F s 0) }
(Quot.mk Setoid.r x✝¹ + Quot.mk Setoid.r x✝) =
ZeroHom.toFun { toFun := descFun F s, map_zero' := (_ : descFun F s 0 = descFun F s 0) } (Quot.mk Setoid.r x✝¹) +
ZeroHom.toFun { toFun := descFun F s, map_zero' := (_ : descFun F s 0 = descFun F s 0) } (Quot.mk Setoid.r x✝)
[PROOFSTEP]
dsimp [(· + ·)]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : ↑(colimit F)
x✝¹ x✝ : Prequotient F
⊢ descFun F s (Add.add (Quot.mk Setoid.r x✝¹) (Quot.mk Setoid.r x✝)) =
Add.add (descFun F s (Quot.mk Setoid.r x✝¹)) (descFun F s (Quot.mk Setoid.r x✝))
[PROOFSTEP]
rw [← quot_add F]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
x y : ↑(colimit F)
x✝¹ x✝ : Prequotient F
⊢ descFun F s (Quot.mk Setoid.r (add x✝¹ x✝)) =
Add.add (descFun F s (Quot.mk Setoid.r x✝¹)) (descFun F s (Quot.mk Setoid.r x✝))
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
[PROOFSTEP]
change (m : ColimitType F →+ s.pt) _ = (descMorphism F s : ColimitType F →+ s.pt) _
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
[PROOFSTEP]
induction x using Prequotient.recOn with
| of j x => exact FunLike.congr_fun (w j) x
| zero =>
dsimp only [quot_zero]
rw [map_zero, map_zero]
| neg x ih =>
dsimp only [quot_neg]
rw [map_neg, map_neg, ih]
| add x y ihx ihy =>
simp only [quot_add]
erw [m.map_add, (descMorphism F s).map_add, ihx, ihy]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
[PROOFSTEP]
induction x using Prequotient.recOn with
| of j x => exact FunLike.congr_fun (w j) x
| zero =>
dsimp only [quot_zero]
rw [map_zero, map_zero]
| neg x ih =>
dsimp only [quot_neg]
rw [map_neg, map_neg, ih]
| add x y ihx ihy =>
simp only [quot_add]
erw [m.map_add, (descMorphism F s).map_add, ihx, ihy]
[GOAL]
case of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of j x))
[PROOFSTEP]
| of j x => exact FunLike.congr_fun (w j) x
[GOAL]
case of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of j x))
[PROOFSTEP]
exact FunLike.congr_fun (w j) x
[GOAL]
case zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Quot Setoid.r
⊢ ↑m (Quot.mk Setoid.r zero) = ↑(descMorphism F s) (Quot.mk Setoid.r zero)
[PROOFSTEP]
| zero =>
dsimp only [quot_zero]
rw [map_zero, map_zero]
[GOAL]
case zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Quot Setoid.r
⊢ ↑m (Quot.mk Setoid.r zero) = ↑(descMorphism F s) (Quot.mk Setoid.r zero)
[PROOFSTEP]
dsimp only [quot_zero]
[GOAL]
case zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Quot Setoid.r
⊢ ↑m 0 = ↑(descMorphism F s) 0
[PROOFSTEP]
rw [map_zero, map_zero]
[GOAL]
case neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x : Prequotient F
ih : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (neg x))
[PROOFSTEP]
| neg x ih =>
dsimp only [quot_neg]
rw [map_neg, map_neg, ih]
[GOAL]
case neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x : Prequotient F
ih : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (neg x))
[PROOFSTEP]
dsimp only [quot_neg]
[GOAL]
case neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x : Prequotient F
ih : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
⊢ ↑m (-Quot.mk Setoid.r x) = ↑(descMorphism F s) (-Quot.mk Setoid.r x)
[PROOFSTEP]
rw [map_neg, map_neg, ih]
[GOAL]
case add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x y : Prequotient F
ihx : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
ihy : ↑m (Quot.mk Setoid.r y) = ↑(descMorphism F s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑(descMorphism F s) (Quot.mk Setoid.r (add x y))
[PROOFSTEP]
| add x y ihx ihy =>
simp only [quot_add]
erw [m.map_add, (descMorphism F s).map_add, ihx, ihy]
[GOAL]
case add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x y : Prequotient F
ihx : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
ihy : ↑m (Quot.mk Setoid.r y) = ↑(descMorphism F s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑(descMorphism F s) (Quot.mk Setoid.r (add x y))
[PROOFSTEP]
simp only [quot_add]
[GOAL]
case add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AddCommGroupCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : Quot Setoid.r
x y : Prequotient F
ihx : ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
ihy : ↑m (Quot.mk Setoid.r y) = ↑(descMorphism F s) (Quot.mk Setoid.r y)
⊢ ↑m (Add.add (Quot.mk Setoid.r x) (Quot.mk Setoid.r y)) =
↑(descMorphism F s) (Add.add (Quot.mk Setoid.r x) (Quot.mk Setoid.r y))
[PROOFSTEP]
erw [m.map_add, (descMorphism F s).map_add, ihx, ihy]
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
⊢ f ≫ mk' (AddMonoidHom.range f) = 0
[PROOFSTEP]
ext x
[GOAL]
case w
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
⊢ ↑(f ≫ mk' (AddMonoidHom.range f)) x = ↑0 x
[PROOFSTEP]
apply Quotient.sound
[GOAL]
case w.a
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
⊢ ↑f x ≈ 0
[PROOFSTEP]
apply leftRel_apply.mpr
[GOAL]
case w.a
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
⊢ -↑f x + 0 ∈ AddMonoidHom.range f
[PROOFSTEP]
fconstructor
[GOAL]
case w.a.w
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
⊢ ↑G
case w.a.h G H : AddCommGroupCat f : G ⟶ H x : ↑G ⊢ ↑f ?w.a.w = -↑f x + 0
[PROOFSTEP]
exact -x
[GOAL]
case w.a.h
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
⊢ ↑f (-x) = -↑f x + 0
[PROOFSTEP]
simp only [add_zero, AddMonoidHom.map_neg]
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
⊢ ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0
[PROOFSTEP]
rintro _ ⟨x, rfl⟩
[GOAL]
case intro
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
⊢ ↑(cokernel.π f) (↑f x) = 0
[PROOFSTEP]
exact cokernel.condition_apply f x
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
⊢ cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0) ≫
lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) =
𝟙 (cokernel f)
[PROOFSTEP]
refine coequalizer.hom_ext ?_
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
⊢ coequalizer.π f 0 ≫
cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0) ≫
lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) =
coequalizer.π f 0 ≫ 𝟙 (cokernel f)
[PROOFSTEP]
simp only [coequalizer_as_cokernel, cokernel.π_desc_assoc, Category.comp_id]
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
⊢ mk' (AddMonoidHom.range f) ≫
lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) =
cokernel.π f
[PROOFSTEP]
rfl
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
⊢ lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) ≫
cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0) =
𝟙 (of (↑H ⧸ AddMonoidHom.range f))
[PROOFSTEP]
ext x
[GOAL]
case w
G H : AddCommGroupCat
f : G ⟶ H
x : ↑(of (↑H ⧸ AddMonoidHom.range f))
⊢ ↑(lift (AddMonoidHom.range f) (cokernel.π f) (_ : ∀ (x : ↑H), x ∈ AddMonoidHom.range f → ↑(cokernel.π f) x = 0) ≫
cokernel.desc f (mk' (AddMonoidHom.range f)) (_ : f ≫ mk' (AddMonoidHom.range f) = 0))
x =
↑(𝟙 (of (↑H ⧸ AddMonoidHom.range f))) x
[PROOFSTEP]
exact QuotientAddGroup.induction_on x <| cokernel.π_desc_apply f _ _
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Colimits", "llama_tokens": 12377} |
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
⊢ ∀ ⦃X Y : Discrete WalkingPair⦄ (f : X ⟶ Y),
((Functor.const (Discrete WalkingPair)).obj (of R (↑M × ↑N))).map f ≫
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) Y =
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N)) X ≫
(pair M N).map f
[PROOFSTEP]
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟨⟩⟩⟩
[GOAL]
case mk.left.mk.left.up.up.refl
R : Type u
inst✝ : Ring R
M N : ModuleCat R
⊢ ((Functor.const (Discrete WalkingPair)).obj (of R (↑M × ↑N))).map
{ down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } } ≫
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N))
{ as := WalkingPair.left } =
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N))
{ as := WalkingPair.left } ≫
(pair M N).map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } }
[PROOFSTEP]
rfl
[GOAL]
case mk.right.mk.right.up.up.refl
R : Type u
inst✝ : Ring R
M N : ModuleCat R
⊢ ((Functor.const (Discrete WalkingPair)).obj (of R (↑M × ↑N))).map
{ down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } } ≫
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N))
{ as := WalkingPair.right } =
(fun j => Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N))
{ as := WalkingPair.right } ≫
(pair M N).map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
⊢ ∀ (s : Cone (pair M N)) (j : Discrete WalkingPair),
(fun s =>
LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right }))
s ≫
NatTrans.app
{ pt := of R (↑M × ↑N),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π
j =
NatTrans.app s.π j
[PROOFSTEP]
rintro s (⟨⟩ | ⟨⟩)
[GOAL]
case mk.left
R : Type u
inst✝ : Ring R
M N : ModuleCat R
s : Cone (pair M N)
⊢ (fun s => LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right }))
s ≫
NatTrans.app
{ pt := of R (↑M × ↑N),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π
{ as := WalkingPair.left } =
NatTrans.app s.π { as := WalkingPair.left }
[PROOFSTEP]
rfl
[GOAL]
case mk.right
R : Type u
inst✝ : Ring R
M N : ModuleCat R
s : Cone (pair M N)
⊢ (fun s => LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right }))
s ≫
NatTrans.app
{ pt := of R (↑M × ↑N),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π
{ as := WalkingPair.right } =
NatTrans.app s.π { as := WalkingPair.right }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
s : Cone (pair M N)
m :
s.pt ⟶
{ pt := of R (↑M × ↑N),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.pt
w :
∀ (j : Discrete WalkingPair),
m ≫
NatTrans.app
{ pt := of R (↑M × ↑N),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π
j =
NatTrans.app s.π j
⊢ m =
(fun s =>
LinearMap.prod (NatTrans.app s.π { as := WalkingPair.left }) (NatTrans.app s.π { as := WalkingPair.right }))
s
[PROOFSTEP]
simp_rw [← w ⟨WalkingPair.left⟩, ← w ⟨WalkingPair.right⟩]
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
s : Cone (pair M N)
m :
s.pt ⟶
{ pt := of R (↑M × ↑N),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.pt
w :
∀ (j : Discrete WalkingPair),
m ≫
NatTrans.app
{ pt := of R (↑M × ↑N),
π :=
NatTrans.mk fun j =>
Discrete.casesOn j fun j => WalkingPair.casesOn j (LinearMap.fst R ↑M ↑N) (LinearMap.snd R ↑M ↑N) }.π
j =
NatTrans.app s.π j
⊢ m = LinearMap.prod (m ≫ LinearMap.fst R ↑M ↑N) (m ≫ LinearMap.snd R ↑M ↑N)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
J : Type w
f : J → ModuleCat R
s : Fan f
x y : ↑s.pt
⊢ (fun x j => ↑(NatTrans.app s.π { as := j }) x) (x + y) =
(fun x j => ↑(NatTrans.app s.π { as := j }) x) x + (fun x j => ↑(NatTrans.app s.π { as := j }) x) y
[PROOFSTEP]
simp only [Functor.const_obj_obj, map_add]
[GOAL]
R : Type u
inst✝ : Ring R
J : Type w
f : J → ModuleCat R
s : Fan f
x y : ↑s.pt
⊢ (fun j => ↑(NatTrans.app s.π { as := j }) x + ↑(NatTrans.app s.π { as := j }) y) =
(fun j => ↑(NatTrans.app s.π { as := j }) x) + fun j => ↑(NatTrans.app s.π { as := j }) y
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
J : Type w
f : J → ModuleCat R
s : Fan f
r : R
x : ↑s.pt
⊢ AddHom.toFun
{ toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x,
map_add' :=
(_ :
∀ (x y : ↑s.pt),
(fun x j => ↑(NatTrans.app s.π { as := j }) x) (x + y) =
(fun x j => ↑(NatTrans.app s.π { as := j }) x) x + (fun x j => ↑(NatTrans.app s.π { as := j }) x) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := fun x j => ↑(NatTrans.app s.π { as := j }) x,
map_add' :=
(_ :
∀ (x y : ↑s.pt),
(fun x j => ↑(NatTrans.app s.π { as := j }) x) (x + y) =
(fun x j => ↑(NatTrans.app s.π { as := j }) x) x + (fun x j => ↑(NatTrans.app s.π { as := j }) x) y) }
x
[PROOFSTEP]
simp only [Functor.const_obj_obj, map_smul]
[GOAL]
R : Type u
inst✝ : Ring R
J : Type w
f : J → ModuleCat R
s : Fan f
r : R
x : ↑s.pt
⊢ (fun j => r • ↑(NatTrans.app s.π { as := j }) x) = ↑(RingHom.id R) r • fun j => ↑(NatTrans.app s.π { as := j }) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
J : Type w
f : J → ModuleCat R
s : Cone (Discrete.functor f)
m : s.pt ⟶ { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.pt
w :
∀ (j : Discrete J),
m ≫ NatTrans.app { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.π j =
NatTrans.app s.π j
⊢ m = lift f s
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝ : Ring R
J : Type w
f : J → ModuleCat R
s : Cone (Discrete.functor f)
m : s.pt ⟶ { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.pt
w :
∀ (j : Discrete J),
m ≫ NatTrans.app { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.π j =
NatTrans.app s.π j
x : ↑s.pt
⊢ ↑m x = ↑(lift f s) x
[PROOFSTEP]
funext j
[GOAL]
case h.h
R : Type u
inst✝ : Ring R
J : Type w
f : J → ModuleCat R
s : Cone (Discrete.functor f)
m : s.pt ⟶ { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.pt
w :
∀ (j : Discrete J),
m ≫ NatTrans.app { pt := of R ((j : J) → ↑(f j)), π := Discrete.natTrans fun j => LinearMap.proj j.as }.π j =
NatTrans.app s.π j
x : ↑s.pt
j : J
⊢ ↑m x j = ↑(lift f s) x j
[PROOFSTEP]
exact congr_arg (fun g : s.pt ⟶ f j => (g : s.pt → f j) x) (w ⟨j⟩)
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Biproducts", "llama_tokens": 3486} |
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
let G : (⟨X⟩ : ModuleCat ℤ) ⟶ ⟨A⟩ :=
{ g with
map_smul' := by
intros
dsimp
rw [map_zsmul] }
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
⊢ ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x
[PROOFSTEP]
intros
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
r✝ : ℤ
x✝ : ↑(ModuleCat.mk ↑X)
⊢ AddHom.toFun
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r✝ • x✝) =
↑(RingHom.id ℤ) r✝ •
AddHom.toFun
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x✝
[PROOFSTEP]
dsimp
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
r✝ : ℤ
x✝ : ↑(ModuleCat.mk ↑X)
⊢ ↑g (r✝ • x✝) = r✝ • ↑g x✝
[PROOFSTEP]
rw [map_zsmul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
let F : (⟨X⟩ : ModuleCat ℤ) ⟶ ⟨Y⟩ :=
{ f with
map_smul' := by
intros
dsimp
rw [map_zsmul] }
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
⊢ ∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x
[PROOFSTEP]
intros
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
r✝ : ℤ
x✝ : ↑(ModuleCat.mk ↑X)
⊢ AddHom.toFun
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r✝ • x✝) =
↑(RingHom.id ℤ) r✝ •
AddHom.toFun
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x✝
[PROOFSTEP]
dsimp
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
r✝ : ℤ
x✝ : ↑(ModuleCat.mk ↑X)
⊢ ↑f (r✝ • x✝) = r✝ • ↑f x✝
[PROOFSTEP]
rw [map_zsmul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
have : Mono F :=
by
refine'
⟨fun {Z} α β eq1 => _⟩
-- Porting note: trouble getting to ℤ-module from ModuleCat ℤ
-- AddCommGroup.intModule not defeq to .isModule
let α' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ α
let β' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ β
have eq2 : α' ≫ f = β' ≫ f := by
ext x
simp only [CategoryTheory.comp_apply, LinearMap.toAddMonoidHom_coe]
simpa only [ModuleCat.coe_comp, LinearMap.coe_mk, Function.comp_apply] using FunLike.congr_fun eq1 x
rw [cancel_mono] at eq2
have : ⇑α' = ⇑β' := congrArg _ eq2
ext x
apply congrFun this _
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
⊢ Mono F
[PROOFSTEP]
refine'
⟨fun {Z} α β eq1 => _⟩
-- Porting note: trouble getting to ℤ-module from ModuleCat ℤ
-- AddCommGroup.intModule not defeq to .isModule
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
⊢ α = β
[PROOFSTEP]
let α' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ α
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
⊢ α = β
[PROOFSTEP]
let β' : AddCommGroupCat.of Z ⟶ X := @LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ β
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
⊢ α = β
[PROOFSTEP]
have eq2 : α' ≫ f = β' ≫ f := by
ext x
simp only [CategoryTheory.comp_apply, LinearMap.toAddMonoidHom_coe]
simpa only [ModuleCat.coe_comp, LinearMap.coe_mk, Function.comp_apply] using FunLike.congr_fun eq1 x
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
⊢ α' ≫ f = β' ≫ f
[PROOFSTEP]
ext x
[GOAL]
case w
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
x : ↑(of ↑Z)
⊢ ↑(α' ≫ f) x = ↑(β' ≫ f) x
[PROOFSTEP]
simp only [CategoryTheory.comp_apply, LinearMap.toAddMonoidHom_coe]
[GOAL]
case w
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
x : ↑(of ↑Z)
⊢ ↑(LinearMap.toAddMonoidHom α ≫ f) x = ↑(LinearMap.toAddMonoidHom β ≫ f) x
[PROOFSTEP]
simpa only [ModuleCat.coe_comp, LinearMap.coe_mk, Function.comp_apply] using FunLike.congr_fun eq1 x
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
eq2 : α' ≫ f = β' ≫ f
⊢ α = β
[PROOFSTEP]
rw [cancel_mono] at eq2
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
eq2 : α' = β'
⊢ α = β
[PROOFSTEP]
have : ⇑α' = ⇑β' := congrArg _ eq2
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
eq2 : α' = β'
this : ↑α' = ↑β'
⊢ α = β
[PROOFSTEP]
ext x
[GOAL]
case h
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
Z : ModuleCat ℤ
α β : Z ⟶ ModuleCat.mk ↑X
eq1 : α ≫ F = β ≫ F
α' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom α
β' : of ↑Z ⟶ X := LinearMap.toAddMonoidHom β
eq2 : α' = β'
this : ↑α' = ↑β'
x : ↑Z
⊢ ↑α x = ↑β x
[PROOFSTEP]
apply congrFun this _
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
this : Mono F
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
refine' ⟨(Injective.factorThru G F).toAddMonoidHom, _⟩
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
this : Mono F
⊢ f ≫ LinearMap.toAddMonoidHom (Injective.factorThru G F) = g
[PROOFSTEP]
ext x
[GOAL]
case w
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (ModuleCat.mk A)
X Y : Bundled AddCommGroup
g : X ⟶ Bundled.mk A
f : X ⟶ Y
m : Mono f
G : ModuleCat.mk ↑X ⟶ ModuleCat.mk A :=
{
toAddHom :=
{ toFun := g.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := g.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑g) (x + y) = ZeroHom.toFun (↑g) x + ZeroHom.toFun (↑g) y) }
x) }
F : ModuleCat.mk ↑X ⟶ ModuleCat.mk ↑Y :=
{
toAddHom :=
{ toFun := f.toFun,
map_add' := (_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) },
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑(ModuleCat.mk ↑X)),
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := f.toFun,
map_add' :=
(_ : ∀ (x y : ↑X), ZeroHom.toFun (↑f) (x + y) = ZeroHom.toFun (↑f) x + ZeroHom.toFun (↑f) y) }
x) }
this : Mono F
x : (forget (Bundled AddCommGroup)).obj X
⊢ ↑(f ≫ LinearMap.toAddMonoidHom (Injective.factorThru G F)) x = ↑g x
[PROOFSTEP]
convert FunLike.congr_fun (Injective.comp_factorThru G F) x
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
let G : (⟨X, inferInstance⟩ : AddCommGroupCat) ⟶ ⟨A, inferInstance⟩ :=
@LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) _ _ g
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
let F : (⟨X, inferInstance⟩ : AddCommGroupCat) ⟶ ⟨Y, inferInstance⟩ :=
@LinearMap.toAddMonoidHom _ _ _ _ _ _ _ _ (_) (_) _ f
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
have : Mono F := by
rw [mono_iff_injective]
intro _ _ h
exact ((ModuleCat.mono_iff_injective f).mp m) h
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
⊢ Mono F
[PROOFSTEP]
rw [mono_iff_injective]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
⊢ Function.Injective ↑F
[PROOFSTEP]
intro _ _ h
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
a₁✝ a₂✝ : ↑(Bundled.mk ↑X)
h : ↑F a₁✝ = ↑F a₂✝
⊢ a₁✝ = a₂✝
[PROOFSTEP]
exact ((ModuleCat.mono_iff_injective f).mp m) h
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
⊢ ∃ h, f ≫ h = g
[PROOFSTEP]
refine ⟨@LinearMap.mk _ _ _ _ _ _ _ _ _ (_) _ (Injective.factorThru G F).toAddHom ?_, ?_⟩
[GOAL]
case refine_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
⊢ ∀ (r : ℤ) (x : ↑Y),
AddHom.toFun (↑(Injective.factorThru G F)) (r • x) =
↑(RingHom.id ℤ) r • AddHom.toFun (↑(Injective.factorThru G F)) x
case refine_2
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
⊢ f ≫ { toAddHom := ↑(Injective.factorThru G F), map_smul' := ?refine_1 } = g
[PROOFSTEP]
change ∀ r, ∀ x, (Injective.factorThru G F).toFun _ = _ • (Injective.factorThru G F).toFun _
[GOAL]
case refine_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
⊢ ∀ (r : ℤ) (x : ↑Y),
ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) =
↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x
[PROOFSTEP]
intro m x
[GOAL]
case refine_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m✝ : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
m : ℤ
x : ↑Y
⊢ ZeroHom.toFun (↑(Injective.factorThru G F)) (m • x) =
↑(RingHom.id ℤ) m • ZeroHom.toFun (↑(Injective.factorThru G F)) x
[PROOFSTEP]
rw [AddMonoidHom.toFun_eq_coe, RingHom.id_apply]
[GOAL]
case refine_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m✝ : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
m : ℤ
x : ↑Y
⊢ ↑(Injective.factorThru G F) (m • x) = m • ↑(Injective.factorThru G F) x
[PROOFSTEP]
induction' m using Int.induction_on with n hn n hn
[GOAL]
case refine_1.hz
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
⊢ ↑(Injective.factorThru G F) (0 • x) = 0 • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [zero_smul]
[GOAL]
case refine_1.hz
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
⊢ ↑(Injective.factorThru G F) (0 • x) = 0
[PROOFSTEP]
convert
map_zero (M := Y) (N := A) (F := Y →+ A)
_
-- Porting note: hell of non-defeq instances; somehow this worked
[GOAL]
case h.e'_2.h.e'_6
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
⊢ 0 • x = 0
[PROOFSTEP]
refine @zero_smul ℤ Y (MonoidWithZero.toZero) (AddMonoid.toZero) ?_ x
[GOAL]
case refine_1.hp
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
⊢ ↑(Injective.factorThru G F) ((↑n + 1) • x) = (↑n + 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
conv_rhs => rw [add_smul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
| (↑n + 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [add_smul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
| (↑n + 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [add_smul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
| (↑n + 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [add_smul]
[GOAL]
case refine_1.hp
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
⊢ ↑(Injective.factorThru G F) ((↑n + 1) • x) = ↑n • ↑(Injective.factorThru G F) x + 1 • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [← hn, one_smul, ← map_add]
[GOAL]
case refine_1.hp
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
⊢ ↑(Injective.factorThru G F) ((↑n + 1) • x) = ↑(Injective.factorThru G F) (↑n • x + x)
[PROOFSTEP]
congr
[GOAL]
case refine_1.hp.h.e_6.h
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
⊢ (↑n + 1) • x = ↑n • x + x
[PROOFSTEP]
convert @add_smul ℤ Y _ _ ?_ n 1 x
[GOAL]
case h.e'_3.h.e'_6
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (↑n • x) = ↑n • ↑(Injective.factorThru G F) x
⊢ x = 1 • x
[PROOFSTEP]
refine @one_smul ℤ Y _ ?_ x |>.symm
[GOAL]
case refine_1.hn
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
⊢ ↑(Injective.factorThru G F) ((-↑n - 1) • x) = (-↑n - 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
conv_rhs => rw [sub_smul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
| (-↑n - 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [sub_smul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
| (-↑n - 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [sub_smul]
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
| (-↑n - 1) • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [sub_smul]
[GOAL]
case refine_1.hn
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
⊢ ↑(Injective.factorThru G F) ((-↑n - 1) • x) = -↑n • ↑(Injective.factorThru G F) x - 1 • ↑(Injective.factorThru G F) x
[PROOFSTEP]
rw [← hn, one_smul, ← map_sub]
[GOAL]
case refine_1.hn
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
⊢ ↑(Injective.factorThru G F) ((-↑n - 1) • x) = ↑(Injective.factorThru G F) (-↑n • x - x)
[PROOFSTEP]
congr
[GOAL]
case refine_1.hn.h.e_6.h
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
⊢ (-↑n - 1) • x = -↑n • x - x
[PROOFSTEP]
convert @sub_smul ℤ Y _ _ ?_ (-n) 1 x
[GOAL]
case h.e'_3.h.e'_6
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑Y
n : ℕ
hn : ↑(Injective.factorThru G F) (-↑n • x) = -↑n • ↑(Injective.factorThru G F) x
⊢ x = 1 • x
[PROOFSTEP]
refine @one_smul ℤ Y _ ?_ x |>.symm
[GOAL]
case refine_2
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
⊢ f ≫
{ toAddHom := ↑(Injective.factorThru G F),
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑Y),
ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) =
↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) } =
g
[PROOFSTEP]
ext x
[GOAL]
case refine_2.h
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this : Mono F
x : ↑X
⊢ ↑(f ≫
{ toAddHom := ↑(Injective.factorThru G F),
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑Y),
ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) =
↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) })
x =
↑g x
[PROOFSTEP]
have := congrFun (congrArg (fun H => H.toFun) (Injective.comp_factorThru G F)) x
[GOAL]
case refine_2.h
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this✝ : Mono F
x : ↑X
this : (fun H => H.toFun) (F ≫ Injective.factorThru G F) x = (fun H => H.toFun) G x
⊢ ↑(f ≫
{ toAddHom := ↑(Injective.factorThru G F),
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑Y),
ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) =
↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) })
x =
↑g x
[PROOFSTEP]
simp only [ModuleCat.coe_comp, Function.comp_apply] at this
[GOAL]
case refine_2.h
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : Injective (Bundled.mk A)
X Y : ModuleCat ℤ
g : X ⟶ ModuleCat.mk A
f : X ⟶ Y
m : Mono f
G : Bundled.mk ↑X ⟶ Bundled.mk A := LinearMap.toAddMonoidHom g
F : Bundled.mk ↑X ⟶ Bundled.mk ↑Y := LinearMap.toAddMonoidHom f
this✝ : Mono F
x : ↑X
this :
ZeroHom.toFun
(↑(LinearMap.toAddMonoidHom f ≫ Injective.factorThru (LinearMap.toAddMonoidHom g) (LinearMap.toAddMonoidHom f)))
x =
ZeroHom.toFun (↑(LinearMap.toAddMonoidHom g)) x
⊢ ↑(f ≫
{ toAddHom := ↑(Injective.factorThru G F),
map_smul' :=
(_ :
∀ (r : ℤ) (x : ↑Y),
ZeroHom.toFun (↑(Injective.factorThru G F)) (r • x) =
↑(RingHom.id ℤ) r • ZeroHom.toFun (↑(Injective.factorThru G F)) x) })
x =
↑g x
[PROOFSTEP]
apply this
[GOAL]
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
I : Ideal ℤ
g : { x // x ∈ I } →ₗ[ℤ] A
⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ I), ↑g' x = ↑g { val := x, property := mem }
[PROOFSTEP]
rcases IsPrincipalIdealRing.principal I with ⟨m, rfl⟩
[GOAL]
case mk.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem }
[PROOFSTEP]
by_cases m_eq_zero : m = 0
[GOAL]
case pos
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : m = 0
⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem }
[PROOFSTEP]
subst m_eq_zero
[GOAL]
case pos
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {0}), ↑g' x = ↑g { val := x, property := mem }
[PROOFSTEP]
refine'
⟨{ toFun := _
map_add' := _
map_smul' := _ }, fun n hn => _⟩
[GOAL]
case pos.refine'_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
⊢ ℤ → A
[PROOFSTEP]
intro _
[GOAL]
case pos.refine'_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
a✝ : ℤ
⊢ A
[PROOFSTEP]
exact g 0
[GOAL]
case pos.refine'_2
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
⊢ ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0
[PROOFSTEP]
intro _ _
[GOAL]
case pos.refine'_2
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
x✝ y✝ : ℤ
⊢ ↑g 0 = ↑g 0 + ↑g 0
[PROOFSTEP]
simp only [map_zero, add_zero]
[GOAL]
case pos.refine'_3
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
⊢ ∀ (r x : ℤ),
AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } (r • x) =
↑(RingHom.id ℤ) r • AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } x
[PROOFSTEP]
intro n1 _
[GOAL]
case pos.refine'_3
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
n1 x✝ : ℤ
⊢ AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } (n1 • x✝) =
↑(RingHom.id ℤ) n1 • AddHom.toFun { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) } x✝
[PROOFSTEP]
simp only [map_zero, smul_zero]
[GOAL]
case pos.refine'_4
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
n : ℤ
hn : n ∈ Submodule.span ℤ {0}
⊢ ↑{ toAddHom := { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) },
map_smul' := (_ : ∀ (n1 : ℤ), ℤ → ↑g 0 = ↑(RingHom.id ℤ) n1 • ↑g 0) }
n =
↑g { val := n, property := hn }
[PROOFSTEP]
rw [Submodule.span_singleton_eq_bot.mpr rfl, Submodule.mem_bot] at hn
[GOAL]
case pos.refine'_4
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
n : ℤ
hn✝ : n ∈ Submodule.span ℤ {0}
hn : n = 0
⊢ ↑{ toAddHom := { toFun := fun a => ↑g 0, map_add' := (_ : ℤ → ℤ → ↑g 0 = ↑g 0 + ↑g 0) },
map_smul' := (_ : ∀ (n1 : ℤ), ℤ → ↑g 0 = ↑(RingHom.id ℤ) n1 • ↑g 0) }
n =
↑g { val := n, property := hn✝ }
[PROOFSTEP]
simp only [hn, map_zero]
[GOAL]
case pos.refine'_4
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
n : ℤ
hn✝ : n ∈ Submodule.span ℤ {0}
hn : n = 0
⊢ 0 = ↑g { val := 0, property := (_ : (fun x => x ∈ Submodule.span ℤ {0}) 0) }
[PROOFSTEP]
symm
[GOAL]
case pos.refine'_4
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
g : { x // x ∈ Submodule.span ℤ {0} } →ₗ[ℤ] A
n : ℤ
hn✝ : n ∈ Submodule.span ℤ {0}
hn : n = 0
⊢ ↑g { val := 0, property := (_ : (fun x => x ∈ Submodule.span ℤ {0}) 0) } = 0
[PROOFSTEP]
convert map_zero g
[GOAL]
case neg
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem }
[PROOFSTEP]
set gₘ := g ⟨m, Submodule.subset_span (Set.mem_singleton _)⟩ with gm_eq
[GOAL]
case neg
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
⊢ ∃ g', ∀ (x : ℤ) (mem : x ∈ Submodule.span ℤ {m}), ↑g' x = ↑g { val := x, property := mem }
[PROOFSTEP]
refine'
⟨{ toFun := _
map_add' := _
map_smul' := _ }, fun n hn => _⟩
[GOAL]
case neg.refine'_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
⊢ ℤ → A
[PROOFSTEP]
intro n
[GOAL]
case neg.refine'_1
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
⊢ A
[PROOFSTEP]
exact n • DivisibleBy.div gₘ m
[GOAL]
case neg.refine'_2
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
⊢ ∀ (x y : ℤ), (x + y) • DivisibleBy.div gₘ m = x • DivisibleBy.div gₘ m + y • DivisibleBy.div gₘ m
[PROOFSTEP]
intro n1 n2
[GOAL]
case neg.refine'_2
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n1 n2 : ℤ
⊢ (n1 + n2) • DivisibleBy.div gₘ m = n1 • DivisibleBy.div gₘ m + n2 • DivisibleBy.div gₘ m
[PROOFSTEP]
simp only [add_smul]
[GOAL]
case neg.refine'_3
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
⊢ ∀ (r x : ℤ),
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }
(r • x) =
↑(RingHom.id ℤ) r •
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }
x
[PROOFSTEP]
intro n1 n2
[GOAL]
case neg.refine'_3
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n1 n2 : ℤ
⊢ AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }
(n1 • n2) =
↑(RingHom.id ℤ) n1 •
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }
n2
[PROOFSTEP]
dsimp
[GOAL]
case neg.refine'_3
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n1 n2 : ℤ
⊢ (n1 * n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m
[PROOFSTEP]
rw [mul_smul]
[GOAL]
case neg.refine'_4
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n ∈ Submodule.span ℤ {m}
⊢ ↑{
toAddHom :=
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) },
map_smul' :=
(_ :
∀ (n1 n2 : ℤ),
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }
(n1 • n2) =
↑(RingHom.id ℤ) n1 •
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) })
m) }
n2) }
n =
↑g { val := n, property := hn }
[PROOFSTEP]
rw [Submodule.mem_span_singleton] at hn
[GOAL]
case neg.refine'_4
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn✝ : n ∈ Submodule.span ℤ {m}
hn : ∃ a, a • m = n
⊢ ↑{
toAddHom :=
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) },
map_smul' :=
(_ :
∀ (n1 n2 : ℤ),
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }
(n1 • n2) =
↑(RingHom.id ℤ) n1 •
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) })
m) }
n2) }
n =
↑g { val := n, property := hn✝ }
[PROOFSTEP]
rcases hn with ⟨n, rfl⟩
[GOAL]
case neg.refine'_4.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n • m ∈ Submodule.span ℤ {m}
⊢ ↑{
toAddHom :=
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) },
map_smul' :=
(_ :
∀ (n1 n2 : ℤ),
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) }
(n1 • n2) =
↑(RingHom.id ℤ) n1 •
AddHom.toFun
{ toFun := fun n => n • DivisibleBy.div gₘ m,
map_add' :=
(_ :
∀ (n1 n2 : ℤ),
(n1 + n2) •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n1 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m +
n2 •
DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) })
m) }
n2) }
(n • m) =
↑g { val := n • m, property := hn }
[PROOFSTEP]
simp only [gm_eq, Algebra.id.smul_eq_mul, LinearMap.coe_mk]
[GOAL]
case neg.refine'_4.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n • m ∈ Submodule.span ℤ {m}
⊢ ↑{ toFun := fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m,
map_add' :=
(_ :
∀ (x y : ℤ),
(fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m)
(x + y) =
(fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m) x +
(fun n => n • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m)
y) }
(n * m) =
↑g { val := n * m, property := (_ : (fun x => x ∈ Submodule.span ℤ {m}) (n * m)) }
[PROOFSTEP]
dsimp
[GOAL]
case neg.refine'_4.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n • m ∈ Submodule.span ℤ {m}
⊢ (n * m) • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
↑g { val := n * m, property := hn }
[PROOFSTEP]
rw [mul_smul]
-- Porting note: used to be able to just rw [Div...]
[GOAL]
case neg.refine'_4.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n • m ∈ Submodule.span ℤ {m}
⊢ n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
↑g { val := n * m, property := hn }
[PROOFSTEP]
have s := congrArg (fun l => n • l) <| DivisibleBy.div_cancel gₘ m_eq_zero
[GOAL]
case neg.refine'_4.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n • m ∈ Submodule.span ℤ {m}
s : (fun l => n • l) (m • DivisibleBy.div gₘ m) = (fun l => n • l) gₘ
⊢ n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
↑g { val := n * m, property := hn }
[PROOFSTEP]
dsimp at s
[GOAL]
case neg.refine'_4.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n • m ∈ Submodule.span ℤ {m}
s :
n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n • ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
⊢ n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
↑g { val := n * m, property := hn }
[PROOFSTEP]
rw [s, ← LinearMap.map_smul]
[GOAL]
case neg.refine'_4.intro
A : Type u
inst✝¹ : AddCommGroup A
inst✝ : DivisibleBy A ℤ
m : ℤ
g : { x // x ∈ Submodule.span ℤ {m} } →ₗ[ℤ] A
m_eq_zero : ¬m = 0
gₘ : A := ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
gm_eq : gₘ = ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
n : ℤ
hn : n • m ∈ Submodule.span ℤ {m}
s :
n • m • DivisibleBy.div (↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) m =
n • ↑g { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }
⊢ ↑g (n • { val := m, property := (_ : m ∈ ↑(Submodule.span ℤ {m})) }) = ↑g { val := n * m, property := hn }
[PROOFSTEP]
congr
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Injective", "llama_tokens": 32835} |
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCatMax
j : J
⊢ Group ((F ⋙ forget GroupCat).obj j)
[PROOFSTEP]
change Group (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCatMax
j : J
⊢ Group ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCat
src✝ : Submonoid ((j : J) → ↑((F ⋙ forget₂ GroupCat MonCat).obj j)) :=
MonCat.sectionsSubmonoid (F ⋙ forget₂ GroupCat MonCat)
a : (j : J) → ↑(F.obj j)
ah :
a ∈
{
toSubsemigroup :=
{ carrier := Functor.sections (F ⋙ forget GroupCat),
mul_mem' :=
(_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) },
one_mem' :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).map f (OfNat.ofNat 1 j) =
OfNat.ofNat 1 j') }.toSubsemigroup.carrier
j j' : J
f : j ⟶ j'
⊢ (F ⋙ forget GroupCat).map f (a⁻¹ j) = a⁻¹ j'
[PROOFSTEP]
simp only [Functor.comp_map, Pi.inv_apply, MonoidHom.map_inv, inv_inj]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCat
src✝ : Submonoid ((j : J) → ↑((F ⋙ forget₂ GroupCat MonCat).obj j)) :=
MonCat.sectionsSubmonoid (F ⋙ forget₂ GroupCat MonCat)
a : (j : J) → ↑(F.obj j)
ah :
a ∈
{
toSubsemigroup :=
{ carrier := Functor.sections (F ⋙ forget GroupCat),
mul_mem' :=
(_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) },
one_mem' :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
((F ⋙ forget₂ GroupCat MonCat) ⋙ forget MonCat).map f (OfNat.ofNat 1 j) =
OfNat.ofNat 1 j') }.toSubsemigroup.carrier
j j' : J
f : j ⟶ j'
⊢ (forget GroupCat).map (F.map f) (a j)⁻¹ = (a j')⁻¹
[PROOFSTEP]
dsimp [Functor.sections] at ah ⊢
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCat
src✝ : Submonoid ((j : J) → ↑((F ⋙ forget₂ GroupCat MonCat).obj j)) :=
MonCat.sectionsSubmonoid (F ⋙ forget₂ GroupCat MonCat)
a : (j : J) → ↑(F.obj j)
ah : a ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'}
j j' : J
f : j ⟶ j'
⊢ ↑(F.map f) (a j)⁻¹ = (a j')⁻¹
[PROOFSTEP]
rw [(F.map f).map_inv (a j), ah f]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCatMax
⊢ Group (Types.limitCone (F ⋙ forget GroupCat)).pt
[PROOFSTEP]
change Group (sectionsSubgroup.{v, u} F)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCatMax
⊢ Group { x // x ∈ sectionsSubgroup F }
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ GroupCatMax
this : ReflectsIsomorphisms (forget₂ GroupCatMax MonCatMax) := reflectsIsomorphisms_forget₂ GroupCatMax MonCatMax
c' : Cone (F ⋙ forget₂ GroupCat MonCat)
t : IsLimit c'
⊢ (forget₂ GroupCat MonCat).mapCone
{ pt := of (Types.limitCone (F ⋙ forget GroupCatMax)).pt,
π := NatTrans.mk (MonCat.limitπMonoidHom (F ⋙ forget₂ GroupCatMax MonCatMax)) } ≅
c'
[PROOFSTEP]
apply IsLimit.uniqueUpToIso (MonCat.HasLimits.limitConeIsLimit.{v, u} _) t
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommGroupCatMax
j : J
⊢ CommGroup ((F ⋙ forget CommGroupCatMax).obj j)
[PROOFSTEP]
change CommGroup (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommGroupCatMax
j : J
⊢ CommGroup ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommGroupCatMax
this : ReflectsIsomorphisms (forget₂ CommGroupCatMax GroupCatMax) :=
reflectsIsomorphisms_forget₂ CommGroupCatMax GroupCatMax
c' : Cone (F ⋙ forget₂ CommGroupCat GroupCatMax)
t : IsLimit c'
⊢ (forget₂ CommGroupCat GroupCatMax).mapCone
{ pt := of (Types.limitCone (F ⋙ forget CommGroupCat)).pt,
π := NatTrans.mk (MonCat.limitπMonoidHom (F ⋙ forget₂ CommGroupCat GroupCat ⋙ forget₂ GroupCat MonCat)) } ≅
c'
[PROOFSTEP]
apply IsLimit.uniqueUpToIso (GroupCat.limitConeIsLimit _) t
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommGroupCatMax
this : ReflectsIsomorphisms (forget₂ CommGroupCatMax GroupCatMax) :=
reflectsIsomorphisms_forget₂ CommGroupCatMax GroupCatMax
c' : Cone (F ⋙ forget₂ CommGroupCat GroupCatMax)
t : IsLimit c'
⊢ IsLimit
((forget₂ CommGroupCatMax GroupCat ⋙ forget₂ GroupCat MonCat).mapCone
{
liftedCone :=
{ pt := of (Types.limitCone (F ⋙ forget CommGroupCat)).pt,
π := NatTrans.mk (MonCat.limitπMonoidHom (F ⋙ forget₂ CommGroupCat GroupCat ⋙ forget₂ GroupCat MonCat)) },
validLift :=
IsLimit.uniqueUpToIso (GroupCat.limitConeIsLimit (F ⋙ forget₂ CommGroupCat GroupCatMax)) t }.liftedCone)
[PROOFSTEP]
apply MonCat.HasLimits.limitConeIsLimit _
[GOAL]
J✝ : Type v
inst✝ : SmallCategory J✝
J : Type v
𝒥 : Category.{v, v} J
F : J ⥤ CommGroupCatMax
⊢ PreservesLimit F (forget₂ CommGroupCatMax GroupCatMax)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
f : ℕ → AddCommGroupCat
⊢ HasProduct f
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0
[PROOFSTEP]
refine Subtype.ext ?_
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ ↑((fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0) = ↑0
[PROOFSTEP]
simp [(AddSubgroup.coe_zero _).symm]
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
g g' : ↑(kernel f)
⊢ ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
(g + g') =
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g +
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g'
[PROOFSTEP]
refine Subtype.ext ?_
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
g g' : ↑(kernel f)
⊢ ↑(ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
(g + g')) =
↑(ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g +
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g')
[PROOFSTEP]
change _ = _ + _
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
g g' : ↑(kernel f)
⊢ ↑(ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' := (_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
(g + g')) =
↑(ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g) +
↑(ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g')
[PROOFSTEP]
dsimp
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
g g' : ↑(kernel f)
⊢ ↑(kernel.ι f) (g + g') = ↑(kernel.ι f) g + ↑(kernel.ι f) g'
[PROOFSTEP]
simp
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0
[PROOFSTEP]
refine FunLike.ext _ _ ?_
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ ∀ (x : ↑(of { x // x ∈ AddMonoidHom.ker f })), ↑(AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f) x = ↑0 x
[PROOFSTEP]
rintro ⟨x, (hx : f _ = 0)⟩
[GOAL]
case mk
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
hx : ↑f x = 0
⊢ ↑(AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f) { val := x, property := hx } = ↑0 { val := x, property := hx }
[PROOFSTEP]
exact hx
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ {
toZeroHom :=
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) },
map_add' :=
(_ :
∀ (g g' : ↑(kernel f)),
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
(g + g') =
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g +
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g') } ≫
kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0) =
𝟙 (kernel f)
[PROOFSTEP]
refine equalizer.hom_ext ?_
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ ({
toZeroHom :=
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) },
map_add' :=
(_ :
∀ (g g' : ↑(kernel f)),
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
(g + g') =
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g +
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g') } ≫
kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f))
(_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)) ≫
equalizer.ι f 0 =
𝟙 (kernel f) ≫ equalizer.ι f 0
[PROOFSTEP]
ext x
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑(kernel f)
⊢ ↑(({
toZeroHom :=
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) },
map_add' :=
(_ :
∀ (g g' : ↑(kernel f)),
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 =
0) }
(g + g') =
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 =
0) }
g +
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 =
0) }
g') } ≫
kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f))
(_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)) ≫
equalizer.ι f 0)
x =
↑(𝟙 (kernel f) ≫ equalizer.ι f 0) x
[PROOFSTEP]
dsimp
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑(kernel f)
⊢ ↑(kernel.ι f)
(↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f))
(_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0))
{ val := ↑(kernel.ι f) x, property := (_ : ↑(kernel.ι f ≫ f) x = ↑0 x) }) =
↑(kernel.ι f) x
[PROOFSTEP]
generalize_proofs _ h1 h2
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑(kernel f)
h✝ : HasKernel f
h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0
h2 : ↑(kernel.ι f ≫ f) x = ↑0 x
⊢ ↑(kernel.ι f)
(↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) h1) { val := ↑(kernel.ι f) x, property := h2 }) =
↑(kernel.ι f) x
[PROOFSTEP]
erw [FunLike.congr_fun (kernel.lift_ι f _ h1) ⟨_, h2⟩]
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑(kernel f)
h✝ : HasKernel f
h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0
h2 : ↑(kernel.ι f ≫ f) x = ↑0 x
⊢ ↑(AddSubgroup.subtype (AddMonoidHom.ker f)) { val := ↑(kernel.ι f) x, property := h2 } = ↑(kernel.ι f) x
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0) ≫
{
toZeroHom :=
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) },
map_add' :=
(_ :
∀ (g g' : ↑(kernel f)),
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
(g + g') =
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g +
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) }
g') } =
𝟙 (of { x // x ∈ AddMonoidHom.ker f })
[PROOFSTEP]
apply AddCommGroupCat.ext
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ ∀ (x : ↑(of { x // x ∈ AddMonoidHom.ker f })),
↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) (_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0) ≫
{
toZeroHom :=
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) },
map_add' :=
(_ :
∀ (g g' : ↑(kernel f)),
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 =
0) }
(g + g') =
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 =
0) }
g +
ZeroHom.toFun
{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ :
(fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 =
0) }
g') })
x =
↑(𝟙 (of { x // x ∈ AddMonoidHom.ker f })) x
[PROOFSTEP]
simp only [AddMonoidHom.coe_mk, coe_id, coe_comp]
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ ∀ (x : ↑(of { x // x ∈ AddMonoidHom.ker f })),
(↑{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } ∘
↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f))
(_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)))
x =
id x
[PROOFSTEP]
rintro ⟨x, mem⟩
[GOAL]
case w.mk
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
mem : x ∈ AddMonoidHom.ker f
⊢ (↑{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } ∘
↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f))
(_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)))
{ val := x, property := mem } =
id { val := x, property := mem }
[PROOFSTEP]
refine Subtype.ext ?_
[GOAL]
case w.mk
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
mem : x ∈ AddMonoidHom.ker f
⊢ ↑((↑{ toFun := fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) },
map_zero' :=
(_ : (fun g => { val := ↑(kernel.ι f) g, property := (_ : ↑(kernel.ι f ≫ f) g = ↑0 g) }) 0 = 0) } ∘
↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f))
(_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0)))
{ val := x, property := mem }) =
↑(id { val := x, property := mem })
[PROOFSTEP]
simp only [ZeroHom.coe_mk, Function.comp_apply, id_eq]
[GOAL]
case w.mk
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
mem : x ∈ AddMonoidHom.ker f
⊢ ↑(kernel.ι f)
(↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f))
(_ : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0))
{ val := x, property := mem }) =
x
[PROOFSTEP]
generalize_proofs _ h1 h2
[GOAL]
case w.mk
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
mem : x ∈ AddMonoidHom.ker f
h✝ : HasKernel f
h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0
⊢ ↑(kernel.ι f) (↑(kernel.lift f (AddSubgroup.subtype (AddMonoidHom.ker f)) h1) { val := x, property := mem }) = x
[PROOFSTEP]
erw [FunLike.congr_fun (kernel.lift_ι f _ h1) ⟨_, mem⟩]
[GOAL]
case w.mk
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x : ↑G
mem : x ∈ AddMonoidHom.ker f
h✝ : HasKernel f
h1 : AddSubgroup.subtype (AddMonoidHom.ker f) ≫ f = 0
⊢ ↑(AddSubgroup.subtype (AddMonoidHom.ker f)) { val := x, property := mem } = x
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ (kernelIsoKer f).hom ≫ AddSubgroup.subtype (AddMonoidHom.ker f) = kernel.ι f
[PROOFSTEP]
ext
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x✝ : ↑(kernel f)
⊢ ↑((kernelIsoKer f).hom ≫ AddSubgroup.subtype (AddMonoidHom.ker f)) x✝ = ↑(kernel.ι f) x✝
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
⊢ (kernelIsoKer f).inv ≫ kernel.ι f = AddSubgroup.subtype (AddMonoidHom.ker f)
[PROOFSTEP]
ext
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
G H : AddCommGroupCat
f : G ⟶ H
x✝ : ↑(of { x // x ∈ AddMonoidHom.ker f })
⊢ ↑((kernelIsoKer f).inv ≫ kernel.ι f) x✝ = ↑(AddSubgroup.subtype (AddMonoidHom.ker f)) x✝
[PROOFSTEP]
simp [kernelIsoKer]
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Limits", "llama_tokens": 9401} |
[GOAL]
R : Type u
inst✝ : Ring R
M : ModuleCat R
N : Submodule R ↑M
⊢ (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N
[PROOFSTEP]
convert congr_arg LinearMap.range (underlyingIso_arrow (↾N.subtype : of R { x // x ∈ N } ⟶ M)) using 1
[GOAL]
case h.e'_2
R : Type u
inst✝ : Ring R
M : ModuleCat R
N : Submodule R ↑M
⊢ (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) =
LinearMap.range ((underlyingIso (↾(Submodule.subtype N))).inv ≫ arrow (Subobject.mk (↾(Submodule.subtype N))))
[PROOFSTEP]
have :
-- Porting note: added the `.toLinearEquiv.toLinearMap`(underlyingIso (↾N.subtype : of R _ ⟶ M)).inv =
(underlyingIso (↾N.subtype : of R _ ⟶ M)).symm.toLinearEquiv.toLinearMap :=
by
apply LinearMap.ext
intro x
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M : ModuleCat R
N : Submodule R ↑M
⊢ (underlyingIso (↾(Submodule.subtype N))).inv = ↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm)
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u
inst✝ : Ring R
M : ModuleCat R
N : Submodule R ↑M
⊢ ∀ (x : ↑(of R { x // x ∈ N })),
↑(underlyingIso (↾(Submodule.subtype N))).inv x =
↑↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm) x
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
inst✝ : Ring R
M : ModuleCat R
N : Submodule R ↑M
x : ↑(of R { x // x ∈ N })
⊢ ↑(underlyingIso (↾(Submodule.subtype N))).inv x =
↑↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm) x
[PROOFSTEP]
rfl
[GOAL]
case h.e'_2
R : Type u
inst✝ : Ring R
M : ModuleCat R
N : Submodule R ↑M
this : (underlyingIso (↾(Submodule.subtype N))).inv = ↑(Iso.toLinearEquiv (underlyingIso (↾(Submodule.subtype N))).symm)
⊢ (fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) =
LinearMap.range ((underlyingIso (↾(Submodule.subtype N))).inv ≫ arrow (Subobject.mk (↾(Submodule.subtype N))))
[PROOFSTEP]
rw [this, comp_def, LinearEquiv.range_comp]
[GOAL]
case h.e'_3
R : Type u
inst✝ : Ring R
M : ModuleCat R
N : Submodule R ↑M
⊢ N = LinearMap.range (↾(Submodule.subtype N))
[PROOFSTEP]
exact (Submodule.range_subtype _).symm
[GOAL]
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ S = (fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S)
[PROOFSTEP]
fapply eq_mk_of_comm
[GOAL]
case i
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ underlying.obj S ≅ of R { x // x ∈ (fun S => LinearMap.range (arrow S)) S }
[PROOFSTEP]
apply LinearEquiv.toModuleIso'Left
[GOAL]
case i.e
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ ↑(underlying.obj S) ≃ₗ[R] { x // x ∈ (fun S => LinearMap.range (arrow S)) S }
[PROOFSTEP]
apply LinearEquiv.ofBijective (LinearMap.codRestrict (LinearMap.range S.arrow) S.arrow _)
[GOAL]
case i.e
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ Function.Bijective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) ?m.95491)
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ ∀ (c : ↑(underlying.obj S)), ↑(arrow S) c ∈ LinearMap.range (arrow S)
[PROOFSTEP]
constructor
[GOAL]
case i.e.left
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ Function.Injective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) ?m.95491)
[PROOFSTEP]
simp [← LinearMap.ker_eq_bot, LinearMap.ker_codRestrict]
[GOAL]
case i.e.left
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ LinearMap.ker (arrow S) = ⊥
[PROOFSTEP]
rw [ker_eq_bot_of_mono]
[GOAL]
case i.e.right
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ Function.Surjective ↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S) ?m.95491)
[PROOFSTEP]
rw [← LinearMap.range_eq_top, LinearMap.range_codRestrict, Submodule.comap_subtype_self]
[GOAL]
case i.e.right.hf
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ ∀ (c : ↑(underlying.obj S)), ↑(arrow S) c ∈ LinearMap.range (arrow S)
[PROOFSTEP]
exact LinearMap.mem_range_self _
[GOAL]
case w
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ (LinearEquiv.toModuleIso'Left
(LinearEquiv.ofBijective
(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))
(_ :
Function.Injective
↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) ∧
Function.Surjective
↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))))).hom ≫
↾(Submodule.subtype ((fun S => LinearMap.range (arrow S)) S)) =
arrow S
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case w.h
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
⊢ ∀ (x : ↑(underlying.obj S)),
↑((LinearEquiv.toModuleIso'Left
(LinearEquiv.ofBijective
(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))
(_ :
Function.Injective
↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) ∧
Function.Surjective
↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))))).hom ≫
↾(Submodule.subtype ((fun S => LinearMap.range (arrow S)) S)))
x =
↑(arrow S) x
[PROOFSTEP]
intro x
[GOAL]
case w.h
R : Type u
inst✝ : Ring R
M : ModuleCat R
S : Subobject M
x : ↑(underlying.obj S)
⊢ ↑((LinearEquiv.toModuleIso'Left
(LinearEquiv.ofBijective
(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))
(_ :
Function.Injective
↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S))) ∧
Function.Surjective
↑(LinearMap.codRestrict (LinearMap.range (arrow S)) (arrow S)
(_ : ∀ (x : ↑(underlying.obj S)), ↑(arrow S) x ∈ LinearMap.range (arrow S)))))).hom ≫
↾(Submodule.subtype ((fun S => LinearMap.range (arrow S)) S)))
x =
↑(arrow S) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M : ModuleCat R
S T : Submodule R ↑M
⊢ ↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
S ≤
↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
T ↔
S ≤ T
[PROOFSTEP]
refine' ⟨fun h => _, fun h => mk_le_mk_of_comm (↟(Submodule.ofLe h)) rfl⟩
[GOAL]
R : Type u
inst✝ : Ring R
M : ModuleCat R
S T : Submodule R ↑M
h :
↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
S ≤
↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
T
⊢ S ≤ T
[PROOFSTEP]
convert LinearMap.range_comp_le_range (ofMkLEMk _ _ h) (↾T.subtype)
[GOAL]
case h.e'_3
R : Type u
inst✝ : Ring R
M : ModuleCat R
S T : Submodule R ↑M
h :
↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
S ≤
↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
T
⊢ S =
LinearMap.range
(LinearMap.comp (↾(Submodule.subtype T)) (ofMkLEMk (↾(Submodule.subtype S)) (↾(Submodule.subtype T)) h))
[PROOFSTEP]
simpa only [← comp_def, ofMkLEMk_comp] using (Submodule.range_subtype _).symm
[GOAL]
case h.e'_4
R : Type u
inst✝ : Ring R
M : ModuleCat R
S T : Submodule R ↑M
h :
↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
S ≤
↑{ toFun := fun N => Subobject.mk (↾(Submodule.subtype N)), invFun := fun S => LinearMap.range (arrow S),
left_inv :=
(_ :
∀ (N : Submodule R ↑M),
(fun S => LinearMap.range (arrow S)) ((fun N => Subobject.mk (↾(Submodule.subtype N))) N) = N),
right_inv :=
(_ :
∀ (S : Subobject M),
(fun N => Subobject.mk (↾(Submodule.subtype N))) ((fun S => LinearMap.range (arrow S)) S) = S) }
T
⊢ T = LinearMap.range (↾(Submodule.subtype T))
[PROOFSTEP]
exact (Submodule.range_subtype _).symm
[GOAL]
R : Type u
inst✝ : Ring R
M✝ : ModuleCat R
M N : ModuleCat R
f : M ⟶ N
x : { x // x ∈ LinearMap.ker f }
⊢ ↑(arrow (kernelSubobject f)) (↑toKernelSubobject x) = ↑x
[PROOFSTEP]
suffices ((arrow ((kernelSubobject f))) ∘ (kernelSubobjectIso f ≪≫ kernelIsoKer f).inv) x = x by convert this
[GOAL]
R : Type u
inst✝ : Ring R
M✝ : ModuleCat R
M N : ModuleCat R
f : M ⟶ N
x : { x // x ∈ LinearMap.ker f }
this : (↑(arrow (kernelSubobject f)) ∘ ↑(kernelSubobjectIso f ≪≫ kernelIsoKer f).inv) x = ↑x
⊢ ↑(arrow (kernelSubobject f)) (↑toKernelSubobject x) = ↑x
[PROOFSTEP]
convert this
[GOAL]
R : Type u
inst✝ : Ring R
M✝ : ModuleCat R
M N : ModuleCat R
f : M ⟶ N
x : { x // x ∈ LinearMap.ker f }
⊢ (↑(arrow (kernelSubobject f)) ∘ ↑(kernelSubobjectIso f ≪≫ kernelIsoKer f).inv) x = ↑x
[PROOFSTEP]
rw [Iso.trans_inv, ← coe_comp, Category.assoc]
[GOAL]
R : Type u
inst✝ : Ring R
M✝ : ModuleCat R
M N : ModuleCat R
f : M ⟶ N
x : { x // x ∈ LinearMap.ker f }
⊢ ↑((kernelIsoKer f).inv ≫ (kernelSubobjectIso f).inv ≫ arrow (kernelSubobject f)) x = ↑x
[PROOFSTEP]
simp only [Category.assoc, kernelSubobject_arrow', kernelIsoKer_inv_kernel_ι]
[GOAL]
R : Type u
inst✝ : Ring R
M✝ : ModuleCat R
M N : ModuleCat R
f : M ⟶ N
x : { x // x ∈ LinearMap.ker f }
⊢ ↑(Submodule.subtype (LinearMap.ker f)) x = ↑x
[PROOFSTEP]
aesop_cat
[GOAL]
R : Type u
inst✝² : Ring R
M✝ L M N : ModuleCat R
f : L ⟶ M
inst✝¹ : HasImage f
g : underlying.obj (imageSubobject f) ⟶ N
inst✝ : HasCokernel g
x y : ↑N
l : ↑L
w : x = y + ↑g (↑(factorThruImageSubobject f) l)
⊢ ↑(cokernel.π g) x = ↑(cokernel.π g) y
[PROOFSTEP]
subst w
[GOAL]
R : Type u
inst✝² : Ring R
M✝ L M N : ModuleCat R
f : L ⟶ M
inst✝¹ : HasImage f
g : underlying.obj (imageSubobject f) ⟶ N
inst✝ : HasCokernel g
y : ↑N
l : ↑L
⊢ ↑(cokernel.π g) (y + ↑g (↑(factorThruImageSubobject f) l)) = ↑(cokernel.π g) y
[PROOFSTEP]
simp only [map_add, add_right_eq_self]
[GOAL]
R : Type u
inst✝² : Ring R
M✝ L M N : ModuleCat R
f : L ⟶ M
inst✝¹ : HasImage f
g : underlying.obj (imageSubobject f) ⟶ N
inst✝ : HasCokernel g
y : ↑N
l : ↑L
⊢ ↑(cokernel.π g) (↑g (↑(factorThruImageSubobject f) l)) = 0
[PROOFSTEP]
change ((cokernel.π g) ∘ (g) ∘ (factorThruImageSubobject f)) l = 0
[GOAL]
R : Type u
inst✝² : Ring R
M✝ L M N : ModuleCat R
f : L ⟶ M
inst✝¹ : HasImage f
g : underlying.obj (imageSubobject f) ⟶ N
inst✝ : HasCokernel g
y : ↑N
l : ↑L
⊢ (↑(cokernel.π g) ∘ ↑g ∘ ↑(factorThruImageSubobject f)) l = 0
[PROOFSTEP]
rw [← coe_comp, ← coe_comp, Category.assoc]
[GOAL]
R : Type u
inst✝² : Ring R
M✝ L M N : ModuleCat R
f : L ⟶ M
inst✝¹ : HasImage f
g : underlying.obj (imageSubobject f) ⟶ N
inst✝ : HasCokernel g
y : ↑N
l : ↑L
⊢ ↑(factorThruImageSubobject f ≫ g ≫ cokernel.π g) l = 0
[PROOFSTEP]
simp only [cokernel.condition, comp_zero]
[GOAL]
R : Type u
inst✝² : Ring R
M✝ L M N : ModuleCat R
f : L ⟶ M
inst✝¹ : HasImage f
g : underlying.obj (imageSubobject f) ⟶ N
inst✝ : HasCokernel g
y : ↑N
l : ↑L
⊢ ↑0 l = 0
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Subobject", "llama_tokens": 5895} |
[GOAL]
⊢ ConcreteCategory GroupCat
[PROOFSTEP]
dsimp only [GroupCat]
[GOAL]
⊢ ConcreteCategory (Bundled Group)
[PROOFSTEP]
infer_instance
[GOAL]
R S : GroupCat
i : R ⟶ S
r : ↑R
h : r = 1
⊢ ↑i r = 1
[PROOFSTEP]
simp [h]
[GOAL]
⊢ ConcreteCategory CommGroupCat
[PROOFSTEP]
dsimp only [CommGroupCat]
[GOAL]
⊢ ConcreteCategory (Bundled CommGroup)
[PROOFSTEP]
infer_instance
[GOAL]
R S : CommGroupCat
i : R ⟶ S
r : ↑R
h : r = 1
⊢ ↑i r = 1
[PROOFSTEP]
simp [h]
[GOAL]
G : AddCommGroupCat
h k : ↑G
w : asHom h = asHom k
⊢ h = k
[PROOFSTEP]
convert congr_arg (fun k : AddCommGroupCat.of ℤ ⟶ G => (k : ℤ → G) (1 : ℤ)) w
[GOAL]
case h.e'_2
G : AddCommGroupCat
h k : ↑G
w : asHom h = asHom k
⊢ h = ↑(asHom h) 1
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
G : AddCommGroupCat
h k : ↑G
w : asHom h = asHom k
⊢ k = ↑(asHom k) 1
[PROOFSTEP]
simp
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
inst✝ : Mono f
g₁ g₂ : ↑G
h : ↑f g₁ = ↑f g₂
⊢ g₁ = g₂
[PROOFSTEP]
have t0 : asHom g₁ ≫ f = asHom g₂ ≫ f := by aesop_cat
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
inst✝ : Mono f
g₁ g₂ : ↑G
h : ↑f g₁ = ↑f g₂
⊢ asHom g₁ ≫ f = asHom g₂ ≫ f
[PROOFSTEP]
aesop_cat
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
inst✝ : Mono f
g₁ g₂ : ↑G
h : ↑f g₁ = ↑f g₂
t0 : asHom g₁ ≫ f = asHom g₂ ≫ f
⊢ g₁ = g₂
[PROOFSTEP]
have t1 : asHom g₁ = asHom g₂ := (cancel_mono _).1 t0
[GOAL]
G H : AddCommGroupCat
f : G ⟶ H
inst✝ : Mono f
g₁ g₂ : ↑G
h : ↑f g₁ = ↑f g₂
t0 : asHom g₁ ≫ f = asHom g₂ ≫ f
t1 : asHom g₁ = asHom g₂
⊢ g₁ = g₂
[PROOFSTEP]
apply asHom_injective t1
[GOAL]
α : Type u
⊢ (fun g => g.toEquiv) 1 = 1
[PROOFSTEP]
aesop
[GOAL]
α : Type u
⊢ ∀ (x y : ↑(GroupCat.of (Aut α))),
OneHom.toFun { toFun := fun g => g.toEquiv, map_one' := (_ : (fun g => g.toEquiv) 1 = 1) } (x * y) =
OneHom.toFun { toFun := fun g => g.toEquiv, map_one' := (_ : (fun g => g.toEquiv) 1 = 1) } x *
OneHom.toFun { toFun := fun g => g.toEquiv, map_one' := (_ : (fun g => g.toEquiv) 1 = 1) } y
[PROOFSTEP]
aesop
[GOAL]
α : Type u
⊢ (fun g => Equiv.toIso g) 1 = 1
[PROOFSTEP]
aesop
[GOAL]
α : Type u
⊢ ∀ (x y : ↑(GroupCat.of (Equiv.Perm α))),
OneHom.toFun { toFun := fun g => Equiv.toIso g, map_one' := (_ : (fun g => Equiv.toIso g) 1 = 1) } (x * y) =
OneHom.toFun { toFun := fun g => Equiv.toIso g, map_one' := (_ : (fun g => Equiv.toIso g) 1 = 1) } x *
OneHom.toFun { toFun := fun g => Equiv.toIso g, map_one' := (_ : (fun g => Equiv.toIso g) 1 = 1) } y
[PROOFSTEP]
aesop
[GOAL]
X Y : GroupCat
f : X ⟶ Y
x✝ : IsIso ((forget GroupCat).map f)
⊢ IsIso f
[PROOFSTEP]
let i := asIso ((forget GroupCat).map f)
[GOAL]
X Y : GroupCat
f : X ⟶ Y
x✝ : IsIso ((forget GroupCat).map f)
i : (forget GroupCat).obj X ≅ (forget GroupCat).obj Y := asIso ((forget GroupCat).map f)
⊢ IsIso f
[PROOFSTEP]
let e : X ≃* Y := MulEquiv.mk i.toEquiv (MonoidHom.map_mul (show MonoidHom X Y from f))
[GOAL]
X Y : GroupCat
f : X ⟶ Y
x✝ : IsIso ((forget GroupCat).map f)
i : (forget GroupCat).obj X ≅ (forget GroupCat).obj Y := asIso ((forget GroupCat).map f)
e : ↑X ≃* ↑Y :=
{ toEquiv := i.toEquiv,
map_mul' :=
(_ :
∀ (a b : ↑X),
↑(let_fun this := f;
this)
(a * b) =
↑(let_fun this := f;
this)
a *
↑(let_fun this := f;
this)
b) }
⊢ IsIso f
[PROOFSTEP]
exact IsIso.of_iso e.toGroupCatIso
[GOAL]
X Y : CommGroupCat
f : X ⟶ Y
x✝ : IsIso ((forget CommGroupCat).map f)
⊢ IsIso f
[PROOFSTEP]
let i := asIso ((forget CommGroupCat).map f)
[GOAL]
X Y : CommGroupCat
f : X ⟶ Y
x✝ : IsIso ((forget CommGroupCat).map f)
i : (forget CommGroupCat).obj X ≅ (forget CommGroupCat).obj Y := asIso ((forget CommGroupCat).map f)
⊢ IsIso f
[PROOFSTEP]
let e : X ≃* Y := MulEquiv.mk i.toEquiv (MonoidHom.map_mul (show MonoidHom X Y from f))
[GOAL]
X Y : CommGroupCat
f : X ⟶ Y
x✝ : IsIso ((forget CommGroupCat).map f)
i : (forget CommGroupCat).obj X ≅ (forget CommGroupCat).obj Y := asIso ((forget CommGroupCat).map f)
e : ↑X ≃* ↑Y :=
{ toEquiv := i.toEquiv,
map_mul' :=
(_ :
∀ (a b : ↑X),
↑(let_fun this := f;
this)
(a * b) =
↑(let_fun this := f;
this)
a *
↑(let_fun this := f;
this)
b) }
⊢ IsIso f
[PROOFSTEP]
exact IsIso.of_iso e.toCommGroupCatIso
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Basic", "llama_tokens": 2076} |
[GOAL]
A : Type u
B : Type v
inst✝¹ : Group A
inst✝ : Group B
f : A →* B
h : ∀ (u v : { x // x ∈ ker f } →* A), comp f u = comp f v → u = v
⊢ ker f = ⊥
[PROOFSTEP]
simpa using _root_.congr_arg range (h f.ker.subtype 1 (by aesop_cat))
[GOAL]
A : Type u
B : Type v
inst✝¹ : Group A
inst✝ : Group B
f : A →* B
h : ∀ (u v : { x // x ∈ ker f } →* A), comp f u = comp f v → u = v
⊢ comp f (Subgroup.subtype (ker f)) = comp f 1
[PROOFSTEP]
aesop_cat
[GOAL]
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v
⊢ range f = ⊤
[PROOFSTEP]
specialize h 1 (QuotientGroup.mk' _) _
[GOAL]
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v
⊢ comp 1 f = comp (QuotientGroup.mk' (range f)) f
[PROOFSTEP]
ext1 x
[GOAL]
case h
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v
x : A
⊢ ↑(comp 1 f) x = ↑(comp (QuotientGroup.mk' (range f)) f) x
[PROOFSTEP]
simp only [one_apply, coe_comp, coe_mk', Function.comp_apply]
[GOAL]
case h
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v
x : A
⊢ 1 = ↑(↑f x)
[PROOFSTEP]
rw [show (1 : B ⧸ f.range) = (1 : B) from QuotientGroup.mk_one _, QuotientGroup.eq, inv_one, one_mul]
[GOAL]
case h
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : ∀ (u v : B →* B ⧸ range f), comp u f = comp v f → u = v
x : A
⊢ ↑f x ∈ range f
[PROOFSTEP]
exact ⟨x, rfl⟩
[GOAL]
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : 1 = QuotientGroup.mk' (range f)
⊢ range f = ⊤
[PROOFSTEP]
replace h : (QuotientGroup.mk' _).ker = (1 : B →* B ⧸ f.range).ker := by rw [h]
[GOAL]
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : 1 = QuotientGroup.mk' (range f)
⊢ ker (QuotientGroup.mk' ?m.28184) = ker 1
[PROOFSTEP]
rw [h]
[GOAL]
A : Type u
B : Type v
inst✝¹ : CommGroup A
inst✝ : CommGroup B
f : A →* B
h : ker (QuotientGroup.mk' (range f)) = ker 1
⊢ range f = ⊤
[PROOFSTEP]
rwa [ker_one, QuotientGroup.ker_mk'] at h
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
x : X'
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ b *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)
[PROOFSTEP]
rw [← y.2.choose_spec, leftCoset_assoc]
-- Porting note: should we make `Bundled.α` reducible?
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
x : X'
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ b *
Exists.choose
(_ : ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) *l
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)
[PROOFSTEP]
let b' : B := y.2.choose
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
x : X'
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
b' : ↑B :=
Exists.choose (_ : ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ b *
Exists.choose
(_ : ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) *l
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)
[PROOFSTEP]
use b * b'
[GOAL]
A B : GroupCat
f : A ⟶ B
b b' : ↑B
x : X'
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ (b * b') • fromCoset y = b • b' • fromCoset y
[PROOFSTEP]
change fromCoset _ = fromCoset _
[GOAL]
A B : GroupCat
f : A ⟶ B
b b' : ↑B
x : X'
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ fromCoset
{ val := b * b' *l ↑y,
property :=
(_ :
b * b' *l ↑y ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } =
fromCoset
{
val :=
b *l
↑{ val := b' *l ↑y,
property :=
(_ :
b' *l ↑y ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) },
property :=
(_ :
b *l
↑{ val := b' *l ↑y,
property :=
(_ :
b' *l ↑y ∈
Set.range
(Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
simp only [leftCoset_assoc]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : X'
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ 1 • fromCoset y = fromCoset y
[PROOFSTEP]
change fromCoset _ = fromCoset _
[GOAL]
A B : GroupCat
f : A ⟶ B
x : X'
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ fromCoset
{ val := 1 *l ↑y,
property :=
(_ : 1 *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } =
fromCoset y
[PROOFSTEP]
simp only [one_leftCoset, Subtype.ext_iff_val]
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : b ∈ MonoidHom.range f
⊢ fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
congr
[GOAL]
case e_a.e_val
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : b ∈ MonoidHom.range f
⊢ b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
let b : B.α := b
[GOAL]
case e_a.e_val
A B : GroupCat
f : A ⟶ B
b✝ : ↑B
hb : b✝ ∈ MonoidHom.range f
b : ↑B := b✝
⊢ b✝ *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
change b *l f.range = f.range
[GOAL]
case e_a.e_val
A B : GroupCat
f : A ⟶ B
b✝ : ↑B
hb : b✝ ∈ MonoidHom.range f
b : ↑B := b✝
⊢ b *l ↑(MonoidHom.range f) = ↑(MonoidHom.range f)
[PROOFSTEP]
nth_rw 2 [show (f.range : Set B.α) = 1 *l f.range from (one_leftCoset _).symm]
[GOAL]
case e_a.e_val
A B : GroupCat
f : A ⟶ B
b✝ : ↑B
hb : b✝ ∈ MonoidHom.range f
b : ↑B := b✝
⊢ b *l ↑(MonoidHom.range f) = 1 *l ↑(MonoidHom.range f)
[PROOFSTEP]
rw [leftCoset_eq_iff, mul_one]
[GOAL]
case e_a.e_val
A B : GroupCat
f : A ⟶ B
b✝ : ↑B
hb : b✝ ∈ MonoidHom.range f
b : ↑B := b✝
⊢ b⁻¹ ∈ MonoidHom.range f
[PROOFSTEP]
exact Subgroup.inv_mem _ hb
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ≠
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
intro r
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ¬b ∈ MonoidHom.range f
r :
fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
⊢ False
[PROOFSTEP]
simp only [fromCoset.injEq, Subtype.mk.injEq] at r
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ¬b ∈ MonoidHom.range f
r : b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
⊢ False
[PROOFSTEP]
let b' : B.α := b
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ¬b ∈ MonoidHom.range f
r : b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
b' : ↑B := b
⊢ False
[PROOFSTEP]
change b' *l f.range = f.range at r
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ¬b ∈ MonoidHom.range f
b' : ↑B := b
r : b' *l ↑(MonoidHom.range f) = ↑(MonoidHom.range f)
⊢ False
[PROOFSTEP]
nth_rw 2 [show (f.range : Set B.α) = 1 *l f.range from (one_leftCoset _).symm] at r
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ¬b ∈ MonoidHom.range f
b' : ↑B := b
r : b' *l ↑(MonoidHom.range f) = 1 *l ↑(MonoidHom.range f)
⊢ False
[PROOFSTEP]
rw [leftCoset_eq_iff, mul_one] at r
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ¬b ∈ MonoidHom.range f
b' : ↑B := b
r : b'⁻¹ ∈ MonoidHom.range f
⊢ False
[PROOFSTEP]
exact hb (inv_inv b ▸ Subgroup.inv_mem _ r)
[GOAL]
A B : GroupCat
f : A ⟶ B
⊢ ↑τ.symm
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
∞
[PROOFSTEP]
rw [tau, Equiv.symm_swap, Equiv.swap_apply_left]
[GOAL]
A B : GroupCat
f : A ⟶ B
⊢ ↑τ.symm ∞ =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
rw [tau, Equiv.symm_swap, Equiv.swap_apply_right]
[GOAL]
A B : GroupCat
f : A ⟶ B
β : ↑B
x : X'
⊢ (fun x => β⁻¹ • x) ((fun x => β • x) x) = x
[PROOFSTEP]
dsimp only
[GOAL]
A B : GroupCat
f : A ⟶ B
β : ↑B
x : X'
⊢ β⁻¹ • β • x = x
[PROOFSTEP]
rw [← mul_smul, mul_left_inv, one_smul]
[GOAL]
A B : GroupCat
f : A ⟶ B
β : ↑B
x : X'
⊢ (fun x => β • x) ((fun x => β⁻¹ • x) x) = x
[PROOFSTEP]
dsimp only
[GOAL]
A B : GroupCat
f : A ⟶ B
β : ↑B
x : X'
⊢ β • β⁻¹ • x = x
[PROOFSTEP]
rw [← mul_smul, mul_right_inv, one_smul]
[GOAL]
A B : GroupCat
f : A ⟶ B
⊢ (fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1 =
1
[PROOFSTEP]
ext
[GOAL]
case H
A B : GroupCat
f : A ⟶ B
x✝ : X'
⊢ ↑((fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1)
x✝ =
↑1 x✝
[PROOFSTEP]
simp [one_smul]
[GOAL]
A B : GroupCat
f : A ⟶ B
b1 b2 : ↑B
⊢ OneHom.toFun
{
toFun := fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) },
map_one' :=
(_ :
(fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1 =
1) }
(b1 * b2) =
OneHom.toFun
{
toFun := fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) },
map_one' :=
(_ :
(fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1 =
1) }
b1 *
OneHom.toFun
{
toFun := fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) },
map_one' :=
(_ :
(fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1 =
1) }
b2
[PROOFSTEP]
ext
[GOAL]
case H
A B : GroupCat
f : A ⟶ B
b1 b2 : ↑B
x✝ : X'
⊢ ↑(OneHom.toFun
{
toFun := fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) },
map_one' :=
(_ :
(fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1 =
1) }
(b1 * b2))
x✝ =
↑(OneHom.toFun
{
toFun := fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) },
map_one' :=
(_ :
(fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1 =
1) }
b1 *
OneHom.toFun
{
toFun := fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) },
map_one' :=
(_ :
(fun β =>
{ toFun := fun x => β • x, invFun := fun x => β⁻¹ • x,
left_inv := (_ : ∀ (x : X'), (fun x => β⁻¹ • x) ((fun x => β • x) x) = x),
right_inv := (_ : ∀ (x : X'), (fun x => β • x) ((fun x => β⁻¹ • x) x) = x) })
1 =
1) }
b2)
x✝
[PROOFSTEP]
simp [mul_smul]
[GOAL]
A B : GroupCat
f : A ⟶ B
⊢ (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1
[PROOFSTEP]
ext
[GOAL]
case H
A B : GroupCat
f : A ⟶ B
x✝ : X'
⊢ ↑((fun β => (τ.symm.trans (↑g β)).trans τ) 1) x✝ = ↑1 x✝
[PROOFSTEP]
simp
[GOAL]
A B : GroupCat
f : A ⟶ B
b1 b2 : ↑B
⊢ OneHom.toFun
{ toFun := fun β => (τ.symm.trans (↑g β)).trans τ,
map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) }
(b1 * b2) =
OneHom.toFun
{ toFun := fun β => (τ.symm.trans (↑g β)).trans τ,
map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) }
b1 *
OneHom.toFun
{ toFun := fun β => (τ.symm.trans (↑g β)).trans τ,
map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) }
b2
[PROOFSTEP]
ext
[GOAL]
case H
A B : GroupCat
f : A ⟶ B
b1 b2 : ↑B
x✝ : X'
⊢ ↑(OneHom.toFun
{ toFun := fun β => (τ.symm.trans (↑g β)).trans τ,
map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) }
(b1 * b2))
x✝ =
↑(OneHom.toFun
{ toFun := fun β => (τ.symm.trans (↑g β)).trans τ,
map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) }
b1 *
OneHom.toFun
{ toFun := fun β => (τ.symm.trans (↑g β)).trans τ,
map_one' := (_ : (fun β => (τ.symm.trans (↑g β)).trans τ) 1 = 1) }
b2)
x✝
[PROOFSTEP]
simp
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
y : ↑(Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
⊢ x *l ↑y ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)
[PROOFSTEP]
aesop_cat
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
⊢ ↑(↑h x) ∞ = ∞
[PROOFSTEP]
change ((τ).symm.trans (g x)).trans τ _ = _
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
⊢ ↑((τ.symm.trans (↑g x)).trans τ) ∞ = ∞
[PROOFSTEP]
simp only [MonoidHom.coe_mk, Equiv.toFun_as_coe, Equiv.coe_trans, Function.comp_apply]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
⊢ ↑τ (↑(↑g x) (↑τ.symm ∞)) = ∞
[PROOFSTEP]
rw [τ_symm_apply_infinity, g_apply_fromCoset]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
⊢ ↑τ
(fromCoset
{
val :=
x *l
↑{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) },
property :=
(_ :
x *l
↑{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }) =
∞
[PROOFSTEP]
simpa only using τ_apply_fromCoset' f x hx
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
⊢ ↑(↑h x)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
change ((τ).symm.trans (g x)).trans τ _ = _
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
⊢ ↑((τ.symm.trans (↑g x)).trans τ)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
simp [τ_symm_apply_fromCoset, g_apply_infinity, τ_apply_infinity]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ ↑(↑h x)
(fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
change ((τ).symm.trans (g x)).trans τ _ = _
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ ↑((τ.symm.trans (↑g x)).trans τ)
(fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
simp only [tau, MonoidHom.coe_mk, Equiv.toFun_as_coe, Equiv.coe_trans, Function.comp_apply]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ ↑(Equiv.swap
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })
∞)
(↑(↑g x)
(↑(Equiv.swap
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })
∞).symm
(fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }))) =
fromCoset
{ val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
rw [Equiv.symm_swap,
@Equiv.swap_apply_of_ne_of_ne X' _ (fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩) ∞
(fromCoset ⟨b *l f.range.carrier, ⟨b, rfl⟩⟩) (fromCoset_ne_of_nin_range _ hb) (by simp)]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } ≠
∞
[PROOFSTEP]
simp
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ ↑(Equiv.swap
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })
∞)
(↑(↑g x)
(fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })) =
fromCoset
{ val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
simp only [g_apply_fromCoset, leftCoset_assoc]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ ↑(Equiv.swap
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })
∞)
(fromCoset
{ val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
(fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
(x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }) =
fromCoset
{ val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
refine' Equiv.swap_apply_of_ne_of_ne (fromCoset_ne_of_nin_range _ fun r => hb _) (by simp)
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
⊢ fromCoset
{ val := x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
(fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
(x * b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } ≠
∞
[PROOFSTEP]
simp
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
r : x * b ∈ MonoidHom.range f
⊢ b ∈ MonoidHom.range f
[PROOFSTEP]
convert Subgroup.mul_mem _ (Subgroup.inv_mem _ hx) r
[GOAL]
case h.e'_4
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : x ∈ MonoidHom.range f
b : ↑B
hb : ¬b ∈ MonoidHom.range f
r : x * b ∈ MonoidHom.range f
⊢ b = x⁻¹ * (x * b)
[PROOFSTEP]
rw [← mul_assoc, mul_left_inv, one_mul]
[GOAL]
A B : GroupCat
f : A ⟶ B
⊢ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier = {x | ↑h x = ↑g x}
[PROOFSTEP]
refine' Set.ext fun b => ⟨_, fun hb : h b = g b => by_contradiction fun r => _⟩
[GOAL]
case refine'_1
A B : GroupCat
f : A ⟶ B
b : ↑B
⊢ b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier → b ∈ {x | ↑h x = ↑g x}
[PROOFSTEP]
rintro ⟨a, rfl⟩
[GOAL]
case refine'_1.intro
A B : GroupCat
f : A ⟶ B
a : ↑A
⊢ ↑f a ∈ {x | ↑h x = ↑g x}
[PROOFSTEP]
change h (f a) = g (f a)
[GOAL]
case refine'_1.intro
A B : GroupCat
f : A ⟶ B
a : ↑A
⊢ ↑h (↑f a) = ↑g (↑f a)
[PROOFSTEP]
ext ⟨⟨_, ⟨y, rfl⟩⟩⟩
[GOAL]
case refine'_1.intro.H.fromCoset.mk.intro
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
⊢ ↑(↑h (↑f a))
(fromCoset
{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) =
↑(↑g (↑f a))
(fromCoset
{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) })
[PROOFSTEP]
rw [g_apply_fromCoset]
[GOAL]
case refine'_1.intro.H.fromCoset.mk.intro
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
⊢ ↑(↑h (↑f a))
(fromCoset
{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) =
fromCoset
{
val :=
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) },
property :=
(_ :
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
by_cases m : y ∈ f.range
[GOAL]
case pos
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
m : y ∈ MonoidHom.range f
⊢ ↑(↑h (↑f a))
(fromCoset
{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) =
fromCoset
{
val :=
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) },
property :=
(_ :
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
rw [h_apply_fromCoset' _ _ _ m, fromCoset_eq_of_mem_range _ m]
[GOAL]
case pos
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
m : y ∈ MonoidHom.range f
⊢ fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } =
fromCoset
{
val :=
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) },
property :=
(_ :
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
change fromCoset _ = fromCoset ⟨f a *l (y *l _), _⟩
[GOAL]
case pos
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
m : y ∈ MonoidHom.range f
⊢ fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } =
fromCoset
{ val := ↑f a *l (y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier),
property :=
(_ :
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
simp only [← fromCoset_eq_of_mem_range _ (Subgroup.mul_mem _ ⟨a, rfl⟩ m)]
[GOAL]
case pos
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
m : y ∈ MonoidHom.range f
⊢ fromCoset
{ val := ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } =
fromCoset
{ val := ↑f a *l (y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier),
property :=
(_ :
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
congr
[GOAL]
case pos.e_a.e_val
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
m : y ∈ MonoidHom.range f
⊢ ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier =
↑f a *l (y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)
[PROOFSTEP]
rw [leftCoset_assoc _ (f a) y]
[GOAL]
case neg
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
m : ¬y ∈ MonoidHom.range f
⊢ ↑(↑h (↑f a))
(fromCoset
{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) }) =
fromCoset
{
val :=
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) },
property :=
(_ :
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
rw [h_apply_fromCoset_nin_range f (f a) ⟨_, rfl⟩ _ m]
[GOAL]
case neg
A B : GroupCat
f : A ⟶ B
a : ↑A
y : ↑B
m : ¬y ∈ MonoidHom.range f
⊢ fromCoset
{ val := ↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
↑f a * y *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } =
fromCoset
{
val :=
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) },
property :=
(_ :
↑f a *l
↑{ val := Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y,
property :=
(_ :
∃ y_1,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y_1 =
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) }
[PROOFSTEP]
simp only [leftCoset_assoc]
[GOAL]
case refine'_1.intro.H.infinity
A B : GroupCat
f : A ⟶ B
a : ↑A
⊢ ↑(↑h (↑f a)) ∞ = ↑(↑g (↑f a)) ∞
[PROOFSTEP]
rw [g_apply_infinity, h_apply_infinity f (f a) ⟨_, rfl⟩]
[GOAL]
case refine'_2
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ↑h b = ↑g b
r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
⊢ False
[PROOFSTEP]
have eq1 :
(h b) (fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩) = fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩ :=
by
change ((τ).symm.trans (g b)).trans τ _ = _
dsimp [tau]
simp [g_apply_infinity f]
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ↑h b = ↑g b
r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
⊢ ↑(↑h b)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
change ((τ).symm.trans (g b)).trans τ _ = _
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ↑h b = ↑g b
r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
⊢ ↑((τ.symm.trans (↑g b)).trans τ)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
dsimp [tau]
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ↑h b = ↑g b
r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
⊢ ↑(Equiv.swap
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })
∞)
(↑(↑g b)
(↑(Equiv.swap
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) })
∞)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }))) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
simp [g_apply_infinity f]
[GOAL]
case refine'_2
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ↑h b = ↑g b
r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
eq1 :
↑(↑h b)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
⊢ False
[PROOFSTEP]
have eq2 : (g b) (fromCoset ⟨f.range.carrier, ⟨1, one_leftCoset _⟩⟩) = fromCoset ⟨b *l f.range.carrier, ⟨b, rfl⟩⟩ := rfl
[GOAL]
case refine'_2
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ↑h b = ↑g b
r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
eq1 :
↑(↑h b)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
eq2 :
↑(↑g b)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
⊢ False
[PROOFSTEP]
exact (fromCoset_ne_of_nin_range _ r).symm (by rw [← eq1, ← eq2, FunLike.congr_fun hb])
[GOAL]
A B : GroupCat
f : A ⟶ B
b : ↑B
hb : ↑h b = ↑g b
r : ¬b ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
eq1 :
↑(↑h b)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
eq2 :
↑(↑g b)
(fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }) =
fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
⊢ fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) } =
fromCoset
{ val := b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
b *l (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
[PROOFSTEP]
rw [← eq1, ← eq2, FunLike.congr_fun hb]
[GOAL]
A B : GroupCat
f : A ⟶ B
⊢ (f ≫
let_fun this := g;
this) =
f ≫
let_fun this := h;
this
[PROOFSTEP]
ext a
[GOAL]
case w
A B : GroupCat
f : A ⟶ B
a : ↑A
⊢ ↑(f ≫
let_fun this := g;
this)
a =
↑(f ≫
let_fun this := h;
this)
a
[PROOFSTEP]
change g (f a) = h (f a)
[GOAL]
case w
A B : GroupCat
f : A ⟶ B
a : ↑A
⊢ ↑g (↑f a) = ↑h (↑f a)
[PROOFSTEP]
have : f a ∈ {b | h b = g b} := by
rw [← agree]
use a
[GOAL]
A B : GroupCat
f : A ⟶ B
a : ↑A
⊢ ↑f a ∈ {b | ↑h b = ↑g b}
[PROOFSTEP]
rw [← agree]
[GOAL]
A B : GroupCat
f : A ⟶ B
a : ↑A
⊢ ↑f a ∈ (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
use a
[GOAL]
case w
A B : GroupCat
f : A ⟶ B
a : ↑A
this : ↑f a ∈ {b | ↑h b = ↑g b}
⊢ ↑g (↑f a) = ↑h (↑f a)
[PROOFSTEP]
rw [this]
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : ¬x ∈ MonoidHom.range f
⊢ g ≠ h
[PROOFSTEP]
intro r
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : ¬x ∈ MonoidHom.range f
r : g = h
⊢ False
[PROOFSTEP]
replace r := FunLike.congr_fun (FunLike.congr_fun r x) (fromCoset ⟨f.range, ⟨1, one_leftCoset _⟩⟩)
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : ¬x ∈ MonoidHom.range f
r :
↑(↑g x)
(fromCoset
{ val := ↑(MonoidHom.range f),
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
↑(MonoidHom.range f)) }) =
↑(↑h x)
(fromCoset
{ val := ↑(MonoidHom.range f),
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
↑(MonoidHom.range f)) })
⊢ False
[PROOFSTEP]
change _ = ((τ).symm.trans (g x)).trans τ _ at r
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : ¬x ∈ MonoidHom.range f
r :
↑(↑g x)
(fromCoset
{ val := ↑(MonoidHom.range f),
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
↑(MonoidHom.range f)) }) =
↑((τ.symm.trans (↑g x)).trans τ)
(fromCoset
{ val := ↑(MonoidHom.range f),
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
↑(MonoidHom.range f)) })
⊢ False
[PROOFSTEP]
rw [g_apply_fromCoset, MonoidHom.coe_mk] at r
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : ¬x ∈ MonoidHom.range f
r :
fromCoset
{
val :=
x *l
↑{ val := ↑(MonoidHom.range f),
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
↑(MonoidHom.range f)) },
property :=
(_ :
x *l
↑{ val := ↑(MonoidHom.range f),
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
↑(MonoidHom.range f)) } ∈
Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier)) } =
↑((τ.symm.trans (↑↑g x)).trans τ)
(fromCoset
{ val := ↑(MonoidHom.range f),
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
↑(MonoidHom.range f)) })
⊢ False
[PROOFSTEP]
simp only [MonoidHom.coe_range, Subtype.coe_mk, Equiv.symm_swap, Equiv.toFun_as_coe, Equiv.coe_trans,
Function.comp_apply] at r
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : ¬x ∈ MonoidHom.range f
r :
fromCoset
{ val := x *l Set.range ↑f,
property :=
(_ :
(fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
(x *l Set.range ↑f)) } =
↑τ
(↑(↑↑g x)
(↑τ.symm
(fromCoset
{ val := Set.range ↑f,
property :=
(_ :
(fun x =>
x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
(Set.range ↑f)) })))
⊢ False
[PROOFSTEP]
erw [Equiv.swap_apply_left, g_apply_infinity, Equiv.swap_apply_right] at r
[GOAL]
A B : GroupCat
f : A ⟶ B
x : ↑B
hx : ¬x ∈ MonoidHom.range f
r :
fromCoset
{ val := x *l Set.range ↑f,
property :=
(_ :
(fun x => x ∈ Set.range (Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier))
(x *l Set.range ↑f)) } =
fromCoset
{ val := (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier,
property :=
(_ :
∃ y,
Function.swap leftCoset (MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier y =
(MonoidHom.range f).toSubmonoid.toSubsemigroup.carrier) }
⊢ False
[PROOFSTEP]
exact fromCoset_ne_of_nin_range _ hx r
[GOAL]
A B : GroupCat
f : A ⟶ B
inst✝ : Epi f
⊢ Function.Surjective ↑f
[PROOFSTEP]
by_contra r
[GOAL]
A B : GroupCat
f : A ⟶ B
inst✝ : Epi f
r : ¬Function.Surjective ↑f
⊢ False
[PROOFSTEP]
dsimp [Function.Surjective] at r
[GOAL]
A B : GroupCat
f : A ⟶ B
inst✝ : Epi f
r : ¬∀ (b : ↑B), ∃ a, ↑f a = b
⊢ False
[PROOFSTEP]
push_neg at r
[GOAL]
A B : GroupCat
f : A ⟶ B
inst✝ : Epi f
r : ∃ b, ∀ (a : ↑A), ↑f a ≠ b
⊢ False
[PROOFSTEP]
rcases r with ⟨b, hb⟩
[GOAL]
case intro
A B : GroupCat
f : A ⟶ B
inst✝ : Epi f
b : ↑B
hb : ∀ (a : ↑A), ↑f a ≠ b
⊢ False
[PROOFSTEP]
exact SurjectiveOfEpiAuxs.g_ne_h f b (fun ⟨c, hc⟩ => hb _ hc) ((cancel_epi f).1 (SurjectiveOfEpiAuxs.comp_eq f))
[GOAL]
A B : AddGroupCat
f : A ⟶ B
⊢ Epi f ↔ Function.Surjective ↑f
[PROOFSTEP]
have i1 : Epi f ↔ Epi (groupAddGroupEquivalence.inverse.map f) :=
by
refine' ⟨_, groupAddGroupEquivalence.inverse.epi_of_epi_map⟩
intro e'
apply groupAddGroupEquivalence.inverse.map_epi
[GOAL]
A B : AddGroupCat
f : A ⟶ B
⊢ Epi f ↔ Epi (groupAddGroupEquivalence.inverse.map f)
[PROOFSTEP]
refine' ⟨_, groupAddGroupEquivalence.inverse.epi_of_epi_map⟩
[GOAL]
A B : AddGroupCat
f : A ⟶ B
⊢ Epi f → Epi (groupAddGroupEquivalence.inverse.map f)
[PROOFSTEP]
intro e'
[GOAL]
A B : AddGroupCat
f : A ⟶ B
e' : Epi f
⊢ Epi (groupAddGroupEquivalence.inverse.map f)
[PROOFSTEP]
apply groupAddGroupEquivalence.inverse.map_epi
[GOAL]
A B : AddGroupCat
f : A ⟶ B
i1 : Epi f ↔ Epi (groupAddGroupEquivalence.inverse.map f)
⊢ Epi f ↔ Function.Surjective ↑f
[PROOFSTEP]
rwa [GroupCat.epi_iff_surjective] at i1
[GOAL]
A B : GroupCat
f✝ : A ⟶ B
X✝ Y✝ : GroupCat
f : X✝ ⟶ Y✝
e : Mono f
⊢ Mono ((forget GroupCat).map f)
[PROOFSTEP]
rwa [mono_iff_injective, ← CategoryTheory.mono_iff_injective] at e
[GOAL]
A B : GroupCat
f✝ : A ⟶ B
X✝ Y✝ : GroupCat
f : X✝ ⟶ Y✝
e : Epi f
⊢ Epi ((forget GroupCat).map f)
[PROOFSTEP]
rwa [epi_iff_surjective, ← CategoryTheory.epi_iff_surjective] at e
[GOAL]
A B : CommGroupCat
f : A ⟶ B
⊢ Epi f ↔ Function.Surjective ↑f
[PROOFSTEP]
rw [epi_iff_range_eq_top, MonoidHom.range_top_iff_surjective]
[GOAL]
A B : CommGroupCat
f✝ : A ⟶ B
X✝ Y✝ : CommGroupCat
f : X✝ ⟶ Y✝
e : Mono f
⊢ Mono ((forget CommGroupCat).map f)
[PROOFSTEP]
rwa [mono_iff_injective, ← CategoryTheory.mono_iff_injective] at e
[GOAL]
A B : CommGroupCat
f✝ : A ⟶ B
X✝ Y✝ : CommGroupCat
f : X✝ ⟶ Y✝
e : Epi f
⊢ Epi ((forget CommGroupCat).map f)
[PROOFSTEP]
rwa [epi_iff_surjective, ← CategoryTheory.epi_iff_surjective] at e
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.EpiMono", "llama_tokens": 23274} |
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
⊢ Nonempty ι
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z✝ : DirectLimit G f
ind : ι
z p q : ⨁ (i : ι), G i
x✝¹ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' p
x✝ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' q
i : ι
x : G i
ihx : ↑(of R ι G f i) x = Quotient.mk'' p
j : ι
y : G j
ihy : ↑(of R ι G f j) y = Quotient.mk'' q
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ↑(of R ι G f k) (↑(f i k hik) x + ↑(f j k hjk) y) = Quotient.mk'' (p + q)
[PROOFSTEP]
rw [LinearMap.map_add, of_f, of_f, ihx, ihy]
-- porting note: was `rfl`
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z✝ : DirectLimit G f
ind : ι
z p q : ⨁ (i : ι), G i
x✝¹ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' p
x✝ : ∃ i x, ↑(of R ι G f i) x = Quotient.mk'' q
i : ι
x : G i
ihx : ↑(of R ι G f i) x = Quotient.mk'' p
j : ι
y : G j
ihy : ↑(of R ι G f j) y = Quotient.mk'' q
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ Quotient.mk'' p + Quotient.mk'' q = Quotient.mk'' (p + q)
[PROOFSTEP]
simp only [Submodule.Quotient.mk''_eq_mk, Quotient.mk_add]
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝¹ : AddCommGroup P
inst✝ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
a : ⨁ (i : ι), G i
x✝ : a ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i j : ι
hij : i ≤ j
x : G i
hx : ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j hij) x) = a
⊢ a ∈ ↑(LinearMap.ker (DirectSum.toModule R ι P g))
[PROOFSTEP]
rw [← hx, SetLike.mem_coe, LinearMap.sub_mem_ker_iff, DirectSum.toModule_lof, DirectSum.toModule_lof, Hg]
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →ₗ[R] P
x✝ : DirectLimit G f
i j : ι
hij : i ≤ j
x : G i
⊢ ↑((fun i => LinearMap.comp F (of R ι G f i)) j) (↑(f i j hij) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x
[PROOFSTEP]
rw [LinearMap.comp_apply, of_f]
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →ₗ[R] P
x✝ : DirectLimit G f
i j : ι
hij : i ≤ j
x : G i
⊢ ↑F (↑(of R ι G f i) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →ₗ[R] P
x✝ : DirectLimit G f
i : ι
x : G i
⊢ ↑F (↑(of R ι G f i) x) =
↑(lift R ι G f (fun i => LinearMap.comp F (of R ι G f i))
(_ :
∀ (i j : ι) (hij : i ≤ j) (x : G i),
↑((fun i => LinearMap.comp F (of R ι G f i)) j) (↑(f i j hij) x) =
↑((fun i => LinearMap.comp F (of R ι G f i)) i) x))
(↑(of R ι G f i) x)
[PROOFSTEP]
rw [lift_of]
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →ₗ[R] P
x✝ : DirectLimit G f
i : ι
x : G i
⊢ ↑F (↑(of R ι G f i) x) = ↑(LinearMap.comp F (of R ι G f i)) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁶ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → AddCommGroup (G i)
inst✝³ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝² : AddCommGroup P
inst✝¹ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
x : DirectSum ι G
i j : ι
hij : i ≤ j
hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) x =
↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) x)
[PROOFSTEP]
rw [← @DFinsupp.sum_single ι G _ _ _ x]
[GOAL]
R : Type u
inst✝⁶ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → AddCommGroup (G i)
inst✝³ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝² : AddCommGroup P
inst✝¹ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
x : DirectSum ι G
i j : ι
hij : i ≤ j
hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) (DFinsupp.sum x DFinsupp.single) =
↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) (DFinsupp.sum x DFinsupp.single))
[PROOFSTEP]
unfold DFinsupp.sum
[GOAL]
R : Type u
inst✝⁶ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → AddCommGroup (G i)
inst✝³ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝² : AddCommGroup P
inst✝¹ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
x : DirectSum ι G
i j : ι
hij : i ≤ j
hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j)
(Finset.sum (DFinsupp.support x) fun i => DFinsupp.single i (↑x i)) =
↑(f i j hij)
(↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i)
(Finset.sum (DFinsupp.support x) fun i => DFinsupp.single i (↑x i)))
[PROOFSTEP]
simp only [LinearMap.map_sum]
[GOAL]
R : Type u
inst✝⁶ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → AddCommGroup (G i)
inst✝³ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝² : AddCommGroup P
inst✝¹ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
x : DirectSum ι G
i j : ι
hij : i ≤ j
hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
⊢ (Finset.sum (DFinsupp.support x) fun x_1 =>
↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) (DFinsupp.single x_1 (↑x x_1))) =
Finset.sum (DFinsupp.support x) fun x_1 =>
↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) (DFinsupp.single x_1 (↑x x_1)))
[PROOFSTEP]
refine' Finset.sum_congr rfl fun k hk => _
[GOAL]
R : Type u
inst✝⁶ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → AddCommGroup (G i)
inst✝³ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝² : AddCommGroup P
inst✝¹ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
x : DirectSum ι G
i j : ι
hij : i ≤ j
hx : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
k : ι
hk : k ∈ DFinsupp.support x
⊢ ↑(DirectSum.toModule R ι (G j) fun k => totalize G f k j) (DFinsupp.single k (↑x k)) =
↑(f i j hij) (↑(DirectSum.toModule R ι (G i) fun k => totalize G f k i) (DFinsupp.single k (↑x k)))
[PROOFSTEP]
rw [DirectSum.single_eq_lof R k (x k), DirectSum.toModule_lof, DirectSum.toModule_lof, totalize_of_le (hx k hk),
totalize_of_le (le_trans (hx k hk) hij), DirectedSystem.map_map]
[GOAL]
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
⊢ Nonempty ι
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝¹ : DirectSum ι G
H : Submodule.Quotient.mk x✝¹ = 0
ind : ι
x : DirectSum ι G
x✝ : x ∈ {a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i j : ι
hij : i ≤ j
y : G i
hxy : ↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) = x
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ (∀ (k_1 : ι), k_1 ∈ DFinsupp.support x → k_1 ≤ k) ∧ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) x = 0
[PROOFSTEP]
subst hxy
[GOAL]
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
⊢ (∀ (k_1 : ι),
k_1 ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) → k_1 ≤ k) ∧
↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k)
(↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) =
0
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
⊢ ∀ (k_1 : ι), k_1 ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) → k_1 ≤ k
[PROOFSTEP]
intro i0 hi0
[GOAL]
case left
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi0 : i0 ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y))
⊢ i0 ≤ k
[PROOFSTEP]
rw [DFinsupp.mem_support_iff, DirectSum.sub_apply, ← DirectSum.single_eq_lof, ← DirectSum.single_eq_lof,
DFinsupp.single_apply, DFinsupp.single_apply] at hi0
[GOAL]
case left
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi0 : ((if h : i = i0 then Eq.recOn h y else 0) - if h : j = i0 then Eq.recOn h (↑(f i j hij) y) else 0) ≠ 0
⊢ i0 ≤ k
[PROOFSTEP]
split_ifs at hi0 with hi hj hj
[GOAL]
case pos
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi : i = i0
hj : j = i0
hi0 : Eq.recOn hi y - Eq.recOn hj (↑(f i j hij) y) ≠ 0
⊢ i0 ≤ k
[PROOFSTEP]
rwa [hi] at hik
[GOAL]
case neg
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi : i = i0
hj : ¬j = i0
hi0 : Eq.recOn hi y - 0 ≠ 0
⊢ i0 ≤ k
[PROOFSTEP]
rwa [hi] at hik
[GOAL]
case pos
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi : ¬i = i0
hj : j = i0
hi0 : 0 - Eq.recOn hj (↑(f i j hij) y) ≠ 0
⊢ i0 ≤ k
[PROOFSTEP]
rwa [hj] at hjk
[GOAL]
case neg
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi : ¬i = i0
hj : ¬j = i0
hi0 : 0 - 0 ≠ 0
⊢ i0 ≤ k
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi : ¬i = i0
hj : ¬j = i0
hi0 : 0 - 0 ≠ 0
⊢ False
[PROOFSTEP]
apply hi0
[GOAL]
case neg.h
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
i0 : ι
hi : ¬i = i0
hj : ¬j = i0
hi0 : 0 - 0 ≠ 0
⊢ 0 - 0 = 0
[PROOFSTEP]
rw [sub_zero]
[GOAL]
case right
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : DirectSum ι G
H : Submodule.Quotient.mk x = 0
ind i j : ι
hij : i ≤ j
y : G i
k : ι
hik : i ≤ k
hjk : j ≤ k
x✝ :
↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y) ∈
{a | ∃ i j H x, ↑(DirectSum.lof R ι G i) x - ↑(DirectSum.lof R ι G j) (↑(f i j H) x) = a}
⊢ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k)
(↑(DirectSum.lof R ι G i) y - ↑(DirectSum.lof R ι G j) (↑(f i j hij) y)) =
0
[PROOFSTEP]
simp [LinearMap.map_sub, totalize_of_le, hik, hjk, DirectedSystem.map_map, DirectSum.apply_eq_component,
DirectSum.component.of]
[GOAL]
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝² : DirectSum ι G
H : Submodule.Quotient.mk x✝² = 0
ind : ι
x y : DirectSum ι G
x✝¹ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0
x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0
i : ι
hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0
j : ι
hj : ∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j
hyj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) (x + y) = 0
[PROOFSTEP]
simp only [map_add]
[GOAL]
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝² : DirectSum ι G
H : Submodule.Quotient.mk x✝² = 0
ind : ι
x y : DirectSum ι G
x✝¹ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0
x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0
i : ι
hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0
j : ι
hj : ∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j
hyj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) x +
↑(DirectSum.toModule R ι (G k) fun i => totalize G f i k) y =
0
[PROOFSTEP]
rw [toModule_totalize_of_le hik hi, toModule_totalize_of_le hjk hj]
[GOAL]
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝² : DirectSum ι G
H : Submodule.Quotient.mk x✝² = 0
ind : ι
x y : DirectSum ι G
x✝¹ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0
x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0
i : ι
hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0
j : ι
hj : ∀ (k : ι), k ∈ DFinsupp.support y → k ≤ j
hyj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) y = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ↑(f i k hik) (↑(DirectSum.toModule R ι (G i) fun k => totalize (fun i => G i) f k i) x) +
↑(f j k hjk) (↑(DirectSum.toModule R ι (G j) fun k => totalize (fun i => G i) f k j) y) =
0
[PROOFSTEP]
simp [hxi, hyj]
[GOAL]
R : Type u
inst✝⁸ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁷ : Preorder ι
G : ι → Type w
inst✝⁶ : (i : ι) → AddCommGroup (G i)
inst✝⁵ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝⁴ : AddCommGroup P
inst✝³ : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝¹ : DirectSum ι G
H : Submodule.Quotient.mk x✝¹ = 0
ind : ι
a : R
x : DirectSum ι G
x✝ : ∃ j, (∀ (k : ι), k ∈ DFinsupp.support x → k ≤ j) ∧ ↑(DirectSum.toModule R ι (G j) fun i => totalize G f i j) x = 0
i : ι
hi : ∀ (k : ι), k ∈ DFinsupp.support x → k ≤ i
hxi : ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) x = 0
⊢ ↑(DirectSum.toModule R ι (G i) fun i_1 => totalize G f i_1 i) (a • x) = 0
[PROOFSTEP]
simp [LinearMap.map_smul, hxi]
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
i : ι
x : G i
H : ↑(of R ι G f i) x = 0
this : Nonempty ι
j : ι
hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j
hxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0
hx0 : x = 0
⊢ ↑(f i i (_ : i ≤ i)) x = 0
[PROOFSTEP]
simp [hx0]
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
i : ι
x : G i
H : ↑(of R ι G f i) x = 0
this : Nonempty ι
j : ι
hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j
hxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0
hx0 : ¬x = 0
⊢ i ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x)
[PROOFSTEP]
simp [DirectSum.apply_eq_component, hx0]
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
i : ι
x : G i
H : ↑(of R ι G f i) x = 0
this : Nonempty ι
j : ι
hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j
hxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0
hx0 : ¬x = 0
hij : i ≤ j
⊢ ↑(f i j hij) x = 0
[PROOFSTEP]
simp only [DirectSum.toModule_lof] at hxj
[GOAL]
R : Type u
inst✝⁷ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type w
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
P : Type u₁
inst✝³ : AddCommGroup P
inst✝² : Module R P
g : (i : ι) → G i →ₗ[R] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
i : ι
x : G i
H : ↑(of R ι G f i) x = 0
this : Nonempty ι
j : ι
hj : ∀ (k : ι), k ∈ DFinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j
hx0 : ¬x = 0
hij : i ≤ j
hxj : ↑(totalize G (fun i j H => f i j H) i j) x = 0
⊢ ↑(f i j hij) x = 0
[PROOFSTEP]
rwa [totalize_of_le hij] at hxj
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (G i)
f : (i j : ι) → i ≤ j → G i →+ G j
P : Type u₁
inst✝² : AddCommGroup P
g : (i : ι) → G i →+ P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →+ P
x✝ : DirectLimit G f
i j : ι
hij : i ≤ j
x : G i
⊢ ↑((fun i => AddMonoidHom.comp F (LinearMap.toAddMonoidHom (of G f i))) j) (↑(f i j hij) x) =
↑((fun i => AddMonoidHom.comp F (LinearMap.toAddMonoidHom (of G f i))) i) x
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → AddCommGroup (G i)
f : (i j : ι) → i ≤ j → G i →+ G j
P : Type u₁
inst✝² : AddCommGroup P
g : (i : ι) → G i →+ P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →+ P
x✝ : DirectLimit G f
i : ι
x : G i
⊢ ↑F (↑(of G f i) x) =
↑(lift G f P (fun i => AddMonoidHom.comp F (LinearMap.toAddMonoidHom (of G f i)))
(_ : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑F (↑(of G f j) (↑(f i j hij) x)) = ↑F (↑(of G f i) x)))
(↑(of G f i) x)
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝² : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝¹ : Preorder ι
G : ι → Type w
inst✝ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
⊢ Zero (DirectLimit G f)
[PROOFSTEP]
unfold DirectLimit
[GOAL]
R : Type u
inst✝² : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝¹ : Preorder ι
G : ι → Type w
inst✝ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
⊢ Zero
(FreeCommRing ((i : ι) × G i) ⧸
Ideal.span
{a |
(∃ i j H x, of { fst := j, snd := f i j H x } - of { fst := i, snd := x } = a) ∨
(∃ i, of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y, of { fst := i, snd := x + y } - (of { fst := i, snd := x } + of { fst := i, snd := y }) = a) ∨
∃ i x y, of { fst := i, snd := x * y } - of { fst := i, snd := x } * of { fst := i, snd := y } = a})
[PROOFSTEP]
exact ⟨0⟩
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
⊢ Nonempty ι
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝ : FreeCommRing ((i : ι) × G i)
s✝ : Multiplicative (Multiset ((i : ι) × G i))
a : (i : ι) × G i
s : Multiset ((i : ι) × G i)
ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
i : ι
x : G i
j : ι
y : G j
hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s)
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ↑(of G f k) (f i k hik x * f j k hjk y) = Quotient.mk'' (FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s))
[PROOFSTEP]
rw [(of G f k).map_mul, of_f, of_f, hs]
/- porting note: In Lean3, from here, this was `by refl`. I have added
the lemma `FreeCommRing.of_cons` to fix this proof. -/
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝ : FreeCommRing ((i : ι) × G i)
s✝ : Multiplicative (Multiset ((i : ι) × G i))
a : (i : ι) × G i
s : Multiset ((i : ι) × G i)
ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
i : ι
x : G i
j : ι
y : G j
hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s)
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ↑(of G f i) x * Quotient.mk'' (FreeAbelianGroup.of s) =
Quotient.mk'' (FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s))
[PROOFSTEP]
apply congr_arg Quotient.mk''
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝ : FreeCommRing ((i : ι) × G i)
s✝ : Multiplicative (Multiset ((i : ι) × G i))
a : (i : ι) × G i
s : Multiset ((i : ι) × G i)
ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
i : ι
x : G i
j : ι
y : G j
hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s)
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ (fun x x_1 => x * x_1) (FreeCommRing.of { fst := i, snd := x }) (FreeAbelianGroup.of s) =
FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s)
[PROOFSTEP]
symm
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝ : FreeCommRing ((i : ι) × G i)
s✝ : Multiplicative (Multiset ((i : ι) × G i))
a : (i : ι) × G i
s : Multiset ((i : ι) × G i)
ih : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
i : ι
x : G i
j : ι
y : G j
hs : ↑(of G f j) y = Quotient.mk'' (FreeAbelianGroup.of s)
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ FreeAbelianGroup.of ({ fst := i, snd := x } ::ₘ s) =
(fun x x_1 => x * x_1) (FreeCommRing.of { fst := i, snd := x }) (FreeAbelianGroup.of s)
[PROOFSTEP]
apply FreeCommRing.of_cons
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝¹ : FreeCommRing ((i : ι) × G i)
s : Multiplicative (Multiset ((i : ι) × G i))
x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
i : ι
x : G i
ih : ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
⊢ ↑(of G f i) (-x) = Quotient.mk'' (-FreeAbelianGroup.of s)
[PROOFSTEP]
rw [(of G f i).map_neg, ih]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝¹ : FreeCommRing ((i : ι) × G i)
s : Multiplicative (Multiset ((i : ι) × G i))
x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
i : ι
x : G i
ih : ↑(of G f i) x = Quotient.mk'' (FreeAbelianGroup.of s)
⊢ -Quotient.mk'' (FreeAbelianGroup.of s) = Quotient.mk'' (-FreeAbelianGroup.of s)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝² : FreeCommRing ((i : ι) × G i)
p q : FreeAbelianGroup (Multiplicative (Multiset ((i : ι) × G i)))
x✝¹ : ∃ i x, ↑(of G f i) x = Quotient.mk'' p
x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' q
i : ι
x : G i
ihx : ↑(of G f i) x = Quotient.mk'' p
j : ι
y : G j
ihy : ↑(of G f j) y = Quotient.mk'' q
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ↑(of G f k) (f i k hik x + f j k hjk y) = Quotient.mk'' (p + q)
[PROOFSTEP]
rw [(of _ _ _).map_add, of_f, of_f, ihx, ihy]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
z : DirectLimit G f
ind : ι
x✝² : FreeCommRing ((i : ι) × G i)
p q : FreeAbelianGroup (Multiplicative (Multiset ((i : ι) × G i)))
x✝¹ : ∃ i x, ↑(of G f i) x = Quotient.mk'' p
x✝ : ∃ i x, ↑(of G f i) x = Quotient.mk'' q
i : ι
x : G i
ihx : ↑(of G f i) x = Quotient.mk'' p
j : ι
y : G j
ihy : ↑(of G f j) y = Quotient.mk'' q
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ Quotient.mk'' p + Quotient.mk'' q = Quotient.mk'' (p + q)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
z : DirectLimit G fun i j h => ↑(f' i j h)
i : ι
x : G i
h : ↑(of G (fun i j h => ↑(f' i j h)) i) x = z
⊢ Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) (↑C x) = ↑C z
[PROOFSTEP]
rw [map_C, h]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X]
x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁
x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂
i₁ : ι
p₁ : (G i₁)[X]
ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁
i₂ : ι
p₂ : (G i₂)[X]
ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂
i : ι
h1 : i₁ ≤ i
h2 : i₂ ≤ i
⊢ Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) (Polynomial.map (f' i₁ i h1) p₁ + Polynomial.map (f' i₂ i h2) p₂) =
q₁ + q₂
[PROOFSTEP]
rw [Polynomial.map_add, map_map, map_map, ← ih₁, ← ih₂]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X]
x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁
x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂
i₁ : ι
p₁ : (G i₁)[X]
ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁
i₂ : ι
p₂ : (G i₂)[X]
ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂
i : ι
h1 : i₁ ≤ i
h2 : i₂ ≤ i
⊢ Polynomial.map (RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₁ i h1)) p₁ +
Polynomial.map (RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₂ i h2)) p₂ =
Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ + Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_f
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X]
x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁
x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂
i₁ : ι
p₁ : (G i₁)[X]
ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁
i₂ : ι
p₂ : (G i₂)[X]
ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂
i : ι
h1 : i₁ ≤ i
h2 : i₂ ≤ i
⊢ RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₁ i h1) = of G (fun i j h => ↑(f' i j h)) i₁
[PROOFSTEP]
ext x
[GOAL]
case e_a.e_f
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X]
x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁
x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂
i₁ : ι
p₁ : (G i₁)[X]
ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁
i₂ : ι
p₂ : (G i₂)[X]
ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂
i : ι
h1 : i₁ ≤ i
h2 : i₂ ≤ i
⊢ RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₂ i h2) = of G (fun i j h => ↑(f' i j h)) i₂
[PROOFSTEP]
ext x
[GOAL]
case e_a.e_f.a
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X]
x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁
x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂
i₁ : ι
p₁ : (G i₁)[X]
ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁
i₂ : ι
p₂ : (G i₂)[X]
ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂
i : ι
h1 : i₁ ≤ i
h2 : i₂ ≤ i
x : G i₁
⊢ ↑(RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₁ i h1)) x = ↑(of G (fun i j h => ↑(f' i j h)) i₁) x
[PROOFSTEP]
simp_rw [RingHom.comp_apply, of_f]
[GOAL]
case e_a.e_f.a
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
q₁ q₂ : (DirectLimit G fun i j h => ↑(f' i j h))[X]
x✝¹ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₁
x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = q₂
i₁ : ι
p₁ : (G i₁)[X]
ih₁ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₁) p₁ = q₁
i₂ : ι
p₂ : (G i₂)[X]
ih₂ : Polynomial.map (of G (fun i j h => ↑(f' i j h)) i₂) p₂ = q₂
i : ι
h1 : i₁ ≤ i
h2 : i₂ ≤ i
x : G i₂
⊢ ↑(RingHom.comp (of G (fun i j h => ↑(f' i j h)) i) (f' i₂ i h2)) x = ↑(of G (fun i j h => ↑(f' i j h)) i₂) x
[PROOFSTEP]
simp_rw [RingHom.comp_apply, of_f]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
q : (DirectLimit G fun i j h => ↑(f' i j h))[X]
n : ℕ
z : DirectLimit G fun i j h => ↑(f' i j h)
x✝ : ∃ i p, Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) p = ↑C z * X ^ n
i : ι
x : G i
h : ↑(of G (fun i j h => ↑(f' i j h)) i) x = z
⊢ Polynomial.map (of G (fun i j h => ↑(f' i j h)) i) (↑C x * X ^ (n + 1)) = ↑C z * X ^ (n + 1)
[PROOFSTEP]
rw [Polynomial.map_mul, map_C, h, Polynomial.map_pow, map_X]
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) x)
[PROOFSTEP]
refine' Subring.InClosure.recOn hxs _ _ _ _
[GOAL]
case refine'_1
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) 1)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) 1)
[PROOFSTEP]
rw [(restriction _).map_one, (FreeCommRing.lift _).map_one, (f' j k hjk).map_one, (restriction _).map_one,
(FreeCommRing.lift _).map_one]
[GOAL]
case refine'_2
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (-1))) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (-1))
[PROOFSTEP]
rw [(restriction _).map_neg, (restriction _).map_one, RingHom.map_neg, (FreeCommRing.lift _).map_one,
(f' j k hjk).map_neg, (f' j k hjk).map_one,
-- porting note: similarly here I give strictly less information(restriction _).map_neg, (restriction _).map_one,
RingHom.map_neg, (FreeCommRing.lift _).map_one]
[GOAL]
case refine'_3
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
⊢ ∀ (z : FreeCommRing ((i : ι) × G i)),
z ∈ FreeCommRing.of '' s →
∀ (n : FreeCommRing ((i : ι) × G i)),
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) →
↑(f' j k hjk)
(↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (z * n))) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (z * n))
[PROOFSTEP]
rintro _ ⟨p, hps, rfl⟩ n ih
[GOAL]
case refine'_3.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
p : (i : ι) × G i
hps : p ∈ s
n : FreeCommRing ((i : ι) × G i)
ih :
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
⊢ ↑(f' j k hjk)
(↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (FreeCommRing.of p * n))) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (FreeCommRing.of p * n))
[PROOFSTEP]
rw [(restriction _).map_mul, (FreeCommRing.lift _).map_mul, (f' j k hjk).map_mul, ih, (restriction _).map_mul,
(FreeCommRing.lift _).map_mul, restriction_of, dif_pos hps, lift_of, restriction_of, dif_pos (hst hps), lift_of]
[GOAL]
case refine'_3.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
p : (i : ι) × G i
hps : p ∈ s
n : FreeCommRing ((i : ι) × G i)
ih :
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
⊢ ↑(f' j k hjk)
(↑(f' (↑{ val := p, property := hps }).fst j (_ : (↑{ val := p, property := hps }).fst ≤ j))
(↑{ val := p, property := hps }).snd) *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) =
↑(f' (↑{ val := p, property := (_ : p ∈ t) }).fst k (_ : (↑{ val := p, property := (_ : p ∈ t) }).fst ≤ k))
(↑{ val := p, property := (_ : p ∈ t) }).snd *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
[PROOFSTEP]
dsimp only
-- porting note: Lean 3 could get away with far fewer hints for inputs in the line below
[GOAL]
case refine'_3.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
p : (i : ι) × G i
hps : p ∈ s
n : FreeCommRing ((i : ι) × G i)
ih :
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
⊢ ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) p.snd) *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) =
↑(f' p.fst k (_ : p.fst ≤ k)) p.snd *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
[PROOFSTEP]
have := DirectedSystem.map_map (fun i j h => f' i j h) (hj p hps) hjk
[GOAL]
case refine'_3.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
p : (i : ι) × G i
hps : p ∈ s
n : FreeCommRing ((i : ι) × G i)
ih :
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
this : ∀ (x : G p.fst), ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) x) = ↑(f' p.fst k (_ : p.fst ≤ k)) x
⊢ ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) p.snd) *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) =
↑(f' p.fst k (_ : p.fst ≤ k)) p.snd *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
[PROOFSTEP]
dsimp only at this
[GOAL]
case refine'_3.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
p : (i : ι) × G i
hps : p ∈ s
n : FreeCommRing ((i : ι) × G i)
ih :
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) n)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
this : ∀ (x : G p.fst), ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) x) = ↑(f' p.fst k (_ : p.fst ≤ k)) x
⊢ ↑(f' j k hjk) (↑(f' p.fst j (_ : p.fst ≤ j)) p.snd) *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n) =
↑(f' p.fst k (_ : p.fst ≤ k)) p.snd *
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) n)
[PROOFSTEP]
rw [this]
[GOAL]
case refine'_4
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
⊢ ∀ {x y : FreeCommRing ((i : ι) × G i)},
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) x) →
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) y)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) y) →
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y))) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (x + y))
[PROOFSTEP]
rintro x y ihx ihy
[GOAL]
case refine'_4
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
x✝ : FreeCommRing ((i : ι) × G i)
s t : Set ((i : ι) × G i)
hxs : IsSupported x✝ s
j k : ι
hj : ∀ (z : (i : ι) × G i), z ∈ s → z.fst ≤ j
hk : ∀ (z : (i : ι) × G i), z ∈ t → z.fst ≤ k
hjk : j ≤ k
hst : s ⊆ t
x y : FreeCommRing ((i : ι) × G i)
ihx :
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) x)
ihy :
↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) y)) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) y)
⊢ ↑(f' j k hjk) (↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y))) =
↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction t) (x + y))
[PROOFSTEP]
rw [(restriction _).map_add, (FreeCommRing.lift _).map_add, (f' j k hjk).map_add, ihx, ihy, (restriction _).map_add,
(FreeCommRing.lift _).map_add]
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
⊢ ∃ j s H, IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0
[PROOFSTEP]
refine' span_induction (Ideal.Quotient.eq_zero_iff_mem.1 H) _ _ _ _
[GOAL]
case refine'_1
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
⊢ ∀ (x : FreeCommRing ((i : ι) × G i)),
x ∈
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a} →
∃ j s H,
IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0
[PROOFSTEP]
rintro x (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩)
[GOAL]
case refine'_1.inl.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ ∃ j_1 s H,
IsSupported
(FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } -
FreeCommRing.of { fst := i, snd := x })
s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j_1 (_ : (↑ix).fst ≤ j_1)) (↑ix).snd)
(↑(restriction s)
(FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } -
FreeCommRing.of { fst := i, snd := x })) =
0
[PROOFSTEP]
refine'
⟨j, {⟨i, x⟩, ⟨j, f' i j hij x⟩}, _, isSupported_sub (isSupported_of.2 <| Or.inr rfl) (isSupported_of.2 <| Or.inl rfl),
_⟩
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_1
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ ∀ (k : (i : ι) × G i),
k ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }} → k.fst ≤ j
[PROOFSTEP]
rintro k (rfl | ⟨rfl | _⟩)
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_1.inl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x }.fst ≤ j
case refine'_1.inl.intro.intro.intro.intro.refine'_1.inr.refl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }.fst ≤ j
[PROOFSTEP]
exact hij
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_1.inr.refl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }.fst ≤ j
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd)
(↑(restriction {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }})
(FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } -
FreeCommRing.of { fst := i, snd := x })) =
0
[PROOFSTEP]
rw [(restriction _).map_sub, RingHom.map_sub, restriction_of, dif_pos, restriction_of, dif_pos, lift_of, lift_of]
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ ↑(f'
(↑{ val := { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x },
property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst
j
(_ :
(↑{ val := { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x },
property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst ≤
j))
(↑{ val := { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x },
property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).snd -
↑(f' (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst j
(_ :
(↑{ val := { fst := i, snd := x },
property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).fst ≤
j))
(↑{ val := { fst := i, snd := x }, property := ?refine'_1.inl.intro.intro.intro.intro.refine'_2.hc }).snd =
0
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
[PROOFSTEP]
dsimp only
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) - ↑(f' i j (_ : i ≤ j)) x = 0
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
[PROOFSTEP]
have := DirectedSystem.map_map (fun i j h => f' i j h) hij (le_refl j : j ≤ j)
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
this : ∀ (x : G i), ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) = ↑(f' i j (_ : i ≤ j)) x
⊢ ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) - ↑(f' i j (_ : i ≤ j)) x = 0
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
[PROOFSTEP]
dsimp only at this
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
this : ∀ (x : G i), ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) = ↑(f' i j (_ : i ≤ j)) x
⊢ ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) - ↑(f' i j (_ : i ≤ j)) x = 0
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
[PROOFSTEP]
rw [this]
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
this : ∀ (x : G i), ↑(f' j j (_ : j ≤ j)) (↑(f' i j hij) x) = ↑(f' i j (_ : i ≤ j)) x
⊢ ↑(f' i j (_ : i ≤ j)) x - ↑(f' i j (_ : i ≤ j)) x = 0
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
[PROOFSTEP]
exact sub_self _
[GOAL]
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
case refine'_1.inl.intro.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i j : ι
hij : i ≤ j
x : G i
⊢ { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x } ∈
{{ fst := i, snd := x }, { fst := j, snd := (fun i j h => ↑(f' i j h)) i j hij x }}
[PROOFSTEP]
exacts [Or.inr rfl, Or.inl rfl]
[GOAL]
case refine'_1.inr.inl.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
i : ι
⊢ ∃ j s H,
IsSupported (FreeCommRing.of { fst := i, snd := 1 } - 1) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd)
(↑(restriction s) (FreeCommRing.of { fst := i, snd := 1 } - 1)) =
0
[PROOFSTEP]
refine' ⟨i, {⟨i, 1⟩}, _, isSupported_sub (isSupported_of.2 rfl) isSupported_one, _⟩
[GOAL]
case refine'_1.inr.inl.intro.refine'_1
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
i : ι
⊢ ∀ (k : (i : ι) × G i), k ∈ {{ fst := i, snd := 1 }} → k.fst ≤ i
[PROOFSTEP]
rintro k (rfl | h)
[GOAL]
case refine'_1.inr.inl.intro.refine'_1.refl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
i : ι
⊢ { fst := i, snd := 1 }.fst ≤ i
[PROOFSTEP]
rfl
-- porting note: the Lean3 proof contained `rw [restriction_of]`, but this
-- lemma does not seem to work here
[GOAL]
case refine'_1.inr.inl.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
i : ι
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd)
(↑(restriction {{ fst := i, snd := 1 }}) (FreeCommRing.of { fst := i, snd := 1 } - 1)) =
0
[PROOFSTEP]
rw [RingHom.map_sub, RingHom.map_sub]
[GOAL]
case refine'_1.inr.inl.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
i : ι
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd)
(↑(restriction {{ fst := i, snd := 1 }}) (FreeCommRing.of { fst := i, snd := 1 })) -
↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction {{ fst := i, snd := 1 }}) 1) =
0
[PROOFSTEP]
erw [lift_of, dif_pos rfl, RingHom.map_one, RingHom.map_one, lift_of, RingHom.map_one, sub_self]
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ∃ j s H,
IsSupported
(FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }))
s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd)
(↑(restriction s)
(FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }))) =
0
[PROOFSTEP]
refine'
⟨i, {⟨i, x + y⟩, ⟨i, x⟩, ⟨i, y⟩}, _,
isSupported_sub (isSupported_of.2 <| Or.inl rfl)
(isSupported_add (isSupported_of.2 <| Or.inr <| Or.inl rfl) (isSupported_of.2 <| Or.inr <| Or.inr rfl)),
_⟩
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ∀ (k : (i : ι) × G i), k ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }} → k.fst ≤ i
[PROOFSTEP]
rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩)
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1.inl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y }.fst ≤ i
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1.inr.inl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x }.fst ≤ i
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_1.inr.inr.refl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y }.fst ≤ i
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd)
(↑(restriction {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }})
(FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }))) =
0
[PROOFSTEP]
rw [(restriction _).map_sub, (restriction _).map_add, restriction_of, restriction_of, restriction_of, dif_pos, dif_pos,
dif_pos, RingHom.map_sub, (FreeCommRing.lift _).map_add, lift_of, lift_of, lift_of]
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(f' (↑{ val := { fst := i, snd := x + y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst i
(_ :
(↑{ val := { fst := i, snd := x + y },
property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst ≤
i))
(↑{ val := { fst := i, snd := x + y },
property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).snd -
(↑(f' (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst
i
(_ :
(↑{ val := { fst := i, snd := x },
property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst ≤
i))
(↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).snd +
↑(f' (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst
i
(_ :
(↑{ val := { fst := i, snd := y },
property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).fst ≤
i))
(↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc }).snd) =
0
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
dsimp only
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(f' i i (_ : i ≤ i)) (x + y) - (↑(f' i i (_ : i ≤ i)) x + ↑(f' i i (_ : i ≤ i)) y) = 0
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
rw [(f' i i _).map_add]
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(f' i i (_ : i ≤ i)) x + ↑(f' i i (_ : i ≤ i)) y - (↑(f' i i (_ : i ≤ i)) x + ↑(f' i i (_ : i ≤ i)) y) = 0
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
exact sub_self _
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
all_goals tauto
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x + y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
tauto
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
tauto
[GOAL]
case refine'_1.inr.inr.inl.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x + y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
tauto
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ∃ j s H,
IsSupported
(FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y })
s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd)
(↑(restriction s)
(FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y })) =
0
[PROOFSTEP]
refine'
⟨i, {⟨i, x * y⟩, ⟨i, x⟩, ⟨i, y⟩}, _,
isSupported_sub (isSupported_of.2 <| Or.inl rfl)
(isSupported_mul (isSupported_of.2 <| Or.inr <| Or.inl rfl) (isSupported_of.2 <| Or.inr <| Or.inr rfl)),
_⟩
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ∀ (k : (i : ι) × G i), k ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }} → k.fst ≤ i
[PROOFSTEP]
rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩)
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1.inl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y }.fst ≤ i
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1.inr.inl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x }.fst ≤ i
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_1.inr.inr.refl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y }.fst ≤ i
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd)
(↑(restriction {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }})
(FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y })) =
0
[PROOFSTEP]
rw [(restriction _).map_sub, (restriction _).map_mul, restriction_of, restriction_of, restriction_of, dif_pos, dif_pos,
dif_pos, RingHom.map_sub, (FreeCommRing.lift _).map_mul, lift_of, lift_of, lift_of]
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(f' (↑{ val := { fst := i, snd := x * y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst i
(_ :
(↑{ val := { fst := i, snd := x * y },
property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst ≤
i))
(↑{ val := { fst := i, snd := x * y },
property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).snd -
↑(f' (↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst i
(_ :
(↑{ val := { fst := i, snd := x },
property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst ≤
i))
(↑{ val := { fst := i, snd := x }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).snd *
↑(f' (↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst
i
(_ :
(↑{ val := { fst := i, snd := y },
property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).fst ≤
i))
(↑{ val := { fst := i, snd := y }, property := ?refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc }).snd =
0
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
dsimp only
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(f' i i (_ : i ≤ i)) (x * y) - ↑(f' i i (_ : i ≤ i)) x * ↑(f' i i (_ : i ≤ i)) y = 0
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
rw [(f' i i _).map_mul]
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ ↑(f' i i (_ : i ≤ i)) x * ↑(f' i i (_ : i ≤ i)) y - ↑(f' i i (_ : i ≤ i)) x * ↑(f' i i (_ : i ≤ i)) y = 0
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
exact sub_self _
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
all_goals
tauto
-- porting note: was
--exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)]
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x * y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
tauto
-- porting note: was
--exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)]
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := x } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
tauto
-- porting note: was
--exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)]
[GOAL]
case refine'_1.inr.inr.inr.intro.intro.intro.refine'_2.hc
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
i : ι
x y : G i
⊢ { fst := i, snd := y } ∈ {{ fst := i, snd := x * y }, { fst := i, snd := x }, { fst := i, snd := y }}
[PROOFSTEP]
tauto
-- porting note: was
--exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)]
[GOAL]
case refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
⊢ ∃ j s H, IsSupported 0 s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) 0) = 0
[PROOFSTEP]
refine' Nonempty.elim (by infer_instance) fun ind : ι => _
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
⊢ Nonempty ι
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
ind : ι
⊢ ∃ j s H, IsSupported 0 s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) 0) = 0
[PROOFSTEP]
refine'
⟨ind, ∅, fun _ => False.elim, isSupported_zero, _⟩
-- porting note: `RingHom.map_zero` was `(restriction _).map_zero`
[GOAL]
case refine'_2
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
ind : ι
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst ind (_ : (↑ix).fst ≤ ind)) (↑ix).snd) (↑(restriction ∅) 0) = 0
[PROOFSTEP]
rw [RingHom.map_zero, (FreeCommRing.lift _).map_zero]
[GOAL]
case refine'_3
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
⊢ ∀ (x y : FreeCommRing ((i : ι) × G i)),
(∃ j s H,
IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0) →
(∃ j s H,
IsSupported y s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) y) = 0) →
∃ j s H,
IsSupported (x + y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0
[PROOFSTEP]
rintro x y ⟨i, s, hi, hxs, ihs⟩ ⟨j, t, hj, hyt, iht⟩
[GOAL]
case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
⊢ ∃ j s H,
IsSupported (x + y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0
[PROOFSTEP]
obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j
[GOAL]
case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ∃ j s H,
IsSupported (x + y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0
[PROOFSTEP]
have : ∀ z : Σ i, G i, z ∈ s ∪ t → z.1 ≤ k := by
rintro z (hz | hz)
exact le_trans (hi z hz) hik
exact le_trans (hj z hz) hjk
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ∀ (z : (i : ι) × G i), z ∈ s ∪ t → z.fst ≤ k
[PROOFSTEP]
rintro z (hz | hz)
[GOAL]
case inl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
z : (i : ι) × G i
hz : z ∈ s
⊢ z.fst ≤ k
case inr
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
z : (i : ι) × G i
hz : z ∈ t
⊢ z.fst ≤ k
[PROOFSTEP]
exact le_trans (hi z hz) hik
[GOAL]
case inr
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
z : (i : ι) × G i
hz : z ∈ t
⊢ z.fst ≤ k
[PROOFSTEP]
exact le_trans (hj z hz) hjk
[GOAL]
case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
this : ∀ (z : (i : ι) × G i), z ∈ s ∪ t → z.fst ≤ k
⊢ ∃ j s H,
IsSupported (x + y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x + y)) = 0
[PROOFSTEP]
refine'
⟨k, s ∪ t, this,
isSupported_add (isSupported_upwards hxs <| Set.subset_union_left s t)
(isSupported_upwards hyt <| Set.subset_union_right s t),
_⟩
[GOAL]
case refine'_3.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
i : ι
s : Set ((i : ι) × G i)
hi : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ i
hxs : IsSupported x s
ihs : ↑(↑lift fun ix => ↑(f' (↑ix).fst i (_ : (↑ix).fst ≤ i)) (↑ix).snd) (↑(restriction s) x) = 0
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
k : ι
hik : i ≤ k
hjk : j ≤ k
this : ∀ (z : (i : ι) × G i), z ∈ s ∪ t → z.fst ≤ k
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction (s ∪ t)) (x + y)) = 0
[PROOFSTEP]
rw [RingHom.map_add, (FreeCommRing.lift _).map_add, ←
of.zero_exact_aux2 G f' hxs hi this hik (Set.subset_union_left s t), ←
of.zero_exact_aux2 G f' hyt hj this hjk (Set.subset_union_right s t), ihs, (f' i k hik).map_zero, iht,
(f' j k hjk).map_zero, zero_add]
[GOAL]
case refine'_4
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x =
0
⊢ ∀ (a x : FreeCommRing ((i : ι) × G i)),
(∃ j s H,
IsSupported x s ∧ ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) x) = 0) →
∃ j s H,
IsSupported (a • x) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (a • x)) = 0
[PROOFSTEP]
rintro x y ⟨j, t, hj, hyt, iht⟩
[GOAL]
case refine'_4.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
⊢ ∃ j s H,
IsSupported (x • y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x • y)) = 0
[PROOFSTEP]
rw [smul_eq_mul]
[GOAL]
case refine'_4.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
⊢ ∃ j s H,
IsSupported (x * y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0
[PROOFSTEP]
rcases exists_finset_support x with ⟨s, hxs⟩
[GOAL]
case refine'_4.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
⊢ ∃ j s H,
IsSupported (x * y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0
[PROOFSTEP]
rcases(s.image Sigma.fst).exists_le with ⟨i, hi⟩
[GOAL]
case refine'_4.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i
⊢ ∃ j s H,
IsSupported (x * y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0
[PROOFSTEP]
obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j
[GOAL]
case refine'_4.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ∃ j s H,
IsSupported (x * y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0
[PROOFSTEP]
have : ∀ z : Σ i, G i, z ∈ ↑s ∪ t → z.1 ≤ k := by
rintro z (hz | hz)
exacts [(hi z.1 <| Finset.mem_image.2 ⟨z, hz, rfl⟩).trans hik, (hj z hz).trans hjk]
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i
k : ι
hik : i ≤ k
hjk : j ≤ k
⊢ ∀ (z : (i : ι) × G i), z ∈ ↑s ∪ t → z.fst ≤ k
[PROOFSTEP]
rintro z (hz | hz)
[GOAL]
case inl
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i
k : ι
hik : i ≤ k
hjk : j ≤ k
z : (i : ι) × G i
hz : z ∈ ↑s
⊢ z.fst ≤ k
case inr
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i
k : ι
hik : i ≤ k
hjk : j ≤ k
z : (i : ι) × G i
hz : z ∈ t
⊢ z.fst ≤ k
[PROOFSTEP]
exacts [(hi z.1 <| Finset.mem_image.2 ⟨z, hz, rfl⟩).trans hik, (hj z hz).trans hjk]
[GOAL]
case refine'_4.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i
k : ι
hik : i ≤ k
hjk : j ≤ k
this : ∀ (z : (i : ι) × G i), z ∈ ↑s ∪ t → z.fst ≤ k
⊢ ∃ j s H,
IsSupported (x * y) s ∧
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction s) (x * y)) = 0
[PROOFSTEP]
refine'
⟨k, ↑s ∪ t, this,
isSupported_mul (isSupported_upwards hxs <| Set.subset_union_left (↑s) t)
(isSupported_upwards hyt <| Set.subset_union_right (↑s) t),
_⟩
-- porting note: RingHom.map_mul was `(restriction _).map_mul`
[GOAL]
case refine'_4.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝² : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝ : FreeCommRing ((i : ι) × G i)
H :
↑(Ideal.Quotient.mk
(Ideal.span
{a |
(∃ i j H x,
FreeCommRing.of { fst := j, snd := (fun i j h => ↑(f' i j h)) i j H x } -
FreeCommRing.of { fst := i, snd := x } =
a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}))
x✝ =
0
x y : FreeCommRing ((i : ι) × G i)
j : ι
t : Set ((i : ι) × G i)
hj : ∀ (k : (i : ι) × G i), k ∈ t → k.fst ≤ j
hyt : IsSupported y t
iht : ↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd) (↑(restriction t) y) = 0
s : Finset ((i : ι) × G i)
hxs : IsSupported x ↑s
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image Sigma.fst s → i_1 ≤ i
k : ι
hik : i ≤ k
hjk : j ≤ k
this : ∀ (z : (i : ι) × G i), z ∈ ↑s ∪ t → z.fst ≤ k
⊢ ↑(↑lift fun ix => ↑(f' (↑ix).fst k (_ : (↑ix).fst ≤ k)) (↑ix).snd) (↑(restriction (↑s ∪ t)) (x * y)) = 0
[PROOFSTEP]
rw [RingHom.map_mul, (FreeCommRing.lift _).map_mul, ←
of.zero_exact_aux2 G f' hyt hj this hjk (Set.subset_union_right (↑s) t), iht, (f' j k hjk).map_zero, mul_zero]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
i : ι
x : G i
hix : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0
this : Nonempty ι
j : ι
s : Set ((i : ι) × G i)
H : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ j
hxs : IsSupported (FreeCommRing.of { fst := i, snd := x }) s
hx :
↑(↑lift fun ix => ↑(f' (↑ix).fst j (_ : (↑ix).fst ≤ j)) (↑ix).snd)
(↑(restriction s) (FreeCommRing.of { fst := i, snd := x })) =
0
hixs : { fst := i, snd := x } ∈ s
⊢ ↑(f' i j (_ : { fst := i, snd := x }.fst ≤ j)) x = 0
[PROOFSTEP]
rw [restriction_of, dif_pos hixs, lift_of] at hx
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f' i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
i : ι
x : G i
hix : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0
this : Nonempty ι
j : ι
s : Set ((i : ι) × G i)
H : ∀ (k : (i : ι) × G i), k ∈ s → k.fst ≤ j
hxs : IsSupported (FreeCommRing.of { fst := i, snd := x }) s
hixs : { fst := i, snd := x } ∈ s
hx :
↑(f' (↑{ val := { fst := i, snd := x }, property := hixs }).fst j
(_ : (↑{ val := { fst := i, snd := x }, property := hixs }).fst ≤ j))
(↑{ val := { fst := i, snd := x }, property := hixs }).snd =
0
⊢ ↑(f' i j (_ : { fst := i, snd := x }.fst ≤ j)) x = 0
[PROOFSTEP]
exact hx
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
⊢ Function.Injective ↑(of G (fun i j h => ↑(f' i j h)) i)
[PROOFSTEP]
suffices ∀ x, of G (fun i j h => f' i j h) i x = 0 → x = 0
by
intro x y hxy
rw [← sub_eq_zero]
apply this
rw [(of G _ i).map_sub, hxy, sub_self]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0
⊢ Function.Injective ↑(of G (fun i j h => ↑(f' i j h)) i)
[PROOFSTEP]
intro x y hxy
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0
x y : G i
hxy : ↑(of G (fun i j h => ↑(f' i j h)) i) x = ↑(of G (fun i j h => ↑(f' i j h)) i) y
⊢ x = y
[PROOFSTEP]
rw [← sub_eq_zero]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0
x y : G i
hxy : ↑(of G (fun i j h => ↑(f' i j h)) i) x = ↑(of G (fun i j h => ↑(f' i j h)) i) y
⊢ x - y = 0
[PROOFSTEP]
apply this
[GOAL]
case a
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
this : ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0
x y : G i
hxy : ↑(of G (fun i j h => ↑(f' i j h)) i) x = ↑(of G (fun i j h => ↑(f' i j h)) i) y
⊢ ↑(of G (fun i j h => ↑(f' i j h)) i) (x - y) = 0
[PROOFSTEP]
rw [(of G _ i).map_sub, hxy, sub_self]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
⊢ ∀ (x : G i), ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0 → x = 0
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
x : G i
hx : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0
⊢ x = 0
[PROOFSTEP]
rcases of.zero_exact hx with ⟨j, hij, hfx⟩
[GOAL]
case intro.intro
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
x : G i
hx : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0
j : ι
hij : i ≤ j
hfx : ↑(f' i j hij) x = 0
⊢ x = 0
[PROOFSTEP]
apply hf i j hij
[GOAL]
case intro.intro.a
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
hf : ∀ (i j : ι) (hij : i ≤ j), Function.Injective ↑(f' i j hij)
i : ι
x : G i
hx : ↑(of G (fun i j h => ↑(f' i j h)) i) x = 0
j : ι
hij : i ≤ j
hfx : ↑(f' i j hij) x = 0
⊢ ↑(f' i j hij) x = ↑(f' i j hij) 0
[PROOFSTEP]
rw [hfx, (f' i j hij).map_zero]
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
⊢ ∀ (a : FreeCommRing ((i : ι) × G i)),
a ∈
Ideal.span
{a |
(∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a} →
↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) a = 0
[PROOFSTEP]
suffices Ideal.span _ ≤ Ideal.comap (FreeCommRing.lift fun x : Σ i : ι, G i => g x.fst x.snd) ⊥
by
intro x hx
exact (mem_bot P).1 (this hx)
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
this : Ideal.span ?m.2207035 ≤ Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥
⊢ ∀ (a : FreeCommRing ((i : ι) × G i)),
a ∈
Ideal.span
{a |
(∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a} →
↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) a = 0
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
this : Ideal.span ?m.2207035 ≤ Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥
x : FreeCommRing ((i : ι) × G i)
hx :
x ∈
Ideal.span
{a |
(∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}
⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) x = 0
[PROOFSTEP]
exact (mem_bot P).1 (this hx)
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
⊢ Ideal.span
{a |
(∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a} ≤
Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥
[PROOFSTEP]
rw [Ideal.span_le]
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
⊢ {a |
(∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a} ⊆
↑(Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥)
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
x : FreeCommRing ((i : ι) × G i)
hx :
x ∈
{a |
(∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}
⊢ x ∈ ↑(Ideal.comap (↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) ⊥)
[PROOFSTEP]
rw [SetLike.mem_coe, Ideal.mem_comap, mem_bot]
[GOAL]
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
x : FreeCommRing ((i : ι) × G i)
hx :
x ∈
{a |
(∃ i j H x, FreeCommRing.of { fst := j, snd := f i j H x } - FreeCommRing.of { fst := i, snd := x } = a) ∨
(∃ i, FreeCommRing.of { fst := i, snd := 1 } - 1 = a) ∨
(∃ i x y,
FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y }) =
a) ∨
∃ i x y,
FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y } =
a}
⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) x = 0
[PROOFSTEP]
rcases hx with (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩)
[GOAL]
case inl.intro.intro.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
i j : ι
hij : i ≤ j
x : G i
⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd)
(FreeCommRing.of { fst := j, snd := f i j hij x } - FreeCommRing.of { fst := i, snd := x }) =
0
[PROOFSTEP]
simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one,
(g i).map_add, (g i).map_mul, sub_self]
[GOAL]
case inr.inl.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
i : ι
⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd) (FreeCommRing.of { fst := i, snd := 1 } - 1) = 0
[PROOFSTEP]
simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one,
(g i).map_add, (g i).map_mul, sub_self]
[GOAL]
case inr.inr.inl.intro.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
i : ι
x y : G i
⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd)
(FreeCommRing.of { fst := i, snd := x + y } -
(FreeCommRing.of { fst := i, snd := x } + FreeCommRing.of { fst := i, snd := y })) =
0
[PROOFSTEP]
simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one,
(g i).map_add, (g i).map_mul, sub_self]
[GOAL]
case inr.inr.inr.intro.intro.intro
R : Type u
inst✝³ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝ : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
i : ι
x y : G i
⊢ ↑(↑FreeCommRing.lift fun x => ↑(g x.fst) x.snd)
(FreeCommRing.of { fst := i, snd := x * y } -
FreeCommRing.of { fst := i, snd := x } * FreeCommRing.of { fst := i, snd := y }) =
0
[PROOFSTEP]
simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one,
(g i).map_add, (g i).map_mul, sub_self]
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝² : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →+* P
x✝ : DirectLimit G f
i j : ι
hij : i ≤ j
x : G i
⊢ ↑((fun i => RingHom.comp F (of G f i)) j) (f i j hij x) = ↑((fun i => RingHom.comp F (of G f i)) i) x
[PROOFSTEP]
simp [of_f]
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → CommRing (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
P : Type u₁
inst✝² : CommRing P
g : (i : ι) → G i →+* P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (f i j hij x) = ↑(g i) x
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
F : DirectLimit G f →+* P
x✝ : DirectLimit G f
i : ι
x : G i
⊢ ↑F (↑(of G f i) x) =
↑(lift G f P (fun i => RingHom.comp F (of G f i))
(_ : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑F (↑(of G f j) (f i j hij x)) = ↑F (↑(of G f i) x)))
(↑(of G f i) x)
[PROOFSTEP]
simp [lift_of]
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
⊢ Nonempty ι
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
⊢ 0 ≠ 1
[PROOFSTEP]
change (0 : Ring.DirectLimit G fun i j h => f' i j h) ≠ 1
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
⊢ 0 ≠ 1
[PROOFSTEP]
rw [← (Ring.DirectLimit.of _ _ _).map_one]
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
⊢ 0 ≠ ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) ?m.2568554) 1
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
⊢ ι
[PROOFSTEP]
intro H
[GOAL]
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
H : 0 = ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) ?m.2568554) 1
⊢ False
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
⊢ ι
[PROOFSTEP]
rcases Ring.DirectLimit.of.zero_exact H.symm with ⟨j, hij, hf⟩
[GOAL]
case intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
H : 0 = ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) ?m.2568554) 1
j : ι
hij : ?m.2568554 ≤ j
hf : ↑(f' ?m.2568554 j hij) 1 = 0
⊢ False
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
⊢ ι
[PROOFSTEP]
rw [(f' i j hij).map_one] at hf
[GOAL]
case intro.intro
R : Type u
inst✝⁵ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : Nonempty ι
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
inst✝ : DirectedSystem G fun i j h => ↑(f' i j h)
i : ι
H : 0 = ↑(Ring.DirectLimit.of G (fun i j h => ↑(f' i j h)) i) 1
j : ι
hij : i ≤ j
hf : 1 = 0
⊢ False
[PROOFSTEP]
exact one_ne_zero hf
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : Nonempty ι
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
p : Ring.DirectLimit G f
i : ι
x : G i
H : ↑(Ring.DirectLimit.of G f i) x ≠ 0
⊢ ↑(Ring.DirectLimit.of G f i) x * ↑(Ring.DirectLimit.of G f i) x⁻¹ = 1
[PROOFSTEP]
erw [← (Ring.DirectLimit.of _ _ _).map_mul,
mul_inv_cancel fun h : x = 0 => H <| by rw [h, (Ring.DirectLimit.of _ _ _).map_zero],
(Ring.DirectLimit.of _ _ _).map_one]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : Nonempty ι
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
p : Ring.DirectLimit G f
i : ι
x : G i
H : ↑(Ring.DirectLimit.of G f i) x ≠ 0
h : x = 0
⊢ ↑(Ring.DirectLimit.of G f i) x = 0
[PROOFSTEP]
rw [h, (Ring.DirectLimit.of _ _ _).map_zero]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : Nonempty ι
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
p : Ring.DirectLimit G f
hp : p ≠ 0
⊢ p * inv G f p = 1
[PROOFSTEP]
rw [inv, dif_neg hp, Classical.choose_spec (DirectLimit.exists_inv G f hp)]
[GOAL]
R : Type u
inst✝⁴ : Ring R
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : Nonempty ι
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : (i : ι) → Field (G i)
f : (i j : ι) → i ≤ j → G i → G j
f' : (i j : ι) → i ≤ j → G i →+* G j
p : Ring.DirectLimit G f
hp : p ≠ 0
⊢ inv G f p * p = 1
[PROOFSTEP]
rw [_root_.mul_comm, DirectLimit.mul_inv_cancel G f hp]
| {"mathlib_filename": "Mathlib.Algebra.DirectLimit", "llama_tokens": 228816} |
[GOAL]
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ (fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) (x + y) =
(fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x +
(fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y
[PROOFSTEP]
apply (mono_iff_injective F'.m).1
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ Mono F'.m
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ ↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y)) =
↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x +
(fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y)
[PROOFSTEP]
infer_instance
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ ↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y)) =
↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x +
(fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y)
[PROOFSTEP]
rw [LinearMap.map_add]
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ ↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y)) =
↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) x) +
↑F'.m
((fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))) y)
[PROOFSTEP]
change (F'.e ≫ F'.m) _ = (F'.e ≫ F'.m) _ + (F'.e ≫ F'.m) _
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(x + y)) (_ : ↑(x + y) ∈ LinearMap.range f)) =
↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)) +
↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x => ↑f x = ↑y) (_ : ↑y ∈ LinearMap.range f))
[PROOFSTEP]
simp_rw [F'.fac, (Classical.indefiniteDescription (fun z => f z = _) _).2]
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x y : ↑(image f)
⊢ ↑(x + y) = ↑x + ↑y
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
c : R
x : ↑(image f)
⊢ AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x => ↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
(c • x) =
↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
x
[PROOFSTEP]
apply (mono_iff_injective F'.m).1
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
c : R
x : ↑(image f)
⊢ Mono F'.m
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
c : R
x : ↑(image f)
⊢ ↑F'.m
(AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
(c • x)) =
↑F'.m
(↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e
↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e
↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
x)
[PROOFSTEP]
infer_instance
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
c : R
x : ↑(image f)
⊢ ↑F'.m
(AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
(c • x)) =
↑F'.m
(↑(RingHom.id R) c •
AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e
↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e
↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
x)
[PROOFSTEP]
rw [LinearMap.map_smul]
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
c : R
x : ↑(image f)
⊢ ↑F'.m
(AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
(c • x)) =
↑(RingHom.id R) c •
↑F'.m
(AddHom.toFun
{
toFun := fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)),
map_add' :=
(_ :
∀ (x y : ↑(image f)),
(fun x =>
↑F'.e ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
(x + y) =
(fun x =>
↑F'.e
↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
x +
(fun x =>
↑F'.e
↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)))
y) }
x)
[PROOFSTEP]
change (F'.e ≫ F'.m) _ = _ • (F'.e ≫ F'.m) _
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
c : R
x : ↑(image f)
⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑(c • x)) (_ : ↑(c • x) ∈ LinearMap.range f)) =
↑(RingHom.id R) c •
↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f))
[PROOFSTEP]
simp_rw [F'.fac, (Classical.indefiniteDescription (fun z => f z = _) _).2]
[GOAL]
case a
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
c : R
x : ↑(image f)
⊢ ↑(c • x) = ↑(RingHom.id R) c • ↑x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
⊢ lift F' ≫ F'.m = ι f
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x : ↑(image f)
⊢ ↑(lift F' ≫ F'.m) x = ↑(ι f) x
[PROOFSTEP]
change (F'.e ≫ F'.m) _ = _
[GOAL]
case h
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x : ↑(image f)
⊢ ↑(F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => ↑f x_1 = ↑x) (_ : ↑x ∈ LinearMap.range f)) = ↑(ι f) x
[PROOFSTEP]
rw [F'.fac, (Classical.indefiniteDescription _ x.2).2]
[GOAL]
case h
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
F' : MonoFactorisation f
x : ↑(image f)
⊢ ↑x = ↑(ι f) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
G✝ H✝ : ModuleCat R
f✝ : G✝ ⟶ H✝
G H : ModuleCat R
f : G ⟶ H
⊢ (imageIsoRange f).hom ≫ ofHom (Submodule.subtype (LinearMap.range f)) = Limits.image.ι f
[PROOFSTEP]
erw [← imageIsoRange_inv_image_ι f, Iso.hom_inv_id_assoc]
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Images", "llama_tokens": 4927} |
{"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.EquivalenceGroupAddGroup", "llama_tokens": 0} |
|
[GOAL]
R : Type u
inst✝ : CommRing R
X✝ Y✝ : AlgebraCat R
a₁✝ a₂✝ : X✝ ⟶ Y✝
h :
(CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₁✝ =
(CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₂✝
⊢ ∀ (x : ↑X✝), ↑a₁✝ x = ↑a₂✝ x
[PROOFSTEP]
intros x
[GOAL]
R : Type u
inst✝ : CommRing R
X✝ Y✝ : AlgebraCat R
a₁✝ a₂✝ : X✝ ⟶ Y✝
h :
(CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₁✝ =
(CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₂✝
x : ↑X✝
⊢ ↑a₁✝ x = ↑a₂✝ x
[PROOFSTEP]
dsimp at h
[GOAL]
R : Type u
inst✝ : CommRing R
X✝ Y✝ : AlgebraCat R
a₁✝ a₂✝ : X✝ ⟶ Y✝
h : ↑a₁✝ = ↑a₂✝
x : ↑X✝
⊢ ↑a₁✝ x = ↑a₂✝ x
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
⊢ ∀ (X : Type u),
{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
(𝟙 X) =
𝟙
({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj
X)
[PROOFSTEP]
intro X
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X : Type u
⊢ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
(𝟙 X) =
𝟙
({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj
X)
[PROOFSTEP]
apply FreeAlgebra.hom_ext
[GOAL]
case w
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X : Type u
⊢ ↑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
(𝟙 X)) ∘
FreeAlgebra.ι R =
↑(𝟙
({ obj := fun S => mk (FreeAlgebra R S),
map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.obj
X)) ∘
FreeAlgebra.ι R
[PROOFSTEP]
simp only [FreeAlgebra.ι_comp_lift]
[GOAL]
case w
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X : Type u
⊢ FreeAlgebra.ι R ∘ 𝟙 X = ↑(𝟙 (mk (FreeAlgebra R X))) ∘ FreeAlgebra.ι R
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
⊢ ∀ {X Y Z : Type u} (f : X ⟶ Y) (g : Y ⟶ Z),
{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
(f ≫ g) =
{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
f ≫
{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
g
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ { obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
(f✝ ≫ g✝) =
{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map f✝ ≫
{ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map g✝
[PROOFSTEP]
apply FreeAlgebra.hom_ext
[GOAL]
case w
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ ↑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
(f✝ ≫ g✝)) ∘
FreeAlgebra.ι R =
↑({ obj := fun S => mk (FreeAlgebra R S), map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
f✝ ≫
{ obj := fun S => mk (FreeAlgebra R S),
map := fun {X Y} f => ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f) }.map
g✝) ∘
FreeAlgebra.ι R
[PROOFSTEP]
simp only [FreeAlgebra.ι_comp_lift]
[GOAL]
case w
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ FreeAlgebra.ι R ∘ (f✝ ≫ g✝) =
↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ FreeAlgebra.ι R
[PROOFSTEP]
ext1
-- Porting node: this ↓ `erw` used to be handled by the `simp` below it
[GOAL]
case w.h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : X✝
⊢ (FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ =
(↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ ↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ FreeAlgebra.ι R)
x✝
[PROOFSTEP]
erw [CategoryTheory.coe_comp]
[GOAL]
case w.h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : X✝
⊢ (FreeAlgebra.ι R ∘ (f✝ ≫ g✝)) x✝ =
((↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝)) ∘ ↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝))) ∘
FreeAlgebra.ι R)
x✝
[PROOFSTEP]
simp only [CategoryTheory.coe_comp, Function.comp_apply, types_comp_apply]
-- Porting node: this ↓ `erw` and `rfl` used to be handled by the `simp` above
[GOAL]
case w.h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : X✝
⊢ FreeAlgebra.ι R (g✝ (f✝ x✝)) =
↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ g✝))
(↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝)) (FreeAlgebra.ι R x✝))
[PROOFSTEP]
erw [FreeAlgebra.lift_ι_apply, FreeAlgebra.lift_ι_apply]
[GOAL]
case w.h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : X✝
⊢ FreeAlgebra.ι R (g✝ (f✝ x✝)) = (FreeAlgebra.ι R ∘ g✝) (f✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
⊢ ∀ {X' X : Type u} {Y : AlgebraCat R} (f : X' ⟶ X) (g : X ⟶ (forget (AlgebraCat R)).obj Y),
↑((fun X A => (FreeAlgebra.lift R).symm) X' Y).symm (f ≫ g) =
(free R).map f ≫ ↑((fun X A => (FreeAlgebra.lift R).symm) X Y).symm g
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X'✝ X✝ : Type u
Y✝ : AlgebraCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝
⊢ ↑((fun X A => (FreeAlgebra.lift R).symm) X'✝ Y✝).symm (f✝ ≫ g✝) =
(free R).map f✝ ≫ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝).symm g✝
[PROOFSTEP]
apply FreeAlgebra.hom_ext
[GOAL]
case w
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X'✝ X✝ : Type u
Y✝ : AlgebraCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝
⊢ ↑(↑((fun X A => (FreeAlgebra.lift R).symm) X'✝ Y✝).symm (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R =
↑((free R).map f✝ ≫ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝).symm g✝) ∘ FreeAlgebra.ι R
[PROOFSTEP]
simp only [FreeAlgebra.ι_comp_lift]
[GOAL]
case w
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X'✝ X✝ : Type u
Y✝ : AlgebraCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝
⊢ ↑(↑(FreeAlgebra.lift R).symm.symm (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R =
↑((free R).map f✝ ≫ ↑(FreeAlgebra.lift R).symm.symm g✝) ∘ FreeAlgebra.ι R
[PROOFSTEP]
ext1
[GOAL]
case w.h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X'✝ X✝ : Type u
Y✝ : AlgebraCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝
x✝ : X'✝
⊢ (↑(↑(FreeAlgebra.lift R).symm.symm (f✝ ≫ g✝)) ∘ FreeAlgebra.ι R) x✝ =
(↑((free R).map f✝ ≫ ↑(FreeAlgebra.lift R).symm.symm g✝) ∘ FreeAlgebra.ι R) x✝
[PROOFSTEP]
simp only [free_map, Equiv.symm_symm, FreeAlgebra.lift_ι_apply, CategoryTheory.coe_comp, Function.comp_apply,
types_comp_apply]
-- Porting node: this ↓ `erw` and `rfl` used to be handled by the `simp` above
[GOAL]
case w.h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X'✝ X✝ : Type u
Y✝ : AlgebraCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝
x✝ : X'✝
⊢ ↑(↑(FreeAlgebra.lift R) (f✝ ≫ g✝)) (FreeAlgebra.ι R x✝) =
↑(↑(FreeAlgebra.lift R) (FreeAlgebra.ι R ∘ f✝) ≫ ↑(FreeAlgebra.lift R) g✝) (FreeAlgebra.ι R x✝)
[PROOFSTEP]
erw [FreeAlgebra.lift_ι_apply, CategoryTheory.comp_apply, FreeAlgebra.lift_ι_apply, Function.comp_apply,
FreeAlgebra.lift_ι_apply]
[GOAL]
case w.h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X'✝ X✝ : Type u
Y✝ : AlgebraCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget (AlgebraCat R)).obj Y✝
x✝ : X'✝
⊢ (f✝ ≫ g✝) x✝ = g✝ (f✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
⊢ ∀ {X : Type u} {Y Y' : AlgebraCat R} (f : (free R).obj X ⟶ Y) (g : Y ⟶ Y'),
↑((fun X A => (FreeAlgebra.lift R).symm) X Y') (f ≫ g) =
↑((fun X A => (FreeAlgebra.lift R).symm) X Y) f ≫ (forget (AlgebraCat R)).map g
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ : Type u
Y✝ Y'✝ : AlgebraCat R
f✝ : (free R).obj X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Y'✝
⊢ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y'✝) (f✝ ≫ g✝) =
↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝) f✝ ≫ (forget (AlgebraCat R)).map g✝
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ : Type u
Y✝ Y'✝ : AlgebraCat R
f✝ : (free R).obj X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Y'✝
a✝ : X✝
⊢ ↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y'✝) (f✝ ≫ g✝) a✝ =
(↑((fun X A => (FreeAlgebra.lift R).symm) X✝ Y✝) f✝ ≫ (forget (AlgebraCat R)).map g✝) a✝
[PROOFSTEP]
simp only [CategoryTheory.coe_comp, Function.comp_apply, FreeAlgebra.lift_symm_apply, types_comp_apply]
-- Porting note: proof used to be done after this ↑ `simp`; added ↓ two lines
[GOAL]
case h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ : Type u
Y✝ Y'✝ : AlgebraCat R
f✝ : (free R).obj X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Y'✝
a✝ : X✝
⊢ ↑(FreeAlgebra.lift R).symm (f✝ ≫ g✝) a✝ = (forget (AlgebraCat R)).map g✝ (↑(FreeAlgebra.lift R).symm f✝ a✝)
[PROOFSTEP]
erw [FreeAlgebra.lift_symm_apply, FreeAlgebra.lift_symm_apply]
[GOAL]
case h
R : Type u
inst✝ : CommRing R
M N U : ModuleCat R
X✝ : Type u
Y✝ Y'✝ : AlgebraCat R
f✝ : (free R).obj X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Y'✝
a✝ : X✝
⊢ (↑(f✝ ≫ g✝) ∘ FreeAlgebra.ι R) a✝ = (forget (AlgebraCat R)).map g✝ ((↑f✝ ∘ FreeAlgebra.ι R) a✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
g₁ : Ring X₁
g₂ : Ring X₂
m₁ : Algebra R X₁
m₂ : Algebra R X₂
e : X₁ ≃ₐ[R] X₂
⊢ ↑e ≫ ↑(symm e) = 𝟙 (AlgebraCat.of R X₁)
[PROOFSTEP]
ext x
[GOAL]
case w
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
g₁ : Ring X₁
g₂ : Ring X₂
m₁ : Algebra R X₁
m₂ : Algebra R X₂
e : X₁ ≃ₐ[R] X₂
x : (forget (AlgebraCat R)).obj (AlgebraCat.of R X₁)
⊢ ↑(↑e ≫ ↑(symm e)) x = ↑(𝟙 (AlgebraCat.of R X₁)) x
[PROOFSTEP]
exact e.left_inv x
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
g₁ : Ring X₁
g₂ : Ring X₂
m₁ : Algebra R X₁
m₂ : Algebra R X₂
e : X₁ ≃ₐ[R] X₂
⊢ ↑(symm e) ≫ ↑e = 𝟙 (AlgebraCat.of R X₂)
[PROOFSTEP]
ext x
[GOAL]
case w
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
g₁ : Ring X₁
g₂ : Ring X₂
m₁ : Algebra R X₁
m₂ : Algebra R X₂
e : X₁ ≃ₐ[R] X₂
x : (forget (AlgebraCat R)).obj (AlgebraCat.of R X₂)
⊢ ↑(↑(symm e) ≫ ↑e) x = ↑(𝟙 (AlgebraCat.of R X₂)) x
[PROOFSTEP]
exact e.right_inv x
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
i : X ≅ Y
x : ↑X
⊢ ↑i.inv (↑i.hom x) = x
[PROOFSTEP]
change (i.hom ≫ i.inv) x = x
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
i : X ≅ Y
x : ↑X
⊢ ↑(i.hom ≫ i.inv) x = x
[PROOFSTEP]
simp only [hom_inv_id]
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
i : X ≅ Y
x : ↑X
⊢ ↑(𝟙 X) x = x
[PROOFSTEP]
rw [id_apply]
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
i : X ≅ Y
x : ↑Y
⊢ ↑i.hom (↑i.inv x) = x
[PROOFSTEP]
change (i.inv ≫ i.hom) x = x
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
i : X ≅ Y
x : ↑Y
⊢ ↑(i.inv ≫ i.hom) x = x
[PROOFSTEP]
simp only [inv_hom_id]
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
i : X ≅ Y
x : ↑Y
⊢ ↑(𝟙 Y) x = x
[PROOFSTEP]
rw [id_apply]
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
f : X ⟶ Y
x✝ : IsIso ((forget (AlgebraCat R)).map f)
⊢ IsIso f
[PROOFSTEP]
let i := asIso ((forget (AlgebraCat.{u} R)).map f)
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
f : X ⟶ Y
x✝ : IsIso ((forget (AlgebraCat R)).map f)
i : (forget (AlgebraCat R)).obj X ≅ (forget (AlgebraCat R)).obj Y := asIso ((forget (AlgebraCat R)).map f)
⊢ IsIso f
[PROOFSTEP]
let e : X ≃ₐ[R] Y := { f, i.toEquiv with }
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ : Type u
X Y : AlgebraCat R
f : X ⟶ Y
x✝ : IsIso ((forget (AlgebraCat R)).map f)
i : (forget (AlgebraCat R)).obj X ≅ (forget (AlgebraCat R)).obj Y := asIso ((forget (AlgebraCat R)).map f)
e : ↑X ≃ₐ[R] ↑Y :=
let src := i.toEquiv;
{
toEquiv :=
{ toFun := f.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun),
right_inv := (_ : Function.RightInverse src.invFun src.toFun) },
map_mul' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑↑f) (x * y) = OneHom.toFun (↑↑↑f) x * OneHom.toFun (↑↑↑f) y),
map_add' := (_ : ∀ (x y : ↑X), OneHom.toFun (↑↑↑f) (x + y) = OneHom.toFun (↑↑↑f) x + OneHom.toFun (↑↑↑f) y),
commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑f) (↑(algebraMap R ↑X) r) = ↑(algebraMap R ↑Y) r) }
⊢ IsIso f
[PROOFSTEP]
exact ⟨(IsIso.of_iso e.toAlgebraIso).1⟩
| {"mathlib_filename": "Mathlib.Algebra.Category.AlgebraCat.Basic", "llama_tokens": 7156} |
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
⊢ Disjoint (span R (range (u ∘ Sum.inl))) (span R (range (u ∘ Sum.inr)))
[PROOFSTEP]
rw [huv, disjoint_comm]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
⊢ Disjoint (span R (range (u ∘ Sum.inr))) (span R (range (↑f ∘ v)))
[PROOFSTEP]
refine' Disjoint.mono_right (span_mono (range_comp_subset_range _ _)) _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
⊢ Disjoint (span R (range (u ∘ Sum.inr))) (span R (range ↑f))
[PROOFSTEP]
rw [← LinearMap.range_coe, (span_eq (LinearMap.range f)), (exact_iff _ _).mp he]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
⊢ Disjoint (span R (range (u ∘ Sum.inr))) (LinearMap.ker g)
[PROOFSTEP]
exact range_ker_disjoint hw
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
w : ι' → ↑P
hw : LinearIndependent R w
hse : ShortExact f g
⊢ LinearIndependent R (Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w))
[PROOFSTEP]
refine' linearIndependent_leftExact hv _ hse.mono hse.exact _
[GOAL]
case refine'_1
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
w : ι' → ↑P
hw : LinearIndependent R w
hse : ShortExact f g
⊢ LinearIndependent R (↑g ∘ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inr)
[PROOFSTEP]
simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inr]
[GOAL]
case refine'_1
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
w : ι' → ↑P
hw : LinearIndependent R w
hse : ShortExact f g
⊢ LinearIndependent R (↑g ∘ Function.invFun ↑g ∘ w)
[PROOFSTEP]
rwa [← Function.comp.assoc,
Function.RightInverse.comp_eq_id (Function.rightInverse_invFun ((epi_iff_surjective _).mp hse.epi)),
Function.comp.left_id]
[GOAL]
case refine'_2
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
hv : LinearIndependent R v
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
hw✝ : LinearIndependent R (↑g ∘ u ∘ Sum.inr)
hm : Mono f
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
w : ι' → ↑P
hw : LinearIndependent R w
hse : ShortExact f g
⊢ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inl = ↑f ∘ v
[PROOFSTEP]
simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inl]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
⊢ ⊤ ≤ span R (range u)
[PROOFSTEP]
intro m _
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
⊢ m ∈ span R (range u)
[PROOFSTEP]
have hgm : g m ∈ span R (range (g ∘ u ∘ Sum.inr)) := hw mem_top
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
hgm : ↑g m ∈ span R (range (↑g ∘ u ∘ Sum.inr))
⊢ m ∈ span R (range u)
[PROOFSTEP]
rw [Finsupp.mem_span_range_iff_exists_finsupp] at hgm
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
hgm : ∃ c, (Finsupp.sum c fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
⊢ m ∈ span R (range u)
[PROOFSTEP]
obtain ⟨cm, hm⟩ := hgm
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
⊢ m ∈ span R (range u)
[PROOFSTEP]
let m' : M := Finsupp.sum cm fun j a ↦ a • (u (Sum.inr j))
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
⊢ m ∈ span R (range u)
[PROOFSTEP]
have hsub : m - m' ∈ LinearMap.range f
[GOAL]
case hsub
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
⊢ m - m' ∈ LinearMap.range f
[PROOFSTEP]
rw [(exact_iff _ _).mp he]
[GOAL]
case hsub
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
⊢ m - m' ∈ LinearMap.ker g
[PROOFSTEP]
simp only [LinearMap.mem_ker, map_sub, sub_eq_zero]
[GOAL]
case hsub
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
⊢ ↑g m = ↑g (Finsupp.sum cm fun j a => a • u (Sum.inr j))
[PROOFSTEP]
rw [← hm, map_finsupp_sum]
[GOAL]
case hsub
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
⊢ (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = Finsupp.sum cm fun a b => ↑g (b • u (Sum.inr a))
[PROOFSTEP]
simp only [Function.comp_apply, SMulHomClass.map_smul]
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
hsub : m - m' ∈ LinearMap.range f
⊢ m ∈ span R (range u)
[PROOFSTEP]
obtain ⟨n, hnm⟩ := hsub
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
hnm : ↑f n = m - m'
⊢ m ∈ span R (range u)
[PROOFSTEP]
have hn : n ∈ span R (range v) := hv mem_top
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
hnm : ↑f n = m - m'
hn : n ∈ span R (range v)
⊢ m ∈ span R (range u)
[PROOFSTEP]
rw [Finsupp.mem_span_range_iff_exists_finsupp] at hn
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
hnm : ↑f n = m - m'
hn : ∃ c, (Finsupp.sum c fun i a => a • v i) = n
⊢ m ∈ span R (range u)
[PROOFSTEP]
obtain ⟨cn, hn⟩ := hn
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
hnm : ↑f n = m - m'
cn : ι →₀ R
hn : (Finsupp.sum cn fun i a => a • v i) = n
⊢ m ∈ span R (range u)
[PROOFSTEP]
rw [← hn, map_finsupp_sum] at hnm
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
⊢ m ∈ span R (range u)
[PROOFSTEP]
rw [← sub_add_cancel m m', ← hnm, ]
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
⊢ (Finsupp.sum cn fun a b => ↑f (b • v a)) + m' ∈ span R (range u)
[PROOFSTEP]
simp only [SMulHomClass.map_smul]
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
⊢ ((Finsupp.sum cn fun a b => b • ↑f (v a)) + Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u)
[PROOFSTEP]
have hn' : (Finsupp.sum cn fun a b ↦ b • f (v a)) = (Finsupp.sum cn fun a b ↦ b • u (Sum.inl a)) := by congr; ext a b;
change b • (f ∘ v) a = _; rw [← huv]; rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
⊢ (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
[PROOFSTEP]
congr
[GOAL]
case e_g
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
⊢ (fun a b => b • ↑f (v a)) = fun a b => b • u (Sum.inl a)
[PROOFSTEP]
ext a b
[GOAL]
case e_g.h.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
a : ι
b : R
⊢ b • ↑f (v a) = b • u (Sum.inl a)
[PROOFSTEP]
change b • (f ∘ v) a = _
[GOAL]
case e_g.h.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
a : ι
b : R
⊢ b • (↑f ∘ v) a = b • u (Sum.inl a)
[PROOFSTEP]
rw [← huv]
[GOAL]
case e_g.h.h
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
a : ι
b : R
⊢ b • (u ∘ Sum.inl) a = b • u (Sum.inl a)
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ ((Finsupp.sum cn fun a b => b • ↑f (v a)) + Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u)
[PROOFSTEP]
rw [hn']
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ ((Finsupp.sum cn fun a b => b • u (Sum.inl a)) + Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u)
[PROOFSTEP]
apply add_mem
[GOAL]
case intro.intro.intro.a
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ (Finsupp.sum cn fun a b => b • u (Sum.inl a)) ∈ span R (range u)
[PROOFSTEP]
rw [Finsupp.mem_span_range_iff_exists_finsupp]
[GOAL]
case intro.intro.intro.a
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ ∃ c, (Finsupp.sum c fun i a => a • u i) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
[PROOFSTEP]
use cn.mapDomain (Sum.inl)
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ (Finsupp.sum (Finsupp.mapDomain Sum.inl cn) fun i a => a • u i) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
[PROOFSTEP]
rw [Finsupp.sum_mapDomain_index_inj Sum.inl_injective]
[GOAL]
case intro.intro.intro.a
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ (Finsupp.sum cm fun j a => a • u (Sum.inr j)) ∈ span R (range u)
[PROOFSTEP]
rw [Finsupp.mem_span_range_iff_exists_finsupp]
[GOAL]
case intro.intro.intro.a
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ ∃ c, (Finsupp.sum c fun i a => a • u i) = Finsupp.sum cm fun j a => a • u (Sum.inr j)
[PROOFSTEP]
use cm.mapDomain (Sum.inr)
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
he : Exact f g
huv : u ∘ Sum.inl = ↑f ∘ v
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range (↑g ∘ u ∘ Sum.inr))
m : ↑M
a✝ : m ∈ ⊤
cm : ι' →₀ R
hm : (Finsupp.sum cm fun i a => a • (↑g ∘ u ∘ Sum.inr) i) = ↑g m
m' : ↑M := Finsupp.sum cm fun j a => a • u (Sum.inr j)
n : ↑N
cn : ι →₀ R
hnm : (Finsupp.sum cn fun a b => ↑f (b • v a)) = m - m'
hn : (Finsupp.sum cn fun i a => a • v i) = n
hn' : (Finsupp.sum cn fun a b => b • ↑f (v a)) = Finsupp.sum cn fun a b => b • u (Sum.inl a)
⊢ (Finsupp.sum (Finsupp.mapDomain Sum.inr cm) fun i a => a • u i) = Finsupp.sum cm fun j a => a • u (Sum.inr j)
[PROOFSTEP]
rw [Finsupp.sum_mapDomain_index_inj Sum.inr_injective]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
w : ι' → ↑P
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range w)
hE : Epi g
he : Exact f g
⊢ ⊤ ≤ span R (range (Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w)))
[PROOFSTEP]
refine' span_exact he _ hv _
[GOAL]
case refine'_1
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
w : ι' → ↑P
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range w)
hE : Epi g
he : Exact f g
⊢ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inl = ↑f ∘ v
[PROOFSTEP]
simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inl]
[GOAL]
case refine'_2
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
w : ι' → ↑P
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range w)
hE : Epi g
he : Exact f g
⊢ ⊤ ≤ span R (range (↑g ∘ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inr))
[PROOFSTEP]
convert hw
[GOAL]
case h.e'_4.h.e'_6.h.e'_3
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
w : ι' → ↑P
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range w)
hE : Epi g
he : Exact f g
⊢ ↑g ∘ Sum.elim (↑f ∘ v) (Function.invFun g.toFun ∘ w) ∘ Sum.inr = w
[PROOFSTEP]
simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, Sum.elim_comp_inr]
[GOAL]
case h.e'_4.h.e'_6.h.e'_3
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
w : ι' → ↑P
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range w)
hE : Epi g
he : Exact f g
⊢ ↑g ∘ Function.invFun ↑g ∘ w = w
[PROOFSTEP]
rw [ModuleCat.epi_iff_surjective] at hE
[GOAL]
case h.e'_4.h.e'_6.h.e'_3
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
u : ι ⊕ ι' → ↑M
f : N ⟶ M
g : M ⟶ P
w : ι' → ↑P
hv : ⊤ ≤ span R (range v)
hw : ⊤ ≤ span R (range w)
hE : Function.Surjective ↑g
he : Exact f g
⊢ ↑g ∘ Function.invFun ↑g ∘ w = w
[PROOFSTEP]
rw [← Function.comp.assoc, Function.RightInverse.comp_eq_id (Function.rightInverse_invFun hE), Function.comp.left_id]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝³ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
f : N ⟶ M
g : M ⟶ P
h : ShortExact f g
inst✝² : Module.Free R ↑N
inst✝¹ : Module.Free R ↑P
inst✝ : StrongRankCondition R
⊢ Module.rank R ↑M = Module.rank R ↑N + Module.rank R ↑P
[PROOFSTEP]
haveI := free_shortExact h
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝³ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
f : N ⟶ M
g : M ⟶ P
h : ShortExact f g
inst✝² : Module.Free R ↑N
inst✝¹ : Module.Free R ↑P
inst✝ : StrongRankCondition R
this : Module.Free R ↑M
⊢ Module.rank R ↑M = Module.rank R ↑N + Module.rank R ↑P
[PROOFSTEP]
rw [Module.Free.rank_eq_card_chooseBasisIndex, Module.Free.rank_eq_card_chooseBasisIndex R N,
Module.Free.rank_eq_card_chooseBasisIndex R P, Cardinal.add_def, Cardinal.eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝³ : Ring R
N P : ModuleCat R
v : ι → ↑N
M : ModuleCat R
f : N ⟶ M
g : M ⟶ P
h : ShortExact f g
inst✝² : Module.Free R ↑N
inst✝¹ : Module.Free R ↑P
inst✝ : StrongRankCondition R
this : Module.Free R ↑M
⊢ Nonempty (Module.Free.ChooseBasisIndex R ↑M ≃ Module.Free.ChooseBasisIndex R ↑N ⊕ Module.Free.ChooseBasisIndex R ↑P)
[PROOFSTEP]
exact
⟨Basis.indexEquiv (Module.Free.chooseBasis R M)
(Basis.ofShortExact h (Module.Free.chooseBasis R N) (Module.Free.chooseBasis R P))⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝⁵ : Ring R
N P : ModuleCat R
v : ι → ↑N
n p : ℕ
M : ModuleCat R
f : N ⟶ M
g : M ⟶ P
h : ShortExact f g
inst✝⁴ : Module.Free R ↑N
inst✝³ : Module.Finite R ↑N
inst✝² : Module.Free R ↑P
inst✝¹ : Module.Finite R ↑P
hN : FiniteDimensional.finrank R ↑N = n
hP : FiniteDimensional.finrank R ↑P = p
inst✝ : StrongRankCondition R
⊢ FiniteDimensional.finrank R ↑M = n + p
[PROOFSTEP]
apply FiniteDimensional.finrank_eq_of_rank_eq
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝⁵ : Ring R
N P : ModuleCat R
v : ι → ↑N
n p : ℕ
M : ModuleCat R
f : N ⟶ M
g : M ⟶ P
h : ShortExact f g
inst✝⁴ : Module.Free R ↑N
inst✝³ : Module.Finite R ↑N
inst✝² : Module.Free R ↑P
inst✝¹ : Module.Finite R ↑P
hN : FiniteDimensional.finrank R ↑N = n
hP : FiniteDimensional.finrank R ↑P = p
inst✝ : StrongRankCondition R
⊢ Module.rank R ↑M = ↑(n + p)
[PROOFSTEP]
rw [free_shortExact_rank_add h, ← hN, ← hP]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
R : Type u_3
inst✝⁵ : Ring R
N P : ModuleCat R
v : ι → ↑N
n p : ℕ
M : ModuleCat R
f : N ⟶ M
g : M ⟶ P
h : ShortExact f g
inst✝⁴ : Module.Free R ↑N
inst✝³ : Module.Finite R ↑N
inst✝² : Module.Free R ↑P
inst✝¹ : Module.Finite R ↑P
hN : FiniteDimensional.finrank R ↑N = n
hP : FiniteDimensional.finrank R ↑P = p
inst✝ : StrongRankCondition R
⊢ Module.rank R ↑N + Module.rank R ↑P = ↑(FiniteDimensional.finrank R ↑N + FiniteDimensional.finrank R ↑P)
[PROOFSTEP]
simp only [Nat.cast_add, FiniteDimensional.finrank_eq_rank]
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Free", "llama_tokens": 15005} |
[GOAL]
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P : PresheafOfModules R
X : Cᵒᵖ
⊢ map P (𝟙 X) = id'
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P : PresheafOfModules R
X : Cᵒᵖ
x✝ : ↑(obj P X)
⊢ ↑(map P (𝟙 X)) x✝ = ↑id' x✝
[PROOFSTEP]
simp
[GOAL]
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P : PresheafOfModules R
X Y Z : Cᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
⊢ map P (f ≫ g) = comp (map P g) (map P f)
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P : PresheafOfModules R
X Y Z : Cᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
x✝ : ↑(obj P X)
⊢ ↑(map P (f ≫ g)) x✝ = ↑(comp (map P g) (map P f)) x✝
[PROOFSTEP]
simp
[GOAL]
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R✝ : Cᵒᵖ ⥤ RingCat
P Q R : PresheafOfModules R✝
f : Hom P Q
g : Hom Q R
x✝² : Cᵒᵖ
x✝¹ : ↑(R✝.obj x✝²)
x✝ : ↑(P.presheaf.obj x✝²)
⊢ ↑(NatTrans.app (f.hom ≫ g.hom) x✝²) (x✝¹ • x✝) = x✝¹ • ↑(NatTrans.app (f.hom ≫ g.hom) x✝²) x✝
[PROOFSTEP]
simp [Hom.map_smul]
[GOAL]
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P Q : PresheafOfModules R
f g : P ⟶ Q
w : ∀ (X : Cᵒᵖ), app f X = app g X
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P Q : PresheafOfModules R
g : P ⟶ Q
hom✝ : P.presheaf ⟶ Q.presheaf
map_smul✝ :
∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x
w : ∀ (X : Cᵒᵖ), app { hom := hom✝, map_smul := map_smul✝ } X = app g X
⊢ { hom := hom✝, map_smul := map_smul✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P Q : PresheafOfModules R
hom✝¹ : P.presheaf ⟶ Q.presheaf
map_smul✝¹ :
∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)),
↑(NatTrans.app hom✝¹ X) (r • x) = r • ↑(NatTrans.app hom✝¹ X) x
hom✝ : P.presheaf ⟶ Q.presheaf
map_smul✝ :
∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x
w : ∀ (X : Cᵒᵖ), app { hom := hom✝¹, map_smul := map_smul✝¹ } X = app { hom := hom✝, map_smul := map_smul✝ } X
⊢ { hom := hom✝¹, map_smul := map_smul✝¹ } = { hom := hom✝, map_smul := map_smul✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_hom
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P Q : PresheafOfModules R
hom✝¹ : P.presheaf ⟶ Q.presheaf
map_smul✝¹ :
∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)),
↑(NatTrans.app hom✝¹ X) (r • x) = r • ↑(NatTrans.app hom✝¹ X) x
hom✝ : P.presheaf ⟶ Q.presheaf
map_smul✝ :
∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x
w : ∀ (X : Cᵒᵖ), app { hom := hom✝¹, map_smul := map_smul✝¹ } X = app { hom := hom✝, map_smul := map_smul✝ } X
⊢ hom✝¹ = hom✝
[PROOFSTEP]
ext X x
[GOAL]
case mk.mk.e_hom.w.h.w
C : Type u₁
inst✝ : Category.{v₁, u₁} C
R : Cᵒᵖ ⥤ RingCat
P Q : PresheafOfModules R
hom✝¹ : P.presheaf ⟶ Q.presheaf
map_smul✝¹ :
∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)),
↑(NatTrans.app hom✝¹ X) (r • x) = r • ↑(NatTrans.app hom✝¹ X) x
hom✝ : P.presheaf ⟶ Q.presheaf
map_smul✝ :
∀ (X : Cᵒᵖ) (r : ↑(R.obj X)) (x : ↑(P.presheaf.obj X)), ↑(NatTrans.app hom✝ X) (r • x) = r • ↑(NatTrans.app hom✝ X) x
w : ∀ (X : Cᵒᵖ), app { hom := hom✝¹, map_smul := map_smul✝¹ } X = app { hom := hom✝, map_smul := map_smul✝ } X
X : Cᵒᵖ
x : ↑(P.presheaf.obj X)
⊢ ↑(NatTrans.app hom✝¹ X) x = ↑(NatTrans.app hom✝ X) x
[PROOFSTEP]
exact LinearMap.congr_fun (w X) x
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Presheaf", "llama_tokens": 2184} |
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
i j : ι
x : A i
y : M j
⊢ ↑(↑(smulAddMonoidHom A M) (↑(of A i) x)) (↑(of M j) y) = ↑(of M (i + j)) (GSmul.smul x y)
[PROOFSTEP]
simp [smulAddMonoidHom]
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
⊢ 1 • x = x
[PROOFSTEP]
suffices smulAddMonoidHom A M 1 = AddMonoidHom.id (⨁ i, M i) from FunLike.congr_fun this x
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
⊢ ↑(smulAddMonoidHom A M) 1 = AddMonoidHom.id (⨁ (i : ι), M i)
[PROOFSTEP]
apply DirectSum.addHom_ext
[GOAL]
case H
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
⊢ ∀ (i : ι) (y : M i),
↑(↑(smulAddMonoidHom A M) 1) (↑(of (fun i => M i) i) y) =
↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) y)
[PROOFSTEP]
intro i xi
[GOAL]
case H
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
i : ι
xi : M i
⊢ ↑(↑(smulAddMonoidHom A M) 1) (↑(of (fun i => M i) i) xi) =
↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) xi)
[PROOFSTEP]
rw [show (1 : DirectSum ι fun i => A i) = (of A 0) GOne.one by rfl]
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
i : ι
xi : M i
⊢ 1 = ↑(of A 0) GOne.one
[PROOFSTEP]
rfl
[GOAL]
case H
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
i : ι
xi : M i
⊢ ↑(↑(smulAddMonoidHom A M) (↑(of A 0) GOne.one)) (↑(of (fun i => M i) i) xi) =
↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) xi)
[PROOFSTEP]
rw [smulAddMonoidHom_apply_of_of]
[GOAL]
case H
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GMonoid A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
i : ι
xi : M i
⊢ ↑(of M (0 + i)) (GSmul.smul GOne.one xi) = ↑(AddMonoidHom.id (⨁ (i : ι), M i)) (↑(of (fun i => M i) i) xi)
[PROOFSTEP]
exact
DirectSum.of_eq_of_gradedMonoid_eq
(one_smul (GradedMonoid A) <| GradedMonoid.mk i xi)
-- Porting note: renamed to mul_smul' since DirectSum.Gmodule.mul_smul already exists
-- Almost identical to the proof of `direct_sum.mul_assoc`
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GSemiring A
inst✝ : Gmodule A M
a b : ⨁ (i : ι), A i
c : ⨁ (i : ι), M i
⊢ (a * b) • c = a • b • c
[PROOFSTEP]
suffices
(
-- `fun a b c ↦ (a * b) • c` as a bundled homsmulAddMonoidHom A M).compHom.comp
(DirectSum.mulHom A) =
(AddMonoidHom.compHom AddMonoidHom.flipHom <| (smulAddMonoidHom A M).flip.compHom.comp <| smulAddMonoidHom A M).flip
from
-- `fun a b c ↦ a • (b • c)` as a bundled homFunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this a) b) c
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GSemiring A
inst✝ : Gmodule A M
a b : ⨁ (i : ι), A i
c : ⨁ (i : ι), M i
⊢ comp (↑compHom (smulAddMonoidHom A M)) (mulHom A) =
AddMonoidHom.flip
(↑(↑compHom flipHom) (comp (↑compHom (AddMonoidHom.flip (smulAddMonoidHom A M))) (smulAddMonoidHom A M)))
[PROOFSTEP]
ext ai ax bi bx ci cx : 6
[GOAL]
case H.h.H.h.H.h
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GSemiring A
inst✝ : Gmodule A M
a b : ⨁ (i : ι), A i
c : ⨁ (i : ι), M i
ai : ι
ax : A ai
bi : ι
bx : A bi
ci : ι
cx : M ci
⊢ ↑(comp
(↑(comp (↑(comp (comp (↑compHom (smulAddMonoidHom A M)) (mulHom A)) (of (fun i => A i) ai)) ax)
(of (fun i => A i) bi))
bx)
(of (fun i => M i) ci))
cx =
↑(comp
(↑(comp
(↑(comp
(AddMonoidHom.flip
(↑(↑compHom flipHom)
(comp (↑compHom (AddMonoidHom.flip (smulAddMonoidHom A M))) (smulAddMonoidHom A M))))
(of (fun i => A i) ai))
ax)
(of (fun i => A i) bi))
bx)
(of (fun i => M i) ci))
cx
[PROOFSTEP]
dsimp only [coe_comp, Function.comp_apply, compHom_apply_apply, flip_apply, flipHom_apply]
[GOAL]
case H.h.H.h.H.h
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GSemiring A
inst✝ : Gmodule A M
a b : ⨁ (i : ι), A i
c : ⨁ (i : ι), M i
ai : ι
ax : A ai
bi : ι
bx : A bi
ci : ι
cx : M ci
⊢ ↑(↑(smulAddMonoidHom A M) (↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx)))
(↑(of (fun i => M i) ci) cx) =
↑(↑(smulAddMonoidHom A M) (↑(of (fun i => A i) ai) ax))
(↑(↑(smulAddMonoidHom A M) (↑(of (fun i => A i) bi) bx)) (↑(of (fun i => M i) ci) cx))
[PROOFSTEP]
rw [smulAddMonoidHom_apply_of_of, smulAddMonoidHom_apply_of_of, DirectSum.mulHom_of_of, smulAddMonoidHom_apply_of_of]
[GOAL]
case H.h.H.h.H.h
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GSemiring A
inst✝ : Gmodule A M
a b : ⨁ (i : ι), A i
c : ⨁ (i : ι), M i
ai : ι
ax : A ai
bi : ι
bx : A bi
ci : ι
cx : M ci
⊢ ↑(of M (ai + bi + ci)) (GSmul.smul (GMul.mul ax bx) cx) = ↑(of M (ai + (bi + ci))) (GSmul.smul ax (GSmul.smul bx cx))
[PROOFSTEP]
exact
DirectSum.of_eq_of_gradedMonoid_eq (mul_smul (GradedMonoid.mk ai ax) (GradedMonoid.mk bi bx) (GradedMonoid.mk ci cx))
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GSemiring A
inst✝ : Gmodule A M
r s : ⨁ (i : ι), A i
x : ⨁ (i : ι), M i
⊢ (r + s) • x = r • x + s • x
[PROOFSTEP]
simp only [smul_def, map_add, AddMonoidHom.add_apply]
[GOAL]
ι : Type u_1
A : ι → Type u_2
M : ι → Type u_3
inst✝⁵ : AddMonoid ι
inst✝⁴ : (i : ι) → AddCommMonoid (A i)
inst✝³ : (i : ι) → AddCommMonoid (M i)
inst✝² : DecidableEq ι
inst✝¹ : GSemiring A
inst✝ : Gmodule A M
x : ⨁ (i : ι), M i
⊢ 0 • x = 0
[PROOFSTEP]
simp only [smul_def, map_zero, AddMonoidHom.zero_apply]
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
⊢ Module A (⨁ (i : ι), { x // x ∈ 𝓜 i })
[PROOFSTEP]
letI := isModule 𝓐 𝓜
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
this : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
⊢ Module A (⨁ (i : ι), { x // x ∈ 𝓜 i })
[PROOFSTEP]
infer_instance
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
⊢ M ≃ₗ[A] ⨁ (i : ι), { x // x ∈ 𝓜 i }
[PROOFSTEP]
letI h := isModule 𝓐 𝓜
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
⊢ M ≃ₗ[A] ⨁ (i : ι), { x // x ∈ 𝓜 i }
[PROOFSTEP]
refine
⟨⟨(DirectSum.decomposeAddEquiv 𝓜).toAddHom, ?_⟩, (DirectSum.decomposeAddEquiv 𝓜).symm.toFun,
(DirectSum.decomposeAddEquiv 𝓜).left_inv, (DirectSum.decomposeAddEquiv 𝓜).right_inv⟩
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
⊢ ∀ (r : A) (x : M),
AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) (r • x) =
↑(RingHom.id A) r • AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) x
[PROOFSTEP]
intro x y
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
⊢ AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) (x • y) =
↑(RingHom.id A) x • AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) y
[PROOFSTEP]
classical
rw [AddHom.toFun_eq_coe, ← DirectSum.sum_support_decompose 𝓐 x, map_sum, Finset.sum_smul, AddEquiv.coe_toAddHom,
map_sum, Finset.sum_smul]
refine Finset.sum_congr rfl (fun i _hi => ?_)
rw [RingHom.id_apply, ← DirectSum.sum_support_decompose 𝓜 y, map_sum, Finset.smul_sum, map_sum, Finset.smul_sum]
refine Finset.sum_congr rfl (fun j _hj => ?_)
rw [show
(decompose 𝓐 x i : A) • (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j) : (⨁ i, 𝓜 i)) =
DirectSum.Gmodule.smulAddMonoidHom _ _ (decompose 𝓐 ↑(decompose 𝓐 x i)) (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j))
from DirectSum.Gmodule.smul_def _ _ _ _]
simp only [decomposeAddEquiv_apply, Equiv.invFun_as_coe, Equiv.symm_symm, decompose_coe,
Gmodule.smulAddMonoidHom_apply_of_of]
convert DirectSum.decompose_coe 𝓜 _
rfl
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
⊢ AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) (x • y) =
↑(RingHom.id A) x • AddHom.toFun (AddEquiv.toAddHom (decomposeAddEquiv 𝓜)) y
[PROOFSTEP]
rw [AddHom.toFun_eq_coe, ← DirectSum.sum_support_decompose 𝓐 x, map_sum, Finset.sum_smul, AddEquiv.coe_toAddHom,
map_sum, Finset.sum_smul]
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
⊢ ∑ x_1 in DFinsupp.support (↑(decompose 𝓐) x), ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) x_1) • y) =
∑ i in DFinsupp.support (↑(decompose 𝓐) x), ↑(RingHom.id A) ↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) y
[PROOFSTEP]
refine Finset.sum_congr rfl (fun i _hi => ?_)
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
i : ι
_hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x)
⊢ ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • y) =
↑(RingHom.id A) ↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) y
[PROOFSTEP]
rw [RingHom.id_apply, ← DirectSum.sum_support_decompose 𝓜 y, map_sum, Finset.smul_sum, map_sum, Finset.smul_sum]
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
i : ι
_hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x)
⊢ ∑ x_1 in DFinsupp.support (↑(decompose 𝓜) y),
↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) x_1)) =
∑ x_1 in DFinsupp.support (↑(decompose 𝓜) y),
↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) ↑(↑(↑(decompose 𝓜) y) x_1)
[PROOFSTEP]
refine Finset.sum_congr rfl (fun j _hj => ?_)
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
i : ι
_hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x)
j : ι
_hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y)
⊢ ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j)) =
↑(↑(↑(decompose 𝓐) x) i) • ↑(decomposeAddEquiv 𝓜) ↑(↑(↑(decompose 𝓜) y) j)
[PROOFSTEP]
rw [show
(decompose 𝓐 x i : A) • (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j) : (⨁ i, 𝓜 i)) =
DirectSum.Gmodule.smulAddMonoidHom _ _ (decompose 𝓐 ↑(decompose 𝓐 x i)) (decomposeAddEquiv 𝓜 ↑(decompose 𝓜 y j))
from DirectSum.Gmodule.smul_def _ _ _ _]
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
i : ι
_hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x)
j : ι
_hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y)
⊢ ↑(decomposeAddEquiv 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j)) =
↑(↑(Gmodule.smulAddMonoidHom (fun i => { x // x ∈ 𝓐 i }) fun i => { x // x ∈ 𝓜 i })
(↑(decompose 𝓐) ↑(↑(↑(decompose 𝓐) x) i)))
(↑(decomposeAddEquiv 𝓜) ↑(↑(↑(decompose 𝓜) y) j))
[PROOFSTEP]
simp only [decomposeAddEquiv_apply, Equiv.invFun_as_coe, Equiv.symm_symm, decompose_coe,
Gmodule.smulAddMonoidHom_apply_of_of]
[GOAL]
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
i : ι
_hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x)
j : ι
_hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y)
⊢ ↑(decompose 𝓜) (↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j)) =
↑(of (fun i => { x // x ∈ 𝓜 i }) (i + j)) (GradedMonoid.GSmul.smul (↑(↑(decompose 𝓐) x) i) (↑(↑(decompose 𝓜) y) j))
[PROOFSTEP]
convert DirectSum.decompose_coe 𝓜 _
[GOAL]
case h.e'_2.h.e'_6
ι : Type u_1
R : Type u_2
A : Type u_3
M : Type u_4
σ : Type u_5
σ' : Type u_6
inst✝¹⁴ : AddMonoid ι
inst✝¹³ : CommSemiring R
inst✝¹² : Semiring A
inst✝¹¹ : Algebra R A
𝓐 : ι → σ'
inst✝¹⁰ : SetLike σ' A
𝓜 : ι → σ
inst✝⁹ : AddCommMonoid M
inst✝⁸ : Module A M
inst✝⁷ : SetLike σ M
inst✝⁶ : AddSubmonoidClass σ' A
inst✝⁵ : AddSubmonoidClass σ M
inst✝⁴ : SetLike.GradedMonoid 𝓐
inst✝³ : SetLike.GradedSmul 𝓐 𝓜
inst✝² : DecidableEq ι
inst✝¹ : GradedRing 𝓐
inst✝ : Decomposition 𝓜
h : Module A (⨁ (i : ι), { x // x ∈ 𝓜 i }) := isModule 𝓐 𝓜
x : A
y : M
i : ι
_hi : i ∈ DFinsupp.support (↑(decompose 𝓐) x)
j : ι
_hj : j ∈ DFinsupp.support (↑(decompose 𝓜) y)
⊢ ↑(↑(↑(decompose 𝓐) x) i) • ↑(↑(↑(decompose 𝓜) y) j) =
↑(GradedMonoid.GSmul.smul (↑(↑(decompose 𝓐) x) i) (↑(↑(decompose 𝓜) y) j))
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Module.GradedModule", "llama_tokens": 11240} |
[GOAL]
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
⊢ Module.Projective R P ↔ Projective (of R P)
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
h : Module.Projective R P
⊢ Projective (of R P)
[PROOFSTEP]
letI : Module.Projective R (ModuleCat.of R P) := h
[GOAL]
case refine'_1
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
h : Module.Projective R P
this : Module.Projective R ↑(of R P) := h
⊢ Projective (of R P)
[PROOFSTEP]
exact ⟨fun E X epi => Module.projective_lifting_property _ _ ((ModuleCat.epi_iff_surjective _).mp epi)⟩
[GOAL]
case refine'_2
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
h : Projective (of R P)
⊢ Module.Projective R P
[PROOFSTEP]
refine' Module.Projective.of_lifting_property.{u, v} _
[GOAL]
case refine'_2
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
h : Projective (of R P)
⊢ ∀ {M : Type (max v u)} {N : Type (max u v)} [inst : AddCommGroup M] [inst_1 : AddCommGroup N] [inst_2 : Module R M]
[inst_3 : Module R N] (f : M →ₗ[R] N) (g : P →ₗ[R] N), Function.Surjective ↑f → ∃ h, comp f h = g
[PROOFSTEP]
intro E X mE mX sE sX f g s
[GOAL]
case refine'_2
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
h : Projective (of R P)
E : Type (max v u)
X : Type (max u v)
mE : AddCommGroup E
mX : AddCommGroup X
sE : Module R E
sX : Module R X
f : E →ₗ[R] X
g : P →ₗ[R] X
s : Function.Surjective ↑f
⊢ ∃ h, comp f h = g
[PROOFSTEP]
haveI : Epi (↟f) := (ModuleCat.epi_iff_surjective (↟f)).mpr s
[GOAL]
case refine'_2
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
h : Projective (of R P)
E : Type (max v u)
X : Type (max u v)
mE : AddCommGroup E
mX : AddCommGroup X
sE : Module R E
sX : Module R X
f : E →ₗ[R] X
g : P →ₗ[R] X
s : Function.Surjective ↑f
this : Epi (↟f)
⊢ ∃ h, comp f h = g
[PROOFSTEP]
letI : Projective (ModuleCat.of R P) := h
[GOAL]
case refine'_2
R : Type u
inst✝² : Ring R
P : Type (max u v)
inst✝¹ : AddCommGroup P
inst✝ : Module R P
h : Projective (of R P)
E : Type (max v u)
X : Type (max u v)
mE : AddCommGroup E
mX : AddCommGroup X
sE : Module R E
sX : Module R X
f : E →ₗ[R] X
g : P →ₗ[R] X
s : Function.Surjective ↑f
this✝ : Epi (↟f)
this : Projective (of R P) := h
⊢ ∃ h, comp f h = g
[PROOFSTEP]
exact ⟨Projective.factorThru (↟g) (↟f), Projective.factorThru_comp (↟g) (↟f)⟩
[GOAL]
R : Type u
inst✝ : Ring R
M✝ M : ModuleCat R
m : ↑M
⊢ ↑(↑(Basis.constr Finsupp.basisSingleOne ℕ) _root_.id) (Finsupp.single m 1) = m
[PROOFSTEP]
dsimp [Basis.constr]
[GOAL]
R : Type u
inst✝ : Ring R
M✝ M : ModuleCat R
m : ↑M
⊢ ↑(comp (Finsupp.total (↑M) (↑M) R _root_.id) (comp (Finsupp.lmapDomain R R _root_.id) LinearMap.id))
(Finsupp.single m 1) =
m
[PROOFSTEP]
simp only [Finsupp.lmapDomain_id, comp_id]
[GOAL]
R : Type u
inst✝ : Ring R
M✝ M : ModuleCat R
m : ↑M
⊢ ↑(Finsupp.total (↑M) (↑M) R _root_.id) (Finsupp.single m 1) = m
[PROOFSTEP]
rw [Finsupp.total_single, one_smul]
[GOAL]
R : Type u
inst✝ : Ring R
M✝ M : ModuleCat R
m : ↑M
⊢ _root_.id m = m
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Projective", "llama_tokens": 1577} |
[GOAL]
⊢ ∀ {X' X : Type u} {Y : AddCommGroupCat} (f : X' ⟶ X) (g : X ⟶ (forget AddCommGroupCat).obj Y),
↑((fun X G => FreeAbelianGroup.lift.symm) X' Y).symm (f ≫ g) =
free.map f ≫ ↑((fun X G => FreeAbelianGroup.lift.symm) X Y).symm g
[PROOFSTEP]
intros
[GOAL]
X'✝ X✝ : Type u
Y✝ : AddCommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget AddCommGroupCat).obj Y✝
⊢ ↑((fun X G => FreeAbelianGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝) =
free.map f✝ ≫ ↑((fun X G => FreeAbelianGroup.lift.symm) X✝ Y✝).symm g✝
[PROOFSTEP]
ext
[GOAL]
case w
X'✝ X✝ : Type u
Y✝ : AddCommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget AddCommGroupCat).obj Y✝
x✝ : ↑(free.obj X'✝)
⊢ ↑(↑((fun X G => FreeAbelianGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝)) x✝ =
↑(free.map f✝ ≫ ↑((fun X G => FreeAbelianGroup.lift.symm) X✝ Y✝).symm g✝) x✝
[PROOFSTEP]
simp only [Equiv.symm_symm]
[GOAL]
case w
X'✝ X✝ : Type u
Y✝ : AddCommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget AddCommGroupCat).obj Y✝
x✝ : ↑(free.obj X'✝)
⊢ ↑(↑FreeAbelianGroup.lift (f✝ ≫ g✝)) x✝ = ↑(free.map f✝ ≫ ↑FreeAbelianGroup.lift g✝) x✝
[PROOFSTEP]
apply FreeAbelianGroup.lift_comp
[GOAL]
⊢ ∀ (X : Type u),
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (𝟙 X) =
𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X)
[PROOFSTEP]
intros
[GOAL]
X✝ : Type u
⊢ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (𝟙 X✝) =
𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)
[PROOFSTEP]
ext1
[GOAL]
case w
X✝ : Type u
x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)
⊢ ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (𝟙 X✝)) x✝ =
↑(𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)) x✝
[PROOFSTEP]
rw [← FreeGroup.map.unique]
[GOAL]
case w.hg
X✝ : Type u
x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)
⊢ ∀ (x : X✝),
↑(𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)) (FreeGroup.of x) =
FreeGroup.of (𝟙 X✝ x)
[PROOFSTEP]
intros
[GOAL]
case w.hg
X✝ : Type u
x✝¹ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)
x✝ : X✝
⊢ ↑(𝟙 ({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)) (FreeGroup.of x✝) =
FreeGroup.of (𝟙 X✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
⊢ ∀ {X Y Z : Type u} (f : X ⟶ Y) (g : Y ⟶ Z),
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (f ≫ g) =
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f ≫
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g
[PROOFSTEP]
intros
[GOAL]
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ { obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (f✝ ≫ g✝) =
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝
[PROOFSTEP]
ext1
[GOAL]
case w
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)
⊢ ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map (f✝ ≫ g✝)) x✝ =
↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝)
x✝
[PROOFSTEP]
rw [← FreeGroup.map.unique]
[GOAL]
case w.hg
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)
⊢ ∀ (x : X✝),
↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝)
(FreeGroup.of x) =
FreeGroup.of ((f✝ ≫ g✝) x)
[PROOFSTEP]
intros
[GOAL]
case w.hg
X✝ Y✝ Z✝ : Type u
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝¹ : ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.obj X✝)
x✝ : X✝
⊢ ↑({ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map f✝ ≫
{ obj := fun α => of (FreeGroup α), map := fun {X Y} => FreeGroup.map }.map g✝)
(FreeGroup.of x✝) =
FreeGroup.of ((f✝ ≫ g✝) x✝)
[PROOFSTEP]
rfl
[GOAL]
⊢ ∀ {X' X : Type u} {Y : GroupCat} (f : X' ⟶ X) (g : X ⟶ (forget GroupCat).obj Y),
↑((fun X G => FreeGroup.lift.symm) X' Y).symm (f ≫ g) = free.map f ≫ ↑((fun X G => FreeGroup.lift.symm) X Y).symm g
[PROOFSTEP]
intros
[GOAL]
X'✝ X✝ : Type u
Y✝ : GroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget GroupCat).obj Y✝
⊢ ↑((fun X G => FreeGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝) =
free.map f✝ ≫ ↑((fun X G => FreeGroup.lift.symm) X✝ Y✝).symm g✝
[PROOFSTEP]
ext1
[GOAL]
case w
X'✝ X✝ : Type u
Y✝ : GroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget GroupCat).obj Y✝
x✝ : ↑(free.obj X'✝)
⊢ ↑(↑((fun X G => FreeGroup.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝)) x✝ =
↑(free.map f✝ ≫ ↑((fun X G => FreeGroup.lift.symm) X✝ Y✝).symm g✝) x✝
[PROOFSTEP]
simp only [Equiv.symm_symm]
[GOAL]
case w
X'✝ X✝ : Type u
Y✝ : GroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget GroupCat).obj Y✝
x✝ : ↑(free.obj X'✝)
⊢ ↑(↑FreeGroup.lift (f✝ ≫ g✝)) x✝ = ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) x✝
[PROOFSTEP]
apply Eq.symm
[GOAL]
case w.h
X'✝ X✝ : Type u
Y✝ : GroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget GroupCat).obj Y✝
x✝ : ↑(free.obj X'✝)
⊢ ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) x✝ = ↑(↑FreeGroup.lift (f✝ ≫ g✝)) x✝
[PROOFSTEP]
apply FreeGroup.lift.unique
[GOAL]
case w.h.hg
X'✝ X✝ : Type u
Y✝ : GroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget GroupCat).obj Y✝
x✝ : ↑(free.obj X'✝)
⊢ ∀ (x : X'✝), ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) (FreeGroup.of x) = (f✝ ≫ g✝) x
[PROOFSTEP]
intros
[GOAL]
case w.h.hg
X'✝ X✝ : Type u
Y✝ : GroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget GroupCat).obj Y✝
x✝¹ : ↑(free.obj X'✝)
x✝ : X'✝
⊢ ↑(free.map f✝ ≫ ↑FreeGroup.lift g✝) (FreeGroup.of x✝) = (f✝ ≫ g✝) x✝
[PROOFSTEP]
apply FreeGroup.lift.of
[GOAL]
G : GroupCat
⊢ CommGroup (Abelianization ↑G)
[PROOFSTEP]
infer_instance
[GOAL]
X✝ Y✝ : GroupCat
f : X✝ ⟶ Y✝
⊢ (fun x => ↑Abelianization.of (↑f x)) 1 = 1
[PROOFSTEP]
simp
[GOAL]
X✝ Y✝ : GroupCat
f : X✝ ⟶ Y✝
⊢ ∀ (x y : ↑X✝),
OneHom.toFun { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) }
(x * y) =
OneHom.toFun { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) } x *
OneHom.toFun { toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) } y
[PROOFSTEP]
simp
[GOAL]
⊢ ∀ (X : GroupCat),
{ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
(𝟙 X) =
𝟙
({ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.obj
X)
[PROOFSTEP]
intros
[GOAL]
X✝ : GroupCat
⊢ { obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
(𝟙 X✝) =
𝟙
({ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.obj
X✝)
[PROOFSTEP]
simp only [MonoidHom.mk_coe, coe_id]
[GOAL]
X✝ : GroupCat
⊢ ↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑(𝟙 X✝) x), map_one' := (_ : ↑Abelianization.of (↑(𝟙 X✝) 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X✝),
↑Abelianization.of (↑(𝟙 X✝) (a * a_1)) =
↑Abelianization.of (↑(𝟙 X✝) a) * ↑Abelianization.of (↑(𝟙 X✝) a_1)) } =
𝟙 (Bundled.mk (Abelianization ↑X✝))
[PROOFSTEP]
apply (Equiv.apply_eq_iff_eq_symm_apply Abelianization.lift).mpr
[GOAL]
X✝ : GroupCat
⊢ {
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑(𝟙 X✝) x), map_one' := (_ : ↑Abelianization.of (↑(𝟙 X✝) 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X✝),
↑Abelianization.of (↑(𝟙 X✝) (a * a_1)) =
↑Abelianization.of (↑(𝟙 X✝) a) * ↑Abelianization.of (↑(𝟙 X✝) a_1)) } =
↑Abelianization.lift.symm (𝟙 (Bundled.mk (Abelianization ↑X✝)))
[PROOFSTEP]
rfl
[GOAL]
⊢ ∀ {X Y Z : GroupCat} (f : X ⟶ Y) (g : Y ⟶ Z),
{ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
(f ≫ g) =
{ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
f ≫
{ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
g
[PROOFSTEP]
intros
[GOAL]
X✝ Y✝ Z✝ : GroupCat
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ { obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
(f✝ ≫ g✝) =
{ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
f✝ ≫
{ obj := fun G => Bundled.mk (Abelianization ↑G),
map := fun {X Y} f =>
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f x), map_one' := (_ : ↑Abelianization.of (↑f 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X),
↑Abelianization.of (↑f (a * a_1)) =
↑Abelianization.of (↑f a) * ↑Abelianization.of (↑f a_1)) } }.map
g✝
[PROOFSTEP]
simp only [coe_comp]
[GOAL]
X✝ Y✝ Z✝ : GroupCat
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ ↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑(f✝ ≫ g✝) x),
map_one' := (_ : ↑Abelianization.of (↑(f✝ ≫ g✝) 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X✝),
↑Abelianization.of (↑(f✝ ≫ g✝) (a * a_1)) =
↑Abelianization.of (↑(f✝ ≫ g✝) a) * ↑Abelianization.of (↑(f✝ ≫ g✝) a_1)) } =
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f✝ x), map_one' := (_ : ↑Abelianization.of (↑f✝ 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X✝),
↑Abelianization.of (↑f✝ (a * a_1)) = ↑Abelianization.of (↑f✝ a) * ↑Abelianization.of (↑f✝ a_1)) } ≫
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑g✝ x), map_one' := (_ : ↑Abelianization.of (↑g✝ 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑Y✝),
↑Abelianization.of (↑g✝ (a * a_1)) = ↑Abelianization.of (↑g✝ a) * ↑Abelianization.of (↑g✝ a_1)) }
[PROOFSTEP]
apply (Equiv.apply_eq_iff_eq_symm_apply Abelianization.lift).mpr
[GOAL]
X✝ Y✝ Z✝ : GroupCat
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ {
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑(f✝ ≫ g✝) x),
map_one' := (_ : ↑Abelianization.of (↑(f✝ ≫ g✝) 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X✝),
↑Abelianization.of (↑(f✝ ≫ g✝) (a * a_1)) =
↑Abelianization.of (↑(f✝ ≫ g✝) a) * ↑Abelianization.of (↑(f✝ ≫ g✝) a_1)) } =
↑Abelianization.lift.symm
(↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑f✝ x), map_one' := (_ : ↑Abelianization.of (↑f✝ 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑X✝),
↑Abelianization.of (↑f✝ (a * a_1)) = ↑Abelianization.of (↑f✝ a) * ↑Abelianization.of (↑f✝ a_1)) } ≫
↑Abelianization.lift
{
toOneHom :=
{ toFun := fun x => ↑Abelianization.of (↑g✝ x), map_one' := (_ : ↑Abelianization.of (↑g✝ 1) = 1) },
map_mul' :=
(_ :
∀ (a a_1 : ↑Y✝),
↑Abelianization.of (↑g✝ (a * a_1)) = ↑Abelianization.of (↑g✝ a) * ↑Abelianization.of (↑g✝ a_1)) })
[PROOFSTEP]
rfl
[GOAL]
⊢ ∀ {X' X : GroupCat} {Y : CommGroupCat} (f : X' ⟶ X) (g : X ⟶ (forget₂ CommGroupCat GroupCat).obj Y),
↑((fun G A => Abelianization.lift.symm) X' Y).symm (f ≫ g) =
abelianize.map f ≫ ↑((fun G A => Abelianization.lift.symm) X Y).symm g
[PROOFSTEP]
intros
[GOAL]
X'✝ X✝ : GroupCat
Y✝ : CommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝
⊢ ↑((fun G A => Abelianization.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝) =
abelianize.map f✝ ≫ ↑((fun G A => Abelianization.lift.symm) X✝ Y✝).symm g✝
[PROOFSTEP]
ext1
[GOAL]
case w
X'✝ X✝ : GroupCat
Y✝ : CommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝
x✝ : ↑(abelianize.obj X'✝)
⊢ ↑(↑((fun G A => Abelianization.lift.symm) X'✝ Y✝).symm (f✝ ≫ g✝)) x✝ =
↑(abelianize.map f✝ ≫ ↑((fun G A => Abelianization.lift.symm) X✝ Y✝).symm g✝) x✝
[PROOFSTEP]
simp only [Equiv.symm_symm]
[GOAL]
case w
X'✝ X✝ : GroupCat
Y✝ : CommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝
x✝ : ↑(abelianize.obj X'✝)
⊢ ↑(↑Abelianization.lift (f✝ ≫ g✝)) x✝ = ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) x✝
[PROOFSTEP]
apply Eq.symm
[GOAL]
case w.h
X'✝ X✝ : GroupCat
Y✝ : CommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝
x✝ : ↑(abelianize.obj X'✝)
⊢ ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) x✝ = ↑(↑Abelianization.lift (f✝ ≫ g✝)) x✝
[PROOFSTEP]
apply Abelianization.lift.unique
[GOAL]
case w.h.hφ
X'✝ X✝ : GroupCat
Y✝ : CommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝
x✝ : ↑(abelianize.obj X'✝)
⊢ ∀ (x : ↑X'✝), ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) (↑Abelianization.of x) = ↑(f✝ ≫ g✝) x
[PROOFSTEP]
intros
[GOAL]
case w.h.hφ
X'✝ X✝ : GroupCat
Y✝ : CommGroupCat
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ (forget₂ CommGroupCat GroupCat).obj Y✝
x✝¹ : ↑(abelianize.obj X'✝)
x✝ : ↑X'✝
⊢ ↑(abelianize.map f✝ ≫ ↑Abelianization.lift g✝) (↑Abelianization.of x✝) = ↑(f✝ ≫ g✝) x✝
[PROOFSTEP]
apply Abelianization.lift.of
[GOAL]
⊢ ∀ ⦃X Y : MonCat⦄ (f : X ⟶ Y),
(MonCat.units ⋙ forget₂ GroupCat MonCat).map f ≫ (fun X => Units.coeHom ↑X) Y =
(fun X => Units.coeHom ↑X) X ≫ (𝟭 MonCat).map f
[PROOFSTEP]
intros
[GOAL]
X✝ Y✝ : MonCat
f✝ : X✝ ⟶ Y✝
⊢ (MonCat.units ⋙ forget₂ GroupCat MonCat).map f✝ ≫ (fun X => Units.coeHom ↑X) Y✝ =
(fun X => Units.coeHom ↑X) X✝ ≫ (𝟭 MonCat).map f✝
[PROOFSTEP]
exact MonoidHom.ext fun x => rfl
[GOAL]
⊢ ∀ ⦃X Y : CommMonCat⦄ (f : X ⟶ Y),
(CommMonCat.units ⋙ forget₂ CommGroupCat CommMonCat).map f ≫ (fun X => Units.coeHom ↑X) Y =
(fun X => Units.coeHom ↑X) X ≫ (𝟭 CommMonCat).map f
[PROOFSTEP]
intros
[GOAL]
X✝ Y✝ : CommMonCat
f✝ : X✝ ⟶ Y✝
⊢ (CommMonCat.units ⋙ forget₂ CommGroupCat CommMonCat).map f✝ ≫ (fun X => Units.coeHom ↑X) Y✝ =
(fun X => Units.coeHom ↑X) X✝ ≫ (𝟭 CommMonCat).map f✝
[PROOFSTEP]
exact MonoidHom.ext fun x => rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.GroupCat.Adjunctions", "llama_tokens": 9173} |
{"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Simple", "llama_tokens": 0} |
|
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Mono f
⊢ (LinearEquiv.toModuleIso'
(LinearEquiv.trans (LinearEquiv.symm (Submodule.quotEquivOfEqBot (LinearMap.ker f) (_ : LinearMap.ker f = ⊥)))
(LinearEquiv.trans (LinearMap.quotKerEquivRange f)
(LinearEquiv.ofEq (LinearMap.range f) (LinearMap.ker (Submodule.mkQ (LinearMap.range f)))
(_ : LinearMap.range f = LinearMap.ker (Submodule.mkQ (LinearMap.range f))))))).hom ≫
Fork.ι (kernelCone (Submodule.mkQ (LinearMap.range f))) =
f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Mono f
x✝ : ↑M
⊢ ↑((LinearEquiv.toModuleIso'
(LinearEquiv.trans
(LinearEquiv.symm (Submodule.quotEquivOfEqBot (LinearMap.ker f) (_ : LinearMap.ker f = ⊥)))
(LinearEquiv.trans (LinearMap.quotKerEquivRange f)
(LinearEquiv.ofEq (LinearMap.range f) (LinearMap.ker (Submodule.mkQ (LinearMap.range f)))
(_ : LinearMap.range f = LinearMap.ker (Submodule.mkQ (LinearMap.range f))))))).hom ≫
Fork.ι (kernelCone (Submodule.mkQ (LinearMap.range f))))
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Epi f
⊢ Cofork.π (cokernelCocone (Submodule.subtype (LinearMap.ker f))) ≫
(LinearEquiv.toModuleIso'
(LinearEquiv.trans
(LinearEquiv.trans
(Submodule.quotEquivOfEq (LinearMap.range (Submodule.subtype (LinearMap.ker f))) (LinearMap.ker f)
(_ : LinearMap.range (Submodule.subtype (LinearMap.ker f)) = LinearMap.ker f))
(LinearMap.quotKerEquivRange f))
(LinearEquiv.ofTop (LinearMap.range f) (_ : LinearMap.range f = ⊤)))).hom =
f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
hf : Epi f
x✝ : ↑((parallelPair (Submodule.subtype (LinearMap.ker f)) 0).obj WalkingParallelPair.one)
⊢ ↑(Cofork.π (cokernelCocone (Submodule.subtype (LinearMap.ker f))) ≫
(LinearEquiv.toModuleIso'
(LinearEquiv.trans
(LinearEquiv.trans
(Submodule.quotEquivOfEq (LinearMap.range (Submodule.subtype (LinearMap.ker f))) (LinearMap.ker f)
(_ : LinearMap.range (Submodule.subtype (LinearMap.ker f)) = LinearMap.ker f))
(LinearMap.quotKerEquivRange f))
(LinearEquiv.ofTop (LinearMap.range f) (_ : LinearMap.range f = ⊤)))).hom)
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
O : ModuleCat R
g : N ⟶ O
⊢ Exact f g ↔ range f = ker g
[PROOFSTEP]
rw [abelian.exact_iff' f g (kernelIsLimit _) (cokernelIsColimit _)]
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
O : ModuleCat R
g : N ⟶ O
⊢ f ≫ g = 0 ∧ Fork.ι (kernelCone g) ≫ Cofork.π (cokernelCocone f) = 0 ↔ range f = ker g
[PROOFSTEP]
exact
⟨fun h => le_antisymm (range_le_ker_iff.2 h.1) (ker_le_range_iff.2 h.2), fun h =>
⟨range_le_ker_iff.1 <| le_of_eq h, ker_le_range_iff.1 <| le_of_eq h.symm⟩⟩
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Abelian", "llama_tokens": 1234} |
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
⊢ natDegree 0 ≤ 0
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : Multiset S[X]
⊢ ∀ (a : List S[X]),
natDegree (Multiset.sum (Quotient.mk (List.isSetoid S[X]) a)) ≤
foldr max (_ : ∀ (a b c : ℕ), max a (max b c) = max b (max a c)) 0
(Multiset.map natDegree (Quotient.mk (List.isSetoid S[X]) a))
[PROOFSTEP]
simpa using natDegree_list_sum_le
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
f : ι → S[X]
⊢ natDegree (∑ i in s, f i) ≤ Finset.fold max 0 (natDegree ∘ f) s
[PROOFSTEP]
simpa using natDegree_multiset_sum_le (s.val.map f)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
⊢ degree (List.sum l) ≤ List.maximum (List.map natDegree l)
[PROOFSTEP]
by_cases h : l.sum = 0
[GOAL]
case pos
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : List.sum l = 0
⊢ degree (List.sum l) ≤ List.maximum (List.map natDegree l)
[PROOFSTEP]
simp [h]
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : ¬List.sum l = 0
⊢ degree (List.sum l) ≤ List.maximum (List.map natDegree l)
[PROOFSTEP]
rw [degree_eq_natDegree h]
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : ¬List.sum l = 0
⊢ ↑(natDegree (List.sum l)) ≤ List.maximum (List.map natDegree l)
[PROOFSTEP]
suffices (l.map natDegree).maximum = ((l.map natDegree).foldr max 0 : ℕ)
by
rw [this]
simpa [this, Nat.cast_withBot] using natDegree_list_sum_le l
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : ¬List.sum l = 0
this : List.maximum (List.map natDegree l) = ↑(List.foldr max 0 (List.map natDegree l))
⊢ ↑(natDegree (List.sum l)) ≤ List.maximum (List.map natDegree l)
[PROOFSTEP]
rw [this]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : ¬List.sum l = 0
this : List.maximum (List.map natDegree l) = ↑(List.foldr max 0 (List.map natDegree l))
⊢ ↑(natDegree (List.sum l)) ≤ ↑(List.foldr max 0 (List.map natDegree l))
[PROOFSTEP]
simpa [this, Nat.cast_withBot] using natDegree_list_sum_le l
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : ¬List.sum l = 0
⊢ List.maximum (List.map natDegree l) = ↑(List.foldr max 0 (List.map natDegree l))
[PROOFSTEP]
rw [← List.foldr_max_of_ne_nil]
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : ¬List.sum l = 0
⊢ ↑(List.foldr max ⊥ (List.map natDegree l)) = ↑(List.foldr max 0 (List.map natDegree l))
[PROOFSTEP]
congr
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : ¬List.sum l = 0
⊢ List.map natDegree l ≠ []
[PROOFSTEP]
contrapose! h
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : List.map natDegree l = []
⊢ List.sum l = 0
[PROOFSTEP]
rw [List.map_eq_nil] at h
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
h : l = []
⊢ List.sum l = 0
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
⊢ natDegree (List.prod l) ≤ List.sum (List.map natDegree l)
[PROOFSTEP]
induction' l with hd tl IH
[GOAL]
case nil
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
⊢ natDegree (List.prod []) ≤ List.sum (List.map natDegree [])
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
hd : S[X]
tl : List S[X]
IH : natDegree (List.prod tl) ≤ List.sum (List.map natDegree tl)
⊢ natDegree (List.prod (hd :: tl)) ≤ List.sum (List.map natDegree (hd :: tl))
[PROOFSTEP]
simpa using natDegree_mul_le.trans (add_le_add_left IH _)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
⊢ degree (List.prod l) ≤ List.sum (List.map degree l)
[PROOFSTEP]
induction' l with hd tl IH
[GOAL]
case nil
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
⊢ degree (List.prod []) ≤ List.sum (List.map degree [])
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
hd : S[X]
tl : List S[X]
IH : degree (List.prod tl) ≤ List.sum (List.map degree tl)
⊢ degree (List.prod (hd :: tl)) ≤ List.sum (List.map degree (hd :: tl))
[PROOFSTEP]
simpa using (degree_mul_le _ _).trans (add_le_add_left IH _)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
⊢ coeff (List.prod l) (List.length l * n) = List.prod (List.map (fun p => coeff p n) l)
[PROOFSTEP]
induction' l with hd tl IH
[GOAL]
case nil
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hl : ∀ (p : S[X]), p ∈ [] → natDegree p ≤ n
⊢ coeff (List.prod []) (List.length [] * n) = List.prod (List.map (fun p => coeff p n) [])
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
⊢ coeff (List.prod (hd :: tl)) (List.length (hd :: tl) * n) = List.prod (List.map (fun p => coeff p n) (hd :: tl))
[PROOFSTEP]
have hl' : ∀ p ∈ tl, natDegree p ≤ n := fun p hp => hl p (List.mem_cons_of_mem _ hp)
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
⊢ coeff (List.prod (hd :: tl)) (List.length (hd :: tl) * n) = List.prod (List.map (fun p => coeff p n) (hd :: tl))
[PROOFSTEP]
simp only [List.prod_cons, List.map, List.length]
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
⊢ coeff (hd * List.prod tl) ((List.length tl + 1) * n) = coeff hd n * List.prod (List.map (fun p => coeff p n) tl)
[PROOFSTEP]
rw [add_mul, one_mul, add_comm, ← IH hl', mul_comm tl.length]
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl)
[PROOFSTEP]
have h : natDegree tl.prod ≤ n * tl.length :=
by
refine' (natDegree_list_prod_le _).trans _
rw [← tl.length_map natDegree, mul_comm]
refine' List.sum_le_card_nsmul _ _ _
simpa using hl'
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
⊢ natDegree (List.prod tl) ≤ n * List.length tl
[PROOFSTEP]
refine' (natDegree_list_prod_le _).trans _
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
⊢ List.sum (List.map natDegree tl) ≤ n * List.length tl
[PROOFSTEP]
rw [← tl.length_map natDegree, mul_comm]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
⊢ List.sum (List.map natDegree tl) ≤ List.length (List.map natDegree tl) * n
[PROOFSTEP]
refine' List.sum_le_card_nsmul _ _ _
[GOAL]
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
⊢ ∀ (x : ℕ), x ∈ List.map natDegree tl → x ≤ n
[PROOFSTEP]
simpa using hl'
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
h : natDegree (List.prod tl) ≤ n * List.length tl
⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl)
[PROOFSTEP]
have hdn : natDegree hd ≤ n := hl _ (List.mem_cons_self _ _)
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
h : natDegree (List.prod tl) ≤ n * List.length tl
hdn : natDegree hd ≤ n
⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl)
[PROOFSTEP]
rcases hdn.eq_or_lt with (rfl | hdn')
[GOAL]
case cons.inl
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
hd : S[X]
tl : List S[X]
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) →
coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd
h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl
hdn : natDegree hd ≤ natDegree hd
⊢ coeff (hd * List.prod tl) (natDegree hd + natDegree hd * List.length tl) =
coeff hd (natDegree hd) * coeff (List.prod tl) (natDegree hd * List.length tl)
[PROOFSTEP]
cases' h.eq_or_lt with h' h'
[GOAL]
case cons.inl.inl
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
hd : S[X]
tl : List S[X]
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) →
coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd
h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl
hdn : natDegree hd ≤ natDegree hd
h' : natDegree (List.prod tl) = natDegree hd * List.length tl
⊢ coeff (hd * List.prod tl) (natDegree hd + natDegree hd * List.length tl) =
coeff hd (natDegree hd) * coeff (List.prod tl) (natDegree hd * List.length tl)
[PROOFSTEP]
rw [← h', coeff_mul_degree_add_degree, leadingCoeff, leadingCoeff]
[GOAL]
case cons.inl.inr
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
hd : S[X]
tl : List S[X]
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) →
coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd
h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl
hdn : natDegree hd ≤ natDegree hd
h' : natDegree (List.prod tl) < natDegree hd * List.length tl
⊢ coeff (hd * List.prod tl) (natDegree hd + natDegree hd * List.length tl) =
coeff hd (natDegree hd) * coeff (List.prod tl) (natDegree hd * List.length tl)
[PROOFSTEP]
rw [coeff_eq_zero_of_natDegree_lt, coeff_eq_zero_of_natDegree_lt h', mul_zero]
[GOAL]
case cons.inl.inr
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
hd : S[X]
tl : List S[X]
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ natDegree hd
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd) →
coeff (List.prod tl) (List.length tl * natDegree hd) = List.prod (List.map (fun p => coeff p (natDegree hd)) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ natDegree hd
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ natDegree hd
h : natDegree (List.prod tl) ≤ natDegree hd * List.length tl
hdn : natDegree hd ≤ natDegree hd
h' : natDegree (List.prod tl) < natDegree hd * List.length tl
⊢ natDegree (hd * List.prod tl) < natDegree hd + natDegree hd * List.length tl
[PROOFSTEP]
exact natDegree_mul_le.trans_lt (add_lt_add_left h' _)
[GOAL]
case cons.inr
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
h : natDegree (List.prod tl) ≤ n * List.length tl
hdn : natDegree hd ≤ n
hdn' : natDegree hd < n
⊢ coeff (hd * List.prod tl) (n + n * List.length tl) = coeff hd n * coeff (List.prod tl) (n * List.length tl)
[PROOFSTEP]
rw [coeff_eq_zero_of_natDegree_lt hdn', coeff_eq_zero_of_natDegree_lt, zero_mul]
[GOAL]
case cons.inr
R : Type u
ι : Type w
s : Finset ι
S : Type u_1
inst✝ : Semiring S
l : List S[X]
n : ℕ
hl✝ : ∀ (p : S[X]), p ∈ l → natDegree p ≤ n
hd : S[X]
tl : List S[X]
IH :
(∀ (p : S[X]), p ∈ tl → natDegree p ≤ n) →
coeff (List.prod tl) (List.length tl * n) = List.prod (List.map (fun p => coeff p n) tl)
hl : ∀ (p : S[X]), p ∈ hd :: tl → natDegree p ≤ n
hl' : ∀ (p : S[X]), p ∈ tl → natDegree p ≤ n
h : natDegree (List.prod tl) ≤ n * List.length tl
hdn : natDegree hd ≤ n
hdn' : natDegree hd < n
⊢ natDegree (hd * List.prod tl) < n + n * List.length tl
[PROOFSTEP]
exact natDegree_mul_le.trans_lt (add_lt_add_of_lt_of_le hdn' h)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ ∀ (a : List R[X]),
natDegree (prod (Quotient.mk (List.isSetoid R[X]) a)) ≤
Multiset.sum (Multiset.map natDegree (Quotient.mk (List.isSetoid R[X]) a))
[PROOFSTEP]
simpa using natDegree_list_prod_le
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ natDegree (∏ i in s, f i) ≤ ∑ i in s, natDegree (f i)
[PROOFSTEP]
simpa using natDegree_multiset_prod_le (s.1.map f)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ ∀ (a : List R[X]),
degree (prod (Quotient.mk (List.isSetoid R[X]) a)) ≤
Multiset.sum (Multiset.map degree (Quotient.mk (List.isSetoid R[X]) a))
[PROOFSTEP]
simpa using degree_list_prod_le
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ degree (∏ i in s, f i) ≤ ∑ i in s, degree (f i)
[PROOFSTEP]
simpa only [Multiset.map_map] using degree_multiset_prod_le (s.1.map f)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : prod (Multiset.map leadingCoeff t) ≠ 0
⊢ leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
[PROOFSTEP]
induction' t using Multiset.induction_on with a t ih
[GOAL]
case empty
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t) ≠ 0
h : prod (Multiset.map leadingCoeff 0) ≠ 0
⊢ leadingCoeff (prod 0) = prod (Multiset.map leadingCoeff 0)
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : prod (Multiset.map leadingCoeff (a ::ₘ t)) ≠ 0
⊢ leadingCoeff (prod (a ::ₘ t)) = prod (Multiset.map leadingCoeff (a ::ₘ t))
[PROOFSTEP]
simp only [Multiset.map_cons, Multiset.prod_cons] at h ⊢
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ leadingCoeff (a * prod t) = leadingCoeff a * prod (Multiset.map leadingCoeff t)
[PROOFSTEP]
rw [Polynomial.leadingCoeff_mul']
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ leadingCoeff a * leadingCoeff (prod t) = leadingCoeff a * prod (Multiset.map leadingCoeff t)
[PROOFSTEP]
rw [ih]
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ prod (Multiset.map leadingCoeff t) ≠ 0
[PROOFSTEP]
simp [*]
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ ¬prod (Multiset.map leadingCoeff t) = 0
[PROOFSTEP]
apply right_ne_zero_of_mul h
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ leadingCoeff a * leadingCoeff (prod t) ≠ 0
[PROOFSTEP]
rw [ih]
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ prod (Multiset.map leadingCoeff t) ≠ 0
[PROOFSTEP]
simp [*]
[GOAL]
case cons
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
h✝ : prod (Multiset.map leadingCoeff t✝) ≠ 0
a : R[X]
t : Multiset R[X]
ih : prod (Multiset.map leadingCoeff t) ≠ 0 → leadingCoeff (prod t) = prod (Multiset.map leadingCoeff t)
h : leadingCoeff a * prod (Multiset.map leadingCoeff t) ≠ 0
⊢ prod (Multiset.map leadingCoeff t) ≠ 0
[PROOFSTEP]
apply right_ne_zero_of_mul h
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∏ i in s, leadingCoeff (f i) ≠ 0
⊢ leadingCoeff (∏ i in s, f i) = ∏ i in s, leadingCoeff (f i)
[PROOFSTEP]
simpa using leadingCoeff_multiset_prod' (s.1.map f) (by simpa using h)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∏ i in s, leadingCoeff (f i) ≠ 0
⊢ prod (Multiset.map leadingCoeff (Multiset.map f s.val)) ≠ 0
[PROOFSTEP]
simpa using h
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
⊢ natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t)
[PROOFSTEP]
revert h
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 →
natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t)
[PROOFSTEP]
refine' Multiset.induction_on t _ fun a t ih ht => _
[GOAL]
case refine'_1
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ prod (Multiset.map (fun f => leadingCoeff f) 0) ≠ 0 →
natDegree (prod 0) = Multiset.sum (Multiset.map (fun f => natDegree f) 0)
[PROOFSTEP]
simp
[GOAL]
case refine'_2
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
a : R[X]
t : Multiset R[X]
ih :
prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 →
natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t)
ht : prod (Multiset.map (fun f => leadingCoeff f) (a ::ₘ t)) ≠ 0
⊢ natDegree (prod (a ::ₘ t)) = Multiset.sum (Multiset.map (fun f => natDegree f) (a ::ₘ t))
[PROOFSTEP]
rw [Multiset.map_cons, Multiset.prod_cons] at ht ⊢
[GOAL]
case refine'_2
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
a : R[X]
t : Multiset R[X]
ih :
prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 →
natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t)
ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
⊢ natDegree (a * prod t) = Multiset.sum (natDegree a ::ₘ Multiset.map (fun f => natDegree f) t)
[PROOFSTEP]
rw [Multiset.sum_cons, Polynomial.natDegree_mul', ih]
[GOAL]
case refine'_2
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
a : R[X]
t : Multiset R[X]
ih :
prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 →
natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t)
ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
[PROOFSTEP]
apply right_ne_zero_of_mul ht
[GOAL]
case refine'_2
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
a : R[X]
t : Multiset R[X]
ih :
prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 →
natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t)
ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
⊢ leadingCoeff a * leadingCoeff (prod t) ≠ 0
[PROOFSTEP]
rwa [Polynomial.leadingCoeff_multiset_prod']
[GOAL]
case refine'_2.h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
a : R[X]
t : Multiset R[X]
ih :
prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0 →
natDegree (prod t) = Multiset.sum (Multiset.map (fun f => natDegree f) t)
ht : leadingCoeff a * prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
⊢ prod (Multiset.map leadingCoeff t) ≠ 0
[PROOFSTEP]
apply right_ne_zero_of_mul ht
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∏ i in s, leadingCoeff (f i) ≠ 0
⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i)
[PROOFSTEP]
simpa using natDegree_multiset_prod' (s.1.map f) (by simpa using h)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∏ i in s, leadingCoeff (f i) ≠ 0
⊢ prod (Multiset.map (fun f => leadingCoeff f) (Multiset.map f s.val)) ≠ 0
[PROOFSTEP]
simpa using h
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t)
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t)
[PROOFSTEP]
apply natDegree_multiset_prod'
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
[PROOFSTEP]
suffices (t.map fun f => leadingCoeff f).prod = 1 by
rw [this]
simp
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
this : prod (Multiset.map (fun f => leadingCoeff f) t) = 1
⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
[PROOFSTEP]
rw [this]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
this : prod (Multiset.map (fun f => leadingCoeff f) t) = 1
⊢ 1 ≠ 0
[PROOFSTEP]
simp
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
⊢ prod (Multiset.map (fun f => leadingCoeff f) t) = 1
[PROOFSTEP]
convert prod_replicate (Multiset.card t) (1 : R)
[GOAL]
case h.e'_2.h.e'_3
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
⊢ Multiset.map (fun f => leadingCoeff f) t = replicate (↑Multiset.card t) 1
[PROOFSTEP]
simp only [eq_replicate, Multiset.card_map, eq_self_iff_true, true_and_iff]
[GOAL]
case h.e'_2.h.e'_3
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
⊢ ∀ (b : R), b ∈ Multiset.map (fun f => leadingCoeff f) t → b = 1
[PROOFSTEP]
rintro i hi
[GOAL]
case h.e'_2.h.e'_3
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
i : R
hi : i ∈ Multiset.map (fun f => leadingCoeff f) t
⊢ i = 1
[PROOFSTEP]
obtain ⟨i, hi, rfl⟩ := Multiset.mem_map.mp hi
[GOAL]
case h.e'_2.h.e'_3.intro.intro
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
i : R[X]
hi✝ : i ∈ t
hi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t
⊢ leadingCoeff i = 1
[PROOFSTEP]
apply h
[GOAL]
case h.e'_2.h.e'_3.intro.intro.a
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
i : R[X]
hi✝ : i ∈ t
hi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t
⊢ i ∈ t
[PROOFSTEP]
assumption
[GOAL]
case h.e'_3
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (f : R[X]), f ∈ t → Monic f
✝ : Nontrivial R
⊢ 1 = 1 ^ ↑Multiset.card t
[PROOFSTEP]
simp
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (i : ι), i ∈ s → Monic (f i)
⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i)
[PROOFSTEP]
simpa using natDegree_multiset_prod_of_monic (s.1.map f) (by simpa using h)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (i : ι), i ∈ s → Monic (f i)
⊢ ∀ (f_1 : R[X]), f_1 ∈ Multiset.map f s.val → Monic f_1
[PROOFSTEP]
simpa using h
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
n : ℕ
hl : ∀ (p : R[X]), p ∈ t → natDegree p ≤ n
⊢ coeff (prod t) (↑Multiset.card t * n) = prod (Multiset.map (fun p => coeff p n) t)
[PROOFSTEP]
induction t using Quotient.inductionOn
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
n : ℕ
a✝ : List R[X]
hl : ∀ (p : R[X]), p ∈ Quotient.mk (List.isSetoid R[X]) a✝ → natDegree p ≤ n
⊢ coeff (prod (Quotient.mk (List.isSetoid R[X]) a✝)) (↑Multiset.card (Quotient.mk (List.isSetoid R[X]) a✝) * n) =
prod (Multiset.map (fun p => coeff p n) (Quotient.mk (List.isSetoid R[X]) a✝))
[PROOFSTEP]
simpa using coeff_list_prod_of_natDegree_le _ _ hl
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f✝ : ι → R[X]
t : Multiset R[X]
f : ι → R[X]
n : ℕ
h : ∀ (p : ι), p ∈ s → natDegree (f p) ≤ n
⊢ coeff (∏ i in s, f i) (Finset.card s * n) = ∏ i in s, coeff (f i) n
[PROOFSTEP]
cases' s with l hl
[GOAL]
case mk
R : Type u
ι : Type w
inst✝ : CommSemiring R
f✝ : ι → R[X]
t : Multiset R[X]
f : ι → R[X]
n : ℕ
l : Multiset ι
hl : Nodup l
h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n
⊢ coeff (∏ i in { val := l, nodup := hl }, f i) (Finset.card { val := l, nodup := hl } * n) =
∏ i in { val := l, nodup := hl }, coeff (f i) n
[PROOFSTEP]
convert coeff_multiset_prod_of_natDegree_le (l.map f) n ?_
[GOAL]
case h.e'_2.h.e'_4.h.e'_5
R : Type u
ι : Type w
inst✝ : CommSemiring R
f✝ : ι → R[X]
t : Multiset R[X]
f : ι → R[X]
n : ℕ
l : Multiset ι
hl : Nodup l
h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n
⊢ Finset.card { val := l, nodup := hl } = ↑Multiset.card (Multiset.map f l)
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
R : Type u
ι : Type w
inst✝ : CommSemiring R
f✝ : ι → R[X]
t : Multiset R[X]
f : ι → R[X]
n : ℕ
l : Multiset ι
hl : Nodup l
h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n
⊢ ∏ i in { val := l, nodup := hl }, coeff (f i) n = prod (Multiset.map (fun p => coeff p n) (Multiset.map f l))
[PROOFSTEP]
simp
[GOAL]
case mk
R : Type u
ι : Type w
inst✝ : CommSemiring R
f✝ : ι → R[X]
t : Multiset R[X]
f : ι → R[X]
n : ℕ
l : Multiset ι
hl : Nodup l
h : ∀ (p : ι), p ∈ { val := l, nodup := hl } → natDegree (f p) ≤ n
⊢ ∀ (p : R[X]), p ∈ Multiset.map f l → natDegree p ≤ n
[PROOFSTEP]
simpa using h
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ coeff (prod t) 0 = prod (Multiset.map (fun f => coeff f 0) t)
[PROOFSTEP]
refine' Multiset.induction_on t _ fun a t ht => _
[GOAL]
case refine'_1
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ coeff (prod 0) 0 = prod (Multiset.map (fun f => coeff f 0) 0)
[PROOFSTEP]
simp
[GOAL]
case refine'_2
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t✝ : Multiset R[X]
a : R[X]
t : Multiset R[X]
ht : coeff (prod t) 0 = prod (Multiset.map (fun f => coeff f 0) t)
⊢ coeff (prod (a ::ₘ t)) 0 = prod (Multiset.map (fun f => coeff f 0) (a ::ₘ t))
[PROOFSTEP]
rw [Multiset.prod_cons, Multiset.map_cons, Multiset.prod_cons, Polynomial.mul_coeff_zero, ht]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommSemiring R
f : ι → R[X]
t : Multiset R[X]
⊢ coeff (∏ i in s, f i) 0 = ∏ i in s, coeff (f i) 0
[PROOFSTEP]
simpa using coeff_zero_multiset_prod (s.1.map f)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
⊢ nextCoeff (prod (Multiset.map (fun x => X - ↑C x) t)) = -Multiset.sum t
[PROOFSTEP]
rw [nextCoeff_multiset_prod]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
⊢ Multiset.sum (Multiset.map (fun i => nextCoeff (X - ↑C i)) t) = -Multiset.sum t
[PROOFSTEP]
simp only [nextCoeff_X_sub_C]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
⊢ Multiset.sum (Multiset.map (fun x => -x) t) = -Multiset.sum t
[PROOFSTEP]
exact t.sum_hom (-AddMonoidHom.id R)
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
⊢ ∀ (i : R), i ∈ t → Monic (X - ↑C i)
[PROOFSTEP]
intros
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
i✝ : R
a✝ : i✝ ∈ t
⊢ Monic (X - ↑C i✝)
[PROOFSTEP]
apply monic_X_sub_C
[GOAL]
R : Type u
ι : Type w
s✝ : Finset ι
inst✝ : CommRing R
s : Finset ι
f : ι → R
⊢ nextCoeff (∏ i in s, (X - ↑C (f i))) = -∑ i in s, f i
[PROOFSTEP]
simpa using multiset_prod_X_sub_C_nextCoeff (s.1.map f)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = -Multiset.sum t
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = -Multiset.sum t
[PROOFSTEP]
convert multiset_prod_X_sub_C_nextCoeff (by assumption)
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
⊢ Multiset ?m.927417
[PROOFSTEP]
assumption
[GOAL]
case h.e'_2
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) =
nextCoeff (prod (Multiset.map (fun x => X - ↑C x) t))
[PROOFSTEP]
rw [nextCoeff]
[GOAL]
case h.e'_2
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) =
if natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0 then 0
else coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) - 1)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0
[PROOFSTEP]
rw [natDegree_multiset_prod_of_monic] at h
[GOAL]
case pos
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : Multiset.sum (Multiset.map natDegree (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0
[PROOFSTEP]
simp only [Multiset.mem_map] at *
[GOAL]
case pos.h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ ∀ (f : R[X]), f ∈ Multiset.map (fun x => X - ↑C x) t → Monic f
[PROOFSTEP]
simp only [Multiset.mem_map] at *
[GOAL]
case pos
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : Multiset.sum (Multiset.map (fun x => natDegree x) (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0
case pos.h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ ∀ (f : R[X]), (∃ a, a ∈ t ∧ X - ↑C a = f) → Monic f
[PROOFSTEP]
swap
[GOAL]
case pos.h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ ∀ (f : R[X]), (∃ a, a ∈ t ∧ X - ↑C a = f) → Monic f
[PROOFSTEP]
rintro _ ⟨_, _, rfl⟩
[GOAL]
case pos.h.intro.intro
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
w✝ : R
left✝ : w✝ ∈ t
⊢ Monic (X - ↑C w✝)
[PROOFSTEP]
apply monic_X_sub_C
[GOAL]
case pos
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : Multiset.sum (Multiset.map (fun x => natDegree x) (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0
[PROOFSTEP]
simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
[GOAL]
case pos
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : ∀ (x : ℕ), (∃ a, (∃ a_1, a_1 ∈ t ∧ X - ↑C a_1 = a) ∧ natDegree a = x) → x = 0
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) = 0
[PROOFSTEP]
contrapose! h
[GOAL]
case pos
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) ≠ 0
⊢ ∃ x, (∃ a, (∃ a_1, a_1 ∈ t ∧ X - ↑C a_1 = a) ∧ natDegree a = x) ∧ x ≠ 0
[PROOFSTEP]
obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht
[GOAL]
case pos.intro
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) ≠ 0
x : R
hx : x ∈ t
⊢ ∃ x, (∃ a, (∃ a_1, a_1 ∈ t ∧ X - ↑C a_1 = a) ∧ natDegree a = x) ∧ x ≠ 0
[PROOFSTEP]
exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, natDegree_X_sub_C _⟩, one_ne_zero⟩
[GOAL]
case neg
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (↑Multiset.card t - 1) =
coeff (prod (Multiset.map (fun x => X - ↑C x) t)) (natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) - 1)
[PROOFSTEP]
congr
[GOAL]
case neg.e_a.e_a
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ ↑Multiset.card t = natDegree (prod (Multiset.map (fun x => X - ↑C x) t))
[PROOFSTEP]
rw [natDegree_multiset_prod_of_monic]
[GOAL]
case neg.e_a.e_a
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ ↑Multiset.card t = Multiset.sum (Multiset.map natDegree (Multiset.map (fun x => X - ↑C x) t))
[PROOFSTEP]
simp [natDegree_X_sub_C, monic_X_sub_C]
[GOAL]
case neg.e_a.e_a.h
R : Type u
ι : Type w
s : Finset ι
inst✝ : CommRing R
t : Multiset R
ht : 0 < ↑Multiset.card t
✝ : Nontrivial R
h : ¬natDegree (prod (Multiset.map (fun x => X - ↑C x) t)) = 0
⊢ ∀ (f : R[X]), f ∈ Multiset.map (fun x => X - ↑C x) t → Monic f
[PROOFSTEP]
simp [natDegree_X_sub_C, monic_X_sub_C]
[GOAL]
R : Type u
ι : Type w
s✝ : Finset ι
inst✝ : CommRing R
s : Finset ι
f : ι → R
hs : 0 < Finset.card s
⊢ coeff (∏ i in s, (X - ↑C (f i))) (Finset.card s - 1) = -∑ i in s, f i
[PROOFSTEP]
simpa using multiset_prod_X_sub_C_coeff_card_pred (s.1.map f) (by simpa using hs)
[GOAL]
R : Type u
ι : Type w
s✝ : Finset ι
inst✝ : CommRing R
s : Finset ι
f : ι → R
hs : 0 < Finset.card s
⊢ 0 < ↑Multiset.card (Multiset.map f s.val)
[PROOFSTEP]
simpa using hs
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (i : ι), i ∈ s → f i ≠ 0
⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i)
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (i : ι), i ∈ s → f i ≠ 0
✝ : Nontrivial R
⊢ natDegree (∏ i in s, f i) = ∑ i in s, natDegree (f i)
[PROOFSTEP]
apply natDegree_prod'
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (i : ι), i ∈ s → f i ≠ 0
✝ : Nontrivial R
⊢ ∏ i in s, leadingCoeff (f i) ≠ 0
[PROOFSTEP]
rw [prod_ne_zero_iff]
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (i : ι), i ∈ s → f i ≠ 0
✝ : Nontrivial R
⊢ ∀ (a : ι), a ∈ s → leadingCoeff (f a) ≠ 0
[PROOFSTEP]
intro x hx
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ∀ (i : ι), i ∈ s → f i ≠ 0
✝ : Nontrivial R
x : ι
hx : x ∈ s
⊢ leadingCoeff (f x) ≠ 0
[PROOFSTEP]
simp [h x hx]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ¬0 ∈ t
⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t)
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ¬0 ∈ t
✝ : Nontrivial R
⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t)
[PROOFSTEP]
rw [natDegree_multiset_prod']
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ¬0 ∈ t
✝ : Nontrivial R
⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0
[PROOFSTEP]
simp_rw [Ne.def, Multiset.prod_eq_zero_iff, Multiset.mem_map, leadingCoeff_eq_zero]
[GOAL]
case h
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h : ¬0 ∈ t
✝ : Nontrivial R
⊢ ¬∃ a, a ∈ t ∧ a = 0
[PROOFSTEP]
rintro ⟨_, h, rfl⟩
[GOAL]
case h.intro.intro
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
h✝ : ¬0 ∈ t
✝ : Nontrivial R
h : 0 ∈ t
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
⊢ leadingCoeff (prod t) = prod (Multiset.map (fun f => leadingCoeff f) t)
[PROOFSTEP]
rw [← leadingCoeffHom_apply, MonoidHom.map_multiset_prod]
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
⊢ prod (Multiset.map (↑leadingCoeffHom) t) = prod (Multiset.map (fun f => leadingCoeff f) t)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
ι : Type w
s : Finset ι
inst✝¹ : CommSemiring R
inst✝ : NoZeroDivisors R
f : ι → R[X]
t : Multiset R[X]
⊢ leadingCoeff (∏ i in s, f i) = ∏ i in s, leadingCoeff (f i)
[PROOFSTEP]
simpa using leadingCoeff_multiset_prod (s.1.map f)
| {"mathlib_filename": "Mathlib.Algebra.Polynomial.BigOperators", "llama_tokens": 22204} |
[GOAL]
R : Type u
inst✝ : Ring R
r : R
M N : ModuleCat R
f : M ⟶ N
⊢ (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f ≫
(fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) N =
(fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) M ≫
(AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f
[PROOFSTEP]
ext
[GOAL]
case w
R : Type u
inst✝ : Ring R
r : R
M N : ModuleCat R
f : M ⟶ N
x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj M)
⊢ ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f ≫
(fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) N)
x✝ =
↑((fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) M ≫
(AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map f)
x✝
[PROOFSTEP]
exact (f.map_smul _ _).symm
[GOAL]
R : Type u
inst✝ : Ring R
⊢ Function.LeftInverse (fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) fun r =>
NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)
[PROOFSTEP]
intro r
[GOAL]
R : Type u
inst✝ : Ring R
r : R
⊢ (fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1)
((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)) r) =
r
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : Ring R
⊢ Function.RightInverse (fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) fun r =>
NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r)
[PROOFSTEP]
intro φ
[GOAL]
R : Type u
inst✝ : Ring R
φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))
⊢ (fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ
[PROOFSTEP]
apply NatTrans.ext
[GOAL]
case app
R : Type u
inst✝ : Ring R
φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))
⊢ ((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ)).app =
φ.app
[PROOFSTEP]
ext M (x : M)
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))
M : ModuleCat R
x : ↑M
⊢ ↑(NatTrans.app
((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ))
M)
x =
↑(NatTrans.app φ M) x
[PROOFSTEP]
have w :=
congr_fun ((forget _).congr_map (φ.naturality (ModuleCat.asHomRight (LinearMap.toSpanSingleton R M x)))) (1 : R)
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))
M : ModuleCat R
x : ↑M
w :
(forget AddCommGroupCat).map
((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map
(ModuleCat.asHomRight (LinearMap.toSpanSingleton R (↑M) x)) ≫
NatTrans.app φ M)
1 =
(forget AddCommGroupCat).map
(NatTrans.app φ (ModuleCat.of R R) ≫
(AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.map
(ModuleCat.asHomRight (LinearMap.toSpanSingleton R (↑M) x)))
1
⊢ ↑(NatTrans.app
((fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ))
M)
x =
↑(NatTrans.app φ M) x
[PROOFSTEP]
exact w.symm.trans (congr_arg (φ.app M) (one_smul R x))
[GOAL]
R : Type u
inst✝ : Ring R
⊢ ∀ (x y : R),
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x * y) =
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x *
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝ : Ring R
x✝ y✝ : R
⊢ Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x✝ * y✝) =
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x✝ *
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y✝
[PROOFSTEP]
apply NatTrans.ext
[GOAL]
case app
R : Type u
inst✝ : Ring R
x✝ y✝ : R
⊢ (Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x✝ * y✝)).app =
(Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x✝ *
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y✝).app
[PROOFSTEP]
ext
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
x✝² y✝ : R
x✝¹ : ModuleCat R
x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹)
⊢ ↑(NatTrans.app
(Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x✝² * y✝))
x✝¹)
x✝ =
↑(NatTrans.app
(Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x✝² *
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y✝)
x✝¹)
x✝
[PROOFSTEP]
dsimp
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
x✝² y✝ : R
x✝¹ : ModuleCat R
x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹)
⊢ (x✝² * y✝) • x✝ =
↑(NatTrans.app
((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) *
NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝))
x✝¹)
x✝
[PROOFSTEP]
simp only [AddCommGroupCat.ofHom_apply, DistribMulAction.toAddMonoidHom_apply, mul_smul]
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
x✝² y✝ : R
x✝¹ : ModuleCat R
x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹)
⊢ x✝² • y✝ • x✝ =
↑(NatTrans.app
((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) *
NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝))
x✝¹)
x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
⊢ ∀ (x y : R),
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x + y) =
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x +
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝ : Ring R
x✝ y✝ : R
⊢ Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x✝ + y✝) =
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x✝ +
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y✝
[PROOFSTEP]
apply NatTrans.ext
[GOAL]
case app
R : Type u
inst✝ : Ring R
x✝ y✝ : R
⊢ (Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x✝ + y✝)).app =
(Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x✝ +
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y✝).app
[PROOFSTEP]
ext
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
x✝² y✝ : R
x✝¹ : ModuleCat R
x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹)
⊢ ↑(NatTrans.app
(Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
(x✝² + y✝))
x✝¹)
x✝ =
↑(NatTrans.app
(Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
x✝² +
Equiv.toFun
{ toFun := fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r),
invFun := fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1, left_inv := (_ : ∀ (r : R), r * 1 = r),
right_inv :=
(_ :
∀ (φ : End (AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat))),
(fun r => NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) r))
((fun φ => ↑(NatTrans.app φ (ModuleCat.of R R)) 1) φ) =
φ) }
y✝)
x✝¹)
x✝
[PROOFSTEP]
dsimp
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
x✝² y✝ : R
x✝¹ : ModuleCat R
x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹)
⊢ (x✝² + y✝) • x✝ =
↑(NatTrans.app
((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) +
NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝))
x✝¹)
x✝
[PROOFSTEP]
simp only [AddCommGroupCat.ofHom_apply, DistribMulAction.toAddMonoidHom_apply, add_smul]
[GOAL]
case app.h.w
R : Type u
inst✝ : Ring R
x✝² y✝ : R
x✝¹ : ModuleCat R
x✝ : ↑((AdditiveFunctor.of (forget₂ (ModuleCat R) AddCommGroupCat)).obj.obj x✝¹)
⊢ x✝² • x✝ + y✝ • x✝ =
↑(NatTrans.app
((NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) x✝²)) +
NatTrans.mk fun M => AddCommGroupCat.ofHom (DistribMulAction.toAddMonoidHom (↑M) y✝))
x✝¹)
x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Tannaka", "llama_tokens": 8440} |
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
⊢ ↟(Submodule.subtype (LinearMap.ker f)) ≫ f = 0
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
x : ↑(of R { x // x ∈ LinearMap.ker f })
⊢ ↑(↟(Submodule.subtype (LinearMap.ker f)) ≫ f) x = ↑0 x
[PROOFSTEP]
cases x
[GOAL]
case h.mk
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
val✝ : ↑M
property✝ : val✝ ∈ LinearMap.ker f
⊢ ↑(↟(Submodule.subtype (LinearMap.ker f)) ≫ f) { val := val✝, property := property✝ } =
↑0 { val := val✝, property := property✝ }
[PROOFSTEP]
assumption
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
s : Fork f 0
c : ↑s.pt
⊢ ↑f (↑(Fork.ι s) c) = 0
[PROOFSTEP]
rw [← @Function.comp_apply _ _ _ f (Fork.ι s) c, ← coe_comp, Fork.condition, HasZeroMorphisms.comp_zero (Fork.ι s) N]
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
s : Fork f 0
c : ↑s.pt
⊢ ↑0 c = 0
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
s : Fork f 0
m : s.pt ⟶ (kernelCone f).pt
h : m ≫ Fork.ι (kernelCone f) = Fork.ι s
x : ↑s.pt
⊢ ↑(↑m x) =
↑(↑((fun s =>
LinearMap.codRestrict (LinearMap.ker f) (Fork.ι s) (_ : ∀ (c : ↑s.pt), ↑(Fork.ι s) c ∈ LinearMap.ker f))
s)
x)
[PROOFSTEP]
simp [← h]
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
s : Fork f 0
m : s.pt ⟶ (kernelCone f).pt
h : m ≫ Fork.ι (kernelCone f) = Fork.ι s
x : ↑s.pt
⊢ ↑m x =
↑(LinearMap.codRestrict (LinearMap.ker f) (m ≫ Fork.ι (kernelCone f))
(_ : ∀ (c : ↑s.pt), ↑(m ≫ Fork.ι (kernelCone f)) c ∈ LinearMap.ker f))
x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
s : Cofork f 0
m : (cokernelCocone f).pt ⟶ s.pt
h : Cofork.π (cokernelCocone f) ≫ m = Cofork.π s
⊢ m = (fun s => Submodule.liftQ (LinearMap.range f) (Cofork.π s) (_ : LinearMap.range f ≤ LinearMap.ker (Cofork.π s))) s
[PROOFSTEP]
haveI : Epi (asHom (LinearMap.range f).mkQ) :=
(epi_iff_range_eq_top _).mpr
(Submodule.range_mkQ _)
-- Porting note: broken dot notation
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
s : Cofork f 0
m : (cokernelCocone f).pt ⟶ s.pt
h : Cofork.π (cokernelCocone f) ≫ m = Cofork.π s
this : Epi (↟(Submodule.mkQ (LinearMap.range f)))
⊢ m = (fun s => Submodule.liftQ (LinearMap.range f) (Cofork.π s) (_ : LinearMap.range f ≤ LinearMap.ker (Cofork.π s))) s
[PROOFSTEP]
apply (cancel_epi (asHom (LinearMap.range f).mkQ)).1
[GOAL]
R : Type u
inst✝ : Ring R
M N : ModuleCat R
f : M ⟶ N
s : Cofork f 0
m : (cokernelCocone f).pt ⟶ s.pt
h : Cofork.π (cokernelCocone f) ≫ m = Cofork.π s
this : Epi (↟(Submodule.mkQ (LinearMap.range f)))
⊢ ↟(Submodule.mkQ (LinearMap.range f)) ≫ m =
↟(Submodule.mkQ (LinearMap.range f)) ≫
(fun s => Submodule.liftQ (LinearMap.range f) (Cofork.π s) (_ : LinearMap.range f ≤ LinearMap.ker (Cofork.π s))) s
[PROOFSTEP]
convert h
[GOAL]
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f : G ⟶ H
⊢ cokernel.π f ≫ (cokernelIsoRangeQuotient f).hom = Submodule.mkQ (LinearMap.range f)
[PROOFSTEP]
convert colimit.isoColimitCocone_ι_hom (F := parallelPair f 0) _ _
[GOAL]
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f✝ : G ⟶ H
M N : ModuleCat R
f : M ⟶ N
x y : ↑N
m : ↑M
w : x = y + ↑f m
⊢ ↑(cokernel.π f) x = ↑(cokernel.π f) y
[PROOFSTEP]
subst w
[GOAL]
R : Type u
inst✝ : Ring R
G H : ModuleCat R
f✝ : G ⟶ H
M N : ModuleCat R
f : M ⟶ N
y : ↑N
m : ↑M
⊢ ↑(cokernel.π f) (y + ↑f m) = ↑(cokernel.π f) y
[PROOFSTEP]
simpa only [map_add, add_right_eq_self] using cokernel.condition_apply f m
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Kernels", "llama_tokens": 1779} |
[GOAL]
R : Type u
inst✝ : Ring R
X✝ Y✝ : ModuleCat R
a₁✝ a₂✝ : X✝ ⟶ Y✝
h :
(CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₁✝ =
(CategoryTheory.Functor.mk { obj := fun R_1 => ↑R_1, map := fun {X Y} f => f.toFun }).map a₂✝
x : ↑X✝
⊢ ↑a₁✝ x = ↑a₂✝ x
[PROOFSTEP]
dsimp at h
[GOAL]
R : Type u
inst✝ : Ring R
X✝ Y✝ : ModuleCat R
a₁✝ a₂✝ : X✝ ⟶ Y✝
h : ↑a₁✝ = ↑a₂✝
x : ↑X✝
⊢ ↑a₁✝ x = ↑a₂✝ x
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u
inst✝¹ : Ring R
M : ModuleCat R
inst✝ : Subsingleton ↑M
X : ModuleCat R
f : M ⟶ X
⊢ f = default
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
M : ModuleCat R
inst✝ : Subsingleton ↑M
X : ModuleCat R
f : M ⟶ X
x : ↑M
⊢ ↑f x = ↑default x
[PROOFSTEP]
rw [Subsingleton.elim x (0 : M)]
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
M : ModuleCat R
inst✝ : Subsingleton ↑M
X : ModuleCat R
f : M ⟶ X
x : ↑M
⊢ ↑f 0 = ↑default 0
[PROOFSTEP]
dsimp
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
M : ModuleCat R
inst✝ : Subsingleton ↑M
X : ModuleCat R
f : M ⟶ X
x : ↑M
⊢ ↑f 0 = ↑0 0
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝¹ : Ring R
M : ModuleCat R
inst✝ : Subsingleton ↑M
X : ModuleCat R
f : X ⟶ M
⊢ f = default
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
M : ModuleCat R
inst✝ : Subsingleton ↑M
X : ModuleCat R
f : X ⟶ M
x : ↑X
⊢ ↑f x = ↑default x
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
g₁ : AddCommGroup X₁
g₂ : AddCommGroup X₂
m₁ : Module R X₁
m₂ : Module R X₂
e : X₁ ≃ₗ[R] X₂
⊢ ↑e ≫ ↑(symm e) = 𝟙 (ModuleCat.of R X₁)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
g₁ : AddCommGroup X₁
g₂ : AddCommGroup X₂
m₁ : Module R X₁
m₂ : Module R X₂
e : X₁ ≃ₗ[R] X₂
x✝ : ↑(ModuleCat.of R X₁)
⊢ ↑(↑e ≫ ↑(symm e)) x✝ = ↑(𝟙 (ModuleCat.of R X₁)) x✝
[PROOFSTEP]
apply e.left_inv
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
g₁ : AddCommGroup X₁
g₂ : AddCommGroup X₂
m₁ : Module R X₁
m₂ : Module R X₂
e : X₁ ≃ₗ[R] X₂
⊢ ↑(symm e) ≫ ↑e = 𝟙 (ModuleCat.of R X₂)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
g₁ : AddCommGroup X₁
g₂ : AddCommGroup X₂
m₁ : Module R X₁
m₂ : Module R X₂
e : X₁ ≃ₗ[R] X₂
x✝ : ↑(ModuleCat.of R X₂)
⊢ ↑(↑(symm e) ≫ ↑e) x✝ = ↑(𝟙 (ModuleCat.of R X₂)) x✝
[PROOFSTEP]
apply e.right_inv
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
X Y : ModuleCat R
i : X ≅ Y
⊢ ∀ (x y : ↑X), ↑i.hom (x + y) = ↑i.hom x + ↑i.hom y
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
X Y : ModuleCat R
i : X ≅ Y
⊢ ∀ (r : R) (x : ↑X),
AddHom.toFun { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) } x
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
X Y : ModuleCat R
i : X ≅ Y
x : ↑X
⊢ ↑i.inv
(AddHom.toFun
{ toAddHom := { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) },
map_smul' := (_ : ∀ (a : R) (a_1 : ↑X), ↑i.hom (a • a_1) = a • ↑i.hom a_1) }.toAddHom
x) =
x
[PROOFSTEP]
change (i.hom ≫ i.inv) x = x
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
X Y : ModuleCat R
i : X ≅ Y
x : ↑X
⊢ ↑(i.hom ≫ i.inv) x = x
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
X Y : ModuleCat R
i : X ≅ Y
x : ↑Y
⊢ AddHom.toFun
{ toAddHom := { toFun := ↑i.hom, map_add' := (_ : ∀ (a a_1 : ↑X), ↑i.hom (a + a_1) = ↑i.hom a + ↑i.hom a_1) },
map_smul' := (_ : ∀ (a : R) (a_1 : ↑X), ↑i.hom (a • a_1) = a • ↑i.hom a_1) }.toAddHom
(↑i.inv x) =
x
[PROOFSTEP]
change (i.inv ≫ i.hom) x = x
[GOAL]
R : Type u
inst✝ : Ring R
X₁ X₂ : Type v
X Y : ModuleCat R
i : X ≅ Y
x : ↑Y
⊢ ↑(i.inv ≫ i.hom) x = x
[PROOFSTEP]
simp
[GOAL]
R✝ : Type u
inst✝ : Ring R✝
X₁ X₂ : Type v
P Q R : ModuleCat R✝
f f' : P ⟶ Q
g : Q ⟶ R
⊢ (f + f') ≫ g = f ≫ g + f' ≫ g
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u
inst✝ : Ring R✝
X₁ X₂ : Type v
P Q R : ModuleCat R✝
f f' : P ⟶ Q
g : Q ⟶ R
x✝ : ↑P
⊢ ↑((f + f') ≫ g) x✝ = ↑(f ≫ g + f' ≫ g) x✝
[PROOFSTEP]
dsimp
[GOAL]
case h
R✝ : Type u
inst✝ : Ring R✝
X₁ X₂ : Type v
P Q R : ModuleCat R✝
f f' : P ⟶ Q
g : Q ⟶ R
x✝ : ↑P
⊢ ↑g (↑(f + f') x✝) = ↑(f ≫ g + f' ≫ g) x✝
[PROOFSTEP]
erw [map_add]
[GOAL]
case h
R✝ : Type u
inst✝ : Ring R✝
X₁ X₂ : Type v
P Q R : ModuleCat R✝
f f' : P ⟶ Q
g : Q ⟶ R
x✝ : ↑P
⊢ ↑g (↑f x✝) + ↑g (↑f' x✝) = ↑(f ≫ g + f' ≫ g) x✝
[PROOFSTEP]
rfl
[GOAL]
R✝ : Type u
inst✝ : Ring R✝
X₁ X₂ : Type v
P Q R : ModuleCat R✝
f : P ⟶ Q
g g' : Q ⟶ R
⊢ f ≫ (g + g') = f ≫ g + f ≫ g'
[PROOFSTEP]
ext
[GOAL]
case h
R✝ : Type u
inst✝ : Ring R✝
X₁ X₂ : Type v
P Q R : ModuleCat R✝
f : P ⟶ Q
g g' : Q ⟶ R
x✝ : ↑P
⊢ ↑(f ≫ (g + g')) x✝ = ↑(f ≫ g + f ≫ g') x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
⊢ ∀ (X Y Z : ModuleCat S) (r : S) (f : X ⟶ Y) (g : Y ⟶ Z), (r • f) ≫ g = r • f ≫ g
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
X✝ Y✝ Z✝ : ModuleCat S
r✝ : S
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ (r✝ • f✝) ≫ g✝ = r✝ • f✝ ≫ g✝
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
X✝ Y✝ Z✝ : ModuleCat S
r✝ : S
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : ↑X✝
⊢ ↑((r✝ • f✝) ≫ g✝) x✝ = ↑(r✝ • f✝ ≫ g✝) x✝
[PROOFSTEP]
dsimp
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
X✝ Y✝ Z✝ : ModuleCat S
r✝ : S
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : ↑X✝
⊢ ↑g✝ (↑(r✝ • f✝) x✝) = ↑(r✝ • f✝ ≫ g✝) x✝
[PROOFSTEP]
rw [LinearMap.smul_apply, LinearMap.smul_apply, map_smul]
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
X✝ Y✝ Z✝ : ModuleCat S
r✝ : S
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
x✝ : ↑X✝
⊢ r✝ • ↑g✝ (↑f✝ x✝) = r✝ • ↑(f✝ ≫ g✝) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
⊢ ∀ (X Y Z : ModuleCat S) (f : X ⟶ Y) (r : S) (g : Y ⟶ Z), f ≫ (r • g) = r • f ≫ g
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
X✝ Y✝ Z✝ : ModuleCat S
f✝ : X✝ ⟶ Y✝
r✝ : S
g✝ : Y✝ ⟶ Z✝
⊢ f✝ ≫ (r✝ • g✝) = r✝ • f✝ ≫ g✝
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
X₁ X₂ : Type v
S : Type u
inst✝ : CommRing S
X✝ Y✝ Z✝ : ModuleCat S
f✝ : X✝ ⟶ Y✝
r✝ : S
g✝ : Y✝ ⟶ Z✝
x✝ : ↑X✝
⊢ ↑(f✝ ≫ (r✝ • g✝)) x✝ = ↑(r✝ • f✝ ≫ g✝) x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Basic", "llama_tokens": 4025} |
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j : J
⊢ ∀ (x y : ↑(F.obj j)), coconeFun F j (x + y) = coconeFun F j x + coconeFun F j y
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j : J
x✝ y✝ : ↑(F.obj j)
⊢ coconeFun F j (x✝ + y✝) = coconeFun F j x✝ + coconeFun F j y✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j : J
x✝ y✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j (x✝ + y✝)) (add (Prequotient.of j x✝) (Prequotient.of j y✝))
[PROOFSTEP]
apply Relation.add
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j : J
⊢ ∀ (r : R) (x : ↑(F.obj j)),
AddHom.toFun
{ toFun := coconeFun F j,
map_add' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x + y)) =
Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := coconeFun F j,
map_add' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x + y)) =
Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) }
x
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j : J
r✝ : R
x✝ : ↑(F.obj j)
⊢ AddHom.toFun
{ toFun := coconeFun F j,
map_add' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x + y)) =
Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) }
(r✝ • x✝) =
↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := coconeFun F j,
map_add' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x + y)) =
Quot.mk Setoid.r (add (Prequotient.of j x) (Prequotient.of j y))) }
x✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j : J
r✝ : R
x✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j (r✝ • x✝)) (smul (↑(RingHom.id R) r✝) (Prequotient.of j x✝))
[PROOFSTEP]
apply Relation.smul
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j j' : J
f : j ⟶ j'
⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case h.a
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝)
[PROOFSTEP]
apply ModuleCat.Colimits.Relation.map
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x
[PROOFSTEP]
rw [← cocone_naturality F f]
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
⊢ ColimitType F → ↑s.pt
[PROOFSTEP]
fapply Quot.lift
[GOAL]
case f
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
⊢ Prequotient F → ↑s.pt
[PROOFSTEP]
exact descFunLift F s
[GOAL]
case a
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b
[PROOFSTEP]
intro x y r
[GOAL]
case a
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
r : Setoid.r x y
⊢ descFunLift F s x = descFunLift F s y
[PROOFSTEP]
induction' r with h₁ r_x r_y r_h r_ih r_x r_y r_z r_h r_k r_ih_h r_ih_k r_j r_j' r_f r_x j j x j x y j s x u v r r_ih u
v w r r_ih u v w r r_ih s u v r r_ih
[GOAL]
case a.refl
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y h₁ : Prequotient F
⊢ descFunLift F s h₁ = descFunLift F s h₁
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.refl
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y h₁ : Prequotient F
⊢ descFunLift F s h₁ = descFunLift F s h₁
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.symm
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y r_x r_y : Prequotient F
r_h : Relation F r_x r_y
r_ih : descFunLift F s r_x = descFunLift F s r_y
⊢ descFunLift F s r_y = descFunLift F s r_x
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.symm
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y r_x r_y : Prequotient F
r_h : Relation F r_x r_y
r_ih : descFunLift F s r_x = descFunLift F s r_y
⊢ descFunLift F s r_y = descFunLift F s r_x
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.trans
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y r_x r_y r_z : Prequotient F
r_h : Relation F r_x r_y
r_k : Relation F r_y r_z
r_ih_h : descFunLift F s r_x = descFunLift F s r_y
r_ih_k : descFunLift F s r_y = descFunLift F s r_z
⊢ descFunLift F s r_x = descFunLift F s r_z
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.trans
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y r_x r_y r_z : Prequotient F
r_h : Relation F r_x r_y
r_k : Relation F r_y r_z
r_ih_h : descFunLift F s r_x = descFunLift F s r_y
r_ih_k : descFunLift F s r_y = descFunLift F s r_z
⊢ descFunLift F s r_x = descFunLift F s r_z
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.map
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
r_j r_j' : J
r_f : r_j ⟶ r_j'
r_x : ↑(F.obj r_j)
⊢ descFunLift F s (Prequotient.of r_j' (↑(F.map r_f) r_x)) = descFunLift F s (Prequotient.of r_j r_x)
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.map
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
r_j r_j' : J
r_f : r_j ⟶ r_j'
r_x : ↑(F.obj r_j)
⊢ descFunLift F s (Prequotient.of r_j' (↑(F.map r_f) r_x)) = descFunLift F s (Prequotient.of r_j r_x)
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
j : J
⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
j : J
⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.neg
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x✝ y : Prequotient F
j : J
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x))
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.neg
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x✝ y : Prequotient F
j : J
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x))
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x✝ y✝ : Prequotient F
j : J
x y : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y))
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x✝ y✝ : Prequotient F
j : J
x y : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y))
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
x✝ y : Prequotient F
j : J
s : R
x : ↑(F.obj j)
⊢ descFunLift F s✝ (Prequotient.of j (s • x)) = descFunLift F s✝ (smul s (Prequotient.of j x))
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
x✝ y : Prequotient F
j : J
s : R
x : ↑(F.obj j)
⊢ descFunLift F s✝ (Prequotient.of j (s • x)) = descFunLift F s✝ (smul s (Prequotient.of j x))
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.neg_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v : Prequotient F
r : Relation F u v
r_ih : descFunLift F s u = descFunLift F s v
⊢ descFunLift F s (neg u) = descFunLift F s (neg v)
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.neg_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v : Prequotient F
r : Relation F u v
r_ih : descFunLift F s u = descFunLift F s v
⊢ descFunLift F s (neg u) = descFunLift F s (neg v)
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v w : Prequotient F
r : Relation F u v
r_ih : descFunLift F s u = descFunLift F s v
⊢ descFunLift F s (add u w) = descFunLift F s (add v w)
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v w : Prequotient F
r : Relation F u v
r_ih : descFunLift F s u = descFunLift F s v
⊢ descFunLift F s (add u w) = descFunLift F s (add v w)
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_2
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v w : Prequotient F
r : Relation F v w
r_ih : descFunLift F s v = descFunLift F s w
⊢ descFunLift F s (add u v) = descFunLift F s (add u w)
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_2
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v w : Prequotient F
r : Relation F v w
r_ih : descFunLift F s v = descFunLift F s w
⊢ descFunLift F s (add u v) = descFunLift F s (add u w)
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
x y : Prequotient F
s : R
u v : Prequotient F
r : Relation F u v
r_ih : descFunLift F s✝ u = descFunLift F s✝ v
⊢ descFunLift F s✝ (smul s u) = descFunLift F s✝ (smul s v)
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
x y : Prequotient F
s : R
u v : Prequotient F
r : Relation F u v
r_ih : descFunLift F s✝ u = descFunLift F s✝ v
⊢ descFunLift F s✝ (smul s u) = descFunLift F s✝ (smul s v)
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.zero_add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.zero_add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add zero x✝) = descFunLift F s x✝
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add x✝ zero) = descFunLift F s x✝
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_left_neg
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_left_neg
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (add (neg x✝) x✝) = descFunLift F s zero
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_comm
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ y✝ : Prequotient F
⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝)
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_comm
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ y✝ : Prequotient F
⊢ descFunLift F s (add x✝ y✝) = descFunLift F s (add y✝ x✝)
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_assoc
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝))
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_assoc
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (add (add x✝ y✝) z✝) = descFunLift F s (add x✝ (add y✝ z✝))
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.one_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (smul 1 x✝) = descFunLift F s x✝
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.one_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (smul 1 x✝) = descFunLift F s x✝
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.mul_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ t✝ : R
x✝ : Prequotient F
⊢ descFunLift F s (smul (s✝ * t✝) x✝) = descFunLift F s (smul s✝ (smul t✝ x✝))
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.mul_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ t✝ : R
x✝ : Prequotient F
⊢ descFunLift F s (smul (s✝ * t✝) x✝) = descFunLift F s (smul s✝ (smul t✝ x✝))
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul_add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ : R
x✝ y✝ : Prequotient F
⊢ descFunLift F s (smul s✝ (add x✝ y✝)) = descFunLift F s (add (smul s✝ x✝) (smul s✝ y✝))
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul_add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ : R
x✝ y✝ : Prequotient F
⊢ descFunLift F s (smul s✝ (add x✝ y✝)) = descFunLift F s (add (smul s✝ x✝) (smul s✝ y✝))
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul_zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ : R
⊢ descFunLift F s (smul s✝ zero) = descFunLift F s zero
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.smul_zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ : R
⊢ descFunLift F s (smul s✝ zero) = descFunLift F s zero
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ t✝ : R
x✝ : Prequotient F
⊢ descFunLift F s (smul (s✝ + t✝) x✝) = descFunLift F s (add (smul s✝ x✝) (smul t✝ x✝))
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.add_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ t✝ : R
x✝ : Prequotient F
⊢ descFunLift F s (smul (s✝ + t✝) x✝) = descFunLift F s (add (smul s✝ x✝) (smul t✝ x✝))
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.zero_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (smul 0 x✝) = descFunLift F s zero
[PROOFSTEP]
try
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.zero_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (smul 0 x✝) = descFunLift F s zero
[PROOFSTEP]
dsimp
-- refl
-- · rfl -- porting note: `dsimp` (above) now closes this
-- symm
[GOAL]
case a.symm
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y r_x r_y : Prequotient F
r_h : Relation F r_x r_y
r_ih : descFunLift F s r_x = descFunLift F s r_y
⊢ descFunLift F s r_y = descFunLift F s r_x
[PROOFSTEP]
exact r_ih.symm
[GOAL]
case a.trans
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y r_x r_y r_z : Prequotient F
r_h : Relation F r_x r_y
r_k : Relation F r_y r_z
r_ih_h : descFunLift F s r_x = descFunLift F s r_y
r_ih_k : descFunLift F s r_y = descFunLift F s r_z
⊢ descFunLift F s r_x = descFunLift F s r_z
[PROOFSTEP]
exact Eq.trans r_ih_h r_ih_k
[GOAL]
case a.map
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
r_j r_j' : J
r_f : r_j ⟶ r_j'
r_x : ↑(F.obj r_j)
⊢ ↑(NatTrans.app s.ι r_j') (↑(F.map r_f) r_x) = ↑(NatTrans.app s.ι r_j) r_x
[PROOFSTEP]
exact s.w_apply r_f r_x
[GOAL]
case a.zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
j : J
⊢ ↑(NatTrans.app s.ι j) 0 = 0
[PROOFSTEP]
simp
-- neg
[GOAL]
case a.neg
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x✝ y : Prequotient F
j : J
x : ↑(F.obj j)
⊢ ↑(NatTrans.app s.ι j) (-x) = -↑(NatTrans.app s.ι j) x
[PROOFSTEP]
simp
-- add
[GOAL]
case a.add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x✝ y✝ : Prequotient F
j : J
x y : ↑(F.obj j)
⊢ ↑(NatTrans.app s.ι j) (x + y) = ↑(NatTrans.app s.ι j) x + ↑(NatTrans.app s.ι j) y
[PROOFSTEP]
simp
-- smul,
[GOAL]
case a.smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
x✝ y : Prequotient F
j : J
s : R
x : ↑(F.obj j)
⊢ ↑(NatTrans.app s✝.ι j) (s • x) = s • ↑(NatTrans.app s✝.ι j) x
[PROOFSTEP]
simp
-- neg_1
[GOAL]
case a.neg_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v : Prequotient F
r : Relation F u v
r_ih : descFunLift F s u = descFunLift F s v
⊢ -descFunLift F s u = -descFunLift F s v
[PROOFSTEP]
rw [r_ih]
-- add_1
[GOAL]
case a.add_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v w : Prequotient F
r : Relation F u v
r_ih : descFunLift F s u = descFunLift F s v
⊢ descFunLift F s u + descFunLift F s w = descFunLift F s v + descFunLift F s w
[PROOFSTEP]
rw [r_ih]
-- add_2
[GOAL]
case a.add_2
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y u v w : Prequotient F
r : Relation F v w
r_ih : descFunLift F s v = descFunLift F s w
⊢ descFunLift F s u + descFunLift F s v = descFunLift F s u + descFunLift F s w
[PROOFSTEP]
rw [r_ih]
-- smul_1
[GOAL]
case a.smul_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
x y : Prequotient F
s : R
u v : Prequotient F
r : Relation F u v
r_ih : descFunLift F s✝ u = descFunLift F s✝ v
⊢ s • descFunLift F s✝ u = s • descFunLift F s✝ v
[PROOFSTEP]
rw [r_ih]
-- zero_add
[GOAL]
case a.zero_add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ 0 + descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
rw [zero_add]
-- add_zero
[GOAL]
case a.add_zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ + 0 = descFunLift F s x✝
[PROOFSTEP]
rw [add_zero]
-- add_left_neg
[GOAL]
case a.add_left_neg
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ -descFunLift F s x✝ + descFunLift F s x✝ = 0
[PROOFSTEP]
rw [add_left_neg]
-- add_comm
[GOAL]
case a.add_comm
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ y✝ : Prequotient F
⊢ descFunLift F s x✝ + descFunLift F s y✝ = descFunLift F s y✝ + descFunLift F s x✝
[PROOFSTEP]
rw [add_comm]
-- add_assoc
[GOAL]
case a.add_assoc
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s x✝ + descFunLift F s y✝ + descFunLift F s z✝ =
descFunLift F s x✝ + (descFunLift F s y✝ + descFunLift F s z✝)
[PROOFSTEP]
rw [add_assoc]
-- one_smul
[GOAL]
case a.one_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ 1 • descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
rw [one_smul]
-- mul_smul
[GOAL]
case a.mul_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ t✝ : R
x✝ : Prequotient F
⊢ (s✝ * t✝) • descFunLift F s x✝ = s✝ • t✝ • descFunLift F s x✝
[PROOFSTEP]
rw [mul_smul]
-- smul_add
[GOAL]
case a.smul_add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ : R
x✝ y✝ : Prequotient F
⊢ s✝ • (descFunLift F s x✝ + descFunLift F s y✝) = s✝ • descFunLift F s x✝ + s✝ • descFunLift F s y✝
[PROOFSTEP]
rw [smul_add]
-- smul_zero
[GOAL]
case a.smul_zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ : R
⊢ s✝ • 0 = 0
[PROOFSTEP]
rw [smul_zero]
-- add_smul
[GOAL]
case a.add_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : Prequotient F
s✝ t✝ : R
x✝ : Prequotient F
⊢ (s✝ + t✝) • descFunLift F s x✝ = s✝ • descFunLift F s x✝ + t✝ • descFunLift F s x✝
[PROOFSTEP]
rw [add_smul]
-- zero_smul
[GOAL]
case a.zero_smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y x✝ : Prequotient F
⊢ 0 • descFunLift F s x✝ = 0
[PROOFSTEP]
rw [zero_smul]
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : ↑(colimit F)
⊢ descFun F s (x + y) = descFun F s x + descFun F s y
[PROOFSTEP]
rcases x
[GOAL]
case mk
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : ↑(colimit F)
a✝ : Prequotient F
⊢ descFun F s (Quot.mk Setoid.r a✝ + y) = descFun F s (Quot.mk Setoid.r a✝) + descFun F s y
[PROOFSTEP]
rcases y
[GOAL]
case mk.mk
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
x y : ↑(colimit F)
a✝¹ a✝ : Prequotient F
⊢ descFun F s (Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝) =
descFun F s (Quot.mk Setoid.r a✝¹) + descFun F s (Quot.mk Setoid.r a✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
s : R
x : ↑(colimit F)
⊢ AddHom.toFun
{ toFun := descFun F s✝,
map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) }
(s • x) =
↑(RingHom.id R) s •
AddHom.toFun
{ toFun := descFun F s✝,
map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) }
x
[PROOFSTEP]
rcases x
[GOAL]
case mk
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s✝ : Cocone F
s : R
x : ↑(colimit F)
a✝ : Prequotient F
⊢ AddHom.toFun
{ toFun := descFun F s✝,
map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) }
(s • Quot.mk Setoid.r a✝) =
↑(RingHom.id R) s •
AddHom.toFun
{ toFun := descFun F s✝,
map_add' := (_ : ∀ (x y : ↑(colimit F)), descFun F s✝ (x + y) = descFun F s✝ x + descFun F s✝ y) }
(Quot.mk Setoid.r a✝)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ m = (fun s => descMorphism F s) s
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
⊢ ↑m x = ↑((fun s => descMorphism F s) s) x
[PROOFSTEP]
refine Quot.rec (motive := fun x ↦ m x = _) (fun x ↦ ?_) (fun x_a x_b x_p ↦ ?_) x
[GOAL]
case h.refine_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : ↑(colimitCocone F).pt
x : Prequotient F
⊢ (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x)
case h.refine_2
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
x_a x_b : Prequotient F
x_p : Setoid.r x_a x_b
⊢ (_ : ↑m (Quot.mk Setoid.r x_b) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x_b)) =
(_ : (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x_b))
[PROOFSTEP]
dsimp
[GOAL]
case h.refine_1
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x✝ : ↑(colimitCocone F).pt
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑(descMorphism F s) (Quot.mk Setoid.r x)
case h.refine_2
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
x_a x_b : Prequotient F
x_p : Setoid.r x_a x_b
⊢ (_ : ↑m (Quot.mk Setoid.r x_b) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x_b)) =
(_ : (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x_b))
[PROOFSTEP]
induction' x with x_j x_x
[GOAL]
case h.refine_1.of
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
x_j : J
x_x : ↑(F.obj x_j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of x_j x_x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x))
[PROOFSTEP]
have w' := congr_fun (congr_arg (fun f : F.obj x_j ⟶ s.pt => (f : F.obj x_j → s.pt)) (w x_j)) x_x
[GOAL]
case h.refine_1.of
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
x_j : J
x_x : ↑(F.obj x_j)
w' : (fun f => ↑f) (NatTrans.app (colimitCocone F).ι x_j ≫ m) x_x = (fun f => ↑f) (NatTrans.app s.ι x_j) x_x
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of x_j x_x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x))
[PROOFSTEP]
simp only at w'
[GOAL]
case h.refine_1.of
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
x_j : J
x_x : ↑(F.obj x_j)
w' : ↑(NatTrans.app (colimitCocone F).ι x_j ≫ m) x_x = ↑(NatTrans.app s.ι x_j) x_x
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of x_j x_x)) = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x))
[PROOFSTEP]
erw [w']
[GOAL]
case h.refine_1.of
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
x_j : J
x_x : ↑(F.obj x_j)
w' : ↑(NatTrans.app (colimitCocone F).ι x_j ≫ m) x_x = ↑(NatTrans.app s.ι x_j) x_x
⊢ ↑(NatTrans.app s.ι x_j) x_x = ↑(descMorphism F s) (Quot.mk Setoid.r (Prequotient.of x_j x_x))
[PROOFSTEP]
rfl
[GOAL]
case h.refine_1.zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
⊢ ↑m (Quot.mk Setoid.r zero) = ↑(descMorphism F s) (Quot.mk Setoid.r zero)
[PROOFSTEP]
rw [quot_zero, map_zero]
-- porting note: was `simp` but `map_zero` won't fire
[GOAL]
case h.refine_1.zero
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
⊢ 0 = ↑(descMorphism F s) 0
[PROOFSTEP]
rfl
[GOAL]
case h.refine_1.neg
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
a✝ : Prequotient F
a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝)
⊢ ↑m (Quot.mk Setoid.r (neg a✝)) = ↑(descMorphism F s) (Quot.mk Setoid.r (neg a✝))
[PROOFSTEP]
simpa
[GOAL]
case h.refine_1.add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
a✝¹ a✝ : Prequotient F
a_ih✝¹ : ↑m (Quot.mk Setoid.r a✝¹) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝¹)
a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝)
⊢ ↑m (Quot.mk Setoid.r (add a✝¹ a✝)) = ↑(descMorphism F s) (Quot.mk Setoid.r (add a✝¹ a✝))
[PROOFSTEP]
rw [quot_add, map_add, map_add]
-- porting note: this was closed by `simp [*]`
[GOAL]
case h.refine_1.add
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
a✝¹ a✝ : Prequotient F
a_ih✝¹ : ↑m (Quot.mk Setoid.r a✝¹) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝¹)
a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝)
⊢ ↑m (ColimitType.mk a✝¹) + ↑m (ColimitType.mk a✝) =
↑(descMorphism F s) (ColimitType.mk a✝¹) + ↑(descMorphism F s) (ColimitType.mk a✝)
[PROOFSTEP]
congr 1
[GOAL]
case h.refine_1.smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
a✝¹ : R
a✝ : Prequotient F
a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝)
⊢ ↑m (Quot.mk Setoid.r (smul a✝¹ a✝)) = ↑(descMorphism F s) (Quot.mk Setoid.r (smul a✝¹ a✝))
[PROOFSTEP]
rw [quot_smul, map_smul, map_smul]
-- porting note: this was closed by `simp [*]`
[GOAL]
case h.refine_1.smul
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
a✝¹ : R
a✝ : Prequotient F
a_ih✝ : ↑m (Quot.mk Setoid.r a✝) = ↑(descMorphism F s) (Quot.mk Setoid.r a✝)
⊢ a✝¹ • ↑m (ColimitType.mk a✝) = a✝¹ • ↑(descMorphism F s) (ColimitType.mk a✝)
[PROOFSTEP]
congr 1
[GOAL]
case h.refine_2
R : Type u
inst✝¹ : Ring R
J : Type w
inst✝ : Category.{v, w} J
F : J ⥤ ModuleCat R
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
x_a x_b : Prequotient F
x_p : Setoid.r x_a x_b
⊢ (_ : ↑m (Quot.mk Setoid.r x_b) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x_b)) =
(_ : (fun x => ↑m x = ↑((fun s => descMorphism F s) s) x) (Quot.mk Setoid.r x_b))
[PROOFSTEP]
rfl
-- porting note: this wasn't here
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Colimits", "llama_tokens": 18526} |
[GOAL]
k : Type u
inst✝² : Field k
A : Type w
inst✝¹ : Ring A
inst✝ : Algebra k A
⊢ ∀ (X Y Z : ModuleCat A) (r : k) (f : X ⟶ Y) (g : Y ⟶ Z), (r • f) ≫ g = r • f ≫ g
[PROOFSTEP]
aesop_cat_nonterminal
[GOAL]
case h
k : Type u
inst : Field k
A : Type w
inst_1 : Ring A
inst_2 : Algebra k A
X Y Z : ModuleCat A
r : k
f : X ⟶ Y
g : Y ⟶ Z
x✝ : ↑X
⊢ ↑g (↑(r • f) x✝) = ↑(r • f ≫ g) x✝
[PROOFSTEP]
rw [LinearMap.smul_apply, LinearMap.smul_apply, LinearMap.map_smul_of_tower]
[GOAL]
case h
k : Type u
inst : Field k
A : Type w
inst_1 : Ring A
inst_2 : Algebra k A
X Y Z : ModuleCat A
r : k
f : X ⟶ Y
g : Y ⟶ Z
x✝ : ↑X
⊢ r • ↑g (↑f x✝) = r • ↑(f ≫ g) x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Algebra", "llama_tokens": 367} |
[GOAL]
J✝ : Type
inst✝⁴ : SmallCategory J✝
inst✝³ : FinCategory J✝
k : Type v
inst✝² : Field k
J : Type
inst✝¹ : Fintype J
Z : J → ModuleCat k
inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j)
⊢ FiniteDimensional k ↑(ModuleCat.of k ((j : J) → ↑(Z j)))
[PROOFSTEP]
unfold ModuleCat.of
[GOAL]
J✝ : Type
inst✝⁴ : SmallCategory J✝
inst✝³ : FinCategory J✝
k : Type v
inst✝² : Field k
J : Type
inst✝¹ : Fintype J
Z : J → ModuleCat k
inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j)
⊢ FiniteDimensional k ↑(ModuleCat.mk ((j : J) → ↑(Z j)))
[PROOFSTEP]
infer_instance
[GOAL]
J✝ : Type
inst✝⁴ : SmallCategory J✝
inst✝³ : FinCategory J✝
k : Type v
inst✝² : Field k
J : Type
inst✝¹ : Fintype J
Z : J → ModuleCat k
inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j)
this : FiniteDimensional k ↑(ModuleCat.of k ((j : J) → ↑(Z j)))
⊢ Mono (ModuleCat.piIsoPi fun j => Z j).hom
[PROOFSTEP]
infer_instance
[GOAL]
J : Type
inst✝² : SmallCategory J
inst✝¹ : FinCategory J
k : Type v
inst✝ : Field k
F : J ⥤ FGModuleCat k
⊢ ∀ (j : J), FiniteDimensional k ↑((F ⋙ forget₂ (FGModuleCat k) (ModuleCat k)).obj j)
[PROOFSTEP]
intro j
[GOAL]
J : Type
inst✝² : SmallCategory J
inst✝¹ : FinCategory J
k : Type v
inst✝ : Field k
F : J ⥤ FGModuleCat k
j : J
⊢ FiniteDimensional k ↑((F ⋙ forget₂ (FGModuleCat k) (ModuleCat k)).obj j)
[PROOFSTEP]
change FiniteDimensional k (F.obj j)
[GOAL]
J : Type
inst✝² : SmallCategory J
inst✝¹ : FinCategory J
k : Type v
inst✝ : Field k
F : J ⥤ FGModuleCat k
j : J
⊢ FiniteDimensional k ↑(F.obj j)
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Algebra.Category.FGModuleCat.Limits", "llama_tokens": 730} |
[GOAL]
R : CommRingCat
⊢ IsIso (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away 1)))
[PROOFSTEP]
cases R
[GOAL]
case mk
α✝ : Type ?u.2107
str✝ : CommRing α✝
⊢ IsIso (CommRingCat.ofHom (algebraMap (↑(Bundled.mk α✝)) (Localization.Away 1)))
[PROOFSTEP]
exact localization_unit_isIso _
[GOAL]
R : CommRingCat
M : Submonoid ↑R
⊢ Epi (CommRingCat.ofHom (algebraMap (↑R) (Localization M)))
[PROOFSTEP]
rcases R with ⟨α, str⟩
[GOAL]
case mk
α : Type ?u.6171
str : CommRing α
M : Submonoid ↑(Bundled.mk α)
⊢ Epi (CommRingCat.ofHom (algebraMap (↑(Bundled.mk α)) (Localization M)))
[PROOFSTEP]
exact IsLocalization.epi M _
[GOAL]
R S : CommRingCat
f : R ≅ S
a : ↑R
ha : IsUnit (↑f.hom a)
⊢ IsUnit a
[PROOFSTEP]
convert f.inv.isUnit_map ha
[GOAL]
case h.e'_3
R S : CommRingCat
f : R ≅ S
a : ↑R
ha : IsUnit (↑f.hom a)
⊢ a = ↑f.inv (↑f.hom a)
[PROOFSTEP]
exact (RingHom.congr_fun f.hom_inv_id _).symm
| {"mathlib_filename": "Mathlib.Algebra.Category.Ring.Instances", "llama_tokens": 454} |
{"mathlib_filename": "Mathlib.Algebra.Category.Ring.Adjunctions", "llama_tokens": 0} |
|
[GOAL]
⊢ ∀ {α β : Type ?u.90} (Iα : Mul α) (Iβ : Mul β), Function.Injective MulHom.toFun
[PROOFSTEP]
intros
[GOAL]
α✝ β✝ : Type ?u.90
Iα✝ : Mul α✝
Iβ✝ : Mul β✝
⊢ Function.Injective MulHom.toFun
[PROOFSTEP]
apply @FunLike.coe_injective
[GOAL]
⊢ ∀ {α : Type ?u.90} (I : Mul α), (MulHom.id α).toFun = id
[PROOFSTEP]
aesop_cat
[GOAL]
⊢ ∀ {α β γ : Type ?u.90} (Iα : Mul α) (Iβ : Mul β) (Iγ : Mul γ) (f : α →ₙ* β) (g : β →ₙ* γ),
(MulHom.comp g f).toFun = g.toFun ∘ f.toFun
[PROOFSTEP]
aesop_cat
[GOAL]
X Y : Type u
inst✝¹ : Mul X
inst✝ : Mul Y
e : X ≃* Y
⊢ toMulHom e ≫ toMulHom (symm e) = 𝟙 (MagmaCat.of X)
[PROOFSTEP]
ext
[GOAL]
case w
X Y : Type u
inst✝¹ : Mul X
inst✝ : Mul Y
e : X ≃* Y
x✝ : (forget MagmaCat).obj (MagmaCat.of X)
⊢ ↑(toMulHom e ≫ toMulHom (symm e)) x✝ = ↑(𝟙 (MagmaCat.of X)) x✝
[PROOFSTEP]
simp_rw [comp_apply, toMulHom_eq_coe, MagmaCat.MulEquiv_coe_eq, symm_apply_apply, id_apply]
[GOAL]
X✝ Y✝ : Type u
X Y : MagmaCat
f : X ⟶ Y
x✝ : IsIso ((forget MagmaCat).map f)
⊢ IsIso f
[PROOFSTEP]
skip
[GOAL]
X✝ Y✝ : Type u
X Y : MagmaCat
f : X ⟶ Y
x✝ : IsIso ((forget MagmaCat).map f)
⊢ IsIso f
[PROOFSTEP]
let i := asIso ((forget MagmaCat).map f)
[GOAL]
X✝ Y✝ : Type u
X Y : MagmaCat
f : X ⟶ Y
x✝ : IsIso ((forget MagmaCat).map f)
i : (forget MagmaCat).obj X ≅ (forget MagmaCat).obj Y := asIso ((forget MagmaCat).map f)
⊢ IsIso f
[PROOFSTEP]
let e : X ≃* Y := { f, i.toEquiv with }
[GOAL]
X✝ Y✝ : Type u
X Y : MagmaCat
f : X ⟶ Y
x✝ : IsIso ((forget MagmaCat).map f)
i : (forget MagmaCat).obj X ≅ (forget MagmaCat).obj Y := asIso ((forget MagmaCat).map f)
e : ↑X ≃* ↑Y :=
let src := i.toEquiv;
{
toEquiv :=
{ toFun := f.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun),
right_inv := (_ : Function.RightInverse src.invFun src.toFun) },
map_mul' := (_ : ∀ (x y : ↑X), MulHom.toFun f (x * y) = MulHom.toFun f x * MulHom.toFun f y) }
⊢ IsIso f
[PROOFSTEP]
exact ⟨(IsIso.of_iso e.toMagmaCatIso).1⟩
[GOAL]
X✝ Y✝ : Type u
X Y : SemigroupCat
f : X ⟶ Y
x✝ : IsIso ((forget SemigroupCat).map f)
⊢ IsIso f
[PROOFSTEP]
skip
[GOAL]
X✝ Y✝ : Type u
X Y : SemigroupCat
f : X ⟶ Y
x✝ : IsIso ((forget SemigroupCat).map f)
⊢ IsIso f
[PROOFSTEP]
let i := asIso ((forget SemigroupCat).map f)
[GOAL]
X✝ Y✝ : Type u
X Y : SemigroupCat
f : X ⟶ Y
x✝ : IsIso ((forget SemigroupCat).map f)
i : (forget SemigroupCat).obj X ≅ (forget SemigroupCat).obj Y := asIso ((forget SemigroupCat).map f)
⊢ IsIso f
[PROOFSTEP]
let e : X ≃* Y := { f, i.toEquiv with }
[GOAL]
X✝ Y✝ : Type u
X Y : SemigroupCat
f : X ⟶ Y
x✝ : IsIso ((forget SemigroupCat).map f)
i : (forget SemigroupCat).obj X ≅ (forget SemigroupCat).obj Y := asIso ((forget SemigroupCat).map f)
e : ↑X ≃* ↑Y :=
let src := i.toEquiv;
{
toEquiv :=
{ toFun := f.toFun, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun),
right_inv := (_ : Function.RightInverse src.invFun src.toFun) },
map_mul' := (_ : ∀ (x y : ↑X), MulHom.toFun f (x * y) = MulHom.toFun f x * MulHom.toFun f y) }
⊢ IsIso f
[PROOFSTEP]
exact ⟨(IsIso.of_iso e.toSemigroupCatIso).1⟩
| {"mathlib_filename": "Mathlib.Algebra.Category.SemigroupCat.Basic", "llama_tokens": 1609} |
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
H✝ H : LieSubalgebra R L
inst✝ : IsCartanSubalgebra H
⊢ LieSubmodule.normalizer (toLieSubmodule H) = toLieSubmodule H
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, coe_normalizer_eq_normalizer, IsCartanSubalgebra.self_normalizing,
coe_toLieSubmodule]
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
H✝ H : LieSubalgebra R L
inst✝ : IsCartanSubalgebra H
k : ℕ
⊢ LieSubmodule.ucs k (toLieSubmodule H) = toLieSubmodule H
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
H✝ H : LieSubalgebra R L
inst✝ : IsCartanSubalgebra H
⊢ LieSubmodule.ucs Nat.zero (toLieSubmodule H) = toLieSubmodule H
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
H✝ H : LieSubalgebra R L
inst✝ : IsCartanSubalgebra H
k : ℕ
ih : LieSubmodule.ucs k (toLieSubmodule H) = toLieSubmodule H
⊢ LieSubmodule.ucs (Nat.succ k) (toLieSubmodule H) = toLieSubmodule H
[PROOFSTEP]
simp [ih]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
⊢ IsCartanSubalgebra H ↔ LieSubmodule.IsUcsLimit (toLieSubmodule H)
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
⊢ IsCartanSubalgebra H → LieSubmodule.IsUcsLimit (toLieSubmodule H)
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
h : IsCartanSubalgebra H
⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H)
[PROOFSTEP]
have h₁ : LieAlgebra.IsNilpotent R H := by infer_instance
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
h : IsCartanSubalgebra H
⊢ LieAlgebra.IsNilpotent R { x // x ∈ H }
[PROOFSTEP]
infer_instance
[GOAL]
case mp
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
h : IsCartanSubalgebra H
h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H }
⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H)
[PROOFSTEP]
obtain ⟨k, hk⟩ := H.toLieSubmodule.isNilpotent_iff_exists_self_le_ucs.mp h₁
[GOAL]
case mp.intro
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
h : IsCartanSubalgebra H
h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H }
k : ℕ
hk : toLieSubmodule H ≤ LieSubmodule.ucs k ⊥
⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H)
[PROOFSTEP]
replace hk : H.toLieSubmodule = LieSubmodule.ucs k ⊥ :=
le_antisymm hk (LieSubmodule.ucs_le_of_normalizer_eq_self H.normalizer_eq_self_of_isCartanSubalgebra k)
[GOAL]
case mp.intro
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
h : IsCartanSubalgebra H
h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H }
k : ℕ
hk : toLieSubmodule H = LieSubmodule.ucs k ⊥
⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H)
[PROOFSTEP]
refine' ⟨k, fun l hl => _⟩
[GOAL]
case mp.intro
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
h : IsCartanSubalgebra H
h₁ : LieAlgebra.IsNilpotent R { x // x ∈ H }
k : ℕ
hk : toLieSubmodule H = LieSubmodule.ucs k ⊥
l : ℕ
hl : k ≤ l
⊢ LieSubmodule.ucs l ⊥ = toLieSubmodule H
[PROOFSTEP]
rw [← Nat.sub_add_cancel hl, LieSubmodule.ucs_add, ← hk, LieSubalgebra.ucs_eq_self_of_isCartanSubalgebra]
[GOAL]
case mpr
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
⊢ LieSubmodule.IsUcsLimit (toLieSubmodule H) → IsCartanSubalgebra H
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case mpr.intro
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
⊢ IsCartanSubalgebra H
[PROOFSTEP]
exact
{ nilpotent := by
dsimp only [LieAlgebra.IsNilpotent]
erw [H.toLieSubmodule.isNilpotent_iff_exists_lcs_eq_bot]
use k
rw [_root_.eq_bot_iff, LieSubmodule.lcs_le_iff, hk k (le_refl k)]
self_normalizing := by
have hk' := hk (k + 1) k.le_succ
rw [LieSubmodule.ucs_succ, hk k (le_refl k)] at hk'
rw [← LieSubalgebra.coe_to_submodule_eq_iff, ← LieSubalgebra.coe_normalizer_eq_normalizer, hk',
LieSubalgebra.coe_toLieSubmodule] }
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
⊢ LieAlgebra.IsNilpotent R { x // x ∈ H }
[PROOFSTEP]
dsimp only [LieAlgebra.IsNilpotent]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
⊢ LieModule.IsNilpotent R { x // x ∈ H } { x // x ∈ H }
[PROOFSTEP]
erw [H.toLieSubmodule.isNilpotent_iff_exists_lcs_eq_bot]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
⊢ ∃ k, LieSubmodule.lcs k (toLieSubmodule H) = ⊥
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
⊢ LieSubmodule.lcs k (toLieSubmodule H) = ⊥
[PROOFSTEP]
rw [_root_.eq_bot_iff, LieSubmodule.lcs_le_iff, hk k (le_refl k)]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
⊢ normalizer H = H
[PROOFSTEP]
have hk' := hk (k + 1) k.le_succ
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
hk' : LieSubmodule.ucs (k + 1) ⊥ = toLieSubmodule H
⊢ normalizer H = H
[PROOFSTEP]
rw [LieSubmodule.ucs_succ, hk k (le_refl k)] at hk'
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
H : LieSubalgebra R L
k : ℕ
hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = toLieSubmodule H
hk' : LieSubmodule.normalizer (toLieSubmodule H) = toLieSubmodule H
⊢ normalizer H = H
[PROOFSTEP]
rw [← LieSubalgebra.coe_to_submodule_eq_iff, ← LieSubalgebra.coe_normalizer_eq_normalizer, hk',
LieSubalgebra.coe_toLieSubmodule]
[GOAL]
R✝ : Type u
L✝ : Type v
inst✝⁵ : CommRing R✝
inst✝⁴ : LieRing L✝
inst✝³ : LieAlgebra R✝ L✝
H : LieSubalgebra R✝ L✝
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
I : LieIdeal R L
⊢ LieSubalgebra.normalizer (↑R L I) = ⊤
[PROOFSTEP]
ext x
[GOAL]
case h
R✝ : Type u
L✝ : Type v
inst✝⁵ : CommRing R✝
inst✝⁴ : LieRing L✝
inst✝³ : LieAlgebra R✝ L✝
H : LieSubalgebra R✝ L✝
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
I : LieIdeal R L
x : L
⊢ x ∈ LieSubalgebra.normalizer (↑R L I) ↔ x ∈ ⊤
[PROOFSTEP]
simpa only [LieSubalgebra.mem_normalizer_iff, LieSubalgebra.mem_top, iff_true_iff] using fun y hy => I.lie_mem hy
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
H : LieSubalgebra R L
inst✝ : IsNilpotent R L
⊢ LieSubalgebra.normalizer ⊤ = ⊤
[PROOFSTEP]
rw [← top_coe_lieSubalgebra, normalizer_eq_top, top_coe_lieSubalgebra]
| {"mathlib_filename": "Mathlib.Algebra.Lie.CartanSubalgebra", "llama_tokens": 3620} |
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F
x✝ y✝ z✝ : ColimitType F
x y z : Prequotient F
⊢ Quot.mk Setoid.r x * (Quot.mk Setoid.r y + Quot.mk Setoid.r z) =
Quot.mk Setoid.r x * Quot.mk Setoid.r y + Quot.mk Setoid.r x * Quot.mk Setoid.r z
[PROOFSTEP]
simp only [(· + ·), (· * ·), Add.add]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F
x✝ y✝ z✝ : ColimitType F
x y z : Prequotient F
⊢ Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x)
(Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y')
(Quot.mk Setoid.r y) (Quot.mk Setoid.r z)) =
Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y')
(Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x)
(Quot.mk Setoid.r y))
(Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x)
(Quot.mk Setoid.r z))
[PROOFSTEP]
exact Quot.sound (Relation.left_distrib _ _ _)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F
x✝ y✝ z✝ : ColimitType F
x y z : Prequotient F
⊢ (Quot.mk Setoid.r x + Quot.mk Setoid.r y) * Quot.mk Setoid.r z =
Quot.mk Setoid.r x * Quot.mk Setoid.r z + Quot.mk Setoid.r y * Quot.mk Setoid.r z
[PROOFSTEP]
simp only [(· + ·), (· * ·), Add.add]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F
x✝ y✝ z✝ : ColimitType F
x y z : Prequotient F
⊢ Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y))
(Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y')
(Quot.mk Setoid.r x) (Quot.mk Setoid.r y))
(Quot.mk Setoid.r z) =
Quotient.map₂ add (_ : ∀ (x x' : Prequotient F), x ≈ x' → ∀ (y y' : Prequotient F), y ≈ y' → add x y ≈ add x' y')
(Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x)
(Quot.mk Setoid.r z))
(Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r y)
(Quot.mk Setoid.r z))
[PROOFSTEP]
exact Quot.sound (Relation.right_distrib _ _ _)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F
x✝ y✝ z✝ : ColimitType F
x y z : Prequotient F
⊢ Quot.mk Setoid.r x * Quot.mk Setoid.r y * Quot.mk Setoid.r z =
Quot.mk Setoid.r x * (Quot.mk Setoid.r y * Quot.mk Setoid.r z)
[PROOFSTEP]
simp only [(· * ·)]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
src✝ : AddGroupWithOne (ColimitType F) := ColimitType.AddGroupWithOne F
x✝ y✝ z✝ : ColimitType F
x y z : Prequotient F
⊢ Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y))
(Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x)
(Quot.mk Setoid.r y))
(Quot.mk Setoid.r z) =
Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r x)
(Quot.map₂ mul (_ : ∀ (x y y' : Prequotient F), Relation F y y' → Relation F (mul x y) (mul x y'))
(_ : ∀ (x x' y : Prequotient F), Relation F x x' → Relation F (mul x y) (mul x' y)) (Quot.mk Setoid.r y)
(Quot.mk Setoid.r z))
[PROOFSTEP]
exact Quot.sound (Relation.mul_assoc _ _ _)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
⊢ coconeFun F j 1 = 1
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
⊢ Setoid.r (Prequotient.of j 1) one
[PROOFSTEP]
apply Relation.one
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
⊢ ∀ (x y : ↑(F.obj j)),
OneHom.toFun
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }
(x * y) =
OneHom.toFun
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } x *
OneHom.toFun
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } y
[PROOFSTEP]
intros
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
x✝ y✝ : ↑(F.obj j)
⊢ OneHom.toFun
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) }
(x✝ * y✝) =
OneHom.toFun
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } x✝ *
OneHom.toFun
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) } y✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
x✝ y✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j (x✝ * y✝)) (mul (Prequotient.of j x✝) (Prequotient.of j y✝))
[PROOFSTEP]
apply Relation.mul
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
⊢ OneHom.toFun
(↑{
toOneHom :=
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) },
map_mul' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x * y)) =
Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) })
0 =
0
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
⊢ Setoid.r (Prequotient.of j 0) zero
[PROOFSTEP]
apply Relation.zero
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
⊢ ∀ (x y : ↑(F.obj j)),
OneHom.toFun
(↑{
toOneHom :=
{ toFun := coconeFun F j,
map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) },
map_mul' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x * y)) =
Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{ toFun := coconeFun F j,
map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) },
map_mul' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x * y)) =
Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) })
x +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := coconeFun F j,
map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) },
map_mul' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x * y)) =
Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) })
y
[PROOFSTEP]
intros
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
x✝ y✝ : ↑(F.obj j)
⊢ OneHom.toFun
(↑{
toOneHom :=
{ toFun := coconeFun F j, map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) },
map_mul' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x * y)) =
Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) })
(x✝ + y✝) =
OneHom.toFun
(↑{
toOneHom :=
{ toFun := coconeFun F j,
map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) },
map_mul' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x * y)) =
Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) })
x✝ +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := coconeFun F j,
map_one' := (_ : Quot.mk Setoid.r (Prequotient.of j 1) = Quot.mk Setoid.r one) },
map_mul' :=
(_ :
∀ (x y : ↑(F.obj j)),
Quot.mk Setoid.r (Prequotient.of j (x * y)) =
Quot.mk Setoid.r (mul (Prequotient.of j x) (Prequotient.of j y))) })
y✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j : J
x✝ y✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j (x✝ + y✝)) (add (Prequotient.of j x✝) (Prequotient.of j y✝))
[PROOFSTEP]
apply Relation.add
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j j' : J
f : j ⟶ j'
⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j
[PROOFSTEP]
ext
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j j' : J
f : j ⟶ j'
x✝ : (forget CommRingCat).obj (F.obj j)
⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case w.a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j j' : J
f : j ⟶ j'
x✝ : (forget CommRingCat).obj (F.obj j)
⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝)
[PROOFSTEP]
apply Relation.map
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x
[PROOFSTEP]
rw [← cocone_naturality F f]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
⊢ ColimitType F → ↑s.pt
[PROOFSTEP]
fapply Quot.lift
[GOAL]
case f
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
⊢ Prequotient F → ↑s.pt
[PROOFSTEP]
exact descFunLift F s
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b
[PROOFSTEP]
intro x y r
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : Prequotient F
r : Setoid.r x y
⊢ descFunLift F s x = descFunLift F s y
[PROOFSTEP]
induction r with
| refl => rfl
| symm x y _ ih => exact ih.symm
| trans x y z _ _ ih1 ih2 => exact ih1.trans ih2
| map j j' f x => exact RingHom.congr_fun (s.ι.naturality f) x
| zero j => simp
| one j => simp
| neg j x => simp
| add j x y => simp
| mul j x y => simp
| neg_1 x x' r ih => dsimp; rw [ih]
| add_1 x x' y r ih => dsimp; rw [ih]
| add_2 x y y' r ih => dsimp; rw [ih]
| mul_1 x x' y r ih => dsimp; rw [ih]
| mul_2 x y y' r ih => dsimp; rw [ih]
| zero_add x => dsimp; rw [zero_add]
| add_zero x => dsimp; rw [add_zero]
| one_mul x => dsimp; rw [one_mul]
| mul_one x => dsimp; rw [mul_one]
| add_left_neg x => dsimp; rw [add_left_neg]
| add_comm x y => dsimp; rw [add_comm]
| mul_comm x y => dsimp; rw [mul_comm]
| add_assoc x y z => dsimp; rw [add_assoc]
| mul_assoc x y z => dsimp; rw [mul_assoc]
| left_distrib x y z => dsimp; rw [mul_add]
| right_distrib x y z => dsimp; rw [add_mul]
| zero_mul x => dsimp; rw [zero_mul]
| mul_zero x => dsimp; rw [mul_zero]
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : Prequotient F
r : Setoid.r x y
⊢ descFunLift F s x = descFunLift F s y
[PROOFSTEP]
induction r with
| refl => rfl
| symm x y _ ih => exact ih.symm
| trans x y z _ _ ih1 ih2 => exact ih1.trans ih2
| map j j' f x => exact RingHom.congr_fun (s.ι.naturality f) x
| zero j => simp
| one j => simp
| neg j x => simp
| add j x y => simp
| mul j x y => simp
| neg_1 x x' r ih => dsimp; rw [ih]
| add_1 x x' y r ih => dsimp; rw [ih]
| add_2 x y y' r ih => dsimp; rw [ih]
| mul_1 x x' y r ih => dsimp; rw [ih]
| mul_2 x y y' r ih => dsimp; rw [ih]
| zero_add x => dsimp; rw [zero_add]
| add_zero x => dsimp; rw [add_zero]
| one_mul x => dsimp; rw [one_mul]
| mul_one x => dsimp; rw [mul_one]
| add_left_neg x => dsimp; rw [add_left_neg]
| add_comm x y => dsimp; rw [add_comm]
| mul_comm x y => dsimp; rw [mul_comm]
| add_assoc x y z => dsimp; rw [add_assoc]
| mul_assoc x y z => dsimp; rw [mul_assoc]
| left_distrib x y z => dsimp; rw [mul_add]
| right_distrib x y z => dsimp; rw [add_mul]
| zero_mul x => dsimp; rw [zero_mul]
| mul_zero x => dsimp; rw [mul_zero]
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
| refl => rfl
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
rfl
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝¹ y✝ x y : Prequotient F
x✝ : Relation F x y
ih : descFunLift F s x = descFunLift F s y
⊢ descFunLift F s y = descFunLift F s x
[PROOFSTEP]
| symm x y _ ih => exact ih.symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝¹ y✝ x y : Prequotient F
x✝ : Relation F x y
ih : descFunLift F s x = descFunLift F s y
⊢ descFunLift F s y = descFunLift F s x
[PROOFSTEP]
exact ih.symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝² y✝ x y z : Prequotient F
x✝¹ : Relation F x y
x✝ : Relation F y z
ih1 : descFunLift F s x = descFunLift F s y
ih2 : descFunLift F s y = descFunLift F s z
⊢ descFunLift F s x = descFunLift F s z
[PROOFSTEP]
| trans x y z _ _ ih1 ih2 => exact ih1.trans ih2
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝² y✝ x y z : Prequotient F
x✝¹ : Relation F x y
x✝ : Relation F y z
ih1 : descFunLift F s x = descFunLift F s y
ih2 : descFunLift F s y = descFunLift F s z
⊢ descFunLift F s x = descFunLift F s z
[PROOFSTEP]
exact ih1.trans ih2
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y : Prequotient F
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x)
[PROOFSTEP]
| map j j' f x => exact RingHom.congr_fun (s.ι.naturality f) x
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y : Prequotient F
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j' (↑(F.map f) x)) = descFunLift F s (Prequotient.of j x)
[PROOFSTEP]
exact RingHom.congr_fun (s.ι.naturality f) x
[GOAL]
case a.zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : Prequotient F
j : J
⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero
[PROOFSTEP]
| zero j => simp
[GOAL]
case a.zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : Prequotient F
j : J
⊢ descFunLift F s (Prequotient.of j 0) = descFunLift F s zero
[PROOFSTEP]
simp
[GOAL]
case a.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : Prequotient F
j : J
⊢ descFunLift F s (Prequotient.of j 1) = descFunLift F s one
[PROOFSTEP]
| one j => simp
[GOAL]
case a.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : Prequotient F
j : J
⊢ descFunLift F s (Prequotient.of j 1) = descFunLift F s one
[PROOFSTEP]
simp
[GOAL]
case a.neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y : Prequotient F
j : J
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x))
[PROOFSTEP]
| neg j x => simp
[GOAL]
case a.neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y : Prequotient F
j : J
x : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (-x)) = descFunLift F s (neg (Prequotient.of j x))
[PROOFSTEP]
simp
[GOAL]
case a.add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ : Prequotient F
j : J
x y : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y))
[PROOFSTEP]
| add j x y => simp
[GOAL]
case a.add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ : Prequotient F
j : J
x y : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (x + y)) = descFunLift F s (add (Prequotient.of j x) (Prequotient.of j y))
[PROOFSTEP]
simp
[GOAL]
case a.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ : Prequotient F
j : J
x y : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (x * y)) = descFunLift F s (mul (Prequotient.of j x) (Prequotient.of j y))
[PROOFSTEP]
| mul j x y => simp
[GOAL]
case a.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ : Prequotient F
j : J
x y : ↑(F.obj j)
⊢ descFunLift F s (Prequotient.of j (x * y)) = descFunLift F s (mul (Prequotient.of j x) (Prequotient.of j y))
[PROOFSTEP]
simp
[GOAL]
case a.neg_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x x' : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s (neg x) = descFunLift F s (neg x')
[PROOFSTEP]
| neg_1 x x' r ih => dsimp; rw [ih]
[GOAL]
case a.neg_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x x' : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s (neg x) = descFunLift F s (neg x')
[PROOFSTEP]
dsimp
[GOAL]
case a.neg_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x x' : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ -descFunLift F s x = -descFunLift F s x'
[PROOFSTEP]
rw [ih]
[GOAL]
case a.add_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x x' y : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s (add x y) = descFunLift F s (add x' y)
[PROOFSTEP]
| add_1 x x' y r ih => dsimp; rw [ih]
[GOAL]
case a.add_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x x' y : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s (add x y) = descFunLift F s (add x' y)
[PROOFSTEP]
dsimp
[GOAL]
case a.add_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x x' y : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s x + descFunLift F s y = descFunLift F s x' + descFunLift F s y
[PROOFSTEP]
rw [ih]
[GOAL]
case a.add_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y y' : Prequotient F
r : Relation F y y'
ih : descFunLift F s y = descFunLift F s y'
⊢ descFunLift F s (add x y) = descFunLift F s (add x y')
[PROOFSTEP]
| add_2 x y y' r ih => dsimp; rw [ih]
[GOAL]
case a.add_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y y' : Prequotient F
r : Relation F y y'
ih : descFunLift F s y = descFunLift F s y'
⊢ descFunLift F s (add x y) = descFunLift F s (add x y')
[PROOFSTEP]
dsimp
[GOAL]
case a.add_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y y' : Prequotient F
r : Relation F y y'
ih : descFunLift F s y = descFunLift F s y'
⊢ descFunLift F s x + descFunLift F s y = descFunLift F s x + descFunLift F s y'
[PROOFSTEP]
rw [ih]
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x x' y : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s (mul x y) = descFunLift F s (mul x' y)
[PROOFSTEP]
| mul_1 x x' y r ih => dsimp; rw [ih]
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x x' y : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s (mul x y) = descFunLift F s (mul x' y)
[PROOFSTEP]
dsimp
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x x' y : Prequotient F
r : Relation F x x'
ih : descFunLift F s x = descFunLift F s x'
⊢ descFunLift F s x * descFunLift F s y = descFunLift F s x' * descFunLift F s y
[PROOFSTEP]
rw [ih]
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y y' : Prequotient F
r : Relation F y y'
ih : descFunLift F s y = descFunLift F s y'
⊢ descFunLift F s (mul x y) = descFunLift F s (mul x y')
[PROOFSTEP]
| mul_2 x y y' r ih => dsimp; rw [ih]
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y y' : Prequotient F
r : Relation F y y'
ih : descFunLift F s y = descFunLift F s y'
⊢ descFunLift F s (mul x y) = descFunLift F s (mul x y')
[PROOFSTEP]
dsimp
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y y' : Prequotient F
r : Relation F y y'
ih : descFunLift F s y = descFunLift F s y'
⊢ descFunLift F s x * descFunLift F s y = descFunLift F s x * descFunLift F s y'
[PROOFSTEP]
rw [ih]
[GOAL]
case a.zero_add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (add zero x) = descFunLift F s x
[PROOFSTEP]
| zero_add x => dsimp; rw [zero_add]
[GOAL]
case a.zero_add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (add zero x) = descFunLift F s x
[PROOFSTEP]
dsimp
[GOAL]
case a.zero_add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ 0 + descFunLift F s x = descFunLift F s x
[PROOFSTEP]
rw [zero_add]
[GOAL]
case a.add_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (add x zero) = descFunLift F s x
[PROOFSTEP]
| add_zero x => dsimp; rw [add_zero]
[GOAL]
case a.add_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (add x zero) = descFunLift F s x
[PROOFSTEP]
dsimp
[GOAL]
case a.add_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s x + 0 = descFunLift F s x
[PROOFSTEP]
rw [add_zero]
[GOAL]
case a.one_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul one x) = descFunLift F s x
[PROOFSTEP]
| one_mul x => dsimp; rw [one_mul]
[GOAL]
case a.one_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul one x) = descFunLift F s x
[PROOFSTEP]
dsimp
[GOAL]
case a.one_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ 1 * descFunLift F s x = descFunLift F s x
[PROOFSTEP]
rw [one_mul]
[GOAL]
case a.mul_one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul x one) = descFunLift F s x
[PROOFSTEP]
| mul_one x => dsimp; rw [mul_one]
[GOAL]
case a.mul_one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul x one) = descFunLift F s x
[PROOFSTEP]
dsimp
[GOAL]
case a.mul_one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s x * 1 = descFunLift F s x
[PROOFSTEP]
rw [mul_one]
[GOAL]
case a.add_left_neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (add (neg x) x) = descFunLift F s zero
[PROOFSTEP]
| add_left_neg x => dsimp; rw [add_left_neg]
[GOAL]
case a.add_left_neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (add (neg x) x) = descFunLift F s zero
[PROOFSTEP]
dsimp
[GOAL]
case a.add_left_neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ -descFunLift F s x + descFunLift F s x = 0
[PROOFSTEP]
rw [add_left_neg]
[GOAL]
case a.add_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y : Prequotient F
⊢ descFunLift F s (add x y) = descFunLift F s (add y x)
[PROOFSTEP]
| add_comm x y => dsimp; rw [add_comm]
[GOAL]
case a.add_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y : Prequotient F
⊢ descFunLift F s (add x y) = descFunLift F s (add y x)
[PROOFSTEP]
dsimp
[GOAL]
case a.add_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y : Prequotient F
⊢ descFunLift F s x + descFunLift F s y = descFunLift F s y + descFunLift F s x
[PROOFSTEP]
rw [add_comm]
[GOAL]
case a.mul_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y : Prequotient F
⊢ descFunLift F s (mul x y) = descFunLift F s (mul y x)
[PROOFSTEP]
| mul_comm x y => dsimp; rw [mul_comm]
[GOAL]
case a.mul_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y : Prequotient F
⊢ descFunLift F s (mul x y) = descFunLift F s (mul y x)
[PROOFSTEP]
dsimp
[GOAL]
case a.mul_comm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y : Prequotient F
⊢ descFunLift F s x * descFunLift F s y = descFunLift F s y * descFunLift F s x
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case a.add_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (add (add x y) z) = descFunLift F s (add x (add y z))
[PROOFSTEP]
| add_assoc x y z => dsimp; rw [add_assoc]
[GOAL]
case a.add_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (add (add x y) z) = descFunLift F s (add x (add y z))
[PROOFSTEP]
dsimp
[GOAL]
case a.add_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s x + descFunLift F s y + descFunLift F s z =
descFunLift F s x + (descFunLift F s y + descFunLift F s z)
[PROOFSTEP]
rw [add_assoc]
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (mul (mul x y) z) = descFunLift F s (mul x (mul y z))
[PROOFSTEP]
| mul_assoc x y z => dsimp; rw [mul_assoc]
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (mul (mul x y) z) = descFunLift F s (mul x (mul y z))
[PROOFSTEP]
dsimp
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s x * descFunLift F s y * descFunLift F s z =
descFunLift F s x * (descFunLift F s y * descFunLift F s z)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case a.left_distrib
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (mul x (add y z)) = descFunLift F s (add (mul x y) (mul x z))
[PROOFSTEP]
| left_distrib x y z => dsimp; rw [mul_add]
[GOAL]
case a.left_distrib
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (mul x (add y z)) = descFunLift F s (add (mul x y) (mul x z))
[PROOFSTEP]
dsimp
[GOAL]
case a.left_distrib
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s x * (descFunLift F s y + descFunLift F s z) =
descFunLift F s x * descFunLift F s y + descFunLift F s x * descFunLift F s z
[PROOFSTEP]
rw [mul_add]
[GOAL]
case a.right_distrib
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (mul (add x y) z) = descFunLift F s (add (mul x z) (mul y z))
[PROOFSTEP]
| right_distrib x y z => dsimp; rw [add_mul]
[GOAL]
case a.right_distrib
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ descFunLift F s (mul (add x y) z) = descFunLift F s (add (mul x z) (mul y z))
[PROOFSTEP]
dsimp
[GOAL]
case a.right_distrib
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y✝ x y z : Prequotient F
⊢ (descFunLift F s x + descFunLift F s y) * descFunLift F s z =
descFunLift F s x * descFunLift F s z + descFunLift F s y * descFunLift F s z
[PROOFSTEP]
rw [add_mul]
[GOAL]
case a.zero_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul zero x) = descFunLift F s zero
[PROOFSTEP]
| zero_mul x => dsimp; rw [zero_mul]
[GOAL]
case a.zero_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul zero x) = descFunLift F s zero
[PROOFSTEP]
dsimp
[GOAL]
case a.zero_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ 0 * descFunLift F s x = 0
[PROOFSTEP]
rw [zero_mul]
[GOAL]
case a.mul_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul x zero) = descFunLift F s zero
[PROOFSTEP]
| mul_zero x => dsimp; rw [mul_zero]
[GOAL]
case a.mul_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s (mul x zero) = descFunLift F s zero
[PROOFSTEP]
dsimp
[GOAL]
case a.mul_zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ y x : Prequotient F
⊢ descFunLift F s x * 0 = 0
[PROOFSTEP]
rw [mul_zero]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : ↑(colimit F)
⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y
[PROOFSTEP]
exact Quot.induction_on₂ x y fun a b => rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : ↑(colimit F)
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) },
map_mul' :=
(_ :
∀ (x y : ↑(colimit F)),
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) },
map_mul' :=
(_ :
∀ (x y : ↑(colimit F)),
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) },
map_mul' :=
(_ :
∀ (x y : ↑(colimit F)),
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) })
y
[PROOFSTEP]
refine Quot.induction_on₂ x y fun a b => ?_
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : ↑(colimit F)
a b : Prequotient F
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) },
map_mul' :=
(_ :
∀ (x y : ↑(colimit F)),
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) })
(Quot.mk Setoid.r a + Quot.mk Setoid.r b) =
OneHom.toFun
(↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) },
map_mul' :=
(_ :
∀ (x y : ↑(colimit F)),
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) })
(Quot.mk Setoid.r a) +
OneHom.toFun
(↑{ toOneHom := { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) },
map_mul' :=
(_ :
∀ (x y : ↑(colimit F)),
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y) })
(Quot.mk Setoid.r b)
[PROOFSTEP]
dsimp [descFun, (· + ·)]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : ↑(colimit F)
a b : Prequotient F
⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Add.add (Quot.mk Setoid.r a) (Quot.mk Setoid.r b)) =
Add.add (descFunLift F s a) (descFunLift F s b)
[PROOFSTEP]
rw [← quot_add]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x y : ↑(colimit F)
a b : Prequotient F
⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Quot.mk Setoid.r (add a b)) =
Add.add (descFunLift F s a) (descFunLift F s b)
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
⊢ ↑m x = ↑((fun s => descMorphism F s) s) x
[PROOFSTEP]
change (colimitCocone F).pt →+* s.pt at m
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ↑m x = ↑((fun s => descMorphism F s) s) x
[PROOFSTEP]
refine Quot.inductionOn x ?_
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ∀ (a : Prequotient F), ↑m (Quot.mk Setoid.r a) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r a)
[PROOFSTEP]
intro x
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
[PROOFSTEP]
induction x with
| zero => erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero]
| one => erw [quot_one, map_one (f := m), (descMorphism F s).map_one]
| neg x ih => erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih]
| of j x => exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x
| add x y ih_x ih_y => erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y]
| mul x y ih_x ih_y => erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
[PROOFSTEP]
induction x with
| zero => erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero]
| one => erw [quot_one, map_one (f := m), (descMorphism F s).map_one]
| neg x ih => erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih]
| of j x => exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x
| add x y ih_x ih_y => erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y]
| mul x y ih_x ih_y => erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y]
[GOAL]
case zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ↑m (Quot.mk Setoid.r zero) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r zero)
[PROOFSTEP]
| zero => erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero]
[GOAL]
case zero
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ↑m (Quot.mk Setoid.r zero) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r zero)
[PROOFSTEP]
erw [quot_zero, map_zero (f := m), (descMorphism F s).map_zero]
[GOAL]
case one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ↑m (Quot.mk Setoid.r one) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r one)
[PROOFSTEP]
| one => erw [quot_one, map_one (f := m), (descMorphism F s).map_one]
[GOAL]
case one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ↑m (Quot.mk Setoid.r one) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r one)
[PROOFSTEP]
erw [quot_one, map_one (f := m), (descMorphism F s).map_one]
[GOAL]
case neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Prequotient F
ih : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (neg x))
[PROOFSTEP]
| neg x ih => erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih]
[GOAL]
case neg
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Prequotient F
ih : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
⊢ ↑m (Quot.mk Setoid.r (neg x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (neg x))
[PROOFSTEP]
erw [quot_neg, map_neg (f := m), (descMorphism F s).map_neg, ih]
[GOAL]
case of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (Prequotient.of j x))
[PROOFSTEP]
| of j x => exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x
[GOAL]
case of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (Prequotient.of j x))
[PROOFSTEP]
exact congr_fun (congr_arg (fun f : F.obj j ⟶ s.pt => (f : F.obj j → s.pt)) (w j)) x
[GOAL]
case add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (add x y))
[PROOFSTEP]
| add x y ih_x ih_y => erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y]
[GOAL]
case add
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (add x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (add x y))
[PROOFSTEP]
erw [quot_add, map_add (f := m), (descMorphism F s).map_add, ih_x, ih_y]
[GOAL]
case mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (mul x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (mul x y))
[PROOFSTEP]
| mul x y ih_x ih_y => erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y]
[GOAL]
case mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCat
s : Cocone F
x✝ : ↑(colimitCocone F).pt
m : ↑(colimitCocone F).pt →+* ↑s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
ih_x : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
ih_y : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (mul x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (mul x y))
[PROOFSTEP]
erw [quot_mul, map_mul (f := m), (descMorphism F s).map_mul, ih_x, ih_y]
| {"mathlib_filename": "Mathlib.Algebra.Category.Ring.Colimits", "llama_tokens": 20427} |
[GOAL]
⊢ ∀ {X' X : SemigroupCat} {Y : MonCat} (f : X' ⟶ X) (g : X ⟶ (forget₂ MonCat SemigroupCat).obj Y),
↑((fun S M => WithOne.lift.symm) X' Y).symm (f ≫ g) = adjoinOne.map f ≫ ↑((fun S M => WithOne.lift.symm) X Y).symm g
[PROOFSTEP]
intro S T M f g
[GOAL]
S T : SemigroupCat
M : MonCat
f : S ⟶ T
g : T ⟶ (forget₂ MonCat SemigroupCat).obj M
⊢ ↑((fun S M => WithOne.lift.symm) S M).symm (f ≫ g) = adjoinOne.map f ≫ ↑((fun S M => WithOne.lift.symm) T M).symm g
[PROOFSTEP]
ext x
[GOAL]
case w
S T : SemigroupCat
M : MonCat
f : S ⟶ T
g : T ⟶ (forget₂ MonCat SemigroupCat).obj M
x : ↑(adjoinOne.obj S)
⊢ ↑(↑((fun S M => WithOne.lift.symm) S M).symm (f ≫ g)) x =
↑(adjoinOne.map f ≫ ↑((fun S M => WithOne.lift.symm) T M).symm g) x
[PROOFSTEP]
simp only [Equiv.symm_symm, adjoinOne_map, coe_comp]
[GOAL]
case w
S T : SemigroupCat
M : MonCat
f : S ⟶ T
g : T ⟶ (forget₂ MonCat SemigroupCat).obj M
x : ↑(adjoinOne.obj S)
⊢ ↑(↑WithOne.lift (f ≫ g)) x = ↑(WithOne.map f ≫ ↑WithOne.lift g) x
[PROOFSTEP]
simp_rw [WithOne.map]
[GOAL]
case w
S T : SemigroupCat
M : MonCat
f : S ⟶ T
g : T ⟶ (forget₂ MonCat SemigroupCat).obj M
x : ↑(adjoinOne.obj S)
⊢ ↑(↑WithOne.lift (f ≫ g)) x = ↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f) ≫ ↑WithOne.lift g) x
[PROOFSTEP]
cases x
[GOAL]
case w.none
S T : SemigroupCat
M : MonCat
f : S ⟶ T
g : T ⟶ (forget₂ MonCat SemigroupCat).obj M
⊢ ↑(↑WithOne.lift (f ≫ g)) none = ↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f) ≫ ↑WithOne.lift g) none
[PROOFSTEP]
rfl
[GOAL]
case w.some
S T : SemigroupCat
M : MonCat
f : S ⟶ T
g : T ⟶ (forget₂ MonCat SemigroupCat).obj M
val✝ : ↑S
⊢ ↑(↑WithOne.lift (f ≫ g)) (some val✝) =
↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f) ≫ ↑WithOne.lift g) (some val✝)
[PROOFSTEP]
simp
[GOAL]
case w.some
S T : SemigroupCat
M : MonCat
f : S ⟶ T
g : T ⟶ (forget₂ MonCat SemigroupCat).obj M
val✝ : ↑S
⊢ ↑(↑WithOne.lift (f ≫ g)) (some val✝) =
↑(↑WithOne.lift g) (↑(↑WithOne.lift (MulHom.comp WithOne.coeMulHom f)) (some val✝))
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Adjunctions", "llama_tokens": 1032} |
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x y : (j : J) × ↑(F.obj j)
h : Types.FilteredColimit.Rel (F ⋙ forget (ModuleCat R)) x y
⊢ colimitSMulAux F r x = colimitSMulAux F r y
[PROOFSTEP]
apply M.mk_eq
[GOAL]
case h
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x y : (j : J) × ↑(F.obj j)
h : Types.FilteredColimit.Rel (F ⋙ forget (ModuleCat R)) x y
⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd
[PROOFSTEP]
obtain ⟨k, f, g, hfg⟩ := h
[GOAL]
case h.intro.intro.intro
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x y : (j : J) × ↑(F.obj j)
k : J
f : x.fst ⟶ k
g : y.fst ⟶ k
hfg : (F ⋙ forget (ModuleCat R)).map f x.snd = (F ⋙ forget (ModuleCat R)).map g y.snd
⊢ ∃ k f g, ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd
[PROOFSTEP]
use k, f, g
[GOAL]
case h
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x y : (j : J) × ↑(F.obj j)
k : J
f : x.fst ⟶ k
g : y.fst ⟶ k
hfg : (F ⋙ forget (ModuleCat R)).map f x.snd = (F ⋙ forget (ModuleCat R)).map g y.snd
⊢ ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd
[PROOFSTEP]
simp only [Functor.comp_obj, Functor.comp_map, forget_map] at hfg
[GOAL]
case h
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x y : (j : J) × ↑(F.obj j)
k : J
f : x.fst ⟶ k
g : y.fst ⟶ k
hfg : ↑(F.map f) x.snd = ↑(F.map g) y.snd
⊢ ↑(F.map f) { fst := x.fst, snd := r • x.snd }.snd = ↑(F.map g) { fst := y.fst, snd := r • y.snd }.snd
[PROOFSTEP]
simp [hfg]
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x : ↑(M F)
⊢ ↑(M F)
[PROOFSTEP]
refine' Quot.lift (colimitSMulAux F r) _ x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x : ↑(M F)
⊢ ∀ (a b : (j : J) × ↑(F.obj j)),
Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat)
a b →
colimitSMulAux F r a = colimitSMulAux F r b
[PROOFSTEP]
intro x y h
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x✝ : ↑(M F)
x y : (j : J) × ↑(F.obj j)
h :
Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat)
x y
⊢ colimitSMulAux F r x = colimitSMulAux F r y
[PROOFSTEP]
apply colimitSMulAux_eq_of_rel
[GOAL]
case h
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x✝ : ↑(M F)
x y : (j : J) × ↑(F.obj j)
h :
Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat)
x y
⊢ Types.FilteredColimit.Rel (F ⋙ forget (ModuleCat R)) x y
[PROOFSTEP]
apply Types.FilteredColimit.rel_of_quot_rel
[GOAL]
case h.a
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r : R
x✝ : ↑(M F)
x y : (j : J) × ↑(F.obj j)
h :
Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat)
x y
⊢ Types.Quot.Rel (F ⋙ forget (ModuleCat R)) x y
[PROOFSTEP]
exact h
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
x : ↑(M F)
⊢ 1 • x = x
[PROOFSTEP]
refine' Quot.inductionOn x _
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
x : ↑(M F)
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
clear x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
intro x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
x :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ 1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ 1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x } =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }
[PROOFSTEP]
erw [colimit_smul_mk_eq F 1 ⟨j, x⟩]
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := 1 • { fst := j, snd := x }.snd } =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }
[PROOFSTEP]
simp
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ M.mk F { fst := j, snd := x } =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }
[PROOFSTEP]
rfl
-- Porting note: writing directly the `Module` instance makes things very slow.
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
x : ↑(M F)
⊢ 1 • x = x
[PROOFSTEP]
refine' Quot.inductionOn x _
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
x : ↑(M F)
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
clear x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
intro x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
x :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ 1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ 1 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x } =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }
[PROOFSTEP]
erw [colimit_smul_mk_eq F 1 ⟨j, x⟩, one_smul]
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := { fst := j, snd := x }.snd } =
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
x : ↑(M F)
⊢ (r * s) • x = r • s • x
[PROOFSTEP]
refine' Quot.inductionOn x _
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
x : ↑(M F)
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
(r * s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
r •
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
clear x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
(r * s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
r •
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
intro x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
x :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ (r * s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x =
r •
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ (r * s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x } =
r •
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }
[PROOFSTEP]
erw [colimit_smul_mk_eq F (r * s) ⟨j, x⟩, colimit_smul_mk_eq F s ⟨j, x⟩, colimit_smul_mk_eq F r ⟨j, _⟩, mul_smul]
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
r : R
⊢ r • 0 = 0
[PROOFSTEP]
erw [colimit_zero_eq _ (IsFiltered.Nonempty.some : J), colimit_smul_mk_eq, smul_zero]
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
r : R
⊢ M.mk F { fst := { fst := Nonempty.some (_ : Nonempty J), snd := 0 }.fst, snd := 0 } =
AddMonCat.FilteredColimits.M.mk
(((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat)
{ fst := Nonempty.some (_ : Nonempty J), snd := 0 }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
x : ↑(M F)
⊢ 0 • x = 0
[PROOFSTEP]
refine' Quot.inductionOn x _
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
x : ↑(M F)
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
0 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
0
[PROOFSTEP]
clear x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
0 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
0
[PROOFSTEP]
intro x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
x :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ 0 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x =
0
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ 0 •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x } =
0
[PROOFSTEP]
erw [colimit_smul_mk_eq, zero_smul, colimit_zero_eq _ j]
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝ : MulAction R ↑(M F) := colimitMulAction F
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := 0 } =
AddMonCat.FilteredColimits.M.mk
(((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat)
{ fst := j, snd := 0 }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
x : ↑(M F)
⊢ (r + s) • x = r • x + s • x
[PROOFSTEP]
refine' Quot.inductionOn x _
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
x : ↑(M F)
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
(r + s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a +
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
clear x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
(r + s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a +
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a
[PROOFSTEP]
intro x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
x :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ (r + s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x +
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ (r + s) •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x } =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x } +
s •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }
[PROOFSTEP]
erw [colimit_smul_mk_eq, _root_.add_smul, colimit_smul_mk_eq, colimit_smul_mk_eq,
colimit_add_mk_eq _ ⟨j, _⟩ ⟨j, _⟩ j (𝟙 j) (𝟙 j), CategoryTheory.Functor.map_id, id_apply, id_apply]
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
r s : R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ M.mk F { fst := { fst := j, snd := x }.fst, snd := r • { fst := j, snd := x }.snd + s • { fst := j, snd := x }.snd } =
AddMonCat.FilteredColimits.M.mk
(((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat)
{ fst := j, snd := SMul.smul r { fst := j, snd := x }.snd + SMul.smul s { fst := j, snd := x }.snd }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝¹ : MulAction R ↑(M F) := colimitMulAction F
src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F
r : R
x y : ↑(M F)
⊢ r • (x + y) = r • x + r • y
[PROOFSTEP]
refine' Quot.induction_on₂ x y _
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝¹ : MulAction R ↑(M F) := colimitMulAction F
src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F
r : R
x y : ↑(M F)
⊢ ∀
(a b :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
r •
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a +
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
b) =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a +
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
b
[PROOFSTEP]
clear x y
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝¹ : MulAction R ↑(M F) := colimitMulAction F
src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F
r : R
⊢ ∀
(a b :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
r •
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a +
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
b) =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a +
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
b
[PROOFSTEP]
intro x y
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝¹ : MulAction R ↑(M F) := colimitMulAction F
src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F
r : R
x y :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ r •
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x +
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
y) =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x +
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
y
[PROOFSTEP]
cases' x with i x
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝¹ : MulAction R ↑(M F) := colimitMulAction F
src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F
r : R
y :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
i : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
i
⊢ r •
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := i, snd := x } +
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
y) =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := i, snd := x } +
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
y
[PROOFSTEP]
cases' y with j y
[GOAL]
case mk.mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝¹ : MulAction R ↑(M F) := colimitMulAction F
src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F
r : R
i : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
i
j : J
y :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ r •
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := i, snd := x } +
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := y }) =
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := i, snd := x } +
r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := y }
[PROOFSTEP]
erw [colimit_add_mk_eq _ ⟨i, _⟩ ⟨j, _⟩ (max' i j) (IsFiltered.leftToMax i j) (IsFiltered.rightToMax i j),
colimit_smul_mk_eq, smul_add, colimit_smul_mk_eq, colimit_smul_mk_eq,
colimit_add_mk_eq _ ⟨i, _⟩ ⟨j, _⟩ (max' i j) (IsFiltered.leftToMax i j) (IsFiltered.rightToMax i j),
LinearMap.map_smul, LinearMap.map_smul]
[GOAL]
case mk.mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
src✝¹ : MulAction R ↑(M F) := colimitMulAction F
src✝ : SMulWithZero R ↑(M F) := colimitSMulWithZero F
r : R
i : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
i
j : J
y :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ M.mk F
{
fst :=
{ fst := IsFiltered.max i j,
snd :=
↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat).map
(IsFiltered.leftToMax i j))
{ fst := i, snd := x }.snd +
↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat).map
(IsFiltered.rightToMax i j))
{ fst := j, snd := y }.snd }.fst,
snd :=
r •
↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat).map
(IsFiltered.leftToMax i j))
{ fst := i, snd := x }.snd +
r •
↑((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat).map
(IsFiltered.rightToMax i j))
{ fst := j, snd := y }.snd } =
AddMonCat.FilteredColimits.M.mk
(((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat)
{ fst := IsFiltered.max i j,
snd :=
r • ↑(F.map (IsFiltered.leftToMax i j)) { fst := i, snd := x }.snd +
r • ↑(F.map (IsFiltered.rightToMax i j)) { fst := j, snd := y }.snd }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
j : J
src✝ : (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j ⟶
((Functor.const J).obj
(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).pt).obj
j :=
NatTrans.app (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).ι j
r : R
x : ↑(F.obj j)
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j)),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j)),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
x
[PROOFSTEP]
erw [colimit_smul_mk_eq F r ⟨j, x⟩]
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
j : J
src✝ : (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j ⟶
((Functor.const J).obj
(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).pt).obj
j :=
NatTrans.app (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat)).ι j
r : R
x : ↑(F.obj j)
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat).obj j)),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r • x) =
M.mk F { fst := { fst := j, snd := x }.fst, snd := r • { fst := j, snd := x }.snd }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
t : Cocone F
src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt :=
IsColimit.desc
(AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat))
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t)
r : R
x : ↑(colimit F)
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
x
[PROOFSTEP]
refine' Quot.inductionOn x _
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
t : Cocone F
src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt :=
IsColimit.desc
(AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat))
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t)
r : R
x : ↑(colimit F)
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone
(F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a)
[PROOFSTEP]
clear x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
t : Cocone F
src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt :=
IsColimit.desc
(AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat))
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t)
r : R
⊢ ∀
(a :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone
(F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
a)
[PROOFSTEP]
intro x
[GOAL]
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
t : Cocone F
src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt :=
IsColimit.desc
(AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat))
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t)
r : R
x :
(j : J) ×
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
x)
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
t : Cocone F
src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt :=
IsColimit.desc
(AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat))
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t)
r : R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(r •
Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x }) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x })
[PROOFSTEP]
erw [colimit_smul_mk_eq]
[GOAL]
case mk
R : Type u
inst✝² : Ring R
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ ModuleCatMax R
t : Cocone F
src✝ : (AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt ⟶
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t).pt :=
IsColimit.desc
(AddCommGroupCat.FilteredColimits.colimitCoconeIsColimit (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat))
((forget₂ (ModuleCat R) AddCommGroupCat).mapCocone t)
r : R
j : J
x :
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat).obj
j
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(M.mk F { fst := { fst := j, snd := x }.fst, snd := r • { fst := j, snd := x }.snd }) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀
(x y :
↑(AddCommGroupCat.FilteredColimits.colimitCocone (F ⋙ forget₂ (ModuleCatMax R) AddCommGroupCat)).pt),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }
(Quot.mk
(Types.Quot.Rel
((((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat) ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget₂ AddGroupCat AddMonCat) ⋙
forget AddMonCat))
{ fst := j, snd := x })
[PROOFSTEP]
exact LinearMap.map_smul (t.ι.app j) r x
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.FilteredColimits", "llama_tokens": 20167} |
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
⊢ Inhabited (ColimitType F)
[PROOFSTEP]
dsimp [ColimitType]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
⊢ Inhabited (Quotient (colimitSetoid F))
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
⊢ Monoid (ColimitType F)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j
[PROOFSTEP]
ext
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case w.a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝)
[PROOFSTEP]
apply Relation.map
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x
[PROOFSTEP]
rw [← cocone_naturality F f]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
⊢ ColimitType F → ↑s.pt
[PROOFSTEP]
fapply Quot.lift
[GOAL]
case f
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
⊢ Prequotient F → ↑s.pt
[PROOFSTEP]
exact descFunLift F s
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b
[PROOFSTEP]
intro x y r
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
r : Setoid.r x y
⊢ descFunLift F s x = descFunLift F s y
[PROOFSTEP]
induction' r with _ _ _ _ h _ _ _ _ _ h₁ h₂ _ _ f x _ _ _ _ _ _ _ _ h _ _ _ _ h
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
h : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
h : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
h₁ : descFunLift F s x✝² = descFunLift F s y✝
h₂ : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
h₁ : descFunLift F s x✝² = descFunLift F s y✝
h₂ : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x✝ y : Prequotient F
j✝ j'✝ : J
f : j✝ ⟶ j'✝
x : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j'✝ (↑(F.map f) x)) = descFunLift F s (Prequotient.of j✝ x)
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x✝ y : Prequotient F
j✝ j'✝ : J
f : j✝ ⟶ j'✝
x : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j'✝ (↑(F.map f) x)) = descFunLift F s (Prequotient.of j✝ x)
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ y✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (x✝ * y✝)) = descFunLift F s (mul (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝))
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ y✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (x✝ * y✝)) = descFunLift F s (mul (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝))
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
⊢ descFunLift F s (Prequotient.of j✝ 1) = descFunLift F s one
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
⊢ descFunLift F s (Prequotient.of j✝ 1) = descFunLift F s one
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
h : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x'✝ y✝)
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
h : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x'✝ y✝)
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
h : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x✝¹ y'✝)
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
h : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x✝¹ y'✝)
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (mul (mul x✝ y✝) z✝) = descFunLift F s (mul x✝ (mul y✝ z✝))
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (mul (mul x✝ y✝) z✝) = descFunLift F s (mul x✝ (mul y✝ z✝))
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.one_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul one x✝) = descFunLift F s x✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.one_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul one x✝) = descFunLift F s x✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul x✝ one) = descFunLift F s x✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul x✝ one) = descFunLift F s x✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
h : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
exact h.symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
h₁ : descFunLift F s x✝² = descFunLift F s y✝
h₂ : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
exact h₁.trans h₂
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x✝ y : Prequotient F
j✝ j'✝ : J
f : j✝ ⟶ j'✝
x : ↑(F.obj j✝)
⊢ ↑(NatTrans.app s.ι j'✝) (↑(F.map f) x) = ↑(NatTrans.app s.ι j✝) x
[PROOFSTEP]
exact s.w_apply f x
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
h : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s x✝¹ * descFunLift F s y✝ = descFunLift F s x'✝ * descFunLift F s y✝
[PROOFSTEP]
rw [h]
-- mul_2
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
h : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s x✝¹ * descFunLift F s y✝ = descFunLift F s x✝¹ * descFunLift F s y'✝
[PROOFSTEP]
rw [h]
-- mul_assoc
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s x✝ * descFunLift F s y✝ * descFunLift F s z✝ =
descFunLift F s x✝ * (descFunLift F s y✝ * descFunLift F s z✝)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : ↑(colimit F)
⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y
[PROOFSTEP]
induction x using Quot.inductionOn
[GOAL]
case h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
y : ↑(colimit F)
a✝ : Prequotient F
⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝ * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝) *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y
[PROOFSTEP]
induction y using Quot.inductionOn
[GOAL]
case h.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
a✝¹ a✝ : Prequotient F
⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }
(Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝¹) *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝)
[PROOFSTEP]
dsimp [descFun]
[GOAL]
case h.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
a✝¹ a✝ : Prequotient F
⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) =
descFunLift F s a✝¹ * descFunLift F s a✝
[PROOFSTEP]
rw [← quot_mul]
[GOAL]
case h.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
a✝¹ a✝ : Prequotient F
⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Quot.mk Setoid.r (mul a✝¹ a✝)) =
descFunLift F s a✝¹ * descFunLift F s a✝
[PROOFSTEP]
simp only [descFunLift]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ m = (fun s => descMorphism F s) s
[PROOFSTEP]
ext x
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
⊢ ↑m x = ↑((fun s => descMorphism F s) s) x
[PROOFSTEP]
induction' x using Quot.inductionOn with x
[GOAL]
case w.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
[PROOFSTEP]
induction' x with j x x y hx hy
[GOAL]
case w.h.of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (Prequotient.of j x))
[PROOFSTEP]
change _ = s.ι.app j _
[GOAL]
case w.h.of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(NatTrans.app s.ι j) x
[PROOFSTEP]
rw [← w j]
[GOAL]
case w.h.of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(NatTrans.app (colimitCocone F).ι j ≫ m) x
[PROOFSTEP]
rfl
[GOAL]
case w.h.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ↑m (Quot.mk Setoid.r one) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r one)
[PROOFSTEP]
rw [quot_one, map_one]
[GOAL]
case w.h.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ 1 = ↑((fun s => descMorphism F s) s) 1
[PROOFSTEP]
rfl
[GOAL]
case w.h.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (mul x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (mul x y))
[PROOFSTEP]
rw [quot_mul, map_mul, hx, hy]
[GOAL]
case w.h.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) * ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) =
↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x * Quot.mk Setoid.r y)
[PROOFSTEP]
dsimp [descMorphism, FunLike.coe, descFun]
[GOAL]
case w.h.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ descFunLift F s x * descFunLift F s y =
Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Quot.mk Setoid.r x * Quot.mk Setoid.r y)
[PROOFSTEP]
simp only [← quot_mul, descFunLift]
| {"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Colimits", "llama_tokens": 7968} |
[GOAL]
X Y : MonCat
⊢ FunLike (↑X →* ↑Y) ↑X fun x => ↑Y
[PROOFSTEP]
infer_instance
-- porting note: added
[GOAL]
G : Type u_1
inst✝ : Group G
⊢ Group ↑(of G)
[PROOFSTEP]
assumption
[GOAL]
⊢ ConcreteCategory CommMonCat
[PROOFSTEP]
dsimp only [CommMonCat]
[GOAL]
⊢ ConcreteCategory (Bundled CommMonoid)
[PROOFSTEP]
infer_instance
[GOAL]
X Y : CommMonCat
⊢ FunLike (↑X →* ↑Y) ↑X fun x => ↑Y
[PROOFSTEP]
infer_instance
-- porting note: added
[GOAL]
R S : MonCat
i : R ⟶ S
r : ↑R
h : r = 1
⊢ ↑i r = 1
[PROOFSTEP]
simp [h]
[GOAL]
R S : CommMonCat
i : R ⟶ S
r : ↑R
h : r = 1
⊢ ↑i r = 1
[PROOFSTEP]
simp [h]
-- We verify that when constructing a morphism in `CommMonCat`,
-- when we construct the `toFun` field, the types are presented as `↑R`.
[GOAL]
R : CommMonCat
x : ↑R
⊢ ↑R
[PROOFSTEP]
match_target (R : Type u)
[GOAL]
R : CommMonCat
x : ↑R
⊢ ↑R
[PROOFSTEP]
guard_hyp x : (R : Type u)
[GOAL]
R : CommMonCat
x : ↑R
⊢ ↑R
[PROOFSTEP]
exact x * x
[GOAL]
R : CommMonCat
⊢ (fun x => x * x) 1 = 1
[PROOFSTEP]
simp
[GOAL]
R : CommMonCat
x y : ↑R
⊢ OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } (x * y) =
OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } x *
OneHom.toFun { toFun := fun x => x * x, map_one' := (_ : 1 * 1 = 1) } y
[PROOFSTEP]
dsimp
[GOAL]
R : CommMonCat
x y : ↑R
⊢ x * y * (x * y) = x * x * (y * y)
[PROOFSTEP]
rw [mul_assoc x y (x * y), ← mul_assoc y x y, mul_comm y x, mul_assoc, mul_assoc]
[GOAL]
X✝ Y✝ : Type u
X Y : MonCat
f : X ⟶ Y
x✝ : IsIso ((forget MonCat).map f)
⊢ IsIso f
[PROOFSTEP]
let i := asIso ((forget MonCat).map f)
[GOAL]
X✝ Y✝ : Type u
X Y : MonCat
f : X ⟶ Y
x✝ : IsIso ((forget MonCat).map f)
i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f)
⊢ IsIso f
[PROOFSTEP]
let e : X ≃* Y := MulEquiv.mk i.toEquiv (by aesop)
[GOAL]
X✝ Y✝ : Type u
X Y : MonCat
f : X ⟶ Y
x✝ : IsIso ((forget MonCat).map f)
i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f)
⊢ ∀ (x y : ↑X), Equiv.toFun i.toEquiv (x * y) = Equiv.toFun i.toEquiv x * Equiv.toFun i.toEquiv y
[PROOFSTEP]
aesop
[GOAL]
X✝ Y✝ : Type u
X Y : MonCat
f : X ⟶ Y
x✝ : IsIso ((forget MonCat).map f)
i : (forget MonCat).obj X ≅ (forget MonCat).obj Y := asIso ((forget MonCat).map f)
e : ↑X ≃* ↑Y := { toEquiv := i.toEquiv, map_mul' := (_ : ∀ (x_1 y : ↑X), ↑f (x_1 * y) = ↑f x_1 * ↑f y) }
⊢ IsIso f
[PROOFSTEP]
exact IsIso.of_iso e.toMonCatIso
[GOAL]
X✝ Y✝ : Type u
X Y : CommMonCat
f : X ⟶ Y
x✝ : IsIso ((forget CommMonCat).map f)
⊢ IsIso f
[PROOFSTEP]
let i := asIso ((forget CommMonCat).map f)
[GOAL]
X✝ Y✝ : Type u
X Y : CommMonCat
f : X ⟶ Y
x✝ : IsIso ((forget CommMonCat).map f)
i : (forget CommMonCat).obj X ≅ (forget CommMonCat).obj Y := asIso ((forget CommMonCat).map f)
⊢ IsIso f
[PROOFSTEP]
let e : X ≃* Y := MulEquiv.mk i.toEquiv (MonoidHom.map_mul (show MonoidHom X Y from f))
[GOAL]
X✝ Y✝ : Type u
X Y : CommMonCat
f : X ⟶ Y
x✝ : IsIso ((forget CommMonCat).map f)
i : (forget CommMonCat).obj X ≅ (forget CommMonCat).obj Y := asIso ((forget CommMonCat).map f)
e : ↑X ≃* ↑Y :=
{ toEquiv := i.toEquiv,
map_mul' :=
(_ :
∀ (a b : ↑X),
↑(let_fun this := f;
this)
(a * b) =
↑(let_fun this := f;
this)
a *
↑(let_fun this := f;
this)
b) }
⊢ IsIso f
[PROOFSTEP]
exact IsIso.of_iso e.toCommMonCatIso
| {"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Basic", "llama_tokens": 1705} |
[GOAL]
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
⊢ IsLimit (limitCone F)
[PROOFSTEP]
refine'
IsLimit.ofFaithful (forget (AlgebraCat R))
(Types.limitConeIsLimit.{v, w} _)
-- Porting note: in mathlib3 the function term
-- `fun v => ⟨fun j => ((forget (AlgebraCat R)).mapCone s).π.app j v`
-- was provided by unification, and the last argument `(fun s => _)` was `(fun s => rfl)`.
(fun s => ⟨⟨⟨⟨fun v => ⟨fun j => ((forget (AlgebraCat R)).mapCone s).π.app j v, _⟩, _⟩, _⟩, _, _⟩, _⟩) (fun s => _)
[GOAL]
case refine'_1
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
v : ↑s.pt
⊢ (fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v) ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))
[PROOFSTEP]
intro j j' f
[GOAL]
case refine'_1
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
v : ↑s.pt
j j' : J
f : j ⟶ j'
⊢ (F ⋙ forget (AlgebraCatMax R)).map f ((fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v) j) =
(fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v) j'
[PROOFSTEP]
exact FunLike.congr_fun (Cone.w s f) v
[GOAL]
case refine'_2
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ (fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case refine'_2.a
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ ↑((fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1) =
↑1
[PROOFSTEP]
ext j
[GOAL]
case refine'_2.a.h
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
j : J
⊢ ↑((fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1)
j =
↑1 j
[PROOFSTEP]
simp [forget_map_eq_coe, AlgHom.map_one, Functor.mapCone_π_app]
[GOAL]
case refine'_2.a.h
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
j : J
⊢ 1 = ↑1 j
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ ∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y
[PROOFSTEP]
intro x y
[GOAL]
case refine'_3
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
x y : ↑s.pt
⊢ OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property := (_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case refine'_3.a
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
x y : ↑s.pt
⊢ ↑(OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y)) =
↑(OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y)
[PROOFSTEP]
ext j
[GOAL]
case refine'_3.a.h
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
x y : ↑s.pt
j : J
⊢ ↑(OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y))
j =
↑(OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y)
j
[PROOFSTEP]
simp [forget_map_eq_coe, AlgHom.map_mul, Functor.mapCone_π_app]
[GOAL]
case refine'_3.a.h
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
x y : ↑s.pt
j : J
⊢ ↑(NatTrans.app s.π j) x * ↑(NatTrans.app s.π j) y =
↑({ val := fun j => ↑(NatTrans.app s.π j) x,
property :=
(_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) x) } *
{ val := fun j => ↑(NatTrans.app s.π j) y,
property :=
(_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) y) })
j
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
0 =
0
[PROOFSTEP]
simp [forget_map_eq_coe, AlgHom.map_zero, Functor.mapCone_π_app]
[GOAL]
case refine'_4
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ { val := fun j => 0, property := (_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => 0) } = 0
[PROOFSTEP]
rfl
[GOAL]
case refine'_5
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ ∀ (x y : ↑s.pt),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y
[PROOFSTEP]
intro x y
[GOAL]
case refine'_5
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
x y : ↑s.pt
⊢ OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ : ∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y
[PROOFSTEP]
simp [forget_map_eq_coe, AlgHom.map_add, Functor.mapCone_π_app]
[GOAL]
case refine'_5
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
x y : ↑s.pt
⊢ { val := fun j => ↑(NatTrans.app s.π j) x + ↑(NatTrans.app s.π j) y,
property :=
(_ :
(fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j =>
↑(NatTrans.app s.π j) x + ↑(NatTrans.app s.π j) y) } =
{ val := fun j => ↑(NatTrans.app s.π j) x,
property :=
(_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) x) } +
{ val := fun j => ↑(NatTrans.app s.π j) y,
property :=
(_ : (fun x => x ∈ Functor.sections (F ⋙ forget (AlgebraCatMax R))) fun j => ↑(NatTrans.app s.π j) y) }
[PROOFSTEP]
rfl
[GOAL]
case refine'_6
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ ∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y) })
(↑(algebraMap R ↑s.pt) r) =
↑(algebraMap R ↑(limitCone F).pt) r
[PROOFSTEP]
intro r
[GOAL]
case refine'_6
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
r : R
⊢ OneHom.toFun
(↑↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'), ↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y) })
(↑(algebraMap R ↑s.pt) r) =
↑(algebraMap R ↑(limitCone F).pt) r
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case refine'_6.a
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
r : R
⊢ ↑(OneHom.toFun
(↑↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y) })
(↑(algebraMap R ↑s.pt) r)) =
↑(↑(algebraMap R ↑(limitCone F).pt) r)
[PROOFSTEP]
ext j
[GOAL]
case refine'_6.a.h
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
r : R
j : J
⊢ ↑(OneHom.toFun
(↑↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y) })
(↑(algebraMap R ↑s.pt) r))
j =
↑(↑(algebraMap R ↑(limitCone F).pt) r) j
[PROOFSTEP]
exact (s.π.app j).commutes r
[GOAL]
case refine'_7
R : Type u
inst✝¹ : CommRing R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ AlgebraCatMax R
s : Cone F
⊢ (forget (AlgebraCat R)).map
((fun s =>
{
toRingHom :=
{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y) },
commutes' :=
(_ :
∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) },
map_zero' :=
(_ :
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j
v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j
v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j
v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
0 =
0),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v = ↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j
v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app
((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app
((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app
((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app ((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) },
map_one' :=
(_ :
(fun v =>
{
val := fun j =>
NatTrans.app
((forget (AlgebraCat R)).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
↑(NatTrans.app s.π j ≫ F.map f) v =
↑(NatTrans.app s.π j') v) })
1 =
1) }
y) })
y) })
(↑(algebraMap R ↑s.pt) r) =
↑(algebraMap R ↑(limitCone F).pt) r) })
s) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (AlgebraCat R))) ((forget (AlgebraCat R)).mapCone s)
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.AlgebraCat.Limits", "llama_tokens": 50418} |
[GOAL]
R : Type u
B : Type v
inst✝² : CommRing R
inst✝¹ : DecidableEq B
inst✝ : Fintype B
A : Matrix B B ℤ
i : B
h : A i i = 2
⊢ adE R A (i, i) = 0
[PROOFSTEP]
have h' : (-2 : ℤ).toNat = 0 := by rfl
[GOAL]
R : Type u
B : Type v
inst✝² : CommRing R
inst✝¹ : DecidableEq B
inst✝ : Fintype B
A : Matrix B B ℤ
i : B
h : A i i = 2
⊢ Int.toNat (-2) = 0
[PROOFSTEP]
rfl
[GOAL]
R : Type u
B : Type v
inst✝² : CommRing R
inst✝¹ : DecidableEq B
inst✝ : Fintype B
A : Matrix B B ℤ
i : B
h : A i i = 2
h' : Int.toNat (-2) = 0
⊢ adE R A (i, i) = 0
[PROOFSTEP]
simp [adE, h, h']
[GOAL]
R : Type u
B : Type v
inst✝² : CommRing R
inst✝¹ : DecidableEq B
inst✝ : Fintype B
A : Matrix B B ℤ
i : B
h : A i i = 2
⊢ adF R A (i, i) = 0
[PROOFSTEP]
have h' : (-2 : ℤ).toNat = 0 := by rfl
[GOAL]
R : Type u
B : Type v
inst✝² : CommRing R
inst✝¹ : DecidableEq B
inst✝ : Fintype B
A : Matrix B B ℤ
i : B
h : A i i = 2
⊢ Int.toNat (-2) = 0
[PROOFSTEP]
rfl
[GOAL]
R : Type u
B : Type v
inst✝² : CommRing R
inst✝¹ : DecidableEq B
inst✝ : Fintype B
A : Matrix B B ℤ
i : B
h : A i i = 2
h' : Int.toNat (-2) = 0
⊢ adF R A (i, i) = 0
[PROOFSTEP]
simp [adF, h, h']
| {"mathlib_filename": "Mathlib.Algebra.Lie.CartanMatrix", "llama_tokens": 636} |
[GOAL]
R : Type u
inst✝ : CommRing R
M N P : ModuleCat R
f : (MonoidalCategory.tensorLeft M).obj N ⟶ P
⊢ (fun f => (β_ M N).hom ≫ TensorProduct.lift f)
((fun f => LinearMap.compr₂ (TensorProduct.mk R ↑N ↑M) ((β_ N M).hom ≫ f)) f) =
f
[PROOFSTEP]
apply TensorProduct.ext'
[GOAL]
case H
R : Type u
inst✝ : CommRing R
M N P : ModuleCat R
f : (MonoidalCategory.tensorLeft M).obj N ⟶ P
⊢ ∀ (x : ↑M) (y : ↑N),
↑((fun f => (β_ M N).hom ≫ TensorProduct.lift f)
((fun f => LinearMap.compr₂ (TensorProduct.mk R ↑N ↑M) ((β_ N M).hom ≫ f)) f))
(x ⊗ₜ[R] y) =
↑f (x ⊗ₜ[R] y)
[PROOFSTEP]
intro m n
[GOAL]
case H
R : Type u
inst✝ : CommRing R
M N P : ModuleCat R
f : (MonoidalCategory.tensorLeft M).obj N ⟶ P
m : ↑M
n : ↑N
⊢ ↑((fun f => (β_ M N).hom ≫ TensorProduct.lift f)
((fun f => LinearMap.compr₂ (TensorProduct.mk R ↑N ↑M) ((β_ N M).hom ≫ f)) f))
(m ⊗ₜ[R] n) =
↑f (m ⊗ₜ[R] n)
[PROOFSTEP]
rw [coe_comp, Function.comp_apply, MonoidalCategory.braiding_hom_apply, TensorProduct.lift.tmul, LinearMap.compr₂_apply,
TensorProduct.mk_apply, coe_comp, Function.comp_apply, MonoidalCategory.braiding_hom_apply]
[GOAL]
R : Type u
inst✝ : CommRing R
M : ModuleCat R
⊢ ∀ {X' X Y : ModuleCat R} (f : X' ⟶ X) (g : X ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y),
↑((fun N P => monoidalClosedHomEquiv M N P) X' Y).symm (f ≫ g) =
(MonoidalCategory.tensorLeft M).map f ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X Y).symm g
[PROOFSTEP]
intros
[GOAL]
R : Type u
inst✝ : CommRing R
M X'✝ X✝ Y✝ : ModuleCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y✝
⊢ ↑((fun N P => monoidalClosedHomEquiv M N P) X'✝ Y✝).symm (f✝ ≫ g✝) =
(MonoidalCategory.tensorLeft M).map f✝ ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X✝ Y✝).symm g✝
[PROOFSTEP]
apply TensorProduct.ext'
[GOAL]
case H
R : Type u
inst✝ : CommRing R
M X'✝ X✝ Y✝ : ModuleCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y✝
⊢ ∀ (x : ↑M) (y : ↑X'✝),
↑(↑((fun N P => monoidalClosedHomEquiv M N P) X'✝ Y✝).symm (f✝ ≫ g✝)) (x ⊗ₜ[R] y) =
↑((MonoidalCategory.tensorLeft M).map f✝ ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X✝ Y✝).symm g✝) (x ⊗ₜ[R] y)
[PROOFSTEP]
intro m n
[GOAL]
case H
R : Type u
inst✝ : CommRing R
M X'✝ X✝ Y✝ : ModuleCat R
f✝ : X'✝ ⟶ X✝
g✝ : X✝ ⟶ ((linearCoyoneda R (ModuleCat R)).obj (op M)).obj Y✝
m : ↑M
n : ↑X'✝
⊢ ↑(↑((fun N P => monoidalClosedHomEquiv M N P) X'✝ Y✝).symm (f✝ ≫ g✝)) (m ⊗ₜ[R] n) =
↑((MonoidalCategory.tensorLeft M).map f✝ ≫ ↑((fun N P => monoidalClosedHomEquiv M N P) X✝ Y✝).symm g✝) (m ⊗ₜ[R] n)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
M N : ModuleCat R
⊢ NatTrans.app (ihom.ev M) N = ↑(TensorProduct.uncurry R (↑M) (↑M →ₗ[R] ↑N) ↑N) (LinearMap.flip LinearMap.id)
[PROOFSTEP]
apply TensorProduct.ext'
[GOAL]
case H
R : Type u
inst✝ : CommRing R
M N : ModuleCat R
⊢ ∀ (x : ↑M) (y : ↑((ihom M).obj N)),
↑(NatTrans.app (ihom.ev M) N) (x ⊗ₜ[R] y) =
↑(↑(TensorProduct.uncurry R (↑M) (↑M →ₗ[R] ↑N) ↑N) (LinearMap.flip LinearMap.id)) (x ⊗ₜ[R] y)
[PROOFSTEP]
apply ModuleCat.monoidalClosed_uncurry
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Monoidal.Closed", "llama_tokens": 1663} |
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
j : J
⊢ Monoid ((F ⋙ forget MonCat).obj j)
[PROOFSTEP]
change Monoid (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
j : J
⊢ Monoid ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
a b : (j : J) → ↑(F.obj j)
ah : a ∈ Functor.sections (F ⋙ forget MonCat)
bh : b ∈ Functor.sections (F ⋙ forget MonCat)
j j' : J
f : j ⟶ j'
⊢ (F ⋙ forget MonCat).map f ((a * b) j) = (a * b) j'
[PROOFSTEP]
simp only [Functor.comp_map, MonoidHom.map_mul, Pi.mul_apply]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
a b : (j : J) → ↑(F.obj j)
ah : a ∈ Functor.sections (F ⋙ forget MonCat)
bh : b ∈ Functor.sections (F ⋙ forget MonCat)
j j' : J
f : j ⟶ j'
⊢ (forget MonCat).map (F.map f) (a j * b j) = a j' * b j'
[PROOFSTEP]
dsimp [Functor.sections] at ah bh
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
a b : (j : J) → ↑(F.obj j)
ah : a ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'}
bh : b ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'}
j j' : J
f : j ⟶ j'
⊢ (forget MonCat).map (F.map f) (a j * b j) = a j' * b j'
[PROOFSTEP]
rw [← ah f, ← bh f, forget_map, map_mul]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
j j' : J
f : j ⟶ j'
⊢ (F ⋙ forget MonCat).map f (OfNat.ofNat 1 j) = OfNat.ofNat 1 j'
[PROOFSTEP]
simp
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
⊢ IsLimit (limitCone F)
[PROOFSTEP]
refine IsLimit.ofFaithful (forget MonCatMax) (Types.limitConeIsLimit.{v, u} _) (fun s => ⟨⟨_, ?_⟩, ?_⟩) (fun s => rfl)
[GOAL]
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
s : Cone F
⊢ { val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 =
NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } =
1
[PROOFSTEP]
aesop_cat
[GOAL]
case refine_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCatMax
s : Cone F
⊢ ∀ (x y : ↑s.pt),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) v =
NatTrans.app ((forget MonCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 =
NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) v =
NatTrans.app ((forget MonCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 =
NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) v =
NatTrans.app ((forget MonCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget MonCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget MonCatMax).mapCone s).π j ≫ (F ⋙ forget MonCatMax).map f) 1 =
NatTrans.app ((forget MonCatMax).mapCone s).π j' 1) } =
1) }
y
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommMonCatMax
j : J
⊢ CommMonoid ((F ⋙ forget CommMonCatMax).obj j)
[PROOFSTEP]
change CommMonoid (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommMonCatMax
j : J
⊢ CommMonoid ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommMonCatMax
c' : Cone (F ⋙ forget₂ CommMonCat MonCatMax)
t : IsLimit c'
⊢ (forget₂ CommMonCat MonCatMax).mapCone
{ pt := of (Types.limitCone (F ⋙ forget CommMonCat)).pt,
π := NatTrans.mk (limitπMonoidHom (F ⋙ forget₂ CommMonCatMax MonCatMax)) } ≅
c'
[PROOFSTEP]
apply IsLimit.uniqueUpToIso (MonCat.HasLimits.limitConeIsLimit _) t
[GOAL]
J✝ : Type v
inst✝ : SmallCategory J✝
J : Type v
𝒥 : Category.{v, v} J
F : J ⥤ CommMonCatMax
⊢ PreservesLimit F (forget₂ CommMonCatMax MonCatMax)
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Algebra.Category.MonCat.Limits", "llama_tokens": 2323} |
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
j : J
⊢ AddCommGroup ((F ⋙ forget (ModuleCat R)).obj j)
[PROOFSTEP]
change AddCommGroup (F.obj j)
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
j : J
⊢ AddCommGroup ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
j : J
⊢ Module R ((F ⋙ forget (ModuleCat R)).obj j)
[PROOFSTEP]
change Module R (F.obj j)
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
j : J
⊢ Module R ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
src✝ : AddSubgroup
((j : J) → ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat).obj j)) :=
AddGroupCat.sectionsAddSubgroup (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat)
r : R
s : (j : J) → ↑(F.obj j)
sh :
s ∈
{
toAddSubsemigroup :=
{ carrier := Functor.sections (F ⋙ forget (ModuleCat R)),
add_mem' :=
(_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget AddGroupCat).map
f (OfNat.ofNat 0 j) =
OfNat.ofNat 0 j') }.toAddSubsemigroup.carrier
j j' : J
f : j ⟶ j'
⊢ (F ⋙ forget (ModuleCat R)).map f ((r • s) j) = (r • s) j'
[PROOFSTEP]
simp only [forget_map, Functor.comp_map, Pi.smul_apply, map_smul]
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
src✝ : AddSubgroup
((j : J) → ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat).obj j)) :=
AddGroupCat.sectionsAddSubgroup (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat)
r : R
s : (j : J) → ↑(F.obj j)
sh :
s ∈
{
toAddSubsemigroup :=
{ carrier := Functor.sections (F ⋙ forget (ModuleCat R)),
add_mem' :=
(_ : ∀ {a b : (j : J) → ↑(F.obj j)}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) },
zero_mem' :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat) ⋙
forget AddGroupCat).map
f (OfNat.ofNat 0 j) =
OfNat.ofNat 0 j') }.toAddSubsemigroup.carrier
j j' : J
f : j ⟶ j'
⊢ r • ↑(F.map f) (s j) = r • s j'
[PROOFSTEP]
dsimp [Functor.sections] at sh
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
src✝ : AddSubgroup
((j : J) → ↑((F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat).obj j)) :=
AddGroupCat.sectionsAddSubgroup (F ⋙ forget₂ (ModuleCat R) AddCommGroupCat ⋙ forget₂ AddCommGroupCat AddGroupCat)
r : R
s : (j : J) → ↑(F.obj j)
sh : s ∈ {u | ∀ {j j' : J} (f : j ⟶ j'), ↑(F.map f) (u j) = u j'}
j j' : J
f : j ⟶ j'
⊢ r • ↑(F.map f) (s j) = r • s j'
[PROOFSTEP]
rw [sh f]
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
⊢ AddCommMonoid { x // x ∈ sectionsSubmodule F }
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
⊢ AddCommGroup { x // x ∈ sectionsSubmodule F }
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
⊢ Module R { x // x ∈ sectionsSubmodule F }
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
⊢ IsLimit (limitCone F)
[PROOFSTEP]
refine'
IsLimit.ofFaithful (forget (ModuleCat R)) (Types.limitConeIsLimit.{v, w} _)
(fun s => ⟨⟨(Types.limitConeIsLimit.{v, w} _).lift ((forget (ModuleCat R)).mapCone s), _⟩, _⟩) (fun s => rfl)
[GOAL]
case refine'_1
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
⊢ ∀ (x y : ↑s.pt),
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x +
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y
case refine'_2
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
⊢ ∀ (r : R) (x : ↑s.pt),
AddHom.toFun
{ toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s),
map_add' := ?refine'_1 }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun :=
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s),
map_add' := ?refine'_1 }
x
[PROOFSTEP]
all_goals
intros
dsimp [Types.limitConeIsLimit]
simp
rfl
[GOAL]
case refine'_1
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
⊢ ∀ (x y : ↑s.pt),
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x + y) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x +
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y
[PROOFSTEP]
intros
[GOAL]
case refine'_1
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
x✝ y✝ : ↑s.pt
⊢ IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) (x✝ + y✝) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x✝ +
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) y✝
[PROOFSTEP]
dsimp [Types.limitConeIsLimit]
[GOAL]
case refine'_1
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
x✝ y✝ : ↑s.pt
⊢ { val := fun j => ↑(NatTrans.app s.π j) (x✝ + y✝),
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) (x✝ + y✝) =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' (x✝ + y✝)) } =
{ val := fun j => ↑(NatTrans.app s.π j) x✝,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) } +
{ val := fun j => ↑(NatTrans.app s.π j) y✝,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) y✝ =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' y✝) }
[PROOFSTEP]
simp
[GOAL]
case refine'_1
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
x✝ y✝ : ↑s.pt
⊢ { val := fun j => ↑(NatTrans.app s.π j) x✝ + ↑(NatTrans.app s.π j) y✝,
property :=
(_ :
(fun x => x ∈ Functor.sections (F ⋙ forget (ModuleCat R))) fun j =>
↑(NatTrans.app s.π j) x✝ + ↑(NatTrans.app s.π j) y✝) } =
{ val := fun j => ↑(NatTrans.app s.π j) x✝,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) } +
{ val := fun j => ↑(NatTrans.app s.π j) y✝,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) y✝ =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' y✝) }
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
⊢ ∀ (r : R) (x : ↑s.pt),
AddHom.toFun
{ toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
(x + y) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
x +
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun :=
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
(x + y) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
x +
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R)))
((forget (ModuleCat R)).mapCone s) y) }
x
[PROOFSTEP]
intros
[GOAL]
case refine'_2
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
r✝ : R
x✝ : ↑s.pt
⊢ AddHom.toFun
{ toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
(x + y) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s) x +
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
y) }
(r✝ • x✝) =
↑(RingHom.id R) r✝ •
AddHom.toFun
{ toFun := IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s),
map_add' :=
(_ :
∀ (x y : ↑s.pt),
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
(x + y) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
x +
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget (ModuleCat R))) ((forget (ModuleCat R)).mapCone s)
y) }
x✝
[PROOFSTEP]
dsimp [Types.limitConeIsLimit]
[GOAL]
case refine'_2
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
r✝ : R
x✝ : ↑s.pt
⊢ { val := fun j => ↑(NatTrans.app s.π j) (r✝ • x✝),
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) (r✝ • x✝) =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' (r✝ • x✝)) } =
r✝ •
{ val := fun j => ↑(NatTrans.app s.π j) x✝,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) }
[PROOFSTEP]
simp
[GOAL]
case refine'_2
R : Type u
inst✝¹ : Ring R
J : Type v
inst✝ : SmallCategory J
F : J ⥤ ModuleCatMax R
s : Cone F
r✝ : R
x✝ : ↑s.pt
⊢ { val := fun j => r✝ • ↑(NatTrans.app s.π j) x✝,
property :=
(_ : (fun x => x ∈ Functor.sections (F ⋙ forget (ModuleCat R))) fun j => r✝ • ↑(NatTrans.app s.π j) x✝) } =
r✝ •
{ val := fun j => ↑(NatTrans.app s.π j) x✝,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget (ModuleCat R)).mapCone s).π j ≫ (F ⋙ forget (ModuleCat R)).map f) x✝ =
NatTrans.app ((forget (ModuleCat R)).mapCone s).π j' x✝) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁵ : Ring R
J : Type v
inst✝⁴ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type v
inst✝² : (i : ι) → AddCommGroup (G i)
inst✝¹ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i : ι
⊢ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (𝟙 i) =
𝟙 ({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u
inst✝⁵ : Ring R
J : Type v
inst✝⁴ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type v
inst✝² : (i : ι) → AddCommGroup (G i)
inst✝¹ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i : ι
⊢ ∀ (x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)),
↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (𝟙 i)) x =
↑(𝟙 ({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)) x
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
inst✝⁵ : Ring R
J : Type v
inst✝⁴ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type v
inst✝² : (i : ι) → AddCommGroup (G i)
inst✝¹ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i : ι
x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)
⊢ ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (𝟙 i)) x =
↑(𝟙 ({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj i)) x
[PROOFSTEP]
apply Module.DirectedSystem.map_self
[GOAL]
R : Type u
inst✝⁵ : Ring R
J : Type v
inst✝⁴ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type v
inst✝² : (i : ι) → AddCommGroup (G i)
inst✝¹ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
X✝ Y✝ Z✝ : ι
hij : X✝ ⟶ Y✝
hjk : Y✝ ⟶ Z✝
⊢ { obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk) =
{ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫
{ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u
inst✝⁵ : Ring R
J : Type v
inst✝⁴ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type v
inst✝² : (i : ι) → AddCommGroup (G i)
inst✝¹ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
X✝ Y✝ Z✝ : ι
hij : X✝ ⟶ Y✝
hjk : Y✝ ⟶ Z✝
⊢ ∀ (x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj X✝)),
↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk)) x =
↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫
{ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk)
x
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
inst✝⁵ : Ring R
J : Type v
inst✝⁴ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type v
inst✝² : (i : ι) → AddCommGroup (G i)
inst✝¹ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
X✝ Y✝ Z✝ : ι
hij : X✝ ⟶ Y✝
hjk : Y✝ ⟶ Z✝
x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj X✝)
⊢ ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk)) x =
↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫
{ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk)
x
[PROOFSTEP]
symm
[GOAL]
case h
R : Type u
inst✝⁵ : Ring R
J : Type v
inst✝⁴ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝³ : Preorder ι
G : ι → Type v
inst✝² : (i : ι) → AddCommGroup (G i)
inst✝¹ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
X✝ Y✝ Z✝ : ι
hij : X✝ ⟶ Y✝
hjk : Y✝ ⟶ Z✝
x : ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.obj X✝)
⊢ ↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hij ≫
{ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map hjk)
x =
↑({ obj := fun i => of R (G i), map := fun {X Y} hij => f X Y (_ : X ≤ Y) }.map (hij ≫ hjk)) x
[PROOFSTEP]
apply Module.DirectedSystem.map_map
[GOAL]
R : Type u
inst✝⁶ : Ring R
J : Type v
inst✝⁵ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type v
inst✝³ : (i : ι) → AddCommGroup (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : DecidableEq ι
x✝¹ x✝ : ι
hij : x✝¹ ⟶ x✝
⊢ (directLimitDiagram G f).map hij ≫ DirectLimit.of R ι G f x✝ =
DirectLimit.of R ι G f x✝¹ ≫ ((Functor.const ι).obj (of R (DirectLimit G f))).map hij
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u
inst✝⁶ : Ring R
J : Type v
inst✝⁵ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type v
inst✝³ : (i : ι) → AddCommGroup (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : DecidableEq ι
x✝¹ x✝ : ι
hij : x✝¹ ⟶ x✝
⊢ ∀ (x : ↑((directLimitDiagram G f).obj x✝¹)),
↑((directLimitDiagram G f).map hij ≫ DirectLimit.of R ι G f x✝) x =
↑(DirectLimit.of R ι G f x✝¹ ≫ ((Functor.const ι).obj (of R (DirectLimit G f))).map hij) x
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
inst✝⁶ : Ring R
J : Type v
inst✝⁵ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁴ : Preorder ι
G : ι → Type v
inst✝³ : (i : ι) → AddCommGroup (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : DecidableEq ι
x✝¹ x✝ : ι
hij : x✝¹ ⟶ x✝
x : ↑((directLimitDiagram G f).obj x✝¹)
⊢ ↑((directLimitDiagram G f).map hij ≫ DirectLimit.of R ι G f x✝) x =
↑(DirectLimit.of R ι G f x✝¹ ≫ ((Functor.const ι).obj (of R (DirectLimit G f))).map hij) x
[PROOFSTEP]
exact DirectLimit.of_f
[GOAL]
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
i j : ι
h : i ≤ j
x : G i
⊢ ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x
[PROOFSTEP]
rw [← s.w (homOfLE h)]
[GOAL]
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
i j : ι
h : i ≤ j
x : G i
⊢ ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑((directLimitDiagram G f).map (homOfLE h) ≫ NatTrans.app s.ι j) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
i : ι
⊢ NatTrans.app (directLimitCocone G f).ι i ≫
(fun s =>
DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
s =
NatTrans.app s.ι i
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
i : ι
⊢ ∀ (x : ↑((directLimitDiagram G f).obj i)),
↑(NatTrans.app (directLimitCocone G f).ι i ≫
(fun s =>
DirectLimit.lift R ι G f s.ι.app
(_ :
∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
s)
x =
↑(NatTrans.app s.ι i) x
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
i : ι
x : ↑((directLimitDiagram G f).obj i)
⊢ ↑(NatTrans.app (directLimitCocone G f).ι i ≫
(fun s =>
DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
s)
x =
↑(NatTrans.app s.ι i) x
[PROOFSTEP]
dsimp only [directLimitCocone, CategoryStruct.comp]
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
i : ι
x : ↑((directLimitDiagram G f).obj i)
⊢ ↑(LinearMap.comp
(DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
(DirectLimit.of R ι G f i))
x =
↑(NatTrans.app s.ι i) x
[PROOFSTEP]
rw [LinearMap.comp_apply]
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
i : ι
x : ↑((directLimitDiagram G f).obj i)
⊢ ↑(DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
(↑(DirectLimit.of R ι G f i) x) =
↑(NatTrans.app s.ι i) x
[PROOFSTEP]
apply DirectLimit.lift_of
[GOAL]
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
⊢ m =
(fun s =>
DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
s
[PROOFSTEP]
have : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i) :=
by
funext i
rw [← h]
rfl
[GOAL]
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
⊢ s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)
[PROOFSTEP]
funext i
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
i : ι
⊢ NatTrans.app s.ι i = LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)
[PROOFSTEP]
rw [← h]
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
i : ι
⊢ NatTrans.app (directLimitCocone G f).ι i ≫ m =
LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)
⊢ m =
(fun s =>
DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
s
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)
⊢ ∀ (x : ↑(directLimitCocone G f).pt),
↑m x =
↑((fun s =>
DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
s)
x
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)
x : ↑(directLimitCocone G f).pt
⊢ ↑m x =
↑((fun s =>
DirectLimit.lift R ι G f s.ι.app
(_ : ∀ (i j : ι) (h : i ≤ j) (x : G i), ↑(NatTrans.app s.ι j) (↑(f i j h) x) = ↑(NatTrans.app s.ι i) x))
s)
x
[PROOFSTEP]
simp only [this]
[GOAL]
case h
R : Type u
inst✝⁸ : Ring R
J : Type v
inst✝⁷ : SmallCategory J
ι : Type v
dec_ι : DecidableEq ι
inst✝⁶ : Preorder ι
G : ι → Type v
inst✝⁵ : (i : ι) → AddCommGroup (G i)
inst✝⁴ : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝³ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝² : DecidableEq ι
inst✝¹ : Nonempty ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
s : Cocone (directLimitDiagram G f)
m : (directLimitCocone G f).pt ⟶ s.pt
h : ∀ (j : ι), NatTrans.app (directLimitCocone G f).ι j ≫ m = NatTrans.app s.ι j
this : s.ι.app = fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)
x : ↑(directLimitCocone G f).pt
⊢ ↑m x =
↑(DirectLimit.lift R ι G f (fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i))
(_ :
∀ (i j : ι) (hij : i ≤ j) (x : G i),
↑((fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)) j)
(↑(f i j hij) x) =
↑((fun i => LinearMap.comp m (DirectLimit.of R ι (fun i => G i) (fun i j H => f i j H) i)) i) x))
x
[PROOFSTEP]
apply Module.DirectLimit.lift_unique
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Limits", "llama_tokens": 14607} |
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ LieRing L
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ LieAlgebra R L
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Algebra.Lie.NonUnitalNonAssocAlgebra", "llama_tokens": 133} |
[GOAL]
R : Type u
inst✝ : CommRing R
X₁ X₂ Y₁ Y₂ : ModuleCat R
f : X₁ ⟶ Y₁
g : X₂ ⟶ Y₂
⊢ (f ⊗ g) ≫ (braiding Y₁ Y₂).hom = (braiding X₁ X₂).hom ≫ (g ⊗ f)
[PROOFSTEP]
apply TensorProduct.ext'
[GOAL]
case H
R : Type u
inst✝ : CommRing R
X₁ X₂ Y₁ Y₂ : ModuleCat R
f : X₁ ⟶ Y₁
g : X₂ ⟶ Y₂
⊢ ∀ (x : ↑X₁) (y : ↑X₂), ↑((f ⊗ g) ≫ (braiding Y₁ Y₂).hom) (x ⊗ₜ[R] y) = ↑((braiding X₁ X₂).hom ≫ (g ⊗ f)) (x ⊗ₜ[R] y)
[PROOFSTEP]
intro x y
[GOAL]
case H
R : Type u
inst✝ : CommRing R
X₁ X₂ Y₁ Y₂ : ModuleCat R
f : X₁ ⟶ Y₁
g : X₂ ⟶ Y₂
x : ↑X₁
y : ↑X₂
⊢ ↑((f ⊗ g) ≫ (braiding Y₁ Y₂).hom) (x ⊗ₜ[R] y) = ↑((braiding X₁ X₂).hom ≫ (g ⊗ f)) (x ⊗ₜ[R] y)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
X Y Z : ModuleCat R
⊢ (α_ X Y Z).hom ≫ (braiding X (Y ⊗ Z)).hom ≫ (α_ Y Z X).hom =
((braiding X Y).hom ⊗ 𝟙 Z) ≫ (α_ Y X Z).hom ≫ (𝟙 Y ⊗ (braiding X Z).hom)
[PROOFSTEP]
apply TensorProduct.ext_threefold
[GOAL]
case H
R : Type u
inst✝ : CommRing R
X Y Z : ModuleCat R
⊢ ∀ (x : ↑X) (y : ↑Y) (z : ↑Z),
↑((α_ X Y Z).hom ≫ (braiding X (Y ⊗ Z)).hom ≫ (α_ Y Z X).hom) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =
↑(((braiding X Y).hom ⊗ 𝟙 Z) ≫ (α_ Y X Z).hom ≫ (𝟙 Y ⊗ (braiding X Z).hom)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)
[PROOFSTEP]
intro x y z
[GOAL]
case H
R : Type u
inst✝ : CommRing R
X Y Z : ModuleCat R
x : ↑X
y : ↑Y
z : ↑Z
⊢ ↑((α_ X Y Z).hom ≫ (braiding X (Y ⊗ Z)).hom ≫ (α_ Y Z X).hom) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =
↑(((braiding X Y).hom ⊗ 𝟙 Z) ≫ (α_ Y X Z).hom ≫ (𝟙 Y ⊗ (braiding X Z).hom)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
X Y Z : ModuleCat R
⊢ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv =
(𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)
[PROOFSTEP]
apply (cancel_epi (α_ X Y Z).hom).1
[GOAL]
R : Type u
inst✝ : CommRing R
X Y Z : ModuleCat R
⊢ (α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv =
(α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)
[PROOFSTEP]
apply TensorProduct.ext_threefold
[GOAL]
case H
R : Type u
inst✝ : CommRing R
X Y Z : ModuleCat R
⊢ ∀ (x : ↑X) (y : ↑Y) (z : ↑Z),
↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =
↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)
[PROOFSTEP]
intro x y z
[GOAL]
case H
R : Type u
inst✝ : CommRing R
X Y Z : ModuleCat R
x : ↑X
y : ↑Y
z : ↑Z
⊢ ↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =
↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
x✝¹ x✝ : ModuleCat R
⊢ (β_ x✝¹ x✝).hom ≫ (β_ x✝ x✝¹).hom = 𝟙 (x✝¹ ⊗ x✝)
[PROOFSTEP]
apply TensorProduct.ext'
[GOAL]
case H
R : Type u
inst✝ : CommRing R
x✝¹ x✝ : ModuleCat R
⊢ ∀ (x : ↑x✝¹) (y : ↑x✝), ↑((β_ x✝¹ x✝).hom ≫ (β_ x✝ x✝¹).hom) (x ⊗ₜ[R] y) = ↑(𝟙 (x✝¹ ⊗ x✝)) (x ⊗ₜ[R] y)
[PROOFSTEP]
aesop_cat
| {"mathlib_filename": "Mathlib.Algebra.Category.ModuleCat.Monoidal.Symmetric", "llama_tokens": 1860} |
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
a✝ b✝ : M
hm₁ : a✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N}
hm₂ : b✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N}
x : L
⊢ ⁅x, a✝ + b✝⁆ ∈ N
[PROOFSTEP]
rw [lie_add]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
a✝ b✝ : M
hm₁ : a✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N}
hm₂ : b✝ ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N}
x : L
⊢ ⁅x, a✝⁆ + ⁅x, b✝⁆ ∈ N
[PROOFSTEP]
exact N.add_mem' (hm₁ x) (hm₂ x)
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
x : L
⊢ ⁅x, 0⁆ ∈ N
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
t : R
m : M
hm :
m ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N},
add_mem' :=
(_ :
∀ {a b : M},
a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier
x : L
⊢ ⁅x, t • m⁆ ∈ N
[PROOFSTEP]
rw [lie_smul]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
t : R
m : M
hm :
m ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N},
add_mem' :=
(_ :
∀ {a b : M},
a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier
x : L
⊢ t • ⁅x, m⁆ ∈ N
[PROOFSTEP]
exact N.smul_mem' t (hm x)
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
x : L
m : M
hm :
m ∈
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N},
add_mem' :=
(_ :
∀ {a b : M},
a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} →
b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) },
smul_mem' :=
(_ :
∀ (t : R) (m : M),
m ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N},
add_mem' :=
(_ :
∀ {a b : M},
a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} →
b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier →
∀ (x : L), ⁅x, t • m⁆ ∈ N) }.toAddSubmonoid.toAddSubsemigroup.carrier
y : L
⊢ ⁅y, ⁅x, m⁆⁆ ∈ N
[PROOFSTEP]
rw [leibniz_lie]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
x : L
m : M
hm :
m ∈
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N},
add_mem' :=
(_ :
∀ {a b : M},
a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} →
b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) },
smul_mem' :=
(_ :
∀ (t : R) (m : M),
m ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ ∈ N},
add_mem' :=
(_ :
∀ {a b : M},
a ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} →
b ∈ {m | ∀ (x : L), ⁅x, m⁆ ∈ N} → ∀ (x : L), ⁅x, a + b⁆ ∈ N) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ ∈ N) }.toAddSubsemigroup.carrier →
∀ (x : L), ⁅x, t • m⁆ ∈ N) }.toAddSubmonoid.toAddSubsemigroup.carrier
y : L
⊢ ⁅⁅y, x⁆, m⁆ + ⁅x, ⁅y, m⁆⁆ ∈ N
[PROOFSTEP]
exact N.add_mem' (hm ⁅y, x⁆) (N.lie_mem (hm y))
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
⊢ N ≤ normalizer N
[PROOFSTEP]
intro m hm
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
m : M
hm : m ∈ N
⊢ m ∈ normalizer N
[PROOFSTEP]
rw [mem_normalizer]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
m : M
hm : m ∈ N
⊢ ∀ (x : L), ⁅x, m⁆ ∈ N
[PROOFSTEP]
exact fun x => N.lie_mem hm
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
⊢ normalizer (N₁ ⊓ N₂) = normalizer N₁ ⊓ normalizer N₂
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
m✝ : M
⊢ m✝ ∈ normalizer (N₁ ⊓ N₂) ↔ m✝ ∈ normalizer N₁ ⊓ normalizer N₂
[PROOFSTEP]
simp [← forall_and]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
⊢ Monotone normalizer
[PROOFSTEP]
intro N₁ N₂ h m hm
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁✝ N₂✝ N₁ N₂ : LieSubmodule R L M
h : N₁ ≤ N₂
m : M
hm : m ∈ normalizer N₁
⊢ m ∈ normalizer N₂
[PROOFSTEP]
rw [mem_normalizer] at hm ⊢
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁✝ N₂✝ N₁ N₂ : LieSubmodule R L M
h : N₁ ≤ N₂
m : M
hm : ∀ (x : L), ⁅x, m⁆ ∈ N₁
⊢ ∀ (x : L), ⁅x, m⁆ ∈ N₂
[PROOFSTEP]
exact fun x => h (hm x)
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
f : M' →ₗ⁅R,L⁆ M
⊢ comap f (normalizer N) = normalizer (comap f N)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ : LieSubmodule R L M
f : M' →ₗ⁅R,L⁆ M
m✝ : M'
⊢ m✝ ∈ comap f (normalizer N) ↔ m✝ ∈ normalizer (comap f N)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ N' : LieSubmodule R L M
⊢ ⁅⊤, N⁆ ≤ N' ↔ N ≤ normalizer N'
[PROOFSTEP]
rw [lie_le_iff]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
N N₁ N₂ N' : LieSubmodule R L M
⊢ (∀ (x : L), x ∈ ⊤ → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N') ↔ N ≤ normalizer N'
[PROOFSTEP]
tauto
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
src✝ : LieSubmodule R { x // x ∈ H } L := LieSubmodule.normalizer (toLieSubmodule H)
y z : L
hy : y ∈ src✝.carrier
hz : z ∈ src✝.carrier
x : { x // x ∈ H }
⊢ ⁅x, ⁅y, z⁆⁆ ∈ toLieSubmodule H
[PROOFSTEP]
rw [coe_bracket_of_module, mem_toLieSubmodule, leibniz_lie, ← lie_skew y, ← sub_eq_add_neg]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
src✝ : LieSubmodule R { x // x ∈ H } L := LieSubmodule.normalizer (toLieSubmodule H)
y z : L
hy : y ∈ src✝.carrier
hz : z ∈ src✝.carrier
x : { x // x ∈ H }
⊢ ⁅⁅↑x, y⁆, z⁆ - ⁅⁅↑x, z⁆, y⁆ ∈ H
[PROOFSTEP]
exact H.sub_mem (hz ⟨_, hy x⟩) (hy ⟨_, hz x⟩)
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
⊢ x ∈ normalizer H ↔ ∀ (y : L), y ∈ H → ⁅y, x⁆ ∈ H
[PROOFSTEP]
rw [Subtype.forall']
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
⊢ x ∈ normalizer H ↔ ∀ (x_1 : { a // a ∈ H }), ⁅↑x_1, x⁆ ∈ H
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
⊢ x ∈ normalizer H ↔ ∀ (y : L), y ∈ H → ⁅x, y⁆ ∈ H
[PROOFSTEP]
rw [mem_normalizer_iff']
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
⊢ (∀ (y : L), y ∈ H → ⁅y, x⁆ ∈ H) ↔ ∀ (y : L), y ∈ H → ⁅x, y⁆ ∈ H
[PROOFSTEP]
refine' forall₂_congr fun y hy => _
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x y : L
hy : y ∈ H
⊢ ⁅y, x⁆ ∈ H ↔ ⁅x, y⁆ ∈ H
[PROOFSTEP]
rw [← lie_skew, neg_mem_iff (G := L)]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x y z : L
hx : x ∈ normalizer H
hy : y ∈ Submodule.span R {x} ⊔ H.toSubmodule
hz : z ∈ Submodule.span R {x} ⊔ H.toSubmodule
⊢ ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule
[PROOFSTEP]
rw [Submodule.mem_sup] at hy hz
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x y z : L
hx : x ∈ normalizer H
hy : ∃ y_1, y_1 ∈ Submodule.span R {x} ∧ ∃ z, z ∈ H.toSubmodule ∧ y_1 + z = y
hz : ∃ y, y ∈ Submodule.span R {x} ∧ ∃ z_1, z_1 ∈ H.toSubmodule ∧ y + z_1 = z
⊢ ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule
[PROOFSTEP]
obtain ⟨u₁, hu₁, v, hv : v ∈ H, rfl⟩ := hy
[GOAL]
case intro.intro.intro.intro
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x z : L
hx : x ∈ normalizer H
hz : ∃ y, y ∈ Submodule.span R {x} ∧ ∃ z_1, z_1 ∈ H.toSubmodule ∧ y + z_1 = z
u₁ : L
hu₁ : u₁ ∈ Submodule.span R {x}
v : L
hv : v ∈ H
⊢ ⁅u₁ + v, z⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule
[PROOFSTEP]
obtain ⟨u₂, hu₂, w, hw : w ∈ H, rfl⟩ := hz
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
hx : x ∈ normalizer H
u₁ : L
hu₁ : u₁ ∈ Submodule.span R {x}
v : L
hv : v ∈ H
u₂ : L
hu₂ : u₂ ∈ Submodule.span R {x}
w : L
hw : w ∈ H
⊢ ⁅u₁ + v, u₂ + w⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule
[PROOFSTEP]
obtain ⟨t, rfl⟩ := Submodule.mem_span_singleton.mp hu₁
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
hx : x ∈ normalizer H
v : L
hv : v ∈ H
u₂ : L
hu₂ : u₂ ∈ Submodule.span R {x}
w : L
hw : w ∈ H
t : R
hu₁ : t • x ∈ Submodule.span R {x}
⊢ ⁅t • x + v, u₂ + w⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule
[PROOFSTEP]
obtain ⟨s, rfl⟩ := Submodule.mem_span_singleton.mp hu₂
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
hx : x ∈ normalizer H
v : L
hv : v ∈ H
w : L
hw : w ∈ H
t : R
hu₁ : t • x ∈ Submodule.span R {x}
s : R
hu₂ : s • x ∈ Submodule.span R {x}
⊢ ⁅t • x + v, s • x + w⁆ ∈ Submodule.span R {x} ⊔ H.toSubmodule
[PROOFSTEP]
apply Submodule.mem_sup_right
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
hx : x ∈ normalizer H
v : L
hv : v ∈ H
w : L
hw : w ∈ H
t : R
hu₁ : t • x ∈ Submodule.span R {x}
s : R
hu₂ : s • x ∈ Submodule.span R {x}
⊢ ⁅t • x + v, s • x + w⁆ ∈ H.toSubmodule
[PROOFSTEP]
simp only [LieSubalgebra.mem_coe_submodule, smul_lie, add_lie, zero_add, lie_add, smul_zero, lie_smul, lie_self]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
hx : x ∈ normalizer H
v : L
hv : v ∈ H
w : L
hw : w ∈ H
t : R
hu₁ : t • x ∈ Submodule.span R {x}
s : R
hu₂ : s • x ∈ Submodule.span R {x}
⊢ s • ⁅v, x⁆ + (t • ⁅x, w⁆ + ⁅v, w⁆) ∈ H
[PROOFSTEP]
refine' H.add_mem (H.smul_mem s _) (H.add_mem (H.smul_mem t _) (H.lie_mem hv hw))
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a.refine'_1
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
hx : x ∈ normalizer H
v : L
hv : v ∈ H
w : L
hw : w ∈ H
t : R
hu₁ : t • x ∈ Submodule.span R {x}
s : R
hu₂ : s • x ∈ Submodule.span R {x}
⊢ ⁅v, x⁆ ∈ H
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.a.refine'_2
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x : L
hx : x ∈ normalizer H
v : L
hv : v ∈ H
w : L
hw : w ∈ H
t : R
hu₁ : t • x ∈ Submodule.span R {x}
s : R
hu₂ : s • x ∈ Submodule.span R {x}
⊢ ⁅x, w⁆ ∈ H
[PROOFSTEP]
exacts [(H.mem_normalizer_iff' x).mp hx v hv, (H.mem_normalizer_iff x).mp hx w hw]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x y : L
hx : x ∈ normalizer H
hy : y ∈ H
⊢ ⁅x, y⁆ ∈ H
[PROOFSTEP]
rw [← lie_skew, neg_mem_iff (G := L)]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
x y : L
hx : x ∈ normalizer H
hy : y ∈ H
⊢ ⁅y, x⁆ ∈ H
[PROOFSTEP]
exact hx ⟨y, hy⟩
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H K : LieSubalgebra R L
h₁ : H ≤ K
h₂ : K ≤ normalizer H
⊢ ∃ I, ↑R { x // x ∈ K } I = ofLe h₁
[PROOFSTEP]
rw [exists_nested_lieIdeal_coe_eq_iff]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H K : LieSubalgebra R L
h₁ : H ≤ K
h₂ : K ≤ normalizer H
⊢ ∀ (x y : L), x ∈ K → y ∈ H → ⁅x, y⁆ ∈ H
[PROOFSTEP]
exact fun x y hx hy => ideal_in_normalizer (h₂ hx) hy
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
⊢ normalizer H = H ↔ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) = ⊥
[PROOFSTEP]
rw [LieSubmodule.eq_bot_iff]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
⊢ normalizer H = H ↔
∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
[PROOFSTEP]
refine' ⟨fun h => _, fun h => le_antisymm _ H.le_normalizer⟩
[GOAL]
case refine'_1
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : normalizer H = H
⊢ ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
[PROOFSTEP]
rintro ⟨x⟩ hx
[GOAL]
case refine'_1.mk
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : normalizer H = H
m✝ : L ⧸ toLieSubmodule H
x : L
hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H)
⊢ Quot.mk Setoid.r x = 0
[PROOFSTEP]
suffices x ∈ H by
rwa [Submodule.Quotient.quot_mk_eq_mk, Submodule.Quotient.mk_eq_zero, coe_toLieSubmodule, mem_coe_submodule]
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : normalizer H = H
m✝ : L ⧸ toLieSubmodule H
x : L
hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H)
this : x ∈ H
⊢ Quot.mk Setoid.r x = 0
[PROOFSTEP]
rwa [Submodule.Quotient.quot_mk_eq_mk, Submodule.Quotient.mk_eq_zero, coe_toLieSubmodule, mem_coe_submodule]
[GOAL]
case refine'_1.mk
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : normalizer H = H
m✝ : L ⧸ toLieSubmodule H
x : L
hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H)
⊢ x ∈ H
[PROOFSTEP]
rw [← h, H.mem_normalizer_iff']
[GOAL]
case refine'_1.mk
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : normalizer H = H
m✝ : L ⧸ toLieSubmodule H
x : L
hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H)
⊢ ∀ (y : L), y ∈ H → ⁅y, x⁆ ∈ H
[PROOFSTEP]
intro y hy
[GOAL]
case refine'_1.mk
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : normalizer H = H
m✝ : L ⧸ toLieSubmodule H
x : L
hx : Quot.mk Setoid.r x ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H)
y : L
hy : y ∈ H
⊢ ⁅y, x⁆ ∈ H
[PROOFSTEP]
replace hx : ⁅_, LieSubmodule.Quotient.mk' _ x⁆ = 0 := hx ⟨y, hy⟩
[GOAL]
case refine'_1.mk
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : normalizer H = H
m✝ : L ⧸ toLieSubmodule H
x y : L
hy : y ∈ H
hx : ⁅{ val := y, property := hy }, ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x⁆ = 0
⊢ ⁅y, x⁆ ∈ H
[PROOFSTEP]
rwa [← LieModuleHom.map_lie, LieSubmodule.Quotient.mk_eq_zero] at hx
[GOAL]
case refine'_2
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
⊢ normalizer H ≤ H
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_2
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
x : L
hx : x ∈ normalizer H
⊢ x ∈ H
[PROOFSTEP]
let y := LieSubmodule.Quotient.mk' H.toLieSubmodule x
[GOAL]
case refine'_2
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
x : L
hx : x ∈ normalizer H
y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x
⊢ x ∈ H
[PROOFSTEP]
have hy : y ∈ LieModule.maxTrivSubmodule R H (L ⧸ H.toLieSubmodule) :=
by
rintro ⟨z, hz⟩
rw [← LieModuleHom.map_lie, LieSubmodule.Quotient.mk_eq_zero, coe_bracket_of_module, Submodule.coe_mk,
mem_toLieSubmodule]
exact (H.mem_normalizer_iff' x).mp hx z hz
[GOAL]
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
x : L
hx : x ∈ normalizer H
y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x
⊢ y ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H)
[PROOFSTEP]
rintro ⟨z, hz⟩
[GOAL]
case mk
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
x : L
hx : x ∈ normalizer H
y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x
z : L
hz : z ∈ H
⊢ ⁅{ val := z, property := hz }, y⁆ = 0
[PROOFSTEP]
rw [← LieModuleHom.map_lie, LieSubmodule.Quotient.mk_eq_zero, coe_bracket_of_module, Submodule.coe_mk,
mem_toLieSubmodule]
[GOAL]
case mk
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
x : L
hx : x ∈ normalizer H
y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x
z : L
hz : z ∈ H
⊢ ⁅z, x⁆ ∈ H
[PROOFSTEP]
exact (H.mem_normalizer_iff' x).mp hx z hz
[GOAL]
case refine'_2
R : Type u_1
L : Type u_2
M : Type u_3
M' : Type u_4
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
H : LieSubalgebra R L
h : ∀ (m : L ⧸ toLieSubmodule H), m ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H) → m = 0
x : L
hx : x ∈ normalizer H
y : (fun x => L ⧸ toLieSubmodule H) x := ↑(LieSubmodule.Quotient.mk' (toLieSubmodule H)) x
hy : y ∈ LieModule.maxTrivSubmodule R { x // x ∈ H } (L ⧸ toLieSubmodule H)
⊢ x ∈ H
[PROOFSTEP]
simpa using h y hy
| {"mathlib_filename": "Mathlib.Algebra.Lie.Normalizer", "llama_tokens": 16999} |
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j : J
⊢ 1 = M.mk F { fst := j, snd := 1 }
[PROOFSTEP]
apply M.mk_eq
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j : J
⊢ ∃ k f g, ↑(F.map f) { fst := Nonempty.some (_ : Nonempty J), snd := 1 }.snd = ↑(F.map g) { fst := j, snd := 1 }.snd
[PROOFSTEP]
refine' ⟨max' _ j, IsFiltered.leftToMax _ j, IsFiltered.rightToMax _ j, _⟩
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j : J
⊢ ↑(F.map (IsFiltered.leftToMax { fst := Nonempty.some (_ : Nonempty J), snd := 1 }.fst j))
{ fst := Nonempty.some (_ : Nonempty J), snd := 1 }.snd =
↑(F.map (IsFiltered.rightToMax { fst := Nonempty.some (_ : Nonempty J), snd := 1 }.fst j))
{ fst := j, snd := 1 }.snd
[PROOFSTEP]
simp
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x x' y : (j : J) × ↑(F.obj j)
hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) x x'
⊢ colimitMulAux F x y = colimitMulAux F x' y
[PROOFSTEP]
cases' x with j₁ x
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x' y : (j : J) × ↑(F.obj j)
j₁ : J
x : ↑(F.obj j₁)
hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := x } x'
⊢ colimitMulAux F { fst := j₁, snd := x } y = colimitMulAux F x' y
[PROOFSTEP]
cases' y with j₂ y
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x' : (j : J) × ↑(F.obj j)
j₁ : J
x : ↑(F.obj j₁)
hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := x } x'
j₂ : J
y : ↑(F.obj j₂)
⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } = colimitMulAux F x' { fst := j₂, snd := y }
[PROOFSTEP]
cases' x' with j₃ x'
[GOAL]
case mk.mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
hxx' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := x } { fst := j₃, snd := x' }
⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } =
colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y }
[PROOFSTEP]
obtain ⟨l, f, g, hfg⟩ := hxx'
[GOAL]
case mk.mk.mk.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : (F ⋙ forget MonCat).map f { fst := j₁, snd := x }.snd = (F ⋙ forget MonCat).map g { fst := j₃, snd := x' }.snd
⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } =
colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y }
[PROOFSTEP]
simp at hfg
[GOAL]
case mk.mk.mk.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } =
colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y }
[PROOFSTEP]
obtain ⟨s, α, β, γ, h₁, h₂, h₃⟩ :=
IsFiltered.tulip (IsFiltered.leftToMax j₁ j₂) (IsFiltered.rightToMax j₁ j₂) (IsFiltered.rightToMax j₃ j₂)
(IsFiltered.leftToMax j₃ j₂) f g
[GOAL]
case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ colimitMulAux F { fst := j₁, snd := x } { fst := j₂, snd := y } =
colimitMulAux F { fst := j₃, snd := x' } { fst := j₂, snd := y }
[PROOFSTEP]
apply M.mk_eq
[GOAL]
case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ∃ k f g,
↑(F.map f)
{ fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₂, snd := y }.snd }.snd =
↑(F.map g)
{ fst := IsFiltered.max { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst))
{ fst := j₃, snd := x' }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst))
{ fst := j₂, snd := y }.snd }.snd
[PROOFSTEP]
use s, α, γ
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ↑(F.map α)
{ fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₂, snd := y }.snd }.snd =
↑(F.map γ)
{ fst := IsFiltered.max { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst))
{ fst := j₃, snd := x' }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₃, snd := x' }.fst { fst := j₂, snd := y }.fst))
{ fst := j₂, snd := y }.snd }.snd
[PROOFSTEP]
dsimp
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) =
↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₃ j₂)) x' * ↑(F.map (IsFiltered.rightToMax j₃ j₂)) y)
[PROOFSTEP]
simp_rw [MonoidHom.map_mul]
-- Porting note : Lean cannot seem to use lemmas from concrete categories directly
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x) * ↑(F.map α) (↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) =
↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₃ j₂)) x') * ↑(F.map γ) (↑(F.map (IsFiltered.rightToMax j₃ j₂)) y)
[PROOFSTEP]
change (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ = (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ↑(F.map (IsFiltered.leftToMax j₁ j₂) ≫ F.map α) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂) ≫ F.map α) y =
↑(F.map (IsFiltered.leftToMax j₃ j₂) ≫ F.map γ) x' * ↑(F.map (IsFiltered.rightToMax j₃ j₂) ≫ F.map γ) y
[PROOFSTEP]
simp_rw [← F.map_comp, h₁, h₂, h₃, F.map_comp]
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ↑(F.map f ≫ F.map β) x * ↑(F.map (IsFiltered.rightToMax j₃ j₂) ≫ F.map γ) y =
↑(F.map g ≫ F.map β) x' * ↑(F.map (IsFiltered.rightToMax j₃ j₂) ≫ F.map γ) y
[PROOFSTEP]
congr 1
[GOAL]
case h.e_a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ↑(F.map f ≫ F.map β) x = ↑(F.map g ≫ F.map β) x'
[PROOFSTEP]
change F.map _ (F.map _ _) = F.map _ (F.map _ _)
[GOAL]
case h.e_a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
x : ↑(F.obj j₁)
j₂ : J
y : ↑(F.obj j₂)
j₃ : J
x' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := x }.fst ⟶ l
g : { fst := j₃, snd := x' }.fst ⟶ l
hfg : ↑(F.map f) x = ↑(F.map g) x'
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₃ j₂ ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = IsFiltered.rightToMax j₃ j₂ ≫ γ
h₃ : IsFiltered.leftToMax j₃ j₂ ≫ γ = g ≫ β
⊢ ↑(F.map β) (↑(F.map f) x) = ↑(F.map β) (↑(F.map g) x')
[PROOFSTEP]
rw [hfg]
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x y y' : (j : J) × ↑(F.obj j)
hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) y y'
⊢ colimitMulAux F x y = colimitMulAux F x y'
[PROOFSTEP]
cases' y with j₁ y
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x y' : (j : J) × ↑(F.obj j)
j₁ : J
y : ↑(F.obj j₁)
hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := y } y'
⊢ colimitMulAux F x { fst := j₁, snd := y } = colimitMulAux F x y'
[PROOFSTEP]
cases' x with j₂ x
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
y' : (j : J) × ↑(F.obj j)
j₁ : J
y : ↑(F.obj j₁)
hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := y } y'
j₂ : J
x : ↑(F.obj j₂)
⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } = colimitMulAux F { fst := j₂, snd := x } y'
[PROOFSTEP]
cases' y' with j₃ y'
[GOAL]
case mk.mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
hyy' : Types.FilteredColimit.Rel (F ⋙ forget MonCat) { fst := j₁, snd := y } { fst := j₃, snd := y' }
⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } =
colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' }
[PROOFSTEP]
obtain ⟨l, f, g, hfg⟩ := hyy'
[GOAL]
case mk.mk.mk.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : (F ⋙ forget MonCat).map f { fst := j₁, snd := y }.snd = (F ⋙ forget MonCat).map g { fst := j₃, snd := y' }.snd
⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } =
colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' }
[PROOFSTEP]
simp at hfg
[GOAL]
case mk.mk.mk.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } =
colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' }
[PROOFSTEP]
obtain ⟨s, α, β, γ, h₁, h₂, h₃⟩ :=
IsFiltered.tulip (IsFiltered.rightToMax j₂ j₁) (IsFiltered.leftToMax j₂ j₁) (IsFiltered.leftToMax j₂ j₃)
(IsFiltered.rightToMax j₂ j₃) f g
[GOAL]
case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ colimitMulAux F { fst := j₂, snd := x } { fst := j₁, snd := y } =
colimitMulAux F { fst := j₂, snd := x } { fst := j₃, snd := y' }
[PROOFSTEP]
apply M.mk_eq
[GOAL]
case mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ∃ k f g,
↑(F.map f)
{ fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst))
{ fst := j₂, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst))
{ fst := j₁, snd := y }.snd }.snd =
↑(F.map g)
{ fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst))
{ fst := j₂, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst))
{ fst := j₃, snd := y' }.snd }.snd
[PROOFSTEP]
use s, α, γ
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ↑(F.map α)
{ fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst))
{ fst := j₂, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₁, snd := y }.fst))
{ fst := j₁, snd := y }.snd }.snd =
↑(F.map γ)
{ fst := IsFiltered.max { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst))
{ fst := j₂, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := x }.fst { fst := j₃, snd := y' }.fst))
{ fst := j₃, snd := y' }.snd }.snd
[PROOFSTEP]
dsimp
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₂ j₁)) x * ↑(F.map (IsFiltered.rightToMax j₂ j₁)) y) =
↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₂ j₃)) x * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) y')
[PROOFSTEP]
simp_rw [MonoidHom.map_mul]
-- Porting note : Lean cannot seem to use lemmas from concrete categories directly
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₂ j₁)) x) * ↑(F.map α) (↑(F.map (IsFiltered.rightToMax j₂ j₁)) y) =
↑(F.map γ) (↑(F.map (IsFiltered.leftToMax j₂ j₃)) x) * ↑(F.map γ) (↑(F.map (IsFiltered.rightToMax j₂ j₃)) y')
[PROOFSTEP]
change (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ = (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ↑(F.map (IsFiltered.leftToMax j₂ j₁) ≫ F.map α) x * ↑(F.map (IsFiltered.rightToMax j₂ j₁) ≫ F.map α) y =
↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map γ) x * ↑(F.map (IsFiltered.rightToMax j₂ j₃) ≫ F.map γ) y'
[PROOFSTEP]
simp_rw [← F.map_comp, h₁, h₂, h₃, F.map_comp]
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map γ) x * ↑(F.map f ≫ F.map β) y =
↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map γ) x * ↑(F.map g ≫ F.map β) y'
[PROOFSTEP]
congr 1
[GOAL]
case h.e_a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ↑(F.map f ≫ F.map β) y = ↑(F.map g ≫ F.map β) y'
[PROOFSTEP]
change F.map _ (F.map _ _) = F.map _ (F.map _ _)
[GOAL]
case h.e_a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j₁ : J
y : ↑(F.obj j₁)
j₂ : J
x : ↑(F.obj j₂)
j₃ : J
y' : ↑(F.obj j₃)
l : J
f : { fst := j₁, snd := y }.fst ⟶ l
g : { fst := j₃, snd := y' }.fst ⟶ l
hfg : ↑(F.map f) y = ↑(F.map g) y'
s : J
α : IsFiltered.max j₂ j₁ ⟶ s
β : l ⟶ s
γ : IsFiltered.max j₂ j₃ ⟶ s
h₁ : IsFiltered.rightToMax j₂ j₁ ≫ α = f ≫ β
h₂ : IsFiltered.leftToMax j₂ j₁ ≫ α = IsFiltered.leftToMax j₂ j₃ ≫ γ
h₃ : IsFiltered.rightToMax j₂ j₃ ≫ γ = g ≫ β
⊢ ↑(F.map β) (↑(F.map f) y) = ↑(F.map β) (↑(F.map g) y')
[PROOFSTEP]
rw [hfg]
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x y : M F
⊢ M F
[PROOFSTEP]
refine' Quot.lift₂ (colimitMulAux F) _ _ x y
[GOAL]
case refine'_1
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x y : M F
⊢ ∀ (a b₁ b₂ : (j : J) × ↑(F.obj j)),
Types.Quot.Rel (F ⋙ forget MonCat) b₁ b₂ → colimitMulAux F a b₁ = colimitMulAux F a b₂
[PROOFSTEP]
intro x y y' h
[GOAL]
case refine'_1
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x✝ y✝ : M F
x y y' : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel (F ⋙ forget MonCat) y y'
⊢ colimitMulAux F x y = colimitMulAux F x y'
[PROOFSTEP]
apply colimitMulAux_eq_of_rel_right
[GOAL]
case refine'_1.hyy'
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x✝ y✝ : M F
x y y' : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel (F ⋙ forget MonCat) y y'
⊢ Types.FilteredColimit.Rel (F ⋙ forget MonCat) y y'
[PROOFSTEP]
apply Types.FilteredColimit.rel_of_quot_rel
[GOAL]
case refine'_1.hyy'.a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x✝ y✝ : M F
x y y' : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel (F ⋙ forget MonCat) y y'
⊢ Types.Quot.Rel (F ⋙ forget MonCat) y y'
[PROOFSTEP]
exact h
[GOAL]
case refine'_2
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x y : M F
⊢ ∀ (a₁ a₂ b : (j : J) × ↑(F.obj j)),
Types.Quot.Rel (F ⋙ forget MonCat) a₁ a₂ → colimitMulAux F a₁ b = colimitMulAux F a₂ b
[PROOFSTEP]
intro x x' y h
[GOAL]
case refine'_2
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x✝ y✝ : M F
x x' y : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel (F ⋙ forget MonCat) x x'
⊢ colimitMulAux F x y = colimitMulAux F x' y
[PROOFSTEP]
apply colimitMulAux_eq_of_rel_left
[GOAL]
case refine'_2.hxx'
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x✝ y✝ : M F
x x' y : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel (F ⋙ forget MonCat) x x'
⊢ Types.FilteredColimit.Rel (F ⋙ forget MonCat) x x'
[PROOFSTEP]
apply Types.FilteredColimit.rel_of_quot_rel
[GOAL]
case refine'_2.hxx'.a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x✝ y✝ : M F
x x' y : (j : J) × ↑(F.obj j)
h : Types.Quot.Rel (F ⋙ forget MonCat) x x'
⊢ Types.Quot.Rel (F ⋙ forget MonCat) x x'
[PROOFSTEP]
exact h
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
x y : (j : J) × ↑(F.obj j)
k : J
f : x.fst ⟶ k
g : y.fst ⟶ k
⊢ M.mk F x * M.mk F y = M.mk F { fst := k, snd := ↑(F.map f) x.snd * ↑(F.map g) y.snd }
[PROOFSTEP]
cases' x with j₁ x
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
y : (j : J) × ↑(F.obj j)
k : J
g : y.fst ⟶ k
j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
⊢ M.mk F { fst := j₁, snd := x } * M.mk F y =
M.mk F { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) y.snd }
[PROOFSTEP]
cases' y with j₂ y
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
k j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
j₂ : J
y : ↑(F.obj j₂)
g : { fst := j₂, snd := y }.fst ⟶ k
⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } =
M.mk F { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd }
[PROOFSTEP]
obtain ⟨s, α, β, h₁, h₂⟩ := IsFiltered.bowtie (IsFiltered.leftToMax j₁ j₂) f (IsFiltered.rightToMax j₁ j₂) g
[GOAL]
case mk.mk.intro.intro.intro.intro
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
k j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
j₂ : J
y : ↑(F.obj j₂)
g : { fst := j₂, snd := y }.fst ⟶ k
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : k ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β
⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } =
M.mk F { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd }
[PROOFSTEP]
apply M.mk_eq
[GOAL]
case mk.mk.intro.intro.intro.intro.h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
k j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
j₂ : J
y : ↑(F.obj j₂)
g : { fst := j₂, snd := y }.fst ⟶ k
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : k ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β
⊢ ∃ k_1 f_1 g_1,
↑(F.map f_1)
{ fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₂, snd := y }.snd }.snd =
↑(F.map g_1)
{ fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd }.snd
[PROOFSTEP]
use s, α, β
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
k j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
j₂ : J
y : ↑(F.obj j₂)
g : { fst := j₂, snd := y }.fst ⟶ k
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : k ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β
⊢ ↑(F.map α)
{ fst := IsFiltered.max { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₁, snd := x }.fst { fst := j₂, snd := y }.fst))
{ fst := j₂, snd := y }.snd }.snd =
↑(F.map β) { fst := k, snd := ↑(F.map f) { fst := j₁, snd := x }.snd * ↑(F.map g) { fst := j₂, snd := y }.snd }.snd
[PROOFSTEP]
dsimp
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
k j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
j₂ : J
y : ↑(F.obj j₂)
g : { fst := j₂, snd := y }.fst ⟶ k
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : k ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β
⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) =
↑(F.map β) (↑(F.map f) x * ↑(F.map g) y)
[PROOFSTEP]
simp_rw [MonoidHom.map_mul]
-- Porting note : Lean cannot seem to use lemmas from concrete categories directly
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
k j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
j₂ : J
y : ↑(F.obj j₂)
g : { fst := j₂, snd := y }.fst ⟶ k
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : k ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β
⊢ ↑(F.map α) (↑(F.map (IsFiltered.leftToMax j₁ j₂)) x) * ↑(F.map α) (↑(F.map (IsFiltered.rightToMax j₁ j₂)) y) =
↑(F.map β) (↑(F.map f) x) * ↑(F.map β) (↑(F.map g) y)
[PROOFSTEP]
change (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _ = (F.map _ ≫ F.map _) _ * (F.map _ ≫ F.map _) _
[GOAL]
case h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
k j₁ : J
x : ↑(F.obj j₁)
f : { fst := j₁, snd := x }.fst ⟶ k
j₂ : J
y : ↑(F.obj j₂)
g : { fst := j₂, snd := y }.fst ⟶ k
s : J
α : IsFiltered.max j₁ j₂ ⟶ s
β : k ⟶ s
h₁ : IsFiltered.leftToMax j₁ j₂ ≫ α = f ≫ β
h₂ : IsFiltered.rightToMax j₁ j₂ ≫ α = g ≫ β
⊢ ↑(F.map (IsFiltered.leftToMax j₁ j₂) ≫ F.map α) x * ↑(F.map (IsFiltered.rightToMax j₁ j₂) ≫ F.map α) y =
↑(F.map f ≫ F.map β) x * ↑(F.map g ≫ F.map β) y
[PROOFSTEP]
simp_rw [← F.map_comp, h₁, h₂]
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x : M F
⊢ 1 * x = x
[PROOFSTEP]
refine Quot.inductionOn x ?_
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x : M F
⊢ ∀ (a : (j : J) × (F ⋙ forget MonCat).obj j),
1 * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a
[PROOFSTEP]
intro x
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x✝ : M F
x : (j : J) × (F ⋙ forget MonCat).obj j
⊢ 1 * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x✝ : M F
j : J
x : (F ⋙ forget MonCat).obj j
⊢ 1 * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x }
[PROOFSTEP]
rw [colimit_one_eq F j, colimit_mul_mk_eq F ⟨j, 1⟩ ⟨j, x⟩ j (𝟙 j) (𝟙 j), MonoidHom.map_one, one_mul, F.map_id]
-- Porting note : `id_apply` does not work here, but the two sides are def-eq
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x✝ : M F
j : J
x : (F ⋙ forget MonCat).obj j
⊢ M.mk F { fst := j, snd := ↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := x }.snd } =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x }
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x : M F
⊢ x * 1 = x
[PROOFSTEP]
refine Quot.inductionOn x ?_
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x : M F
⊢ ∀ (a : (j : J) × (F ⋙ forget MonCat).obj j),
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * 1 = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a
[PROOFSTEP]
intro x
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x✝ : M F
x : (j : J) × (F ⋙ forget MonCat).obj j
⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x * 1 = Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x
[PROOFSTEP]
cases' x with j x
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x✝ : M F
j : J
x : (F ⋙ forget MonCat).obj j
⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x } * 1 =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x }
[PROOFSTEP]
rw [colimit_one_eq F j, colimit_mul_mk_eq F ⟨j, x⟩ ⟨j, 1⟩ j (𝟙 j) (𝟙 j), MonoidHom.map_one, mul_one, F.map_id]
-- Porting note : `id_apply` does not work here, but the two sides are def-eq
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝¹ : One (M F) := colimitOne F
src✝ : Mul (M F) := colimitMul F
x✝ : M F
j : J
x : (F ⋙ forget MonCat).obj j
⊢ M.mk F { fst := j, snd := ↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := x }.snd } =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := x }
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
x y z : M F
⊢ x * y * z = x * (y * z)
[PROOFSTEP]
refine Quot.induction_on₃ x y z ?_
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
x y z : M F
⊢ ∀ (a b c : (j : J) × (F ⋙ forget MonCat).obj j),
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a *
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c)
[PROOFSTEP]
clear x y z
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
⊢ ∀ (a b c : (j : J) × (F ⋙ forget MonCat).obj j),
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a *
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) c)
[PROOFSTEP]
intro x y z
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
x y z : (j : J) × (F ⋙ forget MonCat).obj j
⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x *
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z)
[PROOFSTEP]
cases' x with j₁ x
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
y z : (j : J) × (F ⋙ forget MonCat).obj j
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } *
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z)
[PROOFSTEP]
cases' y with j₂ y
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
z : (j : J) × (F ⋙ forget MonCat).obj j
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } *
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) z)
[PROOFSTEP]
cases' z with j₃ z
[GOAL]
case mk.mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
j₃ : J
z : (F ⋙ forget MonCat).obj j₃
⊢ Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₃, snd := z } =
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₁, snd := x } *
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₂, snd := y } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j₃, snd := z })
[PROOFSTEP]
change M.mk F _ * M.mk F _ * M.mk F _ = M.mk F _ * M.mk F _
[GOAL]
case mk.mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
j₃ : J
z : (F ⋙ forget MonCat).obj j₃
⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } * M.mk F { fst := j₃, snd := z } =
M.mk F { fst := j₁, snd := x } *
M.mk F
{ fst := IsFiltered.max { fst := j₂, snd := y }.fst { fst := j₃, snd := z }.fst,
snd :=
↑(F.map (IsFiltered.leftToMax { fst := j₂, snd := y }.fst { fst := j₃, snd := z }.fst))
{ fst := j₂, snd := y }.snd *
↑(F.map (IsFiltered.rightToMax { fst := j₂, snd := y }.fst { fst := j₃, snd := z }.fst))
{ fst := j₃, snd := z }.snd }
[PROOFSTEP]
dsimp
[GOAL]
case mk.mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
j₃ : J
z : (F ⋙ forget MonCat).obj j₃
⊢ M.mk F { fst := j₁, snd := x } * M.mk F { fst := j₂, snd := y } * M.mk F { fst := j₃, snd := z } =
M.mk F { fst := j₁, snd := x } *
M.mk F
{ fst := IsFiltered.max j₂ j₃,
snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }
[PROOFSTEP]
rw [colimit_mul_mk_eq F ⟨j₁, x⟩ ⟨j₂, y⟩ (IsFiltered.max j₁ (IsFiltered.max j₂ j₃))
(IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃)) (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax _ _),
colimit_mul_mk_eq F ⟨(IsFiltered.max j₁ (IsFiltered.max j₂ j₃)), _⟩ ⟨j₃, z⟩ (IsFiltered.max j₁ (IsFiltered.max j₂ j₃))
(𝟙 _) (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax _ _),
colimit_mul_mk_eq.{v, u} F ⟨j₁, x⟩ ⟨IsFiltered.max j₂ j₃, _⟩ _ (IsFiltered.leftToMax _ _) (IsFiltered.rightToMax _ _)]
[GOAL]
case mk.mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
j₃ : J
z : (F ⋙ forget MonCat).obj j₃
⊢ M.mk F
{ fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃),
snd :=
↑(F.map
(𝟙
{ fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃),
snd :=
↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃)))
{ fst := j₂, snd := y }.snd }.fst))
{ fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃),
snd :=
↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃)))
{ fst := j₂, snd := y }.snd }.snd *
↑(F.map (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃)))
{ fst := j₃, snd := z }.snd } =
M.mk F
{
fst :=
IsFiltered.max { fst := j₁, snd := x }.fst
{ fst := IsFiltered.max j₂ j₃,
snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst,
snd :=
↑(F.map
(IsFiltered.leftToMax { fst := j₁, snd := x }.fst
{ fst := IsFiltered.max j₂ j₃,
snd :=
↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst))
{ fst := j₁, snd := x }.snd *
↑(F.map
(IsFiltered.rightToMax { fst := j₁, snd := x }.fst
{ fst := IsFiltered.max j₂ j₃,
snd :=
↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst))
{ fst := IsFiltered.max j₂ j₃,
snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.snd }
[PROOFSTEP]
congr 2
[GOAL]
case mk.mk.mk.e_a.e_snd
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
j₃ : J
z : (F ⋙ forget MonCat).obj j₃
⊢ ↑(F.map
(𝟙
{ fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃),
snd :=
↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃)))
{ fst := j₂, snd := y }.snd }.fst))
{ fst := IsFiltered.max j₁ (IsFiltered.max j₂ j₃),
snd :=
↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) { fst := j₁, snd := x }.snd *
↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃)))
{ fst := j₂, snd := y }.snd }.snd *
↑(F.map (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃)))
{ fst := j₃, snd := z }.snd =
↑(F.map
(IsFiltered.leftToMax { fst := j₁, snd := x }.fst
{ fst := IsFiltered.max j₂ j₃,
snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst))
{ fst := j₁, snd := x }.snd *
↑(F.map
(IsFiltered.rightToMax { fst := j₁, snd := x }.fst
{ fst := IsFiltered.max j₂ j₃,
snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.fst))
{ fst := IsFiltered.max j₂ j₃,
snd := ↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z }.snd
[PROOFSTEP]
dsimp only
[GOAL]
case mk.mk.mk.e_a.e_snd
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
j₃ : J
z : (F ⋙ forget MonCat).obj j₃
⊢ ↑(F.map (𝟙 (IsFiltered.max j₁ (IsFiltered.max j₂ j₃))))
(↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x *
↑(F.map (IsFiltered.leftToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) y) *
↑(F.map (IsFiltered.rightToMax j₂ j₃ ≫ IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) z =
↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x *
↑(F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃)))
(↑(F.map (IsFiltered.leftToMax j₂ j₃)) y * ↑(F.map (IsFiltered.rightToMax j₂ j₃)) z)
[PROOFSTEP]
rw [F.map_id, show ∀ x, (𝟙 (F.obj (IsFiltered.max j₁ (IsFiltered.max j₂ j₃)))) x = x from fun _ => rfl, mul_assoc,
MonoidHom.map_mul, F.map_comp, F.map_comp]
[GOAL]
case mk.mk.mk.e_a.e_snd
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
src✝ : MulOneClass (M F) := colimitMulOneClass F
j₁ : J
x : (F ⋙ forget MonCat).obj j₁
j₂ : J
y : (F ⋙ forget MonCat).obj j₂
j₃ : J
z : (F ⋙ forget MonCat).obj j₃
⊢ ↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x *
(↑(F.map (IsFiltered.leftToMax j₂ j₃) ≫ F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) y *
↑(F.map (IsFiltered.rightToMax j₂ j₃) ≫ F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) z) =
↑(F.map (IsFiltered.leftToMax j₁ (IsFiltered.max j₂ j₃))) x *
(↑(F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) (↑(F.map (IsFiltered.leftToMax j₂ j₃)) y) *
↑(F.map (IsFiltered.rightToMax j₁ (IsFiltered.max j₂ j₃))) (↑(F.map (IsFiltered.rightToMax j₂ j₃)) z))
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j : J
x y : ↑(F.obj j)
⊢ OneHom.toFun
{ toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j,
map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) }
(x * y) =
OneHom.toFun
{ toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j,
map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) }
x *
OneHom.toFun
{ toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j,
map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) }
y
[PROOFSTEP]
convert (colimit_mul_mk_eq.{v, u} F ⟨j, x⟩ ⟨j, y⟩ j (𝟙 j) (𝟙 j)).symm
[GOAL]
case h.e'_2.h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j : J
x y : ↑(F.obj j)
e_1✝ : ↑(colimit F) = M F
⊢ OneHom.toFun
{ toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j,
map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) }
(x * y) =
M.mk F { fst := j, snd := ↑(F.map (𝟙 j)) { fst := j, snd := x }.snd * ↑(F.map (𝟙 j)) { fst := j, snd := y }.snd }
[PROOFSTEP]
rw [F.map_id]
[GOAL]
case h.e'_2.h
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
j : J
x y : ↑(F.obj j)
e_1✝ : ↑(colimit F) = M F
⊢ OneHom.toFun
{ toFun := NatTrans.app (Types.colimitCocone (F ⋙ forget MonCat)).ι j,
map_one' := (_ : M.mk F { fst := j, snd := 1 } = 1) }
(x * y) =
M.mk F
{ fst := j,
snd :=
↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := x }.snd *
↑(𝟙 (F.obj { fst := j, snd := x }.fst)) { fst := j, snd := y }.snd }
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
⊢ IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1
[PROOFSTEP]
rw [colimit_one_eq F IsFiltered.Nonempty.some]
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
⊢ IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t)
(M.mk F { fst := Nonempty.some (_ : Nonempty J), snd := 1 }) =
1
[PROOFSTEP]
exact MonoidHom.map_one _
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
x y : ↑(colimit F)
⊢ OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(x * y) =
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
x *
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
y
[PROOFSTEP]
refine Quot.induction_on₂ x y ?_
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
x y : ↑(colimit F)
⊢ ∀ (a b : (j : J) × (F ⋙ forget MonCat).obj j),
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b) =
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a) *
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b)
[PROOFSTEP]
clear x y
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
⊢ ∀ (a b : (j : J) × (F ⋙ forget MonCat).obj j),
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b) =
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) a) *
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) b)
[PROOFSTEP]
intro x y
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
x y : (j : J) × (F ⋙ forget MonCat).obj j
⊢ OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x * Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y) =
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) x) *
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y)
[PROOFSTEP]
cases' x with i x
[GOAL]
case mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
y : (j : J) × (F ⋙ forget MonCat).obj j
i : J
x : (F ⋙ forget MonCat).obj i
⊢ OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y) =
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x }) *
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) y)
[PROOFSTEP]
cases' y with j y
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
i : J
x : (F ⋙ forget MonCat).obj i
j : J
y : (F ⋙ forget MonCat).obj j
⊢ OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x } *
Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := y }) =
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x }) *
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := y })
[PROOFSTEP]
rw [colimit_mul_mk_eq F ⟨i, x⟩ ⟨j, y⟩ (max' i j) (IsFiltered.leftToMax i j) (IsFiltered.rightToMax i j)]
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
i : J
x : (F ⋙ forget MonCat).obj i
j : J
y : (F ⋙ forget MonCat).obj j
⊢ OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ : IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(M.mk F
{ fst := IsFiltered.max i j,
snd :=
↑(F.map (IsFiltered.leftToMax i j)) { fst := i, snd := x }.snd *
↑(F.map (IsFiltered.rightToMax i j)) { fst := j, snd := y }.snd }) =
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := i, snd := x }) *
OneHom.toFun
{ toFun := IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t),
map_one' :=
(_ :
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget MonCat)) ((forget MonCat).mapCocone t) 1 = 1) }
(Quot.mk (Types.Quot.Rel (F ⋙ forget MonCat)) { fst := j, snd := y })
[PROOFSTEP]
dsimp [Types.colimitCoconeIsColimit]
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
i : J
x : (F ⋙ forget MonCat).obj i
j : J
y : (F ⋙ forget MonCat).obj j
⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j))
(↑(F.map (IsFiltered.leftToMax i j)) x * ↑(F.map (IsFiltered.rightToMax i j)) y) =
↑(NatTrans.app t.ι i) x * ↑(NatTrans.app t.ι j) y
[PROOFSTEP]
rw [MonoidHom.map_mul]
-- Porting note : `rw` can't see through coercion is actually forgetful functor,
-- so can't rewrite `t.w_apply`
[GOAL]
case mk.mk
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
i : J
x : (F ⋙ forget MonCat).obj i
j : J
y : (F ⋙ forget MonCat).obj j
⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.leftToMax i j)) x) *
↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.rightToMax i j)) y) =
↑(NatTrans.app t.ι i) x * ↑(NatTrans.app t.ι j) y
[PROOFSTEP]
congr 1
[GOAL]
case mk.mk.e_a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
i : J
x : (F ⋙ forget MonCat).obj i
j : J
y : (F ⋙ forget MonCat).obj j
⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.leftToMax i j)) x) = ↑(NatTrans.app t.ι i) x
[PROOFSTEP]
exact t.w_apply _ _
[GOAL]
case mk.mk.e_a
J : Type v
inst✝¹ : SmallCategory J
F : J ⥤ MonCat
inst✝ : IsFiltered J
t : Cocone F
i : J
x : (F ⋙ forget MonCat).obj i
j : J
y : (F ⋙ forget MonCat).obj j
⊢ ↑(NatTrans.app t.ι (IsFiltered.max i j)) (↑(F.map (IsFiltered.rightToMax i j)) y) = ↑(NatTrans.app t.ι j) y
[PROOFSTEP]
exact t.w_apply _ _
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : ↑(M F)
⊢ x * y = y * x
[PROOFSTEP]
refine Quot.induction_on₂ x y ?_
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : ↑(M F)
⊢ ∀ (a b : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j),
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b =
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a
[PROOFSTEP]
clear x y
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
⊢ ∀ (a b : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j),
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b =
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) b *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) a
[PROOFSTEP]
intro x y
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j
⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y =
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x
[PROOFSTEP]
let k := max' x.1 y.1
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j
k : J := IsFiltered.max x.fst y.fst
⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y =
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x
[PROOFSTEP]
let f := IsFiltered.leftToMax x.1 y.1
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j
k : J := IsFiltered.max x.fst y.fst
f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst
⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y =
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x
[PROOFSTEP]
let g := IsFiltered.rightToMax x.1 y.1
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j
k : J := IsFiltered.max x.fst y.fst
f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst
g : y.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.rightToMax x.fst y.fst
⊢ Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y =
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) y *
Quot.mk (Types.Quot.Rel ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat)) x
[PROOFSTEP]
rw [colimit_mul_mk_eq.{v, u} (F ⋙ forget₂ CommMonCat MonCat) x y k f g,
colimit_mul_mk_eq.{v, u} (F ⋙ forget₂ CommMonCat MonCat) y x k g f]
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j
k : J := IsFiltered.max x.fst y.fst
f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst
g : y.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.rightToMax x.fst y.fst
⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat)
{ fst := k,
snd := ↑((F ⋙ forget₂ CommMonCat MonCat).map f) x.snd * ↑((F ⋙ forget₂ CommMonCat MonCat).map g) y.snd } =
MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat)
{ fst := k,
snd := ↑((F ⋙ forget₂ CommMonCat MonCat).map g) y.snd * ↑((F ⋙ forget₂ CommMonCat MonCat).map f) x.snd }
[PROOFSTEP]
dsimp
[GOAL]
J : Type v
inst✝¹ : SmallCategory J
inst✝ : IsFiltered J
F : J ⥤ CommMonCat
src✝ : MonCat := M F
x y : (j : J) × ((F ⋙ forget₂ CommMonCat MonCat) ⋙ forget MonCat).obj j
k : J := IsFiltered.max x.fst y.fst
f : x.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.leftToMax x.fst y.fst
g : y.fst ⟶ IsFiltered.max x.fst y.fst := IsFiltered.rightToMax x.fst y.fst
⊢ MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat)
{ fst := IsFiltered.max x.fst y.fst,
snd :=
↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.leftToMax x.fst y.fst))) x.snd *
↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.rightToMax x.fst y.fst))) y.snd } =
MonCat.FilteredColimits.M.mk (F ⋙ forget₂ CommMonCat MonCat)
{ fst := IsFiltered.max x.fst y.fst,
snd :=
↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.rightToMax x.fst y.fst))) y.snd *
↑((forget₂ CommMonCat MonCat).map (F.map (IsFiltered.leftToMax x.fst y.fst))) x.snd }
[PROOFSTEP]
rw [mul_comm]
| {"mathlib_filename": "Mathlib.Algebra.Category.MonCat.FilteredColimits", "llama_tokens": 31107} |
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x y : L
⊢ ↑χ ⁅x, y⁆ = 0
[PROOFSTEP]
rw [LieHom.map_lie, LieRing.of_associative_ring_bracket, mul_comm, sub_self]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x y : L
⊢ ⁅↑χ x, ↑χ y⁆ = 0
[PROOFSTEP]
rw [LieRing.of_associative_ring_bracket, mul_comm, sub_self]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ derivedSeries R L 1
⊢ ↑χ x = 0
[PROOFSTEP]
rw [derivedSeries_def, derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_zero, ← LieSubmodule.mem_coeSubmodule,
LieSubmodule.lieIdeal_oper_eq_linear_span] at h
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ↑χ x = 0
[PROOFSTEP]
refine' Submodule.span_induction h _ _ _ _
[GOAL]
case refine'_1
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (x : L), x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → ↑χ x = 0
[PROOFSTEP]
rintro y ⟨⟨z, hz⟩, ⟨⟨w, hw⟩, rfl⟩⟩
[GOAL]
case refine'_1.intro.mk.intro.mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
z : L
hz : z ∈ ⊤
w : L
hw : w ∈ ⊤
⊢ ↑χ ⁅↑{ val := z, property := hz }, ↑{ val := w, property := hw }⁆ = 0
[PROOFSTEP]
apply lieCharacter_apply_lie
[GOAL]
case refine'_2
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ↑χ 0 = 0
[PROOFSTEP]
exact χ.map_zero
[GOAL]
case refine'_3
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (x y : L), ↑χ x = 0 → ↑χ y = 0 → ↑χ (x + y) = 0
[PROOFSTEP]
intro y z hy hz
[GOAL]
case refine'_3
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y z : L
hy : ↑χ y = 0
hz : ↑χ z = 0
⊢ ↑χ (y + z) = 0
[PROOFSTEP]
rw [LieHom.map_add, hy, hz, add_zero]
[GOAL]
case refine'_4
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (a : R) (x : L), ↑χ x = 0 → ↑χ (a • x) = 0
[PROOFSTEP]
intro t y hy
[GOAL]
case refine'_4
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
χ : LieCharacter R L
x : L
h : x ∈ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
t : R
y : L
hy : ↑χ y = 0
⊢ ↑χ (t • y) = 0
[PROOFSTEP]
rw [LieHom.map_smul, hy, smul_zero]
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
ψ : Module.Dual R L
x y : L
⊢ AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
rw [LieModule.IsTrivial.trivial, LieRing.of_associative_ring_bracket, mul_comm, sub_self, LinearMap.toFun_eq_coe,
LinearMap.map_zero]
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
χ : LieCharacter R L
⊢ (fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L), AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
((fun χ => ↑χ) χ) =
χ
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
χ : LieCharacter R L
x✝ : L
⊢ ↑((fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
((fun χ => ↑χ) χ))
x✝ =
↑χ x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
ψ : Module.Dual R L
⊢ (fun χ => ↑χ)
((fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
ψ) =
ψ
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsLieAbelian L
ψ : Module.Dual R L
x✝ : L
⊢ ↑((fun χ => ↑χ)
((fun ψ =>
{
toLinearMap :=
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) },
map_lie' :=
(_ :
∀ {x y : L},
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := ψ.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun ψ.toAddHom (r • x) =
↑(RingHom.id R) r • AddHom.toFun ψ.toAddHom x) }.toAddHom
y⁆) })
ψ))
x✝ =
↑ψ x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Lie.Character", "llama_tokens": 4374} |
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : Add ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance
x✝² x✝¹ x✝ : ⨁ (i : ι), A i
⊢ x✝² * (x✝¹ + x✝) = x✝² * x✝¹ + x✝² * x✝
[PROOFSTEP]
simp only [HMul.hMul, AddMonoidHom.map_add]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : Add ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance
x✝² x✝¹ x✝ : ⨁ (i : ι), A i
⊢ (x✝² + x✝¹) * x✝ = x✝² * x✝ + x✝¹ * x✝
[PROOFSTEP]
simp only [HMul.hMul, AddMonoidHom.map_add, AddMonoidHom.add_apply]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : Add ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance
x✝ : ⨁ (i : ι), A i
⊢ 0 * x✝ = 0
[PROOFSTEP]
simp only [HMul.hMul, map_zero, AddMonoidHom.zero_apply]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : Add ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
src✝ : AddCommMonoid (⨁ (i : ι), A i) := inferInstance
x✝ : ⨁ (i : ι), A i
⊢ x✝ * 0 = 0
[PROOFSTEP]
simp only [HMul.hMul, AddMonoidHom.map_zero]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : Add ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
i j : ι
a : A i
b : A j
⊢ ↑(↑(mulHom A) (↑(of A i) a)) (↑(of A j) b) = ↑(of A (i + j)) (GradedMonoid.GMul.mul a b)
[PROOFSTEP]
unfold mulHom
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : Add ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
i j : ι
a : A i
b : A j
⊢ ↑(↑(toAddMonoid fun x =>
AddMonoidHom.flip
(toAddMonoid fun x_1 => AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of A (x + x_1))) (gMulHom A))))
(↑(of A i) a))
(↑(of A j) b) =
↑(of A (i + j)) (GradedMonoid.GMul.mul a b)
[PROOFSTEP]
simp only [toAddMonoid_of, flip_apply, coe_comp, Function.comp_apply]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : Add ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
i j : ι
a : A i
b : A j
⊢ ↑(↑(↑compHom (of A (i + j))) (↑(gMulHom A) a)) b = ↑(of A (i + j)) (GradedMonoid.GMul.mul a b)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
⊢ 1 * x = x
[PROOFSTEP]
suffices mulHom A One.one = AddMonoidHom.id (⨁ i, A i) from FunLike.congr_fun this x
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
⊢ ↑(mulHom A) One.one = AddMonoidHom.id (⨁ (i : ι), A i)
[PROOFSTEP]
apply addHom_ext
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
⊢ ∀ (i : ι) (y : A i),
↑(↑(mulHom A) One.one) (↑(of (fun i => A i) i) y) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) y)
[PROOFSTEP]
intro i xi
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
i : ι
xi : A i
⊢ ↑(↑(mulHom A) One.one) (↑(of (fun i => A i) i) xi) = ↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi)
[PROOFSTEP]
simp only [One.one]
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
i : ι
xi : A i
⊢ ↑(↑(mulHom A) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one)) (↑(of (fun i => A i) i) xi) =
↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi)
[PROOFSTEP]
rw [mulHom_of_of]
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
i : ι
xi : A i
⊢ ↑(of A (0 + i)) (GradedMonoid.GMul.mul GradedMonoid.GOne.one xi) =
↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi)
[PROOFSTEP]
exact of_eq_of_gradedMonoid_eq (one_mul <| GradedMonoid.mk i xi)
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
⊢ x * 1 = x
[PROOFSTEP]
suffices (mulHom A).flip One.one = AddMonoidHom.id (⨁ i, A i) from FunLike.congr_fun this x
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
⊢ ↑(AddMonoidHom.flip (mulHom A)) One.one = AddMonoidHom.id (⨁ (i : ι), A i)
[PROOFSTEP]
apply addHom_ext
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
⊢ ∀ (i : ι) (y : A i),
↑(↑(AddMonoidHom.flip (mulHom A)) One.one) (↑(of (fun i => A i) i) y) =
↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) y)
[PROOFSTEP]
intro i xi
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
i : ι
xi : A i
⊢ ↑(↑(AddMonoidHom.flip (mulHom A)) One.one) (↑(of (fun i => A i) i) xi) =
↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi)
[PROOFSTEP]
simp only [One.one]
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
i : ι
xi : A i
⊢ ↑(↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one)) (↑(of (fun i => A i) i) xi) =
↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi)
[PROOFSTEP]
rw [flip_apply, mulHom_of_of]
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
x : ⨁ (i : ι), A i
i : ι
xi : A i
⊢ ↑(of A (i + 0)) (GradedMonoid.GMul.mul xi GradedMonoid.GOne.one) =
↑(AddMonoidHom.id (⨁ (i : ι), A i)) (↑(of (fun i => A i) i) xi)
[PROOFSTEP]
exact of_eq_of_gradedMonoid_eq (mul_one <| GradedMonoid.mk i xi)
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
suffices
(mulHom A).compHom.comp (mulHom A) = (AddMonoidHom.compHom flipHom <| (mulHom A).flip.compHom.comp (mulHom A)).flip
by
have sol := FunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this a) b) c
have aux : ∀ a b, (mulHom A) a b = a * b := fun _ _ ↦ rfl
simp only [coe_comp, Function.comp_apply, AddMonoidHom.compHom_apply_apply, aux, flip_apply,
AddMonoidHom.flipHom_apply] at sol
exact sol
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
this :
AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) =
AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
have sol := FunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this a) b) c
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
this :
AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) =
AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))
sol :
↑(↑(↑(AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A)) a) b) c =
↑(↑(↑(AddMonoidHom.flip
(↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))))
a)
b)
c
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
have aux : ∀ a b, (mulHom A) a b = a * b := fun _ _ ↦ rfl
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
this :
AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) =
AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))
sol :
↑(↑(↑(AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A)) a) b) c =
↑(↑(↑(AddMonoidHom.flip
(↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))))
a)
b)
c
aux : ∀ (a b : ⨁ (i : ι), A i), ↑(↑(mulHom A) a) b = a * b
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
simp only [coe_comp, Function.comp_apply, AddMonoidHom.compHom_apply_apply, aux, flip_apply,
AddMonoidHom.flipHom_apply] at sol
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
this :
AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) =
AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))
aux : ∀ (a b : ⨁ (i : ι), A i), ↑(↑(mulHom A) a) b = a * b
sol : a * b * c = a * (b * c)
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
exact sol
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
⊢ AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A) =
AddMonoidHom.flip (↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A)))
[PROOFSTEP]
ext ai ax bi bx ci cx
[GOAL]
case H.h.H.h.H.h
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
ai : ι
ax : A ai
bi : ι
bx : A bi
ci : ι
cx : A ci
⊢ ↑(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(↑(AddMonoidHom.comp (AddMonoidHom.comp (↑compHom (mulHom A)) (mulHom A)) (of (fun i => A i) ai)) ax)
(of (fun i => A i) bi))
bx)
(of (fun i => A i) ci))
cx =
↑(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(AddMonoidHom.flip
(↑(↑compHom flipHom) (AddMonoidHom.comp (↑compHom (AddMonoidHom.flip (mulHom A))) (mulHom A))))
(of (fun i => A i) ai))
ax)
(of (fun i => A i) bi))
bx)
(of (fun i => A i) ci))
cx
[PROOFSTEP]
dsimp only [coe_comp, Function.comp_apply, AddMonoidHom.compHom_apply_apply, flip_apply, AddMonoidHom.flipHom_apply]
[GOAL]
case H.h.H.h.H.h
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
ai : ι
ax : A ai
bi : ι
bx : A bi
ci : ι
cx : A ci
⊢ ↑(↑(mulHom A) (↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx)))
(↑(of (fun i => A i) ci) cx) =
↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax))
(↑(↑(mulHom A) (↑(of (fun i => A i) bi) bx)) (↑(of (fun i => A i) ci) cx))
[PROOFSTEP]
simp_rw [mulHom_of_of]
[GOAL]
case H.h.H.h.H.h
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a b c : ⨁ (i : ι), A i
ai : ι
ax : A ai
bi : ι
bx : A bi
ci : ι
cx : A ci
⊢ ↑(of A (ai + bi + ci)) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul ax bx) cx) =
↑(of A (ai + (bi + ci))) (GradedMonoid.GMul.mul ax (GradedMonoid.GMul.mul bx cx))
[PROOFSTEP]
exact of_eq_of_gradedMonoid_eq (_root_.mul_assoc (GradedMonoid.mk ai ax) ⟨bi, bx⟩ ⟨ci, cx⟩)
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance
⊢ NatCast.natCast 0 = 0
[PROOFSTEP]
simp only [GSemiring.natCast_zero, map_zero]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance
n : ℕ
⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1
[PROOFSTEP]
simp_rw [GSemiring.natCast_succ]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance
n : ℕ
⊢ ↑(of (fun i => A i) 0) (GSemiring.natCast n + GradedMonoid.GOne.one) =
↑(of (fun i => A i) 0) (GSemiring.natCast n) + 1
[PROOFSTEP]
rw [map_add]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
src✝ : NonUnitalNonAssocSemiring (⨁ (i : ι), A i) := inferInstance
n : ℕ
⊢ ↑(of (fun i => A i) 0) (GSemiring.natCast n) + ↑(of (fun i => A i) 0) GradedMonoid.GOne.one =
↑(of (fun i => A i) 0) (GSemiring.natCast n) + 1
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
i : ι
a : A i
n : ℕ
⊢ ↑(of A i) a ^ n = ↑(of A (n • i)) (GradedMonoid.GMonoid.gnpow n a)
[PROOFSTEP]
induction' n with n n_ih
[GOAL]
case zero
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
i : ι
a : A i
⊢ ↑(of A i) a ^ Nat.zero = ↑(of A (Nat.zero • i)) (GradedMonoid.GMonoid.gnpow Nat.zero a)
[PROOFSTEP]
exact of_eq_of_gradedMonoid_eq (pow_zero <| GradedMonoid.mk _ a).symm
[GOAL]
case succ
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
i : ι
a : A i
n : ℕ
n_ih : ↑(of A i) a ^ n = ↑(of A (n • i)) (GradedMonoid.GMonoid.gnpow n a)
⊢ ↑(of A i) a ^ Nat.succ n = ↑(of A (Nat.succ n • i)) (GradedMonoid.GMonoid.gnpow (Nat.succ n) a)
[PROOFSTEP]
rw [pow_succ, n_ih, of_mul_of a]
[GOAL]
case succ
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
i : ι
a : A i
n : ℕ
n_ih : ↑(of A i) a ^ n = ↑(of A (n • i)) (GradedMonoid.GMonoid.gnpow n a)
⊢ ↑(of A (i + n • i)) (GradedMonoid.GMul.mul a (GradedMonoid.GMonoid.gnpow n a)) =
↑(of A (Nat.succ n • i)) (GradedMonoid.GMonoid.gnpow (Nat.succ n) a)
[PROOFSTEP]
exact of_eq_of_gradedMonoid_eq (pow_succ (GradedMonoid.mk _ a) n).symm
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
α : Type u_3
l : List α
fι : α → ι
fA : (a : α) → A (fι a)
⊢ ↑(of A (List.dProdIndex l fι)) (List.dProd l fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) l)
[PROOFSTEP]
induction' l with head tail
[GOAL]
case nil
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
α : Type u_3
fι : α → ι
fA : (a : α) → A (fι a)
⊢ ↑(of A (List.dProdIndex [] fι)) (List.dProd [] fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) [])
[PROOFSTEP]
simp only [List.map_nil, List.prod_nil, List.dProd_nil]
[GOAL]
case nil
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
α : Type u_3
fι : α → ι
fA : (a : α) → A (fι a)
⊢ ↑(of A (List.dProdIndex [] fι)) GradedMonoid.GOne.one = 1
[PROOFSTEP]
rfl
[GOAL]
case cons
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
α : Type u_3
fι : α → ι
fA : (a : α) → A (fι a)
head : α
tail : List α
tail_ih✝ :
↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail)
⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (List.dProd (head :: tail) fι fA) =
List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) (head :: tail))
[PROOFSTEP]
rename_i ih
[GOAL]
case cons
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
α : Type u_3
fι : α → ι
fA : (a : α) → A (fι a)
head : α
tail : List α
ih :
↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail)
⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (List.dProd (head :: tail) fι fA) =
List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) (head :: tail))
[PROOFSTEP]
simp only [List.map_cons, List.prod_cons, List.dProd_cons, ← ih]
[GOAL]
case cons
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
α : Type u_3
fι : α → ι
fA : (a : α) → A (fι a)
head : α
tail : List α
ih :
↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail)
⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (GradedMonoid.GMul.mul (fA head) (List.dProd tail fι fA)) =
↑(of A (fι head)) (fA head) * ↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA)
[PROOFSTEP]
rw [DirectSum.of_mul_of (fA head)]
[GOAL]
case cons
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
α : Type u_3
fι : α → ι
fA : (a : α) → A (fι a)
head : α
tail : List α
ih :
↑(of A (List.dProdIndex tail fι)) (List.dProd tail fι fA) = List.prod (List.map (fun a => ↑(of A (fι a)) (fA a)) tail)
⊢ ↑(of A (List.dProdIndex (head :: tail) fι)) (GradedMonoid.GMul.mul (fA head) (List.dProd tail fι fA)) =
↑(of A (fι head + List.dProdIndex tail fι)) (GradedMonoid.GMul.mul (fA head) (List.dProd tail fι fA))
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
n : ℕ
fι : Fin n → ι
fA : (a : Fin n) → A (fι a)
⊢ List.prod (List.ofFn fun a => ↑(of A (fι a)) (fA a)) =
↑(of A (List.dProdIndex (List.finRange n) fι)) (List.dProd (List.finRange n) fι fA)
[PROOFSTEP]
rw [List.ofFn_eq_map, ofList_dProd]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
⊢ a * a' = DFinsupp.sum a fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj)
[PROOFSTEP]
change
mulHom _ a a' =
_
-- Porting note: I have no idea how the proof from ml3 worked it used to be
-- simpa only [mul_hom, to_add_monoid, dfinsupp.lift_add_hom_apply, dfinsupp.sum_add_hom_apply,
-- add_monoid_hom.dfinsupp_sum_apply, flip_apply, add_monoid_hom.dfinsupp_sum_add_hom_apply],
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
⊢ ↑(↑(mulHom fun i => A i) a) a' =
DFinsupp.sum a fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj)
[PROOFSTEP]
rw [mulHom, toAddMonoid, DFinsupp.liftAddHom_apply, DFinsupp.sumAddHom_apply, AddMonoidHom.dfinsupp_sum_apply]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
⊢ (DFinsupp.sum a fun a b =>
↑(↑(AddMonoidHom.flip
(toAddMonoid fun x =>
AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (a + x))) (gMulHom fun i => A i))))
b)
a') =
DFinsupp.sum a fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj)
[PROOFSTEP]
apply congrArg _
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
⊢ (fun a b =>
↑(↑(AddMonoidHom.flip
(toAddMonoid fun x =>
AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (a + x))) (gMulHom fun i => A i))))
b)
a') =
fun i ai => DFinsupp.sum a' fun j aj => ↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj)
[PROOFSTEP]
funext x
[GOAL]
case h
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
x : ι
⊢ (fun b =>
↑(↑(AddMonoidHom.flip
(toAddMonoid fun x_1 =>
AddMonoidHom.flip
(AddMonoidHom.comp (↑compHom (of (fun i => A i) (x + x_1))) (gMulHom fun i => A i))))
b)
a') =
fun ai => DFinsupp.sum a' fun j aj => ↑(of A (x + j)) (GradedMonoid.GMul.mul ai aj)
[PROOFSTEP]
simp_rw [flip_apply]
[GOAL]
case h
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
x : ι
⊢ (fun b =>
↑(↑(toAddMonoid fun x_1 =>
AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (x + x_1))) (gMulHom fun i => A i)))
a')
b) =
fun ai => DFinsupp.sum a' fun j aj => ↑(of A (x + j)) (GradedMonoid.GMul.mul ai aj)
[PROOFSTEP]
erw [DFinsupp.sumAddHom_apply]
[GOAL]
case h
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
x : ι
⊢ (fun b =>
↑(DFinsupp.sum a' fun x_1 =>
↑((fun x_2 =>
AddMonoidHom.flip (AddMonoidHom.comp (↑compHom (of (fun i => A i) (x + x_2))) (gMulHom fun i => A i)))
x_1))
b) =
fun ai => DFinsupp.sum a' fun j aj => ↑(of A (x + j)) (GradedMonoid.GMul.mul ai aj)
[PROOFSTEP]
simp only [gMulHom, AddMonoidHom.dfinsupp_sum_apply, flip_apply, coe_comp, AddMonoidHom.coe_mk, ZeroHom.coe_mk,
Function.comp_apply, AddMonoidHom.compHom_apply_apply]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : (i : ι) → (x : A i) → Decidable (x ≠ 0)
a a' : ⨁ (i : ι), A i
⊢ a * a' =
∑ ij in DFinsupp.support a ×ˢ DFinsupp.support a',
↑(of (fun i => (fun i => A i) i) (ij.fst + ij.snd)) (GradedMonoid.GMul.mul (↑a ij.fst) (↑a' ij.snd))
[PROOFSTEP]
simp only [mul_eq_dfinsupp_sum, DFinsupp.sum, Finset.sum_product]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
⊢ a * b = b * a
[PROOFSTEP]
suffices mulHom A = (mulHom A).flip by rw [← mulHom_apply, this, AddMonoidHom.flip_apply, mulHom_apply]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
this : mulHom A = AddMonoidHom.flip (mulHom A)
⊢ a * b = b * a
[PROOFSTEP]
rw [← mulHom_apply, this, AddMonoidHom.flip_apply, mulHom_apply]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
⊢ mulHom A = AddMonoidHom.flip (mulHom A)
[PROOFSTEP]
apply addHom_ext
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
⊢ ∀ (i : ι) (y : A i),
↑(mulHom A) (↑(of (fun i => A i) i) y) = ↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) i) y)
[PROOFSTEP]
intro ai ax
[GOAL]
case H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
ai : ι
ax : A ai
⊢ ↑(mulHom A) (↑(of (fun i => A i) ai) ax) = ↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) ai) ax)
[PROOFSTEP]
apply addHom_ext
[GOAL]
case H.H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
ai : ι
ax : A ai
⊢ ∀ (i : ι) (y : A i),
↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) i) y) =
↑(↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) i) y)
[PROOFSTEP]
intro bi bx
[GOAL]
case H.H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
ai : ι
ax : A ai
bi : ι
bx : A bi
⊢ ↑(↑(mulHom A) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx) =
↑(↑(AddMonoidHom.flip (mulHom A)) (↑(of (fun i => A i) ai) ax)) (↑(of (fun i => A i) bi) bx)
[PROOFSTEP]
rw [AddMonoidHom.flip_apply, mulHom_of_of, mulHom_of_of]
[GOAL]
case H.H
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddCommMonoid ι
inst✝ : GCommSemiring A
a b : ⨁ (i : ι), A i
ai : ι
ax : A ai
bi : ι
bx : A bi
⊢ ↑(of A (ai + bi)) (GradedMonoid.GMul.mul ax bx) = ↑(of A (bi + ai)) (GradedMonoid.GMul.mul bx ax)
[PROOFSTEP]
exact of_eq_of_gradedMonoid_eq (GCommSemiring.mul_comm ⟨ai, ax⟩ ⟨bi, bx⟩)
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : AddZeroClass ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
i : ι
⊢ SMulWithZero (A 0) (A i)
[PROOFSTEP]
letI := SMulWithZero.compHom (⨁ i, A i) (of A 0).toZeroHom
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : AddZeroClass ι
inst✝¹ : (i : ι) → AddCommMonoid (A i)
inst✝ : GNonUnitalNonAssocSemiring A
i : ι
this : SMulWithZero (A 0) (⨁ (i : ι), A i) := SMulWithZero.compHom (⨁ (i : ι), A i) ↑(of A 0)
⊢ SMulWithZero (A 0) (A i)
[PROOFSTEP]
exact Function.Injective.smulWithZero (of A i).toZeroHom DFinsupp.single_injective (of_zero_smul A)
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a : A 0
⊢ ↑(of A 0) (a ^ 0) = ↑(of A 0) a ^ 0
[PROOFSTEP]
rw [pow_zero, pow_zero, DirectSum.of_zero_one]
-- Porting note: Lean doesn't think this terminates if we only use `of_zero_pow` alone
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommMonoid (A i)
inst✝¹ : AddMonoid ι
inst✝ : GSemiring A
a : A 0
n : ℕ
⊢ ↑(of A 0) (a ^ (n + 1)) = ↑(of A 0) a ^ (n + 1)
[PROOFSTEP]
rw [pow_succ, pow_succ, of_zero_mul, of_zero_pow _ n]
[GOAL]
ι : Type u_1
inst✝³ : DecidableEq ι
A : ι → Type u_2
inst✝² : (i : ι) → AddCommGroup (A i)
inst✝¹ : AddMonoid ι
inst✝ : GRing A
n : ℤ
⊢ ↑(of A 0) ↑n = ↑n
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
⊢ ↑(toAddMonoid f) 1 = 1
[PROOFSTEP]
change (toAddMonoid f) (of _ 0 _) = 1
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
⊢ ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1
[PROOFSTEP]
rw [toAddMonoid_of]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
⊢ ↑(f 0) GradedMonoid.GOne.one = 1
[PROOFSTEP]
exact hone
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
⊢ ∀ (x y : ⨁ (i : ι), A i),
OneHom.toFun
{ toFun := ↑(toAddMonoid f),
map_one' := (_ : ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1) }
(x * y) =
OneHom.toFun
{ toFun := ↑(toAddMonoid f),
map_one' := (_ : ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1) }
x *
OneHom.toFun
{ toFun := ↑(toAddMonoid f),
map_one' := (_ : ↑(toAddMonoid f) (↑(of (fun i => A i) 0) GradedMonoid.GOne.one) = 1) }
y
[PROOFSTEP]
rw [(toAddMonoid f).map_mul_iff]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
⊢ AddMonoidHom.compr₂ AddMonoidHom.mul (toAddMonoid f) =
AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (toAddMonoid f)) (toAddMonoid f)
[PROOFSTEP]
refine DirectSum.addHom_ext' (fun xi ↦ AddMonoidHom.ext (fun xv ↦ ?_))
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
xi : ι
xv : A xi
⊢ ↑(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (toAddMonoid f)) (of (fun i => A i) xi)) xv =
↑(AddMonoidHom.comp (AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (toAddMonoid f)) (toAddMonoid f))
(of (fun i => A i) xi))
xv
[PROOFSTEP]
refine DirectSum.addHom_ext' (fun yi ↦ AddMonoidHom.ext (fun yv ↦ ?_))
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
xi : ι
xv : A xi
yi : ι
yv : A yi
⊢ ↑(AddMonoidHom.comp
(↑(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (toAddMonoid f)) (of (fun i => A i) xi)) xv)
(of (fun i => A i) yi))
yv =
↑(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (toAddMonoid f)) (toAddMonoid f))
(of (fun i => A i) xi))
xv)
(of (fun i => A i) yi))
yv
[PROOFSTEP]
show toAddMonoid f (of A xi xv * of A yi yv) = toAddMonoid f (of A xi xv) * toAddMonoid f (of A yi yv)
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
xi : ι
xv : A xi
yi : ι
yv : A yi
⊢ ↑(toAddMonoid f) (↑(of A xi) xv * ↑(of A yi) yv) = ↑(toAddMonoid f) (↑(of A xi) xv) * ↑(toAddMonoid f) (↑(of A yi) yv)
[PROOFSTEP]
simp_rw [of_mul_of, toAddMonoid_of]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f : (i : ι) → A i →+ R
hone : ↑(f 0) GradedMonoid.GOne.one = 1
hmul : ∀ {i j : ι} (ai : A i) (aj : A j), ↑(f (i + j)) (GradedMonoid.GMul.mul ai aj) = ↑(f i) ai * ↑(f j) aj
src✝ : (⨁ (i : ι), A i) →+ R := toAddMonoid f
xi : ι
xv : A xi
yi : ι
yv : A yi
⊢ ↑(f (xi + yi)) (GradedMonoid.GMul.mul xv yv) = ↑(f xi) xv * ↑(f yi) yv
[PROOFSTEP]
exact hmul _ _
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
⊢ {i : ι} → A i →+ R
[PROOFSTEP]
intro i
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
i : ι
⊢ A i →+ R
[PROOFSTEP]
exact (F : (⨁ i, A i) →+ R).comp (of _ i)
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
⊢ ↑(AddMonoidHom.comp (↑F) (of A 0)) GradedMonoid.GOne.one = 1
[PROOFSTEP]
simp only [AddMonoidHom.comp_apply]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
⊢ ↑↑F (↑(of A 0) GradedMonoid.GOne.one) = 1
[PROOFSTEP]
rw [← F.map_one]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
⊢ ↑↑F (↑(of A 0) GradedMonoid.GOne.one) = ↑F 1
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
⊢ ∀ {i j : ι} (ai : A i) (aj : A j),
↑(AddMonoidHom.comp (↑F) (of A (i + j))) (GradedMonoid.GMul.mul ai aj) =
↑(AddMonoidHom.comp (↑F) (of A i)) ai * ↑(AddMonoidHom.comp (↑F) (of A j)) aj
[PROOFSTEP]
intros i j ai aj
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
i j : ι
ai : A i
aj : A j
⊢ ↑(AddMonoidHom.comp (↑F) (of A (i + j))) (GradedMonoid.GMul.mul ai aj) =
↑(AddMonoidHom.comp (↑F) (of A i)) ai * ↑(AddMonoidHom.comp (↑F) (of A j)) aj
[PROOFSTEP]
simp [AddMonoidHom.comp_apply]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
i j : ι
ai : A i
aj : A j
⊢ ↑F (↑(of A (i + j)) (GradedMonoid.GMul.mul ai aj)) = ↑F (↑(of A i) ai) * ↑F (↑(of A j) aj)
[PROOFSTEP]
rw [← F.map_mul (of A i ai), of_mul_of ai]
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f :
{ f //
↑f GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), ↑f (GradedMonoid.GMul.mul ai aj) = ↑f ai * ↑f aj }
⊢ (fun F =>
{ val := fun {i} => AddMonoidHom.comp (↑F) (of A i),
property :=
(_ :
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧
∀ {i j : ι} (ai : A i) (aj : A j),
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) =
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai *
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) })
((fun f =>
toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1)
(_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj))
f) =
f
[PROOFSTEP]
ext xi xv
[GOAL]
case a.h.h
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
f :
{ f //
↑f GradedMonoid.GOne.one = 1 ∧ ∀ {i j : ι} (ai : A i) (aj : A j), ↑f (GradedMonoid.GMul.mul ai aj) = ↑f ai * ↑f aj }
xi : ι
xv : A xi
⊢ ↑↑((fun F =>
{ val := fun {i} => AddMonoidHom.comp (↑F) (of A i),
property :=
(_ :
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧
∀ {i j : ι} (ai : A i) (aj : A j),
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) =
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai *
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) })
((fun f =>
toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1)
(_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj))
f))
xv =
↑↑f xv
[PROOFSTEP]
exact toAddMonoid_of (fun _ => f.1) xi xv
[GOAL]
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
⊢ (fun f =>
toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1)
(_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj))
((fun F =>
{ val := fun {i} => AddMonoidHom.comp (↑F) (of A i),
property :=
(_ :
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧
∀ {i j : ι} (ai : A i) (aj : A j),
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) =
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai *
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) })
F) =
F
[PROOFSTEP]
apply RingHom.coe_addMonoidHom_injective
[GOAL]
case a
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
⊢ (fun f => ↑f)
((fun f =>
toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1)
(_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj))
((fun F =>
{ val := fun {i} => AddMonoidHom.comp (↑F) (of A i),
property :=
(_ :
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧
∀ {i j : ι} (ai : A i) (aj : A j),
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) =
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai *
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) })
F)) =
(fun f => ↑f) F
[PROOFSTEP]
refine DirectSum.addHom_ext' (fun xi ↦ AddMonoidHom.ext (fun xv ↦ ?_))
[GOAL]
case a
ι : Type u_1
inst✝⁴ : DecidableEq ι
A : ι → Type u_2
R : Type u_3
inst✝³ : (i : ι) → AddCommMonoid (A i)
inst✝² : AddMonoid ι
inst✝¹ : GSemiring A
inst✝ : Semiring R
F : (⨁ (i : ι), A i) →+* R
xi : ι
xv : A xi
⊢ ↑(AddMonoidHom.comp
((fun f => ↑f)
((fun f =>
toSemiring (fun x => ↑f) (_ : ↑↑f GradedMonoid.GOne.one = 1)
(_ : ∀ {i j : ι} (ai : A i) (aj : A j), ↑↑f (GradedMonoid.GMul.mul ai aj) = ↑↑f ai * ↑↑f aj))
((fun F =>
{ val := fun {i} => AddMonoidHom.comp (↑F) (of A i),
property :=
(_ :
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) GradedMonoid.GOne.one = 1 ∧
∀ {i j : ι} (ai : A i) (aj : A j),
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) (GradedMonoid.GMul.mul ai aj) =
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) ai *
(↑fun {i} => AddMonoidHom.comp (↑F) (of A i)) aj) })
F)))
(of (fun i => A i) xi))
xv =
↑(AddMonoidHom.comp ((fun f => ↑f) F) (of (fun i => A i) xi)) xv
[PROOFSTEP]
simp only [RingHom.coe_addMonoidHom_mk, DirectSum.toAddMonoid_of, AddMonoidHom.mk_coe, AddMonoidHom.comp_apply,
toSemiring_coe_addMonoidHom]
[GOAL]
ι : Type u_1
inst✝² : DecidableEq ι
R : Type u_2
inst✝¹ : AddMonoid ι
inst✝ : Semiring R
i j : ι
a b : R
⊢ ↑(of (fun x => R) i) a * ↑(of (fun i => R) j) b = ↑(of (fun i => R) (i + j)) (a * b)
[PROOFSTEP]
rw [DirectSum.of_mul_of, Mul.gMul_mul]
| {"mathlib_filename": "Mathlib.Algebra.DirectSum.Ring", "llama_tokens": 21896} |
[GOAL]
R : Type u_1
L : Type u_2
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
x y z : L
⊢ ↑(↑(traceForm R L M) ⁅x, y⁆) z = ↑(↑(traceForm R L M) x) ⁅y, z⁆
[PROOFSTEP]
calc
traceForm R L M ⁅x, y⁆ z = trace R _ (φ ⁅x, y⁆ ∘ₗ φ z) := by simp only [traceForm_apply_apply]
_ = trace R _ ((φ x * φ y - φ y * φ x) * φ z) := ?_
_ = trace R _ (φ x * (φ y * φ z)) - trace R _ (φ y * (φ x * φ z)) := ?_
_ = trace R _ (φ x * (φ y * φ z)) - trace R _ (φ x * (φ z * φ y)) := ?_
_ = traceForm R L M x ⁅y, z⁆ := ?_
[GOAL]
R : Type u_1
L : Type u_2
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
x y z : L
⊢ ↑(↑(traceForm R L M) ⁅x, y⁆) z = ↑(trace R M) (LinearMap.comp (↑φ ⁅x, y⁆) (↑φ z))
[PROOFSTEP]
simp only [traceForm_apply_apply]
[GOAL]
case calc_1
R : Type u_1
L : Type u_2
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
x y z : L
⊢ ↑(trace R M) (LinearMap.comp (↑φ ⁅x, y⁆) (↑φ z)) = ↑(trace R M) ((↑φ x * ↑φ y - ↑φ y * ↑φ x) * ↑φ z)
[PROOFSTEP]
simp only [LieHom.map_lie, Ring.lie_def, ← LinearMap.mul_eq_comp]
[GOAL]
case calc_2
R : Type u_1
L : Type u_2
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
x y z : L
⊢ ↑(trace R M) ((↑φ x * ↑φ y - ↑φ y * ↑φ x) * ↑φ z) =
↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ y * (↑φ x * ↑φ z))
[PROOFSTEP]
simp only [sub_mul, mul_sub, map_sub, mul_assoc]
[GOAL]
case calc_3
R : Type u_1
L : Type u_2
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
x y z : L
⊢ ↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ y * (↑φ x * ↑φ z)) =
↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ x * (↑φ z * ↑φ y))
[PROOFSTEP]
simp only [LinearMap.trace_mul_cycle' R (φ x) (φ z) (φ y)]
[GOAL]
case calc_4
R : Type u_1
L : Type u_2
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : Module.Free R M
inst✝ : Module.Finite R M
x y z : L
⊢ ↑(trace R M) (↑φ x * (↑φ y * ↑φ z)) - ↑(trace R M) (↑φ x * (↑φ z * ↑φ y)) = ↑(↑(traceForm R L M) x) ⁅y, z⁆
[PROOFSTEP]
simp only [traceForm_apply_apply, LieHom.map_lie, Ring.lie_def, mul_sub, map_sub, ← LinearMap.mul_eq_comp]
| {"mathlib_filename": "Mathlib.Algebra.Lie.Killing", "llama_tokens": 1612} |
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
⊢ PushoutCocone f g
[PROOFSTEP]
letI := RingHom.toAlgebra f
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this : Algebra ↑R ↑A := RingHom.toAlgebra f
⊢ PushoutCocone f g
[PROOFSTEP]
letI := RingHom.toAlgebra g
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ PushoutCocone f g
[PROOFSTEP]
fapply Limits.PushoutCocone.mk
[GOAL]
case W
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ CommRingCat
case inl
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ A ⟶ ?W
case inr
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ B ⟶ ?W
case eq
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ f ≫ ?inl = g ≫ ?inr
[PROOFSTEP]
show CommRingCat
[GOAL]
case W
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ CommRingCat
case inl
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ A ⟶
let_fun this := ?W;
this
case inr
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ B ⟶
let_fun this := ?W;
this
case eq
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ f ≫ ?inl = g ≫ ?inr
[PROOFSTEP]
exact CommRingCat.of (A ⊗[R] B)
[GOAL]
case inl
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ A ⟶
let_fun this := of (↑A ⊗[↑R] ↑B);
this
case inr
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ B ⟶
let_fun this := of (↑A ⊗[↑R] ↑B);
this
case eq
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ f ≫ ?inl = g ≫ ?inr
[PROOFSTEP]
show A ⟶ _
[GOAL]
case inl
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ A ⟶
let_fun this := of (↑A ⊗[↑R] ↑B);
this
case inr
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ B ⟶
let_fun this := of (↑A ⊗[↑R] ↑B);
this
case eq
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ (f ≫
let_fun this := ?inl;
this) =
g ≫ ?inr
[PROOFSTEP]
exact Algebra.TensorProduct.includeLeftRingHom
[GOAL]
case inr
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ B ⟶
let_fun this := of (↑A ⊗[↑R] ↑B);
this
case eq
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ (f ≫
let_fun this := Algebra.TensorProduct.includeLeftRingHom;
this) =
g ≫ ?inr
[PROOFSTEP]
show B ⟶ _
[GOAL]
case inr
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ B ⟶
let_fun this := of (↑A ⊗[↑R] ↑B);
this
case eq
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ (f ≫
let_fun this := Algebra.TensorProduct.includeLeftRingHom;
this) =
g ≫
let_fun this := ?inr;
this
[PROOFSTEP]
exact Algebra.TensorProduct.includeRight.toRingHom
[GOAL]
case eq
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ (f ≫
let_fun this := Algebra.TensorProduct.includeLeftRingHom;
this) =
g ≫
let_fun this := ↑Algebra.TensorProduct.includeRight;
this
[PROOFSTEP]
ext r
[GOAL]
case eq.w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
r : (forget CommRingCat).obj R
⊢ ↑(f ≫
let_fun this := Algebra.TensorProduct.includeLeftRingHom;
this)
r =
↑(g ≫
let_fun this := ↑Algebra.TensorProduct.includeRight;
this)
r
[PROOFSTEP]
trans algebraMap R (A ⊗[R] B) r
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
r : (forget CommRingCat).obj R
⊢ ↑(f ≫
let_fun this := Algebra.TensorProduct.includeLeftRingHom;
this)
r =
↑(algebraMap (↑R) (↑A ⊗[↑R] ↑B)) r
[PROOFSTEP]
exact Algebra.TensorProduct.includeLeft.commutes (R := R) r
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
r : (forget CommRingCat).obj R
⊢ ↑(algebraMap (↑R) (↑A ⊗[↑R] ↑B)) r =
↑(g ≫
let_fun this := ↑Algebra.TensorProduct.includeRight;
this)
r
[PROOFSTEP]
exact (Algebra.TensorProduct.includeRight.commutes (R := R) r).symm
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
⊢ A ⟶ (pushoutCocone f g).pt
[PROOFSTEP]
letI := f.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this : Algebra ↑R ↑A := RingHom.toAlgebra f
⊢ A ⟶ (pushoutCocone f g).pt
[PROOFSTEP]
letI := g.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ A ⟶ (pushoutCocone f g).pt
[PROOFSTEP]
exact Algebra.TensorProduct.includeLeftRingHom
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
⊢ B ⟶ (pushoutCocone f g).pt
[PROOFSTEP]
letI := f.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this : Algebra ↑R ↑A := RingHom.toAlgebra f
⊢ B ⟶ (pushoutCocone f g).pt
[PROOFSTEP]
letI := g.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ B ⟶ (pushoutCocone f g).pt
[PROOFSTEP]
exact Algebra.TensorProduct.includeRight.toRingHom
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
⊢ CommRingCat
[PROOFSTEP]
letI := f.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this : Algebra ↑R ↑A := RingHom.toAlgebra f
⊢ CommRingCat
[PROOFSTEP]
letI := g.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ CommRingCat
[PROOFSTEP]
exact CommRingCat.of (A ⊗[R] B)
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
letI := RingHom.toAlgebra f
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this : Algebra ↑R ↑A := RingHom.toAlgebra f
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
letI := RingHom.toAlgebra g
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
letI := RingHom.toAlgebra (f ≫ s.inl)
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
let f' : A →ₐ[R] s.pt := { s.inl with commutes' := fun r => rfl }
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
let g' : B →ₐ[R] s.pt :=
{ s.inr with
commutes' := fun r => by
change (g ≫ s.inr) r = (f ≫ s.inl) r
congr 1
exact (s.ι.naturality Limits.WalkingSpan.Hom.snd).trans (s.ι.naturality Limits.WalkingSpan.Hom.fst).symm }
-- Porting note : Lean has forget why `A ⊗[R] B` makes sense
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
src✝ : B ⟶ s.pt := PushoutCocone.inr s
r : ↑R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap ↑R ↑B) r) =
↑(algebraMap ↑R ↑s.pt) r
[PROOFSTEP]
change (g ≫ s.inr) r = (f ≫ s.inl) r
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
src✝ : B ⟶ s.pt := PushoutCocone.inr s
r : ↑R
⊢ ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r
[PROOFSTEP]
congr 1
[GOAL]
case e_a
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
src✝ : B ⟶ s.pt := PushoutCocone.inr s
r : ↑R
⊢ g ≫ PushoutCocone.inr s = f ≫ PushoutCocone.inl s
[PROOFSTEP]
exact (s.ι.naturality Limits.WalkingSpan.Hom.snd).trans (s.ι.naturality Limits.WalkingSpan.Hom.fst).symm
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
letI : Algebra R A := f.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this : Algebra ↑R ↑A := RingHom.toAlgebra f
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
letI : Algebra R B := g.toAlgebra
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝¹ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
letI : Algebra R (pushoutCocone f g).pt :=
show Algebra R (A ⊗[R] B) by
infer_instance
-- The factor map is a ⊗ b ↦ f(a) * g(b).
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝¹ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝ : Algebra ↑R ↑A := RingHom.toAlgebra f
this : Algebra ↑R ↑B := RingHom.toAlgebra g
⊢ Algebra (↑R) (↑A ⊗[↑R] ↑B)
[PROOFSTEP]
infer_instance
-- The factor map is a ⊗ b ↦ f(a) * g(b).
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
⊢ { l //
PushoutCocone.inl (pushoutCocone f g) ≫ l = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ l = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s → m = l }
[PROOFSTEP]
use AlgHom.toRingHom (Algebra.TensorProduct.productMap f' g')
[GOAL]
case property
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
⊢ PushoutCocone.inl (pushoutCocone f g) ≫ ↑(Algebra.TensorProduct.productMap f' g') = PushoutCocone.inl s ∧
PushoutCocone.inr (pushoutCocone f g) ≫ ↑(Algebra.TensorProduct.productMap f' g') = PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
PushoutCocone.inl (pushoutCocone f g) ≫ m = PushoutCocone.inl s →
PushoutCocone.inr (pushoutCocone f g) ≫ m = PushoutCocone.inr s →
m = ↑(Algebra.TensorProduct.productMap f' g')
[PROOFSTEP]
simp only [pushoutCocone_inl, pushoutCocone_inr]
[GOAL]
case property
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
⊢ Algebra.TensorProduct.includeLeftRingHom ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) =
PushoutCocone.inl s ∧
↑Algebra.TensorProduct.includeRight ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) =
PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
Algebra.TensorProduct.includeLeftRingHom ≫ m = PushoutCocone.inl s →
↑Algebra.TensorProduct.includeRight ≫ m = PushoutCocone.inr s →
m =
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })
[PROOFSTEP]
constructor
[GOAL]
case property.left
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
⊢ Algebra.TensorProduct.includeLeftRingHom ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) =
PushoutCocone.inl s
[PROOFSTEP]
ext x
[GOAL]
case property.left.w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj A
⊢ ↑(Algebra.TensorProduct.includeLeftRingHom ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }))
x =
↑(PushoutCocone.inl s) x
[PROOFSTEP]
letI : Semiring ((forget CommRingCat).obj A) := A.str.toSemiring
[GOAL]
case property.left.w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj A
this : Semiring ((forget CommRingCat).obj A) := Ring.toSemiring
⊢ ↑(Algebra.TensorProduct.includeLeftRingHom ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }))
x =
↑(PushoutCocone.inl s) x
[PROOFSTEP]
letI : Algebra R ((forget CommRingCat).obj A) := show Algebra R A by infer_instance
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj A
this : Semiring ((forget CommRingCat).obj A) := Ring.toSemiring
⊢ Algebra ↑R ↑A
[PROOFSTEP]
infer_instance
[GOAL]
case property.left.w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁶ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁵ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝⁴ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝¹ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj A
this✝ : Semiring ((forget CommRingCat).obj A) := Ring.toSemiring
this : Algebra (↑R) ((forget CommRingCat).obj A) :=
let_fun this := inferInstance;
this
⊢ ↑(Algebra.TensorProduct.includeLeftRingHom ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }))
x =
↑(PushoutCocone.inl s) x
[PROOFSTEP]
exact Algebra.TensorProduct.productMap_left_apply _ _ x
[GOAL]
case property.right
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
⊢ ↑Algebra.TensorProduct.includeRight ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) =
PushoutCocone.inr s ∧
∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
Algebra.TensorProduct.includeLeftRingHom ≫ m = PushoutCocone.inl s →
↑Algebra.TensorProduct.includeRight ≫ m = PushoutCocone.inr s →
m =
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })
[PROOFSTEP]
constructor
[GOAL]
case property.right.left
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
⊢ ↑Algebra.TensorProduct.includeRight ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }) =
PushoutCocone.inr s
[PROOFSTEP]
ext x
[GOAL]
case property.right.left.w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj B
⊢ ↑(↑Algebra.TensorProduct.includeRight ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }))
x =
↑(PushoutCocone.inr s) x
[PROOFSTEP]
letI : Semiring ((forget CommRingCat).obj B) := B.str.toSemiring
[GOAL]
case property.right.left.w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj B
this : Semiring ((forget CommRingCat).obj B) := Ring.toSemiring
⊢ ↑(↑Algebra.TensorProduct.includeRight ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }))
x =
↑(PushoutCocone.inr s) x
[PROOFSTEP]
letI : Algebra R ((forget CommRingCat).obj B) := show Algebra R B by infer_instance
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj B
this : Semiring ((forget CommRingCat).obj B) := Ring.toSemiring
⊢ Algebra ↑R ↑B
[PROOFSTEP]
infer_instance
[GOAL]
case property.right.left.w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁶ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁵ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝⁴ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝³ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝² : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝¹ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
x : (forget CommRingCat).obj B
this✝ : Semiring ((forget CommRingCat).obj B) := Ring.toSemiring
this : Algebra (↑R) ((forget CommRingCat).obj B) :=
let_fun this := inferInstance;
this
⊢ ↑(↑Algebra.TensorProduct.includeRight ≫
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }))
x =
↑(PushoutCocone.inr s) x
[PROOFSTEP]
exact Algebra.TensorProduct.productMap_right_apply _ _ x
[GOAL]
case property.right.right
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
⊢ ∀ {m : (pushoutCocone f g).pt ⟶ s.pt},
Algebra.TensorProduct.includeLeftRingHom ≫ m = PushoutCocone.inl s →
↑Algebra.TensorProduct.includeRight ≫ m = PushoutCocone.inr s →
m =
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })
[PROOFSTEP]
intro h eq1 eq2
[GOAL]
case property.right.right
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
⊢ h =
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })
[PROOFSTEP]
let h' : A ⊗[R] B →ₐ[R] s.pt :=
{ h with
commutes' := fun r => by
change h (f r ⊗ₜ[R] 1) = s.inl (f r)
rw [← eq1]
simp only [pushoutCocone_pt, coe_of, AlgHom.toRingHom_eq_coe]
rfl }
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
r : ↑R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) })
(↑(algebraMap (↑R) (↑A ⊗[↑R] ↑B)) r) =
↑(algebraMap ↑R ↑s.pt) r
[PROOFSTEP]
change h (f r ⊗ₜ[R] 1) = s.inl (f r)
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
r : ↑R
⊢ ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)
[PROOFSTEP]
rw [← eq1]
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
r : ↑R
⊢ ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(Algebra.TensorProduct.includeLeftRingHom ≫ h) (↑f r)
[PROOFSTEP]
simp only [pushoutCocone_pt, coe_of, AlgHom.toRingHom_eq_coe]
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
r : ↑R
⊢ ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(Algebra.TensorProduct.includeLeftRingHom ≫ h) (↑f r)
[PROOFSTEP]
rfl
[GOAL]
case property.right.right
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
⊢ h =
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })
[PROOFSTEP]
suffices h' = Algebra.TensorProduct.productMap f' g' by
ext x
change h' x = Algebra.TensorProduct.productMap f' g' x
rw [this]
[GOAL]
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
this : h' = Algebra.TensorProduct.productMap f' g'
⊢ h =
↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s), map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })
[PROOFSTEP]
ext x
[GOAL]
case w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
this : h' = Algebra.TensorProduct.productMap f' g'
x : (forget CommRingCat).obj (pushoutCocone f g).pt
⊢ ↑h x =
↑↑(Algebra.TensorProduct.productMap
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x + OneHom.toFun (↑↑(PushoutCocone.inl s)) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑(PushoutCocone.inl s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inl s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A),
OneHom.toFun (↑↑(PushoutCocone.inl s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inl s)) x +
OneHom.toFun (↑↑(PushoutCocone.inl s)) y) })
(↑(algebraMap ↑R ↑A) r)) }
{
toRingHom :=
{ toMonoidHom := ↑(PushoutCocone.inr s),
map_zero' := (_ : OneHom.toFun (↑↑(PushoutCocone.inr s)) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑B),
OneHom.toFun (↑↑(PushoutCocone.inr s)) (x + y) =
OneHom.toFun (↑↑(PushoutCocone.inr s)) x + OneHom.toFun (↑↑(PushoutCocone.inr s)) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) })
x
[PROOFSTEP]
change h' x = Algebra.TensorProduct.productMap f' g' x
[GOAL]
case w
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁵ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝⁴ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝³ : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝² : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝¹ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝ : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
this : h' = Algebra.TensorProduct.productMap f' g'
x : (forget CommRingCat).obj (pushoutCocone f g).pt
⊢ ↑h' x = ↑(Algebra.TensorProduct.productMap f' g') x
[PROOFSTEP]
rw [this]
[GOAL]
case property.right.right
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
⊢ h' = Algebra.TensorProduct.productMap f' g'
[PROOFSTEP]
apply Algebra.TensorProduct.ext'
[GOAL]
case property.right.right.H
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
⊢ ∀ (a : ↑A) (b : ↑B), ↑h' (a ⊗ₜ[↑R] b) = ↑(Algebra.TensorProduct.productMap f' g') (a ⊗ₜ[↑R] b)
[PROOFSTEP]
intro a b
[GOAL]
case property.right.right.H
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
a : ↑A
b : ↑B
⊢ ↑h' (a ⊗ₜ[↑R] b) = ↑(Algebra.TensorProduct.productMap f' g') (a ⊗ₜ[↑R] b)
[PROOFSTEP]
simp only [PushoutCocone.ι_app_left, pushoutCocone_pt, coe_of, RingHom.toMonoidHom_eq_coe, AlgHom.coe_mk,
RingHom.coe_mk, MonoidHom.coe_coe, ← eq1, AlgHom.toRingHom_eq_coe, PushoutCocone.ι_app_right, ← eq2,
Algebra.TensorProduct.productMap_apply_tmul]
[GOAL]
case property.right.right.H
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
a : ↑A
b : ↑B
⊢ ↑h (a ⊗ₜ[↑R] b) = ↑(Algebra.TensorProduct.includeLeftRingHom ≫ h) a * ↑(↑Algebra.TensorProduct.includeRight ≫ h) b
[PROOFSTEP]
change _ = h (a ⊗ₜ 1) * h (1 ⊗ₜ b)
[GOAL]
case property.right.right.H
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
a : ↑A
b : ↑B
⊢ ↑h (a ⊗ₜ[↑R] b) = ↑h (a ⊗ₜ[↑R] 1) * ↑h (1 ⊗ₜ[↑R] b)
[PROOFSTEP]
rw [← h.map_mul, Algebra.TensorProduct.tmul_mul_tmul, mul_one, one_mul]
[GOAL]
case property.right.right.H
R A B : CommRingCat
f : R ⟶ A
g : R ⟶ B
s : PushoutCocone f g
this✝⁴ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝³ : Algebra ↑R ↑B := RingHom.toAlgebra g
this✝² : Algebra ↑R ↑s.pt := RingHom.toAlgebra (f ≫ PushoutCocone.inl s)
f' : ↑A →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inl s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' :=
(_ :
∀ (r : ↑R),
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r) =
OneHom.toFun
(↑↑{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑A), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) })
(↑(algebraMap ↑R ↑A) r)) }
g' : ↑B →ₐ[↑R] ↑s.pt :=
let src := PushoutCocone.inr s;
{
toRingHom :=
{ toMonoidHom := ↑src, map_zero' := (_ : OneHom.toFun (↑↑src) 0 = 0),
map_add' :=
(_ : ∀ (x y : ↑B), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) },
commutes' := (_ : ∀ (r : ↑R), ↑(g ≫ PushoutCocone.inr s) r = ↑(f ≫ PushoutCocone.inl s) r) }
this✝¹ : Algebra ↑R ↑A := RingHom.toAlgebra f
this✝ : Algebra ↑R ↑B := RingHom.toAlgebra g
this : Algebra ↑R ↑(pushoutCocone f g).pt :=
let_fun this := inferInstance;
this
h : (pushoutCocone f g).pt ⟶ s.pt
eq1 : Algebra.TensorProduct.includeLeftRingHom ≫ h = PushoutCocone.inl s
eq2 : ↑Algebra.TensorProduct.includeRight ≫ h = PushoutCocone.inr s
h' : ↑A ⊗[↑R] ↑B →ₐ[↑R] ↑s.pt :=
{
toRingHom :=
{ toMonoidHom := ↑h, map_zero' := (_ : OneHom.toFun (↑↑h) 0 = 0),
map_add' :=
(_ :
∀ (x y : ↑(pushoutCocone f g).pt),
OneHom.toFun (↑↑h) (x + y) = OneHom.toFun (↑↑h) x + OneHom.toFun (↑↑h) y) },
commutes' := (_ : ∀ (r : ↑R), ↑h (↑f r ⊗ₜ[↑R] 1) = ↑(PushoutCocone.inl s) (↑f r)) }
a : ↑A
b : ↑B
⊢ ↑h (a ⊗ₜ[↑R] b) = ↑h (a ⊗ₜ[↑R] b)
[PROOFSTEP]
rfl
[GOAL]
⊢ IsTerminal (of PUnit)
[PROOFSTEP]
refine IsTerminal.ofUnique (h := fun X => ⟨⟨⟨⟨1, rfl⟩, fun _ _ => rfl⟩, ?_, ?_⟩, ?_⟩)
[GOAL]
case refine_1
X : CommRingCat
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) },
map_mul' :=
(_ :
∀ (x x_1 : ↑X),
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) =
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) })
0 =
0
[PROOFSTEP]
dsimp
[GOAL]
case refine_2
X : CommRingCat
⊢ ∀ (x y : ↑X),
OneHom.toFun
(↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) },
map_mul' :=
(_ :
∀ (x x_1 : ↑X),
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) =
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) },
map_mul' :=
(_ :
∀ (x x_1 : ↑X),
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) =
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) },
map_mul' :=
(_ :
∀ (x x_1 : ↑X),
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) =
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) })
y
[PROOFSTEP]
intros
[GOAL]
case refine_2
X : CommRingCat
x✝ y✝ : ↑X
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) },
map_mul' :=
(_ :
∀ (x x_1 : ↑X),
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) =
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) })
(x✝ + y✝) =
OneHom.toFun
(↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) },
map_mul' :=
(_ :
∀ (x x_1 : ↑X),
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) =
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) })
x✝ +
OneHom.toFun
(↑{ toOneHom := { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) },
map_mul' :=
(_ :
∀ (x x_1 : ↑X),
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1) =
OneHom.toFun { toFun := 1, map_one' := (_ : OfNat.ofNat 1 1 = OfNat.ofNat 1 1) } (x * x_1)) })
y✝
[PROOFSTEP]
dsimp
[GOAL]
case refine_3
X : CommRingCat
⊢ ∀ (a : X ⟶ of PUnit), a = default
[PROOFSTEP]
intros f
[GOAL]
case refine_3
X : CommRingCat
f : X ⟶ of PUnit
⊢ f = default
[PROOFSTEP]
ext
[GOAL]
case refine_3.w
X : CommRingCat
f : X ⟶ of PUnit
x✝ : (forget CommRingCat).obj X
⊢ ↑f x✝ = ↑default x✝
[PROOFSTEP]
rfl
[GOAL]
⊢ HasStrictTerminalObjects CommRingCat
[PROOFSTEP]
apply hasStrictTerminalObjects_of_terminal_is_strict (CommRingCat.of PUnit)
[GOAL]
⊢ ∀ (A : CommRingCat) (f : of PUnit ⟶ A), IsIso f
[PROOFSTEP]
intro X f
[GOAL]
X : CommRingCat
f : of PUnit ⟶ X
⊢ IsIso f
[PROOFSTEP]
refine ⟨⟨⟨1, rfl, fun _ _ => rfl⟩, by ext; rfl, ?_⟩⟩
[GOAL]
X : CommRingCat
f : of PUnit ⟶ X
⊢ f ≫
{ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0),
map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } =
𝟙 (of PUnit)
[PROOFSTEP]
ext
[GOAL]
case w
X : CommRingCat
f : of PUnit ⟶ X
x✝ : (forget CommRingCat).obj (of PUnit)
⊢ ↑(f ≫
{ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0),
map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) })
x✝ =
↑(𝟙 (of PUnit)) x✝
[PROOFSTEP]
rfl
[GOAL]
X : CommRingCat
f : of PUnit ⟶ X
⊢ { toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0),
map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫
f =
𝟙 X
[PROOFSTEP]
ext x
[GOAL]
case w
X : CommRingCat
f : of PUnit ⟶ X
x : (forget CommRingCat).obj X
⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0),
map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫
f)
x =
↑(𝟙 X) x
[PROOFSTEP]
have e : (0 : X) = 1 := by
rw [← f.map_one, ← f.map_zero]
congr
[GOAL]
X : CommRingCat
f : of PUnit ⟶ X
x : (forget CommRingCat).obj X
⊢ 0 = 1
[PROOFSTEP]
rw [← f.map_one, ← f.map_zero]
[GOAL]
X : CommRingCat
f : of PUnit ⟶ X
x : (forget CommRingCat).obj X
⊢ ↑f 0 = ↑f 1
[PROOFSTEP]
congr
[GOAL]
case w
X : CommRingCat
f : of PUnit ⟶ X
x : (forget CommRingCat).obj X
e : 0 = 1
⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0),
map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫
f)
x =
↑(𝟙 X) x
[PROOFSTEP]
replace e : 0 * x = 1 * x := congr_arg (· * x) e
[GOAL]
case w
X : CommRingCat
f : of PUnit ⟶ X
x : (forget CommRingCat).obj X
e : 0 * x = 1 * x
⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0),
map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫
f)
x =
↑(𝟙 X) x
[PROOFSTEP]
rw [one_mul, zero_mul, ← f.map_zero] at e
[GOAL]
case w
X : CommRingCat
f : of PUnit ⟶ X
x : (forget CommRingCat).obj X
e : ↑f 0 = x
⊢ ↑({ toMonoidHom := 1, map_zero' := (_ : OneHom.toFun (↑1) 0 = OneHom.toFun (↑1) 0),
map_add' := (_ : ∀ (x x_1 : ↑X), OneHom.toFun (↑1) (x + x_1) = OneHom.toFun (↑1) (x + x_1)) } ≫
f)
x =
↑(𝟙 X) x
[PROOFSTEP]
exact e
[GOAL]
X : CommRingCat
hX : IsTerminal X
⊢ Subsingleton PUnit
[PROOFSTEP]
infer_instance
[GOAL]
A B : CommRingCat
c : Cone (pair A B)
j : Discrete WalkingPair
⊢ (fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right }))
c ≫
NatTrans.app (prodFan A B).π j =
NatTrans.app c.π j
[PROOFSTEP]
ext
[GOAL]
case w
A B : CommRingCat
c : Cone (pair A B)
j : Discrete WalkingPair
x✝ : (forget CommRingCat).obj c.pt
⊢ ↑((fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right }))
c ≫
NatTrans.app (prodFan A B).π j)
x✝ =
↑(NatTrans.app c.π j) x✝
[PROOFSTEP]
rcases j with ⟨⟨⟩⟩
[GOAL]
case w.mk.left
A B : CommRingCat
c : Cone (pair A B)
x✝ : (forget CommRingCat).obj c.pt
⊢ ↑((fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right }))
c ≫
NatTrans.app (prodFan A B).π { as := WalkingPair.left })
x✝ =
↑(NatTrans.app c.π { as := WalkingPair.left }) x✝
[PROOFSTEP]
simp only [pair_obj_left, prodFan_pt, BinaryFan.π_app_left, BinaryFan.π_app_right, FunctorToTypes.map_comp_apply,
forget_map, coe_of, RingHom.prod_apply]
[GOAL]
case w.mk.right
A B : CommRingCat
c : Cone (pair A B)
x✝ : (forget CommRingCat).obj c.pt
⊢ ↑((fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right }))
c ≫
NatTrans.app (prodFan A B).π { as := WalkingPair.right })
x✝ =
↑(NatTrans.app c.π { as := WalkingPair.right }) x✝
[PROOFSTEP]
simp only [pair_obj_left, prodFan_pt, BinaryFan.π_app_left, BinaryFan.π_app_right, FunctorToTypes.map_comp_apply,
forget_map, coe_of, RingHom.prod_apply]
[GOAL]
case w.mk.left
A B : CommRingCat
c : Cone (pair A B)
x✝ : (forget CommRingCat).obj c.pt
⊢ ↑(RingHom.prod (BinaryFan.fst c) (BinaryFan.snd c) ≫ BinaryFan.fst (prodFan A B)) x✝ = ↑(BinaryFan.fst c) x✝
[PROOFSTEP]
rfl
[GOAL]
case w.mk.right
A B : CommRingCat
c : Cone (pair A B)
x✝ : (forget CommRingCat).obj c.pt
⊢ ↑(RingHom.prod (BinaryFan.fst c) (BinaryFan.snd c) ≫ BinaryFan.snd (prodFan A B)) x✝ = ↑(BinaryFan.snd c) x✝
[PROOFSTEP]
rfl
[GOAL]
A B : CommRingCat
s : Cone (pair A B)
m : s.pt ⟶ (prodFan A B).pt
h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j
⊢ m =
(fun c => RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right }))
s
[PROOFSTEP]
ext x
[GOAL]
case w
A B : CommRingCat
s : Cone (pair A B)
m : s.pt ⟶ (prodFan A B).pt
h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j
x : (forget CommRingCat).obj s.pt
⊢ ↑m x =
↑((fun c =>
RingHom.prod (NatTrans.app c.π { as := WalkingPair.left }) (NatTrans.app c.π { as := WalkingPair.right }))
s)
x
[PROOFSTEP]
change m x = (BinaryFan.fst s x, BinaryFan.snd s x)
[GOAL]
case w
A B : CommRingCat
s : Cone (pair A B)
m : s.pt ⟶ (prodFan A B).pt
h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j
x : (forget CommRingCat).obj s.pt
⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x)
[PROOFSTEP]
have eq1 := congr_hom (h ⟨WalkingPair.left⟩) x
[GOAL]
case w
A B : CommRingCat
s : Cone (pair A B)
m : s.pt ⟶ (prodFan A B).pt
h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j
x : (forget CommRingCat).obj s.pt
eq1 :
↑(m ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.left }) x = ↑(NatTrans.app s.π { as := WalkingPair.left }) x
⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x)
[PROOFSTEP]
have eq2 := congr_hom (h ⟨WalkingPair.right⟩) x
[GOAL]
case w
A B : CommRingCat
s : Cone (pair A B)
m : s.pt ⟶ (prodFan A B).pt
h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j
x : (forget CommRingCat).obj s.pt
eq1 :
↑(m ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.left }) x = ↑(NatTrans.app s.π { as := WalkingPair.left }) x
eq2 :
↑(m ≫ NatTrans.app (prodFan A B).π { as := WalkingPair.right }) x = ↑(NatTrans.app s.π { as := WalkingPair.right }) x
⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x)
[PROOFSTEP]
dsimp at eq1 eq2
[GOAL]
case w
A B : CommRingCat
s : Cone (pair A B)
m : s.pt ⟶ (prodFan A B).pt
h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j
x : (forget CommRingCat).obj s.pt
eq1 : ↑(m ≫ BinaryFan.fst (prodFan A B)) x = ↑(BinaryFan.fst s) x
eq2 : ↑(m ≫ BinaryFan.snd (prodFan A B)) x = ↑(BinaryFan.snd s) x
⊢ ↑m x = (↑(BinaryFan.fst s) x, ↑(BinaryFan.snd s) x)
[PROOFSTEP]
rw [← eq1, ← eq2]
[GOAL]
case w
A B : CommRingCat
s : Cone (pair A B)
m : s.pt ⟶ (prodFan A B).pt
h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodFan A B).π j = NatTrans.app s.π j
x : (forget CommRingCat).obj s.pt
eq1 : ↑(m ≫ BinaryFan.fst (prodFan A B)) x = ↑(BinaryFan.fst s) x
eq2 : ↑(m ≫ BinaryFan.snd (prodFan A B)) x = ↑(BinaryFan.snd s) x
⊢ ↑m x = (↑(m ≫ BinaryFan.fst (prodFan A B)) x, ↑(m ≫ BinaryFan.snd (prodFan A B)) x)
[PROOFSTEP]
rfl
[GOAL]
A B : CommRingCat
f g : A ⟶ B
⊢ ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ f = ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ g
[PROOFSTEP]
ext ⟨x, e⟩
[GOAL]
case w.mk
A B : CommRingCat
f g : A ⟶ B
x : ↑A
e : x ∈ RingHom.eqLocus f g
⊢ ↑(ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ f) { val := x, property := e } =
↑(ofHom (Subring.subtype (RingHom.eqLocus f g)) ≫ g) { val := x, property := e }
[PROOFSTEP]
simpa using e
[GOAL]
A B : CommRingCat
f g : A ⟶ B
⊢ IsLimit (equalizerFork f g)
[PROOFSTEP]
fapply Fork.IsLimit.mk'
[GOAL]
case create
A B : CommRingCat
f g : A ⟶ B
⊢ (s : Fork f g) →
{ l //
l ≫ Fork.ι (equalizerFork f g) = Fork.ι s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero},
m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = l }
[PROOFSTEP]
intro s
[GOAL]
case create
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
⊢ { l //
l ≫ Fork.ι (equalizerFork f g) = Fork.ι s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero},
m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = l }
[PROOFSTEP]
haveI : SubsemiringClass (Subring A) ((parallelPair f g).obj WalkingParallelPair.zero) :=
show SubsemiringClass (Subring A) A by infer_instance
[GOAL]
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
⊢ SubsemiringClass (Subring ↑A) ↑A
[PROOFSTEP]
infer_instance
[GOAL]
case create
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero)
⊢ { l //
l ≫ Fork.ι (equalizerFork f g) = Fork.ι s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero},
m ≫ Fork.ι (equalizerFork f g) = Fork.ι s → m = l }
[PROOFSTEP]
use s.ι.codRestrict _ fun x => (ConcreteCategory.congr_hom s.condition x : _)
[GOAL]
case property
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero)
⊢ RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g)
(_ :
∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) ≫
Fork.ι (equalizerFork f g) =
Fork.ι s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero},
m ≫ Fork.ι (equalizerFork f g) = Fork.ι s →
m =
RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g)
(_ :
∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x)
[PROOFSTEP]
constructor
[GOAL]
case property.left
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero)
⊢ RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g)
(_ :
∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) ≫
Fork.ι (equalizerFork f g) =
Fork.ι s
[PROOFSTEP]
ext
[GOAL]
case property.left.w
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero)
x✝ : (forget CommRingCat).obj (((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)
⊢ ↑(RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g)
(_ :
∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) ≫
Fork.ι (equalizerFork f g))
x✝ =
↑(Fork.ι s) x✝
[PROOFSTEP]
rfl
[GOAL]
case property.right
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero)
⊢ ∀
{m :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero},
m ≫ Fork.ι (equalizerFork f g) = Fork.ι s →
m =
RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g)
(_ :
∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x)
[PROOFSTEP]
intro m hm
[GOAL]
case property.right
A B : CommRingCat
f g : A ⟶ B
s : Fork f g
this : SubsemiringClass (Subring ↑A) ↑((parallelPair f g).obj WalkingParallelPair.zero)
m :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero
hm : m ≫ Fork.ι (equalizerFork f g) = Fork.ι s
⊢ m =
RingHom.codRestrict (Fork.ι s) (RingHom.eqLocus f g)
(_ :
∀ (x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x)
[PROOFSTEP]
exact RingHom.ext fun x => Subtype.ext <| ConcreteCategory.congr_hom hm x
[GOAL]
A B : CommRingCat
f g : A ⟶ B
⊢ IsLocalRingHom (Fork.ι (equalizerFork f g))
[PROOFSTEP]
constructor
[GOAL]
case map_nonunit
A B : CommRingCat
f g : A ⟶ B
⊢ ∀ (a : ↑(((Functor.const WalkingParallelPair).obj (equalizerFork f g).pt).obj WalkingParallelPair.zero)),
IsUnit (↑(Fork.ι (equalizerFork f g)) a) → IsUnit a
[PROOFSTEP]
rintro ⟨a, h₁ : _ = _⟩ (⟨⟨x, y, h₃, h₄⟩, rfl : x = _⟩ : IsUnit a)
[GOAL]
case map_nonunit.mk.intro.mk
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
⊢ IsUnit { val := x, property := h₁ }
[PROOFSTEP]
have : y ∈ RingHom.eqLocus f g :=
by
apply (f.isUnit_map ⟨⟨x, y, h₃, h₄⟩, rfl⟩ : IsUnit (f x)).mul_left_inj.mp
conv_rhs => rw [h₁]
rw [← f.map_mul, ← g.map_mul, h₄, f.map_one, g.map_one]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
⊢ y ∈ RingHom.eqLocus f g
[PROOFSTEP]
apply (f.isUnit_map ⟨⟨x, y, h₃, h₄⟩, rfl⟩ : IsUnit (f x)).mul_left_inj.mp
[GOAL]
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
⊢ ↑f y * ↑f x = ↑g y * ↑f x
[PROOFSTEP]
conv_rhs => rw [h₁]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
| ↑g y * ↑f x
[PROOFSTEP]
rw [h₁]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
| ↑g y * ↑f x
[PROOFSTEP]
rw [h₁]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
| ↑g y * ↑f x
[PROOFSTEP]
rw [h₁]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
⊢ ↑f y * ↑f x = ↑g y * ↑g x
[PROOFSTEP]
rw [← f.map_mul, ← g.map_mul, h₄, f.map_one, g.map_one]
[GOAL]
case map_nonunit.mk.intro.mk
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
this : y ∈ RingHom.eqLocus f g
⊢ IsUnit { val := x, property := h₁ }
[PROOFSTEP]
rw [isUnit_iff_exists_inv]
[GOAL]
case map_nonunit.mk.intro.mk
A B : CommRingCat
f g : A ⟶ B
x y : ↑A
h₃ : x * y = 1
h₄ : y * x = 1
h₁ : ↑f x = ↑g x
this : y ∈ RingHom.eqLocus f g
⊢ ∃ b, { val := x, property := h₁ } * b = 1
[PROOFSTEP]
exact ⟨⟨y, this⟩, Subtype.eq h₃⟩
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPair ⥤ CommRingCat
⊢ IsLocalRingHom (limit.π F WalkingParallelPair.zero)
[PROOFSTEP]
have := limMap_π (diagramIsoParallelPair F).hom WalkingParallelPair.zero
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPair ⥤ CommRingCat
this :
limMap (diagramIsoParallelPair F).hom ≫
limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
WalkingParallelPair.zero =
limit.π F WalkingParallelPair.zero ≫ NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero
⊢ IsLocalRingHom (limit.π F WalkingParallelPair.zero)
[PROOFSTEP]
rw [← IsIso.comp_inv_eq] at this
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPair ⥤ CommRingCat
this :
(limMap (diagramIsoParallelPair F).hom ≫
limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
WalkingParallelPair.zero) ≫
inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) =
limit.π F WalkingParallelPair.zero
⊢ IsLocalRingHom (limit.π F WalkingParallelPair.zero)
[PROOFSTEP]
rw [← this]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPair ⥤ CommRingCat
this :
(limMap (diagramIsoParallelPair F).hom ≫
limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
WalkingParallelPair.zero) ≫
inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) =
limit.π F WalkingParallelPair.zero
⊢ IsLocalRingHom
((limMap (diagramIsoParallelPair F).hom ≫
limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
WalkingParallelPair.zero) ≫
inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero))
[PROOFSTEP]
rw [←
limit.isoLimitCone_hom_π
⟨_, equalizerForkIsLimit (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)⟩
WalkingParallelPair.zero]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPair ⥤ CommRingCat
this :
(limMap (diagramIsoParallelPair F).hom ≫
limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
WalkingParallelPair.zero) ≫
inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) =
limit.π F WalkingParallelPair.zero
⊢ IsLocalRingHom
((limMap (diagramIsoParallelPair F).hom ≫
(limit.isoLimitCone
{ cone := equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right),
isLimit :=
equalizerForkIsLimit (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right) }).hom ≫
NatTrans.app
{ cone := equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right),
isLimit :=
equalizerForkIsLimit (F.map WalkingParallelPairHom.left)
(F.map WalkingParallelPairHom.right) }.cone.π
WalkingParallelPair.zero) ≫
inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero))
[PROOFSTEP]
change IsLocalRingHom ((lim.map _ ≫ _ ≫ (equalizerFork _ _).ι) ≫ _)
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPair ⥤ CommRingCat
this :
(limMap (diagramIsoParallelPair F).hom ≫
limit.π (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
WalkingParallelPair.zero) ≫
inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero) =
limit.π F WalkingParallelPair.zero
⊢ IsLocalRingHom
((lim.map (diagramIsoParallelPair F).hom ≫
(limit.isoLimitCone
{ cone := equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right),
isLimit :=
equalizerForkIsLimit (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right) }).hom ≫
Fork.ι (equalizerFork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))) ≫
inv (NatTrans.app (diagramIsoParallelPair F).hom WalkingParallelPair.zero))
[PROOFSTEP]
infer_instance
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPairᵒᵖ ⥤ CommRingCat
⊢ IsLocalRingHom (limit.π F (op one))
[PROOFSTEP]
have : _ = limit.π F (walkingParallelPairOpEquiv.functor.obj _) :=
(limit.isoLimitCone_inv_π ⟨_, IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv⟩
WalkingParallelPair.zero :
_)
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPairᵒᵖ ⥤ CommRingCat
this :
(limit.isoLimitCone
{ cone := Cone.whisker walkingParallelPairOpEquiv.functor (limit.cone F),
isLimit := IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv }).inv ≫
limit.π (walkingParallelPairOpEquiv.functor ⋙ F) zero =
limit.π F (walkingParallelPairOpEquiv.functor.obj zero)
⊢ IsLocalRingHom (limit.π F (op one))
[PROOFSTEP]
erw [← this]
[GOAL]
A B : CommRingCat
f g : A ⟶ B
F : WalkingParallelPairᵒᵖ ⥤ CommRingCat
this :
(limit.isoLimitCone
{ cone := Cone.whisker walkingParallelPairOpEquiv.functor (limit.cone F),
isLimit := IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv }).inv ≫
limit.π (walkingParallelPairOpEquiv.functor ⋙ F) zero =
limit.π F (walkingParallelPairOpEquiv.functor.obj zero)
⊢ IsLocalRingHom
((limit.isoLimitCone
{ cone := Cone.whisker walkingParallelPairOpEquiv.functor (limit.cone F),
isLimit := IsLimit.whiskerEquivalence (limit.isLimit F) walkingParallelPairOpEquiv }).inv ≫
limit.π (walkingParallelPairOpEquiv.functor ⋙ F) zero)
[PROOFSTEP]
infer_instance
[GOAL]
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
⊢ ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫
f =
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫
g
[PROOFSTEP]
ext ⟨x, e⟩
[GOAL]
case w.mk
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
x : ↑A × ↑B
e : x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))
⊢ ↑(ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫
f)
{ val := x, property := e } =
↑(ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) ≫
g)
{ val := x, property := e }
[PROOFSTEP]
simpa [CommRingCat.ofHom] using e
[GOAL]
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
⊢ IsLimit (pullbackCone f g)
[PROOFSTEP]
fapply PullbackCone.IsLimit.mk
[GOAL]
case lift
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
⊢ (s : PullbackCone f g) →
s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
[PROOFSTEP]
intro s
[GOAL]
case lift
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
⊢ s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
[PROOFSTEP]
apply (s.fst.prod s.snd).codRestrict
[GOAL]
case lift.h
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
⊢ ∀ (x : ↑s.pt),
↑(RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) x ∈
RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))
[PROOFSTEP]
intro x
[GOAL]
case lift.h
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
x : ↑s.pt
⊢ ↑(RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s)) x ∈
RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))
[PROOFSTEP]
exact congr_arg (fun f : s.pt →+* C => f x) s.condition
[GOAL]
case fac_left
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
⊢ ∀ (s : PullbackCone f g),
RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
[PROOFSTEP]
intro s
[GOAL]
case fac_left
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
⊢ RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
[PROOFSTEP]
ext x
[GOAL]
case fac_left.w
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
x : (forget CommRingCat).obj s.pt
⊢ ↑(RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x =
↑(PullbackCone.fst s) x
[PROOFSTEP]
rfl
[GOAL]
case fac_right
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
⊢ ∀ (s : PullbackCone f g),
RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
[PROOFSTEP]
intro s
[GOAL]
case fac_right
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
⊢ RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
[PROOFSTEP]
ext x
[GOAL]
case fac_right.w
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
x : (forget CommRingCat).obj s.pt
⊢ ↑(RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x) ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x =
↑(PullbackCone.snd s) x
[PROOFSTEP]
rfl
[GOAL]
case uniq
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
⊢ ∀ (s : PullbackCone f g)
(m :
s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }),
m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s →
m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s →
m =
RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x)
[PROOFSTEP]
intro s m e₁ e₂
[GOAL]
case uniq
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
e₁ :
m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
e₂ :
m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
⊢ m =
RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x)
[PROOFSTEP]
refine RingHom.ext fun (x : s.pt) => Subtype.ext ?_
[GOAL]
case uniq
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
e₁ :
m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
e₂ :
m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
x : ↑s.pt
⊢ ↑(↑m x) =
↑(↑(RingHom.codRestrict (RingHom.prod (PullbackCone.fst s) (PullbackCone.snd s))
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)))
(_ : ∀ (x : ↑s.pt), ↑(PullbackCone.fst s ≫ f) x = ↑(PullbackCone.snd s ≫ g) x))
x)
[PROOFSTEP]
change (m x).1 = (_, _)
[GOAL]
case uniq
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
e₁ :
m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
e₂ :
m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
x : ↑s.pt
⊢ ↑(↑m x) = (↑(PullbackCone.fst s) x, ↑(PullbackCone.snd s) x)
[PROOFSTEP]
have eq1 := (congr_arg (fun f : s.pt →+* A => f x) e₁ : _)
[GOAL]
case uniq
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
e₁ :
m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
e₂ :
m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
x : ↑s.pt
eq1 :
↑(m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x =
↑(PullbackCone.fst s) x
⊢ ↑(↑m x) = (↑(PullbackCone.fst s) x, ↑(PullbackCone.snd s) x)
[PROOFSTEP]
have eq2 := (congr_arg (fun f : s.pt →+* B => f x) e₂ : _)
[GOAL]
case uniq
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
e₁ :
m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
e₂ :
m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
x : ↑s.pt
eq1 :
↑(m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x =
↑(PullbackCone.fst s) x
eq2 :
↑(m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x =
↑(PullbackCone.snd s) x
⊢ ↑(↑m x) = (↑(PullbackCone.fst s) x, ↑(PullbackCone.snd s) x)
[PROOFSTEP]
rw [← eq1, ← eq2]
[GOAL]
case uniq
A B C : CommRingCat
f : A ⟶ C
g : B ⟶ C
s : PullbackCone f g
m : s.pt ⟶ of { x // x ∈ RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B)) }
e₁ :
m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.fst s
e₂ :
m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))) =
PullbackCone.snd s
x : ↑s.pt
eq1 :
↑(m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x =
↑(PullbackCone.fst s) x
eq2 :
↑(m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x =
↑(PullbackCone.snd s) x
⊢ ↑(↑m x) =
(↑(m ≫
ofHom
(RingHom.comp (RingHom.fst ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x,
↑(m ≫
ofHom
(RingHom.comp (RingHom.snd ↑A ↑B)
(Subring.subtype
(RingHom.eqLocus (RingHom.comp f (RingHom.fst ↑A ↑B)) (RingHom.comp g (RingHom.snd ↑A ↑B))))))
x)
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Category.Ring.Constructions", "llama_tokens": 75061} |
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ IsSemisimple R L ↔ ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
[PROOFSTEP]
rw [isSemisimple_iff_no_solvable_ideals]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ (∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥) ↔
∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ (∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥) →
∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
[PROOFSTEP]
intro h₁ I h₂
[GOAL]
case mpr
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ (∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥) →
∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥
[PROOFSTEP]
intro h₁ I h₂
[GOAL]
case mp
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h₁ : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥
I : LieIdeal R L
h₂ : IsLieAbelian { x // x ∈ ↑I }
⊢ I = ⊥
[PROOFSTEP]
haveI : IsLieAbelian I := h₂
[GOAL]
case mp
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h₁ : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥
I : LieIdeal R L
h₂ this : IsLieAbelian { x // x ∈ ↑I }
⊢ I = ⊥
[PROOFSTEP]
apply h₁
[GOAL]
case mp.a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h₁ : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → I = ⊥
I : LieIdeal R L
h₂ this : IsLieAbelian { x // x ∈ ↑I }
⊢ IsSolvable R { x // x ∈ ↑I }
[PROOFSTEP]
exact LieAlgebra.ofAbelianIsSolvable R I
[GOAL]
case mpr
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
I : LieIdeal R L
h₂ : IsSolvable R { x // x ∈ ↑I }
⊢ I = ⊥
[PROOFSTEP]
haveI : IsSolvable R I := h₂
[GOAL]
case mpr
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
I : LieIdeal R L
h₂ this : IsSolvable R { x // x ∈ ↑I }
⊢ I = ⊥
[PROOFSTEP]
rw [← abelian_of_solvable_ideal_eq_bot_iff]
[GOAL]
case mpr
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
I : LieIdeal R L
h₂ this : IsSolvable R { x // x ∈ ↑I }
⊢ derivedAbelianOfIdeal I = ⊥
[PROOFSTEP]
apply h₁
[GOAL]
case mpr.a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h₁ : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
I : LieIdeal R L
h₂ this : IsSolvable R { x // x ∈ ↑I }
⊢ IsLieAbelian { x // x ∈ ↑(derivedAbelianOfIdeal I) }
[PROOFSTEP]
exact abelian_derivedAbelianOfIdeal I
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : IsSemisimple R L
⊢ center R L = ⊥
[PROOFSTEP]
rw [isSemisimple_iff_no_abelian_ideals] at h
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
⊢ center R L = ⊥
[PROOFSTEP]
apply h
[GOAL]
case a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
⊢ IsLieAbelian { x // x ∈ ↑(center R L) }
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : IsSimple R L
⊢ IsSemisimple R L
[PROOFSTEP]
rw [isSemisimple_iff_no_abelian_ideals]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : IsSimple R L
⊢ ∀ (I : LieIdeal R L), IsLieAbelian { x // x ∈ ↑I } → I = ⊥
[PROOFSTEP]
intro I hI
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : IsSimple R L
I : LieIdeal R L
hI : IsLieAbelian { x // x ∈ ↑I }
⊢ I = ⊥
[PROOFSTEP]
obtain @⟨⟨h₁⟩, h₂⟩ := id h
[GOAL]
case mk.mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : IsSimple R L
I : LieIdeal R L
hI : IsLieAbelian { x // x ∈ ↑I }
h₂ : ¬IsLieAbelian L
h₁ : ∀ (N : LieSubmodule R L L), N ≠ ⊥ → N = ⊤
⊢ I = ⊥
[PROOFSTEP]
by_contra contra
[GOAL]
case mk.mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : IsSimple R L
I : LieIdeal R L
hI : IsLieAbelian { x // x ∈ ↑I }
h₂ : ¬IsLieAbelian L
h₁ : ∀ (N : LieSubmodule R L L), N ≠ ⊥ → N = ⊤
contra : ¬I = ⊥
⊢ False
[PROOFSTEP]
rw [h₁ I contra, lie_abelian_iff_equiv_lie_abelian LieIdeal.topEquiv] at hI
[GOAL]
case mk.mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
h : IsSimple R L
I : LieIdeal R L
hI : IsLieAbelian L
h₂ : ¬IsLieAbelian L
h₁ : ∀ (N : LieSubmodule R L L), N ≠ ⊥ → N = ⊤
contra : ¬I = ⊥
⊢ False
[PROOFSTEP]
exact h₂ hI
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsSemisimple R L
h : IsLieAbelian L
⊢ Subsingleton L
[PROOFSTEP]
rw [isLieAbelian_iff_center_eq_top R L, center_eq_bot_of_semisimple] at h
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsSemisimple R L
h : ⊥ = ⊤
⊢ Subsingleton L
[PROOFSTEP]
exact (LieSubmodule.subsingleton_iff R L L).mp (subsingleton_of_bot_eq_top h)
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsSemisimple R L
⊢ IsLieAbelian { x // x ∈ ↑(radical R L) }
[PROOFSTEP]
rw [IsSemisimple.semisimple]
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsSemisimple R L
⊢ IsLieAbelian { x // x ∈ ↑⊥ }
[PROOFSTEP]
exact isLieAbelian_bot R L
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsNoetherian R L
⊢ IsLieAbelian { x // x ∈ ↑(radical R L) } ↔
∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I }
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsNoetherian R L
⊢ IsLieAbelian { x // x ∈ ↑(radical R L) } →
∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I }
[PROOFSTEP]
rintro h₁ I h₂
[GOAL]
case mp
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsNoetherian R L
h₁ : IsLieAbelian { x // x ∈ ↑(radical R L) }
I : LieIdeal R L
h₂ : IsSolvable R { x // x ∈ ↑I }
⊢ IsLieAbelian { x // x ∈ ↑I }
[PROOFSTEP]
rw [LieIdeal.solvable_iff_le_radical] at h₂
[GOAL]
case mp
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsNoetherian R L
h₁ : IsLieAbelian { x // x ∈ ↑(radical R L) }
I : LieIdeal R L
h₂ : I ≤ radical R L
⊢ IsLieAbelian { x // x ∈ ↑I }
[PROOFSTEP]
exact (LieIdeal.homOfLe_injective h₂).isLieAbelian h₁
[GOAL]
case mpr
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsNoetherian R L
⊢ (∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I }) →
IsLieAbelian { x // x ∈ ↑(radical R L) }
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsNoetherian R L
h : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I }
⊢ IsLieAbelian { x // x ∈ ↑(radical R L) }
[PROOFSTEP]
apply h
[GOAL]
case mpr.a
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsNoetherian R L
h : ∀ (I : LieIdeal R L), IsSolvable R { x // x ∈ ↑I } → IsLieAbelian { x // x ∈ ↑I }
⊢ IsSolvable R { x // x ∈ ↑(radical R L) }
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
L : Type v
inst✝³ : CommRing R
inst✝² : LieRing L
inst✝¹ : LieAlgebra R L
inst✝ : IsSemisimple R L
⊢ LieHom.ker (ad R L) = ⊥
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Algebra.Lie.Semisimple", "llama_tokens": 4194} |
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ↑⁅I, N⁆ = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
let s := {m : M | ∃ (x : ↥I) (n : ↥N), ⁅(x : L), (n : M)⁆ = m}
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
have aux : ∀ (y : L), ∀ m' ∈ Submodule.span R s, ⁅y, m'⁆ ∈ Submodule.span R s :=
by
intro y m' hm'
refine
Submodule.span_induction (R := R) (M := M) (s := s) (p := fun m' ↦ ⁅y, m'⁆ ∈ Submodule.span R s) hm' ?_ ?_ ?_ ?_
· rintro m'' ⟨x, n, hm''⟩; rw [← hm'', leibniz_lie]
refine Submodule.add_mem _ ?_ ?_ <;> apply Submodule.subset_span
· use⟨⁅y, ↑x⁆, I.lie_mem x.property⟩, n
· use x, ⟨⁅y, ↑n⁆, N.lie_mem n.property⟩
· simp only [lie_zero, Submodule.zero_mem]
· intro m₁ m₂ hm₁ hm₂; rw [lie_add]; exact Submodule.add_mem _ hm₁ hm₂
· intro t m'' hm''; rw [lie_smul]; exact Submodule.smul_mem _ t hm''
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
[PROOFSTEP]
intro y m' hm'
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ⁅y, m'⁆ ∈ Submodule.span R s
[PROOFSTEP]
refine Submodule.span_induction (R := R) (M := M) (s := s) (p := fun m' ↦ ⁅y, m'⁆ ∈ Submodule.span R s) hm' ?_ ?_ ?_ ?_
[GOAL]
case refine_1
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ∀ (x : M), x ∈ s → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x
[PROOFSTEP]
rintro m'' ⟨x, n, hm''⟩
[GOAL]
case refine_1.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅y, m''⁆ ∈ Submodule.span R s
[PROOFSTEP]
rw [← hm'', leibniz_lie]
[GOAL]
case refine_1.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅⁅y, ↑x⁆, ↑n⁆ + ⁅↑x, ⁅y, ↑n⁆⁆ ∈ Submodule.span R s
[PROOFSTEP]
refine Submodule.add_mem _ ?_ ?_
[GOAL]
case refine_1.intro.intro.refine_1
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅⁅y, ↑x⁆, ↑n⁆ ∈ Submodule.span R s
[PROOFSTEP]
apply Submodule.subset_span
[GOAL]
case refine_1.intro.intro.refine_2
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅↑x, ⁅y, ↑n⁆⁆ ∈ Submodule.span R s
[PROOFSTEP]
apply Submodule.subset_span
[GOAL]
case refine_1.intro.intro.refine_1.a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅⁅y, ↑x⁆, ↑n⁆ ∈ s
[PROOFSTEP]
use⟨⁅y, ↑x⁆, I.lie_mem x.property⟩, n
[GOAL]
case refine_1.intro.intro.refine_2.a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅↑x, ⁅y, ↑n⁆⁆ ∈ s
[PROOFSTEP]
use x, ⟨⁅y, ↑n⁆, N.lie_mem n.property⟩
[GOAL]
case refine_2
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) 0
[PROOFSTEP]
simp only [lie_zero, Submodule.zero_mem]
[GOAL]
case refine_3
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ∀ (x y_1 : M),
(fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x →
(fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) y_1 → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) (x + y_1)
[PROOFSTEP]
intro m₁ m₂ hm₁ hm₂
[GOAL]
case refine_3
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m₁ m₂ : M
hm₁ : ⁅y, m₁⁆ ∈ Submodule.span R s
hm₂ : ⁅y, m₂⁆ ∈ Submodule.span R s
⊢ ⁅y, m₁ + m₂⁆ ∈ Submodule.span R s
[PROOFSTEP]
rw [lie_add]
[GOAL]
case refine_3
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m₁ m₂ : M
hm₁ : ⁅y, m₁⁆ ∈ Submodule.span R s
hm₂ : ⁅y, m₂⁆ ∈ Submodule.span R s
⊢ ⁅y, m₁⁆ + ⁅y, m₂⁆ ∈ Submodule.span R s
[PROOFSTEP]
exact Submodule.add_mem _ hm₁ hm₂
[GOAL]
case refine_4
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ∀ (a : R) (x : M), (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) (a • x)
[PROOFSTEP]
intro t m'' hm''
[GOAL]
case refine_4
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
t : R
m'' : M
hm'' : ⁅y, m''⁆ ∈ Submodule.span R s
⊢ ⁅y, t • m''⁆ ∈ Submodule.span R s
[PROOFSTEP]
rw [lie_smul]
[GOAL]
case refine_4
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
t : R
m'' : M
hm'' : ⁅y, m''⁆ ∈ Submodule.span R s
⊢ t • ⁅y, m''⁆ ∈ Submodule.span R s
[PROOFSTEP]
exact Submodule.smul_mem _ t hm''
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
change _ ≤ ({ Submodule.span R s with lie_mem := fun hm' => aux _ _ hm' } : LieSubmodule R L M)
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
⊢ ⁅I, N⁆ ≤
let src := Submodule.span R s;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem :=
(_ :
∀ {x : L} {m : M},
m ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, m⁆ ∈ Submodule.span R s) }
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆
↑(let src := Submodule.span R s;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem :=
(_ :
∀ {x : L} {m : M},
m ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, m⁆ ∈ Submodule.span R s) })
[PROOFSTEP]
exact Submodule.subset_span
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ ↑⁅I, N⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span]
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ ↑(lieSpan R L {m | ∃ x n, ⁅↑x, ↑n⁆ = m})
[PROOFSTEP]
apply submodule_span_le_lieSpan
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ↑⁅I, N⁆ = Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rw [lieIdeal_oper_eq_linear_span]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
congr
[GOAL]
case e_s
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
ext m
[GOAL]
case e_s.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case e_s.h.mp
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨x, hx⟩, ⟨n, hn⟩, rfl⟩
[GOAL]
case e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : L
hx : x ∈ I
n : M
hn : n ∈ N
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
exact ⟨x, hx, n, hn, rfl⟩
[GOAL]
case e_s.h.mpr
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
⊢ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} → m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨x, hx, n, hn, rfl⟩
[GOAL]
case e_s.h.mpr.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : L
hx : x ∈ I
n : M
hn : n ∈ N
⊢ ⁅x, n⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⟨x, hx⟩, ⟨n, hn⟩, rfl⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ N' ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N'
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N' ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N'
[PROOFSTEP]
refine' ⟨fun h x hx m hm => h ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩, _⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ (∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N') → {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N'
[PROOFSTEP]
rintro h _ ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N'
x : L
hx : x ∈ I
m : M
hm : m ∈ N
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := m, property := hm }⁆ ∈ ↑N'
[PROOFSTEP]
exact h x hx m hm
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : { x // x ∈ I }
m : { x // x ∈ N }
⊢ ⁅↑x, ↑m⁆ ∈ ⁅I, N⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : { x // x ∈ I }
m : { x // x ∈ N }
⊢ ⁅↑x, ↑m⁆ ∈ lieSpan R L {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
apply subset_lieSpan
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : { x // x ∈ I }
m : { x // x ∈ N }
⊢ ⁅↑x, ↑m⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
use x, m
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ = ⁅J, I⁆
[PROOFSTEP]
suffices ∀ I J : LieIdeal R L, ⁅I, J⁆ ≤ ⁅J, I⁆ by exact le_antisymm (this I J) (this J I)
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
this : ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆
⊢ ⁅I, J⁆ = ⁅J, I⁆
[PROOFSTEP]
exact le_antisymm (this I J) (this J I)
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆
[PROOFSTEP]
clear! I J
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
⊢ ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆
[PROOFSTEP]
intro I J
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
⊢ ⁅I, J⁆ ≤ ⁅J, I⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⁅J, I⁆
[PROOFSTEP]
rintro x ⟨y, z, h⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
x : L
y : { x // x ∈ I }
z : { x // x ∈ J }
h : ⁅↑y, ↑z⁆ = x
⊢ x ∈ ↑⁅J, I⁆
[PROOFSTEP]
rw [← h]
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
x : L
y : { x // x ∈ I }
z : { x // x ∈ J }
h : ⁅↑y, ↑z⁆ = x
⊢ ⁅↑y, ↑z⁆ ∈ ↑⁅J, I⁆
[PROOFSTEP]
rw [← lie_skew, ← lie_neg, ← LieSubmodule.coe_neg]
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
x : L
y : { x // x ∈ I }
z : { x // x ∈ J }
h : ⁅↑y, ↑z⁆ = x
⊢ ⁅↑z, ↑(-y)⁆ ∈ ↑⁅J, I⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ N
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
[PROOFSTEP]
rintro m ⟨x, n, hn⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hn : ⁅↑x, ↑n⁆ = m
⊢ m ∈ ↑N
[PROOFSTEP]
rw [← hn]
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hn : ⁅↑x, ↑n⁆ = m
⊢ ⁅↑x, ↑n⁆ ∈ ↑N
[PROOFSTEP]
exact N.lie_mem n.property
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ ≤ I
[PROOFSTEP]
rw [lie_comm]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅J, I⁆ ≤ I
[PROOFSTEP]
exact lie_le_right I J
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ ≤ I ⊓ J
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ ≤ I ∧ ⁅I, J⁆ ≤ J
[PROOFSTEP]
exact ⟨lie_le_left I J, lie_le_right J I⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, ⊥⁆ = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ∀ (m : M), m ∈ ⁅I, ⊥⁆ → m = 0
[PROOFSTEP]
apply lie_le_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅⊥, N⁆ = ⊥
[PROOFSTEP]
suffices ⁅(⊥ : LieIdeal R L), N⁆ ≤ ⊥ by exact le_bot_iff.mp this
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
this : ⁅⊥, N⁆ ≤ ⊥
⊢ ⁅⊥, N⁆ = ⊥
[PROOFSTEP]
exact le_bot_iff.mp this
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅⊥, N⁆ ≤ ⊥
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥
[PROOFSTEP]
rintro m ⟨⟨x, hx⟩, n, hn⟩
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
hx : x ∈ ⊥
n : { x // x ∈ N }
hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ m ∈ ↑⊥
[PROOFSTEP]
rw [← hn]
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
hx : x ∈ ⊥
n : { x // x ∈ N }
hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥
[PROOFSTEP]
change x ∈ (⊥ : LieIdeal R L) at hx
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
n : { x // x ∈ N }
hx : x ∈ ⊥
hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥
[PROOFSTEP]
rw [mem_bot] at hx
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
n : { x // x ∈ N }
hx✝ : x ∈ ⊥
hx : x = 0
hn : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m
⊢ ⁅↑{ val := x, property := hx✝ }, ↑n⁆ ∈ ↑⊥
[PROOFSTEP]
simp [hx]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ = ⊥ ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_eq_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ (∀ (m : M), m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m = 0) ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0
[PROOFSTEP]
refine' ⟨fun h x hx m hm => h ⁅x, m⁆ ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩, _⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ (∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0) → ∀ (m : M), m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m = 0
[PROOFSTEP]
rintro h - ⟨⟨x, hx⟩, ⟨⟨n, hn⟩, rfl⟩⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0
x : L
hx : x ∈ I
n : M
hn : n ∈ N
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = 0
[PROOFSTEP]
exact h x hx n hn
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
⊢ ⁅I, N⁆ ≤ ⁅J, N'⁆
[PROOFSTEP]
intro m h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
m : M
h : m ∈ ⁅I, N⁆
⊢ m ∈ ⁅J, N'⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, mem_lieSpan] at h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
m : M
h : ∀ (N_1 : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N_1 → m ∈ N_1
⊢ m ∈ ⁅J, N'⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, mem_lieSpan]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
m : M
h : ∀ (N_1 : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N_1 → m ∈ N_1
⊢ ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
[PROOFSTEP]
intro N hN
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
⊢ m ∈ N
[PROOFSTEP]
apply h
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
[PROOFSTEP]
rintro m' ⟨⟨x, hx⟩, ⟨n, hn⟩, hm⟩
[GOAL]
case a.intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
m' : M
x : L
hx : x ∈ I
n : M
hn : n ∈ N✝
hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m'
⊢ m' ∈ ↑N
[PROOFSTEP]
rw [← hm]
[GOAL]
case a.intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
m' : M
x : L
hx : x ∈ I
n : M
hn : n ∈ N✝
hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m'
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ ↑N
[PROOFSTEP]
apply hN
[GOAL]
case a.intro.mk.intro.mk.a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
m' : M
x : L
hx : x ∈ I
n : M
hn : n ∈ N✝
hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m'
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
use⟨x, h₁ hx⟩, ⟨n, h₂ hn⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
have h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ := by rw [sup_le_iff];
constructor <;> apply mono_lie_right <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
rw [sup_le_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆ ∧ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
constructor <;> apply mono_lie_right <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆ ∧ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N ≤ N ⊔ N'
[PROOFSTEP]
exact le_sup_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N' ≤ N ⊔ N'
[PROOFSTEP]
exact le_sup_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
suffices ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆ by exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
this : ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆
⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
⊢ ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(⁅I, N⁆ ⊔ ⁅I, N'⁆)
[PROOFSTEP]
rintro m ⟨x, ⟨n, hn⟩, h⟩
[GOAL]
case intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
⊢ m ∈ ↑(⁅I, N⁆ ⊔ ⁅I, N'⁆)
[PROOFSTEP]
erw [LieSubmodule.mem_sup]
[GOAL]
case intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m
[PROOFSTEP]
erw [LieSubmodule.mem_sup] at hn
[GOAL]
case intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn✝ : n ∈ N ⊔ N'
hn : ∃ y, y ∈ N ∧ ∃ z, z ∈ N' ∧ y + z = n
h : ⁅↑x, ↑{ val := n, property := hn✝ }⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m
[PROOFSTEP]
rcases hn with ⟨n₁, hn₁, n₂, hn₂, hn'⟩
[GOAL]
case intro.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m
[PROOFSTEP]
use⁅(x : L), (⟨n₁, hn₁⟩ : N)⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + z = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ ∈ ⁅I, N⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ∃ z, z ∈ ⁅I, N'⁆ ∧ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + z = m
[PROOFSTEP]
use⁅(x : L), (⟨n₂, hn₂⟩ : N')⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ ∈ ⁅I, N'⁆ ∧
⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ ∈ ⁅I, N'⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ = m
[PROOFSTEP]
simp [← h, ← hn']
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
have h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ := by rw [sup_le_iff];
constructor <;> apply mono_lie_left <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
rw [sup_le_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆ ∧ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
constructor <;> apply mono_lie_left <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆ ∧ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ I ≤ I ⊔ J
[PROOFSTEP]
exact le_sup_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ J ≤ I ⊔ J
[PROOFSTEP]
exact le_sup_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
suffices ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆ by exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
this : ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆
⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
⊢ ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(⁅I, N⁆ ⊔ ⁅J, N⁆)
[PROOFSTEP]
rintro m ⟨⟨x, hx⟩, n, h⟩
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ m ∈ ↑(⁅I, N⁆ ⊔ ⁅J, N⁆)
[PROOFSTEP]
erw [LieSubmodule.mem_sup]
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m
[PROOFSTEP]
erw [LieSubmodule.mem_sup] at hx
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx✝ : x ∈ I ⊔ J
hx : ∃ y, y ∈ I ∧ ∃ z, z ∈ J ∧ y + z = x
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m
[PROOFSTEP]
rcases hx with ⟨x₁, hx₁, x₂, hx₂, hx'⟩
[GOAL]
case intro.mk.intro.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m
[PROOFSTEP]
use⁅((⟨x₁, hx₁⟩ : I) : L), (n : N)⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + z = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ ∈ ⁅I, N⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ∃ z, z ∈ ⁅J, N⁆ ∧ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + z = m
[PROOFSTEP]
use⁅((⟨x₂, hx₂⟩ : J) : L), (n : N)⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ ∈ ⁅J, N⁆ ∧
⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ ∈ ⁅J, N⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ = m
[PROOFSTEP]
simp [← h, ← hx']
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ⊓ ⁅I, N'⁆
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ∧ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆
[PROOFSTEP]
constructor <;> apply mono_lie_right <;> [exact inf_le_left; exact inf_le_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ∧ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N ⊓ N' ≤ N
[PROOFSTEP]
exact inf_le_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N ⊓ N' ≤ N'
[PROOFSTEP]
exact inf_le_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ⊓ ⁅J, N⁆
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ∧ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆
[PROOFSTEP]
constructor <;> apply mono_lie_left <;> [exact inf_le_left; exact inf_le_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ∧ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ I ⊓ J ≤ I
[PROOFSTEP]
exact inf_le_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ I ⊓ J ≤ J
[PROOFSTEP]
exact inf_le_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ map f ⁅I, N⁆ = ⁅I, map f N⁆
[PROOFSTEP]
rw [← coe_toSubmodule_eq_iff, coeSubmodule_map, lieIdeal_oper_eq_linear_span, lieIdeal_oper_eq_linear_span,
Submodule.map_span]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
congr
[GOAL]
case e_s
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
ext m
[GOAL]
case e_s.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
⊢ m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case e_s.h.mp
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
⊢ m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨-, ⟨⟨x, ⟨n, hn⟩, rfl⟩, hm⟩⟩
[GOAL]
case e_s.h.mp.intro.intro.intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm : ↑↑f ⁅↑x, ↑{ val := n, property := hn }⁆ = m
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
simp only [LieModuleHom.coe_toLinearMap, LieModuleHom.map_lie] at hm
[GOAL]
case e_s.h.mp.intro.intro.intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm : ⁅↑x, ↑f n⁆ = m
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨x, ⟨f n, (mem_map (f n)).mpr ⟨n, hn, rfl⟩⟩, hm⟩
[GOAL]
case e_s.h.mpr
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨x, ⟨m₂, hm₂ : m₂ ∈ map f N⟩, rfl⟩
[GOAL]
case e_s.h.mpr.intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
x : { x // x ∈ I }
m₂ : M₂
hm₂ : m₂ ∈ map f N
⊢ ⁅↑x, ↑{ val := m₂, property := hm₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨n, hn, rfl⟩ := (mem_map m₂).mp hm₂
[GOAL]
case e_s.h.mpr.intro.intro.mk.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm₂ : ↑f n ∈ map f N
⊢ ⁅↑x, ↑{ val := ↑f n, property := hm₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⁅x, n⁆, ⟨x, ⟨n, hn⟩, rfl⟩, by simp⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm₂ : ↑f n ∈ map f N
⊢ ↑↑f ⁅x, n⁆ = ⁅↑x, ↑{ val := ↑f n, property := hm₂ }⁆
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : N₂ ≤ LieModuleHom.range f
⊢ map f (comap f N₂) = N₂
[PROOFSTEP]
rw [SetLike.ext'_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : N₂ ≤ LieModuleHom.range f
⊢ ↑(map f (comap f N₂)) = ↑N₂
[PROOFSTEP]
exact Set.image_preimage_eq_of_subset hf
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : LieModuleHom.ker f = ⊥
⊢ comap f (map f N) = N
[PROOFSTEP]
rw [SetLike.ext'_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : LieModuleHom.ker f = ⊥
⊢ ↑(comap f (map f N)) = ↑N
[PROOFSTEP]
exact (N : Set M).preimage_image_eq (f.ker_eq_bot.mp hf)
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
⊢ comap f ⁅I, N₂⁆ = ⁅I, comap f N₂⁆
[PROOFSTEP]
conv_lhs => rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
| comap f ⁅I, N₂⁆
[PROOFSTEP]
rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
| comap f ⁅I, N₂⁆
[PROOFSTEP]
rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
| comap f ⁅I, N₂⁆
[PROOFSTEP]
rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
⊢ comap f ⁅I, map f (comap f N₂)⁆ = ⁅I, comap f N₂⁆
[PROOFSTEP]
rw [← map_bracket_eq, comap_map_eq _ f hf₁]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ map (incl N) (comap (incl N) N') = N ⊓ N'
[PROOFSTEP]
rw [← coe_toSubmodule_eq_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ ↑(map (incl N) (comap (incl N) N')) = ↑(N ⊓ N')
[PROOFSTEP]
exact (N : Submodule R M).map_comap_subtype N'
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ map f ⁅I₁, I₂⁆ ≤ ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
rw [map_le_iff_le_comap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅I₁, I₂⁆ ≤ comap f ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
erw [LieSubmodule.lieSpan_le]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x : L
hx : x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ x ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
obtain ⟨⟨y₁, hy₁⟩, ⟨y₂, hy₂⟩, hx⟩ := hx
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
⊢ x ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
rw [← hx]
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
let fy₁ : ↥(map f I₁) := ⟨f y₁, mem_map hy₁⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
let fy₂ : ↥(map f I₂) := ⟨f y₂, mem_map hy₂⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) }
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
change _ ∈ comap f ⁅map f I₁, map f I₂⁆
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) }
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ comap f ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
simp only [Submodule.coe_mk, mem_comap, LieHom.map_lie]
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) }
⊢ ⁅↑f y₁, ↑f y₂⁆ ∈ ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
exact LieSubmodule.lie_coe_mem_lie _ _ fy₁ fy₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ map f ⁅I₁, I₂⁆ = ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
suffices ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆ by exact le_antisymm (map_bracket_le f) this
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
this : ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆
⊢ map f ⁅I₁, I₂⁆ = ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
exact le_antisymm (map_bracket_le f) this
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆
[PROOFSTEP]
rw [← LieSubmodule.coeSubmodule_le_coeSubmodule, coe_map_of_surjective h, LieSubmodule.lieIdeal_oper_eq_linear_span,
LieSubmodule.lieIdeal_oper_eq_linear_span, LinearMap.map_span]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m})
[PROOFSTEP]
apply Submodule.span_mono
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro x ⟨⟨z₁, h₁⟩, ⟨z₂, h₂⟩, rfl⟩
[GOAL]
case h.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
z₁ : L'
h₁ : z₁ ∈ map f I₁
z₂ : L'
h₂ : z₂ ∈ map f I₂
⊢ ⁅↑{ val := z₁, property := h₁ }, ↑{ val := z₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨y₁, rfl⟩ := mem_map_of_surjective h h₁
[GOAL]
case h.intro.mk.intro.mk.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
z₂ : L'
h₂ : z₂ ∈ map f I₂
y₁ : { x // x ∈ I₁ }
h₁ : ↑f ↑y₁ ∈ map f I₁
⊢ ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := z₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨y₂, rfl⟩ := mem_map_of_surjective h h₂
[GOAL]
case h.intro.mk.intro.mk.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
y₁ : { x // x ∈ I₁ }
h₁ : ↑f ↑y₁ ∈ map f I₁
y₂ : { x // x ∈ I₂ }
h₂ : ↑f ↑y₂ ∈ map f I₂
⊢ ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := ↑f ↑y₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⁅(y₁ : L), (y₂ : L)⁆, ⟨y₁, y₂, rfl⟩, by apply f.map_lie⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
y₁ : { x // x ∈ I₁ }
h₁ : ↑f ↑y₁ ∈ map f I₁
y₂ : { x // x ∈ I₂ }
h₂ : ↑f ↑y₂ ∈ map f I₂
⊢ ↑↑f ⁅↑y₁, ↑y₂⁆ = ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := ↑f ↑y₂, property := h₂ }⁆
[PROOFSTEP]
apply f.map_lie
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
⊢ ⁅comap f J₁, comap f J₂⁆ ≤ comap f ⁅J₁, J₂⁆
[PROOFSTEP]
rw [← map_le_iff_le_comap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
⊢ map f ⁅comap f J₁, comap f J₂⁆ ≤ ⁅J₁, J₂⁆
[PROOFSTEP]
exact le_trans (map_bracket_le f) (LieSubmodule.mono_lie _ _ _ _ map_comap_le map_comap_le)
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ map (incl I₁) (comap (incl I₁) I₂) = I₁ ⊓ I₂
[PROOFSTEP]
conv_rhs => rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| I₁ ⊓ I₂
[PROOFSTEP]
rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| I₁ ⊓ I₂
[PROOFSTEP]
rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| I₁ ⊓ I₂
[PROOFSTEP]
rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ map (incl I₁) (comap (incl I₁) I₂) = LieHom.idealRange (incl I₁) ⊓ I₂
[PROOFSTEP]
rw [← map_comap_eq]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ LieHom.IsIdealMorphism (incl I₁)
[PROOFSTEP]
exact I₁.incl_isIdealMorphism
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ comap f ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆ = ⁅comap f J₁, comap f J₂⁆ ⊔ LieHom.ker f
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, comap_coeSubmodule, LieSubmodule.sup_coe_toSubmodule, f.ker_coeSubmodule, ←
Submodule.comap_map_eq, LieSubmodule.lieIdeal_oper_eq_linear_span, LieSubmodule.lieIdeal_oper_eq_linear_span,
LinearMap.map_span]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ Submodule.comap (↑f) (Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) =
Submodule.comap (↑f) (Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}))
[PROOFSTEP]
congr
[GOAL]
case e_p.e_s
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
simp only [LieHom.coe_toLinearMap, Set.mem_setOf_eq]
[GOAL]
case e_p.e_s
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
ext y
[GOAL]
case e_p.e_s.h
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case e_p.e_s.h.mp
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩, hy⟩
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
⊢ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hy]
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
erw [LieSubmodule.mem_inf, f.mem_idealRange_iff h] at hx₁ hx₂
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁✝ : x₁ ∈ LieHom.idealRange f ⊓ J₁
hx₁ : (∃ x, ↑f x = x₁) ∧ x₁ ∈ J₁
x₂ : L'
hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂
hy : ⁅↑{ val := x₁, property := hx₁✝ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y
⊢ ⁅↑{ val := x₁, property := hx₁✝ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨⟨z₁, hz₁⟩, hz₁'⟩ := hx₁
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y
hz₁' : x₁ ∈ J₁
z₁ : L
hz₁ : ↑f z₁ = x₁
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hz₁] at hz₁'
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨⟨z₂, hz₂⟩, hz₂'⟩ := hx₂
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
hz₂' : x₂ ∈ J₂
z₂ : L
hz₂ : ↑f z₂ = x₂
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hz₂] at hz₂'
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
z₂ : L
hz₂' : ↑f z₂ ∈ J₂
hz₂ : ↑f z₂ = x₂
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
refine ⟨⁅z₁, z₂⁆, ⟨⟨z₁, hz₁'⟩, ⟨z₂, hz₂'⟩, rfl⟩, ?_⟩
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
z₂ : L
hz₂' : ↑f z₂ ∈ J₂
hz₂ : ↑f z₂ = x₂
⊢ (fun a => ↑f a) ⁅z₁, z₂⁆ = ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆
[PROOFSTEP]
simp only [hz₁, hz₂, Submodule.coe_mk, LieHom.map_lie]
[GOAL]
case e_p.e_s.h.mpr
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
⊢ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨x, ⟨⟨z₁, hz₁⟩, ⟨z₂, hz₂⟩, hx⟩, hy⟩
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hy, ← hx]
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
have hz₁' : f z₁ ∈ f.idealRange ⊓ J₁ := by rw [LieSubmodule.mem_inf]; exact ⟨f.mem_idealRange, hz₁⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
[PROOFSTEP]
rw [LieSubmodule.mem_inf]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ ↑f z₁ ∈ LieHom.idealRange f ∧ ↑f z₁ ∈ J₁
[PROOFSTEP]
exact ⟨f.mem_idealRange, hz₁⟩
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
have hz₂' : f z₂ ∈ f.idealRange ⊓ J₂ := by rw [LieSubmodule.mem_inf]; exact ⟨f.mem_idealRange, hz₂⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
⊢ ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂
[PROOFSTEP]
rw [LieSubmodule.mem_inf]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
⊢ ↑f z₂ ∈ LieHom.idealRange f ∧ ↑f z₂ ∈ J₂
[PROOFSTEP]
exact ⟨f.mem_idealRange, hz₂⟩
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
hz₂' : ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂
⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
use⟨f z₁, hz₁'⟩, ⟨f z₂, hz₂'⟩
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
hz₂' : ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂
⊢ ⁅↑{ val := ↑f z₁, property := hz₁' }, ↑{ val := ↑f z₂, property := hz₂' }⁆ =
(fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆
[PROOFSTEP]
simp only [Submodule.coe_mk, LieHom.map_lie]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ map f ⁅comap f J₁, comap f J₂⁆ = ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆
[PROOFSTEP]
rw [← map_sup_ker_eq_map, ← comap_bracket_eq h, map_comap_eq h, inf_eq_right]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆ ≤ LieHom.idealRange f
[PROOFSTEP]
exact le_trans (LieSubmodule.lie_le_left _ _) inf_le_left
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
conv_rhs =>
congr
next => skip
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
congr
next => skip
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
congr
next => skip
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
congr
[GOAL]
case f
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
case J
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
next => skip
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
[PROOFSTEP]
skip
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
[PROOFSTEP]
skip
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
[PROOFSTEP]
skip
[GOAL]
case J
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ =
comap (incl I) ⁅LieHom.idealRange (incl I) ⊓ I₁, LieHom.idealRange (incl I) ⊓ I₂⁆
[PROOFSTEP]
rw [comap_bracket_eq]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = ⁅comap (incl I) I₁, comap (incl I) I₂⁆ ⊔ LieHom.ker (incl I)
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ LieHom.IsIdealMorphism (incl I)
[PROOFSTEP]
simp only [ker_incl, sup_bot_eq]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ LieHom.IsIdealMorphism (incl I)
[PROOFSTEP]
exact I.incl_isIdealMorphism
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h₁ : I₁ ≤ I
h₂ : I₂ ≤ I
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = comap (incl I) ⁅I₁, I₂⁆
[PROOFSTEP]
rw [comap_bracket_incl]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h₁ : I₁ ≤ I
h₂ : I₂ ≤ I
⊢ comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ = comap (incl I) ⁅I₁, I₂⁆
[PROOFSTEP]
rw [← inf_eq_right] at h₁ h₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h₁ : I ⊓ I₁ = I₁
h₂ : I ⊓ I₂ = I₂
⊢ comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ = comap (incl I) ⁅I₁, I₂⁆
[PROOFSTEP]
rw [h₁, h₂]
| {"mathlib_filename": "Mathlib.Algebra.Lie.IdealOperations", "llama_tokens": 66675} |
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
⊢ D (k + l) I = D k (D l I)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
l : ℕ
⊢ D (Nat.zero + l) I = D Nat.zero (D l I)
[PROOFSTEP]
rw [Nat.zero_add, derivedSeriesOfIdeal_zero]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
l k : ℕ
ih : D (k + l) I = D k (D l I)
⊢ D (Nat.succ k + l) I = D (Nat.succ k) (D l I)
[PROOFSTEP]
rw [Nat.succ_add k l, derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_succ, ih]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
k l : ℕ
h₁ : I ≤ J
h₂ : l ≤ k
⊢ D k I ≤ D l J
[PROOFSTEP]
revert l
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
k : ℕ
h₁ : I ≤ J
⊢ ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
⊢ ∀ {l : ℕ}, l ≤ Nat.zero → D Nat.zero I ≤ D l J
[PROOFSTEP]
intro l h₂
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
⊢ ∀ {l : ℕ}, l ≤ Nat.succ k → D (Nat.succ k) I ≤ D l J
[PROOFSTEP]
intro l h₂
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
l : ℕ
h₂ : l ≤ Nat.zero
⊢ D Nat.zero I ≤ D l J
[PROOFSTEP]
rw [Nat.zero_eq, le_zero_iff] at h₂
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
l : ℕ
h₂ : l = 0
⊢ D Nat.zero I ≤ D l J
[PROOFSTEP]
rw [h₂, derivedSeriesOfIdeal_zero]
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
l : ℕ
h₂ : l = 0
⊢ I ≤ D 0 J
[PROOFSTEP]
exact h₁
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
l : ℕ
h₂ : l ≤ Nat.succ k
⊢ D (Nat.succ k) I ≤ D l J
[PROOFSTEP]
have h : l = k.succ ∨ l ≤ k := by rwa [le_iff_eq_or_lt, Nat.lt_succ_iff] at h₂
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
l : ℕ
h₂ : l ≤ Nat.succ k
⊢ l = Nat.succ k ∨ l ≤ k
[PROOFSTEP]
rwa [le_iff_eq_or_lt, Nat.lt_succ_iff] at h₂
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
l : ℕ
h₂ : l ≤ Nat.succ k
h : l = Nat.succ k ∨ l ≤ k
⊢ D (Nat.succ k) I ≤ D l J
[PROOFSTEP]
cases' h with h h
[GOAL]
case succ.inl
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
l : ℕ
h₂ : l ≤ Nat.succ k
h : l = Nat.succ k
⊢ D (Nat.succ k) I ≤ D l J
[PROOFSTEP]
rw [h, derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_succ]
[GOAL]
case succ.inl
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
l : ℕ
h₂ : l ≤ Nat.succ k
h : l = Nat.succ k
⊢ ⁅D k I, D k I⁆ ≤ ⁅D k J, D k J⁆
[PROOFSTEP]
exact LieSubmodule.mono_lie _ _ _ _ (ih (le_refl k)) (ih (le_refl k))
[GOAL]
case succ.inr
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
l : ℕ
h₂ : l ≤ Nat.succ k
h : l ≤ k
⊢ D (Nat.succ k) I ≤ D l J
[PROOFSTEP]
rw [derivedSeriesOfIdeal_succ]
[GOAL]
case succ.inr
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
h₁ : I ≤ J
k : ℕ
ih : ∀ {l : ℕ}, l ≤ k → D k I ≤ D l J
l : ℕ
h₂ : l ≤ Nat.succ k
h : l ≤ k
⊢ ⁅D k I, D k I⁆ ≤ D l J
[PROOFSTEP]
exact le_trans (LieSubmodule.lie_le_left _ _) (ih h)
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
J : LieIdeal R L
k l : ℕ
⊢ D (k + l) (I + J) ≤ D k I + D l J
[PROOFSTEP]
let D₁ : LieIdeal R L →o LieIdeal R L :=
{ toFun := fun I => ⁅I, I⁆
monotone' := fun I J h => LieSubmodule.mono_lie I J I J h h }
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
J : LieIdeal R L
k l : ℕ
D₁ : LieIdeal R L →o LieIdeal R L :=
{ toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) }
⊢ D (k + l) (I + J) ≤ D k I + D l J
[PROOFSTEP]
have h₁ : ∀ I J : LieIdeal R L, D₁ (I ⊔ J) ≤ D₁ I ⊔ J := by
simp [LieSubmodule.lie_le_right, LieSubmodule.lie_le_left, le_sup_of_le_right]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
J : LieIdeal R L
k l : ℕ
D₁ : LieIdeal R L →o LieIdeal R L :=
{ toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) }
⊢ ∀ (I J : LieIdeal R L), ↑D₁ (I ⊔ J) ≤ ↑D₁ I ⊔ J
[PROOFSTEP]
simp [LieSubmodule.lie_le_right, LieSubmodule.lie_le_left, le_sup_of_le_right]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
J : LieIdeal R L
k l : ℕ
D₁ : LieIdeal R L →o LieIdeal R L :=
{ toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) }
h₁ : ∀ (I J : LieIdeal R L), ↑D₁ (I ⊔ J) ≤ ↑D₁ I ⊔ J
⊢ D (k + l) (I + J) ≤ D k I + D l J
[PROOFSTEP]
rw [← D₁.iterate_sup_le_sup_iff] at h₁
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
J : LieIdeal R L
k l : ℕ
D₁ : LieIdeal R L →o LieIdeal R L :=
{ toFun := fun I => ⁅I, I⁆, monotone' := (_ : ∀ (I J : LieIdeal R L), I ≤ J → ⁅I, I⁆ ≤ ⁅J, J⁆) }
h₁ : ∀ (n₁ n₂ : ℕ) (a₁ a₂ : LieIdeal R L), (↑D₁)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑D₁)^[n₁] a₁ ⊔ (↑D₁)^[n₂] a₂
⊢ D (k + l) (I + J) ≤ D k I + D l J
[PROOFSTEP]
exact h₁ k l I J
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
⊢ D k ⊥ = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
⊢ D k ⊥ ≤ ⊥
[PROOFSTEP]
exact derivedSeriesOfIdeal_le_self ⊥ k
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
⊢ IsLieAbelian { x // x ∈ ↑I } ↔ D 1 I = ⊥
[PROOFSTEP]
rw [derivedSeriesOfIdeal_succ, derivedSeriesOfIdeal_zero, LieSubmodule.lie_abelian_iff_lie_self_eq_bot]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
⊢ IsLieAbelian { x // x ∈ ↑(D k I) } ↔ D (k + 1) I = ⊥
[PROOFSTEP]
rw [add_comm, derivedSeriesOfIdeal_add I 1 k, abelian_iff_derived_one_eq_bot]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
⊢ derivedSeries R { x // x ∈ ↑I } k = comap (incl I) (derivedSeriesOfIdeal R L k I)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
⊢ derivedSeries R { x // x ∈ ↑I } Nat.zero = comap (incl I) (derivedSeriesOfIdeal R L Nat.zero I)
[PROOFSTEP]
simp only [Nat.zero_eq, derivedSeries_def, comap_incl_self, derivedSeriesOfIdeal_zero]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
ih : derivedSeries R { x // x ∈ ↑I } k = comap (incl I) (derivedSeriesOfIdeal R L k I)
⊢ derivedSeries R { x // x ∈ ↑I } (Nat.succ k) = comap (incl I) (derivedSeriesOfIdeal R L (Nat.succ k) I)
[PROOFSTEP]
simp only [derivedSeries_def, derivedSeriesOfIdeal_succ] at ih ⊢
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
ih : derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤ = comap (incl I) (derivedSeriesOfIdeal R L k I)
⊢ ⁅derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤, derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤⁆ =
comap (incl I) ⁅derivedSeriesOfIdeal R L k I, derivedSeriesOfIdeal R L k I⁆
[PROOFSTEP]
rw [ih]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
ih : derivedSeriesOfIdeal R { x // x ∈ ↑I } k ⊤ = comap (incl I) (derivedSeriesOfIdeal R L k I)
⊢ ⁅comap (incl I) (derivedSeriesOfIdeal R L k I), comap (incl I) (derivedSeriesOfIdeal R L k I)⁆ =
comap (incl I) ⁅derivedSeriesOfIdeal R L k I, derivedSeriesOfIdeal R L k I⁆
[PROOFSTEP]
exact comap_bracket_incl_of_le I (derivedSeriesOfIdeal_le_self I k) (derivedSeriesOfIdeal_le_self I k)
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
⊢ map (incl I) (derivedSeries R { x // x ∈ ↑I } k) = derivedSeriesOfIdeal R L k I
[PROOFSTEP]
rw [derivedSeries_eq_derivedSeriesOfIdeal_comap, map_comap_incl, inf_eq_right]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
⊢ derivedSeriesOfIdeal R L k I ≤ I
[PROOFSTEP]
apply derivedSeriesOfIdeal_le_self
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
⊢ derivedSeries R { x // x ∈ ↑I } k = ⊥ ↔ derivedSeriesOfIdeal R L k I = ⊥
[PROOFSTEP]
rw [← derivedSeries_eq_derivedSeriesOfIdeal_map, map_eq_bot_iff, ker_incl, eq_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
hI : derivedSeries R { x // x ∈ ↑I } k = ⊥
hJ : derivedSeries R { x // x ∈ ↑J } l = ⊥
⊢ derivedSeries R { x // x ∈ ↑(I + J) } (k + l) = ⊥
[PROOFSTEP]
rw [LieIdeal.derivedSeries_eq_bot_iff] at hI hJ ⊢
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
hI : derivedSeriesOfIdeal R L k I = ⊥
hJ : derivedSeriesOfIdeal R L l J = ⊥
⊢ derivedSeriesOfIdeal R L (k + l) (I + J) = ⊥
[PROOFSTEP]
rw [← le_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
hI : derivedSeriesOfIdeal R L k I = ⊥
hJ : derivedSeriesOfIdeal R L l J = ⊥
⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥
[PROOFSTEP]
let D := derivedSeriesOfIdeal R L
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
hI : derivedSeriesOfIdeal R L k I = ⊥
hJ : derivedSeriesOfIdeal R L l J = ⊥
D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L
⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥
[PROOFSTEP]
change D k I = ⊥ at hI
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
hJ : derivedSeriesOfIdeal R L l J = ⊥
D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L
hI : D k I = ⊥
⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥
[PROOFSTEP]
change D l J = ⊥ at hJ
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L
hI : D k I = ⊥
hJ : D l J = ⊥
⊢ derivedSeriesOfIdeal R L (k + l) (I + J) ≤ ⊥
[PROOFSTEP]
calc
D (k + l) (I + J) ≤ D k I + D l J := derivedSeriesOfIdeal_add_le_add I J k l
_ ≤ ⊥ := by rw [hI, hJ]; simp
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L
hI : D k I = ⊥
hJ : D l J = ⊥
⊢ D k I + D l J ≤ ⊥
[PROOFSTEP]
rw [hI, hJ]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k l : ℕ
I J : LieIdeal R L
D : ℕ → LieIdeal R L → LieIdeal R L := derivedSeriesOfIdeal R L
hI : D k I = ⊥
hJ : D l J = ⊥
⊢ ⊥ + ⊥ ≤ ⊥
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
⊢ map f (derivedSeries R L' k) ≤ derivedSeries R L k
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
⊢ map f (derivedSeries R L' Nat.zero) ≤ derivedSeries R L Nat.zero
[PROOFSTEP]
simp only [Nat.zero_eq, derivedSeries_def, derivedSeriesOfIdeal_zero, le_top]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
ih : map f (derivedSeries R L' k) ≤ derivedSeries R L k
⊢ map f (derivedSeries R L' (Nat.succ k)) ≤ derivedSeries R L (Nat.succ k)
[PROOFSTEP]
simp only [derivedSeries_def, derivedSeriesOfIdeal_succ] at ih ⊢
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
ih : map f (derivedSeriesOfIdeal R L' k ⊤) ≤ derivedSeriesOfIdeal R L k ⊤
⊢ map f ⁅derivedSeriesOfIdeal R L' k ⊤, derivedSeriesOfIdeal R L' k ⊤⁆ ≤
⁅derivedSeriesOfIdeal R L k ⊤, derivedSeriesOfIdeal R L k ⊤⁆
[PROOFSTEP]
exact le_trans (map_bracket_le f) (LieSubmodule.mono_lie _ _ _ _ ih ih)
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
k : ℕ
h : Function.Surjective ↑f
⊢ map f (derivedSeries R L' k) = derivedSeries R L k
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h : Function.Surjective ↑f
⊢ map f (derivedSeries R L' Nat.zero) = derivedSeries R L Nat.zero
[PROOFSTEP]
change (⊤ : LieIdeal R L').map f = ⊤
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h : Function.Surjective ↑f
⊢ map f ⊤ = ⊤
[PROOFSTEP]
rw [← f.idealRange_eq_map]
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h : Function.Surjective ↑f
⊢ LieHom.idealRange f = ⊤
[PROOFSTEP]
exact f.idealRange_eq_top_of_surjective h
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h : Function.Surjective ↑f
k : ℕ
ih : map f (derivedSeries R L' k) = derivedSeries R L k
⊢ map f (derivedSeries R L' (Nat.succ k)) = derivedSeries R L (Nat.succ k)
[PROOFSTEP]
simp only [derivedSeries_def, map_bracket_eq f h, ih, derivedSeriesOfIdeal_succ]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
hJ : IsSolvable R { x // x ∈ ↑J }
⊢ IsSolvable R { x // x ∈ I + J }
[PROOFSTEP]
obtain ⟨k, hk⟩ := id hI
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
hJ : IsSolvable R { x // x ∈ ↑J }
k : ℕ
hk : derivedSeries R { x // x ∈ ↑I } k = ⊥
⊢ IsSolvable R { x // x ∈ I + J }
[PROOFSTEP]
obtain ⟨l, hl⟩ := id hJ
[GOAL]
case mk.intro.mk.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I J : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
hJ : IsSolvable R { x // x ∈ ↑J }
k : ℕ
hk : derivedSeries R { x // x ∈ ↑I } k = ⊥
l : ℕ
hl : derivedSeries R { x // x ∈ ↑J } l = ⊥
⊢ IsSolvable R { x // x ∈ I + J }
[PROOFSTEP]
exact ⟨⟨k + l, LieIdeal.derivedSeries_add_eq_bot hk hl⟩⟩
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L
h₂ : Injective ↑f
⊢ IsSolvable R L'
[PROOFSTEP]
obtain ⟨k, hk⟩ := id h₁
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L
h₂ : Injective ↑f
k : ℕ
hk : derivedSeries R L k = ⊥
⊢ IsSolvable R L'
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L
h₂ : Injective ↑f
k : ℕ
hk : derivedSeries R L k = ⊥
⊢ derivedSeries R L' k = ⊥
[PROOFSTEP]
apply LieIdeal.bot_of_map_eq_bot h₂
[GOAL]
case h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L
h₂ : Injective ↑f
k : ℕ
hk : derivedSeries R L k = ⊥
⊢ LieIdeal.map f (derivedSeries R L' k) = ⊥
[PROOFSTEP]
rw [eq_bot_iff, ← hk]
[GOAL]
case h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L
h₂ : Injective ↑f
k : ℕ
hk : derivedSeries R L k = ⊥
⊢ LieIdeal.map f (derivedSeries R L' k) ≤ derivedSeries R L k
[PROOFSTEP]
apply LieIdeal.derivedSeries_map_le
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L'
h₂ : Surjective ↑f
⊢ IsSolvable R L
[PROOFSTEP]
obtain ⟨k, hk⟩ := id h₁
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L'
h₂ : Surjective ↑f
k : ℕ
hk : derivedSeries R L' k = ⊥
⊢ IsSolvable R L
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L'
h₂ : Surjective ↑f
k : ℕ
hk : derivedSeries R L' k = ⊥
⊢ derivedSeries R L k = ⊥
[PROOFSTEP]
rw [← LieIdeal.derivedSeries_map_eq k h₂, hk]
[GOAL]
case h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
h₁ : IsSolvable R L'
h₂ : Surjective ↑f
k : ℕ
hk : derivedSeries R L' k = ⊥
⊢ LieIdeal.map f ⊥ = ⊥
[PROOFSTEP]
simp only [LieIdeal.map_eq_bot_iff, bot_le]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
e : L' ≃ₗ⁅R⁆ L
⊢ IsSolvable R L' ↔ IsSolvable R L
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
e : L' ≃ₗ⁅R⁆ L
⊢ IsSolvable R L' → IsSolvable R L
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
e : L' ≃ₗ⁅R⁆ L
⊢ IsSolvable R L → IsSolvable R L'
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
e : L' ≃ₗ⁅R⁆ L
h : IsSolvable R L'
⊢ IsSolvable R L
[PROOFSTEP]
exact e.symm.injective.lieAlgebra_isSolvable
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
e : L' ≃ₗ⁅R⁆ L
h : IsSolvable R L
⊢ IsSolvable R L'
[PROOFSTEP]
exact e.injective.lieAlgebra_isSolvable
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsLieAbelian L
⊢ IsSolvable R L
[PROOFSTEP]
use 1
[GOAL]
case h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsLieAbelian L
⊢ derivedSeries R L 1 = ⊥
[PROOFSTEP]
rw [← abelian_iff_derived_one_eq_bot, lie_abelian_iff_equiv_lie_abelian LieIdeal.topEquiv]
[GOAL]
case h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsLieAbelian L
⊢ IsLieAbelian L
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsNoetherian R L
⊢ IsSolvable R { x // x ∈ ↑(radical R L) }
[PROOFSTEP]
have hwf := LieSubmodule.wellFounded_of_noetherian R L L
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsNoetherian R L
hwf : WellFounded fun x x_1 => x > x_1
⊢ IsSolvable R { x // x ∈ ↑(radical R L) }
[PROOFSTEP]
rw [← CompleteLattice.isSupClosedCompact_iff_wellFounded] at hwf
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsNoetherian R L
hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L)
⊢ IsSolvable R { x // x ∈ ↑(radical R L) }
[PROOFSTEP]
refine' hwf {I : LieIdeal R L | IsSolvable R I} ⟨⊥, _⟩ fun I hI J hJ => _
[GOAL]
case refine'_1
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsNoetherian R L
hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L)
⊢ ⊥ ∈ {I | IsSolvable R { x // x ∈ ↑I }}
[PROOFSTEP]
exact LieAlgebra.isSolvableBot R L
[GOAL]
case refine'_2
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsNoetherian R L
hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L)
I : LieSubmodule R L L
hI : I ∈ {I | IsSolvable R { x // x ∈ ↑I }}
J : LieSubmodule R L L
hJ : J ∈ {I | IsSolvable R { x // x ∈ ↑I }}
⊢ I ⊔ J ∈ {I | IsSolvable R { x // x ∈ ↑I }}
[PROOFSTEP]
rw [Set.mem_setOf_eq] at hI hJ ⊢
[GOAL]
case refine'_2
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁵ : CommRing R
inst✝⁴ : LieRing L
inst✝³ : LieAlgebra R L
inst✝² : LieRing L'
inst✝¹ : LieAlgebra R L'
I✝ J✝ : LieIdeal R L
f : L' →ₗ⁅R⁆ L
inst✝ : IsNoetherian R L
hwf : CompleteLattice.IsSupClosedCompact (LieSubmodule R L L)
I : LieSubmodule R L L
hI : IsSolvable R { x // x ∈ ↑I }
J : LieSubmodule R L L
hJ : IsSolvable R { x // x ∈ ↑J }
⊢ IsSolvable R { x // x ∈ ↑(I ⊔ J) }
[PROOFSTEP]
apply LieAlgebra.isSolvableAdd R L
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
⊢ derivedLengthOfIdeal R L I = k + 1 ↔
IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } ∧ derivedSeriesOfIdeal R L k I ≠ ⊥
[PROOFSTEP]
rw [abelian_iff_derived_succ_eq_bot]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
⊢ derivedLengthOfIdeal R L I = k + 1 ↔ derivedSeriesOfIdeal R L (k + 1) I = ⊥ ∧ derivedSeriesOfIdeal R L k I ≠ ⊥
[PROOFSTEP]
let s := {k | derivedSeriesOfIdeal R L k I = ⊥}
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ derivedLengthOfIdeal R L I = k + 1 ↔ derivedSeriesOfIdeal R L (k + 1) I = ⊥ ∧ derivedSeriesOfIdeal R L k I ≠ ⊥
[PROOFSTEP]
change sInf s = k + 1 ↔ k + 1 ∈ s ∧ k ∉ s
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s
[PROOFSTEP]
have hs : ∀ k₁ k₂ : ℕ, k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s :=
by
intro k₁ k₂ h₁₂ h₁
suffices derivedSeriesOfIdeal R L k₂ I ≤ ⊥ by exact eq_bot_iff.mpr this
change derivedSeriesOfIdeal R L k₁ I = ⊥ at h₁ ; rw [← h₁]
exact derivedSeriesOfIdeal_antitone I h₁₂
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s
[PROOFSTEP]
intro k₁ k₂ h₁₂ h₁
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k₁ k₂ : ℕ
h₁₂ : k₁ ≤ k₂
h₁ : k₁ ∈ s
⊢ k₂ ∈ s
[PROOFSTEP]
suffices derivedSeriesOfIdeal R L k₂ I ≤ ⊥ by exact eq_bot_iff.mpr this
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k₁ k₂ : ℕ
h₁₂ : k₁ ≤ k₂
h₁ : k₁ ∈ s
this : derivedSeriesOfIdeal R L k₂ I ≤ ⊥
⊢ k₂ ∈ s
[PROOFSTEP]
exact eq_bot_iff.mpr this
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k₁ k₂ : ℕ
h₁₂ : k₁ ≤ k₂
h₁ : k₁ ∈ s
⊢ derivedSeriesOfIdeal R L k₂ I ≤ ⊥
[PROOFSTEP]
change derivedSeriesOfIdeal R L k₁ I = ⊥ at h₁
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k₁ k₂ : ℕ
h₁₂ : k₁ ≤ k₂
h₁ : derivedSeriesOfIdeal R L k₁ I = ⊥
⊢ derivedSeriesOfIdeal R L k₂ I ≤ ⊥
[PROOFSTEP]
rw [← h₁]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k₁ k₂ : ℕ
h₁₂ : k₁ ≤ k₂
h₁ : derivedSeriesOfIdeal R L k₁ I = ⊥
⊢ derivedSeriesOfIdeal R L k₂ I ≤ derivedSeriesOfIdeal R L k₁ I
[PROOFSTEP]
exact derivedSeriesOfIdeal_antitone I h₁₂
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
hs : ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s
⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s
[PROOFSTEP]
exact Nat.sInf_upward_closed_eq_succ_iff hs k
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
⊢ derivedLength R { x // x ∈ ↑I } = derivedLengthOfIdeal R L I
[PROOFSTEP]
let s₁ := {k | derivedSeries R I k = ⊥}
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥}
⊢ derivedLength R { x // x ∈ ↑I } = derivedLengthOfIdeal R L I
[PROOFSTEP]
let s₂ := {k | derivedSeriesOfIdeal R L k I = ⊥}
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥}
s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ derivedLength R { x // x ∈ ↑I } = derivedLengthOfIdeal R L I
[PROOFSTEP]
change sInf s₁ = sInf s₂
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥}
s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ sInf s₁ = sInf s₂
[PROOFSTEP]
congr
[GOAL]
case e_a
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥}
s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ s₁ = s₂
[PROOFSTEP]
ext k
[GOAL]
case e_a.h
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
s₁ : Set ℕ := {k | derivedSeries R { x // x ∈ ↑I } k = ⊥}
s₂ : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k : ℕ
⊢ k ∈ s₁ ↔ k ∈ s₂
[PROOFSTEP]
exact I.derivedSeries_eq_bot_iff k
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
⊢ IsLieAbelian { x // x ∈ ↑(derivedAbelianOfIdeal I) }
[PROOFSTEP]
dsimp only [derivedAbelianOfIdeal]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
⊢ IsLieAbelian
{ x //
x ∈
↑(match derivedLengthOfIdeal R L I with
| 0 => ⊥
| Nat.succ k => derivedSeriesOfIdeal R L k I) }
[PROOFSTEP]
cases' h : derivedLengthOfIdeal R L I with k
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h : derivedLengthOfIdeal R L I = Nat.zero
⊢ IsLieAbelian
{ x //
x ∈
↑(match Nat.zero with
| 0 => ⊥
| Nat.succ k => derivedSeriesOfIdeal R L k I) }
[PROOFSTEP]
exact isLieAbelian_bot R L
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
⊢ IsLieAbelian
{ x //
x ∈
↑(match Nat.succ k with
| 0 => ⊥
| Nat.succ k => derivedSeriesOfIdeal R L k I) }
[PROOFSTEP]
rw [derivedSeries_of_derivedLength_succ] at h
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
k : ℕ
h : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) } ∧ derivedSeriesOfIdeal R L k I ≠ ⊥
⊢ IsLieAbelian
{ x //
x ∈
↑(match Nat.succ k with
| 0 => ⊥
| Nat.succ k => derivedSeriesOfIdeal R L k I) }
[PROOFSTEP]
exact h.1
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
⊢ derivedLengthOfIdeal R L I = 0 ↔ I = ⊥
[PROOFSTEP]
let s := {k | derivedSeriesOfIdeal R L k I = ⊥}
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ derivedLengthOfIdeal R L I = 0 ↔ I = ⊥
[PROOFSTEP]
change sInf s = 0 ↔ _
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ sInf s = 0 ↔ I = ⊥
[PROOFSTEP]
have hne : s ≠ ∅ := by
obtain ⟨k, hk⟩ := id hI
refine' Set.Nonempty.ne_empty ⟨k, _⟩
rw [derivedSeries_def, LieIdeal.derivedSeries_eq_bot_iff] at hk ; exact hk
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
⊢ s ≠ ∅
[PROOFSTEP]
obtain ⟨k, hk⟩ := id hI
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k : ℕ
hk : derivedSeries R { x // x ∈ ↑I } k = ⊥
⊢ s ≠ ∅
[PROOFSTEP]
refine' Set.Nonempty.ne_empty ⟨k, _⟩
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k : ℕ
hk : derivedSeries R { x // x ∈ ↑I } k = ⊥
⊢ k ∈ s
[PROOFSTEP]
rw [derivedSeries_def, LieIdeal.derivedSeries_eq_bot_iff] at hk
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
k : ℕ
hk : derivedSeriesOfIdeal R L k I = ⊥
⊢ k ∈ s
[PROOFSTEP]
exact hk
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
hI : IsSolvable R { x // x ∈ ↑I }
s : Set ℕ := {k | derivedSeriesOfIdeal R L k I = ⊥}
hne : s ≠ ∅
⊢ sInf s = 0 ↔ I = ⊥
[PROOFSTEP]
simp [hne]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h : IsSolvable R { x // x ∈ ↑I }
⊢ derivedAbelianOfIdeal I = ⊥ ↔ I = ⊥
[PROOFSTEP]
dsimp only [derivedAbelianOfIdeal]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h : IsSolvable R { x // x ∈ ↑I }
⊢ (match derivedLengthOfIdeal R L I with
| 0 => ⊥
| Nat.succ k => derivedSeriesOfIdeal R L k I) =
⊥ ↔
I = ⊥
[PROOFSTEP]
split
-- Porting note: Original tactic was `cases' h : derivedAbelianOfIdeal R L I with k`
[GOAL]
case h_1
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h : IsSolvable R { x // x ∈ ↑I }
x✝ : ℕ
heq✝ : derivedLengthOfIdeal R L I = 0
⊢ ⊥ = ⊥ ↔ I = ⊥
[PROOFSTEP]
rename_i h
[GOAL]
case h_1
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ : ℕ
h : derivedLengthOfIdeal R L I = 0
⊢ ⊥ = ⊥ ↔ I = ⊥
[PROOFSTEP]
rw [derivedLength_zero] at h
[GOAL]
case h_1
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ : ℕ
h : I = ⊥
⊢ ⊥ = ⊥ ↔ I = ⊥
[PROOFSTEP]
rw [h]
[GOAL]
case h_2
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h : IsSolvable R { x // x ∈ ↑I }
x✝ k✝ : ℕ
heq✝ : derivedLengthOfIdeal R L I = Nat.succ k✝
⊢ derivedSeriesOfIdeal R L k✝ I = ⊥ ↔ I = ⊥
[PROOFSTEP]
rename_i k h
[GOAL]
case h_2
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
⊢ derivedSeriesOfIdeal R L k I = ⊥ ↔ I = ⊥
[PROOFSTEP]
obtain ⟨_, h₂⟩ := (derivedSeries_of_derivedLength_succ R L I k).mp h
[GOAL]
case h_2.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) }
h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥
⊢ derivedSeriesOfIdeal R L k I = ⊥ ↔ I = ⊥
[PROOFSTEP]
have h₃ : I ≠ ⊥ := by intro contra; apply h₂; rw [contra]; apply derivedSeries_of_bot_eq_bot
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) }
h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥
⊢ I ≠ ⊥
[PROOFSTEP]
intro contra
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) }
h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥
contra : I = ⊥
⊢ False
[PROOFSTEP]
apply h₂
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) }
h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥
contra : I = ⊥
⊢ derivedSeriesOfIdeal R L k I = ⊥
[PROOFSTEP]
rw [contra]
[GOAL]
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) }
h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥
contra : I = ⊥
⊢ derivedSeriesOfIdeal R L k ⊥ = ⊥
[PROOFSTEP]
apply derivedSeries_of_bot_eq_bot
[GOAL]
case h_2.intro
R : Type u
L : Type v
M : Type w
L' : Type w₁
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I✝ J : LieIdeal R L
f : L' →ₗ⁅R⁆ L
I : LieIdeal R L
h✝ : IsSolvable R { x // x ∈ ↑I }
x✝ k : ℕ
h : derivedLengthOfIdeal R L I = Nat.succ k
left✝ : IsLieAbelian { x // x ∈ ↑(derivedSeriesOfIdeal R L k I) }
h₂ : derivedSeriesOfIdeal R L k I ≠ ⊥
h₃ : I ≠ ⊥
⊢ derivedSeriesOfIdeal R L k I = ⊥ ↔ I = ⊥
[PROOFSTEP]
simp only [h₂, h₃]
| {"mathlib_filename": "Mathlib.Algebra.Lie.Solvable", "llama_tokens": 25280} |
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ ⁅x✝² + x✝¹, x✝⁆ = ⁅x✝², x✝⁆ + ⁅x✝¹, x✝⁆
[PROOFSTEP]
simp only [Ring.lie_def, right_distrib, left_distrib]
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ x✝² * x✝ + x✝¹ * x✝ - (x✝ * x✝² + x✝ * x✝¹) = x✝² * x✝ - x✝ * x✝² + (x✝¹ * x✝ - x✝ * x✝¹)
[PROOFSTEP]
abel
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ x✝² * x✝ + x✝¹ * x✝ - (x✝ * x✝² + x✝ * x✝¹) = x✝² * x✝ - x✝ * x✝² + (x✝¹ * x✝ - x✝ * x✝¹)
[PROOFSTEP]
abel
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ ⁅x✝², x✝¹ + x✝⁆ = ⁅x✝², x✝¹⁆ + ⁅x✝², x✝⁆
[PROOFSTEP]
simp only [Ring.lie_def, right_distrib, left_distrib]
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ x✝² * x✝¹ + x✝² * x✝ - (x✝¹ * x✝² + x✝ * x✝²) = x✝² * x✝¹ - x✝¹ * x✝² + (x✝² * x✝ - x✝ * x✝²)
[PROOFSTEP]
abel
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ x✝² * x✝¹ + x✝² * x✝ - (x✝¹ * x✝² + x✝ * x✝²) = x✝² * x✝¹ - x✝¹ * x✝² + (x✝² * x✝ - x✝ * x✝²)
[PROOFSTEP]
abel
[GOAL]
A : Type v
inst✝ : Ring A
⊢ ∀ (x : A), ⁅x, x⁆ = 0
[PROOFSTEP]
simp only [Ring.lie_def, forall_const, sub_self]
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ ⁅x✝², ⁅x✝¹, x✝⁆⁆ = ⁅⁅x✝², x✝¹⁆, x✝⁆ + ⁅x✝¹, ⁅x✝², x✝⁆⁆
[PROOFSTEP]
simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ x✝² * (x✝¹ * x✝) - x✝² * (x✝ * x✝¹) - (x✝¹ * (x✝ * x✝²) - x✝ * (x✝¹ * x✝²)) =
x✝² * (x✝¹ * x✝) - x✝¹ * (x✝² * x✝) - (x✝ * (x✝² * x✝¹) - x✝ * (x✝¹ * x✝²)) +
(x✝¹ * (x✝² * x✝) - x✝¹ * (x✝ * x✝²) - (x✝² * (x✝ * x✝¹) - x✝ * (x✝² * x✝¹)))
[PROOFSTEP]
abel
[GOAL]
A : Type v
inst✝ : Ring A
x✝² x✝¹ x✝ : A
⊢ x✝² * (x✝¹ * x✝) - x✝² * (x✝ * x✝¹) - (x✝¹ * (x✝ * x✝²) - x✝ * (x✝¹ * x✝²)) =
x✝² * (x✝¹ * x✝) - x✝¹ * (x✝² * x✝) - (x✝ * (x✝² * x✝¹) - x✝ * (x✝¹ * x✝²)) +
(x✝¹ * (x✝² * x✝) - x✝¹ * (x✝ * x✝²) - (x✝² * (x✝ * x✝¹) - x✝ * (x✝² * x✝¹)))
[PROOFSTEP]
abel
[GOAL]
A : Type v
inst✝² : Ring A
M : Type w
inst✝¹ : AddCommGroup M
inst✝ : Module A M
⊢ ∀ (x y : A) (m : M), ⁅x, ⁅y, m⁆⁆ = ⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆
[PROOFSTEP]
simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel]
[GOAL]
A : Type v
inst✝² : Ring A
R : Type u
inst✝¹ : CommRing R
inst✝ : Algebra R A
t : R
x y : A
⊢ ⁅x, t • y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm,
Algebra.smul_mul_assoc, smul_sub]
[GOAL]
A : Type v
inst✝⁶ : Ring A
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : Algebra R A
B : Type w
C : Type w₁
inst✝³ : Ring B
inst✝² : Ring C
inst✝¹ : Algebra R B
inst✝ : Algebra R C
f : A →ₐ[R] B
g : B →ₐ[R] C
src✝ : A →ₗ[R] B := toLinearMap f
x✝¹ x✝ : A
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x✝¹, x✝⁆ =
⁅AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x✝¹,
AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x✝⁆
[PROOFSTEP]
simp [LieRing.of_associative_ring_bracket]
[GOAL]
A : Type v
inst✝⁶ : Ring A
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : Algebra R A
B : Type w
C : Type w₁
inst✝³ : Ring B
inst✝² : Ring C
inst✝¹ : Algebra R B
inst✝ : Algebra R C
f✝ : A →ₐ[R] B
g✝ : B →ₐ[R] C
f g : A →ₐ[R] B
h : toLieHom f = toLieHom g
⊢ f = g
[PROOFSTEP]
ext a
[GOAL]
case H
A : Type v
inst✝⁶ : Ring A
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : Algebra R A
B : Type w
C : Type w₁
inst✝³ : Ring B
inst✝² : Ring C
inst✝¹ : Algebra R B
inst✝ : Algebra R C
f✝ : A →ₐ[R] B
g✝ : B →ₐ[R] C
f g : A →ₐ[R] B
h : toLieHom f = toLieHom g
a : A
⊢ ↑f a = ↑g a
[PROOFSTEP]
exact LieHom.congr_fun h a
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
x y : L
⊢ (fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y
[PROOFSTEP]
ext m
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
x y : L
m : M
⊢ ↑((fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y))
m =
↑((fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y)
m
[PROOFSTEP]
apply add_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
t : R
x : L
⊢ AddHom.toFun
{
toFun := fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x
[PROOFSTEP]
ext m
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
t : R
x : L
m : M
⊢ ↑(AddHom.toFun
{
toFun := fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x))
m =
↑(↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x)
m
[PROOFSTEP]
apply smul_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
x y : L
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun x =>
{ toAddHom := { toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) },
map_smul' :=
(_ :
∀ (t : R) (x : L),
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) },
map_smul' :=
(_ :
∀ (t : R) (x : L),
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) },
map_smul' :=
(_ :
∀ (t : R) (x : L),
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x) }.toAddHom
y⁆
[PROOFSTEP]
ext m
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
x y : L
m : M
⊢ ↑(AddHom.toFun
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) },
map_smul' :=
(_ :
∀ (t : R) (x : L),
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x) }.toAddHom
⁅x, y⁆)
m =
↑⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) },
map_smul' :=
(_ :
∀ (t : R) (x : L),
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆, map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) },
map_smul' :=
(_ :
∀ (t : R) (x : L),
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) },
map_add' :=
(_ :
∀ (x y : L),
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
(x + y) =
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
x +
(fun x =>
{
toAddHom :=
{ toFun := fun m => ⁅x, m⁆,
map_add' := (_ : ∀ (m n : M), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆) },
map_smul' := (_ : ∀ (t : R) (m : M), ⁅x, t • m⁆ = t • ⁅x, m⁆) })
y) }
x) }.toAddHom
y⁆
m
[PROOFSTEP]
apply lie_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
⊢ toEndomorphism R (Module.End R M) M = LieHom.id
[PROOFSTEP]
ext g m
[GOAL]
case h.h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
g : Module.End R M
m : M
⊢ ↑(↑(toEndomorphism R (Module.End R M) M) g) m = ↑(↑LieHom.id g) m
[PROOFSTEP]
simp [lie_eq_smul]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
x : L
⊢ Submodule.map (↑(toEndomorphism R L M) x) ↑N ≤ ↑N
[PROOFSTEP]
rintro n ⟨m, hm, rfl⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
x : L
m : M
hm : m ∈ ↑↑N
⊢ ↑(↑(toEndomorphism R L M) x) m ∈ ↑N
[PROOFSTEP]
exact N.lie_mem hm
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
x : L
m : M
hm : m ∈ ↑N
⊢ ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N
[PROOFSTEP]
simpa using N.lie_mem hm
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
x : L
h :
optParam
(∀ (m : M) (hm : m ∈ ↑N),
↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N)
(_ :
∀ (m : M) (hm : m ∈ ↑N),
↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N)
⊢ LinearMap.restrict (↑(toEndomorphism R L M) x) h = ↑(toEndomorphism R L { x // x ∈ ↑N }) x
[PROOFSTEP]
ext
[GOAL]
case h.a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
x : L
h :
optParam
(∀ (m : M) (hm : m ∈ ↑N),
↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N)
(_ :
∀ (m : M) (hm : m ∈ ↑N),
↑(LinearMap.comp (↑(toEndomorphism R L M) x) (Submodule.subtype ↑N)) { val := m, property := hm } ∈ ↑N)
x✝ : { x // x ∈ ↑N }
⊢ ↑(↑(LinearMap.restrict (↑(toEndomorphism R L M) x) h) x✝) = ↑(↑(↑(toEndomorphism R L { x // x ∈ ↑N }) x) x✝)
[PROOFSTEP]
simp [LinearMap.restrict_apply]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
⊢ ↑(ad R A) = LinearMap.mulLeft R - LinearMap.mulRight R
[PROOFSTEP]
ext a b
[GOAL]
case h.h
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
a b : A
⊢ ↑(↑(ad R A) a) b = ↑((LinearMap.mulLeft R - LinearMap.mulRight R) a) b
[PROOFSTEP]
simp [LieRing.of_associative_ring_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
x : { x // x ∈ K }
⊢ LinearMap.comp (↑(ad R L) ↑x) ↑(incl K) = LinearMap.comp (↑(incl K)) (↑(ad R { x // x ∈ K }) x)
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
x y : { x // x ∈ K }
⊢ ↑(LinearMap.comp (↑(ad R L) ↑x) ↑(incl K)) y = ↑(LinearMap.comp (↑(incl K)) (↑(ad R { x // x ∈ K }) x)) y
[PROOFSTEP]
simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket,
Function.comp_apply]
[GOAL]
R : Type u
inst✝² : CommRing R
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
A' : Subalgebra R A
src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A'
x y : A
hx :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
change ⁅x, y⁆ ∈ A'
[GOAL]
R : Type u
inst✝² : CommRing R
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
A' : Subalgebra R A
src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A'
x y : A
hx :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈ A'
[PROOFSTEP]
change x ∈ A' at hx
[GOAL]
R : Type u
inst✝² : CommRing R
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
A' : Subalgebra R A
src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A'
x y : A
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : A}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hx : x ∈ A'
⊢ ⁅x, y⁆ ∈ A'
[PROOFSTEP]
change y ∈ A' at hy
[GOAL]
R : Type u
inst✝² : CommRing R
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
A' : Subalgebra R A
src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A'
x y : A
hx : x ∈ A'
hy : y ∈ A'
⊢ ⁅x, y⁆ ∈ A'
[PROOFSTEP]
rw [LieRing.of_associative_ring_bracket]
[GOAL]
R : Type u
inst✝² : CommRing R
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
A' : Subalgebra R A
src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A'
x y : A
hx : x ∈ A'
hy : y ∈ A'
⊢ x * y - y * x ∈ A'
[PROOFSTEP]
have hxy := A'.mul_mem hx hy
[GOAL]
R : Type u
inst✝² : CommRing R
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
A' : Subalgebra R A
src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A'
x y : A
hx : x ∈ A'
hy : y ∈ A'
hxy : x * y ∈ A'
⊢ x * y - y * x ∈ A'
[PROOFSTEP]
have hyx := A'.mul_mem hy hx
[GOAL]
R : Type u
inst✝² : CommRing R
A : Type v
inst✝¹ : Ring A
inst✝ : Algebra R A
A' : Subalgebra R A
src✝ : (fun x => Submodule R A) A' := ↑Subalgebra.toSubmodule A'
x y : A
hx : x ∈ A'
hy : y ∈ A'
hxy : x * y ∈ A'
hyx : y * x ∈ A'
⊢ x * y - y * x ∈ A'
[PROOFSTEP]
exact Submodule.sub_mem (Subalgebra.toSubmodule A') hxy hyx
[GOAL]
R : Type u
M₁ : Type v
M₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M₁
inst✝² : Module R M₁
inst✝¹ : AddCommGroup M₂
inst✝ : Module R M₂
e : M₁ ≃ₗ[R] M₂
src✝ : Module.End R M₁ ≃ₗ[R] Module.End R M₂ := conj e
f g : Module.End R M₁
⊢ ↑(conj e) ⁅f, g⁆ = ⁅↑(conj e) f, ↑(conj e) g⁆
[PROOFSTEP]
simp only [LieRing.of_associative_ring_bracket, LinearMap.mul_eq_comp, e.conj_comp, LinearEquiv.map_sub]
[GOAL]
R : Type u
A₁ : Type v
A₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : Ring A₁
inst✝² : Ring A₂
inst✝¹ : Algebra R A₁
inst✝ : Algebra R A₂
e : A₁ ≃ₐ[R] A₂
src✝ : A₁ ≃ₗ[R] A₂ := toLinearEquiv e
x y : A₁
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := e.toFun,
map_add' :=
(_ :
∀ (x y : A₁),
AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : A₁),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{ toFun := e.toFun,
map_add' :=
(_ :
∀ (x y : A₁),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : A₁),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{ toFun := e.toFun,
map_add' :=
(_ :
∀ (x y : A₁),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : A₁),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
have : e.toEquiv.toFun = e := rfl
[GOAL]
R : Type u
A₁ : Type v
A₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : Ring A₁
inst✝² : Ring A₂
inst✝¹ : Algebra R A₁
inst✝ : Algebra R A₂
e : A₁ ≃ₐ[R] A₂
src✝ : A₁ ≃ₗ[R] A₂ := toLinearEquiv e
x y : A₁
this : e.toFun = ↑e
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := e.toFun,
map_add' :=
(_ :
∀ (x y : A₁),
AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : A₁),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{ toFun := e.toFun,
map_add' :=
(_ :
∀ (x y : A₁),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : A₁),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{ toFun := e.toFun,
map_add' :=
(_ :
∀ (x y : A₁),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : A₁),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
simp_rw [LieRing.of_associative_ring_bracket, this, map_sub, map_mul]
| {"mathlib_filename": "Mathlib.Algebra.Lie.OfAssociative", "llama_tokens": 24312} |
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y : L
hx : x ∈ 0.carrier
_hy : y ∈ 0.carrier
⊢ ⁅x, y⁆ ∈ 0.carrier
[PROOFSTEP]
rw [(Submodule.mem_bot R).1 hx, zero_lie]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y : L
hx : x ∈ 0.carrier
_hy : y ∈ 0.carrier
⊢ 0 ∈ 0.carrier
[PROOFSTEP]
exact Submodule.zero_mem 0
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' L'' : LieSubalgebra R L
h : (fun L' => L'.carrier) L' = (fun L' => L'.carrier) L''
⊢ L' = L''
[PROOFSTEP]
rcases L' with ⟨⟨⟩⟩
[GOAL]
case mk.mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L'' : LieSubalgebra R L
toAddSubmonoid✝ : AddSubmonoid L
smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier
lie_mem'✝ :
∀ {x y : L},
x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier
h :
(fun L' => L'.carrier)
{ toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ } =
(fun L' => L'.carrier) L''
⊢ { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ } = L''
[PROOFSTEP]
rcases L'' with ⟨⟨⟩⟩
[GOAL]
case mk.mk.mk.mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
toAddSubmonoid✝¹ : AddSubmonoid L
smul_mem'✝¹ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝¹.carrier → c • x ∈ toAddSubmonoid✝¹.carrier
lie_mem'✝¹ :
∀ {x y : L},
x ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier
toAddSubmonoid✝ : AddSubmonoid L
smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier
lie_mem'✝ :
∀ {x y : L},
x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier
h :
(fun L' => L'.carrier)
{ toSubmodule := { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }, lie_mem' := lie_mem'✝¹ } =
(fun L' => L'.carrier)
{ toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ }
⊢ { toSubmodule := { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }, lie_mem' := lie_mem'✝¹ } =
{ toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.mk.mk.e_toSubmodule.e_toAddSubmonoid
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
toAddSubmonoid✝¹ : AddSubmonoid L
smul_mem'✝¹ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝¹.carrier → c • x ∈ toAddSubmonoid✝¹.carrier
lie_mem'✝¹ :
∀ {x y : L},
x ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈ { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }.toAddSubmonoid.toAddSubsemigroup.carrier
toAddSubmonoid✝ : AddSubmonoid L
smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier
lie_mem'✝ :
∀ {x y : L},
x ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈ { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier
h :
(fun L' => L'.carrier)
{ toSubmodule := { toAddSubmonoid := toAddSubmonoid✝¹, smul_mem' := smul_mem'✝¹ }, lie_mem' := lie_mem'✝¹ } =
(fun L' => L'.carrier)
{ toSubmodule := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }, lie_mem' := lie_mem'✝ }
⊢ toAddSubmonoid✝¹ = toAddSubmonoid✝
[PROOFSTEP]
exact SetLike.coe_injective' h
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
⊢ ∀ (x y z : { x // x ∈ L' }), ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆
[PROOFSTEP]
intros
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ y✝ z✝ : { x // x ∈ L' }
⊢ ⁅x✝ + y✝, z✝⁆ = ⁅x✝, z✝⁆ + ⁅y✝, z✝⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ y✝ z✝ : { x // x ∈ L' }
⊢ ↑⁅x✝ + y✝, z✝⁆ = ↑(⁅x✝, z✝⁆ + ⁅y✝, z✝⁆)
[PROOFSTEP]
apply add_lie
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
⊢ ∀ (x y z : { x // x ∈ L' }), ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆
[PROOFSTEP]
intros
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ y✝ z✝ : { x // x ∈ L' }
⊢ ⁅x✝, y✝ + z✝⁆ = ⁅x✝, y✝⁆ + ⁅x✝, z✝⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ y✝ z✝ : { x // x ∈ L' }
⊢ ↑⁅x✝, y✝ + z✝⁆ = ↑(⁅x✝, y✝⁆ + ⁅x✝, z✝⁆)
[PROOFSTEP]
apply lie_add
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
⊢ ∀ (x : { x // x ∈ L' }), ⁅x, x⁆ = 0
[PROOFSTEP]
intros
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ : { x // x ∈ L' }
⊢ ⁅x✝, x✝⁆ = 0
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ : { x // x ∈ L' }
⊢ ↑⁅x✝, x✝⁆ = ↑0
[PROOFSTEP]
apply lie_self
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
⊢ ∀ (x y z : { x // x ∈ L' }), ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
intros
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ y✝ z✝ : { x // x ∈ L' }
⊢ ⁅x✝, ⁅y✝, z✝⁆⁆ = ⁅⁅x✝, y✝⁆, z✝⁆ + ⁅y✝, ⁅x✝, z✝⁆⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
x✝ y✝ z✝ : { x // x ∈ L' }
⊢ ↑⁅x✝, ⁅y✝, z✝⁆⁆ = ↑(⁅⁅x✝, y✝⁆, z✝⁆ + ⁅y✝, ⁅x✝, z✝⁆⁆)
[PROOFSTEP]
apply leibniz_lie
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
⊢ ∀ (t : R) (x y : { x // x ∈ L' }), ⁅x, t • y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
{ intros
apply SetCoe.ext
apply lie_smul
}
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
⊢ ∀ (t : R) (x y : { x // x ∈ L' }), ⁅x, t • y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
intros
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
t✝ : R
x✝ y✝ : { x // x ∈ L' }
⊢ ⁅x✝, t✝ • y✝⁆ = t✝ • ⁅x✝, y✝⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
t✝ : R
x✝ y✝ : { x // x ∈ L' }
⊢ ↑⁅x✝, t✝ • y✝⁆ = ↑(t✝ • ⁅x✝, y✝⁆)
[PROOFSTEP]
apply lie_smul
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
p : Submodule R L
h :
∀ {x y : L},
x ∈
{ toAddSubmonoid := p.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈
{ toAddSubmonoid := p.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := p.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ {
toSubmodule :=
{ toAddSubmonoid := p.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ p.carrier → c • x ∈ p.carrier) },
lie_mem' := h }.toSubmodule =
p
[PROOFSTEP]
cases p
[GOAL]
case mk
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' : LieSubalgebra R L
toAddSubmonoid✝ : AddSubmonoid L
smul_mem'✝ : ∀ (c : R) {x : L}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier
h :
∀ {x y : L},
x ∈
{ toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L},
x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' :=
smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈
{ toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L},
x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' :=
smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L},
x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' :=
smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ {
toSubmodule :=
{ toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L},
x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) },
lie_mem' := h }.toSubmodule =
{ toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' L₁' L₂' : LieSubalgebra R L
h : L₁'.toSubmodule = L₂'.toSubmodule
⊢ L₁' = L₂'
[PROOFSTEP]
rw [SetLike.ext'_iff] at h
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' L₁' L₂' : LieSubalgebra R L
h✝ : L₁'.toSubmodule = L₂'.toSubmodule
h : ↑L₁'.toSubmodule = ↑L₂'.toSubmodule
⊢ L₁' = L₂'
[PROOFSTEP]
rw [← coe_set_eq]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
L' L₁' L₂' : LieSubalgebra R L
h✝ : L₁'.toSubmodule = L₂'.toSubmodule
h : ↑L₁'.toSubmodule = ↑L₂'.toSubmodule
⊢ ↑L₁' = ↑L₂'
[PROOFSTEP]
exact h
[GOAL]
R : Type u
L : Type v
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
L' : LieSubalgebra R L
M : Type w
inst✝⁷ : AddCommGroup M
inst✝⁶ : LieRingModule L M
N : Type w₁
inst✝⁵ : AddCommGroup N
inst✝⁴ : LieRingModule L N
inst✝³ : Module R N
inst✝² : LieModule R L N
inst✝¹ : Module R M
inst✝ : LieModule R L M
t : R
x : { x // x ∈ L' }
m : M
⊢ ⁅t • x, m⁆ = t • ⁅x, m⁆
[PROOFSTEP]
simp only [coe_bracket_of_module, smul_lie, Submodule.coe_smul_of_tower]
[GOAL]
R : Type u
L : Type v
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
L' : LieSubalgebra R L
M : Type w
inst✝⁷ : AddCommGroup M
inst✝⁶ : LieRingModule L M
N : Type w₁
inst✝⁵ : AddCommGroup N
inst✝⁴ : LieRingModule L N
inst✝³ : Module R N
inst✝² : LieModule R L N
inst✝¹ : Module R M
inst✝ : LieModule R L M
t : R
x : { x // x ∈ L' }
m : M
⊢ ⁅x, t • m⁆ = t • ⁅x, m⁆
[PROOFSTEP]
simp only [coe_bracket_of_module, lie_smul]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
src✝ : Submodule R L₂ := LinearMap.range ↑f
⊢ ∀ {x y : L₂},
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂},
x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂},
x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂},
x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
rintro - - ⟨x, rfl⟩ ⟨y, rfl⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
src✝ : Submodule R L₂ := LinearMap.range ↑f
x y : L
⊢ ⁅↑↑f x, ↑↑f y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
exact ⟨⁅x, y⁆, f.map_lie x y⟩
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
src✝ : L →ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.rangeRestrict ↑f
x y : L
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case a
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
src✝ : L →ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.rangeRestrict ↑f
x y : L
⊢ ↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆) =
↑⁅AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
exact f.map_lie x y
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
⊢ Function.Surjective ↑(rangeRestrict f)
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case mk
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
y : L₂
hy : y ∈ range f
⊢ ∃ a, ↑(rangeRestrict f) a = { val := y, property := hy }
[PROOFSTEP]
erw [mem_range] at hy
[GOAL]
case mk
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
y : L₂
hy✝ : y ∈ range f
hy : ∃ y_1, ↑f y_1 = y
⊢ ∃ a, ↑(rangeRestrict f) a = { val := y, property := hy✝ }
[PROOFSTEP]
obtain ⟨x, rfl⟩ := hy
[GOAL]
case mk.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
x : L
hy : ↑f x ∈ range f
⊢ ∃ a, ↑(rangeRestrict f) a = { val := ↑f x, property := hy }
[PROOFSTEP]
use x
[GOAL]
case h
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
x : L
hy : ↑f x ∈ range f
⊢ ↑(rangeRestrict f) x = { val := ↑f x, property := hy }
[PROOFSTEP]
simp only [Subtype.mk_eq_mk, rangeRestrict_apply]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
h : Function.Injective ↑f
x y : L
hxy : ↑(rangeRestrict f) x = ↑(rangeRestrict f) y
⊢ x = y
[PROOFSTEP]
simp only [Subtype.mk_eq_mk, rangeRestrict_apply] at hxy
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
h : Function.Injective ↑f
x y : L
hxy : ↑f x = ↑f y
⊢ x = y
[PROOFSTEP]
exact h hxy
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
p : Submodule R L
⊢ (∃ K, K.toSubmodule = p) ↔ ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
p : Submodule R L
⊢ (∃ K, K.toSubmodule = p) → ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p
[PROOFSTEP]
rintro ⟨K, rfl⟩ _ _
[GOAL]
case mp.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K : LieSubalgebra R L
x✝ y✝ : L
⊢ x✝ ∈ K.toSubmodule → y✝ ∈ K.toSubmodule → ⁅x✝, y✝⁆ ∈ K.toSubmodule
[PROOFSTEP]
exact K.lie_mem'
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
p : Submodule R L
⊢ (∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p) → ∃ K, K.toSubmodule = p
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
p : Submodule R L
h : ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p
⊢ ∃ K, K.toSubmodule = p
[PROOFSTEP]
use{ p with lie_mem' := h _ _ }
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ LieHom.range (incl K) = K
[PROOFSTEP]
rw [← coe_to_submodule_eq_iff]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ (LieHom.range (incl K)).toSubmodule = K.toSubmodule
[PROOFSTEP]
exact (K : Submodule R L).range_subtype
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
hx :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
erw [Submodule.mem_map] at hx
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
hx : ∃ y, y ∈ K.toSubmodule ∧ ↑↑f y = x
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
rcases hx with ⟨x', hx', hx⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
x' : L
hx' : x' ∈ K.toSubmodule
hx : ↑↑f x' = x
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
rw [← hx]
[GOAL]
case intro.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
x' : L
hx' : x' ∈ K.toSubmodule
hx : ↑↑f x' = x
⊢ ⁅↑↑f x', y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
erw [Submodule.mem_map] at hy
[GOAL]
case intro.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
hy : ∃ y_1, y_1 ∈ K.toSubmodule ∧ ↑↑f y_1 = y
x' : L
hx' : x' ∈ K.toSubmodule
hx : ↑↑f x' = x
⊢ ⁅↑↑f x', y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
rcases hy with ⟨y', hy', hy⟩
[GOAL]
case intro.intro.intro.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
x' : L
hx' : x' ∈ K.toSubmodule
hx : ↑↑f x' = x
y' : L
hy' : y' ∈ K.toSubmodule
hy : ↑↑f y' = y
⊢ ⁅↑↑f x', y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
rw [← hy]
[GOAL]
case intro.intro.intro.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
x' : L
hx' : x' ∈ K.toSubmodule
hx : ↑↑f x' = x
y' : L
hy' : y' ∈ K.toSubmodule
hy : ↑↑f y' = y
⊢ ⁅↑↑f x', ↑↑f y'⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L₂}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
erw [Submodule.mem_map]
[GOAL]
case intro.intro.intro.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L₂ := Submodule.map (↑f) K.toSubmodule
x y : L₂
x' : L
hx' : x' ∈ K.toSubmodule
hx : ↑↑f x' = x
y' : L
hy' : y' ∈ K.toSubmodule
hy : ↑↑f y' = y
⊢ ∃ y, y ∈ K.toSubmodule ∧ ↑↑f y = ⁅↑↑f x', ↑↑f y'⁆
[PROOFSTEP]
exact ⟨⁅x', y'⁆, K.lie_mem hx' hy', f.map_lie x' y'⟩
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L := Submodule.comap (↑f) K₂.toSubmodule
x y : L
hx :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
suffices ⁅f x, f y⁆ ∈ K₂ by simp [this]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L := Submodule.comap (↑f) K₂.toSubmodule
x y : L
hx :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
this : ⁅↑f x, ↑f y⁆ ∈ K₂
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
simp [this]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : Submodule R L := Submodule.comap (↑f) K₂.toSubmodule
x y : L
hx :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅↑f x, ↑f y⁆ ∈ K₂
[PROOFSTEP]
exact K₂.lie_mem hx hy
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ LieHom.range f = map f ⊤
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
x✝ : L₂
⊢ x✝ ∈ LieHom.range f ↔ x✝ ∈ map f ⊤
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
src✝ : Submodule R L := sInf {x | ∃ s, s ∈ S ∧ s.toSubmodule = x}
x y : L
hx :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
simp only [Submodule.mem_carrier, mem_iInter, Submodule.sInf_coe, mem_setOf_eq, forall_apply_eq_imp_iff₂, exists_imp,
and_imp] at hx hy ⊢
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
src✝ : Submodule R L := sInf {x | ∃ s, s ∈ S ∧ s.toSubmodule = x}
x y : L
hx : ∀ (a : LieSubalgebra R L), a ∈ S → x ∈ ↑a.toSubmodule
hy : ∀ (a : LieSubalgebra R L), a ∈ S → y ∈ ↑a.toSubmodule
⊢ ∀ (a : LieSubalgebra R L), a ∈ S → ⁅x, y⁆ ∈ ↑a.toSubmodule
[PROOFSTEP]
intro K hK
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K✝ K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
src✝ : Submodule R L := sInf {x | ∃ s, s ∈ S ∧ s.toSubmodule = x}
x y : L
hx : ∀ (a : LieSubalgebra R L), a ∈ S → x ∈ ↑a.toSubmodule
hy : ∀ (a : LieSubalgebra R L), a ∈ S → y ∈ ↑a.toSubmodule
K : LieSubalgebra R L
hK : K ∈ S
⊢ ⁅x, y⁆ ∈ ↑K.toSubmodule
[PROOFSTEP]
exact K.lie_mem (hx K hK) (hy K hK)
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
⊢ ↑(sInf S) = ⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s
[PROOFSTEP]
rw [← coe_to_submodule, sInf_coe_to_submodule, Submodule.sInf_coe]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
⊢ ⋂ (p : Submodule R L) (_ : p ∈ {x | ∃ s, s ∈ S ∧ s.toSubmodule = x}), ↑p = ⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
x : L
⊢ x ∈ ⋂ (p : Submodule R L) (_ : p ∈ {x | ∃ s, s ∈ S ∧ s.toSubmodule = x}), ↑p ↔
x ∈ ⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
⊢ IsGLB S (sInf S)
[PROOFSTEP]
have h : ∀ K K' : LieSubalgebra R L, (K : Set L) ≤ K' ↔ K ≤ K' :=
by
intros
exact Iff.rfl
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
⊢ ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K'
[PROOFSTEP]
intros
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
K✝ K'✝ : LieSubalgebra R L
⊢ ↑K✝ ≤ ↑K'✝ ↔ K✝ ≤ K'✝
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
h : ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K'
⊢ IsGLB S (sInf S)
[PROOFSTEP]
apply IsGLB.of_image @h
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
h : ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K'
⊢ IsGLB ((fun x => ↑x) '' S) ↑(sInf S)
[PROOFSTEP]
simp only [sInf_coe]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
S : Set (LieSubalgebra R L)
h : ∀ (K K' : LieSubalgebra R L), ↑K ≤ ↑K' ↔ K ≤ K'
⊢ IsGLB ((fun x => ↑x) '' S) (⋂ (s : LieSubalgebra R L) (_ : s ∈ S), ↑s)
[PROOFSTEP]
exact isGLB_biInf
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : CompleteLattice (LieSubalgebra R L) :=
completeLatticeOfInf (LieSubalgebra R L) (_ : ∀ (S : Set (LieSubalgebra R L)), IsGLB S (sInf S))
N : LieSubalgebra R L
x✝ : L
h : x✝ ∈ ⊥
⊢ x✝ ∈ N
[PROOFSTEP]
rw [mem_bot] at h
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : CompleteLattice (LieSubalgebra R L) :=
completeLatticeOfInf (LieSubalgebra R L) (_ : ∀ (S : Set (LieSubalgebra R L)), IsGLB S (sInf S))
N : LieSubalgebra R L
x✝ : L
h : x✝ = 0
⊢ x✝ ∈ N
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
src✝ : CompleteLattice (LieSubalgebra R L) :=
completeLatticeOfInf (LieSubalgebra R L) (_ : ∀ (S : Set (LieSubalgebra R L)), IsGLB S (sInf S))
N : LieSubalgebra R L
x✝ : L
h : x✝ = 0
⊢ 0 ∈ N
[PROOFSTEP]
exact N.zero_mem'
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
x : L
⊢ x ∈ K ⊓ K' ↔ x ∈ K ∧ x ∈ K'
[PROOFSTEP]
rw [← mem_coe_submodule, ← mem_coe_submodule, ← mem_coe_submodule, inf_coe_to_submodule, Submodule.mem_inf]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ K = ⊥ ↔ ∀ (x : L), x ∈ K → x = 0
[PROOFSTEP]
rw [_root_.eq_bot_iff]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ K ≤ ⊥ ↔ ∀ (x : L), x ∈ K → x = 0
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ Subsingleton (LieSubalgebra R { x // x ∈ ⊥ })
[PROOFSTEP]
apply subsingleton_of_bot_eq_top
[GOAL]
case hα
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ ⊥ = ⊤
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case hα.h.mk
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
x : L
hx : x ∈ ⊥
⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤
[PROOFSTEP]
change x ∈ ⊥ at hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
x : L
hx : x ∈ ⊥
⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤
[PROOFSTEP]
rw [LieSubalgebra.mem_bot] at hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
x : L
hx✝ : x ∈ ⊥
hx : x = 0
⊢ { val := x, property := hx✝ } ∈ ⊥ ↔ { val := x, property := hx✝ } ∈ ⊤
[PROOFSTEP]
subst hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
hx : 0 ∈ ⊥
⊢ { val := 0, property := hx } ∈ ⊥ ↔ { val := 0, property := hx } ∈ ⊤
[PROOFSTEP]
simp only [true_iff_iff, eq_self_iff_true, Submodule.mk_eq_zero, mem_bot, mem_top]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
⊢ Subsingleton ↑↑⊥
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
x y : { x // x ∈ K }
⊢ ↑(homOfLe h) x = ↑(homOfLe h) y → x = y
[PROOFSTEP]
simp only [homOfLe_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
x : { x // x ∈ K' }
⊢ x ∈ ofLe h ↔ ↑x ∈ K
[PROOFSTEP]
simp only [ofLe, homOfLe_apply, LieHom.mem_range]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
x : { x // x ∈ K' }
⊢ (∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x) ↔ ↑x ∈ K
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
x : { x // x ∈ K' }
⊢ (∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x) → ↑x ∈ K
[PROOFSTEP]
rintro ⟨y, rfl⟩
[GOAL]
case mp.intro
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
y : { x // x ∈ K }
⊢ ↑{ val := ↑y, property := (_ : ↑y ∈ K') } ∈ K
[PROOFSTEP]
exact y.property
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
x : { x // x ∈ K' }
⊢ ↑x ∈ K → ∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h✝ : K ≤ K'
x : { x // x ∈ K' }
h : ↑x ∈ K
⊢ ∃ y, { val := ↑y, property := (_ : ↑y ∈ K') } = x
[PROOFSTEP]
use⟨(x : L), h⟩
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
⊢ ofLe h = comap (incl K') K
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
x✝ : { x // x ∈ K' }
⊢ x✝ ∈ ofLe h ↔ x✝ ∈ comap (incl K') K
[PROOFSTEP]
rw [mem_ofLe]
[GOAL]
case h
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
h : K ≤ K'
x✝ : { x // x ∈ K' }
⊢ ↑x✝ ∈ K ↔ x✝ ∈ comap (incl K') K
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
x : L
⊢ x ∈ lieSpan R L s ↔ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → x ∈ K
[PROOFSTEP]
change x ∈ (lieSpan R L s : Set L) ↔ _
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
x : L
⊢ x ∈ ↑(lieSpan R L s) ↔ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → x ∈ K
[PROOFSTEP]
erw [sInf_coe]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
x : L
⊢ x ∈ ⋂ (s_1 : LieSubalgebra R L) (_ : s_1 ∈ {N | s ⊆ ↑N}), ↑s_1 ↔ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → x ∈ K
[PROOFSTEP]
exact Set.mem_iInter₂
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
⊢ s ⊆ ↑(lieSpan R L s)
[PROOFSTEP]
intro m hm
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
m : L
hm : m ∈ s
⊢ m ∈ ↑(lieSpan R L s)
[PROOFSTEP]
erw [mem_lieSpan]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
m : L
hm : m ∈ s
⊢ ∀ (K : LieSubalgebra R L), s ⊆ ↑K → m ∈ K
[PROOFSTEP]
intro K hK
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K✝ K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
m : L
hm : m ∈ s
K : LieSubalgebra R L
hK : s ⊆ ↑K
⊢ m ∈ K
[PROOFSTEP]
exact hK hm
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
⊢ Submodule.span R s ≤ (lieSpan R L s).toSubmodule
[PROOFSTEP]
rw [Submodule.span_le]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
⊢ s ⊆ ↑(lieSpan R L s).toSubmodule
[PROOFSTEP]
apply subset_lieSpan
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K✝ K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
K : LieSubalgebra R L
⊢ lieSpan R L s ≤ K ↔ s ⊆ ↑K
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K✝ K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
K : LieSubalgebra R L
⊢ lieSpan R L s ≤ K → s ⊆ ↑K
[PROOFSTEP]
exact Set.Subset.trans subset_lieSpan
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K✝ K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
K : LieSubalgebra R L
⊢ s ⊆ ↑K → lieSpan R L s ≤ K
[PROOFSTEP]
intro hs m hm
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K✝ K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
K : LieSubalgebra R L
hs : s ⊆ ↑K
m : L
hm : m ∈ lieSpan R L s
⊢ m ∈ K
[PROOFSTEP]
rw [mem_lieSpan] at hm
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K✝ K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
K : LieSubalgebra R L
hs : s ⊆ ↑K
m : L
hm : ∀ (K : LieSubalgebra R L), s ⊆ ↑K → m ∈ K
⊢ m ∈ K
[PROOFSTEP]
exact hm _ hs
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s t : Set L
h : s ⊆ t
⊢ lieSpan R L s ≤ lieSpan R L t
[PROOFSTEP]
rw [lieSpan_le]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s t : Set L
h : s ⊆ t
⊢ s ⊆ ↑(lieSpan R L t)
[PROOFSTEP]
exact Set.Subset.trans h subset_lieSpan
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
⊢ (lieSpan R L ↑p).toSubmodule = p ↔ ∃ K, K.toSubmodule = p
[PROOFSTEP]
rw [p.exists_lieSubalgebra_coe_eq_iff]
[GOAL]
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
⊢ (lieSpan R L ↑p).toSubmodule = p ↔ ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
⊢ (lieSpan R L ↑p).toSubmodule = p → ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
⊢ (∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p) → (lieSpan R L ↑p).toSubmodule = p
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
h : (lieSpan R L ↑p).toSubmodule = p
⊢ ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p
[PROOFSTEP]
intro x m hm
[GOAL]
case mp
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
h : (lieSpan R L ↑p).toSubmodule = p
x m : L
hm : x ∈ p
⊢ m ∈ p → ⁅x, m⁆ ∈ p
[PROOFSTEP]
rw [← h, mem_coe_submodule]
[GOAL]
case mp
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
h : (lieSpan R L ↑p).toSubmodule = p
x m : L
hm : x ∈ p
⊢ m ∈ lieSpan R L ↑p → ⁅x, m⁆ ∈ (lieSpan R L ↑p).toSubmodule
[PROOFSTEP]
exact lie_mem _ (subset_lieSpan hm)
[GOAL]
case mpr
R : Type u
L : Type v
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
L₂ : Type w
inst✝¹ : LieRing L₂
inst✝ : LieAlgebra R L₂
f : L →ₗ⁅R⁆ L₂
K K' : LieSubalgebra R L
K₂ : LieSubalgebra R L₂
s : Set L
p : Submodule R L
h : ∀ (x y : L), x ∈ p → y ∈ p → ⁅x, y⁆ ∈ p
⊢ (lieSpan R L ↑p).toSubmodule = p
[PROOFSTEP]
rw [← coe_to_submodule_mk p @h, coe_to_submodule, coe_to_submodule_eq_iff, lieSpan_eq]
[GOAL]
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
f : L₁ →ₗ⁅R⁆ L₂
h : Function.Injective ↑f
⊢ Function.Injective ↑↑f
[PROOFSTEP]
rwa [LieHom.coe_toLinearMap]
[GOAL]
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
h : ↑L₁' = ↑L₁''
⊢ L₁'.toSubmodule = L₁''.toSubmodule
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
h : ↑L₁' = ↑L₁''
x : L₁
⊢ x ∈ L₁'.toSubmodule ↔ x ∈ L₁''.toSubmodule
[PROOFSTEP]
change x ∈ (L₁' : Set L₁) ↔ x ∈ (L₁'' : Set L₁)
[GOAL]
case h
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
h : ↑L₁' = ↑L₁''
x : L₁
⊢ x ∈ ↑L₁' ↔ x ∈ ↑L₁''
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
e : L₁ ≃ₗ⁅R⁆ L₂
src✝ : { x // x ∈ L₁''.toSubmodule } ≃ₗ[R] { x // x ∈ Submodule.map (↑(toLinearEquiv e)) L₁''.toSubmodule } :=
LinearEquiv.submoduleMap (toLinearEquiv e) L₁''.toSubmodule
x y : { x // x ∈ L₁'' }
⊢ AddHom.toFun src✝.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
e : L₁ ≃ₗ⁅R⁆ L₂
src✝ : { x // x ∈ L₁''.toSubmodule } ≃ₗ[R] { x // x ∈ Submodule.map (↑(toLinearEquiv e)) L₁''.toSubmodule } :=
LinearEquiv.submoduleMap (toLinearEquiv e) L₁''.toSubmodule
x y : { x // x ∈ L₁'' }
⊢ ↑(AddHom.toFun src✝.toAddHom ⁅x, y⁆) = ↑⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆
[PROOFSTEP]
exact LieHom.map_lie (↑e : L₁ →ₗ⁅R⁆ L₂) ↑x ↑y
[GOAL]
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
e : L₁ ≃ₗ⁅R⁆ L₂
h : LieSubalgebra.map e.toLieHom L₁' = L₂'
⊢ Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = L₂'.toSubmodule
[PROOFSTEP]
rw [← h]
[GOAL]
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
e : L₁ ≃ₗ⁅R⁆ L₂
h : LieSubalgebra.map e.toLieHom L₁' = L₂'
⊢ Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = (LieSubalgebra.map e.toLieHom L₁').toSubmodule
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
e : L₁ ≃ₗ⁅R⁆ L₂
h : LieSubalgebra.map e.toLieHom L₁' = L₂'
src✝ : { x // x ∈ L₁'.toSubmodule } ≃ₗ[R] { x // x ∈ L₂'.toSubmodule } :=
LinearEquiv.ofSubmodules (toLinearEquiv e) L₁'.toSubmodule L₂'.toSubmodule
(_ : Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = L₂'.toSubmodule)
x y : { x // x ∈ L₁' }
⊢ AddHom.toFun src✝.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
L₁' L₁'' : LieSubalgebra R L₁
L₂' : LieSubalgebra R L₂
e : L₁ ≃ₗ⁅R⁆ L₂
h : LieSubalgebra.map e.toLieHom L₁' = L₂'
src✝ : { x // x ∈ L₁'.toSubmodule } ≃ₗ[R] { x // x ∈ L₂'.toSubmodule } :=
LinearEquiv.ofSubmodules (toLinearEquiv e) L₁'.toSubmodule L₂'.toSubmodule
(_ : Submodule.map (↑(toLinearEquiv e)) L₁'.toSubmodule = L₂'.toSubmodule)
x y : { x // x ∈ L₁' }
⊢ ↑(AddHom.toFun src✝.toAddHom ⁅x, y⁆) = ↑⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆
[PROOFSTEP]
exact LieHom.map_lie (↑e : L₁ →ₗ⁅R⁆ L₂) ↑x ↑y
| {"mathlib_filename": "Mathlib.Algebra.Lie.Subalgebra", "llama_tokens": 29294} |
[GOAL]
a b : Cardinal.{u}
n m : ℕ
⊢ IsUnit a ↔ a = 1
[PROOFSTEP]
refine'
⟨fun h => _, by
rintro rfl
exact isUnit_one⟩
[GOAL]
a b : Cardinal.{u}
n m : ℕ
⊢ a = 1 → IsUnit a
[PROOFSTEP]
rintro rfl
[GOAL]
b : Cardinal.{u}
n m : ℕ
⊢ IsUnit 1
[PROOFSTEP]
exact isUnit_one
[GOAL]
a b : Cardinal.{u}
n m : ℕ
h : IsUnit a
⊢ a = 1
[PROOFSTEP]
rcases eq_or_ne a 0 with (rfl | ha)
[GOAL]
case inl
b : Cardinal.{u}
n m : ℕ
h : IsUnit 0
⊢ 0 = 1
[PROOFSTEP]
exact (not_isUnit_zero h).elim
[GOAL]
case inr
a b : Cardinal.{u}
n m : ℕ
h : IsUnit a
ha : a ≠ 0
⊢ a = 1
[PROOFSTEP]
rw [isUnit_iff_forall_dvd] at h
[GOAL]
case inr
a b : Cardinal.{u}
n m : ℕ
h : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
⊢ a = 1
[PROOFSTEP]
cases' h 1 with t ht
[GOAL]
case inr.intro
a b : Cardinal.{u}
n m : ℕ
h : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
t : Cardinal.{u}
ht : 1 = a * t
⊢ a = 1
[PROOFSTEP]
rw [eq_comm, mul_eq_one_iff'] at ht
[GOAL]
case inr.intro
a b : Cardinal.{u}
n m : ℕ
h : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
t : Cardinal.{u}
ht : a = 1 ∧ t = 1
⊢ a = 1
[PROOFSTEP]
exact ht.1
[GOAL]
case inr.intro.ha
a b : Cardinal.{u}
n m : ℕ
h : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
t : Cardinal.{u}
ht : a * t = 1
⊢ 1 ≤ a
[PROOFSTEP]
exact one_le_iff_ne_zero.mpr ha
[GOAL]
case inr.intro.hb
a b : Cardinal.{u}
n m : ℕ
h : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
t : Cardinal.{u}
ht : a * t = 1
⊢ 1 ≤ t
[PROOFSTEP]
apply one_le_iff_ne_zero.mpr
[GOAL]
case inr.intro.hb
a b : Cardinal.{u}
n m : ℕ
h : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
t : Cardinal.{u}
ht : a * t = 1
⊢ t ≠ 0
[PROOFSTEP]
intro h
[GOAL]
case inr.intro.hb
a b : Cardinal.{u}
n m : ℕ
h✝ : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
t : Cardinal.{u}
ht : a * t = 1
h : t = 0
⊢ False
[PROOFSTEP]
rw [h, mul_zero] at ht
[GOAL]
case inr.intro.hb
a b : Cardinal.{u}
n m : ℕ
h✝ : ∀ (y : Cardinal.{u}), a ∣ y
ha : a ≠ 0
t : Cardinal.{u}
ht : 0 = 1
h : t = 0
⊢ False
[PROOFSTEP]
exact zero_ne_one ht
[GOAL]
a✝ b✝ : Cardinal.{u}
n m : ℕ
a x : Cardinal.{u_1}
b0 : x ≠ 0
b : Cardinal.{u_1}
hab : x = a * b
⊢ a ≤ x
[PROOFSTEP]
simpa only [hab, mul_one] using
mul_le_mul_left' (one_le_iff_ne_zero.2 fun h : b = 0 => b0 (by rwa [h, mul_zero] at hab )) a
[GOAL]
a✝ b✝ : Cardinal.{u}
n m : ℕ
a x : Cardinal.{u_1}
b0 : x ≠ 0
b : Cardinal.{u_1}
hab : x = a * b
h : b = 0
⊢ x = 0
[PROOFSTEP]
rwa [h, mul_zero] at hab
[GOAL]
a b : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
⊢ Prime a
[PROOFSTEP]
refine' ⟨(aleph0_pos.trans_le ha).ne', _, fun b c hbc => _⟩
[GOAL]
case refine'_1
a b : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
⊢ ¬IsUnit a
[PROOFSTEP]
rw [isUnit_iff]
[GOAL]
case refine'_1
a b : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
⊢ ¬a = 1
[PROOFSTEP]
exact (one_lt_aleph0.trans_le ha).ne'
[GOAL]
case refine'_2
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
cases' eq_or_ne (b * c) 0 with hz hz
[GOAL]
case refine'_2.inl
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c = 0
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
rcases mul_eq_zero.mp hz with (rfl | rfl)
[GOAL]
case refine'_2.inl.inl
a b : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
c : Cardinal.{u}
hbc : a ∣ 0 * c
hz : 0 * c = 0
⊢ a ∣ 0 ∨ a ∣ c
[PROOFSTEP]
simp
[GOAL]
case refine'_2.inl.inr
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b : Cardinal.{u}
hbc : a ∣ b * 0
hz : b * 0 = 0
⊢ a ∣ b ∨ a ∣ 0
[PROOFSTEP]
simp
[GOAL]
case refine'_2.inr
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
wlog h : c ≤ b
[GOAL]
case refine'_2.inr.inr
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
cases le_total c b <;> [skip; rw [or_comm]]
[GOAL]
case refine'_2.inr.inr
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
cases le_total c b
[GOAL]
case refine'_2.inr.inr.inl
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
skip
[GOAL]
case refine'_2.inr.inr.inr
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
rw [or_comm]
[GOAL]
case refine'_2.inr.inr.inl
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
apply_assumption
[GOAL]
case refine'_2.inr.inr.inr
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
⊢ a ∣ c ∨ a ∣ b
[PROOFSTEP]
apply_assumption
[GOAL]
case refine'_2.inr.inr.inl.b
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
hz_symm : 0 ≠ b * c
⊢ Cardinal.{u}
case refine'_2.inr.inr.inl.n
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
hz_symm : 0 ≠ b * c
⊢ ℕ
case refine'_2.inr.inr.inl.m
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
hz_symm : 0 ≠ b * c
⊢ ℕ
case refine'_2.inr.inr.inl.ha
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
hz_symm : 0 ≠ b * c
⊢ ℵ₀ ≤ a
case refine'_2.inr.inr.inl.hbc
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
hz_symm : 0 ≠ b * c
⊢ a ∣ b * c
case refine'_2.inr.inr.inl.hz
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
hz_symm : 0 ≠ b * c
⊢ b * c ≠ 0
case refine'_2.inr.inr.inl.h
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : c ≤ b
hz_symm : 0 ≠ b * c
⊢ c ≤ b
case refine'_2.inr.inr.inr.b
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ Cardinal.{u}
case refine'_2.inr.inr.inr.n
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ ℕ
case refine'_2.inr.inr.inr.m
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ ℕ
case refine'_2.inr.inr.inr.ha
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ ℵ₀ ≤ a
case refine'_2.inr.inr.inr.hbc
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ a ∣ c * b
case refine'_2.inr.inr.inr.hz
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ c * b ≠ 0
case refine'_2.inr.inr.inr.h
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ b ≤ c
[PROOFSTEP]
assumption'
[GOAL]
case refine'_2.inr.inr.inr.hbc
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ a ∣ c * b
case refine'_2.inr.inr.inr.hz
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ c * b ≠ 0
[PROOFSTEP]
all_goals rwa [mul_comm]
[GOAL]
case refine'_2.inr.inr.inr.hbc
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ a ∣ c * b
[PROOFSTEP]
rwa [mul_comm]
[GOAL]
case refine'_2.inr.inr.inr.hz
a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
this :
∀ {a : Cardinal.{u}} {b : Cardinal.{u}} {n m : ℕ},
ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c
h : ¬c ≤ b
h✝ : b ≤ c
hz_symm : 0 ≠ b * c
⊢ c * b ≠ 0
[PROOFSTEP]
rwa [mul_comm]
[GOAL]
a✝ a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
h : c ≤ b
⊢ a ∣ b ∨ a ∣ c
[PROOFSTEP]
left
[GOAL]
case h
a✝ a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
h : c ≤ b
⊢ a ∣ b
[PROOFSTEP]
have habc := le_of_dvd hz hbc
[GOAL]
case h
a✝ a b✝ : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
b c : Cardinal.{u}
hbc : a ∣ b * c
hz : b * c ≠ 0
h : c ≤ b
habc : a ≤ b * c
⊢ a ∣ b
[PROOFSTEP]
rwa [mul_eq_max' <| ha.trans <| habc, max_def', if_pos h] at hbc
[GOAL]
a b : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
⊢ ¬Irreducible a
[PROOFSTEP]
rw [irreducible_iff, not_and_or]
[GOAL]
a b : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
⊢ ¬¬IsUnit a ∨ ¬∀ (a_1 b : Cardinal.{u}), a = a_1 * b → IsUnit a_1 ∨ IsUnit b
[PROOFSTEP]
refine' Or.inr fun h => _
[GOAL]
a b : Cardinal.{u}
n m : ℕ
ha : ℵ₀ ≤ a
h : ∀ (a_1 b : Cardinal.{u}), a = a_1 * b → IsUnit a_1 ∨ IsUnit b
⊢ False
[PROOFSTEP]
simpa [mul_aleph0_eq ha, isUnit_iff, (one_lt_aleph0.trans_le ha).ne', one_lt_aleph0.ne'] using h a ℵ₀
[GOAL]
a b : Cardinal.{u}
n m : ℕ
⊢ ↑n ∣ ↑m ↔ n ∣ m
[PROOFSTEP]
refine' ⟨_, fun ⟨h, ht⟩ => ⟨h, by exact_mod_cast ht⟩⟩
[GOAL]
a b : Cardinal.{u}
n m : ℕ
x✝ : n ∣ m
h : ℕ
ht : m = n * h
⊢ ↑m = ↑n * ↑h
[PROOFSTEP]
exact_mod_cast ht
[GOAL]
a b : Cardinal.{u}
n m : ℕ
⊢ ↑n ∣ ↑m → n ∣ m
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case intro
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
⊢ n ∣ m
[PROOFSTEP]
have : ↑m < ℵ₀ := nat_lt_aleph0 m
[GOAL]
case intro
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
this : ↑m < ℵ₀
⊢ n ∣ m
[PROOFSTEP]
rw [hk, mul_lt_aleph0_iff] at this
[GOAL]
case intro
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
this : ↑n = 0 ∨ k = 0 ∨ ↑n < ℵ₀ ∧ k < ℵ₀
⊢ n ∣ m
[PROOFSTEP]
rcases this with (h | h | ⟨-, hk'⟩)
[GOAL]
case intro.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
h : ↑n = 0
⊢ n ∣ m
case intro.inr.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
h : k = 0
⊢ n ∣ m
case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m
[PROOFSTEP]
iterate 2 simp only [h, mul_zero, zero_mul, Nat.cast_eq_zero] at hk ; simp [hk]
[GOAL]
case intro.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
h : ↑n = 0
⊢ n ∣ m
case intro.inr.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
h : k = 0
⊢ n ∣ m
case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m
[PROOFSTEP]
simp only [h, mul_zero, zero_mul, Nat.cast_eq_zero] at hk
[GOAL]
case intro.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
h : ↑n = 0
hk : m = 0
⊢ n ∣ m
case intro.inr.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
h : k = 0
⊢ n ∣ m
case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m
[PROOFSTEP]
simp [hk]
[GOAL]
case intro.inr.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
h : k = 0
⊢ n ∣ m
case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m
[PROOFSTEP]
simp only [h, mul_zero, zero_mul, Nat.cast_eq_zero] at hk
[GOAL]
case intro.inr.inl
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
h : k = 0
hk : m = 0
⊢ n ∣ m
case intro.inr.inr.intro a b : Cardinal.{u} n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k hk' : k < ℵ₀ ⊢ n ∣ m
[PROOFSTEP]
simp [hk]
[GOAL]
case intro.inr.inr.intro
a b : Cardinal.{u}
n m : ℕ
k : Cardinal.{u_1}
hk : ↑m = ↑n * k
hk' : k < ℵ₀
⊢ n ∣ m
[PROOFSTEP]
lift k to ℕ using hk'
[GOAL]
case intro.inr.inr.intro.intro
a b : Cardinal.{u}
n m k : ℕ
hk : ↑m = ↑n * ↑k
⊢ n ∣ m
[PROOFSTEP]
exact ⟨k, by exact_mod_cast hk⟩
[GOAL]
a b : Cardinal.{u}
n m k : ℕ
hk : ↑m = ↑n * ↑k
⊢ m = n * k
[PROOFSTEP]
exact_mod_cast hk
[GOAL]
a b : Cardinal.{u}
n m : ℕ
⊢ Prime ↑n ↔ Nat.Prime n
[PROOFSTEP]
simp only [Prime, Nat.prime_iff]
[GOAL]
a b : Cardinal.{u}
n m : ℕ
⊢ (↑n ≠ 0 ∧ ¬IsUnit ↑n ∧ ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b) ↔
n ≠ 0 ∧ ¬IsUnit n ∧ ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
[PROOFSTEP]
refine' and_congr (by simp) (and_congr _ ⟨fun h b c hbc => _, fun h b c hbc => _⟩)
[GOAL]
a b : Cardinal.{u}
n m : ℕ
⊢ ↑n ≠ 0 ↔ n ≠ 0
[PROOFSTEP]
simp
[GOAL]
case refine'_1
a b : Cardinal.{u}
n m : ℕ
⊢ ¬IsUnit ↑n ↔ ¬IsUnit n
[PROOFSTEP]
simp only [isUnit_iff, Nat.isUnit_iff]
[GOAL]
case refine'_1
a b : Cardinal.{u}
n m : ℕ
⊢ ¬↑n = 1 ↔ ¬n = 1
[PROOFSTEP]
exact_mod_cast Iff.rfl
[GOAL]
case refine'_2
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b
b c : ℕ
hbc : n ∣ b * c
⊢ n ∣ b ∨ n ∣ c
[PROOFSTEP]
exact_mod_cast h b c (by exact_mod_cast hbc)
[GOAL]
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : Cardinal.{u_1}), ↑n ∣ a * b → ↑n ∣ a ∨ ↑n ∣ b
b c : ℕ
hbc : n ∣ b * c
⊢ ↑n ∣ ↑b * ↑c
[PROOFSTEP]
exact_mod_cast hbc
[GOAL]
case refine'_3
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
cases' lt_or_le (b * c) ℵ₀ with h' h'
[GOAL]
case refine'_3.inl
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : b * c < ℵ₀
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
rcases mul_lt_aleph0_iff.mp h' with (rfl | rfl | ⟨hb, hc⟩)
[GOAL]
case refine'_3.inl.inl
a b : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
c : Cardinal.{u_1}
hbc : ↑n ∣ 0 * c
h' : 0 * c < ℵ₀
⊢ ↑n ∣ 0 ∨ ↑n ∣ c
[PROOFSTEP]
simp
[GOAL]
case refine'_3.inl.inr.inl
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b : Cardinal.{u_1}
hbc : ↑n ∣ b * 0
h' : b * 0 < ℵ₀
⊢ ↑n ∣ b ∨ ↑n ∣ 0
[PROOFSTEP]
simp
[GOAL]
case refine'_3.inl.inr.inr.intro
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : b * c < ℵ₀
hb : b < ℵ₀
hc : c < ℵ₀
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
lift b to ℕ using hb
[GOAL]
case refine'_3.inl.inr.inr.intro.intro
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
c : Cardinal.{u_1}
hc : c < ℵ₀
b : ℕ
hbc : ↑n ∣ ↑b * c
h' : ↑b * c < ℵ₀
⊢ ↑n ∣ ↑b ∨ ↑n ∣ c
[PROOFSTEP]
lift c to ℕ using hc
[GOAL]
case refine'_3.inl.inr.inr.intro.intro.intro
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : ℕ
hbc : ↑n ∣ ↑b * ↑c
h' : ↑b * ↑c < ℵ₀
⊢ ↑n ∣ ↑b ∨ ↑n ∣ ↑c
[PROOFSTEP]
exact_mod_cast h b c (by exact_mod_cast hbc)
[GOAL]
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : ℕ
hbc : ↑n ∣ ↑b * ↑c
h' : ↑b * ↑c < ℵ₀
⊢ n ∣ b * c
[PROOFSTEP]
exact_mod_cast hbc
[GOAL]
case refine'_3.inr
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
rcases aleph0_le_mul_iff.mp h' with ⟨hb, hc, hℵ₀⟩
[GOAL]
case refine'_3.inr.intro.intro
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
have hn : (n : Cardinal) ≠ 0 := by
intro h
rw [h, zero_dvd_iff, mul_eq_zero] at hbc
cases hbc <;> contradiction
[GOAL]
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
⊢ ↑n ≠ 0
[PROOFSTEP]
intro h
[GOAL]
a b✝ : Cardinal.{u}
n m : ℕ
h✝ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
h : ↑n = 0
⊢ False
[PROOFSTEP]
rw [h, zero_dvd_iff, mul_eq_zero] at hbc
[GOAL]
a b✝ : Cardinal.{u}
n m : ℕ
h✝ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : b = 0 ∨ c = 0
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
h : ↑n = 0
⊢ False
[PROOFSTEP]
cases hbc
[GOAL]
case inl
a b✝ : Cardinal.{u}
n m : ℕ
h✝¹ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
h : ↑n = 0
h✝ : b = 0
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case inr
a b✝ : Cardinal.{u}
n m : ℕ
h✝¹ : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
h : ↑n = 0
h✝ : c = 0
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case refine'_3.inr.intro.intro
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
wlog hℵ₀b : ℵ₀ ≤ b
[GOAL]
case refine'_3.inr.intro.intro.inr
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
refine' (this h c b _ _ hc hb hℵ₀.symm hn (hℵ₀.resolve_left hℵ₀b)).symm
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_1
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ Cardinal.{u}
[PROOFSTEP]
try assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_1
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ Cardinal.{u}
[PROOFSTEP]
assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_2
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ Cardinal.{u}
[PROOFSTEP]
try assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_2
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ Cardinal.{u}
[PROOFSTEP]
assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_3
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ℕ
[PROOFSTEP]
try assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_3
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ℕ
[PROOFSTEP]
assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_4
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ↑n ∣ c * b
[PROOFSTEP]
try assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_4
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ↑n ∣ c * b
[PROOFSTEP]
assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_5
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ℵ₀ ≤ c * b
[PROOFSTEP]
try assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_5
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ℵ₀ ≤ c * b
[PROOFSTEP]
assumption
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_4
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ↑n ∣ c * b
case refine'_3.inr.intro.intro.inr.refine'_5
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ℵ₀ ≤ c * b
n✝ : ℕ
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
hℵ₀b : ℵ₀ ≤ b
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
rwa [mul_comm] at hbc
[GOAL]
case refine'_3.inr.intro.intro.inr.refine'_5
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
this :
∀ {a b : Cardinal.{u}} {n : ℕ} {m : ℕ},
(∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b) →
∀ (b c : Cardinal.{u_1}),
↑n ∣ b * c → ℵ₀ ≤ b * c → b ≠ 0 → c ≠ 0 → ℵ₀ ≤ b ∨ ℵ₀ ≤ c → ↑n ≠ 0 → ℵ₀ ≤ b → ↑n ∣ b ∨ ↑n ∣ c
hℵ₀b : ¬ℵ₀ ≤ b
⊢ ℵ₀ ≤ c * b
n✝ : ℕ
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
hℵ₀b : ℵ₀ ≤ b
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
rwa [mul_comm] at h'
[GOAL]
n✝ : ℕ
a b✝ : Cardinal.{u}
n m : ℕ
h : ∀ (a b : ℕ), n ∣ a * b → n ∣ a ∨ n ∣ b
b c : Cardinal.{u_1}
hbc : ↑n ∣ b * c
h' : ℵ₀ ≤ b * c
hb : b ≠ 0
hc : c ≠ 0
hℵ₀ : ℵ₀ ≤ b ∨ ℵ₀ ≤ c
hn : ↑n ≠ 0
hℵ₀b : ℵ₀ ≤ b
⊢ ↑n ∣ b ∨ ↑n ∣ c
[PROOFSTEP]
exact Or.inl (dvd_of_le_of_aleph0_le hn ((nat_lt_aleph0 n).le.trans hℵ₀b) hℵ₀b)
[GOAL]
a✝ b : Cardinal.{u}
n m : ℕ
a : Cardinal.{u_1}
⊢ Prime a ↔ ℵ₀ ≤ a ∨ ∃ p, a = ↑p ∧ Nat.Prime p
[PROOFSTEP]
cases' le_or_lt ℵ₀ a with h h
[GOAL]
case inl
a✝ b : Cardinal.{u}
n m : ℕ
a : Cardinal.{u_1}
h : ℵ₀ ≤ a
⊢ Prime a ↔ ℵ₀ ≤ a ∨ ∃ p, a = ↑p ∧ Nat.Prime p
[PROOFSTEP]
simp [h]
[GOAL]
case inr
a✝ b : Cardinal.{u}
n m : ℕ
a : Cardinal.{u_1}
h : a < ℵ₀
⊢ Prime a ↔ ℵ₀ ≤ a ∨ ∃ p, a = ↑p ∧ Nat.Prime p
[PROOFSTEP]
lift a to ℕ using id h
[GOAL]
case inr.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ↑a < ℵ₀
⊢ Prime ↑a ↔ ℵ₀ ≤ ↑a ∨ ∃ p, ↑a = ↑p ∧ Nat.Prime p
[PROOFSTEP]
simp [not_le.mpr h]
[GOAL]
a✝ b : Cardinal.{u}
n m : ℕ
a : Cardinal.{u_1}
⊢ IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n, a = ↑n ∧ IsPrimePow n
[PROOFSTEP]
by_cases h : ℵ₀ ≤ a
[GOAL]
case pos
a✝ b : Cardinal.{u}
n m : ℕ
a : Cardinal.{u_1}
h : ℵ₀ ≤ a
⊢ IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n, a = ↑n ∧ IsPrimePow n
[PROOFSTEP]
simp [h, (prime_of_aleph0_le h).isPrimePow]
[GOAL]
case neg
a✝ b : Cardinal.{u}
n m : ℕ
a : Cardinal.{u_1}
h : ¬ℵ₀ ≤ a
⊢ IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n, a = ↑n ∧ IsPrimePow n
[PROOFSTEP]
simp only [h, Nat.cast_inj, exists_eq_left', false_or_iff, isPrimePow_nat_iff]
[GOAL]
case neg
a✝ b : Cardinal.{u}
n m : ℕ
a : Cardinal.{u_1}
h : ¬ℵ₀ ≤ a
⊢ IsPrimePow a ↔ ∃ n, a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
lift a to ℕ using not_le.mp h
[GOAL]
case neg.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
⊢ IsPrimePow ↑a ↔ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
rw [isPrimePow_def]
[GOAL]
case neg.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
⊢ (∃ p k, Prime p ∧ 0 < k ∧ p ^ k = ↑a) ↔ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
refine' ⟨_, fun ⟨n, han, p, k, hp, hk, h⟩ => ⟨p, k, nat_is_prime_iff.2 hp, hk, by rw [han]; exact_mod_cast h⟩⟩
[GOAL]
a✝ b : Cardinal.{u}
n✝ m a : ℕ
h✝ : ¬ℵ₀ ≤ ↑a
x✝ : ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
n : ℕ
han : ↑a = ↑n
p k : ℕ
hp : Nat.Prime p
hk : 0 < k
h : p ^ k = n
⊢ ↑p ^ k = ↑a
[PROOFSTEP]
rw [han]
[GOAL]
a✝ b : Cardinal.{u}
n✝ m a : ℕ
h✝ : ¬ℵ₀ ≤ ↑a
x✝ : ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
n : ℕ
han : ↑a = ↑n
p k : ℕ
hp : Nat.Prime p
hk : 0 < k
h : p ^ k = n
⊢ ↑p ^ k = ↑n
[PROOFSTEP]
exact_mod_cast h
[GOAL]
case neg.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
⊢ (∃ p k, Prime p ∧ 0 < k ∧ p ^ k = ↑a) → ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
rintro ⟨p, k, hp, hk, hpk⟩
[GOAL]
case neg.intro.intro.intro.intro.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
p : Cardinal.{u_1}
k : ℕ
hp : Prime p
hk : 0 < k
hpk : p ^ k = ↑a
⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
have key : p ^ 1 ≤ ↑a := by rw [← hpk]; apply power_le_power_left hp.ne_zero; exact_mod_cast hk
[GOAL]
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
p : Cardinal.{u_1}
k : ℕ
hp : Prime p
hk : 0 < k
hpk : p ^ k = ↑a
⊢ p ^ 1 ≤ ↑a
[PROOFSTEP]
rw [← hpk]
[GOAL]
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
p : Cardinal.{u_1}
k : ℕ
hp : Prime p
hk : 0 < k
hpk : p ^ k = ↑a
⊢ p ^ 1 ≤ p ^ k
[PROOFSTEP]
apply power_le_power_left hp.ne_zero
[GOAL]
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
p : Cardinal.{u_1}
k : ℕ
hp : Prime p
hk : 0 < k
hpk : p ^ k = ↑a
⊢ 1 ≤ ↑k
[PROOFSTEP]
exact_mod_cast hk
[GOAL]
case neg.intro.intro.intro.intro.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
p : Cardinal.{u_1}
k : ℕ
hp : Prime p
hk : 0 < k
hpk : p ^ k = ↑a
key : p ^ 1 ≤ ↑a
⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
rw [power_one] at key
[GOAL]
case neg.intro.intro.intro.intro.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
p : Cardinal.{u_1}
k : ℕ
hp : Prime p
hk : 0 < k
hpk : p ^ k = ↑a
key : p ≤ ↑a
⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
lift p to ℕ using key.trans_lt (nat_lt_aleph0 a)
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
k : ℕ
hk : 0 < k
p : ℕ
hp : Prime ↑p
hpk : ↑p ^ k = ↑a
key : ↑p ≤ ↑a
⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
[PROOFSTEP]
exact ⟨a, rfl, p, k, nat_is_prime_iff.mp hp, hk, by exact_mod_cast hpk⟩
[GOAL]
a✝ b : Cardinal.{u}
n m a : ℕ
h : ¬ℵ₀ ≤ ↑a
k : ℕ
hk : 0 < k
p : ℕ
hp : Prime ↑p
hpk : ↑p ^ k = ↑a
key : ↑p ≤ ↑a
⊢ p ^ k = a
[PROOFSTEP]
exact_mod_cast hpk
| {"mathlib_filename": "Mathlib.SetTheory.Cardinal.Divisibility", "llama_tokens": 20826} |
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
y : L
⊢ ∃ t z, z ∈ I ∧ y = t • x + z
[PROOFSTEP]
have hy : y ∈ (⊤ : Submodule R L) := Submodule.mem_top
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
y : L
hy : y ∈ ⊤
⊢ ∃ t z, z ∈ I ∧ y = t • x + z
[PROOFSTEP]
simp only [← hxI, Submodule.mem_sup, Submodule.mem_span_singleton] at hy
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
y : L
hy : ∃ y_1, (∃ a, a • x = y_1) ∧ ∃ z, z ∈ (↑R L I).toSubmodule ∧ y_1 + z = y
⊢ ∃ t z, z ∈ I ∧ y = t • x + z
[PROOFSTEP]
obtain ⟨-, ⟨t, rfl⟩, z, hz, rfl⟩ := hy
[GOAL]
case intro.intro.intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
t : R
z : L
hz : z ∈ (↑R L I).toSubmodule
⊢ ∃ t_1 z_1, z_1 ∈ I ∧ t • x + z = t_1 • x + z_1
[PROOFSTEP]
exact ⟨t, z, hz, rfl⟩
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
⊢ ↑⁅⊤, N⁆ = Submodule.map (↑(toEndomorphism R L M) x) ↑N ⊔ ↑⁅I, N⁆
[PROOFSTEP]
simp only [lieIdeal_oper_eq_linear_span', Submodule.sup_span, mem_top, exists_prop, true_and, Submodule.map_coe,
toEndomorphism_apply_apply]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
⊢ Submodule.span R {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m} =
Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m})
[PROOFSTEP]
refine' le_antisymm (Submodule.span_le.mpr _) (Submodule.span_mono fun z hz => _)
[GOAL]
case refine'_1
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
⊢ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m} ⊆
↑(Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}))
[PROOFSTEP]
rintro z ⟨y, n, hn : n ∈ N, rfl⟩
[GOAL]
case refine'_1.intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
y : L
n : M
hn : n ∈ N
⊢ ⁅y, n⁆ ∈ ↑(Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}))
[PROOFSTEP]
obtain ⟨t, z, hz, rfl⟩ := exists_smul_add_of_span_sup_eq_top hxI y
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
n : M
hn : n ∈ N
t : R
z : L
hz : z ∈ I
⊢ ⁅t • x + z, n⁆ ∈ ↑(Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}))
[PROOFSTEP]
simp only [SetLike.mem_coe, Submodule.span_union, Submodule.mem_sup]
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
n : M
hn : n ∈ N
t : R
z : L
hz : z ∈ I
⊢ ∃ y,
y ∈ Submodule.span R ((fun a => ⁅x, a⁆) '' ↑↑N) ∧
∃ z_1, z_1 ∈ Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} ∧ y + z_1 = ⁅t • x + z, n⁆
[PROOFSTEP]
exact
⟨t • ⁅x, n⁆, Submodule.subset_span ⟨t • n, N.smul_mem' t hn, lie_smul t x n⟩, ⁅z, n⁆,
Submodule.subset_span ⟨z, hz, n, hn, rfl⟩, by simp⟩
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
n : M
hn : n ∈ N
t : R
z : L
hz : z ∈ I
⊢ t • ⁅x, n⁆ + ⁅z, n⁆ = ⁅t • x + z, n⁆
[PROOFSTEP]
simp
[GOAL]
case refine'_2
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
z : M
hz : z ∈ (fun a => ⁅x, a⁆) '' ↑↑N ∪ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
⊢ z ∈ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rcases hz with (⟨m, hm, rfl⟩ | ⟨y, -, m, hm, rfl⟩)
[GOAL]
case refine'_2.inl.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
m : M
hm : m ∈ ↑↑N
⊢ (fun a => ⁅x, a⁆) m ∈ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m}
case refine'_2.inr.intro.intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
N : LieSubmodule R L M
y : L
m : M
hm : m ∈ N
⊢ ⁅y, m⁆ ∈ {m | ∃ x n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
exacts [⟨x, m, hm, rfl⟩, ⟨y, m, hm, rfl⟩]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
⊢ lowerCentralSeries R L M (i + n) ≤ LieIdeal.lcs I M (j + 1)
[PROOFSTEP]
suffices
∀ l,
((⊤ : LieIdeal R L).lcs M (i + l) : Submodule R M) ≤
(I.lcs M j : Submodule R M).map (toEndomorphism R L M x ^ l) ⊔ (I.lcs M (j + 1) : Submodule R M)
by simpa only [bot_sup_eq, LieIdeal.incl_coe, Submodule.map_zero, hxn] using this n
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
this :
∀ (l : ℕ),
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
⊢ lowerCentralSeries R L M (i + n) ≤ LieIdeal.lcs I M (j + 1)
[PROOFSTEP]
simpa only [bot_sup_eq, LieIdeal.incl_coe, Submodule.map_zero, hxn] using this n
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
⊢ ∀ (l : ℕ),
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
[PROOFSTEP]
intro l
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
l : ℕ
⊢ ↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
[PROOFSTEP]
induction' l with l ih
[GOAL]
case zero
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
⊢ ↑(LieIdeal.lcs ⊤ M (i + Nat.zero)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ Nat.zero) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
[PROOFSTEP]
simp only [Nat.zero_eq, add_zero, LieIdeal.lcs_succ, pow_zero, LinearMap.one_eq_id, Submodule.map_id]
[GOAL]
case zero
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
⊢ ↑(LieIdeal.lcs ⊤ M i) ≤ ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆
[PROOFSTEP]
exact le_sup_of_le_left hIM
[GOAL]
case succ
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
l : ℕ
ih :
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
⊢ ↑(LieIdeal.lcs ⊤ M (i + Nat.succ l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
[PROOFSTEP]
simp only [LieIdeal.lcs_succ, i.add_succ l, lie_top_eq_of_span_sup_eq_top hxI, sup_le_iff]
[GOAL]
case succ
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
l : ℕ
ih :
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
⊢ Submodule.map (↑(toEndomorphism R L M) x) ↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆ ∧
↑⁅I, LieIdeal.lcs ⊤ M (i + l)⁆ ≤
Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆
[PROOFSTEP]
refine' ⟨(Submodule.map_mono ih).trans _, le_sup_of_le_right _⟩
[GOAL]
case succ.refine'_1
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
l : ℕ
ih :
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
⊢ Submodule.map (↑(toEndomorphism R L M) x)
(Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑⁅I, LieIdeal.lcs I M j⁆
[PROOFSTEP]
rw [Submodule.map_sup, ← Submodule.map_comp, ← LinearMap.mul_eq_comp, ← pow_succ, ← I.lcs_succ]
[GOAL]
case succ.refine'_1
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
l : ℕ
ih :
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
⊢ Submodule.map (↑(toEndomorphism R L M) x ^ (l + 1)) ↑(LieIdeal.lcs I M j) ⊔
Submodule.map (↑(toEndomorphism R L M) x) ↑(LieIdeal.lcs I M (j + 1)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ Nat.succ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
[PROOFSTEP]
exact sup_le_sup_left coe_map_toEndomorphism_le _
[GOAL]
case succ.refine'_2
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
l : ℕ
ih :
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
⊢ ↑⁅I, LieIdeal.lcs ⊤ M (i + l)⁆ ≤ ↑⁅I, LieIdeal.lcs I M j⁆
[PROOFSTEP]
refine' le_trans (mono_lie_right _ _ I _) (mono_lie_right _ _ I hIM)
[GOAL]
case succ.refine'_2
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n i j : ℕ
hxn : ↑(toEndomorphism R L M) x ^ n = 0
hIM : lowerCentralSeries R L M i ≤ LieIdeal.lcs I M j
l : ℕ
ih :
↑(LieIdeal.lcs ⊤ M (i + l)) ≤
Submodule.map (↑(toEndomorphism R L M) x ^ l) ↑(LieIdeal.lcs I M j) ⊔ ↑(LieIdeal.lcs I M (j + 1))
⊢ LieIdeal.lcs ⊤ M (i + l) ≤ lowerCentralSeries R L M i
[PROOFSTEP]
exact antitone_lowerCentralSeries R L M le_self_add
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
hnp : _root_.IsNilpotent (↑(toEndomorphism R L M) x)
hIM : LieModule.IsNilpotent R { x // x ∈ ↑I } M
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
obtain ⟨n, hn⟩ := hnp
[GOAL]
case intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
hIM : LieModule.IsNilpotent R { x // x ∈ ↑I } M
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
obtain ⟨k, hk⟩ := hIM
[GOAL]
case intro.mk.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
have hk' : I.lcs M k = ⊥ := by simp only [← coe_toSubmodule_eq_iff, I.coe_lcs_eq, hk, bot_coeSubmodule]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
⊢ LieIdeal.lcs I M k = ⊥
[PROOFSTEP]
simp only [← coe_toSubmodule_eq_iff, I.coe_lcs_eq, hk, bot_coeSubmodule]
[GOAL]
case intro.mk.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
hk' : LieIdeal.lcs I M k = ⊥
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
suffices ∀ l, lowerCentralSeries R L M (l * n) ≤ I.lcs M l
by
use k * n
simpa [hk'] using this k
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
hk' : LieIdeal.lcs I M k = ⊥
this : ∀ (l : ℕ), lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
use k * n
[GOAL]
case h
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
hk' : LieIdeal.lcs I M k = ⊥
this : ∀ (l : ℕ), lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l
⊢ lowerCentralSeries R L M (k * n) = ⊥
[PROOFSTEP]
simpa [hk'] using this k
[GOAL]
case intro.mk.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
hk' : LieIdeal.lcs I M k = ⊥
⊢ ∀ (l : ℕ), lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l
[PROOFSTEP]
intro l
[GOAL]
case intro.mk.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
hk' : LieIdeal.lcs I M k = ⊥
l : ℕ
⊢ lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l
[PROOFSTEP]
induction' l with l ih
[GOAL]
case intro.mk.intro.zero
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
hk' : LieIdeal.lcs I M k = ⊥
⊢ lowerCentralSeries R L M (Nat.zero * n) ≤ LieIdeal.lcs I M Nat.zero
[PROOFSTEP]
simp
[GOAL]
case intro.mk.intro.succ
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x : L
hxI : Submodule.span R {x} ⊔ (↑R L I).toSubmodule = ⊤
n : ℕ
hn : ↑(toEndomorphism R L M) x ^ n = 0
k : ℕ
hk : lowerCentralSeries R { x // x ∈ ↑I } M k = ⊥
hk' : LieIdeal.lcs I M k = ⊥
l : ℕ
ih : lowerCentralSeries R L M (l * n) ≤ LieIdeal.lcs I M l
⊢ lowerCentralSeries R L M (Nat.succ l * n) ≤ LieIdeal.lcs I M (Nat.succ l)
[PROOFSTEP]
exact (l.succ_mul n).symm ▸ lcs_le_lcs_of_is_nilpotent_span_sup_eq_top hxI hn ih
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
inst✝ : Subsingleton L
⊢ IsEngelian R L
[PROOFSTEP]
intro M _i1 _i2 _i3 _i4 _h
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : Subsingleton L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
_h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
use 1
[GOAL]
case h
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : Subsingleton L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
_h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
⊢ lowerCentralSeries R L M 1 = ⊥
[PROOFSTEP]
suffices (⊤ : LieIdeal R L) = ⊥ by simp [this]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : Subsingleton L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
_h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
this : ⊤ = ⊥
⊢ lowerCentralSeries R L M 1 = ⊥
[PROOFSTEP]
simp [this]
[GOAL]
case h
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : Subsingleton L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
_h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
⊢ ⊤ = ⊥
[PROOFSTEP]
haveI := (LieSubmodule.subsingleton_iff R L L).mpr inferInstance
[GOAL]
case h
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : Subsingleton L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
_h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
this : Subsingleton (LieSubmodule R L L)
⊢ ⊤ = ⊥
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
⊢ LieAlgebra.IsEngelian R L₂
[PROOFSTEP]
intro M _i1 _i2 _i3 _i4 h'
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
⊢ LieModule.IsNilpotent R L₂ M
[PROOFSTEP]
letI : LieRingModule L M := LieRingModule.compLieHom M f
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this : LieRingModule L M := LieRingModule.compLieHom M f
⊢ LieModule.IsNilpotent R L₂ M
[PROOFSTEP]
letI : LieModule R L M := compLieHom M f
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this✝ : LieRingModule L M := LieRingModule.compLieHom M f
this : LieModule R L M := compLieHom M f
⊢ LieModule.IsNilpotent R L₂ M
[PROOFSTEP]
have hnp : ∀ x, IsNilpotent (toEndomorphism R L M x) := fun x => h' (f x)
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this✝ : LieRingModule L M := LieRingModule.compLieHom M f
this : LieModule R L M := compLieHom M f
hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x)
⊢ LieModule.IsNilpotent R L₂ M
[PROOFSTEP]
have surj_id : Function.Surjective (LinearMap.id : M →ₗ[R] M) := Function.surjective_id
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this✝ : LieRingModule L M := LieRingModule.compLieHom M f
this : LieModule R L M := compLieHom M f
hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x)
surj_id : Surjective ↑LinearMap.id
⊢ LieModule.IsNilpotent R L₂ M
[PROOFSTEP]
haveI : LieModule.IsNilpotent R L M := h M hnp
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f
this✝ : LieModule R L M := compLieHom M f
hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x)
surj_id : Surjective ↑LinearMap.id
this : LieModule.IsNilpotent R L M
⊢ LieModule.IsNilpotent R L₂ M
[PROOFSTEP]
apply hf.lieModuleIsNilpotent surj_id
[GOAL]
case hfg
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f
this✝ : LieModule R L M := compLieHom M f
hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x)
surj_id : Surjective ↑LinearMap.id
this : LieModule.IsNilpotent R L M
⊢ ∀ (x : L) (m : M), ⁅↑f x, ↑LinearMap.id m⁆ = ↑LinearMap.id ⁅x, m⁆
[PROOFSTEP]
intros
[GOAL]
case hfg
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f
this✝ : LieModule R L M := compLieHom M f
hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x)
surj_id : Surjective ↑LinearMap.id
this : LieModule.IsNilpotent R L M
x✝ : L
m✝ : M
⊢ ⁅↑f x✝, ↑LinearMap.id m✝⁆ = ↑LinearMap.id ⁅x✝, m✝⁆
[PROOFSTEP]
simp only [LinearMap.id_coe, id_eq]
[GOAL]
case hfg
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
f : L →ₗ⁅R⁆ L₂
hf : Surjective ↑f
h : LieAlgebra.IsEngelian R L
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L₂ M
_i4 : LieModule R L₂ M
h' : ∀ (x : L₂), IsNilpotent (↑(toEndomorphism R L₂ M) x)
this✝¹ : LieRingModule L M := LieRingModule.compLieHom M f
this✝ : LieModule R L M := compLieHom M f
hnp : ∀ (x : L), IsNilpotent (↑(toEndomorphism R L M) x)
surj_id : Surjective ↑LinearMap.id
this : LieModule.IsNilpotent R L M
x✝ : L
m✝ : M
⊢ ⁅↑f x✝, m✝⁆ = ⁅x✝, m✝⁆
[PROOFSTEP]
rfl
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K'
[PROOFSTEP]
obtain ⟨x, hx₁, hx₂⟩ := SetLike.exists_of_lt hK₂
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K'
[PROOFSTEP]
let K' : LieSubalgebra R L :=
{ (R ∙ x) ⊔ (K : Submodule R L) with lie_mem' := fun {y z} => LieSubalgebra.lie_mem_sup_of_mem_normalizer hx₁ }
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K'
[PROOFSTEP]
have hxK' : x ∈ K' := Submodule.mem_sup_left (Submodule.subset_span (Set.mem_singleton _))
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K'
[PROOFSTEP]
have hKK' : K ≤ K' := (LieSubalgebra.coe_submodule_le_coe_submodule K K').mp le_sup_right
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K'
[PROOFSTEP]
have hK' : K' ≤ K.normalizer := by
rw [← LieSubalgebra.coe_submodule_le_coe_submodule]
exact sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) hK₂.le
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
⊢ K' ≤ LieSubalgebra.normalizer K
[PROOFSTEP]
rw [← LieSubalgebra.coe_submodule_le_coe_submodule]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
⊢ K'.toSubmodule ≤ (LieSubalgebra.normalizer K).toSubmodule
[PROOFSTEP]
exact sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) hK₂.le
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
⊢ ∃ K', IsEngelian R { x // x ∈ K' } ∧ K < K'
[PROOFSTEP]
refine' ⟨K', _, lt_iff_le_and_ne.mpr ⟨hKK', fun contra => hx₂ (contra.symm ▸ hxK')⟩⟩
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
⊢ IsEngelian R { x // x ∈ K' }
[PROOFSTEP]
intro M _i1 _i2 _i3 _i4 h
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
⊢ LieModule.IsNilpotent R { x // x ∈ K' } M
[PROOFSTEP]
obtain ⟨I, hI₁ : (I : LieSubalgebra R K') = LieSubalgebra.ofLe hKK'⟩ :=
LieSubalgebra.exists_nested_lieIdeal_ofLe_normalizer hKK' hK'
[GOAL]
case intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
I : LieIdeal R { x // x ∈ K' }
hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK'
⊢ LieModule.IsNilpotent R { x // x ∈ K' } M
[PROOFSTEP]
have hI₂ : (R ∙ (⟨x, hxK'⟩ : K')) ⊔ (LieSubmodule.toSubmodule I) = ⊤ :=
by
rw [← LieIdeal.coe_to_lieSubalgebra_to_submodule R K' I, hI₁]
apply Submodule.map_injective_of_injective (K' : Submodule R L).injective_subtype
simp
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
I : LieIdeal R { x // x ∈ K' }
hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK'
⊢ Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤
[PROOFSTEP]
rw [← LieIdeal.coe_to_lieSubalgebra_to_submodule R K' I, hI₁]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
I : LieIdeal R { x // x ∈ K' }
hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK'
⊢ Submodule.span R {{ val := x, property := hxK' }} ⊔ (LieSubalgebra.ofLe hKK').toSubmodule = ⊤
[PROOFSTEP]
apply Submodule.map_injective_of_injective (K' : Submodule R L).injective_subtype
[GOAL]
case a
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
I : LieIdeal R { x // x ∈ K' }
hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK'
⊢ Submodule.map (Submodule.subtype K'.toSubmodule)
(Submodule.span R {{ val := x, property := hxK' }} ⊔ (LieSubalgebra.ofLe hKK').toSubmodule) =
Submodule.map (Submodule.subtype K'.toSubmodule) ⊤
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
I : LieIdeal R { x // x ∈ K' }
hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK'
hI₂ : Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤
⊢ LieModule.IsNilpotent R { x // x ∈ K' } M
[PROOFSTEP]
have e : K ≃ₗ⁅R⁆ I :=
(LieSubalgebra.equivOfLe hKK').trans (LieEquiv.ofEq _ _ ((LieSubalgebra.coe_set_eq _ _).mpr hI₁.symm))
[GOAL]
case intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
I : LieIdeal R { x // x ∈ K' }
hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK'
hI₂ : Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤
e : { x // x ∈ K } ≃ₗ⁅R⁆ { x // x ∈ ↑I }
⊢ LieModule.IsNilpotent R { x // x ∈ K' } M
[PROOFSTEP]
have hI₃ : LieAlgebra.IsEngelian R I := e.isEngelian_iff.mp hK₁
[GOAL]
case intro.intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M✝
inst✝² : Module R M✝
inst✝¹ : LieRingModule L M✝
inst✝ : LieModule R L M✝
K : LieSubalgebra R L
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K < LieSubalgebra.normalizer K
x : L
hx₁ : x ∈ LieSubalgebra.normalizer K
hx₂ : ¬x ∈ K
K' : LieSubalgebra R L :=
let src := Submodule.span R {x} ⊔ K.toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem' :=
(_ :
∀ {y z : L},
y ∈ Submodule.span R {x} ⊔ K.toSubmodule →
z ∈ Submodule.span R {x} ⊔ K.toSubmodule → ⁅y, z⁆ ∈ Submodule.span R {x} ⊔ K.toSubmodule) }
hxK' : x ∈ K'
hKK' : K ≤ K'
hK' : K' ≤ LieSubalgebra.normalizer K
M : Type u₄
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule { x // x ∈ K' } M
_i4 : LieModule R { x // x ∈ K' } M
h : ∀ (x : { x // x ∈ K' }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K' } M) x)
I : LieIdeal R { x // x ∈ K' }
hI₁ : ↑R { x // x ∈ K' } I = LieSubalgebra.ofLe hKK'
hI₂ : Submodule.span R {{ val := x, property := hxK' }} ⊔ ↑I = ⊤
e : { x // x ∈ K } ≃ₗ⁅R⁆ { x // x ∈ ↑I }
hI₃ : IsEngelian R { x // x ∈ ↑I }
⊢ LieModule.IsNilpotent R { x // x ∈ K' } M
[PROOFSTEP]
exact LieSubmodule.isNilpotentOfIsNilpotentSpanSupEqTop hI₂ (h _) (hI₃ _ fun x => h x)
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
inst✝ : IsNoetherian R L
⊢ IsEngelian R L
[PROOFSTEP]
intro M _i1 _i2 _i3 _i4 h
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
rw [← isNilpotent_range_toEndomorphism_iff]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
⊢ LieModule.IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M
[PROOFSTEP]
let L' := (toEndomorphism R L M).range
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
⊢ LieModule.IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M
[PROOFSTEP]
replace h : ∀ y : L', _root_.IsNilpotent (y : Module.End R M)
[GOAL]
case h
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
⊢ ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
[PROOFSTEP]
rintro ⟨-, ⟨y, rfl⟩⟩
[GOAL]
case h.mk.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
h : ∀ (x : L), _root_.IsNilpotent (↑(toEndomorphism R L M) x)
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
y : L
⊢ _root_.IsNilpotent
↑{ val := ↑↑(toEndomorphism R L M) y,
property := (_ : ∃ y_1, ↑↑(toEndomorphism R L M) y_1 = ↑↑(toEndomorphism R L M) y) }
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
⊢ LieModule.IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M
[PROOFSTEP]
change LieModule.IsNilpotent R L' M
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
⊢ LieModule.IsNilpotent R { x // x ∈ L' } M
[PROOFSTEP]
let s := {K : LieSubalgebra R L' | LieAlgebra.IsEngelian R K}
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
⊢ LieModule.IsNilpotent R { x // x ∈ L' } M
[PROOFSTEP]
have hs : s.Nonempty := ⟨⊥, LieAlgebra.isEngelian_of_subsingleton⟩
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
⊢ LieModule.IsNilpotent R { x // x ∈ L' } M
[PROOFSTEP]
suffices ⊤ ∈ s by
rw [← isNilpotent_of_top_iff]
apply this M
simp [LieSubalgebra.toEndomorphism_eq, h]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ⊤ ∈ s
⊢ LieModule.IsNilpotent R { x // x ∈ L' } M
[PROOFSTEP]
rw [← isNilpotent_of_top_iff]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ⊤ ∈ s
⊢ LieModule.IsNilpotent R { x // x ∈ ⊤ } M
[PROOFSTEP]
apply this M
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ⊤ ∈ s
⊢ ∀ (x : { x // x ∈ ⊤ }), _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ ⊤ } M) x)
[PROOFSTEP]
simp [LieSubalgebra.toEndomorphism_eq, h]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
⊢ ⊤ ∈ s
[PROOFSTEP]
have : ∀ K ∈ s, K ≠ ⊤ → ∃ K' ∈ s, K < K' :=
by
rintro K (hK₁ : LieAlgebra.IsEngelian R K) hK₂
apply LieAlgebra.exists_engelian_lieSubalgebra_of_lt_normalizer hK₁
apply lt_of_le_of_ne K.le_normalizer
rw [Ne.def, eq_comm, K.normalizer_eq_self_iff, ← Ne.def, ← LieSubmodule.nontrivial_iff_ne_bot R K]
have : Nontrivial (L' ⧸ K.toLieSubmodule) :=
by
replace hK₂ : K.toLieSubmodule ≠ ⊤ := by
rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ←
LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff]
exact Submodule.Quotient.nontrivial_of_lt_top _ hK₂.lt_top
have : LieModule.IsNilpotent R K (L' ⧸ K.toLieSubmodule) := by
-- Porting note: was refine' hK₁ _ fun x => _
apply hK₁
intro x
have hx := LieAlgebra.isNilpotent_ad_of_isNilpotent (h x)
apply Module.End.IsNilpotent.mapQ ?_ hx
intro X HX
simp only [LieSubalgebra.coe_toLieSubmodule, LieSubalgebra.mem_coe_submodule] at HX
simp only [LieSubalgebra.coe_toLieSubmodule, Submodule.mem_comap, ad_apply, LieSubalgebra.mem_coe_submodule]
exact LieSubalgebra.lie_mem K x.prop HX
exact nontrivial_max_triv_of_isNilpotent R K (L' ⧸ K.toLieSubmodule)
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
⊢ ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
[PROOFSTEP]
rintro K (hK₁ : LieAlgebra.IsEngelian R K) hK₂
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
⊢ ∃ K', K' ∈ s ∧ K < K'
[PROOFSTEP]
apply LieAlgebra.exists_engelian_lieSubalgebra_of_lt_normalizer hK₁
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
⊢ K < LieSubalgebra.normalizer K
[PROOFSTEP]
apply lt_of_le_of_ne K.le_normalizer
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
⊢ K ≠ LieSubalgebra.normalizer K
[PROOFSTEP]
rw [Ne.def, eq_comm, K.normalizer_eq_self_iff, ← Ne.def, ← LieSubmodule.nontrivial_iff_ne_bot R K]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
⊢ Nontrivial { x // x ∈ ↑(maxTrivSubmodule R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) }
[PROOFSTEP]
have : Nontrivial (L' ⧸ K.toLieSubmodule) :=
by
replace hK₂ : K.toLieSubmodule ≠ ⊤ := by
rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ←
LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff]
exact Submodule.Quotient.nontrivial_of_lt_top _ hK₂.lt_top
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
⊢ Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
[PROOFSTEP]
replace hK₂ : K.toLieSubmodule ≠ ⊤ := by
rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ←
LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
⊢ LieSubalgebra.toLieSubmodule K ≠ ⊤
[PROOFSTEP]
rwa [Ne.def, ← LieSubmodule.coe_toSubmodule_eq_iff, K.coe_toLieSubmodule, LieSubmodule.top_coeSubmodule, ←
LieSubalgebra.top_coe_submodule, K.coe_to_submodule_eq_iff]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : LieSubalgebra.toLieSubmodule K ≠ ⊤
⊢ Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
[PROOFSTEP]
exact Submodule.Quotient.nontrivial_of_lt_top _ hK₂.lt_top
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
⊢ Nontrivial { x // x ∈ ↑(maxTrivSubmodule R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) }
[PROOFSTEP]
have : LieModule.IsNilpotent R K (L' ⧸ K.toLieSubmodule) := by
-- Porting note: was refine' hK₁ _ fun x => _
apply hK₁
intro x
have hx := LieAlgebra.isNilpotent_ad_of_isNilpotent (h x)
apply Module.End.IsNilpotent.mapQ ?_ hx
intro X HX
simp only [LieSubalgebra.coe_toLieSubmodule, LieSubalgebra.mem_coe_submodule] at HX
simp only [LieSubalgebra.coe_toLieSubmodule, Submodule.mem_comap, ad_apply, LieSubalgebra.mem_coe_submodule]
exact LieSubalgebra.lie_mem K x.prop HX
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
⊢ LieModule.IsNilpotent R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
[PROOFSTEP]
apply hK₁
[GOAL]
case x
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
⊢ ∀ (x : { x // x ∈ K }),
_root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) x)
[PROOFSTEP]
intro x
[GOAL]
case x
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
x : { x // x ∈ K }
⊢ _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) x)
[PROOFSTEP]
have hx := LieAlgebra.isNilpotent_ad_of_isNilpotent (h x)
[GOAL]
case x
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
x : { x // x ∈ K }
hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x)
⊢ _root_.IsNilpotent (↑(toEndomorphism R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) x)
[PROOFSTEP]
apply Module.End.IsNilpotent.mapQ ?_ hx
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
x : { x // x ∈ K }
hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x)
⊢ ↑(LieSubalgebra.toLieSubmodule K) ≤ Submodule.comap (↑(ad R { x // x ∈ L' }) ↑x) ↑(LieSubalgebra.toLieSubmodule K)
[PROOFSTEP]
intro X HX
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
x : { x // x ∈ K }
hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x)
X : { x // x ∈ L' }
HX : X ∈ ↑(LieSubalgebra.toLieSubmodule K)
⊢ X ∈ Submodule.comap (↑(ad R { x // x ∈ L' }) ↑x) ↑(LieSubalgebra.toLieSubmodule K)
[PROOFSTEP]
simp only [LieSubalgebra.coe_toLieSubmodule, LieSubalgebra.mem_coe_submodule] at HX
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
x : { x // x ∈ K }
hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x)
X : { x // x ∈ L' }
HX : X ∈ K
⊢ X ∈ Submodule.comap (↑(ad R { x // x ∈ L' }) ↑x) ↑(LieSubalgebra.toLieSubmodule K)
[PROOFSTEP]
simp only [LieSubalgebra.coe_toLieSubmodule, Submodule.mem_comap, ad_apply, LieSubalgebra.mem_coe_submodule]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
x : { x // x ∈ K }
hx : _root_.IsNilpotent (↑(ad R { x // x ∈ L' }) ↑x)
X : { x // x ∈ L' }
HX : X ∈ K
⊢ ⁅↑x, X⁆ ∈ K
[PROOFSTEP]
exact LieSubalgebra.lie_mem K x.prop HX
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : IsEngelian R { x // x ∈ K }
hK₂ : K ≠ ⊤
this✝ : Nontrivial ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
this : LieModule.IsNilpotent R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)
⊢ Nontrivial { x // x ∈ ↑(maxTrivSubmodule R { x // x ∈ K } ({ x // x ∈ L' } ⧸ LieSubalgebra.toLieSubmodule K)) }
[PROOFSTEP]
exact nontrivial_max_triv_of_isNilpotent R K (L' ⧸ K.toLieSubmodule)
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
⊢ ⊤ ∈ s
[PROOFSTEP]
haveI _i5 : IsNoetherian R L' := by
-- Porting note: was
-- isNoetherian_of_surjective L _ (LinearMap.range_rangeRestrict (toEndomorphism R L M))
-- abusing the relation between `LieHom.rangeRestrict` and `LinearMap.rangeRestrict`
refine isNoetherian_of_surjective L (LieHom.rangeRestrict (toEndomorphism R L M)) ?_
simp only [LieHom.range_coeSubmodule, LieHom.coe_toLinearMap, LinearMap.range_eq_top]
exact LieHom.surjective_rangeRestrict (toEndomorphism R L M)
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
⊢ IsNoetherian R { x // x ∈ L' }
[PROOFSTEP]
refine isNoetherian_of_surjective L (LieHom.rangeRestrict (toEndomorphism R L M)) ?_
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
⊢ LinearMap.range ↑(LieHom.rangeRestrict (toEndomorphism R L M)) = ⊤
[PROOFSTEP]
simp only [LieHom.range_coeSubmodule, LieHom.coe_toLinearMap, LinearMap.range_eq_top]
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
⊢ Function.Surjective ↑(LieHom.rangeRestrict (toEndomorphism R L M))
[PROOFSTEP]
exact LieHom.surjective_rangeRestrict (toEndomorphism R L M)
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
_i5 : IsNoetherian R { x // x ∈ L' }
⊢ ⊤ ∈ s
[PROOFSTEP]
obtain ⟨K, hK₁, hK₂⟩ := (LieSubalgebra.wellFounded_of_noetherian R L').has_min s hs
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
_i5 : IsNoetherian R { x // x ∈ L' }
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : K ∈ s
hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K
⊢ ⊤ ∈ s
[PROOFSTEP]
have hK₃ : K = ⊤ := by
by_contra contra
obtain ⟨K', hK'₁, hK'₂⟩ := this K hK₁ contra
exact hK₂ K' hK'₁ hK'₂
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
_i5 : IsNoetherian R { x // x ∈ L' }
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : K ∈ s
hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K
⊢ K = ⊤
[PROOFSTEP]
by_contra contra
[GOAL]
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
_i5 : IsNoetherian R { x // x ∈ L' }
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : K ∈ s
hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K
contra : ¬K = ⊤
⊢ False
[PROOFSTEP]
obtain ⟨K', hK'₁, hK'₂⟩ := this K hK₁ contra
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
_i5 : IsNoetherian R { x // x ∈ L' }
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : K ∈ s
hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K
contra : ¬K = ⊤
K' : LieSubalgebra R { x // x ∈ L' }
hK'₁ : K' ∈ s
hK'₂ : K < K'
⊢ False
[PROOFSTEP]
exact hK₂ K' hK'₁ hK'₂
[GOAL]
case intro.intro
R : Type u₁
L : Type u₂
L₂ : Type u₃
M✝ : Type u₄
inst✝⁹ : CommRing R
inst✝⁸ : LieRing L
inst✝⁷ : LieAlgebra R L
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M✝
inst✝³ : Module R M✝
inst✝² : LieRingModule L M✝
inst✝¹ : LieModule R L M✝
inst✝ : IsNoetherian R L
M : Type u_1
_i1 : AddCommGroup M
_i2 : Module R M
_i3 : LieRingModule L M
_i4 : LieModule R L M
L' : LieSubalgebra R (Module.End R M) := LieHom.range (toEndomorphism R L M)
h : ∀ (y : { x // x ∈ L' }), _root_.IsNilpotent ↑y
s : Set (LieSubalgebra R { x // x ∈ L' }) := {K | IsEngelian R { x // x ∈ K }}
hs : Set.Nonempty s
this : ∀ (K : LieSubalgebra R { x // x ∈ L' }), K ∈ s → K ≠ ⊤ → ∃ K', K' ∈ s ∧ K < K'
_i5 : IsNoetherian R { x // x ∈ L' }
K : LieSubalgebra R { x // x ∈ L' }
hK₁ : K ∈ s
hK₂ : ∀ (x : LieSubalgebra R { x // x ∈ L' }), x ∈ s → ¬x > K
hK₃ : K = ⊤
⊢ ⊤ ∈ s
[PROOFSTEP]
exact hK₃ ▸ hK₁
| {"mathlib_filename": "Mathlib.Algebra.Lie.Engel", "llama_tokens": 45509} |
[GOAL]
α : Type u_1
a : Lists α
l : Lists' α true
⊢ toList (cons a l) = a :: toList l
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
l : List (Lists α)
⊢ toList (ofList l) = l
[PROOFSTEP]
induction l
[GOAL]
case nil
α : Type u_1
⊢ toList (ofList []) = []
[PROOFSTEP]
simp [*]
[GOAL]
case cons
α : Type u_1
head✝ : Lists α
tail✝ : List (Lists α)
tail_ih✝ : toList (ofList tail✝) = tail✝
⊢ toList (ofList (head✝ :: tail✝)) = head✝ :: tail✝
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
b : Bool
h : true = b
l : Lists' α b
⊢ Lists' α true
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u_1
b : Bool
h : true = b
l : Lists' α b
⊢ Lists' α b
[PROOFSTEP]
exact l
[GOAL]
α : Type u_1
b : Bool
h : true = b
l : Lists' α b
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α b) l;
ofList (toList l') = l'
[PROOFSTEP]
induction l with
| atom => cases h
| nil => simp
| cons' b a _ IH =>
intro l'
simpa [cons] using IH rfl
[GOAL]
α : Type u_1
b : Bool
h : true = b
l : Lists' α b
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α b) l;
ofList (toList l') = l'
[PROOFSTEP]
induction l with
| atom => cases h
| nil => simp
| cons' b a _ IH =>
intro l'
simpa [cons] using IH rfl
[GOAL]
case atom
α : Type u_1
b : Bool
a✝ : α
h : true = false
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α false) (atom a✝);
ofList (toList l') = l'
[PROOFSTEP]
| atom => cases h
[GOAL]
case atom
α : Type u_1
b : Bool
a✝ : α
h : true = false
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α false) (atom a✝);
ofList (toList l') = l'
[PROOFSTEP]
cases h
[GOAL]
case nil
α : Type u_1
b : Bool
h : true = true
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) nil;
ofList (toList l') = l'
[PROOFSTEP]
| nil => simp
[GOAL]
case nil
α : Type u_1
b : Bool
h : true = true
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) nil;
ofList (toList l') = l'
[PROOFSTEP]
simp
[GOAL]
case cons'
α : Type u_1
b✝¹ b✝ : Bool
b : Lists' α b✝
a : Lists' α true
a_ih✝ :
∀ (h : true = b✝),
let l' := Eq.mpr (_ : Lists' α true = Lists' α b✝) b;
ofList (toList l') = l'
IH :
∀ (h : true = true),
let l' := Eq.mpr (_ : Lists' α true = Lists' α true) a;
ofList (toList l') = l'
h : true = true
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) (cons' b a);
ofList (toList l') = l'
[PROOFSTEP]
| cons' b a _ IH =>
intro l'
simpa [cons] using IH rfl
[GOAL]
case cons'
α : Type u_1
b✝¹ b✝ : Bool
b : Lists' α b✝
a : Lists' α true
a_ih✝ :
∀ (h : true = b✝),
let l' := Eq.mpr (_ : Lists' α true = Lists' α b✝) b;
ofList (toList l') = l'
IH :
∀ (h : true = true),
let l' := Eq.mpr (_ : Lists' α true = Lists' α true) a;
ofList (toList l') = l'
h : true = true
⊢ let l' := Eq.mpr (_ : Lists' α true = Lists' α true) (cons' b a);
ofList (toList l') = l'
[PROOFSTEP]
intro l'
[GOAL]
case cons'
α : Type u_1
b✝¹ b✝ : Bool
b : Lists' α b✝
a : Lists' α true
a_ih✝ :
∀ (h : true = b✝),
let l' := Eq.mpr (_ : Lists' α true = Lists' α b✝) b;
ofList (toList l') = l'
IH :
∀ (h : true = true),
let l' := Eq.mpr (_ : Lists' α true = Lists' α true) a;
ofList (toList l') = l'
h : true = true
l' : Lists' α true := Eq.mpr (_ : Lists' α true = Lists' α true) (cons' b a)
⊢ ofList (toList l') = l'
[PROOFSTEP]
simpa [cons] using IH rfl
[GOAL]
α : Type u_1
a y : Lists α
l : Lists' α true
⊢ a ∈ cons y l ↔ a ~ y ∨ a ∈ l
[PROOFSTEP]
simp [mem_def, or_and_right, exists_or]
[GOAL]
α : Type u_1
a : Lists α
l₁ l₂ : Lists' α true
⊢ cons a l₁ ⊆ l₂ ↔ a ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
refine' ⟨fun h => _, fun ⟨⟨a', m, e⟩, s⟩ => Subset.cons e m s⟩
[GOAL]
α : Type u_1
a : Lists α
l₁ l₂ : Lists' α true
h : cons a l₁ ⊆ l₂
⊢ a ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
generalize h' : Lists'.cons a l₁ = l₁' at h
[GOAL]
α : Type u_1
a : Lists α
l₁ l₂ l₁' : Lists' α true
h' : cons a l₁ = l₁'
h : l₁' ⊆ l₂
⊢ a ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
cases' h with l a' a'' l l' e m s
[GOAL]
case nil
α : Type u_1
a : Lists α
l₁ l₂ : Lists' α true
h' : cons a l₁ = nil
⊢ a ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
cases a
[GOAL]
case nil.mk
α : Type u_1
l₁ l₂ : Lists' α true
fst✝ : Bool
snd✝ : Lists' α fst✝
h' : cons { fst := fst✝, snd := snd✝ } l₁ = nil
⊢ { fst := fst✝, snd := snd✝ } ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
cases h'
[GOAL]
case cons
α : Type u_1
a : Lists α
l₁ l₂ : Lists' α true
a' a'' : Lists α
l : Lists' α true
e : a' ~ a''
h' : cons a l₁ = cons a' l
m : a'' ∈ toList l₂
s : Subset l l₂
⊢ a ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
cases a
[GOAL]
case cons.mk
α : Type u_1
l₁ l₂ : Lists' α true
a' a'' : Lists α
l : Lists' α true
e : a' ~ a''
m : a'' ∈ toList l₂
s : Subset l l₂
fst✝ : Bool
snd✝ : Lists' α fst✝
h' : cons { fst := fst✝, snd := snd✝ } l₁ = cons a' l
⊢ { fst := fst✝, snd := snd✝ } ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
cases a'
[GOAL]
case cons.mk.mk
α : Type u_1
l₁ l₂ : Lists' α true
a'' : Lists α
l : Lists' α true
m : a'' ∈ toList l₂
s : Subset l l₂
fst✝¹ : Bool
snd✝¹ : Lists' α fst✝¹
fst✝ : Bool
snd✝ : Lists' α fst✝
e : { fst := fst✝, snd := snd✝ } ~ a''
h' : cons { fst := fst✝¹, snd := snd✝¹ } l₁ = cons { fst := fst✝, snd := snd✝ } l
⊢ { fst := fst✝¹, snd := snd✝¹ } ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
cases h'
[GOAL]
case cons.mk.mk.refl
α : Type u_1
l₁ l₂ : Lists' α true
a'' : Lists α
m : a'' ∈ toList l₂
fst✝ : Bool
snd✝ : Lists' α fst✝
e : { fst := fst✝, snd := snd✝ } ~ a''
s : Subset l₁ l₂
⊢ { fst := fst✝, snd := snd✝ } ∈ l₂ ∧ l₁ ⊆ l₂
[PROOFSTEP]
exact ⟨⟨_, m, e⟩, s⟩
[GOAL]
α : Type u_1
l₁ l₂ : List (Lists α)
h : l₁ ⊆ l₂
⊢ ofList l₁ ⊆ ofList l₂
[PROOFSTEP]
induction' l₁ with _ _ l₁_ih
[GOAL]
case nil
α : Type u_1
l₁ l₂ : List (Lists α)
h✝ : l₁ ⊆ l₂
h : [] ⊆ l₂
⊢ ofList [] ⊆ ofList l₂
[PROOFSTEP]
exact Subset.nil
[GOAL]
case cons
α : Type u_1
l₁ l₂ : List (Lists α)
h✝ : l₁ ⊆ l₂
head✝ : Lists α
tail✝ : List (Lists α)
l₁_ih : tail✝ ⊆ l₂ → ofList tail✝ ⊆ ofList l₂
h : head✝ :: tail✝ ⊆ l₂
⊢ ofList (head✝ :: tail✝) ⊆ ofList l₂
[PROOFSTEP]
refine' Subset.cons (Lists.Equiv.refl _) _ (l₁_ih (List.subset_of_cons_subset h))
[GOAL]
case cons
α : Type u_1
l₁ l₂ : List (Lists α)
h✝ : l₁ ⊆ l₂
head✝ : Lists α
tail✝ : List (Lists α)
l₁_ih : tail✝ ⊆ l₂ → ofList tail✝ ⊆ ofList l₂
h : head✝ :: tail✝ ⊆ l₂
⊢ head✝ ∈ toList (ofList l₂)
[PROOFSTEP]
simp at h
[GOAL]
case cons
α : Type u_1
l₁ l₂ : List (Lists α)
h✝ : l₁ ⊆ l₂
head✝ : Lists α
tail✝ : List (Lists α)
l₁_ih : tail✝ ⊆ l₂ → ofList tail✝ ⊆ ofList l₂
h : head✝ ∈ l₂ ∧ tail✝ ⊆ l₂
⊢ head✝ ∈ toList (ofList l₂)
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
l : Lists' α true
⊢ l ⊆ l
[PROOFSTEP]
rw [← Lists'.of_toList l]
[GOAL]
α : Type u_1
l : Lists' α true
⊢ ofList (toList l) ⊆ ofList (toList l)
[PROOFSTEP]
exact ofList_subset (List.Subset.refl _)
[GOAL]
α : Type u_1
l : Lists' α true
⊢ l ⊆ nil → l = nil
[PROOFSTEP]
rw [← of_toList l]
[GOAL]
α : Type u_1
l : Lists' α true
⊢ ofList (toList l) ⊆ nil → ofList (toList l) = nil
[PROOFSTEP]
induction toList l
[GOAL]
case nil
α : Type u_1
l : Lists' α true
⊢ ofList [] ⊆ nil → ofList [] = nil
[PROOFSTEP]
intro h
[GOAL]
case cons
α : Type u_1
l : Lists' α true
head✝ : Lists α
tail✝ : List (Lists α)
tail_ih✝ : ofList tail✝ ⊆ nil → ofList tail✝ = nil
⊢ ofList (head✝ :: tail✝) ⊆ nil → ofList (head✝ :: tail✝) = nil
[PROOFSTEP]
intro h
[GOAL]
case nil
α : Type u_1
l : Lists' α true
h : ofList [] ⊆ nil
⊢ ofList [] = nil
[PROOFSTEP]
rfl
[GOAL]
case cons
α : Type u_1
l : Lists' α true
head✝ : Lists α
tail✝ : List (Lists α)
tail_ih✝ : ofList tail✝ ⊆ nil → ofList tail✝ = nil
h : ofList (head✝ :: tail✝) ⊆ nil
⊢ ofList (head✝ :: tail✝) = nil
[PROOFSTEP]
rcases cons_subset.1 h with ⟨⟨_, ⟨⟩, _⟩, _⟩
[GOAL]
α : Type u_1
a : Lists α
x✝ : Lists' α true
h : a ∈ toList nil
⊢ a ∈ x✝
[PROOFSTEP]
cases h
[GOAL]
α : Type u_1
a : Lists α
b✝ : Bool
a0 : Lists' α b✝
l0 l₂ : Lists' α true
s : cons' a0 l0 ⊆ l₂
h : a ∈ toList (cons' a0 l0)
⊢ a ∈ l₂
[PROOFSTEP]
cases' s with _ _ _ _ _ e m s
[GOAL]
case cons
α : Type u_1
a : Lists α
l0 l₂ : Lists' α true
a✝ a'✝ : Lists α
e : a✝ ~ a'✝
h : a ∈ toList (cons' a✝.snd l0)
m : a'✝ ∈ toList l₂
s : Subset l0 l₂
⊢ a ∈ l₂
[PROOFSTEP]
simp only [toList, Sigma.eta, List.find?, List.mem_cons] at h
[GOAL]
case cons
α : Type u_1
a : Lists α
l0 l₂ : Lists' α true
a✝ a'✝ : Lists α
e : a✝ ~ a'✝
m : a'✝ ∈ toList l₂
s : Subset l0 l₂
h : a = a✝ ∨ a ∈ toList l0
⊢ a ∈ l₂
[PROOFSTEP]
rcases h with (rfl | h)
[GOAL]
case cons.inl
α : Type u_1
a : Lists α
l0 l₂ : Lists' α true
a'✝ : Lists α
m : a'✝ ∈ toList l₂
s : Subset l0 l₂
e : a ~ a'✝
⊢ a ∈ l₂
[PROOFSTEP]
exact ⟨_, m, e⟩
[GOAL]
case cons.inr
α : Type u_1
a : Lists α
l0 l₂ : Lists' α true
a✝ a'✝ : Lists α
e : a✝ ~ a'✝
m : a'✝ ∈ toList l₂
s : Subset l0 l₂
h : a ∈ toList l0
⊢ a ∈ l₂
[PROOFSTEP]
exact mem_of_subset' s h
[GOAL]
α : Type u_1
l₁ l₂ : Lists' α true
H : ∀ (a : Lists α), a ∈ toList l₁ → a ∈ l₂
⊢ l₁ ⊆ l₂
[PROOFSTEP]
rw [← of_toList l₁]
[GOAL]
α : Type u_1
l₁ l₂ : Lists' α true
H : ∀ (a : Lists α), a ∈ toList l₁ → a ∈ l₂
⊢ ofList (toList l₁) ⊆ l₂
[PROOFSTEP]
revert H
[GOAL]
α : Type u_1
l₁ l₂ : Lists' α true
⊢ (∀ (a : Lists α), a ∈ toList l₁ → a ∈ l₂) → ofList (toList l₁) ⊆ l₂
[PROOFSTEP]
induction' toList l₁ with h t t_ih
[GOAL]
case nil
α : Type u_1
l₁ l₂ : Lists' α true
⊢ (∀ (a : Lists α), a ∈ [] → a ∈ l₂) → ofList [] ⊆ l₂
[PROOFSTEP]
intro H
[GOAL]
case cons
α : Type u_1
l₁ l₂ : Lists' α true
h : Lists α
t : List (Lists α)
t_ih : (∀ (a : Lists α), a ∈ t → a ∈ l₂) → ofList t ⊆ l₂
⊢ (∀ (a : Lists α), a ∈ h :: t → a ∈ l₂) → ofList (h :: t) ⊆ l₂
[PROOFSTEP]
intro H
[GOAL]
case nil
α : Type u_1
l₁ l₂ : Lists' α true
H : ∀ (a : Lists α), a ∈ [] → a ∈ l₂
⊢ ofList [] ⊆ l₂
[PROOFSTEP]
exact Subset.nil
[GOAL]
case cons
α : Type u_1
l₁ l₂ : Lists' α true
h : Lists α
t : List (Lists α)
t_ih : (∀ (a : Lists α), a ∈ t → a ∈ l₂) → ofList t ⊆ l₂
H : ∀ (a : Lists α), a ∈ h :: t → a ∈ l₂
⊢ ofList (h :: t) ⊆ l₂
[PROOFSTEP]
simp only [ofList, List.find?, List.mem_cons, forall_eq_or_imp] at *
[GOAL]
case cons
α : Type u_1
l₁ l₂ : Lists' α true
h : Lists α
t : List (Lists α)
t_ih : (∀ (a : Lists α), a ∈ t → a ∈ l₂) → ofList t ⊆ l₂
H : h ∈ l₂ ∧ ∀ (a : Lists α), a ∈ t → a ∈ l₂
⊢ cons h (ofList t) ⊆ l₂
[PROOFSTEP]
exact cons_subset.2 ⟨H.1, t_ih H.2⟩
[GOAL]
α : Type u_1
l : List (Lists α)
⊢ toList (ofList l) = l
[PROOFSTEP]
simp [ofList, of']
[GOAL]
α : Type u_1
l : Lists' α true
x✝ : IsList { fst := true, snd := l }
⊢ ofList (toList { fst := true, snd := l }) = { fst := true, snd := l }
[PROOFSTEP]
simp_all [ofList, of']
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
⊢ DecidableEq (Lists α)
[PROOFSTEP]
unfold Lists
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
⊢ DecidableEq ((b : Bool) × Lists' α b)
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
inst✝ : SizeOf α
⊢ SizeOf (Lists α)
[PROOFSTEP]
unfold Lists
[GOAL]
α : Type u_1
inst✝ : SizeOf α
⊢ SizeOf ((b : Bool) × Lists' α b)
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
⊢ PProd ((l : Lists α) → C l) ((l : Lists' α true) → D l)
[PROOFSTEP]
suffices
∀ {b} (l : Lists' α b),
PProd (C ⟨_, l⟩)
(match b, l with
| true, l => D l
| false, _ => PUnit)
by exact ⟨fun ⟨b, l⟩ => (this _).1, fun l => (this l).2⟩
[GOAL]
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
this :
{b : Bool} →
(l : Lists' α b) →
PProd (C { fst := b, snd := l })
(match b, l with
| true, l => D l
| false, x => PUnit)
⊢ PProd ((l : Lists α) → C l) ((l : Lists' α true) → D l)
[PROOFSTEP]
exact ⟨fun ⟨b, l⟩ => (this _).1, fun l => (this l).2⟩
[GOAL]
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
⊢ {b : Bool} →
(l : Lists' α b) →
PProd (C { fst := b, snd := l })
(match b, l with
| true, l => D l
| false, x => PUnit)
[PROOFSTEP]
intros b l
[GOAL]
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
b : Bool
l : Lists' α b
⊢ PProd (C { fst := b, snd := l })
(match b, l with
| true, l => D l
| false, x => PUnit)
[PROOFSTEP]
induction' l with a b a l IH₁ IH
[GOAL]
case atom
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
b : Bool
a : α
⊢ PProd (C { fst := false, snd := Lists'.atom a })
(match false, Lists'.atom a with
| true, l => D l
| false, x => PUnit)
[PROOFSTEP]
exact ⟨C0 _, ⟨⟩⟩
[GOAL]
case nil
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
b : Bool
⊢ PProd (C { fst := true, snd := Lists'.nil })
(match true, Lists'.nil with
| true, l => D l
| false, x => PUnit)
[PROOFSTEP]
exact ⟨C1 _ D0, D0⟩
[GOAL]
case cons'
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
b✝ b : Bool
a : Lists' α b
l : Lists' α true
IH₁ :
PProd (C { fst := b, snd := a })
(match b, a with
| true, l => D l
| false, x => PUnit)
IH :
PProd (C { fst := true, snd := l })
(match true, l with
| true, l => D l
| false, x => PUnit)
⊢ PProd (C { fst := true, snd := Lists'.cons' a l })
(match true, Lists'.cons' a l with
| true, l => D l
| false, x => PUnit)
[PROOFSTEP]
have : D (Lists'.cons' a l) := D1 ⟨_, _⟩ _ IH₁.1 IH.2
[GOAL]
case cons'
α : Type u_1
C : Lists α → Sort u_2
D : Lists' α true → Sort u_3
C0 : (a : α) → C (atom a)
C1 : (l : Lists' α true) → D l → C (of' l)
D0 : D Lists'.nil
D1 : (a : Lists α) → (l : Lists' α true) → C a → D l → D (Lists'.cons a l)
b✝ b : Bool
a : Lists' α b
l : Lists' α true
IH₁ :
PProd (C { fst := b, snd := a })
(match b, a with
| true, l => D l
| false, x => PUnit)
IH :
PProd (C { fst := true, snd := l })
(match true, l with
| true, l => D l
| false, x => PUnit)
this : D (Lists'.cons' a l)
⊢ PProd (C { fst := true, snd := Lists'.cons' a l })
(match true, Lists'.cons' a l with
| true, l => D l
| false, x => PUnit)
[PROOFSTEP]
exact ⟨C1 _ this, this⟩
[GOAL]
α : Type u_1
l₁ l₂ : Lists' α true
⊢ of' l₁ ~ of' l₂ ↔ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁
[PROOFSTEP]
refine' ⟨fun h => _, fun ⟨h₁, h₂⟩ => Equiv.antisymm h₁ h₂⟩
[GOAL]
α : Type u_1
l₁ l₂ : Lists' α true
h : of' l₁ ~ of' l₂
⊢ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁
[PROOFSTEP]
cases' h with _ _ _ h₁ h₂
[GOAL]
case refl
α : Type u_1
l₁ : Lists' α true
⊢ l₁ ⊆ l₁ ∧ l₁ ⊆ l₁
[PROOFSTEP]
simp [Lists'.Subset.refl]
[GOAL]
case antisymm
α : Type u_1
l₁ l₂ : Lists' α true
h₁ : Lists'.Subset l₁ l₂
h₂ : Lists'.Subset l₂ l₁
⊢ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁
[PROOFSTEP]
exact ⟨h₁, h₂⟩
[GOAL]
α : Type u_1
a : α
l : Lists α
h : atom a ~ l
⊢ atom a = l
[PROOFSTEP]
cases h
[GOAL]
case refl
α : Type u_1
a : α
⊢ atom a = atom a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
l₁ l₂ : Lists α
h : l₁ ~ l₂
⊢ l₂ ~ l₁
[PROOFSTEP]
cases' h with _ _ _ h₁ h₂ <;> [rfl; exact Equiv.antisymm h₂ h₁]
[GOAL]
α : Type u_1
l₁ l₂ : Lists α
h : l₁ ~ l₂
⊢ l₂ ~ l₁
[PROOFSTEP]
cases' h with _ _ _ h₁ h₂
[GOAL]
case refl
α : Type u_1
l₁ : Lists α
⊢ l₁ ~ l₁
[PROOFSTEP]
rfl
[GOAL]
case antisymm
α : Type u_1
l₁✝ l₂✝ : Lists' α true
h₁ : Lists'.Subset l₁✝ l₂✝
h₂ : Lists'.Subset l₂✝ l₁✝
⊢ { fst := true, snd := l₂✝ } ~ { fst := true, snd := l₁✝ }
[PROOFSTEP]
exact Equiv.antisymm h₂ h₁
[GOAL]
α : Type u_1
⊢ ∀ {l₁ l₂ l₃ : Lists α}, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
[PROOFSTEP]
let trans := fun l₁ : Lists α => ∀ ⦃l₂ l₃⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
[GOAL]
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
⊢ ∀ {l₁ l₂ l₃ : Lists α}, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
[PROOFSTEP]
suffices PProd (∀ l₁, trans l₁) (∀ (l : Lists' α true), ∀ l' ∈ l.toList, trans l') by exact this.1
[GOAL]
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
this : PProd (∀ (l₁ : Lists α), trans l₁) (∀ (l : Lists' α true) (l' : Lists α), l' ∈ Lists'.toList l → trans l')
⊢ ∀ {l₁ l₂ l₃ : Lists α}, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
[PROOFSTEP]
exact this.1
[GOAL]
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
⊢ PProd (∀ (l₁ : Lists α), trans l₁) (∀ (l : Lists' α true) (l' : Lists α), l' ∈ Lists'.toList l → trans l')
[PROOFSTEP]
apply inductionMut
[GOAL]
case C0
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
⊢ ∀ (a : α), trans (atom a)
[PROOFSTEP]
intro a l₂ l₃ h₁ h₂
[GOAL]
case C0
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
a : α
l₂ l₃ : Lists α
h₁ : atom a ~ l₂
h₂ : l₂ ~ l₃
⊢ atom a ~ l₃
[PROOFSTEP]
rwa [← equiv_atom.1 h₁] at h₂
[GOAL]
case C1
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
⊢ ∀ (l : Lists' α true), (∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l') → trans (of' l)
[PROOFSTEP]
intro l₁ IH l₂ l₃ h₁ h₂
[GOAL]
case C1
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ l₃ : Lists α
h₁ : of' l₁ ~ l₂
h₂ : l₂ ~ l₃
⊢ of' l₁ ~ l₃
[PROOFSTEP]
have h₁' := h₁
[GOAL]
case C1
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ l₃ : Lists α
h₁ : of' l₁ ~ l₂
h₂ : l₂ ~ l₃
h₁' : of' l₁ ~ l₂
⊢ of' l₁ ~ l₃
[PROOFSTEP]
have h₂' := h₂
[GOAL]
case C1
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ l₃ : Lists α
h₁ : of' l₁ ~ l₂
h₂ : l₂ ~ l₃
h₁' : of' l₁ ~ l₂
h₂' : l₂ ~ l₃
⊢ of' l₁ ~ l₃
[PROOFSTEP]
cases' h₁ with _ _ l₂
[GOAL]
case C1.refl
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₃ : Lists α
h₂ : of' l₁ ~ l₃
h₁' : of' l₁ ~ of' l₁
h₂' : of' l₁ ~ l₃
⊢ of' l₁ ~ l₃
[PROOFSTEP]
exact h₂
[GOAL]
case C1.antisymm
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₃ : Lists α
l₂ : Lists' α true
a✝¹ : Lists'.Subset l₁ l₂
a✝ : Lists'.Subset l₂ l₁
h₂ : { fst := true, snd := l₂ } ~ l₃
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
h₂' : { fst := true, snd := l₂ } ~ l₃
⊢ of' l₁ ~ l₃
[PROOFSTEP]
cases' h₂ with _ _ l₃
[GOAL]
case C1.antisymm.refl
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝¹ : Lists'.Subset l₁ l₂
a✝ : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₂ }
⊢ of' l₁ ~ { fst := true, snd := l₂ }
[PROOFSTEP]
exact h₁'
[GOAL]
case C1.antisymm.antisymm
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
⊢ of' l₁ ~ { fst := true, snd := l₃ }
[PROOFSTEP]
cases' Equiv.antisymm_iff.1 h₁' with hl₁ hr₁
[GOAL]
case C1.antisymm.antisymm.intro
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
⊢ of' l₁ ~ { fst := true, snd := l₃ }
[PROOFSTEP]
cases' Equiv.antisymm_iff.1 h₂' with hl₂ hr₂
[GOAL]
case C1.antisymm.antisymm.intro.intro
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
⊢ of' l₁ ~ { fst := true, snd := l₃ }
[PROOFSTEP]
apply Equiv.antisymm_iff.2
[GOAL]
case C1.antisymm.antisymm.intro.intro
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
⊢ l₁ ⊆ l₃ ∧ l₃ ⊆ l₁
[PROOFSTEP]
constructor
[GOAL]
case C1.antisymm.antisymm.intro.intro.left
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
⊢ l₁ ⊆ l₃
[PROOFSTEP]
apply Lists'.subset_def.2
[GOAL]
case C1.antisymm.antisymm.intro.intro.right
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
⊢ l₃ ⊆ l₁
[PROOFSTEP]
apply Lists'.subset_def.2
[GOAL]
case C1.antisymm.antisymm.intro.intro.left
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
⊢ ∀ (a : Lists α), a ∈ Lists'.toList l₁ → a ∈ l₃
[PROOFSTEP]
intro a₁ m₁
[GOAL]
case C1.antisymm.antisymm.intro.intro.left
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
a₁ : Lists α
m₁ : a₁ ∈ Lists'.toList l₁
⊢ a₁ ∈ l₃
[PROOFSTEP]
rcases Lists'.mem_of_subset' hl₁ m₁ with ⟨a₂, m₂, e₁₂⟩
[GOAL]
case C1.antisymm.antisymm.intro.intro.left.intro.intro
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
a₁ : Lists α
m₁ : a₁ ∈ Lists'.toList l₁
a₂ : Lists α
m₂ : a₂ ∈ Lists'.toList l₂
e₁₂ : a₁ ~ a₂
⊢ a₁ ∈ l₃
[PROOFSTEP]
rcases Lists'.mem_of_subset' hl₂ m₂ with ⟨a₃, m₃, e₂₃⟩
[GOAL]
case C1.antisymm.antisymm.intro.intro.left.intro.intro.intro.intro
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
a₁ : Lists α
m₁ : a₁ ∈ Lists'.toList l₁
a₂ : Lists α
m₂ : a₂ ∈ Lists'.toList l₂
e₁₂ : a₁ ~ a₂
a₃ : Lists α
m₃ : a₃ ∈ Lists'.toList l₃
e₂₃ : a₂ ~ a₃
⊢ a₁ ∈ l₃
[PROOFSTEP]
exact ⟨a₃, m₃, IH _ m₁ e₁₂ e₂₃⟩
[GOAL]
case C1.antisymm.antisymm.intro.intro.right
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
⊢ ∀ (a : Lists α), a ∈ Lists'.toList l₃ → a ∈ l₁
[PROOFSTEP]
intro a₃ m₃
[GOAL]
case C1.antisymm.antisymm.intro.intro.right
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
a₃ : Lists α
m₃ : a₃ ∈ Lists'.toList l₃
⊢ a₃ ∈ l₁
[PROOFSTEP]
rcases Lists'.mem_of_subset' hr₂ m₃ with ⟨a₂, m₂, e₃₂⟩
[GOAL]
case C1.antisymm.antisymm.intro.intro.right.intro.intro
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
a₃ : Lists α
m₃ : a₃ ∈ Lists'.toList l₃
a₂ : Lists α
m₂ : a₂ ∈ Lists'.toList l₂
e₃₂ : a₃ ~ a₂
⊢ a₃ ∈ l₁
[PROOFSTEP]
rcases Lists'.mem_of_subset' hr₁ m₂ with ⟨a₁, m₁, e₂₁⟩
[GOAL]
case C1.antisymm.antisymm.intro.intro.right.intro.intro.intro.intro
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
l₁ : Lists' α true
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l₁ → trans l'
l₂ : Lists' α true
a✝³ : Lists'.Subset l₁ l₂
a✝² : Lists'.Subset l₂ l₁
h₁' : of' l₁ ~ { fst := true, snd := l₂ }
l₃ : Lists' α true
a✝¹ : Lists'.Subset l₂ l₃
a✝ : Lists'.Subset l₃ l₂
h₂' : { fst := true, snd := l₂ } ~ { fst := true, snd := l₃ }
hl₁ : l₁ ⊆ l₂
hr₁ : l₂ ⊆ l₁
hl₂ : l₂ ⊆ l₃
hr₂ : l₃ ⊆ l₂
a₃ : Lists α
m₃ : a₃ ∈ Lists'.toList l₃
a₂ : Lists α
m₂ : a₂ ∈ Lists'.toList l₂
e₃₂ : a₃ ~ a₂
a₁ : Lists α
m₁ : a₁ ∈ Lists'.toList l₁
e₂₁ : a₂ ~ a₁
⊢ a₃ ∈ l₁
[PROOFSTEP]
exact ⟨a₁, m₁, (IH _ m₁ e₂₁.symm e₃₂.symm).symm⟩
[GOAL]
case D0
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
⊢ ∀ (l' : Lists α), l' ∈ Lists'.toList Lists'.nil → trans l'
[PROOFSTEP]
rintro _ ⟨⟩
[GOAL]
case D1
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
⊢ ∀ (a : Lists α) (l : Lists' α true),
trans a →
(∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l') →
∀ (l' : Lists α), l' ∈ Lists'.toList (Lists'.cons a l) → trans l'
[PROOFSTEP]
intro a l IH₁ IH
[GOAL]
case D1
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
a : Lists α
l : Lists' α true
IH₁ : trans a
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l'
⊢ ∀ (l' : Lists α), l' ∈ Lists'.toList (Lists'.cons a l) → trans l'
[PROOFSTEP]
simp only [Lists'.toList, Sigma.eta, List.find?, List.mem_cons, forall_eq_or_imp]
[GOAL]
case D1
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
a : Lists α
l : Lists' α true
IH₁ : trans a
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l'
⊢ (∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃) ∧
∀ (a : Lists α), a ∈ Lists'.toList l → ∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃
[PROOFSTEP]
constructor
[GOAL]
case D1.left
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
a : Lists α
l : Lists' α true
IH₁ : trans a
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l'
⊢ ∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃
[PROOFSTEP]
intros l₂ l₃ h₁ h₂
[GOAL]
case D1.left
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
a : Lists α
l : Lists' α true
IH₁ : trans a
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l'
l₂ l₃ : Lists α
h₁ : a ~ l₂
h₂ : l₂ ~ l₃
⊢ a ~ l₃
[PROOFSTEP]
exact IH₁ h₁ h₂
[GOAL]
case D1.right
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
a : Lists α
l : Lists' α true
IH₁ : trans a
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l'
⊢ ∀ (a : Lists α), a ∈ Lists'.toList l → ∀ ⦃l₂ l₃ : Lists α⦄, a ~ l₂ → l₂ ~ l₃ → a ~ l₃
[PROOFSTEP]
intros a h₁ l₂ l₃ h₂ h₃
[GOAL]
case D1.right
α : Type u_1
trans : Lists α → Prop := fun l₁ => ∀ ⦃l₂ l₃ : Lists α⦄, l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃
a✝ : Lists α
l : Lists' α true
IH₁ : trans a✝
IH : ∀ (l' : Lists α), l' ∈ Lists'.toList l → trans l'
a : Lists α
h₁ : a ∈ Lists'.toList l
l₂ l₃ : Lists α
h₂ : a ~ l₂
h₃ : l₂ ~ l₃
⊢ a ~ l₃
[PROOFSTEP]
exact IH _ h₁ h₂ h₃
[GOAL]
α : Type u_1
b : Bool
l : Lists' α b
⊢ 0 < sizeOf l
[PROOFSTEP]
cases l
[GOAL]
case atom
α : Type u_1
a✝ : α
⊢ 0 < sizeOf (Lists'.atom a✝)
[PROOFSTEP]
simp only [Lists'.atom.sizeOf_spec, Lists'.nil.sizeOf_spec, Lists'.cons'.sizeOf_spec, true_or, add_pos_iff]
[GOAL]
case nil
α : Type u_1
⊢ 0 < sizeOf Lists'.nil
[PROOFSTEP]
simp only [Lists'.atom.sizeOf_spec, Lists'.nil.sizeOf_spec, Lists'.cons'.sizeOf_spec, true_or, add_pos_iff]
[GOAL]
case cons'
α : Type u_1
b✝ : Bool
a✝¹ : Lists' α b✝
a✝ : Lists' α true
⊢ 0 < sizeOf (Lists'.cons' a✝¹ a✝)
[PROOFSTEP]
simp only [Lists'.atom.sizeOf_spec, Lists'.nil.sizeOf_spec, Lists'.cons'.sizeOf_spec, true_or, add_pos_iff]
[GOAL]
α : Type u_1
b : Bool
a : Lists' α b
l : Lists' α true
⊢ sizeOf { fst := b, snd := a } < sizeOf (Lists'.cons' a l)
[PROOFSTEP]
simp only [Sigma.mk.sizeOf_spec, Lists'.cons'.sizeOf_spec, lt_add_iff_pos_right]
[GOAL]
α : Type u_1
b : Bool
a : Lists' α b
l : Lists' α true
⊢ 0 < sizeOf l
[PROOFSTEP]
apply sizeof_pos
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ l₂ : Lists' α false
⊢ { fst := false, snd := l₁ } ~ { fst := false, snd := l₂ } ↔ l₁ = l₂
[PROOFSTEP]
cases l₁
[GOAL]
case atom
α : Type u_1
inst✝ : DecidableEq α
l₂ : Lists' α false
a✝ : α
⊢ { fst := false, snd := Lists'.atom a✝ } ~ { fst := false, snd := l₂ } ↔ Lists'.atom a✝ = l₂
[PROOFSTEP]
apply equiv_atom.trans
[GOAL]
case atom
α : Type u_1
inst✝ : DecidableEq α
l₂ : Lists' α false
a✝ : α
⊢ atom a✝ = { fst := false, snd := l₂ } ↔ Lists'.atom a✝ = l₂
[PROOFSTEP]
simp [atom]
[GOAL]
case atom
α : Type u_1
inst✝ : DecidableEq α
l₂ : Lists' α false
a✝ : α
⊢ { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := l₂ } ↔ Lists'.atom a✝ = l₂
[PROOFSTEP]
constructor
[GOAL]
case atom.mp
α : Type u_1
inst✝ : DecidableEq α
l₂ : Lists' α false
a✝ : α
⊢ { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := l₂ } → Lists'.atom a✝ = l₂
[PROOFSTEP]
rintro ⟨rfl⟩
[GOAL]
case atom.mp.refl
α : Type u_1
inst✝ : DecidableEq α
a✝ : α
⊢ Lists'.atom a✝ = Lists'.atom a✝
[PROOFSTEP]
rfl
[GOAL]
case atom.mpr
α : Type u_1
inst✝ : DecidableEq α
l₂ : Lists' α false
a✝ : α
⊢ Lists'.atom a✝ = l₂ → { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := l₂ }
[PROOFSTEP]
rintro ⟨rfl⟩
[GOAL]
case atom.mpr.refl
α : Type u_1
inst✝ : DecidableEq α
a✝ : α
⊢ { fst := false, snd := Lists'.atom a✝ } = { fst := false, snd := Lists'.atom a✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ : Lists' α false
l₂ : Lists' α true
⊢ ¬{ fst := false, snd := l₁ } ~ { fst := true, snd := l₂ }
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ : Lists' α true
l₂ : Lists' α false
⊢ ¬{ fst := true, snd := l₁ } ~ { fst := false, snd := l₂ }
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ l₂ : Lists' α true
⊢ Decidable ({ fst := true, snd := l₁ } ~ { fst := true, snd := l₂ })
[PROOFSTEP]
haveI : Decidable (l₁ ⊆ l₂) :=
have :
SizeOf.sizeOf l₁ + SizeOf.sizeOf l₂ < SizeOf.sizeOf (⟨true, l₁⟩ : Lists α) + SizeOf.sizeOf (⟨true, l₂⟩ : Lists α) :=
by decreasing_tactic
Subset.decidable l₁ l₂
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ l₂ : Lists' α true
⊢ sizeOf l₁ + sizeOf l₂ < sizeOf { fst := true, snd := l₁ } + sizeOf { fst := true, snd := l₂ }
[PROOFSTEP]
decreasing_tactic
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ l₂ : Lists' α true
this : Decidable (l₁ ⊆ l₂)
⊢ Decidable ({ fst := true, snd := l₁ } ~ { fst := true, snd := l₂ })
[PROOFSTEP]
haveI : Decidable (l₂ ⊆ l₁) :=
have :
SizeOf.sizeOf l₂ + SizeOf.sizeOf l₁ < SizeOf.sizeOf (⟨true, l₁⟩ : Lists α) + SizeOf.sizeOf (⟨true, l₂⟩ : Lists α) :=
by decreasing_tactic
Subset.decidable l₂ l₁
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ l₂ : Lists' α true
this : Decidable (l₁ ⊆ l₂)
⊢ sizeOf l₂ + sizeOf l₁ < sizeOf { fst := true, snd := l₁ } + sizeOf { fst := true, snd := l₂ }
[PROOFSTEP]
decreasing_tactic
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
l₁ l₂ : Lists' α true
this✝ : Decidable (l₁ ⊆ l₂)
this : Decidable (l₂ ⊆ l₁)
⊢ Decidable ({ fst := true, snd := l₁ } ~ { fst := true, snd := l₂ })
[PROOFSTEP]
exact decidable_of_iff' _ Equiv.antisymm_iff
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
b : Bool
a : Lists' α b
l₁ l₂ : Lists' α true
⊢ Decidable (Lists'.cons' a l₁ ⊆ l₂)
[PROOFSTEP]
haveI :=
have : sizeOf (⟨b, a⟩ : Lists α) < 1 + 1 + sizeOf a + sizeOf l₁ := by simp [sizeof_pos]
mem.decidable ⟨b, a⟩ l₂
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
b : Bool
a : Lists' α b
l₁ l₂ : Lists' α true
⊢ sizeOf { fst := b, snd := a } < 1 + 1 + sizeOf a + sizeOf l₁
[PROOFSTEP]
simp [sizeof_pos]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
b : Bool
a : Lists' α b
l₁ l₂ : Lists' α true
this : Decidable ({ fst := b, snd := a } ∈ l₂)
⊢ Decidable (Lists'.cons' a l₁ ⊆ l₂)
[PROOFSTEP]
haveI :=
have : SizeOf.sizeOf l₁ + SizeOf.sizeOf l₂ < SizeOf.sizeOf (Lists'.cons' a l₁) + SizeOf.sizeOf l₂ := by
decreasing_tactic
Subset.decidable l₁ l₂
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
b : Bool
a : Lists' α b
l₁ l₂ : Lists' α true
this : Decidable ({ fst := b, snd := a } ∈ l₂)
⊢ sizeOf l₁ + sizeOf l₂ < sizeOf (Lists'.cons' a l₁) + sizeOf l₂
[PROOFSTEP]
decreasing_tactic
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
b : Bool
a : Lists' α b
l₁ l₂ : Lists' α true
this✝ : Decidable ({ fst := b, snd := a } ∈ l₂)
this : Decidable (l₁ ⊆ l₂)
⊢ Decidable (Lists'.cons' a l₁ ⊆ l₂)
[PROOFSTEP]
exact decidable_of_iff' _ (@Lists'.cons_subset _ ⟨_, _⟩ _ _)
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
⊢ ¬a ∈ Lists'.nil
[PROOFSTEP]
rintro ⟨_, ⟨⟩, _⟩
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
b✝ : Bool
b : Lists' α b✝
l₂ : Lists' α true
⊢ Decidable (a ∈ Lists'.cons' b l₂)
[PROOFSTEP]
haveI :=
have : sizeOf (⟨_, b⟩ : Lists α) < 1 + 1 + sizeOf b + sizeOf l₂ := by simp [sizeof_pos]
Equiv.decidable a ⟨_, b⟩
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
b✝ : Bool
b : Lists' α b✝
l₂ : Lists' α true
⊢ sizeOf { fst := b✝, snd := b } < 1 + 1 + sizeOf b + sizeOf l₂
[PROOFSTEP]
simp [sizeof_pos]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
b✝ : Bool
b : Lists' α b✝
l₂ : Lists' α true
this : Decidable (a ~ { fst := b✝, snd := b })
⊢ Decidable (a ∈ Lists'.cons' b l₂)
[PROOFSTEP]
haveI :=
have : SizeOf.sizeOf a + SizeOf.sizeOf l₂ < SizeOf.sizeOf a + SizeOf.sizeOf (Lists'.cons' b l₂) := by
decreasing_tactic
mem.decidable a l₂
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
b✝ : Bool
b : Lists' α b✝
l₂ : Lists' α true
this : Decidable (a ~ { fst := b✝, snd := b })
⊢ sizeOf a + sizeOf l₂ < sizeOf a + sizeOf (Lists'.cons' b l₂)
[PROOFSTEP]
decreasing_tactic
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
b✝ : Bool
b : Lists' α b✝
l₂ : Lists' α true
this✝ : Decidable (a ~ { fst := b✝, snd := b })
this : Decidable (a ∈ l₂)
⊢ Decidable (a ∈ Lists'.cons' b l₂)
[PROOFSTEP]
refine' decidable_of_iff' (a ~ ⟨_, b⟩ ∨ a ∈ l₂) _
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
b✝ : Bool
b : Lists' α b✝
l₂ : Lists' α true
this✝ : Decidable (a ~ { fst := b✝, snd := b })
this : Decidable (a ∈ l₂)
⊢ a ∈ Lists'.cons' b l₂ ↔ a ~ { fst := b✝, snd := b } ∨ a ∈ l₂
[PROOFSTEP]
rw [← Lists'.mem_cons]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : Lists α
b✝ : Bool
b : Lists' α b✝
l₂ : Lists' α true
this✝ : Decidable (a ~ { fst := b✝, snd := b })
this : Decidable (a ∈ l₂)
⊢ a ∈ Lists'.cons' b l₂ ↔ a ∈ Lists'.cons { fst := b✝, snd := b } l₂
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
⊢ DecidableEq (Finsets α)
[PROOFSTEP]
unfold Finsets
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
⊢ DecidableEq (Quotient Lists.instSetoidLists)
[PROOFSTEP]
exact (Quotient.decidableEq (d := fun _ _ => Lists.Equiv.decidable _ _))
| {"mathlib_filename": "Mathlib.SetTheory.Lists", "llama_tokens": 20459} |
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
I : LieIdeal R L
h : LieModule.IsTrivial L { x // x ∈ ↑I }
x y : { x // x ∈ ↑I }
⊢ ⁅x, y⁆ = 0
[PROOFSTEP]
apply h.trivial
[GOAL]
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
f : L₁ →ₗ⁅R⁆ L₂
h₁ : Surjective ↑f
h₂ : IsLieAbelian L₁
x y : L₂
⊢ ⁅x, y⁆ = 0
[PROOFSTEP]
obtain ⟨u, rfl⟩ := h₁ x
[GOAL]
case intro
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
f : L₁ →ₗ⁅R⁆ L₂
h₁ : Surjective ↑f
h₂ : IsLieAbelian L₁
y : L₂
u : L₁
⊢ ⁅↑f u, y⁆ = 0
[PROOFSTEP]
obtain ⟨v, rfl⟩ := h₁ y
[GOAL]
case intro.intro
R : Type u
L₁ : Type v
L₂ : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L₁
inst✝² : LieRing L₂
inst✝¹ : LieAlgebra R L₁
inst✝ : LieAlgebra R L₂
f : L₁ →ₗ⁅R⁆ L₂
h₁ : Surjective ↑f
h₂ : IsLieAbelian L₁
u v : L₁
⊢ ⁅↑f u, ↑f v⁆ = 0
[PROOFSTEP]
rw [← LieHom.map_lie, trivial_lie_zero, LieHom.map_zero]
[GOAL]
A : Type v
inst✝ : Ring A
⊢ (IsCommutative A fun x x_1 => x * x_1) ↔ IsLieAbelian A
[PROOFSTEP]
have h₁ : IsCommutative A (· * ·) ↔ ∀ a b : A, a * b = b * a := ⟨fun h => h.1, fun h => ⟨h⟩⟩
[GOAL]
A : Type v
inst✝ : Ring A
h₁ : (IsCommutative A fun x x_1 => x * x_1) ↔ ∀ (a b : A), a * b = b * a
⊢ (IsCommutative A fun x x_1 => x * x_1) ↔ IsLieAbelian A
[PROOFSTEP]
have h₂ : IsLieAbelian A ↔ ∀ a b : A, ⁅a, b⁆ = 0 := ⟨fun h => h.1, fun h => ⟨h⟩⟩
[GOAL]
A : Type v
inst✝ : Ring A
h₁ : (IsCommutative A fun x x_1 => x * x_1) ↔ ∀ (a b : A), a * b = b * a
h₂ : IsLieAbelian A ↔ ∀ (a b : A), ⁅a, b⁆ = 0
⊢ (IsCommutative A fun x x_1 => x * x_1) ↔ IsLieAbelian A
[PROOFSTEP]
simp only [h₁, h₂, LieRing.of_associative_ring_bracket, sub_eq_zero]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x✝¹ x✝ : { x // x ∈ ↑⊥ }
x : L
hx : x ∈ ↑⊥
⊢ ⁅{ val := x, property := hx }, x✝⁆ = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
x : L
⊢ x ∈ LieModule.ker R L M ↔ ∀ (m : M), ⁅x, m⁆ = 0
[PROOFSTEP]
simp only [LieModule.ker, LieHom.mem_ker, LinearMap.ext_iff, LinearMap.zero_apply, toEndomorphism_apply_apply]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
x y : M
hx : x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0}
hy : y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0}
z : L
⊢ ⁅z, x + y⁆ = 0
[PROOFSTEP]
rw [lie_add, hx, hy, add_zero]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
c : R
x : M
hx :
x ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ = 0},
add_mem' :=
(_ :
∀ {x y : M},
x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → ∀ (z : L), ⁅z, x + y⁆ = 0) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ = 0) }.toAddSubsemigroup.carrier
y : L
⊢ ⁅y, c • x⁆ = 0
[PROOFSTEP]
rw [lie_smul, hx, smul_zero]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
x : L
m : M
hm :
m ∈
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ = 0},
add_mem' :=
(_ :
∀ {x y : M},
x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} →
y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → ∀ (z : L), ⁅z, x + y⁆ = 0) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ = 0) },
smul_mem' :=
(_ :
∀ (c : R) (x : M),
x ∈
{
toAddSubsemigroup :=
{ carrier := {m | ∀ (x : L), ⁅x, m⁆ = 0},
add_mem' :=
(_ :
∀ {x y : M},
x ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} →
y ∈ {m | ∀ (x : L), ⁅x, m⁆ = 0} → ∀ (z : L), ⁅z, x + y⁆ = 0) },
zero_mem' := (_ : ∀ (x : L), ⁅x, 0⁆ = 0) }.toAddSubsemigroup.carrier →
∀ (y : L), ⁅y, c • x⁆ = 0) }.toAddSubmonoid.toAddSubsemigroup.carrier
y : L
⊢ ⁅y, ⁅x, m⁆⁆ = 0
[PROOFSTEP]
rw [hm, lie_zero]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
I : LieIdeal R L
⊢ ⁅I, maxTrivSubmodule R L M⁆ = ⊥
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.lieIdeal_oper_eq_linear_span, LieSubmodule.bot_coeSubmodule,
Submodule.span_eq_bot]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
I : LieIdeal R L
⊢ ∀ (x : M), x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → x = 0
[PROOFSTEP]
rintro m ⟨⟨x, hx⟩, ⟨⟨m, hm⟩, rfl⟩⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
I : LieIdeal R L
x : L
hx : x ∈ I
m : M
hm : m ∈ maxTrivSubmodule R L M
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := m, property := hm }⁆ = 0
[PROOFSTEP]
exact hm x
[GOAL]
R : Type u
L : Type v
M : Type w
N✝ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N✝
inst✝² : Module R N✝
inst✝¹ : LieRingModule L N✝
inst✝ : LieModule R L N✝
N : LieSubmodule R L M
⊢ N ≤ maxTrivSubmodule R L M ↔ ⁅⊤, N⁆ = ⊥
[PROOFSTEP]
refine' ⟨fun h => _, fun h m hm => _⟩
[GOAL]
case refine'_1
R : Type u
L : Type v
M : Type w
N✝ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N✝
inst✝² : Module R N✝
inst✝¹ : LieRingModule L N✝
inst✝ : LieModule R L N✝
N : LieSubmodule R L M
h : N ≤ maxTrivSubmodule R L M
⊢ ⁅⊤, N⁆ = ⊥
[PROOFSTEP]
rw [← le_bot_iff, ← ideal_oper_maxTrivSubmodule_eq_bot R L M ⊤]
[GOAL]
case refine'_1
R : Type u
L : Type v
M : Type w
N✝ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N✝
inst✝² : Module R N✝
inst✝¹ : LieRingModule L N✝
inst✝ : LieModule R L N✝
N : LieSubmodule R L M
h : N ≤ maxTrivSubmodule R L M
⊢ ⁅⊤, N⁆ ≤ ⁅⊤, maxTrivSubmodule R L M⁆
[PROOFSTEP]
exact LieSubmodule.mono_lie_right _ _ ⊤ h
[GOAL]
case refine'_2
R : Type u
L : Type v
M : Type w
N✝ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N✝
inst✝² : Module R N✝
inst✝¹ : LieRingModule L N✝
inst✝ : LieModule R L N✝
N : LieSubmodule R L M
h : ⁅⊤, N⁆ = ⊥
m : M
hm : m ∈ N
⊢ m ∈ maxTrivSubmodule R L M
[PROOFSTEP]
rw [mem_maxTrivSubmodule]
[GOAL]
case refine'_2
R : Type u
L : Type v
M : Type w
N✝ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N✝
inst✝² : Module R N✝
inst✝¹ : LieRingModule L N✝
inst✝ : LieModule R L N✝
N : LieSubmodule R L M
h : ⁅⊤, N⁆ = ⊥
m : M
hm : m ∈ N
⊢ ∀ (x : L), ⁅x, m⁆ = 0
[PROOFSTEP]
rw [LieSubmodule.lie_eq_bot_iff] at h
[GOAL]
case refine'_2
R : Type u
L : Type v
M : Type w
N✝ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N✝
inst✝² : Module R N✝
inst✝¹ : LieRingModule L N✝
inst✝ : LieModule R L N✝
N : LieSubmodule R L M
h : ∀ (x : L), x ∈ ⊤ → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0
m : M
hm : m ∈ N
⊢ ∀ (x : L), ⁅x, m⁆ = 0
[PROOFSTEP]
exact fun x => h x (LieSubmodule.mem_top x) m hm
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
⊢ IsTrivial L M ↔ maxTrivSubmodule R L M = ⊤
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
⊢ IsTrivial L M → maxTrivSubmodule R L M = ⊤
[PROOFSTEP]
rintro ⟨h⟩
[GOAL]
case mp.mk
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
h : ∀ (x : L) (m : M), ⁅x, m⁆ = 0
⊢ maxTrivSubmodule R L M = ⊤
[PROOFSTEP]
ext
[GOAL]
case mp.mk.h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
h : ∀ (x : L) (m : M), ⁅x, m⁆ = 0
m✝ : M
⊢ m✝ ∈ maxTrivSubmodule R L M ↔ m✝ ∈ ⊤
[PROOFSTEP]
simp only [mem_maxTrivSubmodule, h, forall_const, LieSubmodule.mem_top]
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
⊢ maxTrivSubmodule R L M = ⊤ → IsTrivial L M
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
h : maxTrivSubmodule R L M = ⊤
⊢ IsTrivial L M
[PROOFSTEP]
constructor
[GOAL]
case mpr.trivial
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
h : maxTrivSubmodule R L M = ⊤
⊢ ∀ (x : L) (m : M), ⁅x, m⁆ = 0
[PROOFSTEP]
intro x m
[GOAL]
case mpr.trivial
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
h : maxTrivSubmodule R L M = ⊤
x : L
m : M
⊢ ⁅x, m⁆ = 0
[PROOFSTEP]
revert x
[GOAL]
case mpr.trivial
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
h : maxTrivSubmodule R L M = ⊤
m : M
⊢ ∀ (x : L), ⁅x, m⁆ = 0
[PROOFSTEP]
rw [← mem_maxTrivSubmodule R L M, h]
[GOAL]
case mpr.trivial
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
h : maxTrivSubmodule R L M = ⊤
m : M
⊢ m ∈ ⊤
[PROOFSTEP]
exact LieSubmodule.mem_top m
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ (fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n
[PROOFSTEP]
simp [Function.comp_apply]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ { val := ↑f ↑m + ↑f ↑n, property := (_ : (fun x => x ∈ ↑(maxTrivSubmodule R L N)) (↑f ↑m + ↑f ↑n)) } =
{ val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) } +
{ val := ↑f ↑n, property := (_ : ∀ (x : L), ⁅x, ↑f ↑n⁆ = 0) }
[PROOFSTEP]
rfl
-- Porting note:
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
t : R
m : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ AddHom.toFun
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }
(t • m) =
↑(RingHom.id R) t •
AddHom.toFun
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }
m
[PROOFSTEP]
simp [Function.comp_apply]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
t : R
m : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ { val := t • ↑f ↑m, property := (_ : (fun x => x ∈ ↑(maxTrivSubmodule R L N)) (t • ↑f ↑m)) } =
t • { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }
[PROOFSTEP]
rfl
-- these two were `by simpa`
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
x : L
m : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) },
map_smul' :=
(_ :
∀ (t : R) (m : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }
(t • m) =
↑(RingHom.id R) t •
AddHom.toFun
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }
m) }.toAddHom
⁅x, m⁆ =
⁅x,
AddHom.toFun
{
toAddHom :=
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) },
map_smul' :=
(_ :
∀ (t : R) (m : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }
(t • m) =
↑(RingHom.id R) t •
AddHom.toFun
{ toFun := fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) },
map_add' :=
(_ :
∀ (m n : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) (m + n) =
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) m +
(fun m => { val := ↑f ↑m, property := (_ : ∀ (x : L), ⁅x, ↑f ↑m⁆ = 0) }) n) }
m) }.toAddHom
m⁆
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
e : M ≃ₗ⁅R,L⁆ N
src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } :=
maxTrivHom e.toLieModuleHom
m : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ ↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom)
(AddHom.toFun
(↑{
toLinearMap :=
{
toAddHom :=
{ toFun := ↑(maxTrivHom e.toLieModuleHom),
map_add' :=
(_ :
∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_lie' :=
(_ :
∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }},
AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom
m) =
m
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
e : M ≃ₗ⁅R,L⁆ N
src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } :=
maxTrivHom e.toLieModuleHom
m : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ ↑(↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom)
(AddHom.toFun
(↑{
toLinearMap :=
{
toAddHom :=
{ toFun := ↑(maxTrivHom e.toLieModuleHom),
map_add' :=
(_ :
∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_lie' :=
(_ :
∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }},
AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom
m)) =
↑m
[PROOFSTEP]
simp [LieModuleEquiv.coe_to_lieModuleHom]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
e : M ≃ₗ⁅R,L⁆ N
src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } :=
maxTrivHom e.toLieModuleHom
n : { x // x ∈ ↑(maxTrivSubmodule R L N) }
⊢ AddHom.toFun
(↑{
toLinearMap :=
{
toAddHom :=
{ toFun := ↑(maxTrivHom e.toLieModuleHom),
map_add' :=
(_ :
∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_lie' :=
(_ :
∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }},
AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom
(↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom) n) =
n
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
e : M ≃ₗ⁅R,L⁆ N
src✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) } →ₗ⁅R,L⁆ { x // x ∈ ↑(maxTrivSubmodule R L N) } :=
maxTrivHom e.toLieModuleHom
n : { x // x ∈ ↑(maxTrivSubmodule R L N) }
⊢ ↑(AddHom.toFun
(↑{
toLinearMap :=
{
toAddHom :=
{ toFun := ↑(maxTrivHom e.toLieModuleHom),
map_add' :=
(_ :
∀ (x y : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : { x // x ∈ ↑(maxTrivSubmodule R L M) }),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_lie' :=
(_ :
∀ {x : L} {m : { x // x ∈ ↑(maxTrivSubmodule R L M) }},
AddHom.toFun src✝.toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun src✝.toAddHom m⁆) }).toAddHom
(↑(maxTrivHom (LieModuleEquiv.symm e).toLieModuleHom) n)) =
↑n
[PROOFSTEP]
simp [LieModuleEquiv.coe_to_lieModuleHom]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
⊢ maxTrivEquiv LieModuleEquiv.refl = LieModuleEquiv.refl
[PROOFSTEP]
ext
[GOAL]
case h.a
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
m✝ : { x // x ∈ ↑(maxTrivSubmodule R L M) }
⊢ ↑(↑(maxTrivEquiv LieModuleEquiv.refl) m✝) = ↑(↑LieModuleEquiv.refl m✝)
[PROOFSTEP]
simp only [coe_maxTrivEquiv_apply, LieModuleEquiv.refl_apply]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
x : L
m : M
⊢ AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆
[PROOFSTEP]
have hf : ⁅x, f.val⁆ m = 0 := by rw [f.property x, LinearMap.zero_apply]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
x : L
m : M
⊢ ↑⁅x, ↑f⁆ m = 0
[PROOFSTEP]
rw [f.property x, LinearMap.zero_apply]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
x : L
m : M
hf : ↑⁅x, ↑f⁆ m = 0
⊢ AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆
[PROOFSTEP]
rw [LieHom.lie_apply, sub_eq_zero, ← LinearMap.toFun_eq_coe] at hf
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
x : L
m : M
hf : ⁅x, AddHom.toFun (↑f).toAddHom m⁆ = AddHom.toFun (↑f).toAddHom ⁅x, m⁆
⊢ AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆
[PROOFSTEP]
exact hf.symm
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
⊢ (fun f =>
{ toLinearMap := ↑f,
map_lie' := (_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
m✝ : M
⊢ ↑((fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g))
m✝ =
↑((fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g)
m✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
F : R
G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
⊢ AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
(F • G) =
↑(RingHom.id R) F •
AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
G
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
F : R
G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
m✝ : M
⊢ ↑(AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
(F • G))
m✝ =
↑(↑(RingHom.id R) F •
AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
G)
m✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
F : M →ₗ⁅R,L⁆ N
x : L
⊢ ⁅x, ↑F⁆ = 0
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
F : M →ₗ⁅R,L⁆ N
x : L
x✝ : M
⊢ ↑⁅x, ↑F⁆ x✝ = ↑0 x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }
⊢ (fun F => { val := ↑F, property := (_ : ∀ (x : L), ⁅x, ↑F⁆ = 0) })
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) },
map_smul' :=
(_ :
∀ (F : R) (G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
(F • G) =
↑(RingHom.id R) F •
AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ =
⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ =
⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
G) }.toAddHom
f) =
f
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
F : M →ₗ⁅R,L⁆ N
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ : ∀ {x : L} {m : M}, AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) },
map_smul' :=
(_ :
∀ (F : R) (G : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
(F • G) =
↑(RingHom.id R) F •
AddHom.toFun
{
toFun := fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) },
map_add' :=
(_ :
∀ (f g : { x // x ∈ ↑(maxTrivSubmodule R L (M →ₗ[R] N)) }),
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
(f + g) =
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
f +
(fun f =>
{ toLinearMap := ↑f,
map_lie' :=
(_ :
∀ {x : L} {m : M},
AddHom.toFun (↑f).toAddHom ⁅x, m⁆ = ⁅x, AddHom.toFun (↑f).toAddHom m⁆) })
g) }
G) }.toAddHom
((fun F => { val := ↑F, property := (_ : ∀ (x : L), ⁅x, ↑F⁆ = 0) }) F) =
F
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) }
⊢ ↑(↑maxTrivLinearMapEquivLieModuleHom f) = ↑↑f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) }
x✝ : M
⊢ ↑(↑maxTrivLinearMapEquivLieModuleHom f) x✝ = ↑↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) }
⊢ ↑(↑maxTrivLinearMapEquivLieModuleHom f) = ↑f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : { x // x ∈ maxTrivSubmodule R L (M →ₗ[R] N) }
x✝ : M
⊢ ↑↑(↑maxTrivLinearMapEquivLieModuleHom f) x✝ = ↑↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
⊢ LieModule.ker R L L = center R L
[PROOFSTEP]
ext y
[GOAL]
case h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
y : L
⊢ y ∈ LieModule.ker R L L ↔ y ∈ center R L
[PROOFSTEP]
simp only [LieModule.mem_maxTrivSubmodule, LieModule.mem_ker, ← lie_skew _ y, neg_eq_zero]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
inst✝ : LieModule.IsTrivial L M
⊢ ⁅I, N⁆ = ⊥
[PROOFSTEP]
suffices : ⁅I, N⁆ ≤ ⊥
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
inst✝ : LieModule.IsTrivial L M
this : ⁅I, N⁆ ≤ ⊥
⊢ ⁅I, N⁆ = ⊥
case this
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
inst✝ : LieModule.IsTrivial L M
⊢ ⁅I, N⁆ ≤ ⊥
[PROOFSTEP]
exact le_bot_iff.mp this
[GOAL]
case this
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
inst✝ : LieModule.IsTrivial L M
⊢ ⁅I, N⁆ ≤ ⊥
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le]
[GOAL]
case this
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
inst✝ : LieModule.IsTrivial L M
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥
[PROOFSTEP]
rintro m ⟨x, n, h⟩
[GOAL]
case this.intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
inst✝ : LieModule.IsTrivial L M
m : M
x : { x // x ∈ I }
n : { x // x ∈ N }
h : ⁅↑x, ↑n⁆ = m
⊢ m ∈ ↑⊥
[PROOFSTEP]
rw [trivial_lie_zero] at h
[GOAL]
case this.intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
inst✝ : LieModule.IsTrivial L M
m : M
x : { x // x ∈ I }
n : { x // x ∈ N }
h : 0 = m
⊢ m ∈ ↑⊥
[PROOFSTEP]
simp [← h]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ IsLieAbelian { x // x ∈ ↑I } ↔ ⁅I, I⁆ = ⊥
[PROOFSTEP]
simp only [_root_.eq_bot_iff, lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le, LieSubmodule.bot_coe,
Set.subset_singleton_iff, Set.mem_setOf_eq, exists_imp]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ IsLieAbelian { x // x ∈ ↑I } ↔ ∀ (y : L) (x : { x // x ∈ I }) (x_1 : { x // x ∈ I }), ⁅↑x, ↑x_1⁆ = y → y = 0
[PROOFSTEP]
refine'
⟨fun h z x y hz =>
hz.symm.trans
(((I : LieSubalgebra R L).coe_bracket x y).symm.trans ((coe_zero_iff_zero _ _).mpr (by apply h.trivial))),
fun h => ⟨fun x y => ((I : LieSubalgebra R L).coe_zero_iff_zero _).mp (h _ x y rfl)⟩⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
h : IsLieAbelian { x // x ∈ ↑I }
z : L
x : { x // x ∈ I }
y : { x // x ∈ I }
hz : ⁅↑x, ↑y⁆ = z
⊢ ⁅x, y⁆ = 0
[PROOFSTEP]
apply h.trivial
| {"mathlib_filename": "Mathlib.Algebra.Lie.Abelian", "llama_tokens": 25343} |
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
j : J
⊢ Semiring ((F ⋙ forget SemiRingCat).obj j)
[PROOFSTEP]
change Semiring (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
j : J
⊢ Semiring ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
⊢ IsLimit (limitCone F)
[PROOFSTEP]
refine
IsLimit.ofFaithful (forget SemiRingCatMax.{v, u}) (Types.limitConeIsLimit.{v, u} _)
(fun s : Cone F =>
ofHom
⟨⟨⟨_, Subtype.ext <| funext fun j => by exact (s.π.app j).map_one⟩, fun x y =>
Subtype.ext <| funext fun j => by exact (s.π.app j).map_mul x y⟩,
Subtype.ext <| funext fun j => by exact (s.π.app j).map_zero, fun x y =>
Subtype.ext <| funext fun j => by exact (s.π.app j).map_add x y⟩)
fun s => rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
s : Cone F
j : J
⊢ ↑{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) }
j =
↑1 j
[PROOFSTEP]
exact (s.π.app j).map_one
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
s : Cone F
x y : ↑s.1
j : J
⊢ ↑(OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) 1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
(x * y))
j =
↑(OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f) v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
y)
j
[PROOFSTEP]
exact (s.π.app j).map_mul x y
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
s : Cone F
j : J
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
y) })
0)
j =
↑0 j
[PROOFSTEP]
exact (s.π.app j).map_zero
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
s : Cone F
x y : ↑s.1
j : J
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
y) })
(x + y))
j =
↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫ (F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' v) },
map_one' :=
(_ :
{ val := fun j => NatTrans.app ((forget SemiRingCatMax).mapCone s).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app ((forget SemiRingCatMax).mapCone s).π j ≫
(F ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app ((forget SemiRingCatMax).mapCone s).π j' 1) } =
1) }
y) })
y)
j
[PROOFSTEP]
exact (s.π.app j).map_add x y
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
⊢ IsLimit ((forget₂ SemiRingCat AddCommMonCat).mapCone (limitCone F))
[PROOFSTEP]
apply AddCommMonCat.limitConeIsLimit.{v, u}
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ SemiRingCatMax
⊢ IsLimit ((forget₂ SemiRingCat MonCat).mapCone (limitCone F))
[PROOFSTEP]
apply MonCat.HasLimits.limitConeIsLimit (F ⋙ forget₂ SemiRingCat MonCat.{max v u})
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommSemiRingCatMax
j : J
⊢ CommSemiring ((F ⋙ forget CommSemiRingCat).obj j)
[PROOFSTEP]
change CommSemiring (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommSemiRingCatMax
j : J
⊢ CommSemiring ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommSemiRingCatMax
this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos
this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) :=
reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax
c : Cone F :=
{ pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt,
π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) }
c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax)
t : IsLimit c'
⊢ IsLimit
{ liftedCone := c,
validLift :=
IsLimit.uniqueUpToIso (SemiRingCat.HasLimits.limitConeIsLimit (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax))
t }.liftedCone
[PROOFSTEP]
refine
IsLimit.ofFaithful (forget₂ CommSemiRingCatMax.{v, u} SemiRingCatMax.{v, u})
(SemiRingCat.HasLimits.limitConeIsLimit.{v, u} _)
(fun s : Cone F =>
CommSemiRingCat.ofHom
⟨⟨⟨_, Subtype.ext <| funext fun j => by exact (s.π.app j).map_one⟩, fun x y =>
Subtype.ext <| funext fun j => by exact (s.π.app j).map_mul x y⟩,
Subtype.ext <| funext fun j => by exact (s.π.app j).map_zero, fun x y =>
Subtype.ext <| funext fun j => by exact (s.π.app j).map_add x y⟩)
fun s => rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommSemiRingCatMax
this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos
this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) :=
reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax
c : Cone F :=
{ pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt,
π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) }
c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax)
t : IsLimit c'
s : Cone F
j : J
⊢ ↑{
val := fun j =>
NatTrans.app ((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j
1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j' 1) }
j =
↑1 j
[PROOFSTEP]
exact (s.π.app j).map_one
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommSemiRingCatMax
this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos
this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) :=
reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax
c : Cone F :=
{ pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt,
π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) }
c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax)
t : IsLimit c'
s : Cone F
x y : ↑s.1
j : J
⊢ ↑(OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j'
v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
(x * y))
j =
↑(OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j
1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j
1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
y)
j
[PROOFSTEP]
exact (s.π.app j).map_mul x y
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommSemiRingCatMax
this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos
this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) :=
reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax
c : Cone F :=
{ pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt,
π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) }
c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax)
t : IsLimit c'
s : Cone F
j : J
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j
v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
y) })
0)
j =
↑0 j
[PROOFSTEP]
exact (s.π.app j).map_zero
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommSemiRingCatMax
this✝ : ReflectsIsomorphisms (forget CommSemiRingCatMax) := forgetReflectIsos
this : ReflectsIsomorphisms (forget₂ CommSemiRingCatMax SemiRingCatMax) :=
reflectsIsomorphisms_forget₂ CommSemiRingCatMax SemiRingCatMax
c : Cone F :=
{ pt := of (Types.limitCone (F ⋙ forget CommSemiRingCatMax)).pt,
π := NatTrans.mk fun j => ofHom (SemiRingCat.limitπRingHom (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) j) }
c' : Cone (F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax)
t : IsLimit c'
s : Cone F
x y : ↑s.1
j : J
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π j
v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
y) })
(x + y))
j =
↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone ((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙ forget SemiRingCatMax).map f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) },
map_mul' :=
(_ :
∀ (x y : ↑s.1),
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
(x * y) =
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
x *
OneHom.toFun
{
toFun := fun v =>
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j v,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
v =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' v) },
map_one' :=
(_ :
{
val := fun j =>
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j 1,
property :=
(_ :
∀ {j j' : J} (f : j ⟶ j'),
(NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j ≫
((F ⋙ forget₂ CommSemiRingCatMax SemiRingCatMax) ⋙
forget SemiRingCatMax).map
f)
1 =
NatTrans.app
((forget SemiRingCatMax).mapCone
((forget₂ CommSemiRingCatMax SemiRingCatMax).mapCone s)).π
j' 1) } =
1) }
y) })
y)
j
[PROOFSTEP]
exact (s.π.app j).map_add x y
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ RingCatMax
j : J
⊢ Ring ((F ⋙ forget RingCat).obj j)
[PROOFSTEP]
change Ring (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ RingCatMax
j : J
⊢ Ring ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ RingCatMax
this : ReflectsIsomorphisms (forget₂ RingCatMax SemiRingCatMax) :=
reflectsIsomorphisms_forget₂ RingCatMax SemiRingCatMax
c : Cone F :=
{ pt := of (Types.limitCone (F ⋙ forget RingCatMax)).pt,
π :=
NatTrans.mk fun x =>
SemiRingCat.ofHom (NatTrans.app (SemiRingCat.HasLimits.limitCone (F ⋙ forget₂ RingCat SemiRingCat)).π x) }
c' : Cone (F ⋙ forget₂ RingCatMax SemiRingCatMax)
t : IsLimit c'
⊢ (forget₂ RingCatMax SemiRingCatMax).mapCone c ≅ c'
[PROOFSTEP]
apply IsLimit.uniqueUpToIso (SemiRingCat.HasLimits.limitConeIsLimit _) t
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ RingCatMax
this : ReflectsIsomorphisms (forget₂ RingCatMax SemiRingCatMax) :=
reflectsIsomorphisms_forget₂ RingCatMax SemiRingCatMax
c : Cone F :=
{ pt := of (Types.limitCone (F ⋙ forget RingCatMax)).pt,
π :=
NatTrans.mk fun x =>
SemiRingCat.ofHom (NatTrans.app (SemiRingCat.HasLimits.limitCone (F ⋙ forget₂ RingCat SemiRingCat)).π x) }
c' : Cone (F ⋙ forget₂ RingCatMax SemiRingCatMax)
t : IsLimit c'
⊢ IsLimit
((forget₂ RingCat SemiRingCat).mapCone
{ liftedCone := c,
validLift :=
IsLimit.uniqueUpToIso (SemiRingCat.HasLimits.limitConeIsLimit (F ⋙ forget₂ RingCatMax SemiRingCatMax))
t }.liftedCone)
[PROOFSTEP]
apply SemiRingCat.HasLimits.limitConeIsLimit _
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ RingCatMax
⊢ IsLimit ((forget₂ RingCatMax AddCommGroupCat).mapCone (limitCone F))
[PROOFSTEP]
letI f := (F ⋙ forget₂ RingCatMax.{v, u} AddCommGroupCat.{max v u})
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ RingCatMax
f : J ⥤ AddCommGroupCat := F ⋙ forget₂ RingCatMax AddCommGroupCat
⊢ IsLimit ((forget₂ RingCatMax AddCommGroupCat).mapCone (limitCone F))
[PROOFSTEP]
apply AddCommGroupCat.limitConeIsLimit.{v, u} f
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCatMax
j : J
⊢ CommRing ((F ⋙ forget CommRingCat).obj j)
[PROOFSTEP]
change CommRing (F.obj j)
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCatMax
j : J
⊢ CommRing ↑(F.obj j)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ CommRingCatMax
⊢ IsLimit ((forget₂ CommRingCat CommSemiRingCat).mapCone (limitCone F))
[PROOFSTEP]
apply CommSemiRingCat.limitConeIsLimit (F ⋙ forget₂ CommRingCat CommSemiRingCat.{max v u})
| {"mathlib_filename": "Mathlib.Algebra.Category.Ring.Limits", "llama_tokens": 22351} |
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ L ⧸ I → L ⧸ I → L ⧸ I
[PROOFSTEP]
intro x y
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
⊢ L ⧸ I
[PROOFSTEP]
apply Quotient.liftOn₂' x y fun x' y' => mk ⁅x', y'⁆
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
⊢ ∀ (a₁ a₂ b₁ b₂ : L), Setoid.r a₁ b₁ → Setoid.r a₂ b₂ → mk ⁅a₁, a₂⁆ = mk ⁅b₁, b₂⁆
[PROOFSTEP]
intro x₁ x₂ y₁ y₂ h₁ h₂
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : Setoid.r x₁ y₁
h₂ : Setoid.r x₂ y₂
⊢ mk ⁅x₁, x₂⁆ = mk ⁅y₁, y₂⁆
[PROOFSTEP]
apply (Submodule.Quotient.eq I.toSubmodule).2
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : Setoid.r x₁ y₁
h₂ : Setoid.r x₂ y₂
⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ ∈ ↑I
[PROOFSTEP]
rw [Submodule.quotientRel_r_def] at h₁ h₂
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : x₁ - y₁ ∈ ↑I
h₂ : x₂ - y₂ ∈ ↑I
⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ ∈ ↑I
[PROOFSTEP]
have h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ := by simp [-lie_skew, sub_eq_add_neg, add_assoc]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : x₁ - y₁ ∈ ↑I
h₂ : x₂ - y₂ ∈ ↑I
⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆
[PROOFSTEP]
simp [-lie_skew, sub_eq_add_neg, add_assoc]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : x₁ - y₁ ∈ ↑I
h₂ : x₂ - y₂ ∈ ↑I
h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆
⊢ ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ ∈ ↑I
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : x₁ - y₁ ∈ ↑I
h₂ : x₂ - y₂ ∈ ↑I
h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆
⊢ ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ ∈ ↑I
[PROOFSTEP]
apply Submodule.add_mem
[GOAL]
case h₁
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : x₁ - y₁ ∈ ↑I
h₂ : x₂ - y₂ ∈ ↑I
h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆
⊢ ⁅x₁, x₂ - y₂⁆ ∈ ↑I
[PROOFSTEP]
apply lie_mem_right R L I x₁ (x₂ - y₂) h₂
[GOAL]
case h₂
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x y : L ⧸ I
x₁ x₂ y₁ y₂ : L
h₁ : x₁ - y₁ ∈ ↑I
h₂ : x₂ - y₂ ∈ ↑I
h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆
⊢ ⁅x₁ - y₁, y₂⁆ ∈ ↑I
[PROOFSTEP]
apply lie_mem_left R L I (x₁ - y₁) y₂ h₁
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ∀ (x y z : L ⧸ I), ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆
[PROOFSTEP]
intro x' y' z'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
⊢ ⁅x' + y', z'⁆ = ⁅x', z'⁆ + ⁅y', z'⁆
[PROOFSTEP]
refine Quotient.inductionOn₃' x' y' z' ?_
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
⊢ ∀ (a₁ a₂ a₃ : L),
⁅Quotient.mk'' a₁ + Quotient.mk'' a₂, Quotient.mk'' a₃⁆ =
⁅Quotient.mk'' a₁, Quotient.mk'' a₃⁆ + ⁅Quotient.mk'' a₂, Quotient.mk'' a₃⁆
[PROOFSTEP]
intro x y z
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x + Quotient.mk'' y, Quotient.mk'' z⁆ =
⁅Quotient.mk'' x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆
[PROOFSTEP]
repeat'
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x + Quotient.mk'' y, Quotient.mk'' z⁆ =
⁅Quotient.mk'' x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x + Quotient.mk'' y, Quotient.mk'' z⁆ =
⁅Quotient.mk'' x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + Quotient.mk'' y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + Quotient.mk'' y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, Quotient.mk'' z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅mk y, Quotient.mk'' z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' z⁆ + ⁅mk y, Quotient.mk'' z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = ⁅mk x, mk z⁆ + ⁅mk y, mk z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = ⁅mk x, mk z⁆ + ⁅mk y, mk z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = ⁅mk x, mk z⁆ + ⁅mk y, mk z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + ⁅mk y, mk z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + ⁅mk y, mk z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + ⁅mk y, mk z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x + mk y, mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Submodule.Quotient.mk (x + y), mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Submodule.Quotient.mk (x + y), mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Submodule.Quotient.mk (x + y), mk z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = mk ⁅x, z⁆ + mk ⁅y, z⁆
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆)
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆)
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆)
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆)
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x + y, z⁆ = Submodule.Quotient.mk (⁅x, z⁆ + ⁅y, z⁆)
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆
[PROOFSTEP]
apply add_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ∀ (x y z : L ⧸ I), ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆
[PROOFSTEP]
intro x' y' z'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
⊢ ⁅x', y' + z'⁆ = ⁅x', y'⁆ + ⁅x', z'⁆
[PROOFSTEP]
refine Quotient.inductionOn₃' x' y' z' ?_
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
⊢ ∀ (a₁ a₂ a₃ : L),
⁅Quotient.mk'' a₁, Quotient.mk'' a₂ + Quotient.mk'' a₃⁆ =
⁅Quotient.mk'' a₁, Quotient.mk'' a₂⁆ + ⁅Quotient.mk'' a₁, Quotient.mk'' a₃⁆
[PROOFSTEP]
intro x y z
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x, Quotient.mk'' y + Quotient.mk'' z⁆ =
⁅Quotient.mk'' x, Quotient.mk'' y⁆ + ⁅Quotient.mk'' x, Quotient.mk'' z⁆
[PROOFSTEP]
repeat'
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x, Quotient.mk'' y + Quotient.mk'' z⁆ =
⁅Quotient.mk'' x, Quotient.mk'' y⁆ + ⁅Quotient.mk'' x, Quotient.mk'' z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x, Quotient.mk'' y + Quotient.mk'' z⁆ =
⁅Quotient.mk'' x, Quotient.mk'' y⁆ + ⁅Quotient.mk'' x, Quotient.mk'' z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, Quotient.mk'' y + Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' y⁆ + ⁅mk x, Quotient.mk'' z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, Quotient.mk'' y + Quotient.mk'' z⁆ = ⁅mk x, Quotient.mk'' y⁆ + ⁅mk x, Quotient.mk'' z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + Quotient.mk'' z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, Quotient.mk'' z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + Quotient.mk'' z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, Quotient.mk'' z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, mk z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, mk z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = ⁅mk x, mk y⁆ + ⁅mk x, mk z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + ⁅mk x, mk z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + ⁅mk x, mk z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + ⁅mk x, mk z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk y + mk z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, Submodule.Quotient.mk (y + z)⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, Submodule.Quotient.mk (y + z)⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, Submodule.Quotient.mk (y + z)⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = mk ⁅x, y⁆ + mk ⁅x, z⁆
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆)
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆)
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆)
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆)
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, y + z⁆ = Submodule.Quotient.mk (⁅x, y⁆ + ⁅x, z⁆)
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆
[PROOFSTEP]
apply lie_add
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ∀ (x : L ⧸ I), ⁅x, x⁆ = 0
[PROOFSTEP]
intro x'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' : L ⧸ I
⊢ ⁅x', x'⁆ = 0
[PROOFSTEP]
refine Quotient.inductionOn' x' ?_
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' : L ⧸ I
⊢ ∀ (a : L), ⁅Quotient.mk'' a, Quotient.mk'' a⁆ = 0
[PROOFSTEP]
intro x
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' : L ⧸ I
x : L
⊢ ⁅Quotient.mk'' x, Quotient.mk'' x⁆ = 0
[PROOFSTEP]
rw [is_quotient_mk, ← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' : L ⧸ I
x : L
⊢ mk ⁅x, x⁆ = 0
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' : L ⧸ I
x : L
⊢ ⁅x, x⁆ = 0
[PROOFSTEP]
apply lie_self
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ∀ (x y z : L ⧸ I), ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
intro x' y' z'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
⊢ ⁅x', ⁅y', z'⁆⁆ = ⁅⁅x', y'⁆, z'⁆ + ⁅y', ⁅x', z'⁆⁆
[PROOFSTEP]
refine Quotient.inductionOn₃' x' y' z' ?_
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
⊢ ∀ (a₁ a₂ a₃ : L),
⁅Quotient.mk'' a₁, ⁅Quotient.mk'' a₂, Quotient.mk'' a₃⁆⁆ =
⁅⁅Quotient.mk'' a₁, Quotient.mk'' a₂⁆, Quotient.mk'' a₃⁆ +
⁅Quotient.mk'' a₂, ⁅Quotient.mk'' a₁, Quotient.mk'' a₃⁆⁆
[PROOFSTEP]
intro x y z
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ =
⁅⁅Quotient.mk'' x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅Quotient.mk'' x, Quotient.mk'' z⁆⁆
[PROOFSTEP]
repeat'
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ =
⁅⁅Quotient.mk'' x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅Quotient.mk'' x, Quotient.mk'' z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅Quotient.mk'' x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ =
⁅⁅Quotient.mk'' x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅Quotient.mk'' x, Quotient.mk'' z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ =
⁅⁅mk x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅mk x, Quotient.mk'' z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, ⁅Quotient.mk'' y, Quotient.mk'' z⁆⁆ =
⁅⁅mk x, Quotient.mk'' y⁆, Quotient.mk'' z⁆ + ⁅Quotient.mk'' y, ⁅mk x, Quotient.mk'' z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, ⁅mk y, Quotient.mk'' z⁆⁆ = ⁅⁅mk x, mk y⁆, Quotient.mk'' z⁆ + ⁅mk y, ⁅mk x, Quotient.mk'' z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, ⁅mk y, Quotient.mk'' z⁆⁆ = ⁅⁅mk x, mk y⁆, Quotient.mk'' z⁆ + ⁅mk y, ⁅mk x, Quotient.mk'' z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, ⁅mk y, mk z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, ⁅mk y, mk z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, ⁅mk y, mk z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅mk x, mk ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅⁅mk x, mk y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅mk ⁅x, y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅mk ⁅x, y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = ⁅mk ⁅x, y⁆, mk z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, ⁅mk x, mk z⁆⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, mk ⁅x, z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, mk ⁅x, z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + ⁅mk y, mk ⁅x, z⁆⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = mk ⁅⁅x, y⁆, z⁆ + mk ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆)
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆)
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆)
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆)
[PROOFSTEP]
rw [← Submodule.Quotient.mk_add (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ mk ⁅x, ⁅y, z⁆⁆ = Submodule.Quotient.mk (⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆)
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x' y' z' : L ⧸ I
x y z : L
⊢ ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
apply leibniz_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ∀ (t : R) (x y : L ⧸ I), ⁅x, t • y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
intro t x' y'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
⊢ ⁅x', t • y'⁆ = t • ⁅x', y'⁆
[PROOFSTEP]
refine Quotient.inductionOn₂' x' y' ?_
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
⊢ ∀ (a₁ a₂ : L), ⁅Quotient.mk'' a₁, t • Quotient.mk'' a₂⁆ = t • ⁅Quotient.mk'' a₁, Quotient.mk'' a₂⁆
[PROOFSTEP]
intro x y
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅Quotient.mk'' x, t • Quotient.mk'' y⁆ = t • ⁅Quotient.mk'' x, Quotient.mk'' y⁆
[PROOFSTEP]
repeat'
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅Quotient.mk'' x, t • Quotient.mk'' y⁆ = t • ⁅Quotient.mk'' x, Quotient.mk'' y⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅Quotient.mk'' x, t • Quotient.mk'' y⁆ = t • ⁅Quotient.mk'' x, Quotient.mk'' y⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • Quotient.mk'' y⁆ = t • ⁅mk x, Quotient.mk'' y⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • Quotient.mk'' y⁆ = t • ⁅mk x, Quotient.mk'' y⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • mk y⁆ = t • ⁅mk x, mk y⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • mk y⁆ = t • ⁅mk x, mk y⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • mk y⁆ = t • ⁅mk x, mk y⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, t • mk y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, Submodule.Quotient.mk (t • y)⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, Submodule.Quotient.mk (t • y)⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅mk x, Submodule.Quotient.mk (t • y)⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = t • mk ⁅x, y⁆
[PROOFSTEP]
rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆)
[PROOFSTEP]
first
| rw [is_quotient_mk]
| rw [← mk_bracket]
| rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆)
[PROOFSTEP]
rw [is_quotient_mk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆)
[PROOFSTEP]
rw [← mk_bracket]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆)
[PROOFSTEP]
rw [← Submodule.Quotient.mk_smul (R := R) (M := L)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ mk ⁅x, t • y⁆ = Submodule.Quotient.mk (t • ⁅x, y⁆)
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
t : R
x' y' : L ⧸ I
x y : L
⊢ ⁅x, t • y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
apply lie_smul
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ LieModuleHom.ker (mk' N) = N
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
m✝ : M
⊢ m✝ ∈ LieModuleHom.ker (mk' N) ↔ m✝ ∈ N
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ map (mk' N) N' = ⊥ ↔ N' ≤ N
[PROOFSTEP]
rw [← LieModuleHom.le_ker_iff_map, mk'_ker]
[GOAL]
R : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
src✝ : (L ⧸ LinearMap.ker ↑f) ≃ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.quotKerEquivRange ↑f
⊢ ∀ {x y : L ⧸ ker f},
AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
rintro ⟨x⟩ ⟨y⟩
[GOAL]
case mk.mk
R : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
src✝ : (L ⧸ LinearMap.ker ↑f) ≃ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.quotKerEquivRange ↑f
x✝ : L ⧸ ker f
x : L
y✝ : L ⧸ ker f
y : L
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅Quot.mk Setoid.r x, Quot.mk Setoid.r y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Quot.mk Setoid.r x),
AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Quot.mk Setoid.r y)⁆
[PROOFSTEP]
rw [← SetLike.coe_eq_coe, LieSubalgebra.coe_bracket]
[GOAL]
case mk.mk
R : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
src✝ : (L ⧸ LinearMap.ker ↑f) ≃ₗ[R] { x // x ∈ LinearMap.range ↑f } := LinearMap.quotKerEquivRange ↑f
x✝ : L ⧸ ker f
x : L
y✝ : L ⧸ ker f
y : L
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅Quot.mk Setoid.r x, Quot.mk Setoid.r y⁆) =
⁅↑(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Quot.mk Setoid.r x)),
↑(AddHom.toFun
{
toAddHom :=
{ toFun := ↑(LinearMap.quotKerEquivRange ↑f),
map_add' :=
(_ :
∀ (x y : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) },
map_smul' :=
(_ :
∀ (r : R) (x : L ⧸ LinearMap.ker ↑f),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(Quot.mk Setoid.r y))⁆
[PROOFSTEP]
simp only [Submodule.Quotient.quot_mk_eq_mk, LinearMap.quotKerEquivRange_apply_mk, ← LieSubmodule.Quotient.mk_bracket,
coe_toLinearMap, map_lie]
| {"mathlib_filename": "Mathlib.Algebra.Lie.Quotient", "llama_tokens": 36536} |
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ lcs k N ≤ N
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ lcs Nat.zero N ≤ N
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : lcs k N ≤ N
⊢ lcs (Nat.succ k) N ≤ N
[PROOFSTEP]
simp only [lcs_succ]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : lcs k N ≤ N
⊢ ⁅⊤, lcs k N⁆ ≤ N
[PROOFSTEP]
exact (LieSubmodule.mono_lie_right _ _ ⊤ ih).trans (N.lie_le_right ⊤)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ lowerCentralSeries R L { x // x ∈ ↑N } Nat.zero = comap (incl N) (lcs Nat.zero N)
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N)
⊢ lowerCentralSeries R L { x // x ∈ ↑N } (Nat.succ k) = comap (incl N) (lcs (Nat.succ k) N)
[PROOFSTEP]
simp only [lcs_succ, lowerCentralSeries_succ] at ih ⊢
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N)
⊢ ⁅⊤, lowerCentralSeries R L { x // x ∈ ↑N } k⁆ = comap (incl N) ⁅⊤, lcs k N⁆
[PROOFSTEP]
have : N.lcs k ≤ N.incl.range := by
rw [N.range_incl]
apply lcs_le_self
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N)
⊢ lcs k N ≤ LieModuleHom.range (incl N)
[PROOFSTEP]
rw [N.range_incl]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N)
⊢ lcs k N ≤ N
[PROOFSTEP]
apply lcs_le_self
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : lowerCentralSeries R L { x // x ∈ ↑N } k = comap (incl N) (lcs k N)
this : lcs k N ≤ LieModuleHom.range (incl N)
⊢ ⁅⊤, lowerCentralSeries R L { x // x ∈ ↑N } k⁆ = comap (incl N) ⁅⊤, lcs k N⁆
[PROOFSTEP]
rw [ih, LieSubmodule.comap_bracket_eq _ _ N.incl N.ker_incl this]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ map (incl N) (lowerCentralSeries R L { x // x ∈ ↑N } k) = lcs k N
[PROOFSTEP]
rw [lowerCentralSeries_eq_lcs_comap, LieSubmodule.map_comap_incl, inf_eq_right]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ lcs k N ≤ N
[PROOFSTEP]
apply lcs_le_self
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ Antitone (lowerCentralSeries R L M)
[PROOFSTEP]
intro l k
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
l k : ℕ
⊢ l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l
[PROOFSTEP]
induction' k with k ih generalizing l
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
l✝ l : ℕ
⊢ l ≤ Nat.zero → lowerCentralSeries R L M Nat.zero ≤ lowerCentralSeries R L M l
[PROOFSTEP]
intro h
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l
l : ℕ
⊢ l ≤ Nat.succ k → lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l
[PROOFSTEP]
intro h
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
l✝ l : ℕ
h : l ≤ Nat.zero
⊢ lowerCentralSeries R L M Nat.zero ≤ lowerCentralSeries R L M l
[PROOFSTEP]
exact (le_zero_iff.mp h).symm ▸ le_rfl
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l
l : ℕ
h : l ≤ Nat.succ k
⊢ lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l
[PROOFSTEP]
rcases Nat.of_le_succ h with (hk | hk)
[GOAL]
case succ.inl
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l
l : ℕ
h : l ≤ Nat.succ k
hk : l ≤ k
⊢ lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l
[PROOFSTEP]
rw [lowerCentralSeries_succ]
[GOAL]
case succ.inl
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l
l : ℕ
h : l ≤ Nat.succ k
hk : l ≤ k
⊢ ⁅⊤, lowerCentralSeries R L M k⁆ ≤ lowerCentralSeries R L M l
[PROOFSTEP]
exact (LieSubmodule.mono_lie_right _ _ ⊤ (ih hk)).trans (LieSubmodule.lie_le_right _ _)
[GOAL]
case succ.inr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ ⦃l : ℕ⦄, l ≤ k → lowerCentralSeries R L M k ≤ lowerCentralSeries R L M l
l : ℕ
h : l ≤ Nat.succ k
hk : l = Nat.succ k
⊢ lowerCentralSeries R L M (Nat.succ k) ≤ lowerCentralSeries R L M l
[PROOFSTEP]
exact hk.symm ▸ le_rfl
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ IsTrivial L M ↔ lowerCentralSeries R L M 1 = ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ IsTrivial L M → lowerCentralSeries R L M 1 = ⊥
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ lowerCentralSeries R L M 1 = ⊥ → IsTrivial L M
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : IsTrivial L M
⊢ lowerCentralSeries R L M 1 = ⊥
[PROOFSTEP]
erw [eq_bot_iff, LieSubmodule.lieSpan_le]
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : IsTrivial L M
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥
[PROOFSTEP]
rintro m ⟨x, n, hn⟩
[GOAL]
case mp.intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : IsTrivial L M
m : M
x : { x // x ∈ ⊤ }
n : { x // x ∈ ⊤ }
hn : ⁅↑x, ↑n⁆ = m
⊢ m ∈ ↑⊥
[PROOFSTEP]
rw [← hn, h.trivial]
[GOAL]
case mp.intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : IsTrivial L M
m : M
x : { x // x ∈ ⊤ }
n : { x // x ∈ ⊤ }
hn : ⁅↑x, ↑n⁆ = m
⊢ 0 ∈ ↑⊥
[PROOFSTEP]
simp
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : lowerCentralSeries R L M 1 = ⊥
⊢ IsTrivial L M
[PROOFSTEP]
rw [LieSubmodule.eq_bot_iff] at h
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0
⊢ IsTrivial L M
[PROOFSTEP]
apply IsTrivial.mk
[GOAL]
case mpr.trivial
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0
⊢ ∀ (x : L) (m : M), ⁅x, m⁆ = 0
[PROOFSTEP]
intro x m
[GOAL]
case mpr.trivial
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0
x : L
m : M
⊢ ⁅x, m⁆ = 0
[PROOFSTEP]
apply h
[GOAL]
case mpr.trivial.a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0
x : L
m : M
⊢ ⁅x, m⁆ ∈ lowerCentralSeries R L M 1
[PROOFSTEP]
apply LieSubmodule.subset_lieSpan
[GOAL]
case mpr.trivial.a.a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0
x : L
m : M
⊢ ⁅x, m⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
simp only [LieSubmodule.top_coe, Subtype.exists, LieSubmodule.mem_top, exists_prop, true_and, Set.mem_setOf]
[GOAL]
case mpr.trivial.a.a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : ∀ (m : M), m ∈ lowerCentralSeries R L M 1 → m = 0
x : L
m : M
⊢ ∃ a a_1, ⁅a, a_1⁆ = ⁅x, m⁆
[PROOFSTEP]
exact ⟨x, m, rfl⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x : L
m : M
k : ℕ
⊢ (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
x : L
m : M
⊢ (↑(↑(toEndomorphism R L M) x))^[Nat.zero] m ∈ lowerCentralSeries R L M Nat.zero
[PROOFSTEP]
simp only [Nat.zero_eq, Function.iterate_zero, lowerCentralSeries_zero, LieSubmodule.mem_top]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x : L
m : M
k : ℕ
ih : (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k
⊢ (↑(↑(toEndomorphism R L M) x))^[Nat.succ k] m ∈ lowerCentralSeries R L M (Nat.succ k)
[PROOFSTEP]
simp only [lowerCentralSeries_succ, Function.comp_apply, Function.iterate_succ', toEndomorphism_apply_apply]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x : L
m : M
k : ℕ
ih : (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k
⊢ ⁅x, (↑(↑(toEndomorphism R L M) x))^[k] m⁆ ∈ ⁅⊤, lowerCentralSeries R L M k⁆
[PROOFSTEP]
exact LieSubmodule.lie_mem_lie _ _ (LieSubmodule.mem_top x) ih
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x y : L
m : M
k : ℕ
⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
x y : L
m : M
⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.zero] m ∈
lowerCentralSeries R L M (2 * Nat.zero)
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x y : L
m : M
k : ℕ
ih :
(↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k)
⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.succ k] m ∈
lowerCentralSeries R L M (2 * Nat.succ k)
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x y : L
m : M
k : ℕ
ih :
(↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k)
⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.succ k] m ∈
lowerCentralSeries R L M (2 * Nat.succ k)
[PROOFSTEP]
have hk : 2 * k.succ = (2 * k + 1) + 1 := rfl
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x y : L
m : M
k : ℕ
ih :
(↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k)
hk : 2 * Nat.succ k = 2 * k + 1 + 1
⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[Nat.succ k] m ∈
lowerCentralSeries R L M (2 * Nat.succ k)
[PROOFSTEP]
simp only [lowerCentralSeries_succ, Function.comp_apply, Function.iterate_succ', hk, toEndomorphism_apply_apply,
LinearMap.coe_comp, toEndomorphism_apply_apply]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x y : L
m : M
k : ℕ
ih :
(↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k)
hk : 2 * Nat.succ k = 2 * k + 1 + 1
⊢ ⁅x, ⁅y, (↑(↑(toEndomorphism R L M) x) ∘ ↑(↑(toEndomorphism R L M) y))^[k] m⁆⁆ ∈
⁅⊤, ⁅⊤, lowerCentralSeries R L M (2 * k)⁆⁆
[PROOFSTEP]
refine' LieSubmodule.lie_mem_lie _ _ (LieSubmodule.mem_top x) _
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
x y : L
m : M
k : ℕ
ih :
(↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k)
hk : 2 * Nat.succ k = 2 * k + 1 + 1
⊢ ⁅y, (↑(↑(toEndomorphism R L M) x) ∘ ↑(↑(toEndomorphism R L M) y))^[k] m⁆ ∈ ⁅⊤, lowerCentralSeries R L M (2 * k)⁆
[PROOFSTEP]
exact LieSubmodule.lie_mem_lie _ _ (LieSubmodule.mem_top y) ih
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
M₂ : Type w₁
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
k : ℕ
f : M →ₗ⁅R,L⁆ M₂
⊢ LieSubmodule.map f (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L M₂ k
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
M₂ : Type w₁
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ LieSubmodule.map f (lowerCentralSeries R L M Nat.zero) ≤ lowerCentralSeries R L M₂ Nat.zero
[PROOFSTEP]
simp only [Nat.zero_eq, lowerCentralSeries_zero, le_top]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
M₂ : Type w₁
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
f : M →ₗ⁅R,L⁆ M₂
k : ℕ
ih : LieSubmodule.map f (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L M₂ k
⊢ LieSubmodule.map f (lowerCentralSeries R L M (Nat.succ k)) ≤ lowerCentralSeries R L M₂ (Nat.succ k)
[PROOFSTEP]
simp only [LieModule.lowerCentralSeries_succ, LieSubmodule.map_bracket_eq]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
M₂ : Type w₁
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
f : M →ₗ⁅R,L⁆ M₂
k : ℕ
ih : LieSubmodule.map f (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L M₂ k
⊢ ⁅⊤, LieSubmodule.map f (lowerCentralSeries R L M k)⁆ ≤ ⁅⊤, lowerCentralSeries R L M₂ k⁆
[PROOFSTEP]
exact LieSubmodule.mono_lie_right _ _ ⊤ ih
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
⊢ derivedSeries R L k ≤ lowerCentralSeries R L L k
[PROOFSTEP]
induction' k with k h
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ derivedSeries R L Nat.zero ≤ lowerCentralSeries R L L Nat.zero
[PROOFSTEP]
rw [derivedSeries_def, derivedSeriesOfIdeal_zero, lowerCentralSeries_zero]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
h : derivedSeries R L k ≤ lowerCentralSeries R L L k
⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k)
[PROOFSTEP]
have h' : derivedSeries R L k ≤ ⊤ := by simp only [le_top]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
h : derivedSeries R L k ≤ lowerCentralSeries R L L k
⊢ derivedSeries R L k ≤ ⊤
[PROOFSTEP]
simp only [le_top]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
h : derivedSeries R L k ≤ lowerCentralSeries R L L k
h' : derivedSeries R L k ≤ ⊤
⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k)
[PROOFSTEP]
rw [derivedSeries_def, derivedSeriesOfIdeal_succ, lowerCentralSeries_succ]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
h : derivedSeries R L k ≤ lowerCentralSeries R L L k
h' : derivedSeries R L k ≤ ⊤
⊢ ⁅derivedSeriesOfIdeal R L k ⊤, derivedSeriesOfIdeal R L k ⊤⁆ ≤ ⁅⊤, lowerCentralSeries R L L k⁆
[PROOFSTEP]
exact LieSubmodule.mono_lie _ _ _ _ h' h
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N✝ N : LieSubmodule R L M
⊢ IsNilpotent R L { x // x ∈ ↑N } ↔ ∃ k, LieSubmodule.lcs k N = ⊥
[PROOFSTEP]
rw [isNilpotent_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N✝ N : LieSubmodule R L M
⊢ (∃ k, lowerCentralSeries R L { x // x ∈ ↑N } k = ⊥) ↔ ∃ k, LieSubmodule.lcs k N = ⊥
[PROOFSTEP]
refine' exists_congr fun k => _
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
k : ℕ
⊢ lowerCentralSeries R L { x // x ∈ ↑N } k = ⊥ ↔ LieSubmodule.lcs k N = ⊥
[PROOFSTEP]
rw [N.lowerCentralSeries_eq_lcs_comap k, LieSubmodule.comap_incl_eq_bot, inf_eq_right.mpr (N.lcs_le_self k)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsTrivial L M
⊢ ∃ k, lowerCentralSeries R L M k = ⊥
[PROOFSTEP]
use 1
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsTrivial L M
⊢ lowerCentralSeries R L M 1 = ⊥
[PROOFSTEP]
change ⁅⊤, ⊤⁆ = ⊥
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsTrivial L M
⊢ ⁅⊤, ⊤⁆ = ⊥
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
hM : IsNilpotent R L M
⊢ ∃ k, ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0
[PROOFSTEP]
obtain ⟨k, hM⟩ := hM
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
⊢ ∃ k, ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
⊢ ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
x : L
⊢ ↑(toEndomorphism R L M) x ^ k = 0
[PROOFSTEP]
ext m
[GOAL]
case h.h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
x : L
m : M
⊢ ↑(↑(toEndomorphism R L M) x ^ k) m = ↑0 m
[PROOFSTEP]
rw [LinearMap.pow_apply, LinearMap.zero_apply, ← @LieSubmodule.mem_bot R L M, ← hM]
[GOAL]
case h.h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
x : L
m : M
⊢ (↑(↑(toEndomorphism R L M) x))^[k] m ∈ lowerCentralSeries R L M k
[PROOFSTEP]
exact iterate_toEndomorphism_mem_lowerCentralSeries R L M x m k
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x : L
⊢ _root_.IsNilpotent (↑(toEndomorphism R L M) x)
[PROOFSTEP]
change ∃ k, toEndomorphism R L M x ^ k = 0
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x : L
⊢ ∃ k, ↑(toEndomorphism R L M) x ^ k = 0
[PROOFSTEP]
have := exists_forall_pow_toEndomorphism_eq_zero R L M
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x : L
this : ∃ k, ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0
⊢ ∃ k, ↑(toEndomorphism R L M) x ^ k = 0
[PROOFSTEP]
tauto
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
⊢ _root_.IsNilpotent (LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y))
[PROOFSTEP]
obtain ⟨k, hM⟩ := exists_lowerCentralSeries_eq_bot_of_isNilpotent R L M
[GOAL]
case intro
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
⊢ _root_.IsNilpotent (LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y))
[PROOFSTEP]
replace hM : lowerCentralSeries R L M (2 * k) = ⊥ := by rw [eq_bot_iff, ← hM];
exact antitone_lowerCentralSeries R L M (by linarith)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
⊢ lowerCentralSeries R L M (2 * k) = ⊥
[PROOFSTEP]
rw [eq_bot_iff, ← hM]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
⊢ lowerCentralSeries R L M (2 * k) ≤ lowerCentralSeries R L M k
[PROOFSTEP]
exact antitone_lowerCentralSeries R L M (by linarith)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M k = ⊥
⊢ k ≤ 2 * k
[PROOFSTEP]
linarith
[GOAL]
case intro
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M (2 * k) = ⊥
⊢ _root_.IsNilpotent (LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y))
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M (2 * k) = ⊥
⊢ LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y) ^ k = 0
[PROOFSTEP]
ext m
[GOAL]
case h.h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M (2 * k) = ⊥
m : M
⊢ ↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y) ^ k) m = ↑0 m
[PROOFSTEP]
rw [LinearMap.pow_apply, LinearMap.zero_apply, ← LieSubmodule.mem_bot (R := R) (L := L), ← hM]
[GOAL]
case h.h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
x y : L
k : ℕ
hM : lowerCentralSeries R L M (2 * k) = ⊥
m : M
⊢ (↑(LinearMap.comp (↑(toEndomorphism R L M) x) (↑(toEndomorphism R L M) y)))^[k] m ∈ lowerCentralSeries R L M (2 * k)
[PROOFSTEP]
exact iterate_toEndomorphism_mem_lowerCentralSeries₂ R L M x y m k
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
⊢ ⨅ (x : L), Module.End.maximalGeneralizedEigenspace (↑(toEndomorphism R L M) x) 0 = ⊤
[PROOFSTEP]
ext m
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
m : M
⊢ m ∈ ⨅ (x : L), Module.End.maximalGeneralizedEigenspace (↑(toEndomorphism R L M) x) 0 ↔ m ∈ ⊤
[PROOFSTEP]
simp only [Module.End.mem_maximalGeneralizedEigenspace, Submodule.mem_top, sub_zero, iff_true_iff, zero_smul,
Submodule.mem_iInf]
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
m : M
⊢ ∀ (i : L), ∃ k, ↑(↑(toEndomorphism R L M) i ^ k) m = 0
[PROOFSTEP]
intro x
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
m : M
x : L
⊢ ∃ k, ↑(↑(toEndomorphism R L M) x ^ k) m = 0
[PROOFSTEP]
obtain ⟨k, hk⟩ := exists_forall_pow_toEndomorphism_eq_zero R L M
[GOAL]
case h.intro
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
m : M
x : L
k : ℕ
hk : ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0
⊢ ∃ k, ↑(↑(toEndomorphism R L M) x ^ k) m = 0
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
m : M
x : L
k : ℕ
hk : ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0
⊢ ↑(↑(toEndomorphism R L M) x ^ k) m = 0
[PROOFSTEP]
rw [hk]
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
m : M
x : L
k : ℕ
hk : ∀ (x : L), ↑(toEndomorphism R L M) x ^ k = 0
⊢ ↑0 m = 0
[PROOFSTEP]
exact LinearMap.zero_apply m
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
h₂ : IsNilpotent R L (M ⧸ N)
⊢ IsNilpotent R L M
[PROOFSTEP]
obtain ⟨k, hk⟩ := h₂
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L (M ⧸ N) k = ⊥
⊢ IsNilpotent R L M
[PROOFSTEP]
use k + 1
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L (M ⧸ N) k = ⊥
⊢ lowerCentralSeries R L M (k + 1) = ⊥
[PROOFSTEP]
simp only [lowerCentralSeries_succ]
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L (M ⧸ N) k = ⊥
⊢ ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥
[PROOFSTEP]
suffices lowerCentralSeries R L M k ≤ N
by
replace this := LieSubmodule.mono_lie_right _ _ ⊤ (le_trans this h₁)
rwa [ideal_oper_maxTrivSubmodule_eq_bot, le_bot_iff] at this
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L (M ⧸ N) k = ⊥
this : lowerCentralSeries R L M k ≤ N
⊢ ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥
[PROOFSTEP]
replace this := LieSubmodule.mono_lie_right _ _ ⊤ (le_trans this h₁)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L (M ⧸ N) k = ⊥
this : ⁅⊤, lowerCentralSeries R L M k⁆ ≤ ⁅⊤, maxTrivSubmodule R L M⁆
⊢ ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥
[PROOFSTEP]
rwa [ideal_oper_maxTrivSubmodule_eq_bot, le_bot_iff] at this
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L (M ⧸ N) k = ⊥
⊢ lowerCentralSeries R L M k ≤ N
[PROOFSTEP]
rw [← LieSubmodule.Quotient.map_mk'_eq_bot_le, ← le_bot_iff, ← hk]
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N✝ N : LieSubmodule R L M
h₁ : N ≤ maxTrivSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L (M ⧸ N) k = ⊥
⊢ LieSubmodule.map (LieSubmodule.Quotient.mk' N) (lowerCentralSeries R L M k) ≤ lowerCentralSeries R L (M ⧸ N) k
[PROOFSTEP]
exact map_lowerCentralSeries_le k (LieSubmodule.Quotient.mk' N)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
⊢ nilpotencyLength R L M = 0 ↔ Subsingleton M
[PROOFSTEP]
let s := {k | lowerCentralSeries R L M k = ⊥}
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
⊢ nilpotencyLength R L M = 0 ↔ Subsingleton M
[PROOFSTEP]
have hs : s.Nonempty := by
obtain ⟨k, hk⟩ := (by infer_instance : IsNilpotent R L M)
exact ⟨k, hk⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
⊢ Set.Nonempty s
[PROOFSTEP]
obtain ⟨k, hk⟩ := (by infer_instance : IsNilpotent R L M)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
⊢ IsNilpotent R L M
[PROOFSTEP]
infer_instance
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
k : ℕ
hk : lowerCentralSeries R L M k = ⊥
⊢ Set.Nonempty s
[PROOFSTEP]
exact ⟨k, hk⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
hs : Set.Nonempty s
⊢ nilpotencyLength R L M = 0 ↔ Subsingleton M
[PROOFSTEP]
change sInf s = 0 ↔ _
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
hs : Set.Nonempty s
⊢ sInf s = 0 ↔ Subsingleton M
[PROOFSTEP]
rw [← LieSubmodule.subsingleton_iff R L M, ← subsingleton_iff_bot_eq_top, ← lowerCentralSeries_zero,
@eq_comm (LieSubmodule R L M)]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
hs : Set.Nonempty s
⊢ sInf s = 0 ↔ lowerCentralSeries R L M 0 = ⊥
[PROOFSTEP]
refine' ⟨fun h => h ▸ Nat.sInf_mem hs, fun h => _⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
hs : Set.Nonempty s
h : lowerCentralSeries R L M 0 = ⊥
⊢ sInf s = 0
[PROOFSTEP]
rw [Nat.sInf_eq_zero]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁷ : CommRing R
inst✝⁶ : LieRing L
inst✝⁵ : LieAlgebra R L
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : LieRingModule L M
inst✝¹ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝ : IsNilpotent R L M
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
hs : Set.Nonempty s
h : lowerCentralSeries R L M 0 = ⊥
⊢ 0 ∈ s ∨ s = ∅
[PROOFSTEP]
exact Or.inl h
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
⊢ nilpotencyLength R L M = k + 1 ↔ lowerCentralSeries R L M (k + 1) = ⊥ ∧ lowerCentralSeries R L M k ≠ ⊥
[PROOFSTEP]
let s := {k | lowerCentralSeries R L M k = ⊥}
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
⊢ nilpotencyLength R L M = k + 1 ↔ lowerCentralSeries R L M (k + 1) = ⊥ ∧ lowerCentralSeries R L M k ≠ ⊥
[PROOFSTEP]
change sInf s = k + 1 ↔ k + 1 ∈ s ∧ k ∉ s
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s
[PROOFSTEP]
have hs : ∀ k₁ k₂, k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s :=
by
rintro k₁ k₂ h₁₂ (h₁ : lowerCentralSeries R L M k₁ = ⊥)
exact eq_bot_iff.mpr (h₁ ▸ antitone_lowerCentralSeries R L M h₁₂)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
⊢ ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s
[PROOFSTEP]
rintro k₁ k₂ h₁₂ (h₁ : lowerCentralSeries R L M k₁ = ⊥)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
k₁ k₂ : ℕ
h₁₂ : k₁ ≤ k₂
h₁ : lowerCentralSeries R L M k₁ = ⊥
⊢ k₂ ∈ s
[PROOFSTEP]
exact eq_bot_iff.mpr (h₁ ▸ antitone_lowerCentralSeries R L M h₁₂)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
s : Set ℕ := {k | lowerCentralSeries R L M k = ⊥}
hs : ∀ (k₁ k₂ : ℕ), k₁ ≤ k₂ → k₁ ∈ s → k₂ ∈ s
⊢ sInf s = k + 1 ↔ k + 1 ∈ s ∧ ¬k ∈ s
[PROOFSTEP]
exact Nat.sInf_upward_closed_eq_succ_iff hs k
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ lowerCentralSeriesLast R L M ≤ maxTrivSubmodule R L M
[PROOFSTEP]
rw [lowerCentralSeriesLast]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ (match nilpotencyLength R L M with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≤
maxTrivSubmodule R L M
[PROOFSTEP]
cases' h : nilpotencyLength R L M with k
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
h : nilpotencyLength R L M = Nat.zero
⊢ (match Nat.zero with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≤
maxTrivSubmodule R L M
[PROOFSTEP]
exact bot_le
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
h : nilpotencyLength R L M = Nat.succ k
⊢ (match Nat.succ k with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≤
maxTrivSubmodule R L M
[PROOFSTEP]
rw [le_max_triv_iff_bracket_eq_bot]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
h : nilpotencyLength R L M = Nat.succ k
⊢ ⁅⊤,
match Nat.succ k with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k⁆ =
⊥
[PROOFSTEP]
rw [nilpotencyLength_eq_succ_iff, lowerCentralSeries_succ] at h
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
h : ⁅⊤, lowerCentralSeries R L M k⁆ = ⊥ ∧ lowerCentralSeries R L M k ≠ ⊥
⊢ ⁅⊤,
match Nat.succ k with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k⁆ =
⊥
[PROOFSTEP]
exact h.1
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝¹ : Nontrivial M
inst✝ : IsNilpotent R L M
⊢ Nontrivial { x // x ∈ ↑(lowerCentralSeriesLast R L M) }
[PROOFSTEP]
rw [LieSubmodule.nontrivial_iff_ne_bot, lowerCentralSeriesLast]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝¹ : Nontrivial M
inst✝ : IsNilpotent R L M
⊢ (match nilpotencyLength R L M with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≠
⊥
[PROOFSTEP]
cases h : nilpotencyLength R L M
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝¹ : Nontrivial M
inst✝ : IsNilpotent R L M
h : nilpotencyLength R L M = Nat.zero
⊢ (match Nat.zero with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≠
⊥
[PROOFSTEP]
rw [nilpotencyLength_eq_zero_iff, ← not_nontrivial_iff_subsingleton] at h
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝¹ : Nontrivial M
inst✝ : IsNilpotent R L M
h : ¬Nontrivial M
⊢ (match Nat.zero with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≠
⊥
[PROOFSTEP]
contradiction
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝¹ : Nontrivial M
inst✝ : IsNilpotent R L M
n✝ : ℕ
h : nilpotencyLength R L M = Nat.succ n✝
⊢ (match Nat.succ n✝ with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≠
⊥
[PROOFSTEP]
rw [nilpotencyLength_eq_succ_iff] at h
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
k : ℕ
N : LieSubmodule R L M
inst✝¹ : Nontrivial M
inst✝ : IsNilpotent R L M
n✝ : ℕ
h : lowerCentralSeries R L M (n✝ + 1) = ⊥ ∧ lowerCentralSeries R L M n✝ ≠ ⊥
⊢ (match Nat.succ n✝ with
| 0 => ⊥
| Nat.succ k => lowerCentralSeries R L M k) ≠
⊥
[PROOFSTEP]
exact h.2
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M Nat.zero) =
↑(lowerCentralSeries R L M Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M (Nat.succ k)) =
↑(lowerCentralSeries R L M (Nat.succ k))
[PROOFSTEP]
simp only [lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', ←
(lowerCentralSeries R (toEndomorphism R L M).range M k).mem_coeSubmodule, ih]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
⊢ Submodule.span R {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} =
Submodule.span R {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
congr
[GOAL]
case succ.e_s
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
⊢ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} =
{m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
ext m
[GOAL]
case succ.e_s.h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
m : M
⊢ m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} ↔
m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case succ.e_s.h.mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
m : M
⊢ m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} →
m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨-, ⟨y, rfl⟩⟩, -, n, hn, rfl⟩
[GOAL]
case succ.e_s.h.mp.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
y : L
n : M
hn : n ∈ ↑(lowerCentralSeries R L M k)
⊢ ⁅{ val := ↑↑(toEndomorphism R L M) y,
property := (_ : ∃ y_1, ↑↑(toEndomorphism R L M) y_1 = ↑↑(toEndomorphism R L M) y) },
n⁆ ∈
{m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
exact ⟨y, LieSubmodule.mem_top _, n, hn, rfl⟩
[GOAL]
case succ.e_s.h.mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
m : M
⊢ m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} →
m ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rintro ⟨x, -, n, hn, rfl⟩
[GOAL]
case succ.e_s.h.mpr.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑(lowerCentralSeries R L M k)
x : L
n : M
hn : n ∈ lowerCentralSeries R L M k
⊢ ⁅x, n⁆ ∈ {m | ∃ x, x ∈ ⊤ ∧ ∃ n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
exact ⟨⟨toEndomorphism R L M x, LieHom.mem_range_self _ x⟩, LieSubmodule.mem_top _, n, hn, rfl⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M ↔ IsNilpotent R L M
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M → IsNilpotent R L M
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
⊢ IsNilpotent R L M → IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case mp.mk.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hk : lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k = ⊥
⊢ IsNilpotent R L M
[PROOFSTEP]
use k
[GOAL]
case mpr.mk.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L M k = ⊥
⊢ IsNilpotent R { x // x ∈ LieHom.range (toEndomorphism R L M) } M
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hk : lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k = ⊥
⊢ lowerCentralSeries R L M k = ⊥
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff] at hk ⊢
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hk : lowerCentralSeries R L M k = ⊥
⊢ lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k = ⊥
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff] at hk ⊢
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hk : ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑⊥
⊢ ↑(lowerCentralSeries R L M k) = ↑⊥
[PROOFSTEP]
simpa using hk
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
k : ℕ
hk : ↑(lowerCentralSeries R L M k) = ↑⊥
⊢ ↑(lowerCentralSeries R { x // x ∈ LieHom.range (toEndomorphism R L M) } M k) = ↑⊥
[PROOFSTEP]
simpa using hk
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
h : N₁ ≤ N₂
⊢ ucs k N₁ ≤ ucs k N₂
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N N₁ N₂ : LieSubmodule R L M
h : N₁ ≤ N₂
⊢ ucs Nat.zero N₁ ≤ ucs Nat.zero N₂
[PROOFSTEP]
simpa
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
h : N₁ ≤ N₂
k : ℕ
ih : ucs k N₁ ≤ ucs k N₂
⊢ ucs (Nat.succ k) N₁ ≤ ucs (Nat.succ k) N₂
[PROOFSTEP]
simp only [ucs_succ]
-- Porting note: `mono` makes no progress
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
h : N₁ ≤ N₂
k : ℕ
ih : ucs k N₁ ≤ ucs k N₂
⊢ normalizer (ucs k N₁) ≤ normalizer (ucs k N₂)
[PROOFSTEP]
apply monotone_normalizer ih
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
h : normalizer N₁ = N₁
k : ℕ
⊢ ucs k N₁ = N₁
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N N₁ N₂ : LieSubmodule R L M
h : normalizer N₁ = N₁
⊢ ucs Nat.zero N₁ = N₁
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
h : normalizer N₁ = N₁
k : ℕ
ih : ucs k N₁ = N₁
⊢ ucs (Nat.succ k) N₁ = N₁
[PROOFSTEP]
rwa [ucs_succ, ih]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
h : normalizer N₁ = N₁
k : ℕ
⊢ ucs k ⊥ ≤ N₁
[PROOFSTEP]
rw [← ucs_eq_self_of_normalizer_eq_self h k]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
h : normalizer N₁ = N₁
k : ℕ
⊢ ucs k ⊥ ≤ ucs k N₁
[PROOFSTEP]
mono
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
h : normalizer N₁ = N₁
k : ℕ
h_symm : N₁ = normalizer N₁
⊢ ⊥ ≤ N₁
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
l k : ℕ
⊢ lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂
[PROOFSTEP]
induction' k with k ih generalizing l
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N N₁ N₂ : LieSubmodule R L M
l✝ l : ℕ
⊢ lcs (l + Nat.zero) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs Nat.zero N₂
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ (l : ℕ), lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂
l : ℕ
⊢ lcs (l + Nat.succ k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs (Nat.succ k) N₂
[PROOFSTEP]
rw [(by abel : l + (k + 1) = l + 1 + k), ih, ucs_succ, lcs_succ, top_lie_le_iff_le_normalizer]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ (l : ℕ), lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂
l : ℕ
⊢ l + (k + 1) = l + 1 + k
[PROOFSTEP]
abel
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
l✝ k : ℕ
ih : ∀ (l : ℕ), lcs (l + k) N₁ ≤ N₂ ↔ lcs l N₁ ≤ ucs k N₂
l : ℕ
⊢ l + (k + 1) = l + 1 + k
[PROOFSTEP]
abel
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
⊢ lcs k N₁ ≤ N₂ ↔ N₁ ≤ ucs k N₂
[PROOFSTEP]
convert lcs_add_le_iff (R := R) (L := L) (M := M) 0 k
[GOAL]
case h.e'_1.h.e'_3.h.e'_10
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
⊢ k = 0 + k
[PROOFSTEP]
rw [zero_add]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
⊢ ucs k N = ⊤ ↔ LieModule.lowerCentralSeries R L M k ≤ N
[PROOFSTEP]
rw [eq_top_iff, ← lcs_le_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
⊢ lcs k ⊤ ≤ N ↔ LieModule.lowerCentralSeries R L M k ≤ N
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N N₁ N₂ : LieSubmodule R L M
⊢ LieModule.IsNilpotent R L M ↔ ∃ k, ucs k ⊥ = ⊤
[PROOFSTEP]
rw [LieModule.isNilpotent_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N N₁ N₂ : LieSubmodule R L M
⊢ (∃ k, LieModule.lowerCentralSeries R L M k = ⊥) ↔ ∃ k, ucs k ⊥ = ⊤
[PROOFSTEP]
exact exists_congr fun k => by simp [ucs_eq_top_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
⊢ LieModule.lowerCentralSeries R L M k = ⊥ ↔ ucs k ⊥ = ⊤
[PROOFSTEP]
simp [ucs_eq_top_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
⊢ comap (incl N) (ucs k ⊥) = ucs k ⊥
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N N₁ N₂ : LieSubmodule R L M
⊢ comap (incl N) (ucs Nat.zero ⊥) = ucs Nat.zero ⊥
[PROOFSTEP]
exact N.ker_incl
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ : ℕ
N N₁ N₂ : LieSubmodule R L M
k : ℕ
ih : comap (incl N) (ucs k ⊥) = ucs k ⊥
⊢ comap (incl N) (ucs (Nat.succ k) ⊥) = ucs (Nat.succ k) ⊥
[PROOFSTEP]
simp [← ih]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
N N₁ N₂ : LieSubmodule R L M
⊢ LieModule.IsNilpotent R L { x // x ∈ ↑N } ↔ ∃ k, N ≤ ucs k ⊥
[PROOFSTEP]
simp_rw [LieModule.isNilpotent_iff_exists_ucs_eq_top, ← ucs_comap_incl, comap_incl_eq_top]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
⊢ Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
⊢ Submodule.map g ↑(lowerCentralSeries R L M Nat.zero) = ↑(lowerCentralSeries R L₂ M₂ Nat.zero)
[PROOFSTEP]
simpa [LinearMap.range_eq_top]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
⊢ Submodule.map g ↑(lowerCentralSeries R L M (Nat.succ k)) = ↑(lowerCentralSeries R L₂ M₂ (Nat.succ k))
[PROOFSTEP]
suffices
g '' {m | ∃ (x : L) (n : _), n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} =
{m | ∃ (x : L₂) (n : _), n ∈ lowerCentralSeries R L M k ∧ ⁅x, g n⁆ = m}
by
simp only [← LieSubmodule.mem_coeSubmodule] at this
simp_rw [lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', Submodule.map_span,
LieSubmodule.mem_top, true_and, ← LieSubmodule.mem_coeSubmodule, this, ← ih, Submodule.mem_map,
exists_exists_and_eq_and]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
this :
↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} =
{m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m}
⊢ Submodule.map g ↑(lowerCentralSeries R L M (Nat.succ k)) = ↑(lowerCentralSeries R L₂ M₂ (Nat.succ k))
[PROOFSTEP]
simp only [← LieSubmodule.mem_coeSubmodule] at this
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
this :
(fun a => ↑g a) '' {m | ∃ x n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, n⁆ = m} =
{m | ∃ x n, n ∈ ↑(lowerCentralSeries R L M k) ∧ ⁅x, ↑g n⁆ = m}
⊢ Submodule.map g ↑(lowerCentralSeries R L M (Nat.succ k)) = ↑(lowerCentralSeries R L₂ M₂ (Nat.succ k))
[PROOFSTEP]
simp_rw [lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', Submodule.map_span, LieSubmodule.mem_top,
true_and, ← LieSubmodule.mem_coeSubmodule, this, ← ih, Submodule.mem_map, exists_exists_and_eq_and]
[GOAL]
case succ
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
⊢ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} =
{m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m}
[PROOFSTEP]
ext m₂
[GOAL]
case succ.h
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
m₂ : M₂
⊢ m₂ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} ↔
m₂ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case succ.h.mp
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
m₂ : M₂
⊢ m₂ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m} →
m₂ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m}
[PROOFSTEP]
rintro ⟨m, ⟨x, n, hn, rfl⟩, rfl⟩
[GOAL]
case succ.h.mp.intro.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
x : L
n : M
hn : n ∈ lowerCentralSeries R L M k
⊢ ↑g ⁅x, n⁆ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m}
[PROOFSTEP]
exact ⟨f x, n, hn, hfg x n⟩
[GOAL]
case succ.h.mpr
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
m₂ : M₂
⊢ m₂ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, ↑g n⁆ = m} →
m₂ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rintro ⟨x, n, hn, rfl⟩
[GOAL]
case succ.h.mpr.intro.intro.intro
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
x : L₂
n : M
hn : n ∈ lowerCentralSeries R L M k
⊢ ⁅x, ↑g n⁆ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
obtain ⟨y, rfl⟩ := hf x
[GOAL]
case succ.h.mpr.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
k : ℕ
ih : Submodule.map g ↑(lowerCentralSeries R L M k) = ↑(lowerCentralSeries R L₂ M₂ k)
n : M
hn : n ∈ lowerCentralSeries R L M k
y : L
⊢ ⁅↑f y, ↑g n⁆ ∈ ↑g '' {m | ∃ x n, n ∈ lowerCentralSeries R L M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
exact ⟨⁅y, n⁆, ⟨y, n, hn, rfl⟩, (hfg y n).symm⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝¹³ : CommRing R
inst✝¹² : LieRing L
inst✝¹¹ : LieAlgebra R L
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
inst✝⁸ : LieRingModule L M
inst✝⁷ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M₂
inst✝³ : Module R M₂
inst✝² : LieRingModule L₂ M₂
inst✝¹ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
inst✝ : LieModule.IsNilpotent R L M
⊢ LieModule.IsNilpotent R L₂ M₂
[PROOFSTEP]
obtain ⟨k, hk⟩ := id (by infer_instance : IsNilpotent R L M)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝¹³ : CommRing R
inst✝¹² : LieRing L
inst✝¹¹ : LieAlgebra R L
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
inst✝⁸ : LieRingModule L M
inst✝⁷ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M₂
inst✝³ : Module R M₂
inst✝² : LieRingModule L₂ M₂
inst✝¹ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
inst✝ : LieModule.IsNilpotent R L M
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
infer_instance
[GOAL]
case mk.intro
R : Type u
L : Type v
M : Type w
inst✝¹³ : CommRing R
inst✝¹² : LieRing L
inst✝¹¹ : LieAlgebra R L
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
inst✝⁸ : LieRingModule L M
inst✝⁷ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M₂
inst✝³ : Module R M₂
inst✝² : LieRingModule L₂ M₂
inst✝¹ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
inst✝ : LieModule.IsNilpotent R L M
k : ℕ
hk : lowerCentralSeries R L M k = ⊥
⊢ LieModule.IsNilpotent R L₂ M₂
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝¹³ : CommRing R
inst✝¹² : LieRing L
inst✝¹¹ : LieAlgebra R L
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
inst✝⁸ : LieRingModule L M
inst✝⁷ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M₂
inst✝³ : Module R M₂
inst✝² : LieRingModule L₂ M₂
inst✝¹ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
inst✝ : LieModule.IsNilpotent R L M
k : ℕ
hk : lowerCentralSeries R L M k = ⊥
⊢ lowerCentralSeries R L₂ M₂ k = ⊥
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff] at hk ⊢
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝¹³ : CommRing R
inst✝¹² : LieRing L
inst✝¹¹ : LieAlgebra R L
inst✝¹⁰ : AddCommGroup M
inst✝⁹ : Module R M
inst✝⁸ : LieRingModule L M
inst✝⁷ : LieModule R L M
k✝ : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁶ : LieRing L₂
inst✝⁵ : LieAlgebra R L₂
inst✝⁴ : AddCommGroup M₂
inst✝³ : Module R M₂
inst✝² : LieRingModule L₂ M₂
inst✝¹ : LieModule R L₂ M₂
f : L →ₗ⁅R⁆ L₂
g : M →ₗ[R] M₂
hf : Surjective ↑f
hg : Surjective ↑g
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
inst✝ : LieModule.IsNilpotent R L M
k : ℕ
hk : ↑(lowerCentralSeries R L M k) = ↑⊥
⊢ ↑(lowerCentralSeries R L₂ M₂ k) = ↑⊥
[PROOFSTEP]
simp [← hf.lieModule_lcs_map_eq hg hfg k, hk]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
⊢ LieModule.IsNilpotent R L M ↔ LieModule.IsNilpotent R L₂ M₂
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
⊢ LieModule.IsNilpotent R L M → LieModule.IsNilpotent R L₂ M₂
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
⊢ LieModule.IsNilpotent R L₂ M₂ → LieModule.IsNilpotent R L M
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
h : LieModule.IsNilpotent R L M
⊢ LieModule.IsNilpotent R L₂ M₂
[PROOFSTEP]
have hg : Surjective (g : M →ₗ[R] M₂) := g.surjective
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg✝ : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
h : LieModule.IsNilpotent R L M
hg : Surjective ↑↑g
⊢ LieModule.IsNilpotent R L₂ M₂
[PROOFSTEP]
exact f.surjective.lieModuleIsNilpotent hg hfg
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
h : LieModule.IsNilpotent R L₂ M₂
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
have hg : Surjective (g.symm : M₂ →ₗ[R] M) := g.symm.surjective
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg✝ : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
h : LieModule.IsNilpotent R L₂ M₂
hg : Surjective ↑↑(LinearEquiv.symm g)
⊢ LieModule.IsNilpotent R L M
[PROOFSTEP]
refine' f.symm.surjective.lieModuleIsNilpotent hg fun x m => _
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : AddCommGroup M
inst✝⁸ : Module R M
inst✝⁷ : LieRingModule L M
inst✝⁶ : LieModule R L M
k : ℕ
N : LieSubmodule R L M
L₂ : Type u_1
M₂ : Type u_2
inst✝⁵ : LieRing L₂
inst✝⁴ : LieAlgebra R L₂
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L₂ M₂
inst✝ : LieModule R L₂ M₂
f✝ : L →ₗ⁅R⁆ L₂
g✝ : M →ₗ[R] M₂
hf : Surjective ↑f✝
hg✝ : Surjective ↑g✝
hfg✝ : ∀ (x : L) (m : M), ⁅↑f✝ x, ↑g✝ m⁆ = ↑g✝ ⁅x, m⁆
f : L ≃ₗ⁅R⁆ L₂
g : M ≃ₗ[R] M₂
hfg : ∀ (x : L) (m : M), ⁅↑f x, ↑g m⁆ = ↑g ⁅x, m⁆
h : LieModule.IsNilpotent R L₂ M₂
hg : Surjective ↑↑(LinearEquiv.symm g)
x : L₂
m : M₂
⊢ ⁅↑(LieEquiv.symm f).toLieHom x, ↑↑(LinearEquiv.symm g) m⁆ = ↑↑(LinearEquiv.symm g) ⁅x, m⁆
[PROOFSTEP]
rw [LinearEquiv.coe_coe, LieEquiv.coe_to_lieHom, ← g.symm_apply_apply ⁅f.symm x, g.symm m⁆, ← hfg, f.apply_symm_apply,
g.apply_symm_apply]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
hL : LieModule.IsNilpotent R L L
⊢ IsSolvable R L
[PROOFSTEP]
obtain ⟨k, h⟩ : ∃ k, LieModule.lowerCentralSeries R L L k = ⊥ := hL.nilpotent
[GOAL]
case intro
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
hL : LieModule.IsNilpotent R L L
k : ℕ
h : LieModule.lowerCentralSeries R L L k = ⊥
⊢ IsSolvable R L
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
hL : LieModule.IsNilpotent R L L
k : ℕ
h : LieModule.lowerCentralSeries R L L k = ⊥
⊢ derivedSeries R L k = ⊥
[PROOFSTEP]
rw [← le_bot_iff] at h ⊢
[GOAL]
case h
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
hL : LieModule.IsNilpotent R L L
k : ℕ
h : LieModule.lowerCentralSeries R L L k ≤ ⊥
⊢ derivedSeries R L k ≤ ⊥
[PROOFSTEP]
exact le_trans (LieModule.derivedSeries_le_lowerCentralSeries R L k) h
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
⊢ ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
⊢ ↑(lowerCentralSeries R L (L ⧸ I) Nat.zero) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) Nat.zero)
[PROOFSTEP]
simp only [Nat.zero_eq, LieModule.lowerCentralSeries_zero, LieSubmodule.top_coeSubmodule,
LieIdeal.top_coe_lieSubalgebra, LieSubalgebra.top_coe_submodule]
[GOAL]
case succ
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
⊢ ↑(lowerCentralSeries R L (L ⧸ I) (Nat.succ k)) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) (Nat.succ k))
[PROOFSTEP]
simp only [LieModule.lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span]
[GOAL]
case succ
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
congr
[GOAL]
case succ.e_s
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
ext x
[GOAL]
case succ.e_s.h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
x : L ⧸ I
⊢ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case succ.e_s.h.mp
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
x : L ⧸ I
⊢ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨y, -⟩, ⟨z, hz⟩, rfl : ⁅y, z⁆ = x⟩
[GOAL]
case succ.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
y : L
z : L ⧸ I
hz : z ∈ lowerCentralSeries R L (L ⧸ I) k
⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
erw [← LieSubmodule.mem_coeSubmodule, ih, LieSubmodule.mem_coeSubmodule] at hz
[GOAL]
case succ.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
y : L
z : L ⧸ I
hz : z ∈ lowerCentralSeries R (L ⧸ I) (L ⧸ I) k
⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⟨LieSubmodule.Quotient.mk y, LieSubmodule.mem_top _⟩, ⟨z, hz⟩, rfl⟩
[GOAL]
case succ.e_s.h.mpr
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
x : L ⧸ I
⊢ x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨⟨y⟩, -⟩, ⟨z, hz⟩, rfl : ⁅y, z⁆ = x⟩
[GOAL]
case succ.e_s.h.mpr.intro.mk.mk.intro.mk
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
val✝ : L ⧸ I
y : L
z : L ⧸ I
hz : z ∈ lowerCentralSeries R (L ⧸ I) (L ⧸ I) k
⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
erw [← LieSubmodule.mem_coeSubmodule, ← ih, LieSubmodule.mem_coeSubmodule] at hz
[GOAL]
case succ.e_s.h.mpr.intro.mk.mk.intro.mk
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R L (L ⧸ I) k) = ↑(lowerCentralSeries R (L ⧸ I) (L ⧸ I) k)
val✝ : L ⧸ I
y : L
z : L ⧸ I
hz : z ∈ lowerCentralSeries R L (L ⧸ I) k
⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⟨y, LieSubmodule.mem_top _⟩, ⟨z, hz⟩, rfl⟩
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
⊢ ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
⊢ ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } Nat.zero) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k)
⊢ ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } (Nat.succ k)) ≤
↑(lowerCentralSeries R L { x // x ∈ ↑I } (Nat.succ k))
[PROOFSTEP]
simp only [LieModule.lowerCentralSeries_succ, LieSubmodule.lieIdeal_oper_eq_linear_span]
[GOAL]
case succ
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k)
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
apply Submodule.span_mono
[GOAL]
case succ.h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k)
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro x ⟨⟨y, -⟩, ⟨z, hz⟩, rfl : ⁅y, z⁆ = x⟩
[GOAL]
case succ.h.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
k : ℕ
ih : ↑(lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k) ≤ ↑(lowerCentralSeries R L { x // x ∈ ↑I } k)
y z : { x // x ∈ ↑I }
hz : z ∈ lowerCentralSeries R { x // x ∈ ↑I } { x // x ∈ ↑I } k
⊢ ⁅y, z⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⟨y.val, LieSubmodule.mem_top _⟩, ⟨z, ih hz⟩, rfl⟩
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
h₁ : I ≤ center R L
h₂ : IsNilpotent R (L ⧸ I)
⊢ IsNilpotent R L
[PROOFSTEP]
suffices LieModule.IsNilpotent R L (L ⧸ I) by exact LieModule.nilpotentOfNilpotentQuotient R L L h₁ this
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
h₁ : I ≤ center R L
h₂ : IsNilpotent R (L ⧸ I)
this : LieModule.IsNilpotent R L (L ⧸ I)
⊢ IsNilpotent R L
[PROOFSTEP]
exact LieModule.nilpotentOfNilpotentQuotient R L L h₁ this
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
h₁ : I ≤ center R L
h₂ : IsNilpotent R (L ⧸ I)
⊢ LieModule.IsNilpotent R L (L ⧸ I)
[PROOFSTEP]
obtain ⟨k, hk⟩ := h₂
[GOAL]
case mk.intro
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
h₁ : I ≤ center R L
k : ℕ
hk : lowerCentralSeries R (L ⧸ I) (L ⧸ I) k = ⊥
⊢ LieModule.IsNilpotent R L (L ⧸ I)
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
I : LieIdeal R L
h₁ : I ≤ center R L
k : ℕ
hk : lowerCentralSeries R (L ⧸ I) (L ⧸ I) k = ⊥
⊢ lowerCentralSeries R L (L ⧸ I) k = ⊥
[PROOFSTEP]
simp [← LieSubmodule.coe_toSubmodule_eq_iff, coe_lowerCentralSeries_ideal_quot_eq, hk]
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
k : ℕ
f : L →ₗ⁅R⁆ L'
⊢ map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
⊢ map f (lowerCentralSeries R L L Nat.zero) ≤ lowerCentralSeries R L' L' Nat.zero
[PROOFSTEP]
simp only [Nat.zero_eq, LieModule.lowerCentralSeries_zero, le_top]
[GOAL]
case succ
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
k : ℕ
ih : map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k
⊢ map f (lowerCentralSeries R L L (Nat.succ k)) ≤ lowerCentralSeries R L' L' (Nat.succ k)
[PROOFSTEP]
simp only [LieModule.lowerCentralSeries_succ]
[GOAL]
case succ
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
k : ℕ
ih : map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k
⊢ map f ⁅⊤, lowerCentralSeries R L L k⁆ ≤ ⁅⊤, lowerCentralSeries R L' L' k⁆
[PROOFSTEP]
exact le_trans (LieIdeal.map_bracket_le f) (LieSubmodule.mono_lie _ _ _ _ le_top ih)
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
k : ℕ
f : L →ₗ⁅R⁆ L'
h : Function.Surjective ↑f
⊢ map f (lowerCentralSeries R L L k) = lowerCentralSeries R L' L' k
[PROOFSTEP]
have h' : (⊤ : LieIdeal R L).map f = ⊤ := by
rw [← f.idealRange_eq_map]
exact f.idealRange_eq_top_of_surjective h
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
k : ℕ
f : L →ₗ⁅R⁆ L'
h : Function.Surjective ↑f
⊢ map f ⊤ = ⊤
[PROOFSTEP]
rw [← f.idealRange_eq_map]
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
k : ℕ
f : L →ₗ⁅R⁆ L'
h : Function.Surjective ↑f
⊢ LieHom.idealRange f = ⊤
[PROOFSTEP]
exact f.idealRange_eq_top_of_surjective h
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
k : ℕ
f : L →ₗ⁅R⁆ L'
h : Function.Surjective ↑f
h' : map f ⊤ = ⊤
⊢ map f (lowerCentralSeries R L L k) = lowerCentralSeries R L' L' k
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
h : Function.Surjective ↑f
h' : map f ⊤ = ⊤
⊢ map f (lowerCentralSeries R L L Nat.zero) = lowerCentralSeries R L' L' Nat.zero
[PROOFSTEP]
simp only [LieModule.lowerCentralSeries_zero]
[GOAL]
case zero
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
h : Function.Surjective ↑f
h' : map f ⊤ = ⊤
⊢ map f ⊤ = ⊤
[PROOFSTEP]
exact h'
[GOAL]
case succ
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
h : Function.Surjective ↑f
h' : map f ⊤ = ⊤
k : ℕ
ih : map f (lowerCentralSeries R L L k) = lowerCentralSeries R L' L' k
⊢ map f (lowerCentralSeries R L L (Nat.succ k)) = lowerCentralSeries R L' L' (Nat.succ k)
[PROOFSTEP]
simp only [LieModule.lowerCentralSeries_succ, LieIdeal.map_bracket_eq f h, ih, h']
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L'
f : L →ₗ⁅R⁆ L'
h₂ : Injective ↑f
⊢ ∃ k, lowerCentralSeries R L L k = ⊥
[PROOFSTEP]
obtain ⟨k, hk⟩ := id h₁
[GOAL]
case mk.intro
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L'
f : L →ₗ⁅R⁆ L'
h₂ : Injective ↑f
k : ℕ
hk : lowerCentralSeries R L' L' k = ⊥
⊢ ∃ k, lowerCentralSeries R L L k = ⊥
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L'
f : L →ₗ⁅R⁆ L'
h₂ : Injective ↑f
k : ℕ
hk : lowerCentralSeries R L' L' k = ⊥
⊢ lowerCentralSeries R L L k = ⊥
[PROOFSTEP]
apply LieIdeal.bot_of_map_eq_bot h₂
[GOAL]
case h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L'
f : L →ₗ⁅R⁆ L'
h₂ : Injective ↑f
k : ℕ
hk : lowerCentralSeries R L' L' k = ⊥
⊢ LieIdeal.map f (lowerCentralSeries R L L k) = ⊥
[PROOFSTEP]
rw [eq_bot_iff, ← hk]
[GOAL]
case h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L'
f : L →ₗ⁅R⁆ L'
h₂ : Injective ↑f
k : ℕ
hk : lowerCentralSeries R L' L' k = ⊥
⊢ LieIdeal.map f (lowerCentralSeries R L L k) ≤ lowerCentralSeries R L' L' k
[PROOFSTEP]
apply LieIdeal.map_lowerCentralSeries_le
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L
f : L →ₗ⁅R⁆ L'
h₂ : Surjective ↑f
⊢ ∃ k, lowerCentralSeries R L' L' k = ⊥
[PROOFSTEP]
obtain ⟨k, hk⟩ := id h₁
[GOAL]
case mk.intro
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L
f : L →ₗ⁅R⁆ L'
h₂ : Surjective ↑f
k : ℕ
hk : lowerCentralSeries R L L k = ⊥
⊢ ∃ k, lowerCentralSeries R L' L' k = ⊥
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L
f : L →ₗ⁅R⁆ L'
h₂ : Surjective ↑f
k : ℕ
hk : lowerCentralSeries R L L k = ⊥
⊢ lowerCentralSeries R L' L' k = ⊥
[PROOFSTEP]
rw [← LieIdeal.lowerCentralSeries_map_eq k h₂, hk]
[GOAL]
case h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : LieAlgebra.IsNilpotent R L
f : L →ₗ⁅R⁆ L'
h₂ : Surjective ↑f
k : ℕ
hk : lowerCentralSeries R L L k = ⊥
⊢ LieIdeal.map f ⊥ = ⊥
[PROOFSTEP]
simp only [LieIdeal.map_eq_bot_iff, bot_le]
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
e : L ≃ₗ⁅R⁆ L'
⊢ LieAlgebra.IsNilpotent R L ↔ LieAlgebra.IsNilpotent R L'
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
e : L ≃ₗ⁅R⁆ L'
⊢ LieAlgebra.IsNilpotent R L → LieAlgebra.IsNilpotent R L'
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
e : L ≃ₗ⁅R⁆ L'
⊢ LieAlgebra.IsNilpotent R L' → LieAlgebra.IsNilpotent R L
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
e : L ≃ₗ⁅R⁆ L'
h : LieAlgebra.IsNilpotent R L
⊢ LieAlgebra.IsNilpotent R L'
[PROOFSTEP]
exact e.symm.injective.lieAlgebra_isNilpotent
[GOAL]
case mpr
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
e : L ≃ₗ⁅R⁆ L'
h : LieAlgebra.IsNilpotent R L'
⊢ LieAlgebra.IsNilpotent R L
[PROOFSTEP]
exact e.injective.lieAlgebra_isNilpotent
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
⊢ IsNilpotent R { x // x ∈ LieHom.range (ad R L) } ↔ IsNilpotent R L
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case refine'_1
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h : IsNilpotent R { x // x ∈ LieHom.range (ad R L) }
⊢ IsNilpotent R L
[PROOFSTEP]
have : (ad R L).ker = center R L := by simp
[GOAL]
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h : IsNilpotent R { x // x ∈ LieHom.range (ad R L) }
⊢ LieHom.ker (ad R L) = center R L
[PROOFSTEP]
simp
[GOAL]
case refine'_1
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h : IsNilpotent R { x // x ∈ LieHom.range (ad R L) }
this : LieHom.ker (ad R L) = center R L
⊢ IsNilpotent R L
[PROOFSTEP]
exact
LieAlgebra.nilpotent_of_nilpotent_quotient (le_of_eq this)
((ad R L).quotKerEquivRange.nilpotent_iff_equiv_nilpotent.mpr h)
[GOAL]
case refine'_2
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
⊢ IsNilpotent R L → IsNilpotent R { x // x ∈ LieHom.range (ad R L) }
[PROOFSTEP]
intro h
[GOAL]
case refine'_2
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h : IsNilpotent R L
⊢ IsNilpotent R { x // x ∈ LieHom.range (ad R L) }
[PROOFSTEP]
exact (ad R L).isNilpotent_range
[GOAL]
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
⊢ ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case zero
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k : ℕ
⊢ ↑(lcs I M Nat.zero) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case succ
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
⊢ ↑(lcs I M (Nat.succ k)) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M (Nat.succ k))
[PROOFSTEP]
simp_rw [lowerCentralSeries_succ, lcs_succ, LieSubmodule.lieIdeal_oper_eq_linear_span', ← (I.lcs M k).mem_coeSubmodule,
ih, LieSubmodule.mem_coeSubmodule, LieSubmodule.mem_top, true_and, (I : LieSubalgebra R L).coe_bracket_of_module]
[GOAL]
case succ
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
⊢ Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} =
Submodule.span R {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m}
[PROOFSTEP]
congr
[GOAL]
case succ.e_s
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
⊢ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} =
{m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m}
[PROOFSTEP]
ext m
[GOAL]
case succ.e_s.h
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
m : M
⊢ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} ↔
m ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case succ.e_s.h.mp
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
m : M
⊢ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m} →
m ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m}
[PROOFSTEP]
rintro ⟨x, hx, m, hm, rfl⟩
[GOAL]
case succ.e_s.h.mp.intro.intro.intro.intro
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
x : L
hx : x ∈ I
m : M
hm : m ∈ lowerCentralSeries R { x // x ∈ ↑I } M k
⊢ ⁅x, m⁆ ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m}
[PROOFSTEP]
exact ⟨⟨x, hx⟩, m, hm, rfl⟩
[GOAL]
case succ.e_s.h.mpr
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
m : M
⊢ m ∈ {m | ∃ x n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅↑x, n⁆ = m} →
m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨x, hx⟩, m, hm, rfl⟩
[GOAL]
case succ.e_s.h.mpr.intro.mk.intro.intro
R : Type u_1
L : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
I : LieIdeal R L
M : Type u_3
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
k✝ k : ℕ
ih : ↑(lcs I M k) = ↑(lowerCentralSeries R { x // x ∈ ↑I } M k)
x : L
hx : x ∈ ↑I
m : M
hm : m ∈ lowerCentralSeries R { x // x ∈ ↑I } M k
⊢ ⁅↑{ val := x, property := hx }, m⁆ ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ lowerCentralSeries R { x // x ∈ ↑I } M k ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
exact ⟨x, hx, m, hm, rfl⟩
[GOAL]
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
a : A
h : IsNilpotent a
⊢ IsNilpotent (↑(LieAlgebra.ad R A) a)
[PROOFSTEP]
rw [LieAlgebra.ad_eq_lmul_left_sub_lmul_right]
[GOAL]
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
a : A
h : IsNilpotent a
⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a)
[PROOFSTEP]
have hl : IsNilpotent (LinearMap.mulLeft R a) := by rwa [LinearMap.isNilpotent_mulLeft_iff]
[GOAL]
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
a : A
h : IsNilpotent a
⊢ IsNilpotent (LinearMap.mulLeft R a)
[PROOFSTEP]
rwa [LinearMap.isNilpotent_mulLeft_iff]
[GOAL]
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
a : A
h : IsNilpotent a
hl : IsNilpotent (LinearMap.mulLeft R a)
⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a)
[PROOFSTEP]
have hr : IsNilpotent (LinearMap.mulRight R a) := by rwa [LinearMap.isNilpotent_mulRight_iff]
[GOAL]
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
a : A
h : IsNilpotent a
hl : IsNilpotent (LinearMap.mulLeft R a)
⊢ IsNilpotent (LinearMap.mulRight R a)
[PROOFSTEP]
rwa [LinearMap.isNilpotent_mulRight_iff]
[GOAL]
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
a : A
h : IsNilpotent a
hl : IsNilpotent (LinearMap.mulLeft R a)
hr : IsNilpotent (LinearMap.mulRight R a)
⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a)
[PROOFSTEP]
have := @LinearMap.commute_mulLeft_right R A _ _ _ _ _ a a
[GOAL]
R : Type u
A : Type v
inst✝² : CommRing R
inst✝¹ : Ring A
inst✝ : Algebra R A
a : A
h : IsNilpotent a
hl : IsNilpotent (LinearMap.mulLeft R a)
hr : IsNilpotent (LinearMap.mulRight R a)
this : Commute (LinearMap.mulLeft R a) (LinearMap.mulRight R a)
⊢ IsNilpotent ((LinearMap.mulLeft R - LinearMap.mulRight R) a)
[PROOFSTEP]
exact this.isNilpotent_sub hl hr
[GOAL]
R : Type u
A : Type v
inst✝⁴ : CommRing R
inst✝³ : Ring A
inst✝² : Algebra R A
L : Type v
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
K : LieSubalgebra R L
x : { x // x ∈ K }
h : IsNilpotent (↑(LieAlgebra.ad R L) ↑x)
⊢ IsNilpotent (↑(LieAlgebra.ad R { x // x ∈ K }) x)
[PROOFSTEP]
obtain ⟨n, hn⟩ := h
[GOAL]
case intro
R : Type u
A : Type v
inst✝⁴ : CommRing R
inst✝³ : Ring A
inst✝² : Algebra R A
L : Type v
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
K : LieSubalgebra R L
x : { x // x ∈ K }
n : ℕ
hn : ↑(LieAlgebra.ad R L) ↑x ^ n = 0
⊢ IsNilpotent (↑(LieAlgebra.ad R { x // x ∈ K }) x)
[PROOFSTEP]
use n
[GOAL]
case h
R : Type u
A : Type v
inst✝⁴ : CommRing R
inst✝³ : Ring A
inst✝² : Algebra R A
L : Type v
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
K : LieSubalgebra R L
x : { x // x ∈ K }
n : ℕ
hn : ↑(LieAlgebra.ad R L) ↑x ^ n = 0
⊢ ↑(LieAlgebra.ad R { x // x ∈ K }) x ^ n = 0
[PROOFSTEP]
exact LinearMap.submodule_pow_eq_zero_of_pow_eq_zero (K.ad_comp_incl_eq x) hn
| {"mathlib_filename": "Mathlib.Algebra.Lie.Nilpotent", "llama_tokens": 60566} |
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
a b c : lib R X
h : Rel R X b c
⊢ Rel R X (a + b) (a + c)
[PROOFSTEP]
rw [add_comm _ b, add_comm _ c]
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
a b c : lib R X
h : Rel R X b c
⊢ Rel R X (b + a) (c + a)
[PROOFSTEP]
exact h.add_right _
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
a b : lib R X
h : Rel R X a b
⊢ Rel R X (-a) (-b)
[PROOFSTEP]
simpa only [neg_one_smul] using h.smul (-1)
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
a b c : lib R X
h : Rel R X b c
⊢ Rel R X (a - b) (a - c)
[PROOFSTEP]
simpa only [sub_eq_add_neg] using h.neg.addLeft a
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
a b c : lib R X
h : Rel R X a b
⊢ Rel R X (a - c) (b - c)
[PROOFSTEP]
simpa only [sub_eq_add_neg] using h.add_right (-c)
[GOAL]
R : Type u
X : Type v
inst✝³ : CommRing R
S : Type u_1
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : IsScalarTower S R R
t : S
a b : lib R X
h : Rel R X a b
⊢ Rel R X (t • a) (t • b)
[PROOFSTEP]
rw [← smul_one_smul R t a, ← smul_one_smul R t b]
[GOAL]
R : Type u
X : Type v
inst✝³ : CommRing R
S : Type u_1
inst✝² : Monoid S
inst✝¹ : DistribMulAction S R
inst✝ : IsScalarTower S R R
t : S
a b : lib R X
h : Rel R X a b
⊢ Rel R X ((t • 1) • a) ((t • 1) • b)
[PROOFSTEP]
exact h.smul _
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
⊢ Inhabited (FreeLieAlgebra R X)
[PROOFSTEP]
rw [FreeLieAlgebra]
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
⊢ Inhabited (Quot (FreeLieAlgebra.Rel R X))
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
⊢ ∀ (x y z : FreeLieAlgebra R X), ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩ ⟨c⟩
[GOAL]
case mk.mk.mk
R : Type u
X : Type v
inst✝ : CommRing R
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
z✝ : FreeLieAlgebra R X
c : lib R X
⊢ ⁅Quot.mk (Rel R X) a + Quot.mk (Rel R X) b, Quot.mk (Rel R X) c⁆ =
⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆ + ⁅Quot.mk (Rel R X) b, Quot.mk (Rel R X) c⁆
[PROOFSTEP]
change Quot.mk _ _ = Quot.mk _ _
[GOAL]
case mk.mk.mk
R : Type u
X : Type v
inst✝ : CommRing R
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
z✝ : FreeLieAlgebra R X
c : lib R X
⊢ Quot.mk (Rel R X) ((fun x x_1 => x * x_1) ((fun x x_1 => x + x_1) a b) c) =
Quot.mk (Rel R X) ((fun x x_1 => x + x_1) ((fun x x_1 => x * x_1) a c) ((fun x x_1 => x * x_1) b c))
[PROOFSTEP]
simp_rw [add_mul]
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
⊢ ∀ (x y z : FreeLieAlgebra R X), ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩ ⟨c⟩
[GOAL]
case mk.mk.mk
R : Type u
X : Type v
inst✝ : CommRing R
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
z✝ : FreeLieAlgebra R X
c : lib R X
⊢ ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b + Quot.mk (Rel R X) c⁆ =
⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆ + ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆
[PROOFSTEP]
change Quot.mk _ _ = Quot.mk _ _
[GOAL]
case mk.mk.mk
R : Type u
X : Type v
inst✝ : CommRing R
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
z✝ : FreeLieAlgebra R X
c : lib R X
⊢ Quot.mk (Rel R X) ((fun x x_1 => x * x_1) a ((fun x x_1 => x + x_1) b c)) =
Quot.mk (Rel R X) ((fun x x_1 => x + x_1) ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c))
[PROOFSTEP]
simp_rw [mul_add]
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
⊢ ∀ (x : FreeLieAlgebra R X), ⁅x, x⁆ = 0
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
R : Type u
X : Type v
inst✝ : CommRing R
x✝ : FreeLieAlgebra R X
a : lib R X
⊢ ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) a⁆ = 0
[PROOFSTEP]
exact Quot.sound (Rel.lie_self a)
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
⊢ ∀ (x y z : FreeLieAlgebra R X), ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩ ⟨c⟩
[GOAL]
case mk.mk.mk
R : Type u
X : Type v
inst✝ : CommRing R
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
z✝ : FreeLieAlgebra R X
c : lib R X
⊢ ⁅Quot.mk (Rel R X) a, ⁅Quot.mk (Rel R X) b, Quot.mk (Rel R X) c⁆⁆ =
⁅⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆, Quot.mk (Rel R X) c⁆ +
⁅Quot.mk (Rel R X) b, ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆⁆
[PROOFSTEP]
exact Quot.sound (Rel.leibniz_lie a b c)
[GOAL]
R : Type u
X : Type v
inst✝ : CommRing R
⊢ ∀ (t : R) (x y : FreeLieAlgebra R X), ⁅x, t • y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
rintro t ⟨a⟩ ⟨c⟩
[GOAL]
case mk.mk
R : Type u
X : Type v
inst✝ : CommRing R
t : R
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
c : lib R X
⊢ ⁅Quot.mk (Rel R X) a, t • Quot.mk (Rel R X) c⁆ = t • ⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) c⁆
[PROOFSTEP]
change Quot.mk _ (a • t • c) = Quot.mk _ (t • a • c)
[GOAL]
case mk.mk
R : Type u
X : Type v
inst✝ : CommRing R
t : R
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
c : lib R X
⊢ Quot.mk (Rel R X) (a • t • c) = Quot.mk (Rel R X) (t • a • c)
[PROOFSTEP]
rw [← smul_comm]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b : lib R X
h : Rel R X a b
⊢ ↑(liftAux R f) a = ↑(liftAux R f) b
[PROOFSTEP]
induction h
[GOAL]
case lie_self
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝ : lib R X
⊢ ↑(liftAux R f) (a✝ * a✝) = ↑(liftAux R f) 0
case leibniz_lie
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝ b✝ c✝ : lib R X
⊢ ↑(liftAux R f) (a✝ * (b✝ * c✝)) = ↑(liftAux R f) (a✝ * b✝ * c✝ + b✝ * (a✝ * c✝))
case smul
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b : lib R X
t✝ : R
a✝¹ b✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (t✝ • a✝¹) = ↑(liftAux R f) (t✝ • b✝)
case add_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝)
case mul_left
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X b✝ c✝
a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝
⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝)
case mul_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝)
[PROOFSTEP]
case lie_self a' => simp only [liftAux_map_mul, NonUnitalAlgHom.map_zero, lie_self]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' : lib R X
⊢ ↑(liftAux R f) (a' * a') = ↑(liftAux R f) 0
[PROOFSTEP]
case lie_self a' => simp only [liftAux_map_mul, NonUnitalAlgHom.map_zero, lie_self]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' : lib R X
⊢ ↑(liftAux R f) (a' * a') = ↑(liftAux R f) 0
[PROOFSTEP]
simp only [liftAux_map_mul, NonUnitalAlgHom.map_zero, lie_self]
[GOAL]
case leibniz_lie
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝ b✝ c✝ : lib R X
⊢ ↑(liftAux R f) (a✝ * (b✝ * c✝)) = ↑(liftAux R f) (a✝ * b✝ * c✝ + b✝ * (a✝ * c✝))
case smul
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b : lib R X
t✝ : R
a✝¹ b✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (t✝ • a✝¹) = ↑(liftAux R f) (t✝ • b✝)
case add_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝)
case mul_left
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X b✝ c✝
a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝
⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝)
case mul_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝)
[PROOFSTEP]
case leibniz_lie a' b' c' => simp only [liftAux_map_mul, liftAux_map_add, sub_add_cancel, lie_lie]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
⊢ ↑(liftAux R f) (a' * (b' * c')) = ↑(liftAux R f) (a' * b' * c' + b' * (a' * c'))
[PROOFSTEP]
case leibniz_lie a' b' c' => simp only [liftAux_map_mul, liftAux_map_add, sub_add_cancel, lie_lie]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
⊢ ↑(liftAux R f) (a' * (b' * c')) = ↑(liftAux R f) (a' * b' * c' + b' * (a' * c'))
[PROOFSTEP]
simp only [liftAux_map_mul, liftAux_map_add, sub_add_cancel, lie_lie]
[GOAL]
case smul
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b : lib R X
t✝ : R
a✝¹ b✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (t✝ • a✝¹) = ↑(liftAux R f) (t✝ • b✝)
case add_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝)
case mul_left
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X b✝ c✝
a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝
⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝)
case mul_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝)
[PROOFSTEP]
case smul t a' b' _ h₂ => simp only [liftAux_map_smul, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b : lib R X
t : R
a' b' : lib R X
a✝ : Rel R X a' b'
h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b'
⊢ ↑(liftAux R f) (t • a') = ↑(liftAux R f) (t • b')
[PROOFSTEP]
case smul t a' b' _ h₂ => simp only [liftAux_map_smul, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b : lib R X
t : R
a' b' : lib R X
a✝ : Rel R X a' b'
h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b'
⊢ ↑(liftAux R f) (t • a') = ↑(liftAux R f) (t • b')
[PROOFSTEP]
simp only [liftAux_map_smul, h₂]
[GOAL]
case add_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ + c✝) = ↑(liftAux R f) (b✝ + c✝)
case mul_left
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X b✝ c✝
a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝
⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝)
case mul_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝)
[PROOFSTEP]
case add_right a' b' c' _ h₂ => simp only [liftAux_map_add, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
a✝ : Rel R X a' b'
h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b'
⊢ ↑(liftAux R f) (a' + c') = ↑(liftAux R f) (b' + c')
[PROOFSTEP]
case add_right a' b' c' _ h₂ => simp only [liftAux_map_add, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
a✝ : Rel R X a' b'
h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b'
⊢ ↑(liftAux R f) (a' + c') = ↑(liftAux R f) (b' + c')
[PROOFSTEP]
simp only [liftAux_map_add, h₂]
[GOAL]
case mul_left
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X b✝ c✝
a_ih✝ : ↑(liftAux R f) b✝ = ↑(liftAux R f) c✝
⊢ ↑(liftAux R f) (a✝¹ * b✝) = ↑(liftAux R f) (a✝¹ * c✝)
case mul_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝)
[PROOFSTEP]
case mul_left a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
a✝ : Rel R X b' c'
h₂ : ↑(liftAux R f) b' = ↑(liftAux R f) c'
⊢ ↑(liftAux R f) (a' * b') = ↑(liftAux R f) (a' * c')
[PROOFSTEP]
case mul_left a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
a✝ : Rel R X b' c'
h₂ : ↑(liftAux R f) b' = ↑(liftAux R f) c'
⊢ ↑(liftAux R f) (a' * b') = ↑(liftAux R f) (a' * c')
[PROOFSTEP]
simp only [liftAux_map_mul, h₂]
[GOAL]
case mul_right
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a✝¹ b✝ c✝ : lib R X
a✝ : Rel R X a✝¹ b✝
a_ih✝ : ↑(liftAux R f) a✝¹ = ↑(liftAux R f) b✝
⊢ ↑(liftAux R f) (a✝¹ * c✝) = ↑(liftAux R f) (b✝ * c✝)
[PROOFSTEP]
case mul_right a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
a✝ : Rel R X a' b'
h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b'
⊢ ↑(liftAux R f) (a' * c') = ↑(liftAux R f) (b' * c')
[PROOFSTEP]
case mul_right a' b' c' _ h₂ => simp only [liftAux_map_mul, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
a b a' b' c' : lib R X
a✝ : Rel R X a' b'
h₂ : ↑(liftAux R f) a' = ↑(liftAux R f) b'
⊢ ↑(liftAux R f) (a' * c') = ↑(liftAux R f) (b' * c')
[PROOFSTEP]
simp only [liftAux_map_mul, h₂]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
⊢ ∀ (x y : FreeLieAlgebra R X),
(fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩
[GOAL]
case mk.mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
⊢ (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(Quot.mk (Rel R X) a + Quot.mk (Rel R X) b) =
(fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(Quot.mk (Rel R X) a) +
(fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(Quot.mk (Rel R X) b)
[PROOFSTEP]
rw [← liftAux_map_add]
[GOAL]
case mk.mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
⊢ (fun c => Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(Quot.mk (Rel R X) a + Quot.mk (Rel R X) b) =
↑(liftAux R f) (a + b)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
⊢ ∀ (r : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x
[PROOFSTEP]
rintro t ⟨a⟩
[GOAL]
case mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
t : R
x✝ : FreeLieAlgebra R X
a : lib R X
⊢ AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • Quot.mk (Rel R X) a) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(Quot.mk (Rel R X) a)
[PROOFSTEP]
rw [← liftAux_map_smul]
[GOAL]
case mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
t : R
x✝ : FreeLieAlgebra R X
a : lib R X
⊢ AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • Quot.mk (Rel R X) a) =
↑(liftAux ((fun x => R) t) f) (↑(RingHom.id R) t • a)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
⊢ ∀ {x y : FreeLieAlgebra R X},
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
y⁆
[PROOFSTEP]
rintro ⟨a⟩ ⟨b⟩
[GOAL]
case mk.mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
(Quot.mk (Rel R X) a),
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
(Quot.mk (Rel R X) b)⁆
[PROOFSTEP]
rw [← liftAux_map_mul]
[GOAL]
case mk.mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
x✝ : FreeLieAlgebra R X
a : lib R X
y✝ : FreeLieAlgebra R X
b : lib R X
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f) (_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅Quot.mk (Rel R X) a, Quot.mk (Rel R X) b⁆ =
↑(liftAux R f) (a * b)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
⊢ (fun F => ↑F ∘ of R)
((fun f =>
{
toLinearMap :=
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) },
map_lie' :=
(_ :
∀ {x y : FreeLieAlgebra R X},
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
y⁆) })
f) =
f
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
x : X
⊢ (fun F => ↑F ∘ of R)
((fun f =>
{
toLinearMap :=
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) },
map_lie' :=
(_ :
∀ {x y : FreeLieAlgebra R X},
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
y⁆) })
f)
x =
f x
[PROOFSTEP]
simp only [liftAux, of, Quot.liftOn_mk, LieHom.coe_mk, Function.comp_apply, lib.lift_of_apply]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
F : FreeLieAlgebra R X →ₗ⁅R⁆ L
⊢ (fun f =>
{
toLinearMap :=
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) },
map_lie' :=
(_ :
∀ {x y : FreeLieAlgebra R X},
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
y⁆) })
((fun F => ↑F ∘ of R) F) =
F
[PROOFSTEP]
ext ⟨a⟩
[GOAL]
case h.mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
F : FreeLieAlgebra R X →ₗ⁅R⁆ L
x✝ : FreeLieAlgebra R X
a : lib R X
⊢ ↑((fun f =>
{
toLinearMap :=
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) },
map_lie' :=
(_ :
∀ {x y : FreeLieAlgebra R X},
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
y⁆) })
((fun F => ↑F ∘ of R) F))
(Quot.mk (Rel R X) a) =
↑F (Quot.mk (Rel R X) a)
[PROOFSTEP]
let F' := F.toNonUnitalAlgHom.comp (mk R)
[GOAL]
case h.mk
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
F : FreeLieAlgebra R X →ₗ⁅R⁆ L
x✝ : FreeLieAlgebra R X
a : lib R X
F' : lib R X →ₙₐ[R] CommutatorRing L := NonUnitalAlgHom.comp (LieHom.toNonUnitalAlgHom F) (mk R)
⊢ ↑((fun f =>
{
toLinearMap :=
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) },
map_lie' :=
(_ :
∀ {x y : FreeLieAlgebra R X},
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
x,
AddHom.toFun
{
toAddHom :=
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ : ∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) },
map_smul' :=
(_ :
∀ (t : R) (x : FreeLieAlgebra R X),
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
(t • x) =
↑(RingHom.id R) t •
AddHom.toFun
{
toFun := fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X), Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b),
map_add' :=
(_ :
∀ (x y : FreeLieAlgebra R X),
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
(x + y) =
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
x +
(fun c =>
Quot.liftOn c ↑(liftAux R f)
(_ :
∀ (a b : lib R X),
Rel R X a b → ↑(liftAux R f) a = ↑(liftAux R f) b))
y) }
x) }.toAddHom
y⁆) })
((fun F => ↑F ∘ of R) F))
(Quot.mk (Rel R X) a) =
↑F (Quot.mk (Rel R X) a)
[PROOFSTEP]
exact NonUnitalAlgHom.congr_fun (lib.lift_comp_of R F') a
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
f : X → L
x : X
⊢ ↑(↑(lift R) f) (of R x) = f x
[PROOFSTEP]
rw [← @Function.comp_apply _ _ _ (lift R f) (of R) x, of_comp_lift]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
F : FreeLieAlgebra R X →ₗ⁅R⁆ L
⊢ ↑(lift R) (↑F ∘ of R) = F
[PROOFSTEP]
rw [← lift_symm_apply]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
F : FreeLieAlgebra R X →ₗ⁅R⁆ L
⊢ ↑(lift R) (↑(lift R).symm F) = F
[PROOFSTEP]
exact (lift R).apply_symm_apply F
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
F₁ F₂ : FreeLieAlgebra R X →ₗ⁅R⁆ L
h : ∀ (x : X), ↑F₁ (of R x) = ↑F₂ (of R x)
⊢ ↑(lift R).symm F₁ = ↑(lift R).symm F₂
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
F₁ F₂ : FreeLieAlgebra R X →ₗ⁅R⁆ L
h : ∀ (x : X), ↑F₁ (of R x) = ↑F₂ (of R x)
x✝ : X
⊢ ↑(lift R).symm F₁ x✝ = ↑(lift R).symm F₂ x✝
[PROOFSTEP]
simp [h]
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ AlgHom.comp (↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R)))
(↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R)) =
AlgHom.id R (FreeAlgebra R X)
[PROOFSTEP]
ext
[GOAL]
case w.h
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x✝ : X
⊢ (↑(AlgHom.comp (↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R)))
(↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R))) ∘
FreeAlgebra.ι R)
x✝ =
(↑(AlgHom.id R (FreeAlgebra R X)) ∘ FreeAlgebra.ι R) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
⊢ AlgHom.comp (↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R))
(↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R))) =
AlgHom.id R (UniversalEnvelopingAlgebra R (FreeLieAlgebra R X))
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u
X : Type v
inst✝² : CommRing R
L : Type w
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x✝ : X
⊢ ↑(LieHom.comp
(AlgHom.toLieHom
(AlgHom.comp (↑(FreeAlgebra.lift R) (↑(UniversalEnvelopingAlgebra.ι R) ∘ of R))
(↑(UniversalEnvelopingAlgebra.lift R) (↑(lift R) (FreeAlgebra.ι R)))))
(UniversalEnvelopingAlgebra.ι R))
(of R x✝) =
↑(LieHom.comp (AlgHom.toLieHom (AlgHom.id R (UniversalEnvelopingAlgebra R (FreeLieAlgebra R X))))
(UniversalEnvelopingAlgebra.ι R))
(of R x✝)
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Algebra.Lie.Free", "llama_tokens": 47786} |
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
n : ℕ
f : α ≃ Fin n
⊢ Nat.card α = n
[PROOFSTEP]
simpa only [card_eq_fintype_card, Fintype.card_fin] using card_congr f
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
h : Nat.card α ≠ 0
⊢ α ≃ Fin (Nat.card α)
[PROOFSTEP]
cases fintypeOrInfinite α
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
α : Type u_3
h : Nat.card α ≠ 0
val✝ : Fintype α
⊢ α ≃ Fin (Nat.card α)
[PROOFSTEP]
simpa only [card_eq_fintype_card] using Fintype.equivFin α
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
α : Type u_3
h : Nat.card α ≠ 0
val✝ : Infinite α
⊢ α ≃ Fin (Nat.card α)
[PROOFSTEP]
simp only [card_eq_zero_of_infinite, ne_eq] at h
[GOAL]
α : Type u_1
β : Type u_2
a : α
inst✝ : Subsingleton α
⊢ Nat.card α = 1
[PROOFSTEP]
letI := Fintype.ofSubsingleton a
[GOAL]
α : Type u_1
β : Type u_2
a : α
inst✝ : Subsingleton α
this : Fintype α := Fintype.ofSubsingleton a
⊢ Nat.card α = 1
[PROOFSTEP]
rw [card_eq_fintype_card, Fintype.card_ofSubsingleton a]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : IsEmpty α
⊢ Nat.card α = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Finite α
inst✝ : Finite β
⊢ Nat.card (α ⊕ β) = Nat.card α + Nat.card β
[PROOFSTEP]
have := Fintype.ofFinite α
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Finite α
inst✝ : Finite β
this : Fintype α
⊢ Nat.card (α ⊕ β) = Nat.card α + Nat.card β
[PROOFSTEP]
have := Fintype.ofFinite β
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Finite α
inst✝ : Finite β
this✝ : Fintype α
this : Fintype β
⊢ Nat.card (α ⊕ β) = Nat.card α + Nat.card β
[PROOFSTEP]
simp_rw [Nat.card_eq_fintype_card, Fintype.card_sum]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
α : Type u_3
β : Type u_4
⊢ Nat.card (α × β) = Nat.card α * Nat.card β
[PROOFSTEP]
simp only [Nat.card, mk_prod, toNat_mul, toNat_lift]
[GOAL]
α : Type u_1
β✝ : Type u_2
β : α → Type u_3
inst✝ : Fintype α
⊢ Nat.card ((a : α) → β a) = ∏ a : α, Nat.card (β a)
[PROOFSTEP]
simp_rw [Nat.card, mk_pi, prod_eq_of_fintype, toNat_lift, toNat_finset_prod]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Finite α
⊢ Nat.card (α → β) = Nat.card β ^ Nat.card α
[PROOFSTEP]
haveI := Fintype.ofFinite α
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Finite α
this : Fintype α
⊢ Nat.card (α → β) = Nat.card β ^ Nat.card α
[PROOFSTEP]
rw [Nat.card_pi, Finset.prod_const, Finset.card_univ, ← Nat.card_eq_fintype_card]
[GOAL]
α : Type u_1
β : Type u_2
n : ℕ
⊢ Nat.card (ZMod n) = n
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u_1
β : Type u_2
⊢ Nat.card (ZMod zero) = zero
[PROOFSTEP]
exact @Nat.card_eq_zero_of_infinite _ Int.infinite
[GOAL]
case succ
α : Type u_1
β : Type u_2
n✝ : ℕ
⊢ Nat.card (ZMod (succ n✝)) = succ n✝
[PROOFSTEP]
rw [Nat.card_eq_fintype_card, ZMod.card]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
α : Type u_3
β : Type u_4
⊢ card (α ⊕ β) = card α + card β
[PROOFSTEP]
simp only [PartENat.card, Cardinal.mk_sum, map_add, Cardinal.toPartENat_lift]
[GOAL]
α : Type u_1
β : Type u_2
n : ℕ
c : Cardinal.{u_3}
⊢ ↑n ≤ ↑toPartENat c ↔ ↑n ≤ c
[PROOFSTEP]
rw [← toPartENat_cast n, toPartENat_le_iff_of_le_aleph0 (le_of_lt (nat_lt_aleph0 n))]
[GOAL]
α : Type u_1
β : Type u_2
c : Cardinal.{u_3}
n : ℕ
⊢ ↑toPartENat c ≤ ↑n ↔ c ≤ ↑n
[PROOFSTEP]
rw [← toPartENat_cast n, toPartENat_le_iff_of_lt_aleph0 (nat_lt_aleph0 n)]
[GOAL]
α : Type u_1
β : Type u_2
n : ℕ
c : Cardinal.{u_3}
⊢ ↑n = ↑toPartENat c ↔ ↑n = c
[PROOFSTEP]
rw [le_antisymm_iff, le_antisymm_iff, Cardinal.toPartENat_le_natCast_iff, Cardinal.natCast_le_toPartENat_iff]
[GOAL]
α : Type u_1
β : Type u_2
c : Cardinal.{u_3}
n : ℕ
⊢ ↑toPartENat c = ↑n ↔ c = ↑n
[PROOFSTEP]
rw [eq_comm, Cardinal.natCast_eq_toPartENat_iff, eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
n : ℕ
c : Cardinal.{u_3}
⊢ ↑n < ↑toPartENat c ↔ ↑n < c
[PROOFSTEP]
simp only [← not_le, Cardinal.toPartENat_le_natCast_iff]
[GOAL]
α : Type u_1
β : Type u_2
n : ℕ
c : Cardinal.{u_3}
⊢ ↑toPartENat c < ↑n ↔ c < ↑n
[PROOFSTEP]
simp only [← not_le, Cardinal.natCast_le_toPartENat_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α = 0 ↔ IsEmpty α
[PROOFSTEP]
rw [← Cardinal.mk_eq_zero_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α = 0 ↔ #α = 0
[PROOFSTEP]
conv_rhs => rw [← Nat.cast_zero]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| #α = 0
[PROOFSTEP]
rw [← Nat.cast_zero]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| #α = 0
[PROOFSTEP]
rw [← Nat.cast_zero]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| #α = 0
[PROOFSTEP]
rw [← Nat.cast_zero]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α = 0 ↔ #α = ↑0
[PROOFSTEP]
simp only [← Cardinal.toPartENat_eq_natCast_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α = 0 ↔ ↑toPartENat #α = ↑0
[PROOFSTEP]
simp only [PartENat.card, Nat.cast_zero]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α ≤ 1 ↔ Subsingleton α
[PROOFSTEP]
rw [← le_one_iff_subsingleton]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α ≤ 1 ↔ #α ≤ 1
[PROOFSTEP]
conv_rhs => rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| #α ≤ 1
[PROOFSTEP]
rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| #α ≤ 1
[PROOFSTEP]
rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| #α ≤ 1
[PROOFSTEP]
rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α ≤ 1 ↔ #α ≤ ↑1
[PROOFSTEP]
rw [← Cardinal.toPartENat_le_natCast_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ card α ≤ 1 ↔ ↑toPartENat #α ≤ ↑1
[PROOFSTEP]
simp only [PartENat.card, Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ 1 < card α ↔ Nontrivial α
[PROOFSTEP]
rw [← Cardinal.one_lt_iff_nontrivial]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ 1 < card α ↔ 1 < #α
[PROOFSTEP]
conv_rhs => rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| 1 < #α
[PROOFSTEP]
rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| 1 < #α
[PROOFSTEP]
rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
| 1 < #α
[PROOFSTEP]
rw [← Nat.cast_one]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ 1 < card α ↔ ↑1 < #α
[PROOFSTEP]
rw [← natCast_lt_toPartENat_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
⊢ 1 < card α ↔ ↑1 < ↑toPartENat #α
[PROOFSTEP]
simp only [PartENat.card, Nat.cast_one]
| {"mathlib_filename": "Mathlib.SetTheory.Cardinal.Finite", "llama_tokens": 3383} |
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
⊢ ∃ h, Bijective h
[PROOFSTEP]
cases' isEmpty_or_nonempty β with hβ hβ
[GOAL]
case inl
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : IsEmpty β
⊢ ∃ h, Bijective h
[PROOFSTEP]
have : IsEmpty α := Function.isEmpty f
[GOAL]
case inl
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : IsEmpty β
this : IsEmpty α
⊢ ∃ h, Bijective h
[PROOFSTEP]
exact ⟨_, ((Equiv.equivEmpty α).trans (Equiv.equivEmpty β).symm).bijective⟩
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
⊢ ∃ h, Bijective h
[PROOFSTEP]
set F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ
monotone' := fun s t hst =>
compl_subset_compl.mpr <| image_subset _ <| compl_subset_compl.mpr <| image_subset _ hst }
-- Porting note: dot notation `F.lfp` doesn't work here
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
⊢ ∃ h, Bijective h
[PROOFSTEP]
set s : Set α := OrderHom.lfp F
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
⊢ ∃ h, Bijective h
[PROOFSTEP]
have hs : (g '' (f '' s)ᶜ)ᶜ = s := F.map_lfp
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
⊢ ∃ h, Bijective h
[PROOFSTEP]
have hns : g '' (f '' s)ᶜ = sᶜ := compl_injective (by simp [hs])
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
⊢ (g '' (f '' s)ᶜ)ᶜ = sᶜᶜ
[PROOFSTEP]
simp [hs]
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
⊢ ∃ h, Bijective h
[PROOFSTEP]
set g' := invFun g
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
⊢ ∃ h, Bijective h
[PROOFSTEP]
have g'g : LeftInverse g' g := leftInverse_invFun hg
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
⊢ ∃ h, Bijective h
[PROOFSTEP]
have hg'ns : g' '' sᶜ = (f '' s)ᶜ := by rw [← hns, g'g.image_image]
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
⊢ g' '' sᶜ = (f '' s)ᶜ
[PROOFSTEP]
rw [← hns, g'g.image_image]
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
⊢ ∃ h, Bijective h
[PROOFSTEP]
set h : α → β := s.piecewise f g'
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
⊢ ∃ h, Bijective h
[PROOFSTEP]
have : Surjective h := by rw [← range_iff_surjective, range_piecewise, hg'ns, union_compl_self]
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
⊢ Surjective h
[PROOFSTEP]
rw [← range_iff_surjective, range_piecewise, hg'ns, union_compl_self]
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
⊢ ∃ h, Bijective h
[PROOFSTEP]
have : Injective h := by
refine' (injective_piecewise_iff _).2 ⟨hf.injOn _, _, _⟩
· intro x hx y hy hxy
obtain ⟨x', _, rfl⟩ : x ∈ g '' (f '' s)ᶜ := by rwa [hns]
obtain ⟨y', _, rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns]
rw [g'g _, g'g _] at hxy
rw [hxy]
· intro x hx y hy hxy
obtain ⟨y', hy', rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns]
rw [g'g _] at hxy
exact hy' ⟨x, hx, hxy⟩
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
⊢ Injective h
[PROOFSTEP]
refine' (injective_piecewise_iff _).2 ⟨hf.injOn _, _, _⟩
[GOAL]
case refine'_1
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
⊢ InjOn g' sᶜ
[PROOFSTEP]
intro x hx y hy hxy
[GOAL]
case refine'_1
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x : α
hx : x ∈ sᶜ
y : α
hy : y ∈ sᶜ
hxy : g' x = g' y
⊢ x = y
[PROOFSTEP]
obtain ⟨x', _, rfl⟩ : x ∈ g '' (f '' s)ᶜ := by rwa [hns]
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x : α
hx : x ∈ sᶜ
y : α
hy : y ∈ sᶜ
hxy : g' x = g' y
⊢ x ∈ g '' (f '' s)ᶜ
[PROOFSTEP]
rwa [hns]
[GOAL]
case refine'_1.intro.intro
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
y : α
hy : y ∈ sᶜ
x' : β
left✝ : x' ∈ (f '' s)ᶜ
hx : g x' ∈ sᶜ
hxy : g' (g x') = g' y
⊢ g x' = y
[PROOFSTEP]
obtain ⟨y', _, rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns]
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
y : α
hy : y ∈ sᶜ
x' : β
left✝ : x' ∈ (f '' s)ᶜ
hx : g x' ∈ sᶜ
hxy : g' (g x') = g' y
⊢ y ∈ g '' (f '' s)ᶜ
[PROOFSTEP]
rwa [hns]
[GOAL]
case refine'_1.intro.intro.intro.intro
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x' : β
left✝¹ : x' ∈ (f '' s)ᶜ
hx : g x' ∈ sᶜ
y' : β
left✝ : y' ∈ (f '' s)ᶜ
hy : g y' ∈ sᶜ
hxy : g' (g x') = g' (g y')
⊢ g x' = g y'
[PROOFSTEP]
rw [g'g _, g'g _] at hxy
[GOAL]
case refine'_1.intro.intro.intro.intro
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x' : β
left✝¹ : x' ∈ (f '' s)ᶜ
hx : g x' ∈ sᶜ
y' : β
left✝ : y' ∈ (f '' s)ᶜ
hy : g y' ∈ sᶜ
hxy : x' = y'
⊢ g x' = g y'
[PROOFSTEP]
rw [hxy]
[GOAL]
case refine'_2
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
⊢ ∀ (x : α), x ∈ s → ∀ (y : α), ¬y ∈ s → f x ≠ g' y
[PROOFSTEP]
intro x hx y hy hxy
[GOAL]
case refine'_2
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x : α
hx : x ∈ s
y : α
hy : ¬y ∈ s
hxy : f x = g' y
⊢ False
[PROOFSTEP]
obtain ⟨y', hy', rfl⟩ : y ∈ g '' (f '' s)ᶜ := by rwa [hns]
[GOAL]
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x : α
hx : x ∈ s
y : α
hy : ¬y ∈ s
hxy : f x = g' y
⊢ y ∈ g '' (f '' s)ᶜ
[PROOFSTEP]
rwa [hns]
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x : α
hx : x ∈ s
y' : β
hy' : y' ∈ (f '' s)ᶜ
hy : ¬g y' ∈ s
hxy : f x = g' (g y')
⊢ False
[PROOFSTEP]
rw [g'g _] at hxy
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this : Surjective h
x : α
hx : x ∈ s
y' : β
hy' : y' ∈ (f '' s)ᶜ
hy : ¬g y' ∈ s
hxy : f x = y'
⊢ False
[PROOFSTEP]
exact hy' ⟨x, hx, hxy⟩
[GOAL]
case inr
α : Type u
β : Type v
f : α → β
g : β → α
hf : Injective f
hg : Injective g
hβ : Nonempty β
F : Set α →o Set α :=
{ toFun := fun s => (g '' (f '' s)ᶜ)ᶜ,
monotone' := (_ : ∀ (s t : Set α), s ≤ t → (g '' (f '' s)ᶜ)ᶜ ⊆ (g '' (f '' t)ᶜ)ᶜ) }
s : Set α := ↑OrderHom.lfp F
hs : (g '' (f '' s)ᶜ)ᶜ = s
hns : g '' (f '' s)ᶜ = sᶜ
g' : α → β := invFun g
g'g : LeftInverse g' g
hg'ns : g' '' sᶜ = (f '' s)ᶜ
h : α → β := piecewise s f g'
this✝ : Surjective h
this : Injective h
⊢ ∃ h, Bijective h
[PROOFSTEP]
exact ⟨h, ‹Injective h›, ‹Surjective h›⟩
[GOAL]
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
⊢ ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
[PROOFSTEP]
simpa only [ne_eq, not_exists, not_forall, not_and] using h
[GOAL]
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x : (i : ι) → β i
hx : x ∈ insert f s
y : (i : ι) → β i
hy : y ∈ insert f s
⊢ ∀ (i : ι), x i = y i → x = y
[PROOFSTEP]
cases' hx with hx hx
[GOAL]
case inl
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x y : (i : ι) → β i
hy : y ∈ insert f s
hx : x = f
⊢ ∀ (i : ι), x i = y i → x = y
[PROOFSTEP]
cases' hy with hy hy
[GOAL]
case inr
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x y : (i : ι) → β i
hy : y ∈ insert f s
hx : x ∈ s
⊢ ∀ (i : ι), x i = y i → x = y
[PROOFSTEP]
cases' hy with hy hy
[GOAL]
case inl.inl
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x y : (i : ι) → β i
hx : x = f
hy : y = f
⊢ ∀ (i : ι), x i = y i → x = y
[PROOFSTEP]
simp [hx, hy]
[GOAL]
case inl.inr
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x y : (i : ι) → β i
hx : x = f
hy : y ∈ s
⊢ ∀ (i : ι), x i = y i → x = y
[PROOFSTEP]
subst x
[GOAL]
case inl.inr
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
y : (i : ι) → β i
hy : y ∈ s
⊢ ∀ (i : ι), f i = y i → f = y
[PROOFSTEP]
exact fun i e => (hf i y hy e.symm).elim
[GOAL]
case inr.inl
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x y : (i : ι) → β i
hx : x ∈ s
hy : y = f
⊢ ∀ (i : ι), x i = y i → x = y
[PROOFSTEP]
subst y
[GOAL]
case inr.inl
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x : (i : ι) → β i
hx : x ∈ s
⊢ ∀ (i : ι), x i = f i → x = f
[PROOFSTEP]
exact fun i e => (hf i x hx e).elim
[GOAL]
case inr.inr
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
h✝ : ¬∃ i, ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
h : ∀ (i : ι), ∃ y, ∀ (x : (i : ι) → β i), x ∈ s → x i ≠ y
f : (x : ι) → β x
hf : ∀ (x : ι) (x_1 : (i : ι) → β i), x_1 ∈ s → x_1 x ≠ f x
x y : (i : ι) → β i
hx : x ∈ s
hy : y ∈ s
⊢ ∀ (i : ι), x i = y i → x = y
[PROOFSTEP]
exact hs x hx y hy
[GOAL]
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
i : ι
e : ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
f : β i → (i : ι) → β i
hf : ∀ (x : β i), f x ∈ s ∧ f x i = x
j : ι
a b : β i
e' : (fun a => f a j) a = (fun a => f a j) b
⊢ a = b
[PROOFSTEP]
let ⟨sa, ea⟩ := hf a
[GOAL]
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
i : ι
e : ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
f : β i → (i : ι) → β i
hf : ∀ (x : β i), f x ∈ s ∧ f x i = x
j : ι
a b : β i
e' : (fun a => f a j) a = (fun a => f a j) b
sa : f a ∈ s
ea : f a i = a
⊢ a = b
[PROOFSTEP]
let ⟨sb, eb⟩ := hf b
[GOAL]
ι : Type u
β : ι → Type v
I : Nonempty ι
s : Set ((i : ι) → β i)
hs : s ∈ Function.Embedding.sets β
ms : ∀ (a : Set ((i : ι) → β i)), a ∈ Function.Embedding.sets β → s ⊆ a → a = s
i : ι
e : ∀ (y : β i), ∃ x, x ∈ s ∧ x i = y
f : β i → (i : ι) → β i
hf : ∀ (x : β i), f x ∈ s ∧ f x i = x
j : ι
a b : β i
e' : (fun a => f a j) a = (fun a => f a j) b
sa : f a ∈ s
ea : f a i = a
sb : f b ∈ s
eb : f b i = b
⊢ a = b
[PROOFSTEP]
rw [← ea, ← eb, hs _ sa _ sb _ e']
| {"mathlib_filename": "Mathlib.SetTheory.Cardinal.SchroederBernstein", "llama_tokens": 12034} |
[GOAL]
x y z✝ : ZFSet
hx : IsTransitive x
hy : IsTransitive y
z : ZFSet
hz : z ∈ x ∩ y
w : ZFSet
hw : w ∈ z
⊢ w ∈ x ∩ y
[PROOFSTEP]
rw [mem_inter] at hz ⊢
[GOAL]
x y z✝ : ZFSet
hx : IsTransitive x
hy : IsTransitive y
z : ZFSet
hz : z ∈ x ∧ z ∈ y
w : ZFSet
hw : w ∈ z
⊢ w ∈ x ∧ w ∈ y
[PROOFSTEP]
exact ⟨hx.mem_trans hw hz.1, hy.mem_trans hw hz.2⟩
[GOAL]
x y✝ z✝ : ZFSet
h : IsTransitive x
y : ZFSet
hy : y ∈ ⋃₀ x
z : ZFSet
hz : z ∈ y
⊢ z ∈ ⋃₀ x
[PROOFSTEP]
rcases mem_sUnion.1 hy with ⟨w, hw, hw'⟩
[GOAL]
case intro.intro
x y✝ z✝ : ZFSet
h : IsTransitive x
y : ZFSet
hy : y ∈ ⋃₀ x
z : ZFSet
hz : z ∈ y
w : ZFSet
hw : w ∈ x
hw' : y ∈ w
⊢ z ∈ ⋃₀ x
[PROOFSTEP]
exact mem_sUnion_of_mem hz (h.mem_trans hw' hw)
[GOAL]
x y✝ z✝ : ZFSet
H : ∀ (y : ZFSet), y ∈ x → IsTransitive y
y : ZFSet
hy : y ∈ ⋃₀ x
z : ZFSet
hz : z ∈ y
⊢ z ∈ ⋃₀ x
[PROOFSTEP]
rcases mem_sUnion.1 hy with ⟨w, hw, hw'⟩
[GOAL]
case intro.intro
x y✝ z✝ : ZFSet
H : ∀ (y : ZFSet), y ∈ x → IsTransitive y
y : ZFSet
hy : y ∈ ⋃₀ x
z : ZFSet
hz : z ∈ y
w : ZFSet
hw : w ∈ x
hw' : y ∈ w
⊢ z ∈ ⋃₀ x
[PROOFSTEP]
exact mem_sUnion_of_mem ((H w hw).mem_trans hz hw') hw
[GOAL]
x y z : ZFSet
hx : IsTransitive x
hy : IsTransitive y
⊢ IsTransitive (x ∪ y)
[PROOFSTEP]
rw [← sUnion_pair]
[GOAL]
x y z : ZFSet
hx : IsTransitive x
hy : IsTransitive y
⊢ IsTransitive (⋃₀ {x, y})
[PROOFSTEP]
apply IsTransitive.sUnion' fun z => _
[GOAL]
x y z : ZFSet
hx : IsTransitive x
hy : IsTransitive y
⊢ ∀ (z : ZFSet), z ∈ {x, y} → IsTransitive z
[PROOFSTEP]
intro
[GOAL]
x y z : ZFSet
hx : IsTransitive x
hy : IsTransitive y
z✝ : ZFSet
⊢ z✝ ∈ {x, y} → IsTransitive z✝
[PROOFSTEP]
rw [mem_pair]
[GOAL]
x y z : ZFSet
hx : IsTransitive x
hy : IsTransitive y
z✝ : ZFSet
⊢ z✝ = x ∨ z✝ = y → IsTransitive z✝
[PROOFSTEP]
rintro (rfl | rfl)
[GOAL]
case inl
y z : ZFSet
hy : IsTransitive y
z✝ : ZFSet
hx : IsTransitive z✝
⊢ IsTransitive z✝
case inr x z : ZFSet hx : IsTransitive x z✝ : ZFSet hy : IsTransitive z✝ ⊢ IsTransitive z✝
[PROOFSTEP]
assumption'
[GOAL]
x y✝ z✝ : ZFSet
h : IsTransitive x
y : ZFSet
hy : y ∈ powerset x
z : ZFSet
hz : z ∈ y
⊢ z ∈ powerset x
[PROOFSTEP]
rw [mem_powerset] at hy ⊢
[GOAL]
x y✝ z✝ : ZFSet
h : IsTransitive x
y : ZFSet
hy : y ⊆ x
z : ZFSet
hz : z ∈ y
⊢ z ⊆ x
[PROOFSTEP]
exact h.subset_of_mem (hy hz)
[GOAL]
x y✝ z : ZFSet
h : IsTransitive x
y : ZFSet
hy : y ∈ ⋃₀ x
⊢ y ∈ x
[PROOFSTEP]
rcases mem_sUnion.1 hy with ⟨z, hz, hz'⟩
[GOAL]
case intro.intro
x y✝ z✝ : ZFSet
h : IsTransitive x
y : ZFSet
hy : y ∈ ⋃₀ x
z : ZFSet
hz : z ∈ x
hz' : y ∈ z
⊢ y ∈ x
[PROOFSTEP]
exact h.mem_trans hz' hz
| {"mathlib_filename": "Mathlib.SetTheory.ZFC.Ordinal", "llama_tokens": 1454} |
[GOAL]
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
⊢ #↑t ≤ a
[PROOFSTEP]
rcases lt_or_le a ℵ₀ with ha | ha
[GOAL]
case inl
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
ha : a < ℵ₀
⊢ #↑t ≤ a
[PROOFSTEP]
obtain ⟨n, rfl⟩ : ∃ (n : ℕ), a = n := lt_aleph0.1 ha
[GOAL]
case inl.intro
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
⊢ #↑t ≤ ↑n
[PROOFSTEP]
apply mk_le_iff_forall_finset_subset_card_le.2 (fun s hs ↦ ?_)
[GOAL]
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
⊢ Finset.card s ≤ n
[PROOFSTEP]
have A : ∀ x ∈ s, ∀ᶠ i in l, x ∈ f i := fun x hx ↦ ht x (hs hx)
[GOAL]
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
⊢ Finset.card s ≤ n
[PROOFSTEP]
have B : ∀ᶠ i in l, ∀ x ∈ s, x ∈ f i := (s.eventually_all).2 A
[GOAL]
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
⊢ Finset.card s ≤ n
[PROOFSTEP]
rcases B.exists with ⟨i, hi⟩
[GOAL]
case intro
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
⊢ Finset.card s ≤ n
[PROOFSTEP]
have : ∀ i, Fintype (f i) := fun i ↦ (lt_aleph0_iff_fintype.1 ((h'f i).trans_lt ha)).some
[GOAL]
case intro
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
⊢ Finset.card s ≤ n
[PROOFSTEP]
let u : Finset α := (f i).toFinset
[GOAL]
case intro
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
⊢ Finset.card s ≤ n
[PROOFSTEP]
have I1 : s.card ≤ u.card :=
by
have : s ⊆ u := fun x hx ↦ by simpa only [Set.mem_toFinset] using hi x hx
exact Finset.card_le_of_subset this
[GOAL]
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
⊢ Finset.card s ≤ Finset.card u
[PROOFSTEP]
have : s ⊆ u := fun x hx ↦ by simpa only [Set.mem_toFinset] using hi x hx
[GOAL]
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
x : α
hx : x ∈ s
⊢ x ∈ u
[PROOFSTEP]
simpa only [Set.mem_toFinset] using hi x hx
[GOAL]
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this✝ : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
this : s ⊆ u
⊢ Finset.card s ≤ Finset.card u
[PROOFSTEP]
exact Finset.card_le_of_subset this
[GOAL]
case intro
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
I1 : Finset.card s ≤ Finset.card u
⊢ Finset.card s ≤ n
[PROOFSTEP]
have I2 : (u.card : Cardinal) ≤ n := by convert h'f i; simp only [Set.toFinset_card, mk_fintype]
[GOAL]
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
I1 : Finset.card s ≤ Finset.card u
⊢ ↑(Finset.card u) ≤ ↑n
[PROOFSTEP]
convert h'f i
[GOAL]
case h.e'_3
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
I1 : Finset.card s ≤ Finset.card u
⊢ ↑(Finset.card u) = #↑(f i)
[PROOFSTEP]
simp only [Set.toFinset_card, mk_fintype]
[GOAL]
case intro
α ι : Type u
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
n : ℕ
h'f : ∀ (i : ι), #↑(f i) ≤ ↑n
ha : ↑n < ℵ₀
s : Finset α
hs : ↑s ⊆ t
A : ∀ (x : α), x ∈ s → ∀ᶠ (i : ι) in l, x ∈ f i
B : ∀ᶠ (i : ι) in l, ∀ (x : α), x ∈ s → x ∈ f i
i : ι
hi : ∀ (x : α), x ∈ s → x ∈ f i
this : (i : ι) → Fintype ↑(f i)
u : Finset α := toFinset (f i)
I1 : Finset.card s ≤ Finset.card u
I2 : ↑(Finset.card u) ≤ ↑n
⊢ Finset.card s ≤ n
[PROOFSTEP]
exact
I1.trans
(Nat.cast_le.1 I2)
-- case `a` infinite:
[GOAL]
case inr
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
ha : ℵ₀ ≤ a
⊢ #↑t ≤ a
[PROOFSTEP]
have : t ⊆ ⋃ i, f i := by
intro x hx
obtain ⟨i, hi⟩ : ∃ i, x ∈ f i := (ht x hx).exists
exact mem_iUnion_of_mem i hi
[GOAL]
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
ha : ℵ₀ ≤ a
⊢ t ⊆ ⋃ (i : ι), f i
[PROOFSTEP]
intro x hx
[GOAL]
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
ha : ℵ₀ ≤ a
x : α
hx : x ∈ t
⊢ x ∈ ⋃ (i : ι), f i
[PROOFSTEP]
obtain ⟨i, hi⟩ : ∃ i, x ∈ f i := (ht x hx).exists
[GOAL]
case intro
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
ha : ℵ₀ ≤ a
x : α
hx : x ∈ t
i : ι
hi : x ∈ f i
⊢ x ∈ ⋃ (i : ι), f i
[PROOFSTEP]
exact mem_iUnion_of_mem i hi
[GOAL]
case inr
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
ha : ℵ₀ ≤ a
this : t ⊆ ⋃ (i : ι), f i
⊢ #↑t ≤ a
[PROOFSTEP]
calc
#t ≤ #(⋃ i, f i) := mk_le_mk_of_subset this
_ ≤ sum (fun i ↦ #(f i)) := mk_iUnion_le_sum_mk
_ ≤ sum (fun _ ↦ a) := (sum_le_sum _ _ h'f)
_ = #ι * a := by simp
_ ≤ ℵ₀ * a := (mul_le_mul_right' mk_le_aleph0 a)
_ = a := aleph0_mul_eq ha
[GOAL]
α ι : Type u
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
ha : ℵ₀ ≤ a
this : t ⊆ ⋃ (i : ι), f i
⊢ (sum fun x => a) = #ι * a
[PROOFSTEP]
simp
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
⊢ #↑t ≤ a
[PROOFSTEP]
let g : ULift.{u, v} ι → Set (ULift.{v, u} α) := (ULift.down ⁻¹' ·) ∘ f ∘ ULift.down
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
⊢ #↑t ≤ a
[PROOFSTEP]
suffices #(ULift.down.{v} ⁻¹' t) ≤ Cardinal.lift.{v, u} a by simpa
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
this : #↑(ULift.down ⁻¹' t) ≤ lift a
⊢ #↑t ≤ a
[PROOFSTEP]
simpa
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
⊢ #↑(ULift.down ⁻¹' t) ≤ lift a
[PROOFSTEP]
let l' : Filter (ULift.{u} ι) := Filter.map ULift.up l
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
l' : Filter (ULift ι) := Filter.map ULift.up l
⊢ #↑(ULift.down ⁻¹' t) ≤ lift a
[PROOFSTEP]
have : NeBot l' := map_neBot
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
l' : Filter (ULift ι) := Filter.map ULift.up l
this : NeBot l'
⊢ #↑(ULift.down ⁻¹' t) ≤ lift a
[PROOFSTEP]
apply mk_subtype_le_of_countable_eventually_mem_aux (ι := ULift.{u} ι) (l := l') (f := g)
[GOAL]
case ht
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
l' : Filter (ULift ι) := Filter.map ULift.up l
this : NeBot l'
⊢ ∀ (x : ULift α), x ∈ ULift.down ⁻¹' t → ∀ᶠ (i : ULift ι) in l', x ∈ g i
[PROOFSTEP]
intro x hx
[GOAL]
case ht
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
l' : Filter (ULift ι) := Filter.map ULift.up l
this : NeBot l'
x : ULift α
hx : x ∈ ULift.down ⁻¹' t
⊢ ∀ᶠ (i : ULift ι) in l', x ∈ g i
[PROOFSTEP]
simpa only [Function.comp_apply, mem_preimage, eventually_map] using ht _ hx
[GOAL]
case h'f
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
l' : Filter (ULift ι) := Filter.map ULift.up l
this : NeBot l'
⊢ ∀ (i : ULift ι), #↑(g i) ≤ lift a
[PROOFSTEP]
intro i
[GOAL]
case h'f
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
t : Set α
ht : ∀ (x : α), x ∈ t → ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
g : ULift ι → Set (ULift α) := (fun x => ULift.down ⁻¹' x) ∘ f ∘ ULift.down
l' : Filter (ULift ι) := Filter.map ULift.up l
this : NeBot l'
i : ULift ι
⊢ #↑(g i) ≤ lift a
[PROOFSTEP]
simpa using h'f i.down
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
⊢ #α ≤ a
[PROOFSTEP]
rw [← mk_univ]
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) ≤ a
⊢ #↑Set.univ ≤ a
[PROOFSTEP]
exact mk_subtype_le_of_countable_eventually_mem (l := l) (fun x _ ↦ ht x) h'f
[GOAL]
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) = a
⊢ #α = a
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) = a
⊢ #α ≤ a
[PROOFSTEP]
apply mk_le_of_countable_eventually_mem ht (fun i ↦ (h'f i).le)
[GOAL]
case a
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) = a
⊢ a ≤ #α
[PROOFSTEP]
obtain ⟨i⟩ : Nonempty ι := nonempty_of_neBot l
[GOAL]
case a.intro
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) = a
i : ι
⊢ a ≤ #α
[PROOFSTEP]
rw [← (h'f i)]
[GOAL]
case a.intro
α : Type u
ι : Type v
a : Cardinal.{u}
inst✝¹ : Countable ι
f : ι → Set α
l : Filter ι
inst✝ : NeBot l
ht : ∀ (x : α), ∀ᶠ (i : ι) in l, x ∈ f i
h'f : ∀ (i : ι), #↑(f i) = a
i : ι
⊢ #↑(f i) ≤ #α
[PROOFSTEP]
exact mk_set_le (f i)
| {"mathlib_filename": "Mathlib.SetTheory.Cardinal.CountableCover", "llama_tokens": 8950} |
[GOAL]
⊢ lift 𝔠 = 𝔠
[PROOFSTEP]
rw [← two_power_aleph0, lift_two_power, lift_aleph0, two_power_aleph0]
[GOAL]
c : Cardinal.{u}
⊢ 𝔠 ≤ lift c ↔ 𝔠 ≤ c
[PROOFSTEP]
rw [← lift_continuum.{u, v}, lift_le]
[GOAL]
c : Cardinal.{u}
⊢ lift c ≤ 𝔠 ↔ c ≤ 𝔠
[PROOFSTEP]
rw [← lift_continuum.{u, v}, lift_le]
[GOAL]
c : Cardinal.{u}
⊢ 𝔠 < lift c ↔ 𝔠 < c
[PROOFSTEP]
rw [← lift_continuum.{u, v}, lift_lt]
[GOAL]
c : Cardinal.{u}
⊢ lift c < 𝔠 ↔ c < 𝔠
[PROOFSTEP]
rw [← lift_continuum.{u, v}, lift_lt]
[GOAL]
⊢ beth 1 = 𝔠
[PROOFSTEP]
simpa using beth_succ 0
[GOAL]
⊢ #(Set ℕ) = 𝔠
[PROOFSTEP]
simp
[GOAL]
⊢ aleph 1 ≤ 𝔠
[PROOFSTEP]
rw [← succ_aleph0]
[GOAL]
⊢ Order.succ ℵ₀ ≤ 𝔠
[PROOFSTEP]
exact Order.succ_le_of_lt aleph0_lt_continuum
[GOAL]
⊢ 𝔠 ^ ℵ₀ = 𝔠
[PROOFSTEP]
rw [← two_power_aleph0, ← power_mul, mul_eq_left le_rfl le_rfl aleph0_ne_zero]
| {"mathlib_filename": "Mathlib.SetTheory.Cardinal.Continuum", "llama_tokens": 512} |
[GOAL]
R : Type u₁
L : Type u₂
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ
x y : L
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
suffices mkAlgHom R L (ιₜ ⁅x, y⁆ + ιₜ y * ιₜ x) = mkAlgHom R L (ιₜ x * ιₜ y) by rw [AlgHom.map_mul] at this ;
simp [LieRing.of_associative_ring_bracket, ← this]
[GOAL]
R : Type u₁
L : Type u₂
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ
x y : L
this : ↑(mkAlgHom R L) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(mkAlgHom R L) (↑ιₜ x * ↑ιₜ y)
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
rw [AlgHom.map_mul] at this
[GOAL]
R : Type u₁
L : Type u₂
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ
x y : L
this : ↑(mkAlgHom R L) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(mkAlgHom R L) (↑ιₜ x) * ↑(mkAlgHom R L) (↑ιₜ y)
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
⁅x, y⁆ =
⁅AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
x,
AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : L),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
y⁆
[PROOFSTEP]
simp [LieRing.of_associative_ring_bracket, ← this]
[GOAL]
R : Type u₁
L : Type u₂
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
src✝ : L →ₗ[R] UniversalEnvelopingAlgebra R L := LinearMap.comp (AlgHom.toLinearMap (mkAlgHom R L)) ιₜ
x y : L
⊢ ↑(mkAlgHom R L) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(mkAlgHom R L) (↑ιₜ x * ↑ιₜ y)
[PROOFSTEP]
exact RingQuot.mkAlgHom_rel _ (Rel.lie_compat x y)
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f✝ f : L →ₗ⁅R⁆ A
⊢ ∀ ⦃x y : TensorAlgebra R L⦄, Rel R L x y → ↑(↑(TensorAlgebra.lift R) ↑f) x = ↑(↑(TensorAlgebra.lift R) ↑f) y
[PROOFSTEP]
intro a b h
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f✝ f : L →ₗ⁅R⁆ A
a b : TensorAlgebra R L
h : Rel R L a b
⊢ ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b
[PROOFSTEP]
induction' h with x y
[GOAL]
case lie_compat
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f✝ f : L →ₗ⁅R⁆ A
a b : TensorAlgebra R L
x y : L
⊢ ↑(↑(TensorAlgebra.lift R) ↑f) (↑ιₜ ⁅x, y⁆ + ↑ιₜ y * ↑ιₜ x) = ↑(↑(TensorAlgebra.lift R) ↑f) (↑ιₜ x * ↑ιₜ y)
[PROOFSTEP]
simp only [LieRing.of_associative_ring_bracket, map_add, TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap,
LieHom.map_lie, map_mul, sub_add_cancel]
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f✝ f : L →ₗ⁅R⁆ A
⊢ (fun F => LieHom.comp (AlgHom.toLieHom F) (ι R))
((fun f =>
↑(RingQuot.liftAlgHom R)
{ val := ↑(TensorAlgebra.lift R) ↑f,
property :=
(_ :
∀ ⦃a b : TensorAlgebra R L⦄,
Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) })
f) =
f
[PROOFSTEP]
ext
-- Porting note: was
-- simp only [ι, mkAlgHom, TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap,
-- LinearMap.toFun_eq_coe, LinearMap.coe_comp, LieHom.coe_comp, AlgHom.coe_toLieHom,
-- LieHom.coe_mk, Function.comp_apply, AlgHom.toLinearMap_apply,
-- RingQuot.liftAlgHom_mkAlgHom_apply]
[GOAL]
case h
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f✝ f : L →ₗ⁅R⁆ A
x✝ : L
⊢ ↑((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R))
((fun f =>
↑(RingQuot.liftAlgHom R)
{ val := ↑(TensorAlgebra.lift R) ↑f,
property :=
(_ :
∀ ⦃a b : TensorAlgebra R L⦄,
Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) })
f))
x✝ =
↑f x✝
[PROOFSTEP]
simp only [LieHom.coe_comp, Function.comp_apply, AlgHom.coe_toLieHom, UniversalEnvelopingAlgebra.ι_apply, mkAlgHom]
[GOAL]
case h
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f✝ f : L →ₗ⁅R⁆ A
x✝ : L
⊢ ↑(↑(RingQuot.liftAlgHom R)
{ val := ↑(TensorAlgebra.lift R) ↑f,
property :=
(_ :
∀ ⦃a b : TensorAlgebra R L⦄,
Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) })
(↑(RingQuot.mkAlgHom R (Rel R L)) (↑ιₜ x✝)) =
↑f x✝
[PROOFSTEP]
rw [RingQuot.liftAlgHom_mkAlgHom_apply]
[GOAL]
case h
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f✝ f : L →ₗ⁅R⁆ A
x✝ : L
⊢ ↑(↑(TensorAlgebra.lift R) ↑f) (↑ιₜ x✝) = ↑f x✝
[PROOFSTEP]
simp only [TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap]
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
F : UniversalEnvelopingAlgebra R L →ₐ[R] A
⊢ (fun f =>
↑(RingQuot.liftAlgHom R)
{ val := ↑(TensorAlgebra.lift R) ↑f,
property :=
(_ :
∀ ⦃a b : TensorAlgebra R L⦄,
Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) })
((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) F) =
F
[PROOFSTEP]
apply RingQuot.ringQuot_ext'
[GOAL]
case w
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
F : UniversalEnvelopingAlgebra R L →ₐ[R] A
⊢ AlgHom.comp
((fun f =>
↑(RingQuot.liftAlgHom R)
{ val := ↑(TensorAlgebra.lift R) ↑f,
property :=
(_ :
∀ ⦃a b : TensorAlgebra R L⦄,
Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) })
((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) F))
(RingQuot.mkAlgHom R (Rel R L)) =
AlgHom.comp F (RingQuot.mkAlgHom R (Rel R L))
[PROOFSTEP]
ext
-- Porting note: was
-- simp only [ι, mkAlgHom, TensorAlgebra.lift_ι_apply, LieHom.coe_toLinearMap,
-- LinearMap.toFun_eq_coe, LinearMap.coe_comp, LieHom.coe_linearMap_comp,
-- AlgHom.comp_toLinearMap, Function.comp_apply, AlgHom.toLinearMap_apply,
-- RingQuot.liftAlgHom_mkAlgHom_apply, AlgHom.coe_toLieHom, LieHom.coe_mk]
[GOAL]
case w.w.h
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
F : UniversalEnvelopingAlgebra R L →ₐ[R] A
x✝ : L
⊢ ↑(LinearMap.comp
(AlgHom.toLinearMap
(AlgHom.comp
((fun f =>
↑(RingQuot.liftAlgHom R)
{ val := ↑(TensorAlgebra.lift R) ↑f,
property :=
(_ :
∀ ⦃a b : TensorAlgebra R L⦄,
Rel R L a b → ↑(↑(TensorAlgebra.lift R) ↑f) a = ↑(↑(TensorAlgebra.lift R) ↑f) b) })
((fun F => LieHom.comp (AlgHom.toLieHom F) (ι R)) F))
(RingQuot.mkAlgHom R (Rel R L))))
ιₜ)
x✝ =
↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp F (RingQuot.mkAlgHom R (Rel R L)))) ιₜ) x✝
[PROOFSTEP]
simp [mkAlgHom]
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
x : L
⊢ ↑(↑(lift R) f) (↑(ι R) x) = ↑f x
[PROOFSTEP]
rw [← Function.comp_apply (f := lift R f) (g := ι R) (x := x), ι_comp_lift]
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
x : L
⊢ ↑(↑(lift R) f) (↑(mkAlgHom R L) (↑ιₜ x)) = ↑f x
[PROOFSTEP]
simpa using lift_ι_apply R f x
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
⊢ ↑g ∘ ↑(ι R) = ↑f ↔ g = ↑(lift R) f
[PROOFSTEP]
refine' Iff.trans _ (lift R).symm_apply_eq
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
⊢ ↑g ∘ ↑(ι R) = ↑f ↔ ↑(lift R).symm g = f
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
⊢ ↑g ∘ ↑(ι R) = ↑f → ↑(lift R).symm g = f
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
h : ↑g ∘ ↑(ι R) = ↑f
⊢ ↑(lift R).symm g = f
[PROOFSTEP]
ext
[GOAL]
case mp.h
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
h : ↑g ∘ ↑(ι R) = ↑f
x✝ : L
⊢ ↑(↑(lift R).symm g) x✝ = ↑f x✝
[PROOFSTEP]
simp [← h]
[GOAL]
case mpr
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
⊢ ↑(lift R).symm g = f → ↑g ∘ ↑(ι R) = ↑f
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
h : ↑(lift R).symm g = f
⊢ ↑g ∘ ↑(ι R) = ↑f
[PROOFSTEP]
ext
[GOAL]
case mpr.h
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g : UniversalEnvelopingAlgebra R L →ₐ[R] A
h : ↑(lift R).symm g = f
x✝ : L
⊢ (↑g ∘ ↑(ι R)) x✝ = ↑f x✝
[PROOFSTEP]
simp [← h]
[GOAL]
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g₁ g₂ : UniversalEnvelopingAlgebra R L →ₐ[R] A
h : LieHom.comp (AlgHom.toLieHom g₁) (ι R) = LieHom.comp (AlgHom.toLieHom g₂) (ι R)
⊢ ↑(lift R).symm g₁ = ↑(lift R).symm g₂
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u₁
L : Type u₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
A : Type u₃
inst✝¹ : Ring A
inst✝ : Algebra R A
f : L →ₗ⁅R⁆ A
g₁ g₂ : UniversalEnvelopingAlgebra R L →ₐ[R] A
h : LieHom.comp (AlgHom.toLieHom g₁) (ι R) = LieHom.comp (AlgHom.toLieHom g₂) (ι R)
x✝ : L
⊢ ↑(↑(lift R).symm g₁) x✝ = ↑(↑(lift R).symm g₂) x✝
[PROOFSTEP]
simp [h]
| {"mathlib_filename": "Mathlib.Algebra.Lie.UniversalEnveloping", "llama_tokens": 6692} |
[GOAL]
b : Ordinal.{?u.2}
C : Ordinal.{?u.2} → Sort u_1
H0 : C 0
H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o
o : Ordinal.{?u.2}
⊢ C o
[PROOFSTEP]
by_cases h : o = 0
[GOAL]
case pos
b : Ordinal.{?u.2}
C : Ordinal.{?u.2} → Sort u_1
H0 : C 0
H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o
o : Ordinal.{?u.2}
h : o = 0
⊢ C o
[PROOFSTEP]
rw [h]
[GOAL]
case pos
b : Ordinal.{?u.2}
C : Ordinal.{?u.2} → Sort u_1
H0 : C 0
H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o
o : Ordinal.{?u.2}
h : o = 0
⊢ C 0
[PROOFSTEP]
exact H0
[GOAL]
case neg
b : Ordinal.{?u.2}
C : Ordinal.{?u.2} → Sort u_1
H0 : C 0
H : (o : Ordinal.{?u.2}) → o ≠ 0 → C (o % b ^ log b o) → C o
o : Ordinal.{?u.2}
h : ¬o = 0
⊢ C o
[PROOFSTEP]
exact H o h (CNFRec _ H0 H (o % b ^ log b o))
[GOAL]
b o : Ordinal.{u_2}
h : ¬o = 0
⊢ (invImage (fun a => a) wellFoundedRelation).1 (o % b ^ log b o) o
[PROOFSTEP]
exact mod_opow_log_lt_self b h
[GOAL]
C : Ordinal.{u_2} → Sort u_1
b : Ordinal.{u_2}
H0 : C 0
H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o
⊢ CNFRec b H0 H 0 = H0
[PROOFSTEP]
rw [CNFRec, dif_pos rfl]
[GOAL]
C : Ordinal.{u_2} → Sort u_1
b : Ordinal.{u_2}
H0 : C 0
H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o
⊢ Eq.mpr (_ : C 0 = C 0) H0 = H0
[PROOFSTEP]
rfl
[GOAL]
b o : Ordinal.{u_2}
C : Ordinal.{u_2} → Sort u_1
ho : o ≠ 0
H0 : C 0
H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o
⊢ CNFRec b H0 H o = H o ho (CNFRec b H0 H (o % b ^ log b o))
[PROOFSTEP]
rw [CNFRec, dif_neg ho]
[GOAL]
o : Ordinal.{u_1}
ho : o ≠ 0
⊢ CNF 0 o = [(0, o)]
[PROOFSTEP]
simp [CNF_ne_zero ho]
[GOAL]
o : Ordinal.{u_1}
ho : o ≠ 0
⊢ CNF 1 o = [(0, o)]
[PROOFSTEP]
simp [CNF_ne_zero ho]
[GOAL]
b o : Ordinal.{u_1}
hb : b ≤ 1
ho : o ≠ 0
⊢ CNF b o = [(0, o)]
[PROOFSTEP]
rcases le_one_iff.1 hb with (rfl | rfl)
[GOAL]
case inl
o : Ordinal.{u_1}
ho : o ≠ 0
hb : 0 ≤ 1
⊢ CNF 0 o = [(0, o)]
[PROOFSTEP]
exact zero_CNF ho
[GOAL]
case inr
o : Ordinal.{u_1}
ho : o ≠ 0
hb : 1 ≤ 1
⊢ CNF 1 o = [(0, o)]
[PROOFSTEP]
exact one_CNF ho
[GOAL]
b o : Ordinal.{u_1}
ho : o ≠ 0
hb : o < b
⊢ CNF b o = [(0, o)]
[PROOFSTEP]
simp only [CNF_ne_zero ho, log_eq_zero hb, opow_zero, div_one, mod_one, CNF_zero]
[GOAL]
b o : Ordinal.{u_1}
⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b 0) = 0
[PROOFSTEP]
rw [CNF_zero]
[GOAL]
b o : Ordinal.{u_1}
⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 [] = 0
[PROOFSTEP]
rfl
[GOAL]
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b (o % b ^ log b o)) = o % b ^ log b o
⊢ foldr (fun p r => b ^ p.fst * p.snd + r) 0 (CNF b o) = o
[PROOFSTEP]
rw [CNF_ne_zero ho, foldr_cons, IH, div_add_mod]
[GOAL]
b o : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
⊢ x ∈ CNF b o → x.fst ≤ log b o
[PROOFSTEP]
refine' CNFRec b _ (fun o ho H ↦ _) o
[GOAL]
case refine'_1
b o : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
⊢ x ∈ CNF b 0 → x.fst ≤ log b 0
[PROOFSTEP]
rw [CNF_zero]
[GOAL]
case refine'_1
b o : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
⊢ x ∈ [] → x.fst ≤ log b 0
[PROOFSTEP]
intro contra
[GOAL]
case refine'_1
b o : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
contra : x ∈ []
⊢ x.fst ≤ log b 0
[PROOFSTEP]
contradiction
[GOAL]
case refine'_2
b o✝ : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
H : x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b (o % b ^ log b o)
⊢ x ∈ CNF b o → x.fst ≤ log b o
[PROOFSTEP]
rw [CNF_ne_zero ho, mem_cons]
[GOAL]
case refine'_2
b o✝ : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
H : x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b (o % b ^ log b o)
⊢ x = (log b o, o / b ^ log b o) ∨ x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b o
[PROOFSTEP]
rintro (rfl | h)
[GOAL]
case refine'_2.inl
b o✝ o : Ordinal.{u}
ho : o ≠ 0
H : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → (log b o, o / b ^ log b o).fst ≤ log b (o % b ^ log b o)
⊢ (log b o, o / b ^ log b o).fst ≤ log b o
[PROOFSTEP]
exact le_rfl
[GOAL]
case refine'_2.inr
b o✝ : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
H : x ∈ CNF b (o % b ^ log b o) → x.fst ≤ log b (o % b ^ log b o)
h : x ∈ CNF b (o % b ^ log b o)
⊢ x.fst ≤ log b o
[PROOFSTEP]
exact (H h).trans (log_mono_right _ (mod_opow_log_lt_self b ho).le)
[GOAL]
b o : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
⊢ x ∈ CNF b o → 0 < x.snd
[PROOFSTEP]
refine' CNFRec b (by simp) (fun o ho IH ↦ _) o
[GOAL]
b o : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
⊢ x ∈ CNF b 0 → 0 < x.snd
[PROOFSTEP]
simp
[GOAL]
b o✝ : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.snd
⊢ x ∈ CNF b o → 0 < x.snd
[PROOFSTEP]
rw [CNF_ne_zero ho]
[GOAL]
b o✝ : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.snd
⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → 0 < x.snd
[PROOFSTEP]
rintro (h | ⟨_, h⟩)
[GOAL]
case head
b o✝ o : Ordinal.{u}
ho : o ≠ 0
IH : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → 0 < (log b o, o / b ^ log b o).snd
⊢ 0 < (log b o, o / b ^ log b o).snd
[PROOFSTEP]
exact div_opow_log_pos b ho
[GOAL]
case tail
b o✝ : Ordinal.{u}
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.snd
h : Mem x (CNF b (o % b ^ log b o))
⊢ 0 < x.snd
[PROOFSTEP]
exact IH h
[GOAL]
b o : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
⊢ x ∈ CNF b o → x.snd < b
[PROOFSTEP]
refine' CNFRec b _ (fun o ho IH ↦ _) o
[GOAL]
case refine'_1
b o : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
⊢ x ∈ CNF b 0 → x.snd < b
[PROOFSTEP]
simp only [CNF_zero, not_mem_nil, IsEmpty.forall_iff]
[GOAL]
case refine'_2
b o✝ : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b
⊢ x ∈ CNF b o → x.snd < b
[PROOFSTEP]
rw [CNF_ne_zero ho]
[GOAL]
case refine'_2
b o✝ : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b
⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → x.snd < b
[PROOFSTEP]
intro h
[GOAL]
case refine'_2
b o✝ : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b
h : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o)
⊢ x.snd < b
[PROOFSTEP]
cases' (mem_cons.mp h) with h h
[GOAL]
case refine'_2.inl
b o✝ : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b
h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o)
h : x = (log b o, o / b ^ log b o)
⊢ x.snd < b
[PROOFSTEP]
rw [h]
[GOAL]
case refine'_2.inl
b o✝ : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b
h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o)
h : x = (log b o, o / b ^ log b o)
⊢ (log b o, o / b ^ log b o).snd < b
[PROOFSTEP]
simpa only using div_opow_log_lt o hb
[GOAL]
case refine'_2.inr
b o✝ : Ordinal.{u}
hb : 1 < b
x : Ordinal.{u} × Ordinal.{u}
o : Ordinal.{u}
ho : o ≠ 0
IH : x ∈ CNF b (o % b ^ log b o) → x.snd < b
h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o)
h : x ∈ CNF b (o % b ^ log b o)
⊢ x.snd < b
[PROOFSTEP]
exact IH h
[GOAL]
b o : Ordinal.{u_1}
⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
[PROOFSTEP]
refine' CNFRec b _ (fun o ho IH ↦ _) o
[GOAL]
case refine'_1
b o : Ordinal.{u_1}
⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b 0))
[PROOFSTEP]
simp only [CNF_zero]
[GOAL]
case refine'_2
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
[PROOFSTEP]
cases' le_or_lt b 1 with hb hb
[GOAL]
case refine'_2.inl
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : b ≤ 1
⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
[PROOFSTEP]
simp only [CNF_of_le_one hb ho, map]
[GOAL]
case refine'_2.inr
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : 1 < b
⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
[PROOFSTEP]
cases' lt_or_le o b with hob hbo
[GOAL]
case refine'_2.inr.inl
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : 1 < b
hob : o < b
⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
[PROOFSTEP]
simp only [CNF_of_lt ho hob, map]
[GOAL]
case refine'_2.inr.inr
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : 1 < b
hbo : b ≤ o
⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
[PROOFSTEP]
rw [CNF_ne_zero ho, map_cons, sorted_cons]
[GOAL]
case refine'_2.inr.inr
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : 1 < b
hbo : b ≤ o
⊢ (∀ (b_1 : Ordinal.{u_1}), b_1 ∈ map Prod.fst (CNF b (o % b ^ log b o)) → (log b o, o / b ^ log b o).fst > b_1) ∧
Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
[PROOFSTEP]
refine' ⟨fun a H ↦ _, IH⟩
[GOAL]
case refine'_2.inr.inr
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : 1 < b
hbo : b ≤ o
a : Ordinal.{u_1}
H : a ∈ map Prod.fst (CNF b (o % b ^ log b o))
⊢ (log b o, o / b ^ log b o).fst > a
[PROOFSTEP]
rw [mem_map] at H
[GOAL]
case refine'_2.inr.inr
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : 1 < b
hbo : b ≤ o
a : Ordinal.{u_1}
H : ∃ a_1, a_1 ∈ CNF b (o % b ^ log b o) ∧ a_1.fst = a
⊢ (log b o, o / b ^ log b o).fst > a
[PROOFSTEP]
rcases H with ⟨⟨a, a'⟩, H, rfl⟩
[GOAL]
case refine'_2.inr.inr.intro.mk.intro
b o✝ o : Ordinal.{u_1}
ho : o ≠ 0
IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
hb : 1 < b
hbo : b ≤ o
a a' : Ordinal.{u_1}
H : (a, a') ∈ CNF b (o % b ^ log b o)
⊢ (log b o, o / b ^ log b o).fst > (a, a').fst
[PROOFSTEP]
exact (CNF_fst_le_log H).trans_lt (log_mod_opow_log_lt_log_self hb ho hbo)
| {"mathlib_filename": "Mathlib.SetTheory.Ordinal.CantorNormalForm", "llama_tokens": 5800} |
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ IsOpen {a} ↔ ¬IsLimit a
[PROOFSTEP]
refine' ⟨fun h ⟨h₀, hsucc⟩ => _, fun ha => _⟩
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
h : IsOpen {a}
x✝ : IsLimit a
h₀ : a ≠ 0
hsucc : ∀ (a_1 : Ordinal.{u}), a_1 < a → succ a_1 < a
⊢ False
[PROOFSTEP]
obtain ⟨b, c, hbc, hbc'⟩ :=
(mem_nhds_iff_exists_Ioo_subset' ⟨0, Ordinal.pos_iff_ne_zero.2 h₀⟩ ⟨_, lt_succ a⟩).1 (h.mem_nhds rfl)
[GOAL]
case refine'_1.intro.intro.intro
s : Set Ordinal.{u}
a : Ordinal.{u}
h : IsOpen {a}
x✝ : IsLimit a
h₀ : a ≠ 0
hsucc : ∀ (a_1 : Ordinal.{u}), a_1 < a → succ a_1 < a
b c : Ordinal.{u}
hbc : a ∈ Set.Ioo b c
hbc' : Set.Ioo b c ⊆ {a}
⊢ False
[PROOFSTEP]
have hba := hsucc b hbc.1
[GOAL]
case refine'_1.intro.intro.intro
s : Set Ordinal.{u}
a : Ordinal.{u}
h : IsOpen {a}
x✝ : IsLimit a
h₀ : a ≠ 0
hsucc : ∀ (a_1 : Ordinal.{u}), a_1 < a → succ a_1 < a
b c : Ordinal.{u}
hbc : a ∈ Set.Ioo b c
hbc' : Set.Ioo b c ⊆ {a}
hba : succ b < a
⊢ False
[PROOFSTEP]
exact hba.ne (hbc' ⟨lt_succ b, hba.trans hbc.2⟩)
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a : Ordinal.{u}
ha : ¬IsLimit a
⊢ IsOpen {a}
[PROOFSTEP]
rcases zero_or_succ_or_limit a with (rfl | ⟨b, rfl⟩ | ha')
[GOAL]
case refine'_2.inl
s : Set Ordinal.{u}
ha : ¬IsLimit 0
⊢ IsOpen {0}
[PROOFSTEP]
rw [← bot_eq_zero, ← Set.Iic_bot, ← Iio_succ]
[GOAL]
case refine'_2.inl
s : Set Ordinal.{u}
ha : ¬IsLimit 0
⊢ IsOpen (Set.Iio (succ ⊥))
[PROOFSTEP]
exact isOpen_Iio
[GOAL]
case refine'_2.inr.inl.intro
s : Set Ordinal.{u}
b : Ordinal.{u}
ha : ¬IsLimit (succ b)
⊢ IsOpen {succ b}
[PROOFSTEP]
rw [← Set.Icc_self, Icc_succ_left, ← Ioo_succ_right]
[GOAL]
case refine'_2.inr.inl.intro
s : Set Ordinal.{u}
b : Ordinal.{u}
ha : ¬IsLimit (succ b)
⊢ IsOpen (Set.Ioo b (succ (succ b)))
[PROOFSTEP]
exact isOpen_Ioo
[GOAL]
case refine'_2.inr.inr
s : Set Ordinal.{u}
a : Ordinal.{u}
ha : ¬IsLimit a
ha' : IsLimit a
⊢ IsOpen {a}
[PROOFSTEP]
exact (ha ha').elim
[GOAL]
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
a : Ordinal.{u_1}
⊢ 𝓝[Set.Iio a] a = 𝓝[{a}ᶜ] a
[PROOFSTEP]
rw [← nhds_left'_sup_nhds_right', nhds_right', sup_bot_eq]
-- todo: generalize to a `SuccOrder`
[GOAL]
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
a : Ordinal.{u_1}
⊢ 𝓝[Set.Iic a] a = 𝓝 a
[PROOFSTEP]
rw [← nhds_left_sup_nhds_right', nhds_right', sup_bot_eq]
-- todo: generalize to a `SuccOrder`
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ IsOpen s ↔ ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
[PROOFSTEP]
refine isOpen_iff_mem_nhds.trans <| forall₂_congr fun o ho => ?_
[GOAL]
s : Set Ordinal.{u}
a o : Ordinal.{u}
ho : o ∈ s
⊢ s ∈ 𝓝 o ↔ IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
[PROOFSTEP]
by_cases ho' : IsLimit o
[GOAL]
case pos
s : Set Ordinal.{u}
a o : Ordinal.{u}
ho : o ∈ s
ho' : IsLimit o
⊢ s ∈ 𝓝 o ↔ IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
[PROOFSTEP]
simp only [(nhdsBasis_Ioc ho'.1).mem_iff, ho', true_implies]
[GOAL]
case pos
s : Set Ordinal.{u}
a o : Ordinal.{u}
ho : o ∈ s
ho' : IsLimit o
⊢ (∃ i, i < o ∧ Set.Ioc i o ⊆ s) ↔ ∃ a, a < o ∧ Set.Ioo a o ⊆ s
[PROOFSTEP]
refine exists_congr fun a => and_congr_right fun ha => ?_
[GOAL]
case pos
s : Set Ordinal.{u}
a✝ o : Ordinal.{u}
ho : o ∈ s
ho' : IsLimit o
a : Ordinal.{u}
ha : a < o
⊢ Set.Ioc a o ⊆ s ↔ Set.Ioo a o ⊆ s
[PROOFSTEP]
simp only [← Set.Ioo_insert_right ha, Set.insert_subset_iff, ho, true_and]
[GOAL]
case neg
s : Set Ordinal.{u}
a o : Ordinal.{u}
ho : o ∈ s
ho' : ¬IsLimit o
⊢ s ∈ 𝓝 o ↔ IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
[PROOFSTEP]
simp [nhds_eq_pure.2 ho', ho, ho']
[GOAL]
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
⊢ TFAE
[a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a,
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a,
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a,
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a]
[PROOFSTEP]
tfae_have 1 → 2
[GOAL]
case tfae_1_to_2
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
⊢ a ∈ closure s → a ∈ closure (s ∩ Iic a)
[PROOFSTEP]
simp only [mem_closure_iff_nhdsWithin_neBot, inter_comm s, nhdsWithin_inter', nhds_left_eq_nhds]
[GOAL]
case tfae_1_to_2
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
⊢ Filter.NeBot (𝓝[s] a) → Filter.NeBot (𝓝 a ⊓ Filter.principal s)
[PROOFSTEP]
exact id
[GOAL]
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
⊢ TFAE
[a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a,
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a,
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a,
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a]
[PROOFSTEP]
tfae_have 2 → 3
[GOAL]
case tfae_2_to_3
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
⊢ a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
[PROOFSTEP]
intro h
[GOAL]
case tfae_2_to_3
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
h : a ∈ closure (s ∩ Iic a)
⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
[PROOFSTEP]
cases' (s ∩ Iic a).eq_empty_or_nonempty with he hne
[GOAL]
case tfae_2_to_3.inl
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
h : a ∈ closure (s ∩ Iic a)
he : s ∩ Iic a = ∅
⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
[PROOFSTEP]
simp [he] at h
[GOAL]
case tfae_2_to_3.inr
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
h : a ∈ closure (s ∩ Iic a)
hne : Set.Nonempty (s ∩ Iic a)
⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
[PROOFSTEP]
refine ⟨hne, (isLUB_of_mem_closure ?_ h).csSup_eq hne⟩
[GOAL]
case tfae_2_to_3.inr
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
h : a ∈ closure (s ∩ Iic a)
hne : Set.Nonempty (s ∩ Iic a)
⊢ a ∈ upperBounds (s ∩ Iic a)
[PROOFSTEP]
exact fun x hx => hx.2
[GOAL]
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
⊢ TFAE
[a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a,
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a,
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a,
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a]
[PROOFSTEP]
tfae_have 3 → 4
[GOAL]
case tfae_3_to_4
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
⊢ Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
[PROOFSTEP]
exact fun h => ⟨_, inter_subset_left _ _, h.1, bddAbove_Iic.mono (inter_subset_right _ _), h.2⟩
[GOAL]
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
⊢ TFAE
[a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a,
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a,
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a,
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a]
[PROOFSTEP]
tfae_have 4 → 5
[GOAL]
case tfae_4_to_5
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
⊢ (∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) →
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a
[PROOFSTEP]
rintro ⟨t, hts, hne, hbdd, rfl⟩
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t
[PROOFSTEP]
have hlub : IsLUB t (sSup t) := isLUB_csSup hne hbdd
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t
[PROOFSTEP]
let ⟨y, hyt⟩ := hne
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t
[PROOFSTEP]
classical
refine ⟨succ (sSup t), succ_ne_zero _, fun x _ => if x ∈ t then x else y, fun x _ => ?_, ?_⟩
· simp only
split_ifs with h <;> exact hts ‹_›
· refine le_antisymm (bsup_le fun x _ => ?_) (csSup_le hne fun x hx => ?_)
· split_ifs <;> exact hlub.1 ‹_›
· refine (if_pos hx).symm.trans_le (le_bsup _ _ <| (hlub.1 hx).trans_lt (lt_succ _))
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
⊢ ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = sSup t
[PROOFSTEP]
refine ⟨succ (sSup t), succ_ne_zero _, fun x _ => if x ∈ t then x else y, fun x _ => ?_, ?_⟩
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro.refine_1
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
x✝ : x < succ (sSup t)
⊢ (fun x x_1 => if x ∈ t then x else y) x x✝ ∈ s
[PROOFSTEP]
simp only
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro.refine_1
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
x✝ : x < succ (sSup t)
⊢ (if x ∈ t then x else y) ∈ s
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
x✝ : x < succ (sSup t)
h : x ∈ t
⊢ x ∈ s
[PROOFSTEP]
exact hts ‹_›
[GOAL]
case neg
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
x✝ : x < succ (sSup t)
h : ¬x ∈ t
⊢ y ∈ s
[PROOFSTEP]
exact hts ‹_›
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro.refine_2
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
⊢ (bsup (succ (sSup t)) fun x x_1 => if x ∈ t then x else y) = sSup t
[PROOFSTEP]
refine le_antisymm (bsup_le fun x _ => ?_) (csSup_le hne fun x hx => ?_)
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro.refine_2.refine_1
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
x✝ : x < succ (sSup t)
⊢ (if x ∈ t then x else y) ≤ sSup t
[PROOFSTEP]
split_ifs
[GOAL]
case pos
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
x✝ : x < succ (sSup t)
h✝ : x ∈ t
⊢ x ≤ sSup t
[PROOFSTEP]
exact hlub.1 ‹_›
[GOAL]
case neg
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
x✝ : x < succ (sSup t)
h✝ : ¬x ∈ t
⊢ y ≤ sSup t
[PROOFSTEP]
exact hlub.1 ‹_›
[GOAL]
case tfae_4_to_5.intro.intro.intro.intro.refine_2.refine_2
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s t : Set Ordinal.{u}
hts : t ⊆ s
hne : Set.Nonempty t
hbdd : BddAbove t
tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t))
tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sSup t)) ∧ sSup (s ∩ Iic (sSup t)) = sSup t →
∃ t_1, t_1 ⊆ s ∧ Set.Nonempty t_1 ∧ BddAbove t_1 ∧ sSup t_1 = sSup t
hlub : IsLUB t (sSup t)
y : Ordinal.{u}
hyt : y ∈ t
x : Ordinal.{u}
hx : x ∈ t
⊢ x ≤ bsup (succ (sSup t)) fun x x_1 => if x ∈ t then x else y
[PROOFSTEP]
refine (if_pos hx).symm.trans_le (le_bsup _ _ <| (hlub.1 hx).trans_lt (lt_succ _))
[GOAL]
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) →
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a
⊢ TFAE
[a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a,
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a,
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a,
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a]
[PROOFSTEP]
tfae_have 5 → 6
[GOAL]
case tfae_5_to_6
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) →
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a
⊢ (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) →
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a
[PROOFSTEP]
rintro ⟨o, h₀, f, hfs, rfl⟩
[GOAL]
case tfae_5_to_6.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s : Set Ordinal.{u}
o : Ordinal.{u}
h₀ : o ≠ 0
f : (x : Ordinal.{u}) → x < o → Ordinal.{u}
hfs : ∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s
tfae_1_to_2 : bsup o f ∈ closure s → bsup o f ∈ closure (s ∩ Iic (bsup o f))
tfae_2_to_3 :
bsup o f ∈ closure (s ∩ Iic (bsup o f)) → Set.Nonempty (s ∩ Iic (bsup o f)) ∧ sSup (s ∩ Iic (bsup o f)) = bsup o f
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (bsup o f)) ∧ sSup (s ∩ Iic (bsup o f)) = bsup o f →
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = bsup o f
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = bsup o f) →
∃ o_1, o_1 ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o_1), f_1 x hx ∈ s) ∧ bsup o_1 f_1 = bsup o f
⊢ ∃ ι, Nonempty ι ∧ ∃ f_1, (∀ (i : ι), f_1 i ∈ s) ∧ sup f_1 = bsup o f
[PROOFSTEP]
exact ⟨_, out_nonempty_iff_ne_zero.2 h₀, familyOfBFamily o f, fun _ => hfs _ _, rfl⟩
[GOAL]
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) →
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a
tfae_5_to_6 :
(∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) →
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a
⊢ TFAE
[a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a,
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a,
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a,
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a]
[PROOFSTEP]
tfae_have 6 → 1
[GOAL]
case tfae_6_to_1
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) →
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a
tfae_5_to_6 :
(∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) →
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a
⊢ (∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a) → a ∈ closure s
[PROOFSTEP]
rintro ⟨ι, hne, f, hfs, rfl⟩
[GOAL]
case tfae_6_to_1.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s : Set Ordinal.{u}
ι : Type u
hne : Nonempty ι
f : ι → Ordinal.{u}
hfs : ∀ (i : ι), f i ∈ s
tfae_1_to_2 : sup f ∈ closure s → sup f ∈ closure (s ∩ Iic (sup f))
tfae_2_to_3 : sup f ∈ closure (s ∩ Iic (sup f)) → Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f →
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f) →
∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f
tfae_5_to_6 :
(∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f) →
∃ ι_1, Nonempty ι_1 ∧ ∃ f_1, (∀ (i : ι_1), f_1 i ∈ s) ∧ sup f_1 = sup f
⊢ sup f ∈ closure s
[PROOFSTEP]
rw [sup, iSup]
[GOAL]
case tfae_6_to_1.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
s : Set Ordinal.{u}
ι : Type u
hne : Nonempty ι
f : ι → Ordinal.{u}
hfs : ∀ (i : ι), f i ∈ s
tfae_1_to_2 : sup f ∈ closure s → sup f ∈ closure (s ∩ Iic (sup f))
tfae_2_to_3 : sup f ∈ closure (s ∩ Iic (sup f)) → Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f
tfae_3_to_4 :
Set.Nonempty (s ∩ Iic (sup f)) ∧ sSup (s ∩ Iic (sup f)) = sup f →
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = sup f) →
∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f
tfae_5_to_6 :
(∃ o, o ≠ 0 ∧ ∃ f_1, (∀ (x : Ordinal.{u}) (hx : x < o), f_1 x hx ∈ s) ∧ bsup o f_1 = sup f) →
∃ ι_1, Nonempty ι_1 ∧ ∃ f_1, (∀ (i : ι_1), f_1 i ∈ s) ∧ sup f_1 = sup f
⊢ sSup (Set.range f) ∈ closure s
[PROOFSTEP]
exact closure_mono (range_subset_iff.2 hfs) <| csSup_mem_closure (range_nonempty f) (bddAbove_range.{u, u} f)
[GOAL]
s✝ : Set Ordinal.{u}
a✝ a : Ordinal.{u}
s : Set Ordinal.{u}
tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a)
tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a
tfae_3_to_4 : Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a → ∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a
tfae_4_to_5 :
(∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a) →
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a
tfae_5_to_6 :
(∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) →
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a
tfae_6_to_1 : (∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a) → a ∈ closure s
⊢ TFAE
[a ∈ closure s, a ∈ closure (s ∩ Iic a), Set.Nonempty (s ∩ Iic a) ∧ sSup (s ∩ Iic a) = a,
∃ t, t ⊆ s ∧ Set.Nonempty t ∧ BddAbove t ∧ sSup t = a,
∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a,
∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a]
[PROOFSTEP]
tfae_finish
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ (∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ sup f = a) ↔ ∃ ι x f, (∀ (i : ι), f i ∈ s) ∧ sup f = a
[PROOFSTEP]
simp only [exists_prop]
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : IsClosed s
⊢ a ∈ s ↔ ∃ ι _hι f, (∀ (i : ι), f i ∈ s) ∧ sup f = a
[PROOFSTEP]
rw [← mem_closure_iff_sup, hs.closure_eq]
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ bsup o f = a) ↔
∃ o _ho f, (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) ∧ bsup o f = a
[PROOFSTEP]
simp only [exists_prop]
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : IsClosed s
⊢ a ∈ s ↔ ∃ o _ho f, (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) ∧ bsup o f = a
[PROOFSTEP]
rw [← mem_closure_iff_bsup, hs.closure_eq]
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ IsClosed s ↔ ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s
[PROOFSTEP]
use fun hs ι hι f hf => (mem_closed_iff_sup hs).2 ⟨ι, hι, f, hf, rfl⟩
[GOAL]
case mpr
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ (∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) → IsClosed s
[PROOFSTEP]
rw [← closure_subset_iff_isClosed]
[GOAL]
case mpr
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ (∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) → closure s ⊆ s
[PROOFSTEP]
intro h x hx
[GOAL]
case mpr
s : Set Ordinal.{u}
a : Ordinal.{u}
h : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s
x : Ordinal.{u}
hx : x ∈ closure s
⊢ x ∈ s
[PROOFSTEP]
rcases mem_closure_iff_sup.1 hx with ⟨ι, hι, f, hf, rfl⟩
[GOAL]
case mpr.intro.intro.intro.intro
s : Set Ordinal.{u}
a : Ordinal.{u}
h : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
hx : sup f ∈ closure s
⊢ sup f ∈ s
[PROOFSTEP]
exact h hι f hf
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ IsClosed s ↔
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
[PROOFSTEP]
rw [isClosed_iff_sup]
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
⊢ (∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s) ↔
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
[PROOFSTEP]
refine' ⟨fun H o ho f hf => H (out_nonempty_iff_ne_zero.2 ho) _ _, fun H ι hι f hf => _⟩
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
H : ∀ {ι : Type u}, Nonempty ι → ∀ (f : ι → Ordinal.{u}), (∀ (i : ι), f i ∈ s) → sup f ∈ s
o : Ordinal.{u}
ho : o ≠ 0
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
hf : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s
⊢ ∀ (i : (Quotient.out o).α), familyOfBFamily o f i ∈ s
[PROOFSTEP]
exact fun i => hf _ _
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a : Ordinal.{u}
H :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
⊢ sup f ∈ s
[PROOFSTEP]
rw [← bsup_eq_sup]
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a : Ordinal.{u}
H :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
⊢ bsup (type WellOrderingRel) (bfamilyOfFamily f) ∈ s
[PROOFSTEP]
apply H (type_ne_zero_iff_nonempty.2 hι)
[GOAL]
case refine'_2.a
s : Set Ordinal.{u}
a : Ordinal.{u}
H :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
⊢ ∀ (i : Ordinal.{u}) (hi : i < type WellOrderingRel), bfamilyOfFamily f i hi ∈ s
[PROOFSTEP]
exact fun i hi => hf _
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
ha : a ∈ frontier s
⊢ IsLimit a
[PROOFSTEP]
simp only [frontier_eq_closure_inter_closure, Set.mem_inter_iff, mem_closure_iff] at ha
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ)
⊢ IsLimit a
[PROOFSTEP]
by_contra h
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ)
h : ¬IsLimit a
⊢ False
[PROOFSTEP]
rw [← isOpen_singleton_iff] at h
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ)
h : IsOpen {a}
⊢ False
[PROOFSTEP]
rcases ha.1 _ h rfl with ⟨b, hb, hb'⟩
[GOAL]
case intro.intro
s : Set Ordinal.{u}
a : Ordinal.{u}
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ)
h : IsOpen {a}
b : Ordinal.{u}
hb : b ∈ {a}
hb' : b ∈ s
⊢ False
[PROOFSTEP]
rcases ha.2 _ h rfl with ⟨c, hc, hc'⟩
[GOAL]
case intro.intro.intro.intro
s : Set Ordinal.{u}
a : Ordinal.{u}
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ)
h : IsOpen {a}
b : Ordinal.{u}
hb : b ∈ {a}
hb' : b ∈ s
c : Ordinal.{u}
hc : c ∈ {a}
hc' : c ∈ sᶜ
⊢ False
[PROOFSTEP]
rw [Set.mem_singleton_iff] at *
[GOAL]
case intro.intro.intro.intro
s : Set Ordinal.{u}
a : Ordinal.{u}
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → a ∈ o → Set.Nonempty (o ∩ sᶜ)
h : IsOpen {a}
b : Ordinal.{u}
hb : b = a
hb' : b ∈ s
c : Ordinal.{u}
hc : c = a
hc' : c ∈ sᶜ
⊢ False
[PROOFSTEP]
subst hb
[GOAL]
case intro.intro.intro.intro
s : Set Ordinal.{u}
b : Ordinal.{u}
hb' : b ∈ s
c : Ordinal.{u}
hc' : c ∈ sᶜ
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → b ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → b ∈ o → Set.Nonempty (o ∩ sᶜ)
h : IsOpen {b}
hc : c = b
⊢ False
[PROOFSTEP]
subst hc
[GOAL]
case intro.intro.intro.intro
s : Set Ordinal.{u}
c : Ordinal.{u}
hc' : c ∈ sᶜ
hb' : c ∈ s
ha :
(∀ (o : Set Ordinal.{u}), IsOpen o → c ∈ o → Set.Nonempty (o ∩ s)) ∧
∀ (o : Set Ordinal.{u}), IsOpen o → c ∈ o → Set.Nonempty (o ∩ sᶜ)
h : IsOpen {c}
⊢ False
[PROOFSTEP]
exact hc' hb'
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
⊢ IsNormal f ↔ StrictMono f ∧ Continuous f
[PROOFSTEP]
refine' ⟨fun h => ⟨h.strictMono, _⟩, _⟩
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
⊢ Continuous f
[PROOFSTEP]
rw [continuous_def]
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
⊢ ∀ (s : Set Ordinal.{u}), IsOpen s → IsOpen (f ⁻¹' s)
[PROOFSTEP]
intro s hs
[GOAL]
case refine'_1
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
s : Set Ordinal.{u}
hs : IsOpen s
⊢ IsOpen (f ⁻¹' s)
[PROOFSTEP]
rw [isOpen_iff] at *
[GOAL]
case refine'_1
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
s : Set Ordinal.{u}
hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
⊢ ∀ (o : Ordinal.{u}), o ∈ f ⁻¹' s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s
[PROOFSTEP]
intro o ho ho'
[GOAL]
case refine'_1
s✝ : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
s : Set Ordinal.{u}
hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
o : Ordinal.{u}
ho : o ∈ f ⁻¹' s
ho' : IsLimit o
⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s
[PROOFSTEP]
rcases hs _ ho (h.isLimit ho') with ⟨a, ha, has⟩
[GOAL]
case refine'_1.intro.intro
s✝ : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
s : Set Ordinal.{u}
hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
o : Ordinal.{u}
ho : o ∈ f ⁻¹' s
ho' : IsLimit o
a : Ordinal.{u}
ha : a < f o
has : Set.Ioo a (f o) ⊆ s
⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s
[PROOFSTEP]
rw [← IsNormal.bsup_eq.{u, u} h ho', lt_bsup] at ha
[GOAL]
case refine'_1.intro.intro
s✝ : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
s : Set Ordinal.{u}
hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
o : Ordinal.{u}
ho : o ∈ f ⁻¹' s
ho' : IsLimit o
a : Ordinal.{u}
ha : ∃ i hi, a < f i
has : Set.Ioo a (f o) ⊆ s
⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s
[PROOFSTEP]
rcases ha with ⟨b, hb, hab⟩
[GOAL]
case refine'_1.intro.intro.intro.intro
s✝ : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : IsNormal f
s : Set Ordinal.{u}
hs : ∀ (o : Ordinal.{u}), o ∈ s → IsLimit o → ∃ a, a < o ∧ Set.Ioo a o ⊆ s
o : Ordinal.{u}
ho : o ∈ f ⁻¹' s
ho' : IsLimit o
a : Ordinal.{u}
has : Set.Ioo a (f o) ⊆ s
b : Ordinal.{u}
hb : b < o
hab : a < f b
⊢ ∃ a, a < o ∧ Set.Ioo a o ⊆ f ⁻¹' s
[PROOFSTEP]
exact ⟨b, hb, fun c hc => Set.mem_preimage.2 (has ⟨hab.trans (h.strictMono hc.1), h.strictMono hc.2⟩)⟩
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
⊢ StrictMono f ∧ Continuous f → IsNormal f
[PROOFSTEP]
rw [isNormal_iff_strictMono_limit]
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
⊢ StrictMono f ∧ Continuous f →
StrictMono f ∧
∀ (o : Ordinal.{u}), IsLimit o → ∀ (a : Ordinal.{u}), (∀ (b : Ordinal.{u}), b < o → f b ≤ a) → f o ≤ a
[PROOFSTEP]
rintro ⟨h, h'⟩
[GOAL]
case refine'_2.intro
s : Set Ordinal.{u}
a : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h : StrictMono f
h' : Continuous f
⊢ StrictMono f ∧ ∀ (o : Ordinal.{u}), IsLimit o → ∀ (a : Ordinal.{u}), (∀ (b : Ordinal.{u}), b < o → f b ≤ a) → f o ≤ a
[PROOFSTEP]
refine' ⟨h, fun o ho a h => _⟩
[GOAL]
case refine'_2.intro
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h✝ : StrictMono f
h' : Continuous f
o : Ordinal.{u}
ho : IsLimit o
a : Ordinal.{u}
h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a
⊢ f o ≤ a
[PROOFSTEP]
suffices : o ∈ f ⁻¹' Set.Iic a
[GOAL]
case refine'_2.intro
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h✝ : StrictMono f
h' : Continuous f
o : Ordinal.{u}
ho : IsLimit o
a : Ordinal.{u}
h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a
this : o ∈ f ⁻¹' Set.Iic a
⊢ f o ≤ a
case this
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h✝ : StrictMono f
h' : Continuous f
o : Ordinal.{u}
ho : IsLimit o
a : Ordinal.{u}
h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a
⊢ o ∈ f ⁻¹' Set.Iic a
[PROOFSTEP]
exact Set.mem_preimage.1 this
[GOAL]
case this
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h✝ : StrictMono f
h' : Continuous f
o : Ordinal.{u}
ho : IsLimit o
a : Ordinal.{u}
h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a
⊢ o ∈ f ⁻¹' Set.Iic a
[PROOFSTEP]
rw [mem_closed_iff_sup (IsClosed.preimage h' (@isClosed_Iic _ _ _ _ a))]
[GOAL]
case this
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
f : Ordinal.{u} → Ordinal.{u}
h✝ : StrictMono f
h' : Continuous f
o : Ordinal.{u}
ho : IsLimit o
a : Ordinal.{u}
h : ∀ (b : Ordinal.{u}), b < o → f b ≤ a
⊢ ∃ ι _hι f_1, (∀ (i : ι), f_1 i ∈ f ⁻¹' Set.Iic a) ∧ sup f_1 = o
[PROOFSTEP]
exact ⟨_, out_nonempty_iff_ne_zero.2 ho.1, typein (· < ·), fun i => h _ (typein_lt_self i), sup_typein_limit ho.2⟩
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
⊢ IsNormal (enumOrd s) ↔ IsClosed s
[PROOFSTEP]
have Hs := enumOrd_strictMono hs
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
⊢ IsNormal (enumOrd s) ↔ IsClosed s
[PROOFSTEP]
refine'
⟨fun h => isClosed_iff_sup.2 fun {ι} hι f hf => _, fun h =>
(isNormal_iff_strictMono_limit _).2 ⟨Hs, fun a ha o H => _⟩⟩
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
⊢ sup f ∈ s
[PROOFSTEP]
let g : ι → Ordinal.{u} := fun i => (enumOrdOrderIso hs).symm ⟨_, hf i⟩
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
⊢ sup f ∈ s
[PROOFSTEP]
suffices enumOrd s (sup.{u, u} g) = sup.{u, u} f by
rw [← this]
exact enumOrd_mem hs _
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
this : enumOrd s (sup g) = sup f
⊢ sup f ∈ s
[PROOFSTEP]
rw [← this]
[GOAL]
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
this : enumOrd s (sup g) = sup f
⊢ enumOrd s (sup g) ∈ s
[PROOFSTEP]
exact enumOrd_mem hs _
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
⊢ enumOrd s (sup g) = sup f
[PROOFSTEP]
rw [@IsNormal.sup.{u, u, u} _ h ι g hι]
[GOAL]
case refine'_1
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
⊢ sup (enumOrd s ∘ g) = sup f
[PROOFSTEP]
congr
[GOAL]
case refine'_1.e_f
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
⊢ enumOrd s ∘ g = f
[PROOFSTEP]
ext x
[GOAL]
case refine'_1.e_f.h
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
x : ι
⊢ (enumOrd s ∘ g) x = f x
[PROOFSTEP]
change ((enumOrdOrderIso hs) _).val = f x
[GOAL]
case refine'_1.e_f.h
s : Set Ordinal.{u}
a : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsNormal (enumOrd s)
ι : Type u
hι : Nonempty ι
f : ι → Ordinal.{u}
hf : ∀ (i : ι), f i ∈ s
g : ι → Ordinal.{u} := fun i => ↑(OrderIso.symm (enumOrdOrderIso hs)) { val := f i, property := (_ : f i ∈ s) }
x : ι
⊢ ↑(↑(enumOrdOrderIso hs) (g x)) = f x
[PROOFSTEP]
rw [OrderIso.apply_symm_apply]
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h : IsClosed s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
⊢ enumOrd s a ≤ o
[PROOFSTEP]
rw [isClosed_iff_bsup] at h
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
⊢ enumOrd s a ≤ o
[PROOFSTEP]
suffices : enumOrd s a ≤ bsup.{u, u} a fun b (_ : b < a) => enumOrd s b
[GOAL]
case refine'_2
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
this : enumOrd s a ≤ bsup a fun b x => enumOrd s b
⊢ enumOrd s a ≤ o
case this
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
⊢ enumOrd s a ≤ bsup a fun b x => enumOrd s b
[PROOFSTEP]
exact this.trans (bsup_le H)
[GOAL]
case this
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
⊢ enumOrd s a ≤ bsup a fun b x => enumOrd s b
[PROOFSTEP]
cases' enumOrd_surjective hs _ (h ha.1 (fun b _ => enumOrd s b) fun b _ => enumOrd_mem hs b) with b hb
[GOAL]
case this.intro
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
b : Ordinal.{u}
hb : enumOrd s b = bsup a fun b x => enumOrd s b
⊢ enumOrd s a ≤ bsup a fun b x => enumOrd s b
[PROOFSTEP]
rw [← hb]
[GOAL]
case this.intro
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
b : Ordinal.{u}
hb : enumOrd s b = bsup a fun b x => enumOrd s b
⊢ enumOrd s a ≤ enumOrd s b
[PROOFSTEP]
apply Hs.monotone
[GOAL]
case this.intro.a
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
b : Ordinal.{u}
hb : enumOrd s b = bsup a fun b x => enumOrd s b
⊢ a ≤ b
[PROOFSTEP]
by_contra' hba
[GOAL]
case this.intro.a
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
b : Ordinal.{u}
hb : enumOrd s b = bsup a fun b x => enumOrd s b
hba : b < a
⊢ False
[PROOFSTEP]
apply (Hs (lt_succ b)).not_le
[GOAL]
case this.intro.a
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
b : Ordinal.{u}
hb : enumOrd s b = bsup a fun b x => enumOrd s b
hba : b < a
⊢ enumOrd s (succ b) ≤ enumOrd s b
[PROOFSTEP]
rw [hb]
[GOAL]
case this.intro.a
s : Set Ordinal.{u}
a✝ : Ordinal.{u}
hs : Set.Unbounded (fun x x_1 => x < x_1) s
Hs : StrictMono (enumOrd s)
h :
∀ {o : Ordinal.{u}},
o ≠ 0 →
∀ (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), (∀ (i : Ordinal.{u}) (hi : i < o), f i hi ∈ s) → bsup o f ∈ s
a : Ordinal.{u}
ha : IsLimit a
o : Ordinal.{u}
H : ∀ (b : Ordinal.{u}), b < a → enumOrd s b ≤ o
b : Ordinal.{u}
hb : enumOrd s b = bsup a fun b x => enumOrd s b
hba : b < a
⊢ enumOrd s (succ b) ≤ bsup a fun b x => enumOrd s b
[PROOFSTEP]
exact le_bsup.{u, u} _ _ (ha.2 _ hba)
| {"mathlib_filename": "Mathlib.SetTheory.Ordinal.Topology", "llama_tokens": 24697} |
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' N O : LieSubmodule R L M
h : (fun s => s.carrier) N = (fun s => s.carrier) O
⊢ N = O
[PROOFSTEP]
cases N
[GOAL]
case mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' O : LieSubmodule R L M
toSubmodule✝ : Submodule R M
lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier
h : (fun s => s.carrier) { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = (fun s => s.carrier) O
⊢ { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = O
[PROOFSTEP]
cases O
[GOAL]
case mk.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
toSubmodule✝¹ : Submodule R M
lie_mem✝¹ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝¹.carrier → ⁅x, m⁆ ∈ toSubmodule✝¹.carrier
toSubmodule✝ : Submodule R M
lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier
h :
(fun s => s.carrier) { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } =
(fun s => s.carrier) { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ }
⊢ { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toSubmodule
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
toSubmodule✝¹ : Submodule R M
lie_mem✝¹ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝¹.carrier → ⁅x, m⁆ ∈ toSubmodule✝¹.carrier
toSubmodule✝ : Submodule R M
lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier
h :
(fun s => s.carrier) { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } =
(fun s => s.carrier) { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ }
⊢ toSubmodule✝¹ = toSubmodule✝
[PROOFSTEP]
exact SetLike.coe_injective' h
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
src✝ : Submodule R M := 0
x : L
m : M
h :
m ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, m⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
rw [(Submodule.mem_bot R).1 h]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
src✝ : Submodule R M := 0
x : L
m : M
h :
m ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, 0⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
apply lie_zero
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
p : Submodule R M
h :
∀ {x : L} {m : M},
m ∈
{ toAddSubmonoid := p.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, m⁆ ∈
{ toAddSubmonoid := p.toAddSubmonoid,
smul_mem' :=
(_ : ∀ (c : R) {x : M}, x ∈ p.carrier → c • x ∈ p.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ↑{
toSubmodule :=
{ toAddSubmonoid := p.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ p.carrier → c • x ∈ p.carrier) },
lie_mem := h } =
p
[PROOFSTEP]
cases p
[GOAL]
case mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
toAddSubmonoid✝ : AddSubmonoid M
smul_mem'✝ : ∀ (c : R) {x : M}, x ∈ toAddSubmonoid✝.carrier → c • x ∈ toAddSubmonoid✝.carrier
h :
∀ {x : L} {m : M},
m ∈
{ toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' :=
smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, m⁆ ∈
{ toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' :=
smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ↑{
toSubmodule :=
{ toAddSubmonoid := { toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubmonoid := toAddSubmonoid✝,
smul_mem' := smul_mem'✝ }.toAddSubmonoid.toAddSubsemigroup.carrier) },
lie_mem := h } =
{ toAddSubmonoid := toAddSubmonoid✝, smul_mem' := smul_mem'✝ }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' x y : LieSubmodule R L M
h : ↑x = ↑y
⊢ x = y
[PROOFSTEP]
cases x
[GOAL]
case mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' y : LieSubmodule R L M
toSubmodule✝ : Submodule R M
lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier
h : ↑{ toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = ↑y
⊢ { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ } = y
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
toSubmodule✝¹ : Submodule R M
lie_mem✝¹ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝¹.carrier → ⁅x, m⁆ ∈ toSubmodule✝¹.carrier
toSubmodule✝ : Submodule R M
lie_mem✝ : ∀ {x : L} {m : M}, m ∈ toSubmodule✝.carrier → ⁅x, m⁆ ∈ toSubmodule✝.carrier
h : ↑{ toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = ↑{ toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ }
⊢ { toSubmodule := toSubmodule✝¹, lie_mem := lie_mem✝¹ } = { toSubmodule := toSubmodule✝, lie_mem := lie_mem✝ }
[PROOFSTEP]
congr
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
s : Set M
hs : s = ↑N
a✝ b✝ : M
x : a✝ ∈ s
y : b✝ ∈ s
⊢ a✝ + b✝ ∈ s
[PROOFSTEP]
rw [hs] at x y ⊢
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
s : Set M
hs : s = ↑N
a✝ b✝ : M
x : a✝ ∈ ↑N
y : b✝ ∈ ↑N
⊢ a✝ + b✝ ∈ ↑N
[PROOFSTEP]
exact N.add_mem' x y
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
s : Set M
hs : s = ↑N
⊢ 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier
[PROOFSTEP]
exact hs.symm ▸ N.zero_mem'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
s : Set M
hs : s = ↑N
⊢ ∀ (c : R) {x : M},
x ∈
{ toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ :
0 ∈
{ carrier := s,
add_mem' :=
(_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier →
c • x ∈
{ toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ :
0 ∈
{ carrier := s,
add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
exact hs.symm ▸ N.smul_mem'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
s : Set M
hs : s = ↑N
⊢ ∀ {x : L} {m : M},
m ∈
{
toAddSubmonoid :=
{ toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) },
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈
{
toAddSubsemigroup :=
{ carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ :
0 ∈
{ carrier := s,
add_mem' :=
(_ :
∀ {a b : M},
a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier →
c • x ∈
{
toAddSubsemigroup :=
{ carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ :
0 ∈
{ carrier := s,
add_mem' :=
(_ :
∀ {a b : M},
a ∈ s →
b ∈ s →
a + b ∈
s) }.carrier) }.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, m⁆ ∈
{
toAddSubmonoid :=
{ toAddSubsemigroup := { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ : 0 ∈ { carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) }.carrier) },
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈
{
toAddSubsemigroup :=
{ carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ :
0 ∈
{ carrier := s,
add_mem' :=
(_ :
∀ {a b : M},
a ∈ s → b ∈ s → a + b ∈ s) }.carrier) }.toAddSubsemigroup.carrier →
c • x ∈
{
toAddSubsemigroup :=
{ carrier := s, add_mem' := (_ : ∀ {a b : M}, a ∈ s → b ∈ s → a + b ∈ s) },
zero_mem' :=
(_ :
0 ∈
{ carrier := s,
add_mem' :=
(_ :
∀ {a b : M},
a ∈ s →
b ∈ s →
a + b ∈
s) }.carrier) }.toAddSubsemigroup.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
exact hs.symm ▸ N.lie_mem
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
⊢ ∀ (x y : L) (m : { x // x ∈ ↑N }), ⁅x + y, m⁆ = ⁅x, m⁆ + ⁅y, m⁆
[PROOFSTEP]
intro x y m
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
x y : L
m : { x // x ∈ ↑N }
⊢ ⁅x + y, m⁆ = ⁅x, m⁆ + ⁅y, m⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
x y : L
m : { x // x ∈ ↑N }
⊢ ↑⁅x + y, m⁆ = ↑(⁅x, m⁆ + ⁅y, m⁆)
[PROOFSTEP]
apply add_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
⊢ ∀ (x : L) (m n : { x // x ∈ ↑N }), ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆
[PROOFSTEP]
intro x m n
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
x : L
m n : { x // x ∈ ↑N }
⊢ ⁅x, m + n⁆ = ⁅x, m⁆ + ⁅x, n⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
x : L
m n : { x // x ∈ ↑N }
⊢ ↑⁅x, m + n⁆ = ↑(⁅x, m⁆ + ⁅x, n⁆)
[PROOFSTEP]
apply lie_add
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
⊢ ∀ (x y : L) (m : { x // x ∈ ↑N }), ⁅x, ⁅y, m⁆⁆ = ⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆
[PROOFSTEP]
intro x y m
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
x y : L
m : { x // x ∈ ↑N }
⊢ ⁅x, ⁅y, m⁆⁆ = ⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
x y : L
m : { x // x ∈ ↑N }
⊢ ↑⁅x, ⁅y, m⁆⁆ = ↑(⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆)
[PROOFSTEP]
apply leibniz_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
⊢ ∀ (t : R) (x : L) (m : { x // x ∈ ↑N }), ⁅t • x, m⁆ = t • ⁅x, m⁆
[PROOFSTEP]
intro t x y
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
t : R
x : L
y : { x // x ∈ ↑N }
⊢ ⁅t • x, y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
t : R
x : L
y : { x // x ∈ ↑N }
⊢ ↑⁅t • x, y⁆ = ↑(t • ⁅x, y⁆)
[PROOFSTEP]
apply smul_lie
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
⊢ ∀ (t : R) (x : L) (m : { x // x ∈ ↑N }), ⁅x, t • m⁆ = t • ⁅x, m⁆
[PROOFSTEP]
intro t x y
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
t : R
x : L
y : { x // x ∈ ↑N }
⊢ ⁅x, t • y⁆ = t • ⁅x, y⁆
[PROOFSTEP]
apply SetCoe.ext
[GOAL]
case a
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
t : R
x : L
y : { x // x ∈ ↑N }
⊢ ↑⁅x, t • y⁆ = ↑(t • ⁅x, y⁆)
[PROOFSTEP]
apply lie_smul
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x y : L
h : x ∈ I
⊢ ⁅x, y⁆ ∈ I
[PROOFSTEP]
rw [← lie_skew, ← neg_lie]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x y : L
h : x ∈ I
⊢ ⁅-y, x⁆ ∈ I
[PROOFSTEP]
apply lie_mem_right
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
x y : L
h : x ∈ I
⊢ x ∈ I
[PROOFSTEP]
assumption
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
src✝ : Submodule R L := ↑I
⊢ ∀ {x y : L},
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L},
x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L},
x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L},
x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
intro x y _ hy
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
src✝ : Submodule R L := ↑I
x y : L
a✝ :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
apply lie_mem_right
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
I : LieIdeal R L
src✝ : Submodule R L := ↑I
x y : L
a✝ :
x ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ y ∈ I
[PROOFSTEP]
exact hy
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
p : Submodule R M
⊢ (∃ N, ↑N = p) ↔ ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
p : Submodule R M
⊢ (∃ N, ↑N = p) → ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p
[PROOFSTEP]
rintro ⟨N, rfl⟩ _ _
[GOAL]
case mp.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
x✝ : L
m✝ : M
⊢ m✝ ∈ ↑N → ⁅x✝, m✝⁆ ∈ ↑N
[PROOFSTEP]
exact N.lie_mem
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
p : Submodule R M
⊢ (∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p) → ∃ N, ↑N = p
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
p : Submodule R M
h : ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p
⊢ ∃ N, ↑N = p
[PROOFSTEP]
use{ p with lie_mem := @h }
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
⊢ (∃ I, ↑R L I = K) ↔ ∀ (x y : L), y ∈ K → ⁅x, y⁆ ∈ K
[PROOFSTEP]
simp only [← coe_to_submodule_eq_iff, LieIdeal.coe_to_lieSubalgebra_to_submodule,
Submodule.exists_lieSubmodule_coe_eq_iff L]
-- Porting note: was `exact Iff.rfl`
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K : LieSubalgebra R L
⊢ (∀ (x m : L), m ∈ K.toSubmodule → ⁅x, m⁆ ∈ K.toSubmodule) ↔ ∀ (x y : L), y ∈ K → ⁅x, y⁆ ∈ K
[PROOFSTEP]
simp only [mem_coe_submodule]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K K' : LieSubalgebra R L
h : K ≤ K'
⊢ (∃ I, ↑R { x // x ∈ K' } I = ofLe h) ↔ ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K
[PROOFSTEP]
simp only [exists_lieIdeal_coe_eq_iff, coe_bracket, mem_ofLe]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K K' : LieSubalgebra R L
h : K ≤ K'
⊢ (∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K) ↔ ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K K' : LieSubalgebra R L
h : K ≤ K'
⊢ (∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K) → ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K
[PROOFSTEP]
intro h' x y hx hy
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K K' : LieSubalgebra R L
h : K ≤ K'
h' : ∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K
x y : L
hx : x ∈ K'
hy : y ∈ K
⊢ ⁅x, y⁆ ∈ K
[PROOFSTEP]
exact h' ⟨x, hx⟩ ⟨y, h hy⟩ hy
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K K' : LieSubalgebra R L
h : K ≤ K'
⊢ (∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K) → ∀ (x y : { x // x ∈ K' }), ↑y ∈ K → ⁅↑x, ↑y⁆ ∈ K
[PROOFSTEP]
rintro h' ⟨x, hx⟩ ⟨y, hy⟩ hy'
[GOAL]
case mpr.mk.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
K K' : LieSubalgebra R L
h : K ≤ K'
h' : ∀ (x y : L), x ∈ K' → y ∈ K → ⁅x, y⁆ ∈ K
x : L
hx : x ∈ K'
y : L
hy : y ∈ K'
hy' : ↑{ val := y, property := hy } ∈ K
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := y, property := hy }⁆ ∈ K
[PROOFSTEP]
exact h' x y hx hy'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
src✝ : Submodule R M := sInf {x | ∃ s, s ∈ S ∧ ↑s = x}
x : L
m : M
h :
m ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, m⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
simp only [Submodule.mem_carrier, mem_iInter, Submodule.sInf_coe, mem_setOf_eq, forall_apply_eq_imp_iff₂,
forall_exists_index, and_imp] at h ⊢
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
src✝ : Submodule R M := sInf {x | ∃ s, s ∈ S ∧ ↑s = x}
x : L
m : M
h : ∀ (a : LieSubmodule R L M), a ∈ S → m ∈ ↑↑a
⊢ ∀ (a : LieSubmodule R L M), a ∈ S → ⁅x, m⁆ ∈ ↑↑a
[PROOFSTEP]
intro N hN
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
src✝ : Submodule R M := sInf {x | ∃ s, s ∈ S ∧ ↑s = x}
x : L
m : M
h : ∀ (a : LieSubmodule R L M), a ∈ S → m ∈ ↑↑a
N : LieSubmodule R L M
hN : N ∈ S
⊢ ⁅x, m⁆ ∈ ↑↑N
[PROOFSTEP]
apply N.lie_mem (h N hN)
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
⊢ ↑(sInf S) = ⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule, sInf_coe_toSubmodule, Submodule.sInf_coe]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
⊢ ⋂ (p : Submodule R M) (_ : p ∈ {x | ∃ s, s ∈ S ∧ ↑s = x}), ↑p = ⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s
[PROOFSTEP]
ext m
[GOAL]
case h
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
m : M
⊢ m ∈ ⋂ (p : Submodule R M) (_ : p ∈ {x | ∃ s, s ∈ S ∧ ↑s = x}), ↑p ↔ m ∈ ⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s
[PROOFSTEP]
simp only [mem_iInter, mem_setOf_eq, forall_apply_eq_imp_iff₂, exists_imp, and_imp, SetLike.mem_coe, mem_coeSubmodule]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
⊢ IsGLB S (sInf S)
[PROOFSTEP]
have h : ∀ {N N' : LieSubmodule R L M}, (N : Set M) ≤ N' ↔ N ≤ N' := fun {_ _} ↦ Iff.rfl
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
h : ∀ {N N' : LieSubmodule R L M}, ↑N ≤ ↑N' ↔ N ≤ N'
⊢ IsGLB S (sInf S)
[PROOFSTEP]
apply IsGLB.of_image h
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
h : ∀ {N N' : LieSubmodule R L M}, ↑N ≤ ↑N' ↔ N ≤ N'
⊢ IsGLB ((fun {x} => ↑x) '' S) ↑(sInf S)
[PROOFSTEP]
simp only [sInf_coe]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
S : Set (LieSubmodule R L M)
h : ∀ {N N' : LieSubmodule R L M}, ↑N ≤ ↑N' ↔ N ≤ N'
⊢ IsGLB ((fun {x} => ↑x) '' S) (⋂ (s : LieSubmodule R L M) (_ : s ∈ S), ↑s)
[PROOFSTEP]
exact isGLB_biInf
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
src✝¹ : PartialOrder (LieSubmodule R L M) := SetLike.instPartialOrder
src✝ : CompleteLattice (LieSubmodule R L M) :=
completeLatticeOfInf (LieSubmodule R L M) (_ : ∀ (S : Set (LieSubmodule R L M)), IsGLB S (sInf S))
N : LieSubmodule R L M
x✝ : M
h : x✝ ∈ ⊥
⊢ x✝ ∈ N
[PROOFSTEP]
rw [mem_bot] at h
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
src✝¹ : PartialOrder (LieSubmodule R L M) := SetLike.instPartialOrder
src✝ : CompleteLattice (LieSubmodule R L M) :=
completeLatticeOfInf (LieSubmodule R L M) (_ : ∀ (S : Set (LieSubmodule R L M)), IsGLB S (sInf S))
N : LieSubmodule R L M
x✝ : M
h : x✝ = 0
⊢ x✝ ∈ N
[PROOFSTEP]
rw [h]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
src✝¹ : PartialOrder (LieSubmodule R L M) := SetLike.instPartialOrder
src✝ : CompleteLattice (LieSubmodule R L M) :=
completeLatticeOfInf (LieSubmodule R L M) (_ : ∀ (S : Set (LieSubmodule R L M)), IsGLB S (sInf S))
N : LieSubmodule R L M
x✝ : M
h : x✝ = 0
⊢ 0 ∈ N
[PROOFSTEP]
exact N.zero_mem'
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ↑(N ⊔ N') = ↑N ⊔ ↑N'
[PROOFSTEP]
have aux : ∀ {x : L} {m}, m ∈ (N ⊔ N' : Submodule R M) → ⁅x, m⁆ ∈ (N ⊔ N' : Submodule R M) :=
by
simp only [Submodule.mem_sup]
rintro x m ⟨y, hy, z, hz, rfl⟩
refine' ⟨⁅x, y⁆, N.lie_mem hy, ⁅x, z⁆, N'.lie_mem hz, (lie_add _ _ _).symm⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
[PROOFSTEP]
simp only [Submodule.mem_sup]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ∀ {x : L} {m : M}, (∃ y, y ∈ ↑N ∧ ∃ z, z ∈ ↑N' ∧ y + z = m) → ∃ y, y ∈ ↑N ∧ ∃ z, z ∈ ↑N' ∧ y + z = ⁅x, m⁆
[PROOFSTEP]
rintro x m ⟨y, hy, z, hz, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x : L
y : M
hy : y ∈ ↑N
z : M
hz : z ∈ ↑N'
⊢ ∃ y_1, y_1 ∈ ↑N ∧ ∃ z_1, z_1 ∈ ↑N' ∧ y_1 + z_1 = ⁅x, y + z⁆
[PROOFSTEP]
refine' ⟨⁅x, y⁆, N.lie_mem hy, ⁅x, z⁆, N'.lie_mem hz, (lie_add _ _ _).symm⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
⊢ ↑(N ⊔ N') = ↑N ⊔ ↑N'
[PROOFSTEP]
refine'
le_antisymm (sInf_le ⟨{ (N ⊔ N' : Submodule R M) with lie_mem := aux }, _⟩)
_
-- Porting note: rewrote proof
[GOAL]
case refine'_1
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
⊢ (let src := ↑N ⊔ ↑N';
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem := (_ : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N') }) ∈
{x | N ≤ x ∧ N' ≤ x} ∧
↑(let src := ↑N ⊔ ↑N';
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem := (_ : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N') }) =
↑N ⊔ ↑N'
[PROOFSTEP]
simp only [← coeSubmodule_le_coeSubmodule, mem_setOf_eq, and_true_iff]
[GOAL]
case refine'_1
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
⊢ ↑N ≤
{ toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) } ∧
↑N' ≤
{ toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) }
[PROOFSTEP]
constructor
[GOAL]
case refine'_1.left
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
⊢ ↑N ≤
{ toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) }
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_1.right
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
⊢ ↑N' ≤
{ toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) }
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_1.left
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
x : M
hx : x ∈ ↑N
⊢ x ∈
{ toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) }
[PROOFSTEP]
simp [Submodule.mem_sup_left hx, hx, Submodule.mem_sup_right hx]
[GOAL]
case refine'_1.right
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
x : M
hx : x ∈ ↑N'
⊢ x ∈
{ toAddSubmonoid := (↑N ⊔ ↑N').toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ (↑N ⊔ ↑N').carrier → c • x ∈ (↑N ⊔ ↑N').carrier) }
[PROOFSTEP]
simp [Submodule.mem_sup_left hx, hx, Submodule.mem_sup_right hx]
[GOAL]
case refine'_2
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
aux : ∀ {x : L} {m : M}, m ∈ ↑N ⊔ ↑N' → ⁅x, m⁆ ∈ ↑N ⊔ ↑N'
⊢ ↑N ⊔ ↑N' ≤ ↑(N ⊔ N')
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x : M
⊢ x ∈ N ⊓ N' ↔ x ∈ N ∧ x ∈ N'
[PROOFSTEP]
rw [← mem_coeSubmodule, ← mem_coeSubmodule, ← mem_coeSubmodule, inf_coe_toSubmodule, Submodule.mem_inf]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x : M
⊢ x ∈ N ⊔ N' ↔ ∃ y, y ∈ N ∧ ∃ z, z ∈ N' ∧ y + z = x
[PROOFSTEP]
rw [← mem_coeSubmodule, sup_coe_toSubmodule, Submodule.mem_sup]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x : M
⊢ (∃ y, y ∈ ↑N ∧ ∃ z, z ∈ ↑N' ∧ y + z = x) ↔ ∃ y, y ∈ N ∧ ∃ z, z ∈ N' ∧ y + z = x
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ N = ⊥ ↔ ∀ (m : M), m ∈ N → m = 0
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ N ≤ ⊥ ↔ ∀ (m : M), m ∈ N → m = 0
[PROOFSTEP]
exact Iff.rfl
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ Subsingleton (LieSubmodule R L { x // x ∈ ↑⊥ })
[PROOFSTEP]
apply subsingleton_of_bot_eq_top
[GOAL]
case hα
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ ⊥ = ⊤
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case hα.h.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x : M
hx : x ∈ ↑⊥
⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤
[PROOFSTEP]
change x ∈ ⊥ at hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x : M
hx : x ∈ ⊥
⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤
[PROOFSTEP]
rw [Submodule.mem_bot] at hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x : M
hx✝ : x ∈ ⊥
hx : x = 0
⊢ { val := x, property := hx✝ } ∈ ⊥ ↔ { val := x, property := hx✝ } ∈ ⊤
[PROOFSTEP]
subst hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
hx : 0 ∈ ⊥
⊢ { val := 0, property := hx } ∈ ⊥ ↔ { val := 0, property := hx } ∈ ⊤
[PROOFSTEP]
simp only [true_iff_iff, eq_self_iff_true, Submodule.mk_eq_zero, LieSubmodule.mem_bot, mem_top]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x✝² x✝¹ x✝ : LieSubmodule R L M
⊢ x✝² ≤ x✝ → (x✝² ⊔ x✝¹) ⊓ x✝ ≤ x✝² ⊔ x✝¹ ⊓ x✝
[PROOFSTEP]
simp only [← coeSubmodule_le_coeSubmodule, sup_coe_toSubmodule, inf_coe_toSubmodule]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
x✝² x✝¹ x✝ : LieSubmodule R L M
⊢ ↑x✝² ≤ ↑x✝ → (↑x✝² ⊔ ↑x✝¹) ⊓ ↑x✝ ≤ ↑x✝² ⊔ ↑x✝¹ ⊓ ↑x✝
[PROOFSTEP]
exact IsModularLattice.sup_inf_le_assoc_of_le _
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
⊢ Subsingleton (LieSubmodule R L M) ↔ Subsingleton (Submodule R M)
[PROOFSTEP]
rw [← subsingleton_iff_bot_eq_top, ← subsingleton_iff_bot_eq_top, ← coe_toSubmodule_eq_iff, top_coeSubmodule,
bot_coeSubmodule]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N : LieSubmodule R L M
⊢ Nontrivial { x // x ∈ ↑N } ↔ N ≠ ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N : LieSubmodule R L M
⊢ Nontrivial { x // x ∈ ↑N } → N ≠ ⊥
[PROOFSTEP]
contrapose!
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N : LieSubmodule R L M
⊢ N ≠ ⊥ → Nontrivial { x // x ∈ ↑N }
[PROOFSTEP]
contrapose!
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N : LieSubmodule R L M
⊢ N = ⊥ → ¬Nontrivial { x // x ∈ ↑N }
[PROOFSTEP]
rintro rfl ⟨⟨m₁, h₁ : m₁ ∈ (⊥ : LieSubmodule R L M)⟩, ⟨m₂, h₂ : m₂ ∈ (⊥ : LieSubmodule R L M)⟩, h₁₂⟩
[GOAL]
case mp.mk.intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
m₁ : M
h₁ : m₁ ∈ ⊥
m₂ : M
h₂ : m₂ ∈ ⊥
h₁₂ : { val := m₁, property := h₁ } ≠ { val := m₂, property := h₂ }
⊢ False
[PROOFSTEP]
simp [(LieSubmodule.mem_bot _).mp h₁, (LieSubmodule.mem_bot _).mp h₂] at h₁₂
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N : LieSubmodule R L M
⊢ ¬Nontrivial { x // x ∈ ↑N } → N = ⊥
[PROOFSTEP]
rw [not_nontrivial_iff_subsingleton, LieSubmodule.eq_bot_iff]
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N : LieSubmodule R L M
⊢ Subsingleton { x // x ∈ ↑N } → ∀ (m : M), m ∈ N → m = 0
[PROOFSTEP]
rintro ⟨h⟩ m hm
[GOAL]
case mpr.intro
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N : LieSubmodule R L M
h : ∀ (a b : { x // x ∈ ↑N }), a = b
m : M
hm : m ∈ N
⊢ m = 0
[PROOFSTEP]
simpa using h ⟨m, hm⟩ ⟨_, N.zero_mem⟩
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
h : N ≤ N'
x y : { x // x ∈ ↑N }
⊢ ↑(homOfLe h) x = ↑(homOfLe h) y → x = y
[PROOFSTEP]
simp only [homOfLe_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
x : M
⊢ x ∈ lieSpan R L s ↔ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → x ∈ N
[PROOFSTEP]
change x ∈ (lieSpan R L s : Set M) ↔ _
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
x : M
⊢ x ∈ ↑(lieSpan R L s) ↔ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → x ∈ N
[PROOFSTEP]
erw [sInf_coe]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
x : M
⊢ x ∈ ⋂ (s_1 : LieSubmodule R L M) (_ : s_1 ∈ {N | s ⊆ ↑N}), ↑s_1 ↔ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → x ∈ N
[PROOFSTEP]
exact mem_iInter₂
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
⊢ s ⊆ ↑(lieSpan R L s)
[PROOFSTEP]
intro m hm
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
m : M
hm : m ∈ s
⊢ m ∈ ↑(lieSpan R L s)
[PROOFSTEP]
erw [mem_lieSpan]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
m : M
hm : m ∈ s
⊢ ∀ (N : LieSubmodule R L M), s ⊆ ↑N → m ∈ N
[PROOFSTEP]
intro N hN
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
m : M
hm : m ∈ s
N : LieSubmodule R L M
hN : s ⊆ ↑N
⊢ m ∈ N
[PROOFSTEP]
exact hN hm
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
⊢ Submodule.span R s ≤ ↑(lieSpan R L s)
[PROOFSTEP]
rw [Submodule.span_le]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
⊢ s ⊆ ↑↑(lieSpan R L s)
[PROOFSTEP]
apply subset_lieSpan
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
N : LieSubmodule R L M
⊢ lieSpan R L s ≤ N ↔ s ⊆ ↑N
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
N : LieSubmodule R L M
⊢ lieSpan R L s ≤ N → s ⊆ ↑N
[PROOFSTEP]
exact Subset.trans subset_lieSpan
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
N : LieSubmodule R L M
⊢ s ⊆ ↑N → lieSpan R L s ≤ N
[PROOFSTEP]
intro hs m hm
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
N : LieSubmodule R L M
hs : s ⊆ ↑N
m : M
hm : m ∈ lieSpan R L s
⊢ m ∈ N
[PROOFSTEP]
rw [mem_lieSpan] at hm
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
N : LieSubmodule R L M
hs : s ⊆ ↑N
m : M
hm : ∀ (N : LieSubmodule R L M), s ⊆ ↑N → m ∈ N
⊢ m ∈ N
[PROOFSTEP]
exact hm _ hs
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s t : Set M
h : s ⊆ t
⊢ lieSpan R L s ≤ lieSpan R L t
[PROOFSTEP]
rw [lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s t : Set M
h : s ⊆ t
⊢ s ⊆ ↑(lieSpan R L t)
[PROOFSTEP]
exact Subset.trans h subset_lieSpan
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
⊢ ↑(lieSpan R L ↑p) = p ↔ ∃ N, ↑N = p
[PROOFSTEP]
rw [p.exists_lieSubmodule_coe_eq_iff L]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
⊢ ↑(lieSpan R L ↑p) = p ↔ ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
⊢ ↑(lieSpan R L ↑p) = p → ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
⊢ (∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p) → ↑(lieSpan R L ↑p) = p
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
h : ↑(lieSpan R L ↑p) = p
⊢ ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p
[PROOFSTEP]
intro x m hm
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
h : ↑(lieSpan R L ↑p) = p
x : L
m : M
hm : m ∈ p
⊢ ⁅x, m⁆ ∈ p
[PROOFSTEP]
rw [← h, mem_coeSubmodule]
[GOAL]
case mp
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
h : ↑(lieSpan R L ↑p) = p
x : L
m : M
hm : m ∈ p
⊢ ⁅x, m⁆ ∈ lieSpan R L ↑p
[PROOFSTEP]
exact lie_mem _ (subset_lieSpan hm)
[GOAL]
case mpr
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
p : Submodule R M
h : ∀ (x : L) (m : M), m ∈ p → ⁅x, m⁆ ∈ p
⊢ ↑(lieSpan R L ↑p) = p
[PROOFSTEP]
rw [← coe_toSubmodule_mk p @h, coe_toSubmodule, coe_toSubmodule_eq_iff, lieSpan_eq]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N N' : LieSubmodule R L M
I J : LieIdeal R L
s : Set M
⊢ lieSpan R L s = ⊥ ↔ ∀ (m : M), m ∈ s → m = 0
[PROOFSTEP]
rw [_root_.eq_bot_iff, lieSpan_le, bot_coe, subset_singleton_iff]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M' := Submodule.map ↑f ↑N
x : L
m' : M'
h :
m' ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, m'⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
rcases h with ⟨m, hm, hfm⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M' := Submodule.map ↑f ↑N
x : L
m' : M'
m : M
hm : m ∈ ↑↑N
hfm : ↑↑f m = m'
⊢ ⁅x, m'⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
use⁅x, m⁆
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M' := Submodule.map ↑f ↑N
x : L
m' : M'
m : M
hm : m ∈ ↑↑N
hfm : ↑↑f m = m'
⊢ ⁅x, m⁆ ∈ ↑↑N ∧ ↑↑f ⁅x, m⁆ = ⁅x, m'⁆
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M' := Submodule.map ↑f ↑N
x : L
m' : M'
m : M
hm : m ∈ ↑↑N
hfm : ↑↑f m = m'
⊢ ⁅x, m⁆ ∈ ↑↑N
[PROOFSTEP]
apply N.lie_mem hm
[GOAL]
case h.right
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M' := Submodule.map ↑f ↑N
x : L
m' : M'
m : M
hm : m ∈ ↑↑N
hfm : ↑↑f m = m'
⊢ ↑↑f ⁅x, m⁆ = ⁅x, m'⁆
[PROOFSTEP]
norm_cast at hfm
[GOAL]
case h.right
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M' := Submodule.map ↑f ↑N
x : L
m' : M'
m : M
hm : m ∈ ↑↑N
hfm : ↑f m = m'
⊢ ↑↑f ⁅x, m⁆ = ⁅x, m'⁆
[PROOFSTEP]
simp [hfm]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M := Submodule.comap ↑f ↑N'
x : L
m : M
h :
m ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, m⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
suffices ⁅x, f m⁆ ∈ N' by simp [this]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M := Submodule.comap ↑f ↑N'
x : L
m : M
h :
m ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
this : ⁅x, ↑f m⁆ ∈ N'
⊢ ⁅x, m⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
simp [this]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
src✝ : Submodule R M := Submodule.comap ↑f ↑N'
x : L
m : M
h :
m ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, ↑f m⁆ ∈ N'
[PROOFSTEP]
apply N'.lie_mem h
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
⊢ comap (incl N) N₂ = ⊤ ↔ N ≤ N₂
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.coeSubmodule_comap, LieSubmodule.incl_coe,
LieSubmodule.top_coeSubmodule, Submodule.comap_subtype_eq_top, coeSubmodule_le_coeSubmodule]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : M →ₗ⁅R,L⁆ M'
N N₂ : LieSubmodule R L M
N' : LieSubmodule R L M'
⊢ comap (incl N) N₂ = ⊥ ↔ N ⊓ N₂ = ⊥
[PROOFSTEP]
simp only [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.coeSubmodule_comap, LieSubmodule.incl_coe,
LieSubmodule.bot_coeSubmodule, ← Submodule.disjoint_iff_comap_eq_bot, disjoint_iff, inf_coe_toSubmodule]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule
x y : L
h :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
suffices ⁅f x, f y⁆ ∈ J
by
simp only [AddSubsemigroup.mem_carrier, AddSubmonoid.mem_toSubsemigroup, Submodule.mem_toAddSubmonoid,
Submodule.mem_comap, LieHom.coe_toLinearMap, LieHom.map_lie, LieSubalgebra.mem_coe_submodule]
exact this
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule
x y : L
h :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
this : ⁅↑f x, ↑f y⁆ ∈ J
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
simp only [AddSubsemigroup.mem_carrier, AddSubmonoid.mem_toSubsemigroup, Submodule.mem_toAddSubmonoid,
Submodule.mem_comap, LieHom.coe_toLinearMap, LieHom.map_lie, LieSubalgebra.mem_coe_submodule]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule
x y : L
h :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
this : ⁅↑f x, ↑f y⁆ ∈ J
⊢ ⁅↑f x, ↑f y⁆ ∈ ↑R L' J
[PROOFSTEP]
exact this
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
src✝ : Submodule R L := Submodule.comap (↑f) (↑R L' J).toSubmodule
x y : L
h :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅↑f x, ↑f y⁆ ∈ J
[PROOFSTEP]
apply J.lie_mem h
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
h : ↑(map f I) = ↑f '' ↑I
⊢ ↑(map f I) = Submodule.map ↑f ↑I
[PROOFSTEP]
rw [SetLike.ext'_iff, LieSubmodule.coe_toSubmodule, h, Submodule.map_coe]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
h : ↑(map f I) = ↑f '' ↑I
⊢ ↑f '' ↑I = ↑↑f '' ↑↑I
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
x : L
hx : x ∈ I
⊢ ↑f x ∈ map f I
[PROOFSTEP]
apply LieSubmodule.subset_lieSpan
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
x : L
hx : x ∈ I
⊢ ↑f x ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
use x
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
x : L
hx : x ∈ I
⊢ x ∈ ↑(↑R L I).toSubmodule ∧ ↑↑f x = ↑f x
[PROOFSTEP]
exact ⟨hx, rfl⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
⊢ map f I ≤ J ↔ I ≤ comap f J
[PROOFSTEP]
rw [map_le]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
⊢ ↑f '' ↑I ⊆ ↑J ↔ I ≤ comap f J
[PROOFSTEP]
exact Set.image_subset_iff
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
⊢ map f (comap f J) ≤ J
[PROOFSTEP]
rw [map_le_iff_le_comap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
⊢ I ≤ comap f (map f I)
[PROOFSTEP]
rw [← map_le_iff_le_comap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂✝ : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : I₁ ≤ I₂
⊢ map f I₁ ≤ map f I₂
[PROOFSTEP]
rw [SetLike.le_def] at h
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂✝ : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : ∀ ⦃x : L⦄, x ∈ I₁ → x ∈ I₂
⊢ map f I₁ ≤ map f I₂
[PROOFSTEP]
apply LieSubmodule.lieSpan_mono (Set.image_subset (⇑f) h)
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : J₁ ≤ J₂
⊢ comap f J₁ ≤ comap f J₂
[PROOFSTEP]
rw [← SetLike.coe_subset_coe] at h ⊢
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : ↑J₁ ⊆ ↑J₂
⊢ ↑(comap f J₁) ⊆ ↑(comap f J₂)
[PROOFSTEP]
dsimp only [SetLike.coe]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : ↑J₁ ⊆ ↑J₂
⊢ (↑(comap f J₁)).toAddSubmonoid.toAddSubsemigroup.carrier ⊆ (↑(comap f J₂)).toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
exact Set.preimage_mono h
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
h : ↑f '' ↑I = ↑J
⊢ map f I = J
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
h : ↑f '' ↑I = ↑J
⊢ map f I ≤ J
[PROOFSTEP]
erw [LieSubmodule.lieSpan_le, Submodule.map_coe, h]
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
h : ↑f '' ↑I = ↑J
⊢ J ≤ map f I
[PROOFSTEP]
rw [← SetLike.coe_subset_coe, ← h]
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
h : ↑f '' ↑I = ↑J
⊢ ↑f '' ↑I ⊆ ↑(map f I)
[PROOFSTEP]
exact LieSubmodule.subset_lieSpan
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
⊢ Subsingleton (LieIdeal R { x // x ∈ ↑⊥ })
[PROOFSTEP]
apply subsingleton_of_bot_eq_top
[GOAL]
case hα
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
⊢ ⊥ = ⊤
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case hα.h.mk
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
x : L
hx : x ∈ ↑⊥
⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤
[PROOFSTEP]
change x ∈ (⊥ : LieIdeal _ _) at hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
x : L
hx : x ∈ ⊥
⊢ { val := x, property := hx } ∈ ⊥ ↔ { val := x, property := hx } ∈ ⊤
[PROOFSTEP]
rw [LieSubmodule.mem_bot] at hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
x : L
hx✝ : x ∈ ⊥
hx : x = 0
⊢ { val := x, property := hx✝ } ∈ ⊥ ↔ { val := x, property := hx✝ } ∈ ⊤
[PROOFSTEP]
subst hx
[GOAL]
case hα.h.mk
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I I₂ : LieIdeal R L
J : LieIdeal R L'
hx : 0 ∈ ⊥
⊢ { val := 0, property := hx } ∈ ⊥ ↔ { val := 0, property := hx } ∈ ⊤
[PROOFSTEP]
simp only [Submodule.mk_eq_zero, LieSubmodule.mem_bot, LieSubmodule.mem_top]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ idealRange f = LieIdeal.map f ⊤
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
m✝ : L'
⊢ m✝ ∈ idealRange f ↔ m✝ ∈ LieIdeal.map f ⊤
[PROOFSTEP]
simp only [idealRange, range_eq_map]
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
m✝ : L'
⊢ m✝ ∈ LieSubmodule.lieSpan R L' ↑(LieSubalgebra.map f ⊤) ↔ m✝ ∈ LieIdeal.map f ⊤
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ IsIdealMorphism f ↔ ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z
[PROOFSTEP]
simp only [isIdealMorphism_def, idealRange_eq_lieSpan_range, ← LieSubalgebra.coe_to_submodule_eq_iff, ←
f.range.coe_to_submodule, LieIdeal.coe_to_lieSubalgebra_to_submodule, LieSubmodule.coe_lieSpan_submodule_eq_iff,
LieSubalgebra.mem_coe_submodule, mem_range, exists_imp, Submodule.exists_lieSubmodule_coe_eq_iff]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ (∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆) ↔ ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ (∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆) → ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z
[PROOFSTEP]
intro h x y
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆
x : L'
y : L
⊢ ∃ z, ⁅x, ↑f y⁆ = ↑f z
[PROOFSTEP]
obtain ⟨z, hz⟩ := h x (f y) y rfl
[GOAL]
case mp.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆
x : L'
y z : L
hz : ↑f z = ⁅x, ↑f y⁆
⊢ ∃ z, ⁅x, ↑f y⁆ = ↑f z
[PROOFSTEP]
use z
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆
x : L'
y z : L
hz : ↑f z = ⁅x, ↑f y⁆
⊢ ⁅x, ↑f y⁆ = ↑f z
[PROOFSTEP]
exact hz.symm
[GOAL]
case mpr
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ (∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z) → ∀ (x m : L') (x_1 : L), ↑f x_1 = m → ∃ y, ↑f y = ⁅x, m⁆
[PROOFSTEP]
intro h x y z hz
[GOAL]
case mpr
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z
x y : L'
z : L
hz : ↑f z = y
⊢ ∃ y_1, ↑f y_1 = ⁅x, y⁆
[PROOFSTEP]
obtain ⟨w, hw⟩ := h x z
[GOAL]
case mpr.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z
x y : L'
z : L
hz : ↑f z = y
w : L
hw : ⁅x, ↑f z⁆ = ↑f w
⊢ ∃ y_1, ↑f y_1 = ⁅x, y⁆
[PROOFSTEP]
use w
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x : L') (y : L), ∃ z, ⁅x, ↑f y⁆ = ↑f z
x y : L'
z : L
hz : ↑f z = y
w : L
hw : ⁅x, ↑f z⁆ = ↑f w
⊢ ↑f w = ⁅x, y⁆
[PROOFSTEP]
rw [← hw, hz]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ LieIdeal.map f I ≤ idealRange f
[PROOFSTEP]
rw [f.idealRange_eq_map]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ LieIdeal.map f I ≤ LieIdeal.map f ⊤
[PROOFSTEP]
exact LieIdeal.map_mono le_top
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L
⊢ x ∈ ↑(ker f) ↔ ↑f x = 0
[PROOFSTEP]
simp only [ker_coeSubmodule, LinearMap.mem_ker, coe_toLinearMap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L
⊢ ↑f x ∈ idealRange f
[PROOFSTEP]
rw [idealRange_eq_map]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L
⊢ ↑f x ∈ LieIdeal.map f ⊤
[PROOFSTEP]
exact LieIdeal.mem_map (LieSubmodule.mem_top x)
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : IsIdealMorphism f
y : L'
⊢ y ∈ idealRange f ↔ ∃ x, ↑f x = y
[PROOFSTEP]
rw [f.isIdealMorphism_def] at h
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ↑R L' (idealRange f) = range f
y : L'
⊢ y ∈ idealRange f ↔ ∃ x, ↑f x = y
[PROOFSTEP]
rw [← LieSubmodule.mem_coe, ← LieIdeal.coe_toSubalgebra, h, f.range_coe, Set.mem_range]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ I ≤ ker f ↔ ∀ (x : L), x ∈ I → ↑f x = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ I ≤ ker f → ∀ (x : L), x ∈ I → ↑f x = 0
[PROOFSTEP]
intro h x hx
[GOAL]
case mpr
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ (∀ (x : L), x ∈ I → ↑f x = 0) → I ≤ ker f
[PROOFSTEP]
intro h x hx
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : I ≤ ker f
x : L
hx : x ∈ I
⊢ ↑f x = 0
[PROOFSTEP]
specialize h hx
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L
hx : x ∈ I
h : x ∈ ker f
⊢ ↑f x = 0
[PROOFSTEP]
rw [mem_ker] at h
[GOAL]
case mp
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L
hx : x ∈ I
h : ↑f x = 0
⊢ ↑f x = 0
[PROOFSTEP]
exact h
[GOAL]
case mpr
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x : L), x ∈ I → ↑f x = 0
x : L
hx : x ∈ I
⊢ x ∈ ker f
[PROOFSTEP]
rw [mem_ker]
[GOAL]
case mpr
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ∀ (x : L), x ∈ I → ↑f x = 0
x : L
hx : x ∈ I
⊢ ↑f x = 0
[PROOFSTEP]
apply h x hx
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ ker f = ⊥ ↔ Function.Injective ↑f
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, ker_coeSubmodule, LieSubmodule.bot_coeSubmodule, LinearMap.ker_eq_bot,
coe_toLinearMap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ range f = ⊤ ↔ Function.Surjective ↑f
[PROOFSTEP]
rw [← LieSubalgebra.coe_to_submodule_eq_iff, range_coeSubmodule, LieSubalgebra.top_coe_submodule]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ LinearMap.range ↑f = ⊤ ↔ Function.Surjective ↑f
[PROOFSTEP]
exact LinearMap.range_eq_top
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
⊢ idealRange f = ⊤
[PROOFSTEP]
rw [← f.range_eq_top] at h
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : range f = ⊤
⊢ idealRange f = ⊤
[PROOFSTEP]
rw [idealRange_eq_lieSpan_range, h, ← LieSubalgebra.coe_to_submodule, ← LieSubmodule.coe_toSubmodule_eq_iff,
LieSubmodule.top_coeSubmodule, LieSubalgebra.top_coe_submodule, LieSubmodule.coe_lieSpan_submodule_eq_iff]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : range f = ⊤
⊢ ∃ N, ↑N = ⊤
[PROOFSTEP]
use⊤
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : range f = ⊤
⊢ ↑⊤ = ⊤
[PROOFSTEP]
exact LieSubmodule.top_coeSubmodule
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
⊢ IsIdealMorphism f
[PROOFSTEP]
rw [isIdealMorphism_def, f.idealRange_eq_top_of_surjective h, f.range_eq_top.mpr h, LieIdeal.top_coe_lieSubalgebra]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ map f I = ⊥ ↔ I ≤ LieHom.ker f
[PROOFSTEP]
rw [← le_bot_iff]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ map f I ≤ ⊥ ↔ I ≤ LieHom.ker f
[PROOFSTEP]
exact LieIdeal.map_le_iff_le_comap
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
⊢ ↑(map f I) = Submodule.map ↑f ↑I
[PROOFSTEP]
let J : LieIdeal R L' :=
{ (I : Submodule R L).map (f : L →ₗ[R] L') with
lie_mem := fun {x y} hy ↦ by
have hy' : ∃ x : L, x ∈ I ∧ f x = y := by simpa [hy]
obtain ⟨z₂, hz₂, rfl⟩ := hy'
obtain ⟨z₁, rfl⟩ := h x
simp only [LieHom.coe_toLinearMap, SetLike.mem_coe, Set.mem_image, LieSubmodule.mem_coeSubmodule,
Submodule.mem_carrier, Submodule.map_coe]
use⁅z₁, z₂⁆
exact ⟨I.lie_mem hz₂, f.map_lie z₁ z₂⟩ }
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule
x y : L'
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
have hy' : ∃ x : L, x ∈ I ∧ f x = y := by simpa [hy]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule
x y : L'
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ∃ x, x ∈ I ∧ ↑f x = y
[PROOFSTEP]
simpa [hy]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule
x y : L'
hy :
y ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
hy' : ∃ x, x ∈ I ∧ ↑f x = y
⊢ ⁅x, y⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
obtain ⟨z₂, hz₂, rfl⟩ := hy'
[GOAL]
case intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule
x : L'
z₂ : L
hz₂ : z₂ ∈ I
hy :
↑f z₂ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
⊢ ⁅x, ↑f z₂⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
obtain ⟨z₁, rfl⟩ := h x
[GOAL]
case intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule
z₂ : L
hz₂ : z₂ ∈ I
hy :
↑f z₂ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
z₁ : L
⊢ ⁅↑f z₁, ↑f z₂⁆ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
[PROOFSTEP]
simp only [LieHom.coe_toLinearMap, SetLike.mem_coe, Set.mem_image, LieSubmodule.mem_coeSubmodule, Submodule.mem_carrier,
Submodule.map_coe]
[GOAL]
case intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule
z₂ : L
hz₂ : z₂ ∈ I
hy :
↑f z₂ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
z₁ : L
⊢ ∃ x, x ∈ (↑R L I).toSubmodule ∧ ↑f x = ⁅↑f z₁, ↑f z₂⁆
[PROOFSTEP]
use⁅z₁, z₂⁆
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : Function.Surjective ↑f
src✝ : Submodule R L' := Submodule.map (↑f) (↑R L I).toSubmodule
z₂ : L
hz₂ : z₂ ∈ I
hy :
↑f z₂ ∈
{ toAddSubmonoid := src✝.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'}, x ∈ src✝.carrier → c • x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
z₁ : L
⊢ ⁅z₁, z₂⁆ ∈ (↑R L I).toSubmodule ∧ ↑f ⁅z₁, z₂⁆ = ⁅↑f z₁, ↑f z₂⁆
[PROOFSTEP]
exact ⟨I.lie_mem hz₂, f.map_lie z₁ z₂⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J✝ : LieIdeal R L'
h : Function.Surjective ↑f
J : LieIdeal R L' :=
let src := Submodule.map (↑f) (↑R L I).toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem :=
(_ :
∀ {x y : L'},
y ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier) }
⊢ ↑(map f I) = Submodule.map ↑f ↑I
[PROOFSTEP]
erw [LieSubmodule.coe_lieSpan_submodule_eq_iff]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J✝ : LieIdeal R L'
h : Function.Surjective ↑f
J : LieIdeal R L' :=
let src := Submodule.map (↑f) (↑R L I).toSubmodule;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : L'}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem :=
(_ :
∀ {x y : L'},
y ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, y⁆ ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : L'},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier) }
⊢ ∃ N, ↑N = Submodule.map (↑f) (↑R L I).toSubmodule
[PROOFSTEP]
use J
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
y : L'
h₁ : Function.Surjective ↑f
h₂ : y ∈ map f I
⊢ ∃ x, ↑f ↑x = y
[PROOFSTEP]
rw [← LieSubmodule.mem_coeSubmodule, coe_map_of_surjective h₁, Submodule.mem_map] at h₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
y : L'
h₁ : Function.Surjective ↑f
h₂ : ∃ y_1, y_1 ∈ ↑I ∧ ↑↑f y_1 = y
⊢ ∃ x, ↑f ↑x = y
[PROOFSTEP]
obtain ⟨x, hx, rfl⟩ := h₂
[GOAL]
case intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h₁ : Function.Surjective ↑f
x : L
hx : x ∈ ↑I
⊢ ∃ x_1, ↑f ↑x_1 = ↑↑f x
[PROOFSTEP]
use⟨x, hx⟩
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h₁ : Function.Surjective ↑f
x : L
hx : x ∈ ↑I
⊢ ↑f ↑{ val := x, property := hx } = ↑↑f x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I✝ : LieIdeal R L
J : LieIdeal R L'
I : LieIdeal R L
h₁ : Function.Injective ↑f
h₂ : map f I = ⊥
⊢ I = ⊥
[PROOFSTEP]
rw [← f.ker_eq_bot] at h₁
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I✝ : LieIdeal R L
J : LieIdeal R L'
I : LieIdeal R L
h₁ : LieHom.ker f = ⊥
h₂ : map f I = ⊥
⊢ I = ⊥
[PROOFSTEP]
change comap f ⊥ = ⊥ at h₁
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I✝ : LieIdeal R L
J : LieIdeal R L'
I : LieIdeal R L
h₂ : map f I = ⊥
h₁ : comap f ⊥ = ⊥
⊢ I = ⊥
[PROOFSTEP]
rw [eq_bot_iff, map_le_iff_le_comap, h₁] at h₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I✝ : LieIdeal R L
J : LieIdeal R L'
I : LieIdeal R L
h₂ : I ≤ ⊥
h₁ : comap f ⊥ = ⊥
⊢ I = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I✝ : LieIdeal R L
J : LieIdeal R L'
I : LieIdeal R L
h₂ : I ≤ ⊥
h₁ : comap f ⊥ = ⊥
⊢ I ≤ ⊥
[PROOFSTEP]
exact h₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : I₁ ≤ I₂
x y : { x // x ∈ ↑I₁ }
⊢ ↑(homOfLe h) x = ↑(homOfLe h) y → x = y
[PROOFSTEP]
simp only [homOfLe_apply, imp_self, Subtype.mk_eq_mk, SetLike.coe_eq_coe]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ map f (I ⊔ LieHom.ker f) = map f I
[PROOFSTEP]
suffices LieIdeal.map f (I ⊔ f.ker) ≤ LieIdeal.map f I by exact le_antisymm this (LieIdeal.map_mono le_sup_left)
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
this : map f (I ⊔ LieHom.ker f) ≤ map f I
⊢ map f (I ⊔ LieHom.ker f) = map f I
[PROOFSTEP]
exact le_antisymm this (LieIdeal.map_mono le_sup_left)
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ map f (I ⊔ LieHom.ker f) ≤ map f I
[PROOFSTEP]
apply LieSubmodule.lieSpan_mono
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ ↑(Submodule.map (↑f) (↑R L (I ⊔ LieHom.ker f)).toSubmodule) ⊆ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
rintro x ⟨y, hy₁, hy₂⟩
[GOAL]
case h.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L'
y : L
hy₁ : y ∈ ↑(↑R L (I ⊔ LieHom.ker f)).toSubmodule
hy₂ : ↑↑f y = x
⊢ x ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
rw [← hy₂]
[GOAL]
case h.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L'
y : L
hy₁ : y ∈ ↑(↑R L (I ⊔ LieHom.ker f)).toSubmodule
hy₂ : ↑↑f y = x
⊢ ↑↑f y ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
erw [LieSubmodule.mem_sup] at hy₁
[GOAL]
case h.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L'
y : L
hy₁ : ∃ y_1, y_1 ∈ I ∧ ∃ z, z ∈ LieHom.ker f ∧ y_1 + z = y
hy₂ : ↑↑f y = x
⊢ ↑↑f y ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
obtain ⟨z₁, hz₁, z₂, hz₂, hy⟩ := hy₁
[GOAL]
case h.intro.intro.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L'
y : L
hy₂ : ↑↑f y = x
z₁ : L
hz₁ : z₁ ∈ I
z₂ : L
hz₂ : z₂ ∈ LieHom.ker f
hy : z₁ + z₂ = y
⊢ ↑↑f y ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
rw [← hy]
[GOAL]
case h.intro.intro.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L'
y : L
hy₂ : ↑↑f y = x
z₁ : L
hz₁ : z₁ ∈ I
z₂ : L
hz₂ : z₂ ∈ LieHom.ker f
hy : z₁ + z₂ = y
⊢ ↑↑f (z₁ + z₂) ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
rw [f.coe_toLinearMap, f.map_add, f.mem_ker.mp hz₂, add_zero]
[GOAL]
case h.intro.intro.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
x : L'
y : L
hy₂ : ↑↑f y = x
z₁ : L
hz₁ : z₁ ∈ I
z₂ : L
hz₂ : z₂ ∈ LieHom.ker f
hy : z₁ + z₂ = y
⊢ ↑f z₁ ∈ ↑(Submodule.map (↑f) (↑R L I).toSubmodule)
[PROOFSTEP]
exact ⟨z₁, hz₁, rfl⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ map f I ⊔ map f (LieHom.ker f) = map f I
[PROOFSTEP]
simpa using map_sup_ker_eq_map (f := f)
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ map f (comap f J) = LieHom.idealRange f ⊓ J
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ map f (comap f J) ≤ LieHom.idealRange f ⊓ J
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ map f (comap f J) ≤ LieHom.idealRange f ∧ map f (comap f J) ≤ J
[PROOFSTEP]
exact ⟨f.map_le_idealRange _, map_comap_le⟩
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ LieHom.idealRange f ⊓ J ≤ map f (comap f J)
[PROOFSTEP]
rw [f.isIdealMorphism_def] at h
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ↑R L' (LieHom.idealRange f) = LieHom.range f
⊢ LieHom.idealRange f ⊓ J ≤ map f (comap f J)
[PROOFSTEP]
rw [← SetLike.coe_subset_coe, LieSubmodule.inf_coe, ← coe_toSubalgebra, h]
[GOAL]
case a
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ↑R L' (LieHom.idealRange f) = LieHom.range f
⊢ ↑(LieHom.range f) ∩ ↑J ⊆ ↑(map f (comap f J))
[PROOFSTEP]
rintro y ⟨⟨x, h₁⟩, h₂⟩
[GOAL]
case a.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ↑R L' (LieHom.idealRange f) = LieHom.range f
y : L'
h₂ : y ∈ ↑J
x : L
h₁ : ↑↑f x = y
⊢ y ∈ ↑(map f (comap f J))
[PROOFSTEP]
rw [← h₁] at h₂ ⊢
[GOAL]
case a.intro.intro
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ↑R L' (LieHom.idealRange f) = LieHom.range f
y : L'
x : L
h₂ : ↑↑f x ∈ ↑J
h₁ : ↑↑f x = y
⊢ ↑↑f x ∈ ↑(map f (comap f J))
[PROOFSTEP]
exact mem_map h₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
h : ↑(map f I) = ↑f '' ↑I
⊢ comap f (map f I) = I ⊔ LieHom.ker f
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, comap_coeSubmodule, I.map_coeSubmodule f h, LieSubmodule.sup_coe_toSubmodule,
f.ker_coeSubmodule, Submodule.comap_map_eq]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ comap (incl I) I = ⊤
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
m✝ : { x // x ∈ ↑I }
⊢ m✝ ∈ comap (incl I) I ↔ m✝ ∈ ⊤
[PROOFSTEP]
simp
-- porting note: `ext; simp` works also in mathlib3, though the proof used to be
-- rw [← LieSubmodule.coe_toSubmodule_eq_iff, LieSubmodule.top_coeSubmodule,
-- LieIdeal.comap_coeSubmodule, LieIdeal.incl_coe, Submodule.comap_subtype_self]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ LieHom.ker (incl I) = ⊥
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
m✝ : { x // x ∈ ↑I }
⊢ m✝ ∈ LieHom.ker (incl I) ↔ m✝ ∈ ⊥
[PROOFSTEP]
simp
-- porting note: `ext; simp` works also in mathlib3, though the proof used to be
-- rw [← LieSubmodule.coe_toSubmodule_eq_iff, I.incl.ker_coeSubmodule,
-- LieSubmodule.bot_coeSubmodule, incl_coe, Submodule.ker_subtype]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ LieHom.idealRange (incl I) = I
[PROOFSTEP]
rw [LieHom.idealRange_eq_lieSpan_range, ← LieSubalgebra.coe_to_submodule, ← LieSubmodule.coe_toSubmodule_eq_iff,
incl_range, coe_to_lieSubalgebra_to_submodule, LieSubmodule.coe_lieSpan_submodule_eq_iff]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ ∃ N, ↑N = ↑I
[PROOFSTEP]
use I
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ LieHom.IsIdealMorphism (incl I)
[PROOFSTEP]
rw [I.incl.isIdealMorphism_def, incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
M : Type w
M' : Type w₁
inst✝¹² : CommRing R
inst✝¹¹ : LieRing L
inst✝¹⁰ : LieAlgebra R L
inst✝⁹ : LieRing L'
inst✝⁸ : LieAlgebra R L'
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M'
inst✝² : Module R M'
inst✝¹ : LieRingModule L M'
inst✝ : LieModule R L M'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
⊢ ↑R L I = LieHom.range (incl I)
[PROOFSTEP]
exact (I : LieSubalgebra R L).incl_range.symm
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
⊢ ker f = ⊥ ↔ Function.Injective ↑f
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, ker_coeSubmodule, LieSubmodule.bot_coeSubmodule, LinearMap.ker_eq_bot,
coe_toLinearMap]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
⊢ comp f (LieSubmodule.incl (ker f)) = 0
[PROOFSTEP]
ext ⟨m, hm⟩
[GOAL]
case h.mk
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
m : M
hm : m ∈ ↑(ker f)
⊢ ↑(comp f (LieSubmodule.incl (ker f))) { val := m, property := hm } = ↑0 { val := m, property := hm }
[PROOFSTEP]
exact (mem_ker m).mp hm
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
M' : LieSubmodule R L M
⊢ M' ≤ ker f ↔ LieSubmodule.map f M' = ⊥
[PROOFSTEP]
rw [ker, eq_bot_iff, LieSubmodule.map_le_iff_le_comap]
[GOAL]
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
⊢ LieSubmodule.map f ⊤ = range f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
L : Type v
M : Type w
N : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : LieRingModule L N
inst✝ : LieModule R L N
f : M →ₗ⁅R,L⁆ N
m✝ : N
⊢ m✝ ∈ LieSubmodule.map f ⊤ ↔ m✝ ∈ range f
[PROOFSTEP]
simp [LieSubmodule.mem_map]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
⊢ LieModuleHom.ker (incl N) = ⊥
[PROOFSTEP]
simp [← LieSubmodule.coe_toSubmodule_eq_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
⊢ LieModuleHom.range (incl N) = N
[PROOFSTEP]
simp [← LieSubmodule.coe_toSubmodule_eq_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
inst✝⁶ : CommRing R
inst✝⁵ : LieRing L
inst✝⁴ : LieAlgebra R L
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : LieRingModule L M
inst✝ : LieModule R L M
N : LieSubmodule R L M
⊢ comap (incl N) N = ⊤
[PROOFSTEP]
simp [← LieSubmodule.coe_toSubmodule_eq_iff]
[GOAL]
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
src✝ : { x // x ∈ ⊤ } →ₗ⁅R⁆ L := incl ⊤
x : { x // x ∈ ⊤ }
⊢ (fun x => { val := x, property := (_ : x ∈ Set.univ) })
(AddHom.toFun
(↑{ toLinearMap := ↑src✝,
map_lie' :=
(_ :
∀ {x y : { x // x ∈ ⊤ }},
AddHom.toFun src✝.toAddHom ⁅x, y⁆ =
⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆) }).toAddHom
x) =
x
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u
L : Type v
inst✝² : CommRing R
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
src✝ : { x // x ∈ ⊤ } →ₗ⁅R⁆ L := incl ⊤
x : { x // x ∈ ⊤ }
⊢ ↑((fun x => { val := x, property := (_ : x ∈ Set.univ) })
(AddHom.toFun
(↑{ toLinearMap := ↑src✝,
map_lie' :=
(_ :
∀ {x y : { x // x ∈ ⊤ }},
AddHom.toFun src✝.toAddHom ⁅x, y⁆ =
⁅AddHom.toFun src✝.toAddHom x, AddHom.toFun src✝.toAddHom y⁆) }).toAddHom
x)) =
↑x
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Lie.Submodule", "llama_tokens": 72343} |
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsRefl α r
c : Cardinal.{u_1}
⊢ c ≤ cof r ↔ ∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S
[PROOFSTEP]
rw [cof, le_csInf_iff'' (cof_nonempty r)]
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsRefl α r
c : Cardinal.{u_1}
⊢ (∀ (b : Cardinal.{u_1}), b ∈ {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c} → c ≤ b) ↔
∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S
[PROOFSTEP]
use fun H S h => H _ ⟨S, h, rfl⟩
[GOAL]
case mpr
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsRefl α r
c : Cardinal.{u_1}
⊢ (∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S) →
∀ (b : Cardinal.{u_1}), b ∈ {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c} → c ≤ b
[PROOFSTEP]
rintro H d ⟨S, h, rfl⟩
[GOAL]
case mpr.intro.intro
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsRefl α r
c : Cardinal.{u_1}
H : ∀ {S : Set α}, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) → c ≤ #↑S
S : Set α
h : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
⊢ c ≤ #↑S
[PROOFSTEP]
exact H h
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : IsRefl β s
f : r ≃r s
⊢ Cardinal.lift (cof r) ≤ Cardinal.lift (cof s)
[PROOFSTEP]
rw [Order.cof, Order.cof, lift_sInf, lift_sInf, le_csInf_iff'' (nonempty_image_iff.2 (Order.cof_nonempty s))]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : IsRefl β s
f : r ≃r s
⊢ ∀ (b : Cardinal.{max u v}),
b ∈ Cardinal.lift '' {c | ∃ S, (∀ (a : β), ∃ b, b ∈ S ∧ s a b) ∧ #↑S = c} →
sInf (Cardinal.lift '' {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c}) ≤ b
[PROOFSTEP]
rintro - ⟨-, ⟨u, H, rfl⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : IsRefl β s
f : r ≃r s
u : Set β
H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b
⊢ sInf (Cardinal.lift '' {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c}) ≤ Cardinal.lift #↑u
[PROOFSTEP]
apply csInf_le'
[GOAL]
case intro.intro.intro.intro.h
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : IsRefl β s
f : r ≃r s
u : Set β
H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b
⊢ Cardinal.lift #↑u ∈ Cardinal.lift '' {c | ∃ S, (∀ (a : α), ∃ b, b ∈ S ∧ r a b) ∧ #↑S = c}
[PROOFSTEP]
refine' ⟨_, ⟨f.symm '' u, fun a => _, rfl⟩, lift_mk_eq.{u, v, max u v}.2 ⟨(f.symm.toEquiv.image u).symm⟩⟩
[GOAL]
case intro.intro.intro.intro.h
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : IsRefl β s
f : r ≃r s
u : Set β
H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b
a : α
⊢ ∃ b, b ∈ ↑(RelIso.symm f) '' u ∧ r a b
[PROOFSTEP]
rcases H (f a) with ⟨b, hb, hb'⟩
[GOAL]
case intro.intro.intro.intro.h.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : IsRefl β s
f : r ≃r s
u : Set β
H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b
a : α
b : β
hb : b ∈ u
hb' : s (↑f a) b
⊢ ∃ b, b ∈ ↑(RelIso.symm f) '' u ∧ r a b
[PROOFSTEP]
refine' ⟨f.symm b, mem_image_of_mem _ hb, f.map_rel_iff.1 _⟩
[GOAL]
case intro.intro.intro.intro.h.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : IsRefl β s
f : r ≃r s
u : Set β
H : ∀ (a : β), ∃ b, b ∈ u ∧ s a b
a : α
b : β
hb : b ∈ u
hb' : s (↑f a) b
⊢ s (↑f a) (↑f (↑(RelIso.symm f) b))
[PROOFSTEP]
rwa [RelIso.apply_symm_apply]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
⊢ ∀ (a b : WellOrder), a ≈ b → (fun a => StrictOrder.cof a.r) a = (fun a => StrictOrder.cof a.r) b
[PROOFSTEP]
rintro ⟨α, r, wo₁⟩ ⟨β, s, wo₂⟩ ⟨⟨f, hf⟩⟩
[GOAL]
case mk.mk.intro.mk
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
⊢ (fun a => StrictOrder.cof a.r) { α := α, r := r, wo := wo₁ } =
(fun a => StrictOrder.cof a.r) { α := β, r := s, wo := wo₂ }
[PROOFSTEP]
haveI := wo₁
[GOAL]
case mk.mk.intro.mk
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this : IsWellOrder α r
⊢ (fun a => StrictOrder.cof a.r) { α := α, r := r, wo := wo₁ } =
(fun a => StrictOrder.cof a.r) { α := β, r := s, wo := wo₂ }
[PROOFSTEP]
haveI := wo₂
[GOAL]
case mk.mk.intro.mk
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ (fun a => StrictOrder.cof a.r) { α := α, r := r, wo := wo₁ } =
(fun a => StrictOrder.cof a.r) { α := β, r := s, wo := wo₂ }
[PROOFSTEP]
dsimp only
[GOAL]
case mk.mk.intro.mk
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ StrictOrder.cof r = StrictOrder.cof s
[PROOFSTEP]
apply @RelIso.cof_eq _ _ _ _ ?_ ?_
[GOAL]
case mk.mk.intro.mk
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ swap rᶜ ≃r swap sᶜ
[PROOFSTEP]
constructor
[GOAL]
case mk.mk.intro.mk.map_rel_iff'
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ ∀ {a b : α}, swap sᶜ (↑?mk.mk.intro.mk.toEquiv a) (↑?mk.mk.intro.mk.toEquiv b) ↔ swap rᶜ a b
case mk.mk.intro.mk.toEquiv
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ α ≃ β
[PROOFSTEP]
exact @fun a b => not_iff_not.2 hf
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ IsRefl α (swap rᶜ)
[PROOFSTEP]
dsimp only [swap]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ IsRefl α fun y x => rᶜ x y
[PROOFSTEP]
exact ⟨fun _ => irrefl _⟩
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ IsRefl β (swap sᶜ)
[PROOFSTEP]
dsimp only [swap]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
wo₁ : IsWellOrder α r
β : Type u
s : β → β → Prop
wo₂ : IsWellOrder β s
f : α ≃ β
hf : ∀ {a b : α}, s (↑f a) (↑f b) ↔ r a b
this✝ : IsWellOrder α r
this : IsWellOrder β s
⊢ IsRefl β fun y x => sᶜ x y
[PROOFSTEP]
exact ⟨fun _ => irrefl _⟩
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsWellOrder α r
c : Cardinal.{u_1}
⊢ (∀ (S : Set α), Unbounded r S → c ≤ #↑S) → ∀ (b : Cardinal.{u_1}), b ∈ {c | ∃ S, Unbounded r S ∧ #↑S = c} → c ≤ b
[PROOFSTEP]
rintro H d ⟨S, h, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsWellOrder α r
c : Cardinal.{u_1}
H : ∀ (S : Set α), Unbounded r S → c ≤ #↑S
S : Set α
h : Unbounded r S
⊢ c ≤ #↑S
[PROOFSTEP]
exact H _ h
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
⊢ #↑S < cof (type r) → Bounded r S
[PROOFSTEP]
simpa using not_imp_not.2 cof_type_le
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r))
[PROOFSTEP]
let ⟨S, hS, e⟩ := cof_eq r
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r))
[PROOFSTEP]
let ⟨s, _, e'⟩ := Cardinal.ord_eq S
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r))
[PROOFSTEP]
let T : Set α := {a | ∃ aS : a ∈ S, ∀ b : S, s b ⟨_, aS⟩ → r b a}
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r))
[PROOFSTEP]
suffices : Unbounded r T
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
⊢ ∃ S, Unbounded r S ∧ type (Subrel r S) = ord (cof (type r))
[PROOFSTEP]
refine' ⟨T, this, le_antisymm _ (Cardinal.ord_le.2 <| cof_type_le this)⟩
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
⊢ type (Subrel r T) ≤ ord (cof (type r))
[PROOFSTEP]
rw [← e, e']
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
⊢ type (Subrel r T) ≤ type s
[PROOFSTEP]
refine'
(RelEmbedding.ofMonotone
(fun a : T =>
(⟨a,
let ⟨aS, _⟩ := a.2
aS⟩ :
S))
fun a b h => _).ordinal_type_le
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a b : ↑T
h : Subrel r T a b
⊢ s ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) a) ((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) b)
[PROOFSTEP]
rcases a with ⟨a, aS, ha⟩
[GOAL]
case mk.intro
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
b : ↑T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
h : Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } b
⊢ s
((fun a => { val := ↑a, property := (_ : ↑a ∈ S) })
{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) })
((fun a => { val := ↑a, property := (_ : ↑a ∈ S) }) b)
[PROOFSTEP]
rcases b with ⟨b, bS, hb⟩
[GOAL]
case mk.intro.mk.intro
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
b : α
bS : b ∈ S
hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b
h :
Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) }
⊢ s
((fun a => { val := ↑a, property := (_ : ↑a ∈ S) })
{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) })
((fun a => { val := ↑a, property := (_ : ↑a ∈ S) })
{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) })
[PROOFSTEP]
change s ⟨a, _⟩ ⟨b, _⟩
[GOAL]
case mk.intro.mk.intro
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
b : α
bS : b ∈ S
hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b
h :
Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) }
⊢ s
{ val := a,
property :=
(_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) }
{ val := b,
property :=
(_ : ↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈ S) }
[PROOFSTEP]
refine' ((trichotomous_of s _ _).resolve_left fun hn => _).resolve_left _
[GOAL]
case mk.intro.mk.intro.refine'_1
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
b : α
bS : b ∈ S
hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b
h :
Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) }
hn :
s
{ val := b,
property :=
(_ : ↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈ S) }
{ val := a,
property :=
(_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) }
⊢ False
[PROOFSTEP]
exact asymm h (ha _ hn)
[GOAL]
case mk.intro.mk.intro.refine'_2
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
b : α
bS : b ∈ S
hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b
h :
Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) }
⊢ ¬{ val := b,
property :=
(_ :
↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈
S) } =
{ val := a,
property :=
(_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) }
[PROOFSTEP]
intro e
[GOAL]
case mk.intro.mk.intro.refine'_2
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e✝ : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
b : α
bS : b ∈ S
hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b
h :
Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) }
e :
{ val := b,
property :=
(_ :
↑{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) } ∈ S) } =
{ val := a,
property :=
(_ : ↑{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) } ∈ S) }
⊢ False
[PROOFSTEP]
injection e with e
[GOAL]
case mk.intro.mk.intro.refine'_2
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e✝ : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
b : α
bS : b ∈ S
hb : ∀ (b_1 : ↑S), s b_1 { val := b, property := bS } → r (↑b_1) b
h :
Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
{ val := b, property := (_ : ∃ aS, ∀ (b_1 : ↑S), s b_1 { val := b, property := aS } → r (↑b_1) b) }
e : b = a
⊢ False
[PROOFSTEP]
subst b
[GOAL]
case mk.intro.mk.intro.refine'_2
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
this : Unbounded r T
a : α
aS : a ∈ S
ha : ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a
bS : a ∈ S
hb : ∀ (b : ↑S), s b { val := a, property := bS } → r (↑b) a
h :
Subrel r T { val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
{ val := a, property := (_ : ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a) }
⊢ False
[PROOFSTEP]
exact irrefl _ h
[GOAL]
case this
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
⊢ Unbounded r T
[PROOFSTEP]
intro a
[GOAL]
case this
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
⊢ ∃ b, b ∈ T ∧ ¬r b a
[PROOFSTEP]
have : {b : S | ¬r b a}.Nonempty :=
let ⟨b, bS, ba⟩ := hS a
⟨⟨b, bS⟩, ba⟩
[GOAL]
case this
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
⊢ ∃ b, b ∈ T ∧ ¬r b a
[PROOFSTEP]
let b := (IsWellFounded.wf : WellFounded s).min _ this
[GOAL]
case this
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this
⊢ ∃ b, b ∈ T ∧ ¬r b a
[PROOFSTEP]
have ba : ¬r b a := IsWellFounded.wf.min_mem _ this
[GOAL]
case this
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this
ba : ¬r (↑b) a
⊢ ∃ b, b ∈ T ∧ ¬r b a
[PROOFSTEP]
refine' ⟨b, ⟨b.2, fun c => not_imp_not.1 fun h => _⟩, ba⟩
[GOAL]
case this
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this
ba : ¬r (↑b) a
c : ↑S
h : ¬r ↑c ↑b
⊢ ¬s c { val := ↑b, property := (_ : ↑b ∈ S) }
[PROOFSTEP]
rw [show ∀ b : S, (⟨b, b.2⟩ : S) = b by intro b; cases b; rfl]
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this
ba : ¬r (↑b) a
c : ↑S
h : ¬r ↑c ↑b
⊢ ∀ (b : ↑S), { val := ↑b, property := (_ : ↑b ∈ S) } = b
[PROOFSTEP]
intro b
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
b✝ : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this
ba : ¬r (↑b✝) a
c : ↑S
h : ¬r ↑c ↑b✝
b : ↑S
⊢ { val := ↑b, property := (_ : ↑b ∈ S) } = b
[PROOFSTEP]
cases b
[GOAL]
case mk
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this
ba : ¬r (↑b) a
c : ↑S
h : ¬r ↑c ↑b
val✝ : α
property✝ : val✝ ∈ S
⊢ { val := ↑{ val := val✝, property := property✝ }, property := (_ : ↑{ val := val✝, property := property✝ } ∈ S) } =
{ val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
case this
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
hS : Unbounded r S
e : #↑S = cof (type r)
s : ↑S → ↑S → Prop
w✝ : IsWellOrder (↑S) s
e' : ord #↑S = type s
T : Set α := {a | ∃ aS, ∀ (b : ↑S), s b { val := a, property := aS } → r (↑b) a}
a : α
this : Set.Nonempty {b | ¬r (↑b) a}
b : ↑S := WellFounded.min (_ : WellFounded s) {b | ¬r (↑b) a} this
ba : ¬r (↑b) a
c : ↑S
h : ¬r ↑c ↑b
⊢ ¬s c b
[PROOFSTEP]
exact IsWellFounded.wf.not_lt_min _ this (IsOrderConnected.neg_trans h ba)
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
⊢ cof o = sInf {a | ∃ ι f, lsub f = o ∧ #ι = a}
[PROOFSTEP]
refine' le_antisymm (le_csInf (cof_lsub_def_nonempty o) _) (csInf_le' _)
[GOAL]
case refine'_1
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
⊢ ∀ (b : Cardinal.{u}), b ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a} → cof o ≤ b
[PROOFSTEP]
rintro a ⟨ι, f, hf, rfl⟩
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
⊢ cof o ≤ #ι
[PROOFSTEP]
rw [← type_lt o]
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
⊢ cof (type fun x x_1 => x < x_1) ≤ #ι
[PROOFSTEP]
refine'
(cof_type_le fun a => _).trans
(@mk_le_of_injective _ _
(fun s : typein ((· < ·) : o.out.α → o.out.α → Prop) ⁻¹' Set.range f => Classical.choose s.prop) fun s t hst =>
by
let H := congr_arg f hst
rwa [Classical.choose_spec s.prop, Classical.choose_spec t.prop, typein_inj, Subtype.coe_inj] at H )
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
s t : ↑((typein fun x x_1 => x < x_1) ⁻¹' range f)
hst :
(fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) s =
(fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) t
⊢ s = t
[PROOFSTEP]
let H := congr_arg f hst
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
s t : ↑((typein fun x x_1 => x < x_1) ⁻¹' range f)
hst :
(fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) s =
(fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) t
H : f ((fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) s) =
f ((fun s => choose (_ : ↑s ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f)) t) :=
congr_arg f hst
⊢ s = t
[PROOFSTEP]
rwa [Classical.choose_spec s.prop, Classical.choose_spec t.prop, typein_inj, Subtype.coe_inj] at H
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a
[PROOFSTEP]
have := typein_lt_self a
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
this : typein (fun x x_1 => x < x_1) a < o
⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a
[PROOFSTEP]
simp_rw [← hf, lt_lsub_iff] at this
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
this : ∃ i, typein (fun x x_1 => x < x_1) a ≤ f i
⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a
[PROOFSTEP]
cases' this with i hi
[GOAL]
case refine'_1.intro.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
i : ι
hi : typein (fun x x_1 => x < x_1) a ≤ f i
⊢ ∃ b, b ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f ∧ ¬b < a
[PROOFSTEP]
refine' ⟨enum (· < ·) (f i) _, _, _⟩
[GOAL]
case refine'_1.intro.intro.intro.intro.refine'_1
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
i : ι
hi : typein (fun x x_1 => x < x_1) a ≤ f i
⊢ f i < type fun x x_1 => x < x_1
[PROOFSTEP]
rw [type_lt, ← hf]
[GOAL]
case refine'_1.intro.intro.intro.intro.refine'_1
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
i : ι
hi : typein (fun x x_1 => x < x_1) a ≤ f i
⊢ f i < lsub f
[PROOFSTEP]
apply lt_lsub
[GOAL]
case refine'_1.intro.intro.intro.intro.refine'_2
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
i : ι
hi : typein (fun x x_1 => x < x_1) a ≤ f i
⊢ enum (fun x x_1 => x < x_1) (f i) (_ : f i < type fun x x_1 => x < x_1) ∈ (typein fun x x_1 => x < x_1) ⁻¹' range f
[PROOFSTEP]
rw [mem_preimage, typein_enum]
[GOAL]
case refine'_1.intro.intro.intro.intro.refine'_2
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
i : ι
hi : typein (fun x x_1 => x < x_1) a ≤ f i
⊢ f i ∈ range f
[PROOFSTEP]
exact mem_range_self i
[GOAL]
case refine'_1.intro.intro.intro.intro.refine'_3
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
a : (Quotient.out o).α
i : ι
hi : typein (fun x x_1 => x < x_1) a ≤ f i
⊢ ¬enum (fun x x_1 => x < x_1) (f i) (_ : f i < type fun x x_1 => x < x_1) < a
[PROOFSTEP]
rwa [← typein_le_typein, typein_enum]
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
⊢ cof o ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a}
[PROOFSTEP]
rcases cof_eq (· < · : (Quotient.out o).α → (Quotient.out o).α → Prop) with ⟨S, hS, hS'⟩
[GOAL]
case refine'_2.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
S : Set (Quotient.out o).α
hS : Unbounded (fun x x_1 => x < x_1) S
hS' : #↑S = cof (type fun x x_1 => x < x_1)
⊢ cof o ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a}
[PROOFSTEP]
let f : S → Ordinal := fun s => typein LT.lt s.val
[GOAL]
case refine'_2.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
S : Set (Quotient.out o).α
hS : Unbounded (fun x x_1 => x < x_1) S
hS' : #↑S = cof (type fun x x_1 => x < x_1)
f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s
⊢ cof o ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a}
[PROOFSTEP]
refine'
⟨S, f, le_antisymm (lsub_le fun i => typein_lt_self i) (le_of_forall_lt fun a ha => _), by rwa [type_lt o] at hS' ⟩
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
S : Set (Quotient.out o).α
hS : Unbounded (fun x x_1 => x < x_1) S
hS' : #↑S = cof (type fun x x_1 => x < x_1)
f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s
⊢ #↑S = cof o
[PROOFSTEP]
rwa [type_lt o] at hS'
[GOAL]
case refine'_2.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
S : Set (Quotient.out o).α
hS : Unbounded (fun x x_1 => x < x_1) S
hS' : #↑S = cof (type fun x x_1 => x < x_1)
f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s
a : Ordinal.{u}
ha : a < o
⊢ a < lsub f
[PROOFSTEP]
rw [← type_lt o] at ha
[GOAL]
case refine'_2.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
S : Set (Quotient.out o).α
hS : Unbounded (fun x x_1 => x < x_1) S
hS' : #↑S = cof (type fun x x_1 => x < x_1)
f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s
a : Ordinal.{u}
ha : a < type fun x x_1 => x < x_1
⊢ a < lsub f
[PROOFSTEP]
rcases hS (enum (· < ·) a ha) with ⟨b, hb, hb'⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
S : Set (Quotient.out o).α
hS : Unbounded (fun x x_1 => x < x_1) S
hS' : #↑S = cof (type fun x x_1 => x < x_1)
f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s
a : Ordinal.{u}
ha : a < type fun x x_1 => x < x_1
b : (Quotient.out o).α
hb : b ∈ S
hb' : ¬(fun x x_1 => x < x_1) b (enum (fun x x_1 => x < x_1) a ha)
⊢ a < lsub f
[PROOFSTEP]
rw [← typein_le_typein, typein_enum] at hb'
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
S : Set (Quotient.out o).α
hS : Unbounded (fun x x_1 => x < x_1) S
hS' : #↑S = cof (type fun x x_1 => x < x_1)
f : ↑S → Ordinal.{u} := fun s => typein LT.lt ↑s
a : Ordinal.{u}
ha : a < type fun x x_1 => x < x_1
b : (Quotient.out o).α
hb : b ∈ S
hb' : a ≤ typein LT.lt b
⊢ a < lsub f
[PROOFSTEP]
exact hb'.trans_lt (lt_lsub.{u, u} f ⟨b, hb⟩)
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{v}
⊢ Cardinal.lift (cof o) = cof (lift o)
[PROOFSTEP]
refine' inductionOn o _
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{v}
⊢ ∀ (α : Type v) (r : α → α → Prop) [inst : IsWellOrder α r], Cardinal.lift (cof (type r)) = cof (lift (type r))
[PROOFSTEP]
intro α r _
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ Cardinal.lift (cof (type r)) = cof (lift (type r))
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ Cardinal.lift (cof (type r)) ≤ cof (lift (type r))
[PROOFSTEP]
refine' le_cof_type.2 fun S H => _
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set (ULift { α := α, r := r, wo := inst✝ }.α)
H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S
⊢ Cardinal.lift (cof (type r)) ≤ #↑S
[PROOFSTEP]
have : Cardinal.lift.{u, v} #(ULift.up ⁻¹' S) ≤ #(S : Type (max u v)) :=
by
rw [← Cardinal.lift_umax.{v, u}, ← Cardinal.lift_id'.{v, u} #S]
refine mk_preimage_of_injective_lift.{v, max u v} ULift.up S (ULift.up_injective.{u, v})
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set (ULift { α := α, r := r, wo := inst✝ }.α)
H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S
⊢ Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ #↑S
[PROOFSTEP]
rw [← Cardinal.lift_umax.{v, u}, ← Cardinal.lift_id'.{v, u} #S]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set (ULift { α := α, r := r, wo := inst✝ }.α)
H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S
⊢ Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ Cardinal.lift #↑S
[PROOFSTEP]
refine mk_preimage_of_injective_lift.{v, max u v} ULift.up S (ULift.up_injective.{u, v})
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set (ULift { α := α, r := r, wo := inst✝ }.α)
H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S
this : Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ #↑S
⊢ Cardinal.lift (cof (type r)) ≤ #↑S
[PROOFSTEP]
refine' (Cardinal.lift_le.2 <| cof_type_le _).trans this
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set (ULift { α := α, r := r, wo := inst✝ }.α)
H : Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) S
this : Cardinal.lift #↑(ULift.up ⁻¹' S) ≤ #↑S
⊢ Unbounded r (ULift.up ⁻¹' S)
[PROOFSTEP]
exact fun a =>
let ⟨⟨b⟩, bs, br⟩ := H ⟨a⟩
⟨b, bs, br⟩
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r))
[PROOFSTEP]
rcases cof_eq r with ⟨S, H, e'⟩
[GOAL]
case a.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
H : Unbounded r S
e' : #↑S = cof (type r)
⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r))
[PROOFSTEP]
have : #(ULift.down.{u, v} ⁻¹' S) ≤ Cardinal.lift.{u, v} #S :=
⟨⟨fun ⟨⟨x⟩, h⟩ => ⟨⟨x, h⟩⟩, fun ⟨⟨x⟩, h₁⟩ ⟨⟨y⟩, h₂⟩ e => by simp at e ; congr⟩⟩
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
H : Unbounded r S
e' : #↑S = cof (type r)
x✝¹ x✝ : ↑(ULift.down ⁻¹' S)
x : α
h₁ : { down := x } ∈ ULift.down ⁻¹' S
y : α
h₂ : { down := y } ∈ ULift.down ⁻¹' S
e :
(fun x =>
match x with
| { val := { down := x }, property := h } => { down := { val := x, property := h } })
{ val := { down := x }, property := h₁ } =
(fun x =>
match x with
| { val := { down := x }, property := h } => { down := { val := x, property := h } })
{ val := { down := y }, property := h₂ }
⊢ { val := { down := x }, property := h₁ } = { val := { down := y }, property := h₂ }
[PROOFSTEP]
simp at e
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
H : Unbounded r S
e' : #↑S = cof (type r)
x✝¹ x✝ : ↑(ULift.down ⁻¹' S)
x : α
h₁ : { down := x } ∈ ULift.down ⁻¹' S
y : α
h₂ : { down := y } ∈ ULift.down ⁻¹' S
e : x = y
⊢ { val := { down := x }, property := h₁ } = { val := { down := y }, property := h₂ }
[PROOFSTEP]
congr
[GOAL]
case a.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
H : Unbounded r S
e' : #↑S = cof (type r)
this : #↑(ULift.down ⁻¹' S) ≤ Cardinal.lift #↑S
⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r))
[PROOFSTEP]
rw [e'] at this
[GOAL]
case a.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
H : Unbounded r S
e' : #↑S = cof (type r)
this : #↑(ULift.down ⁻¹' S) ≤ Cardinal.lift (cof (type r))
⊢ cof (lift (type r)) ≤ Cardinal.lift (cof (type r))
[PROOFSTEP]
refine' (cof_type_le _).trans this
[GOAL]
case a.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{v}
α : Type v
r : α → α → Prop
inst✝ : IsWellOrder α r
S : Set α
H : Unbounded r S
e' : #↑S = cof (type r)
this : #↑(ULift.down ⁻¹' S) ≤ Cardinal.lift (cof (type r))
⊢ Unbounded (ULift.down ⁻¹'o { α := α, r := r, wo := inst✝ }.r) (ULift.down ⁻¹' S)
[PROOFSTEP]
exact fun ⟨a⟩ =>
let ⟨b, bs, br⟩ := H a
⟨⟨b⟩, bs, br⟩
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ cof o ≤ card o
[PROOFSTEP]
rw [cof_eq_sInf_lsub]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ sInf {a | ∃ ι f, lsub f = o ∧ #ι = a} ≤ card o
[PROOFSTEP]
exact csInf_le' card_mem_cof
[GOAL]
α : Type u_1
r : α → α → Prop
c : Cardinal.{u_2}
⊢ cof (ord c) ≤ c
[PROOFSTEP]
simpa using cof_le_card c.ord
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
⊢ ∃ ι f, lsub f = o ∧ #ι = cof o
[PROOFSTEP]
rw [cof_eq_sInf_lsub]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
⊢ ∃ ι f, lsub f = o ∧ #ι = sInf {a | ∃ ι f, lsub f = o ∧ #ι = a}
[PROOFSTEP]
exact csInf_mem (cof_lsub_def_nonempty o)
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u}
⊢ cof (lsub f) ≤ #ι
[PROOFSTEP]
rw [cof_eq_sInf_lsub]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u}
⊢ sInf {a | ∃ ι_1 f_1, lsub f_1 = lsub f ∧ #ι_1 = a} ≤ #ι
[PROOFSTEP]
exact csInf_le' ⟨ι, f, rfl, rfl⟩
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
⊢ cof (lsub f) ≤ Cardinal.lift #ι
[PROOFSTEP]
rw [← mk_uLift.{u, v}]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
⊢ cof (lsub f) ≤ #(ULift ι)
[PROOFSTEP]
convert cof_lsub_le.{max u v} fun i : ULift.{v, u} ι => f i.down
[GOAL]
case h.e'_3.h.e'_1
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
⊢ lsub f = lsub fun i => f i.down
[PROOFSTEP]
exact
lsub_eq_of_range_eq.{u, max u v, max u v}
(Set.ext fun x => ⟨fun ⟨i, hi⟩ => ⟨ULift.up.{v, u} i, hi⟩, fun ⟨i, hi⟩ => ⟨_, hi⟩⟩)
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
a : Cardinal.{u}
⊢ a ≤ cof o ↔ ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι
[PROOFSTEP]
rw [cof_eq_sInf_lsub]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
a : Cardinal.{u}
⊢ a ≤ sInf {a | ∃ ι f, lsub f = o ∧ #ι = a} ↔ ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι
[PROOFSTEP]
exact
(le_csInf_iff'' (cof_lsub_def_nonempty o)).trans
⟨fun H ι f hf => H _ ⟨ι, f, hf, rfl⟩, fun H b ⟨ι, f, hf, hb⟩ =>
by
rw [← hb]
exact H _ hf⟩
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
a : Cardinal.{u}
H : ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι
b : Cardinal.{u}
x✝ : b ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
hb : #ι = b
⊢ a ≤ b
[PROOFSTEP]
rw [← hb]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
a : Cardinal.{u}
H : ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = o → a ≤ #ι
b : Cardinal.{u}
x✝ : b ∈ {a | ∃ ι f, lsub f = o ∧ #ι = a}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
hb : #ι = b
⊢ a ≤ #ι
[PROOFSTEP]
exact H _ hf
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
c : Ordinal.{max u v}
hι : Cardinal.lift #ι < cof c
hf : ∀ (i : ι), f i < c
h : lsub f = c
⊢ False
[PROOFSTEP]
subst h
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
hι : Cardinal.lift #ι < cof (lsub f)
hf : ∀ (i : ι), f i < lsub f
⊢ False
[PROOFSTEP]
exact (cof_lsub_le_lift.{u, v} f).not_lt hι
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u}
c : Ordinal.{u}
hι : #ι < cof c
⊢ Cardinal.lift #ι < cof c
[PROOFSTEP]
rwa [(#ι).lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
H : ∀ (i : ι), f i < sup f
⊢ cof (sup f) ≤ Cardinal.lift #ι
[PROOFSTEP]
rw [← sup_eq_lsub_iff_lt_sup.{u, v}] at H
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
H : (sup fun i => f i) = lsub fun i => f i
⊢ cof (sup f) ≤ Cardinal.lift #ι
[PROOFSTEP]
rw [H]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
H : (sup fun i => f i) = lsub fun i => f i
⊢ cof (lsub fun i => f i) ≤ Cardinal.lift #ι
[PROOFSTEP]
exact cof_lsub_le_lift f
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u}
H : ∀ (i : ι), f i < sup f
⊢ cof (sup f) ≤ #ι
[PROOFSTEP]
rw [← (#ι).lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u}
H : ∀ (i : ι), f i < sup f
⊢ cof (sup f) ≤ Cardinal.lift #ι
[PROOFSTEP]
exact cof_sup_le_lift H
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u}
c : Ordinal.{u}
hι : #ι < cof c
⊢ Cardinal.lift #ι < cof c
[PROOFSTEP]
rwa [(#ι).lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Cardinal.{max u v}
c : Cardinal.{max u v}
hι : Cardinal.lift #ι < cof (ord c)
hf : ∀ (i : ι), f i < c
⊢ iSup f < c
[PROOFSTEP]
rw [← ord_lt_ord, iSup_ord (Cardinal.bddAbove_range.{u, v} _)]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Cardinal.{max u v}
c : Cardinal.{max u v}
hι : Cardinal.lift #ι < cof (ord c)
hf : ∀ (i : ι), f i < c
⊢ ⨆ (i : ι), ord (f i) < ord c
[PROOFSTEP]
refine' sup_lt_ord_lift hι fun i => _
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Cardinal.{max u v}
c : Cardinal.{max u v}
hι : Cardinal.lift #ι < cof (ord c)
hf : ∀ (i : ι), f i < c
i : ι
⊢ ord (f i) < ord c
[PROOFSTEP]
rw [ord_lt_ord]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Cardinal.{max u v}
c : Cardinal.{max u v}
hι : Cardinal.lift #ι < cof (ord c)
hf : ∀ (i : ι), f i < c
i : ι
⊢ f i < c
[PROOFSTEP]
apply hf
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u_2
f : ι → Cardinal.{u_2}
c : Cardinal.{u_2}
hι : #ι < cof (ord c)
⊢ Cardinal.lift #ι < cof (ord c)
[PROOFSTEP]
rwa [(#ι).lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c
a : Ordinal.{max u v}
ha : a < c
⊢ nfpFamily f a < c
[PROOFSTEP]
refine' sup_lt_ord_lift ((Cardinal.lift_le.2 (mk_list_le_max ι)).trans_lt _) fun l => _
[GOAL]
case refine'_1
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c
a : Ordinal.{max u v}
ha : a < c
⊢ Cardinal.lift (max ℵ₀ #ι) < cof c
[PROOFSTEP]
rw [lift_max]
[GOAL]
case refine'_1
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c
a : Ordinal.{max u v}
ha : a < c
⊢ max (Cardinal.lift ℵ₀) (Cardinal.lift #ι) < cof c
[PROOFSTEP]
apply max_lt _ hc'
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c
a : Ordinal.{max u v}
ha : a < c
⊢ Cardinal.lift ℵ₀ < cof c
[PROOFSTEP]
rwa [Cardinal.lift_aleph0]
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c
a : Ordinal.{max u v}
ha : a < c
l : List ι
⊢ List.foldr f a l < c
[PROOFSTEP]
induction' l with i l H
[GOAL]
case refine'_2.nil
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c
a : Ordinal.{max u v}
ha : a < c
⊢ List.foldr f a [] < c
[PROOFSTEP]
exact ha
[GOAL]
case refine'_2.cons
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < c → f i b < c
a : Ordinal.{max u v}
ha : a < c
i : ι
l : List ι
H : List.foldr f a l < c
⊢ List.foldr f a (i :: l) < c
[PROOFSTEP]
exact hf _ _ H
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u} → Ordinal.{u}
c : Ordinal.{u}
hc : ℵ₀ < cof c
hc' : #ι < cof c
hf : ∀ (i : ι) (b : Ordinal.{u}), b < c → f i b < c
a : Ordinal.{u}
⊢ Cardinal.lift #ι < cof c
[PROOFSTEP]
rwa [(#ι).lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} → Ordinal.{max u v}
c : Ordinal.{max u v}
hc : ℵ₀ < cof c
hc' : Cardinal.lift (card o) < cof c
hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{max u v}), b < c → f i hi b < c
a : Ordinal.{max u v}
⊢ Cardinal.lift #(Quotient.out o).α < cof c
[PROOFSTEP]
rwa [mk_ordinal_out]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u}
c : Ordinal.{u}
hc : ℵ₀ < cof c
hc' : card o < cof c
hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{u}), b < c → f i hi b < c
a : Ordinal.{u}
⊢ Cardinal.lift (card o) < cof c
[PROOFSTEP]
rwa [o.card.lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
c : Ordinal.{u_2}
hc : ℵ₀ < cof c
hf : ∀ (i : Ordinal.{u_2}), i < c → f i < c
a : Ordinal.{u_2}
⊢ Cardinal.lift #Unit < cof c
[PROOFSTEP]
simpa using Cardinal.one_lt_aleph0.trans hc
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
⊢ ∃ f, blsub (ord (cof o)) f = o
[PROOFSTEP]
rcases exists_lsub_cof o with ⟨ι, f, hf, hι⟩
[GOAL]
case intro.intro.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
hι : #ι = cof o
⊢ ∃ f, blsub (ord (cof o)) f = o
[PROOFSTEP]
rcases Cardinal.ord_eq ι with ⟨r, hr, hι'⟩
[GOAL]
case intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = o
hι : #ι = cof o
r : ι → ι → Prop
hr : IsWellOrder ι r
hι' : ord #ι = type r
⊢ ∃ f, blsub (ord (cof o)) f = o
[PROOFSTEP]
rw [← @blsub_eq_lsub' ι r hr] at hf
[GOAL]
case intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hι : #ι = cof o
r : ι → ι → Prop
hr : IsWellOrder ι r
hf : blsub (type r) (bfamilyOfFamily' r f) = o
hι' : ord #ι = type r
⊢ ∃ f, blsub (ord (cof o)) f = o
[PROOFSTEP]
rw [← hι, hι']
[GOAL]
case intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
o : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hι : #ι = cof o
r : ι → ι → Prop
hr : IsWellOrder ι r
hf : blsub (type r) (bfamilyOfFamily' r f) = o
hι' : ord #ι = type r
⊢ ∃ f, blsub (type r) f = o
[PROOFSTEP]
exact ⟨_, hf⟩
[GOAL]
α : Type u_1
r : α → α → Prop
b : Ordinal.{u}
a : Cardinal.{u}
H : ∀ {ι : Type u} (f : ι → Ordinal.{u}), lsub f = b → a ≤ #ι
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
hf : blsub o f = b
⊢ a ≤ card o
[PROOFSTEP]
simpa using H _ hf
[GOAL]
α : Type u_1
r : α → α → Prop
b : Ordinal.{u}
a : Cardinal.{u}
H : ∀ {o : Ordinal.{u}} (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), blsub o f = b → a ≤ card o
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = b
⊢ a ≤ #ι
[PROOFSTEP]
rcases Cardinal.ord_eq ι with ⟨r, hr, hι'⟩
[GOAL]
case intro.intro
α : Type u_1
r✝ : α → α → Prop
b : Ordinal.{u}
a : Cardinal.{u}
H : ∀ {o : Ordinal.{u}} (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), blsub o f = b → a ≤ card o
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = b
r : ι → ι → Prop
hr : IsWellOrder ι r
hι' : ord #ι = type r
⊢ a ≤ #ι
[PROOFSTEP]
rw [← @blsub_eq_lsub' ι r hr] at hf
[GOAL]
case intro.intro
α : Type u_1
r✝ : α → α → Prop
b : Ordinal.{u}
a : Cardinal.{u}
H : ∀ {o : Ordinal.{u}} (f : (a : Ordinal.{u}) → a < o → Ordinal.{u}), blsub o f = b → a ≤ card o
ι : Type u
f : ι → Ordinal.{u}
r : ι → ι → Prop
hr : IsWellOrder ι r
hf : blsub (type r) (bfamilyOfFamily' r f) = b
hι' : ord #ι = type r
⊢ a ≤ #ι
[PROOFSTEP]
simpa using H _ hf
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
⊢ cof (blsub o f) ≤ Cardinal.lift (card o)
[PROOFSTEP]
rw [← mk_ordinal_out o]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
⊢ cof (blsub o f) ≤ Cardinal.lift #(Quotient.out o).α
[PROOFSTEP]
exact cof_lsub_le_lift _
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
⊢ cof (blsub o f) ≤ card o
[PROOFSTEP]
rw [← o.card.lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
⊢ cof (blsub o f) ≤ Cardinal.lift (card o)
[PROOFSTEP]
exact cof_blsub_le_lift f
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
c : Ordinal.{max u v}
ho : Cardinal.lift (card o) < cof c
hf : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi < c
h : blsub o f = c
⊢ cof c ≤ Cardinal.lift (card o)
[PROOFSTEP]
simpa [← iSup_ord, hf, h] using cof_blsub_le_lift.{u, v} f
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
c : Ordinal.{u}
ho : card o < cof c
hf : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi < c
⊢ Cardinal.lift (card o) < cof c
[PROOFSTEP]
rwa [o.card.lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
H : ∀ (i : Ordinal.{u}) (h : i < o), f i h < bsup o f
⊢ cof (bsup o f) ≤ Cardinal.lift (card o)
[PROOFSTEP]
rw [← bsup_eq_blsub_iff_lt_bsup.{u, v}] at H
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
H : (bsup o fun i h => f i h) = blsub o fun i h => f i h
⊢ cof (bsup o f) ≤ Cardinal.lift (card o)
[PROOFSTEP]
rw [H]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
H : (bsup o fun i h => f i h) = blsub o fun i h => f i h
⊢ cof (blsub o fun i h => f i h) ≤ Cardinal.lift (card o)
[PROOFSTEP]
exact cof_blsub_le_lift.{u, v} f
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
⊢ (∀ (i : Ordinal.{u}) (h : i < o), f i h < bsup o f) → cof (bsup o f) ≤ card o
[PROOFSTEP]
rw [← o.card.lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
⊢ (∀ (i : Ordinal.{u}) (h : i < o), f i h < bsup o f) → cof (bsup o f) ≤ Cardinal.lift (card o)
[PROOFSTEP]
exact cof_bsup_le_lift
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u}
c : Ordinal.{u}
ho : card o < cof c
⊢ Cardinal.lift (card o) < cof c
[PROOFSTEP]
rwa [o.card.lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ cof 0 = 0
[PROOFSTEP]
refine LE.le.antisymm ?_ (Cardinal.zero_le _)
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ cof 0 ≤ 0
[PROOFSTEP]
rw [← card_zero]
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ cof 0 ≤ card 0
[PROOFSTEP]
exact cof_le_card 0
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
e : o = 0
⊢ cof o = 0
[PROOFSTEP]
simp [e]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ cof (succ o) = 1
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ cof (succ o) ≤ 1
[PROOFSTEP]
refine' inductionOn o fun α r _ => _
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ cof (succ (type r)) ≤ 1
[PROOFSTEP]
change cof (type _) ≤ _
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ 1
[PROOFSTEP]
rw [← (_ : #_ = 1)]
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ #?m.43749
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ Type u_2
α✝ : Type u_1 r✝ : α✝ → α✝ → Prop o : Ordinal.{u_2} α : Type u_2 r : α → α → Prop x✝ : IsWellOrder α r ⊢ #?m.43749 = 1
[PROOFSTEP]
apply cof_type_le
[GOAL]
case a.h
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ Unbounded (Sum.Lex r EmptyRelation) ?a.S✝
[PROOFSTEP]
refine' fun a => ⟨Sum.inr PUnit.unit, Set.mem_singleton _, _⟩
[GOAL]
case a.h
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
a : α ⊕ PUnit
⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) a
[PROOFSTEP]
rcases a with (a | ⟨⟨⟨⟩⟩⟩)
[GOAL]
case a.h.inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
a : α
⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) (Sum.inl a)
[PROOFSTEP]
simp [EmptyRelation]
[GOAL]
case a.h.inr.unit
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) (Sum.inr PUnit.unit)
[PROOFSTEP]
simp [EmptyRelation]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ #↑{Sum.inr PUnit.unit} = 1
[PROOFSTEP]
rw [Cardinal.mk_fintype, Set.card_singleton]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u_2}
α : Type u_2
r : α → α → Prop
x✝ : IsWellOrder α r
⊢ ↑1 = 1
[PROOFSTEP]
simp
[GOAL]
case a
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ 1 ≤ cof (succ o)
[PROOFSTEP]
rw [← Cardinal.succ_zero, succ_le_iff]
[GOAL]
case a
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ 0 < cof (succ o)
[PROOFSTEP]
simpa [lt_iff_le_and_ne, Cardinal.zero_le] using fun h => succ_ne_zero o (cof_eq_zero.1 (Eq.symm h))
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
⊢ ∃ a, type r = succ a
[PROOFSTEP]
skip
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
⊢ ∃ a, type r = succ a
[PROOFSTEP]
rcases cof_eq r with ⟨S, hl, e⟩
[GOAL]
case intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = cof (type r)
⊢ ∃ a, type r = succ a
[PROOFSTEP]
rw [z] at e
[GOAL]
case intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
⊢ ∃ a, type r = succ a
[PROOFSTEP]
cases' mk_ne_zero_iff.1 (by rw [e]; exact one_ne_zero) with a
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
⊢ #?m.47546 ≠ 0
[PROOFSTEP]
rw [e]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
⊢ 1 ≠ 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
case intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
⊢ ∃ a, type r = succ a
[PROOFSTEP]
refine'
⟨typein r a, Eq.symm <| Quotient.sound ⟨RelIso.ofSurjective (RelEmbedding.ofMonotone _ fun x y => _) fun x => _⟩⟩
[GOAL]
case intro.intro.intro.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
⊢ ↑{b | r b ↑a} ⊕ PUnit → α
[PROOFSTEP]
apply Sum.rec <;> [exact Subtype.val; exact fun _ => a]
[GOAL]
case intro.intro.intro.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
⊢ ↑{b | r b ↑a} ⊕ PUnit → α
[PROOFSTEP]
apply Sum.rec
[GOAL]
case intro.intro.intro.refine'_1.inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
⊢ ↑{b | r b ↑a} → α
[PROOFSTEP]
exact Subtype.val
[GOAL]
case intro.intro.intro.refine'_1.inr
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
⊢ PUnit → α
[PROOFSTEP]
exact fun _ => a
[GOAL]
case intro.intro.intro.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x y : ↑{b | r b ↑a} ⊕ PUnit
⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y →
r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y)
[PROOFSTEP]
rcases x with (x | ⟨⟨⟨⟩⟩⟩)
[GOAL]
case intro.intro.intro.refine'_2.inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
y : ↑{b | r b ↑a} ⊕ PUnit
x : ↑{b | r b ↑a}
⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inl x) y →
r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl x)) (Sum.rec Subtype.val (fun x => ↑a) y)
[PROOFSTEP]
rcases y with (y | ⟨⟨⟨⟩⟩⟩)
[GOAL]
case intro.intro.intro.refine'_2.inr.unit
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
y : ↑{b | r b ↑a} ⊕ PUnit
⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inr PUnit.unit) y →
r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) (Sum.rec Subtype.val (fun x => ↑a) y)
[PROOFSTEP]
rcases y with (y | ⟨⟨⟨⟩⟩⟩)
[GOAL]
case intro.intro.intro.refine'_2.inl.inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x y : ↑{b | r b ↑a}
⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inl x) (Sum.inl y) →
r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl x)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl y))
[PROOFSTEP]
simp [Subrel, Order.Preimage, EmptyRelation]
[GOAL]
case intro.intro.intro.refine'_2.inl.inr.unit
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : ↑{b | r b ↑a}
⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inl x) (Sum.inr PUnit.unit) →
r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl x)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit))
[PROOFSTEP]
simp [Subrel, Order.Preimage, EmptyRelation]
[GOAL]
case intro.intro.intro.refine'_2.inr.unit.inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
y : ↑{b | r b ↑a}
⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inr PUnit.unit) (Sum.inl y) →
r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inl y))
[PROOFSTEP]
simp [Subrel, Order.Preimage, EmptyRelation]
[GOAL]
case intro.intro.intro.refine'_2.inr.unit.inr.unit
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
⊢ Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation (Sum.inr PUnit.unit) (Sum.inr PUnit.unit) →
r (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit)) (Sum.rec Subtype.val (fun x => ↑a) (Sum.inr PUnit.unit))
[PROOFSTEP]
simp [Subrel, Order.Preimage, EmptyRelation]
[GOAL]
case intro.intro.intro.refine'_2.inl.inr.unit
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : ↑{b | r b ↑a}
⊢ r ↑x ↑a
[PROOFSTEP]
exact x.2
[GOAL]
case intro.intro.intro.refine'_3
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
⊢ ∃ a_1,
↑(RelEmbedding.ofMonotone (Sum.rec Subtype.val fun x => ↑a)
(_ :
∀ (x y : ↑{b | r b ↑a} ⊕ PUnit),
Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y →
r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y)))
a_1 =
x
[PROOFSTEP]
suffices : r x a ∨ ∃ _ : PUnit.{u}, ↑a = x
[GOAL]
case intro.intro.intro.refine'_3
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
this : r x ↑a ∨ ∃ x_1, ↑a = x
⊢ ∃ a_1,
↑(RelEmbedding.ofMonotone (Sum.rec Subtype.val fun x => ↑a)
(_ :
∀ (x y : ↑{b | r b ↑a} ⊕ PUnit),
Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y →
r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y)))
a_1 =
x
[PROOFSTEP]
convert this
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
this : r x ↑a ∨ ∃ x_1, ↑a = x
⊢ (∃ a_1,
↑(RelEmbedding.ofMonotone (Sum.rec Subtype.val fun x => ↑a)
(_ :
∀ (x y : ↑{b | r b ↑a} ⊕ PUnit),
Sum.Lex (Subrel r {b | r b ↑a}) EmptyRelation x y →
r (Sum.rec Subtype.val (fun x => ↑a) x) (Sum.rec Subtype.val (fun x => ↑a) y)))
a_1 =
x) ↔
r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
dsimp [RelEmbedding.ofMonotone]
[GOAL]
case a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
this : r x ↑a ∨ ∃ x_1, ↑a = x
⊢ (∃ a_1, Sum.rec Subtype.val (fun x => ↑a) a_1 = x) ↔ r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
simp
[GOAL]
case this
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
⊢ r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
rcases trichotomous_of r x a with (h | h | h)
[GOAL]
case this.inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
h : r x ↑a
⊢ r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
exact Or.inl h
[GOAL]
case this.inr.inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
h : x = ↑a
⊢ r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
exact Or.inr ⟨PUnit.unit, h.symm⟩
[GOAL]
case this.inr.inr
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
h : r (↑a) x
⊢ r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
rcases hl x with ⟨a', aS, hn⟩
[GOAL]
case this.inr.inr.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
h : r (↑a) x
a' : α
aS : a' ∈ S
hn : ¬r a' x
⊢ r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
rw [(_ : ↑a = a')] at h
[GOAL]
case this.inr.inr.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x a' : α
h : r a' x
aS : a' ∈ S
hn : ¬r a' x
⊢ r x ↑a ∨ ∃ x_1, ↑a = x
[PROOFSTEP]
exact absurd h hn
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
h : r (↑a) x
a' : α
aS : a' ∈ S
hn : ¬r a' x
⊢ ↑a = a'
[PROOFSTEP]
refine' congr_arg Subtype.val (_ : a = ⟨a', aS⟩)
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
h : r (↑a) x
a' : α
aS : a' ∈ S
hn : ¬r a' x
⊢ a = { val := a', property := aS }
[PROOFSTEP]
haveI := le_one_iff_subsingleton.1 (le_of_eq e)
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
o : Ordinal.{u}
α : Type u
r : α → α → Prop
x✝ : IsWellOrder α r
z : cof (type r) = 1
S : Set α
hl : Unbounded r S
e : #↑S = 1
a : ↑S
x : α
h : r (↑a) x
a' : α
aS : a' ∈ S
hn : ¬r a' x
this : Subsingleton ↑S
⊢ a = { val := a', property := aS }
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
x✝ : ∃ a, o = succ a
a : Ordinal.{u}
e : o = succ a
⊢ cof o = 1
[PROOFSTEP]
simp [e]
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
⊢ ord (cof a) ≤ o
[PROOFSTEP]
rw [← hf.2.2]
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
⊢ ord (cof (blsub o f)) ≤ o
[PROOFSTEP]
exact (ord_le_ord.2 (cof_blsub_le f)).trans (ord_card_le o)
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
i : Ordinal.{u}
hi : i < ord (cof a)
⊢ ord (cof a) ≤ o
[PROOFSTEP]
rw [hf.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
⊢ IsFundamentalSequence a (ord (cof a)) fun i hi => f i (_ : i < o)
[PROOFSTEP]
have H := hf.cof_eq
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
H : ord (cof a) = o
⊢ IsFundamentalSequence a (ord (cof a)) fun i hi => f i (_ : i < o)
[PROOFSTEP]
subst H
[GOAL]
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
f : (b : Ordinal.{u}) → b < ord (cof a) → Ordinal.{u}
hf : IsFundamentalSequence a (ord (cof a)) f
⊢ IsFundamentalSequence a (ord (cof a)) fun i hi => f i (_ : i < ord (cof a))
[PROOFSTEP]
exact hf
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o → Ordinal.{u}
f : (b : Ordinal.{u_2}) → b < 0 → Ordinal.{u_2}
⊢ 0 ≤ ord (cof 0)
[PROOFSTEP]
rw [cof_zero, ord_zero]
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
⊢ IsFundamentalSequence (succ o) 1 fun x x => o
[PROOFSTEP]
refine' ⟨_, @fun i j hi hj h => _, blsub_const Ordinal.one_ne_zero o⟩
[GOAL]
case refine'_1
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
⊢ 1 ≤ ord (cof (succ o))
[PROOFSTEP]
rw [cof_succ, ord_one]
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
i j : Ordinal.{u}
hi : i < 1
hj : j < 1
h : i < j
⊢ (fun x x => o) i hi < (fun x x => o) j hj
[PROOFSTEP]
rw [lt_one_iff_zero] at hi hj
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
i j : Ordinal.{u}
hi✝ : i < 1
hi : i = 0
hj✝ : j < 1
hj : j = 0
h : i < j
⊢ (fun x x => o) i hi✝ < (fun x x => o) j hj✝
[PROOFSTEP]
rw [hi, hj] at h
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
i j : Ordinal.{u}
hi✝ : i < 1
hi : i = 0
hj✝ : j < 1
hj : j = 0
h : 0 < 0
⊢ (fun x x => o) i hi✝ < (fun x x => o) j hj✝
[PROOFSTEP]
exact h.false.elim
[GOAL]
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
i j : Ordinal.{u}
hi : i < o
hj : j < o
hij : i ≤ j
⊢ f i hi ≤ f j hj
[PROOFSTEP]
rcases lt_or_eq_of_le hij with (hij | rfl)
[GOAL]
case inl
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
i j : Ordinal.{u}
hi : i < o
hj : j < o
hij✝ : i ≤ j
hij : i < j
⊢ f i hi ≤ f j hj
[PROOFSTEP]
exact (hf.2.1 hi hj hij).le
[GOAL]
case inr
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
i : Ordinal.{u}
hi hj : i < o
hij : i ≤ i
⊢ f i hi ≤ f i hj
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
i : Ordinal.{u}
hi : i < o'
⊢ g i hi < o
[PROOFSTEP]
rw [← hg.2.2]
[GOAL]
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
i : Ordinal.{u}
hi : i < o'
⊢ g i hi < blsub o' g
[PROOFSTEP]
apply lt_blsub
[GOAL]
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
⊢ IsFundamentalSequence a o' fun i hi => f (g i hi) (_ : g i hi < o)
[PROOFSTEP]
refine' ⟨_, @fun i j _ _ h => hf.2.1 _ _ (hg.2.1 _ _ h), _⟩
[GOAL]
case refine'_1
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
⊢ o' ≤ ord (cof a)
[PROOFSTEP]
rw [hf.cof_eq]
[GOAL]
case refine'_1
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
⊢ o' ≤ o
[PROOFSTEP]
exact hg.1.trans (ord_cof_le o)
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
⊢ (blsub o' fun i hi => f (g i hi) (_ : g i hi < o)) = a
[PROOFSTEP]
rw [@blsub_comp.{u, u, u} o _ f (@IsFundamentalSequence.monotone _ _ f hf)]
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
⊢ blsub o f = a
case refine'_2.hg
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
⊢ (blsub o' fun i hi => g i hi) = o
[PROOFSTEP]
exact hf.2.2
[GOAL]
case refine'_2.hg
α : Type u_1
r : α → α → Prop
a✝ o✝ : Ordinal.{u}
f✝ : (b : Ordinal.{u}) → b < o✝ → Ordinal.{u}
a o o' : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
g : (b : Ordinal.{u}) → b < o' → Ordinal.{u}
hg : IsFundamentalSequence o o' g
⊢ (blsub o' fun i hi => g i hi) = o
[PROOFSTEP]
exact hg.2.2
[GOAL]
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
⊢ ∃ f, IsFundamentalSequence a (ord (cof a)) f
[PROOFSTEP]
suffices h : ∃ o f, IsFundamentalSequence a o f
[GOAL]
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
h : ∃ o f, IsFundamentalSequence a o f
⊢ ∃ f, IsFundamentalSequence a (ord (cof a)) f
[PROOFSTEP]
rcases h with ⟨o, f, hf⟩
[GOAL]
case intro.intro
α : Type u_1
r : α → α → Prop
a o : Ordinal.{u}
f : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hf : IsFundamentalSequence a o f
⊢ ∃ f, IsFundamentalSequence a (ord (cof a)) f
[PROOFSTEP]
exact ⟨_, hf.ord_cof⟩
[GOAL]
case h
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
⊢ ∃ o f, IsFundamentalSequence a o f
[PROOFSTEP]
rcases exists_lsub_cof a with ⟨ι, f, hf, hι⟩
[GOAL]
case h.intro.intro.intro
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
⊢ ∃ o f, IsFundamentalSequence a o f
[PROOFSTEP]
rcases ord_eq ι with ⟨r, wo, hr⟩
[GOAL]
case h.intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
⊢ ∃ o f, IsFundamentalSequence a o f
[PROOFSTEP]
haveI := wo
[GOAL]
case h.intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this : IsWellOrder ι r
⊢ ∃ o f, IsFundamentalSequence a o f
[PROOFSTEP]
let r' := Subrel r {i | ∀ j, r j i → f j < f i}
[GOAL]
case h.intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
⊢ ∃ o f, IsFundamentalSequence a o f
[PROOFSTEP]
let hrr' : r' ↪r r := Subrel.relEmbedding _ _
[GOAL]
case h.intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
⊢ ∃ o f, IsFundamentalSequence a o f
[PROOFSTEP]
haveI := hrr'.isWellOrder
[GOAL]
case h.intro.intro.intro.intro.intro
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
⊢ ∃ o f, IsFundamentalSequence a o f
[PROOFSTEP]
refine'
⟨_, _, hrr'.ordinal_type_le.trans _, @fun i j _ h _ => (enum r' j h).prop _ _,
le_antisymm (blsub_le fun i hi => lsub_le_iff.1 hf.le _) _⟩
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_1
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
⊢ type r ≤ ord (cof a)
[PROOFSTEP]
rw [← hι, hr]
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_2
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i j : Ordinal.{u}
x✝¹ : i < type r'
h : j < type r'
x✝ : i < j
⊢ r ↑(enum r' i x✝¹) ↑(enum r' j h)
[PROOFSTEP]
change r (hrr'.1 _) (hrr'.1 _)
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_2
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i j : Ordinal.{u}
x✝¹ : i < type r'
h : j < type r'
x✝ : i < j
⊢ r (↑hrr'.toEmbedding (enum r' i x✝¹)) (↑hrr'.toEmbedding (enum r' j h))
[PROOFSTEP]
rwa [hrr'.2, @enum_lt_enum _ r']
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_3
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
⊢ a ≤ blsub (type r') fun j h => f ↑(enum r' j h)
[PROOFSTEP]
rw [← hf, lsub_le_iff]
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_3
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
⊢ ∀ (i : ι), f i < blsub (type r') fun j h => f ↑(enum r' j h)
[PROOFSTEP]
intro i
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_3
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
⊢ f i < blsub (type r') fun j h => f ↑(enum r' j h)
[PROOFSTEP]
suffices h : ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f i) i' hi'
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_3
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi'
⊢ f i < blsub (type r') fun j h => f ↑(enum r' j h)
[PROOFSTEP]
rcases h with ⟨i', hi', hfg⟩
[GOAL]
case h.intro.intro.intro.intro.intro.refine'_3.intro.intro
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
i' : Ordinal.{u}
hi' : i' < type r'
hfg : f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi'
⊢ f i < blsub (type r') fun j h => f ↑(enum r' j h)
[PROOFSTEP]
exact hfg.trans_lt (lt_blsub _ _ _)
[GOAL]
case h
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi'
[PROOFSTEP]
by_cases h : ∀ j, r j i → f j < f i
[GOAL]
case pos
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∀ (j : ι), r j i → f j < f i
⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi'
[PROOFSTEP]
refine' ⟨typein r' ⟨i, h⟩, typein_lt_type _ _, _⟩
[GOAL]
case pos
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∀ (j : ι), r j i → f j < f i
⊢ f i ≤
bfamilyOfFamily' r' (fun i => f ↑i) (typein r' { val := i, property := h })
(_ : typein r' { val := i, property := h } < type r')
[PROOFSTEP]
rw [bfamilyOfFamily'_typein]
[GOAL]
case neg
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ¬∀ (j : ι), r j i → f j < f i
⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi'
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∃ j, r j i ∧ f i ≤ f j
⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi'
[PROOFSTEP]
cases' wo.wf.min_mem _ h with hji hij
[GOAL]
case neg.intro
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∃ j, r j i ∧ f i ≤ f j
hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i
hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)
⊢ ∃ i' hi', f i ≤ bfamilyOfFamily' r' (fun i => f ↑i) i' hi'
[PROOFSTEP]
refine' ⟨typein r' ⟨_, fun k hkj => lt_of_lt_of_le _ hij⟩, typein_lt_type _ _, _⟩
[GOAL]
case neg.intro.refine'_1
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∃ j, r j i ∧ f i ≤ f j
hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i
hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)
k : ι
hkj : r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)
⊢ f k < f i
[PROOFSTEP]
by_contra' H
[GOAL]
case neg.intro.refine'_1
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∃ j, r j i ∧ f i ≤ f j
hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i
hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)
k : ι
hkj : r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)
H : f i ≤ f k
⊢ False
[PROOFSTEP]
exact (wo.wf.not_lt_min _ h ⟨IsTrans.trans _ _ _ hkj hji, H⟩) hkj
[GOAL]
case neg.intro.refine'_2
α : Type u_1
r✝ : α → α → Prop
a : Ordinal.{u}
ι : Type u
f : ι → Ordinal.{u}
hf : lsub f = a
hι : #ι = cof a
r : ι → ι → Prop
wo : IsWellOrder ι r
hr : ord #ι = type r
this✝ : IsWellOrder ι r
r' : ↑{i | ∀ (j : ι), r j i → f j < f i} → ↑{i | ∀ (j : ι), r j i → f j < f i} → Prop :=
Subrel r {i | ∀ (j : ι), r j i → f j < f i}
hrr' : r' ↪r r := Subrel.relEmbedding r {i | ∀ (j : ι), r j i → f j < f i}
this : IsWellOrder (↑{i | ∀ (j : ι), r j i → f j < f i}) r'
i : ι
h : ∃ j, r j i ∧ f i ≤ f j
hji : r (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) i
hij : f i ≤ f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)
⊢ f i ≤
bfamilyOfFamily' r' (fun i => f ↑i)
(typein r'
{ val := WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h,
property :=
(_ :
∀ (k : ι),
r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) →
f k < f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)) })
(_ :
typein r'
{ val := WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h,
property :=
(_ :
∀ (k : ι),
r k (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h) →
f k < f (WellFounded.min (_ : WellFounded r) (fun x => r x i ∧ f i ≤ f x) h)) } <
type r')
[PROOFSTEP]
rwa [bfamilyOfFamily'_typein]
[GOAL]
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
⊢ cof (ord (cof a)) = cof a
[PROOFSTEP]
cases' exists_fundamental_sequence a with f hf
[GOAL]
case intro
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
f : (b : Ordinal.{u}) → b < ord (cof a) → Ordinal.{u}
hf : IsFundamentalSequence a (ord (cof a)) f
⊢ cof (ord (cof a)) = cof a
[PROOFSTEP]
cases' exists_fundamental_sequence a.cof.ord with g hg
[GOAL]
case intro.intro
α : Type u_1
r : α → α → Prop
a : Ordinal.{u}
f : (b : Ordinal.{u}) → b < ord (cof a) → Ordinal.{u}
hf : IsFundamentalSequence a (ord (cof a)) f
g : (b : Ordinal.{u}) → b < ord (cof (ord (cof a))) → Ordinal.{u}
hg : IsFundamentalSequence (ord (cof a)) (ord (cof (ord (cof a)))) g
⊢ cof (ord (cof a)) = cof a
[PROOFSTEP]
exact ord_injective (hf.trans hg).cof_eq.symm
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
⊢ IsFundamentalSequence (f a) o fun b hb => f (g b hb)
[PROOFSTEP]
refine' ⟨_, @fun i j _ _ h => hf.strictMono (hg.2.1 _ _ h), _⟩
[GOAL]
case refine'_1
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
⊢ o ≤ ord (cof (f a))
[PROOFSTEP]
rcases exists_lsub_cof (f a) with ⟨ι, f', hf', hι⟩
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
⊢ o ≤ ord (cof (f a))
[PROOFSTEP]
rw [← hg.cof_eq, ord_le_ord, ← hι]
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
⊢ cof a ≤ #ι
[PROOFSTEP]
suffices (lsub.{u, u} fun i => sInf {b : Ordinal | f' i ≤ f b}) = a
by
rw [← this]
apply cof_lsub_le
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
this : (lsub fun i => sInf {b | f' i ≤ f b}) = a
⊢ cof a ≤ #ι
[PROOFSTEP]
rw [← this]
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
this : (lsub fun i => sInf {b | f' i ≤ f b}) = a
⊢ cof (lsub fun i => sInf {b | f' i ≤ f b}) ≤ #ι
[PROOFSTEP]
apply cof_lsub_le
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
⊢ (lsub fun i => sInf {b | f' i ≤ f b}) = a
[PROOFSTEP]
have H : ∀ i, ∃ b < a, f' i ≤ f b := fun i => by
have := lt_lsub.{u, u} f' i
rw [hf', ← IsNormal.blsub_eq.{u, u} hf ha, lt_blsub_iff] at this
simpa using this
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
i : ι
⊢ ∃ b, b < a ∧ f' i ≤ f b
[PROOFSTEP]
have := lt_lsub.{u, u} f' i
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
i : ι
this : f' i < lsub f'
⊢ ∃ b, b < a ∧ f' i ≤ f b
[PROOFSTEP]
rw [hf', ← IsNormal.blsub_eq.{u, u} hf ha, lt_blsub_iff] at this
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
i : ι
this : ∃ i_1 hi, f' i ≤ f i_1
⊢ ∃ b, b < a ∧ f' i ≤ f b
[PROOFSTEP]
simpa using this
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
⊢ (lsub fun i => sInf {b | f' i ≤ f b}) = a
[PROOFSTEP]
refine' (lsub_le fun i => _).antisymm (le_of_forall_lt fun b hb => _)
[GOAL]
case refine'_1.intro.intro.intro.refine'_1
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
i : ι
⊢ sInf {b | f' i ≤ f b} < a
[PROOFSTEP]
rcases H i with ⟨b, hb, hb'⟩
[GOAL]
case refine'_1.intro.intro.intro.refine'_1.intro.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
i : ι
b : Ordinal.{u}
hb : b < a
hb' : f' i ≤ f b
⊢ sInf {b | f' i ≤ f b} < a
[PROOFSTEP]
exact lt_of_le_of_lt (csInf_le' hb') hb
[GOAL]
case refine'_1.intro.intro.intro.refine'_2
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
b : Ordinal.{u}
hb : b < a
⊢ b < lsub fun i => sInf {b | f' i ≤ f b}
[PROOFSTEP]
have := hf.strictMono hb
[GOAL]
case refine'_1.intro.intro.intro.refine'_2
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
b : Ordinal.{u}
hb : b < a
this : f b < f a
⊢ b < lsub fun i => sInf {b | f' i ≤ f b}
[PROOFSTEP]
rw [← hf', lt_lsub_iff] at this
[GOAL]
case refine'_1.intro.intro.intro.refine'_2
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
b : Ordinal.{u}
hb : b < a
this : ∃ i, f b ≤ f' i
⊢ b < lsub fun i => sInf {b | f' i ≤ f b}
[PROOFSTEP]
cases' this with i hi
[GOAL]
case refine'_1.intro.intro.intro.refine'_2.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
b : Ordinal.{u}
hb : b < a
i : ι
hi : f b ≤ f' i
⊢ b < lsub fun i => sInf {b | f' i ≤ f b}
[PROOFSTEP]
rcases H i with ⟨b, _, hb⟩
[GOAL]
case refine'_1.intro.intro.intro.refine'_2.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
b✝ : Ordinal.{u}
hb✝ : b✝ < a
i : ι
hi : f b✝ ≤ f' i
b : Ordinal.{u}
left✝ : b < a
hb : f' i ≤ f b
⊢ b✝ < lsub fun i => sInf {b | f' i ≤ f b}
[PROOFSTEP]
exact ((le_csInf_iff'' ⟨b, by exact hb⟩).2 fun c hc => hf.strictMono.le_iff_le.1 (hi.trans hc)).trans_lt (lt_lsub _ i)
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
ι : Type u
f' : ι → Ordinal.{u}
hf' : lsub f' = f a
hι : #ι = cof (f a)
H : ∀ (i : ι), ∃ b, b < a ∧ f' i ≤ f b
b✝ : Ordinal.{u}
hb✝ : b✝ < a
i : ι
hi : f b✝ ≤ f' i
b : Ordinal.{u}
left✝ : b < a
hb : f' i ≤ f b
⊢ b ∈ fun c =>
Quot.lift
(fun a₁ =>
Quotient.lift
((fun x x_1 =>
match x with
| { α := α, r := r, wo := wo } =>
match x_1 with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
a₁)
(_ :
∀ (a b : WellOrder),
a ≈ b →
(match a₁ with
| { α := α, r := r, wo := wo } =>
match a with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s)) =
match a₁ with
| { α := α, r := r, wo := wo } =>
match b with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
(f c))
(_ :
∀ (a b : WellOrder),
a ≈ b →
(fun a₁ =>
Quotient.lift
(fun x =>
match a₁ with
| { α := α, r := r, wo := wo } =>
match x with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
(_ :
∀ (a b : WellOrder),
a ≈ b →
(fun x x_1 =>
match x with
| { α := α, r := r, wo := wo } =>
match x_1 with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
a₁ a =
(fun x x_1 =>
match x with
| { α := α, r := r, wo := wo } =>
match x_1 with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
a₁ b)
(f c))
a =
(fun a₁ =>
Quotient.lift
(fun x =>
match a₁ with
| { α := α, r := r, wo := wo } =>
match x with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
(_ :
∀ (a b : WellOrder),
a ≈ b →
(fun x x_1 =>
match x with
| { α := α, r := r, wo := wo } =>
match x_1 with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
a₁ a =
(fun x x_1 =>
match x with
| { α := α, r := r, wo := wo } =>
match x_1 with
| { α := α_1, r := s, wo := wo } => Nonempty (r ≼i s))
a₁ b)
(f c))
b)
(f' i)
[PROOFSTEP]
exact hb
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
⊢ (blsub o fun b hb => f (g b hb)) = f a
[PROOFSTEP]
rw [@blsub_comp.{u, u, u} a _ (fun b _ => f b) (@fun i j _ _ h => hf.strictMono.monotone h) g hg.2.2]
[GOAL]
case refine'_2
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
hf : IsNormal f
a o : Ordinal.{u}
ha : IsLimit a
g : (b : Ordinal.{u}) → b < o → Ordinal.{u}
hg : IsFundamentalSequence a o g
⊢ (blsub a fun b x => f b) = f a
[PROOFSTEP]
exact IsNormal.blsub_eq.{u, u} hf ha
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
hf : IsNormal f
a : Ordinal.{u_2}
⊢ cof a ≤ cof (f a)
[PROOFSTEP]
rcases zero_or_succ_or_limit a with (rfl | ⟨b, rfl⟩ | ha)
[GOAL]
case inl
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
hf : IsNormal f
⊢ cof 0 ≤ cof (f 0)
[PROOFSTEP]
rw [cof_zero]
[GOAL]
case inl
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
hf : IsNormal f
⊢ 0 ≤ cof (f 0)
[PROOFSTEP]
exact zero_le _
[GOAL]
case inr.inl.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
hf : IsNormal f
b : Ordinal.{u_2}
⊢ cof (succ b) ≤ cof (f (succ b))
[PROOFSTEP]
rw [cof_succ, Cardinal.one_le_iff_ne_zero, cof_ne_zero, ← Ordinal.pos_iff_ne_zero]
[GOAL]
case inr.inl.intro
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
hf : IsNormal f
b : Ordinal.{u_2}
⊢ 0 < f (succ b)
[PROOFSTEP]
exact (Ordinal.zero_le (f b)).trans_lt (hf.1 b)
[GOAL]
case inr.inr
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
hf : IsNormal f
a : Ordinal.{u_2}
ha : IsLimit a
⊢ cof a ≤ cof (f a)
[PROOFSTEP]
rw [hf.cof_eq ha]
[GOAL]
α : Type u_1
r : α → α → Prop
a b : Ordinal.{u_2}
h : b ≠ 0
⊢ cof (a + b) = cof b
[PROOFSTEP]
rcases zero_or_succ_or_limit b with (rfl | ⟨c, rfl⟩ | hb)
[GOAL]
case inl
α : Type u_1
r : α → α → Prop
a : Ordinal.{u_2}
h : 0 ≠ 0
⊢ cof (a + 0) = cof 0
[PROOFSTEP]
contradiction
[GOAL]
case inr.inl.intro
α : Type u_1
r : α → α → Prop
a c : Ordinal.{u_2}
h : succ c ≠ 0
⊢ cof (a + succ c) = cof (succ c)
[PROOFSTEP]
rw [add_succ, cof_succ, cof_succ]
[GOAL]
case inr.inr
α : Type u_1
r : α → α → Prop
a b : Ordinal.{u_2}
h : b ≠ 0
hb : IsLimit b
⊢ cof (a + b) = cof b
[PROOFSTEP]
exact (add_isNormal a).cof_eq hb
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ ℵ₀ ≤ cof o ↔ IsLimit o
[PROOFSTEP]
rcases zero_or_succ_or_limit o with (rfl | ⟨o, rfl⟩ | l)
[GOAL]
case inl
α : Type u_1
r : α → α → Prop
⊢ ℵ₀ ≤ cof 0 ↔ IsLimit 0
[PROOFSTEP]
simp [not_zero_isLimit, Cardinal.aleph0_ne_zero]
[GOAL]
case inr.inl.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ ℵ₀ ≤ cof (succ o) ↔ IsLimit (succ o)
[PROOFSTEP]
simp [not_succ_isLimit, Cardinal.one_lt_aleph0]
[GOAL]
case inr.inr
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
⊢ ℵ₀ ≤ cof o ↔ IsLimit o
[PROOFSTEP]
simp [l]
[GOAL]
case inr.inr
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
⊢ ℵ₀ ≤ cof o
[PROOFSTEP]
refine' le_of_not_lt fun h => _
[GOAL]
case inr.inr
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
⊢ False
[PROOFSTEP]
cases' Cardinal.lt_aleph0.1 h with n e
[GOAL]
case inr.inr.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
n : ℕ
e : cof o = ↑n
⊢ False
[PROOFSTEP]
have := cof_cof o
[GOAL]
case inr.inr.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
n : ℕ
e : cof o = ↑n
this : cof (ord (cof o)) = cof o
⊢ False
[PROOFSTEP]
rw [e, ord_nat] at this
[GOAL]
case inr.inr.intro
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
n : ℕ
e : cof o = ↑n
this : cof ↑n = ↑n
⊢ False
[PROOFSTEP]
cases n
[GOAL]
case inr.inr.intro.zero
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
e : cof o = ↑Nat.zero
this : cof ↑Nat.zero = ↑Nat.zero
⊢ False
[PROOFSTEP]
simp at e
[GOAL]
case inr.inr.intro.zero
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
this : cof ↑Nat.zero = ↑Nat.zero
e : o = 0
⊢ False
[PROOFSTEP]
simp [e, not_zero_isLimit] at l
[GOAL]
case inr.inr.intro.succ
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
n✝ : ℕ
e : cof o = ↑(Nat.succ n✝)
this : cof ↑(Nat.succ n✝) = ↑(Nat.succ n✝)
⊢ False
[PROOFSTEP]
rw [nat_cast_succ, cof_succ] at this
[GOAL]
case inr.inr.intro.succ
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
n✝ : ℕ
e : cof o = ↑(Nat.succ n✝)
this : 1 = ↑(Nat.succ n✝)
⊢ False
[PROOFSTEP]
rw [← this, cof_eq_one_iff_is_succ] at e
[GOAL]
case inr.inr.intro.succ
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
l : IsLimit o
h : cof o < ℵ₀
n✝ : ℕ
e : ∃ a, o = succ a
this : 1 = ↑(Nat.succ n✝)
⊢ False
[PROOFSTEP]
rcases e with ⟨a, rfl⟩
[GOAL]
case inr.inr.intro.succ.intro
α : Type u_1
r : α → α → Prop
n✝ : ℕ
this : 1 = ↑(Nat.succ n✝)
a : Ordinal.{u_2}
l : IsLimit (succ a)
h : cof (succ a) < ℵ₀
⊢ False
[PROOFSTEP]
exact not_succ_isLimit _ l
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ cof ω ≤ ℵ₀
[PROOFSTEP]
rw [← card_omega]
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ cof ω ≤ card ω
[PROOFSTEP]
apply cof_le_card
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
h✝ : IsLimit (type r)
S : Set α
H : Unbounded r S
e : #↑S = cof (type r)
a : α
a' : α := enum r (succ (typein r a)) (_ : succ (typein r a) < type r)
b : α
h : b ∈ S
ab : ¬r b a'
⊢ typein r a < typein r a'
[PROOFSTEP]
rw [typein_enum]
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
inst✝ : IsWellOrder α r
h✝ : IsLimit (type r)
S : Set α
H : Unbounded r S
e : #↑S = cof (type r)
a : α
a' : α := enum r (succ (typein r a)) (_ : succ (typein r a) < type r)
b : α
h : b ∈ S
ab : ¬r b a'
⊢ typein r a < succ (typein r a)
[PROOFSTEP]
exact lt_succ (typein _ _)
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ Cardinal.univ ≤ cof univ
[PROOFSTEP]
refine' le_of_forall_lt fun c h => _
[GOAL]
α : Type u_1
r : α → α → Prop
c : Cardinal.{max (u + 1) v}
h : c < Cardinal.univ
⊢ c < cof univ
[PROOFSTEP]
rcases lt_univ'.1 h with ⟨c, rfl⟩
[GOAL]
case intro
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h : Cardinal.lift c < Cardinal.univ
⊢ Cardinal.lift c < cof univ
[PROOFSTEP]
rcases@cof_eq Ordinal.{u} (· < ·) _ with ⟨S, H, Se⟩
[GOAL]
case intro.intro.intro
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
⊢ Cardinal.lift c < cof univ
[PROOFSTEP]
rw [univ, ← lift_cof, ← Cardinal.lift_lift.{u + 1, v, u}, Cardinal.lift_lt, ← Se]
[GOAL]
case intro.intro.intro
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
⊢ Cardinal.lift c < #↑S
[PROOFSTEP]
refine' lt_of_not_ge fun h => _
[GOAL]
case intro.intro.intro
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h✝ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h : Cardinal.lift c ≥ #↑S
⊢ False
[PROOFSTEP]
cases' Cardinal.lift_down h with a e
[GOAL]
case intro.intro.intro.intro
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h✝ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e : Cardinal.lift a = #↑S
⊢ False
[PROOFSTEP]
refine' Quotient.inductionOn a (fun α e => _) e
[GOAL]
case intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
⊢ False
[PROOFSTEP]
cases' Quotient.exact e with f
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f : ULift α ≃ ↑S
⊢ False
[PROOFSTEP]
have f := Equiv.ulift.symm.trans f
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f✝ : ULift α ≃ ↑S
f : α ≃ ↑S
⊢ False
[PROOFSTEP]
let g a := (f a).1
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f✝ : ULift α ≃ ↑S
f : α ≃ ↑S
g : α → Ordinal.{u} := fun a => ↑(↑f a)
⊢ False
[PROOFSTEP]
let o := succ (sup.{u, u} g)
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f✝ : ULift α ≃ ↑S
f : α ≃ ↑S
g : α → Ordinal.{u} := fun a => ↑(↑f a)
o : Ordinal.{u} := succ (sup g)
⊢ False
[PROOFSTEP]
rcases H o with ⟨b, h, l⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝¹ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h✝ : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f✝ : ULift α ≃ ↑S
f : α ≃ ↑S
g : α → Ordinal.{u} := fun a => ↑(↑f a)
o : Ordinal.{u} := succ (sup g)
b : Ordinal.{u}
h : b ∈ S
l : ¬(fun x x_1 => x < x_1) b o
⊢ False
[PROOFSTEP]
refine' l (lt_succ_iff.2 _)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝¹ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h✝ : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f✝ : ULift α ≃ ↑S
f : α ≃ ↑S
g : α → Ordinal.{u} := fun a => ↑(↑f a)
o : Ordinal.{u} := succ (sup g)
b : Ordinal.{u}
h : b ∈ S
l : ¬(fun x x_1 => x < x_1) b o
⊢ b ≤ sup g
[PROOFSTEP]
rw [← show g (f.symm ⟨b, h⟩) = b by simp]
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝¹ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h✝ : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f✝ : ULift α ≃ ↑S
f : α ≃ ↑S
g : α → Ordinal.{u} := fun a => ↑(↑f a)
o : Ordinal.{u} := succ (sup g)
b : Ordinal.{u}
h : b ∈ S
l : ¬(fun x x_1 => x < x_1) b o
⊢ g (↑f.symm { val := b, property := h }) = b
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h✝¹ : Cardinal.lift c < Cardinal.univ
S : Set Ordinal.{u}
H : Unbounded (fun x x_1 => x < x_1) S
Se : #↑S = cof (type fun x x_1 => x < x_1)
h✝ : Cardinal.lift c ≥ #↑S
a : Cardinal.{u}
e✝ : Cardinal.lift a = #↑S
α : Type u
e : Cardinal.lift (Quotient.mk Cardinal.isEquivalent α) = #↑S
f✝ : ULift α ≃ ↑S
f : α ≃ ↑S
g : α → Ordinal.{u} := fun a => ↑(↑f a)
o : Ordinal.{u} := succ (sup g)
b : Ordinal.{u}
h : b ∈ S
l : ¬(fun x x_1 => x < x_1) b o
⊢ g (↑f.symm { val := b, property := h }) ≤ sup g
[PROOFSTEP]
apply le_sup
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
wo : IsWellOrder α r
s : Set (Set α)
h₁ : Unbounded r (⋃₀ s)
h₂ : #↑s < StrictOrder.cof r
⊢ ∃ x, x ∈ s ∧ Unbounded r x
[PROOFSTEP]
by_contra' h
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
wo : IsWellOrder α r
s : Set (Set α)
h₁ : Unbounded r (⋃₀ s)
h₂ : #↑s < StrictOrder.cof r
h : ∀ (x : Set α), x ∈ s → ¬Unbounded r x
⊢ False
[PROOFSTEP]
simp_rw [not_unbounded_iff] at h
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
wo : IsWellOrder α r
s : Set (Set α)
h₁ : Unbounded r (⋃₀ s)
h₂ : #↑s < StrictOrder.cof r
h : ∀ (x : Set α), x ∈ s → Bounded r x
⊢ False
[PROOFSTEP]
let f : s → α := fun x : s => wo.wf.sup x (h x.1 x.2)
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
wo : IsWellOrder α r
s : Set (Set α)
h₁ : Unbounded r (⋃₀ s)
h₂ : #↑s < StrictOrder.cof r
h : ∀ (x : Set α), x ∈ s → Bounded r x
f : ↑s → α := fun x => WellFounded.sup (_ : WellFounded r) ↑x (_ : Bounded r ↑x)
⊢ False
[PROOFSTEP]
refine' h₂.not_le (le_trans (csInf_le' ⟨range f, fun x => _, rfl⟩) mk_range_le)
[GOAL]
α : Type u_1
r✝ r : α → α → Prop
wo : IsWellOrder α r
s : Set (Set α)
h₁ : Unbounded r (⋃₀ s)
h₂ : #↑s < StrictOrder.cof r
h : ∀ (x : Set α), x ∈ s → Bounded r x
f : ↑s → α := fun x => WellFounded.sup (_ : WellFounded r) ↑x (_ : Bounded r ↑x)
x : α
⊢ ∃ b, b ∈ range f ∧ swap rᶜ x b
[PROOFSTEP]
rcases h₁ x with ⟨y, ⟨c, hc, hy⟩, hxy⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
r✝ r : α → α → Prop
wo : IsWellOrder α r
s : Set (Set α)
h₁ : Unbounded r (⋃₀ s)
h₂ : #↑s < StrictOrder.cof r
h : ∀ (x : Set α), x ∈ s → Bounded r x
f : ↑s → α := fun x => WellFounded.sup (_ : WellFounded r) ↑x (_ : Bounded r ↑x)
x y : α
hxy : ¬r y x
c : Set α
hc : c ∈ s
hy : y ∈ c
⊢ ∃ b, b ∈ range f ∧ swap rᶜ x b
[PROOFSTEP]
exact ⟨f ⟨c, hc⟩, mem_range_self _, fun hxz => hxy (Trans.trans (wo.wf.lt_sup _ hy) hxz)⟩
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α β : Type u
r : α → α → Prop
wo : IsWellOrder α r
s : β → Set α
h₁ : Unbounded r (⋃ (x : β), s x)
h₂ : #β < StrictOrder.cof r
⊢ ∃ x, Unbounded r (s x)
[PROOFSTEP]
rw [← sUnion_range] at h₁
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α β : Type u
r : α → α → Prop
wo : IsWellOrder α r
s : β → Set α
h₁ : Unbounded r (⋃₀ range fun x => s x)
h₂ : #β < StrictOrder.cof r
⊢ ∃ x, Unbounded r (s x)
[PROOFSTEP]
rcases unbounded_of_unbounded_sUnion r h₁ (mk_range_le.trans_lt h₂) with ⟨_, ⟨x, rfl⟩, u⟩
[GOAL]
case intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α β : Type u
r : α → α → Prop
wo : IsWellOrder α r
s : β → Set α
h₁ : Unbounded r (⋃₀ range fun x => s x)
h₂ : #β < StrictOrder.cof r
x : β
u : Unbounded r ((fun x => s x) x)
⊢ ∃ x, Unbounded r (s x)
[PROOFSTEP]
exact ⟨x, u⟩
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
⊢ ∃ a, #↑(f ⁻¹' {a}) = #β
[PROOFSTEP]
have : ∃ a, #β ≤ #(f ⁻¹' { a }) := by
by_contra' h
apply mk_univ.not_lt
rw [← preimage_univ, ← iUnion_of_singleton, preimage_iUnion]
exact
mk_iUnion_le_sum_mk.trans_lt
((sum_le_iSup _).trans_lt <| mul_lt_of_lt h₁ (h₂.trans_le <| cof_ord_le _) (iSup_lt h₂ h))
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
⊢ ∃ a, #β ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
by_contra' h
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β
⊢ False
[PROOFSTEP]
apply mk_univ.not_lt
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β
⊢ #↑Set.univ < #?m.111025
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β
⊢ Type ?u.111024
[PROOFSTEP]
rw [← preimage_univ, ← iUnion_of_singleton, preimage_iUnion]
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β
⊢ #↑(⋃ (i : ?m.111092), ?m.111093 ⁻¹' {i}) < #?m.111090
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β
⊢ Type ?u.111087
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β
⊢ Type ?u.111088
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
h : ∀ (a : α), #↑(f ⁻¹' {a}) < #β
⊢ ?m.111090 → ?m.111092
[PROOFSTEP]
exact
mk_iUnion_le_sum_mk.trans_lt
((sum_le_iSup _).trans_lt <| mul_lt_of_lt h₁ (h₂.trans_le <| cof_ord_le _) (iSup_lt h₂ h))
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
this : ∃ a, #β ≤ #↑(f ⁻¹' {a})
⊢ ∃ a, #↑(f ⁻¹' {a}) = #β
[PROOFSTEP]
cases' this with x h
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
x : α
h : #β ≤ #↑(f ⁻¹' {x})
⊢ ∃ a, #↑(f ⁻¹' {a}) = #β
[PROOFSTEP]
refine' ⟨x, h.antisymm' _⟩
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
x : α
h : #β ≤ #↑(f ⁻¹' {x})
⊢ #↑(f ⁻¹' {x}) ≤ #β
[PROOFSTEP]
rw [le_mk_iff_exists_set]
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
h₁ : ℵ₀ ≤ #β
h₂ : #α < cof (ord #β)
x : α
h : #β ≤ #↑(f ⁻¹' {x})
⊢ ∃ p, #↑p = #↑(f ⁻¹' {x})
[PROOFSTEP]
exact ⟨_, rfl⟩
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
θ : Cardinal.{u}
hθ : θ ≤ #β
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
⊢ ∃ a, θ ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
rcases le_mk_iff_exists_set.1 hθ with ⟨s, rfl⟩
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
s : Set β
hθ : #↑s ≤ #β
h₁ : ℵ₀ ≤ #↑s
h₂ : #α < cof (ord #↑s)
⊢ ∃ a, #↑s ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
cases' infinite_pigeonhole (f ∘ Subtype.val : s → α) h₁ h₂ with a ha
[GOAL]
case intro.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
s : Set β
hθ : #↑s ≤ #β
h₁ : ℵ₀ ≤ #↑s
h₂ : #α < cof (ord #↑s)
a : α
ha : #↑(f ∘ Subtype.val ⁻¹' {a}) = #↑s
⊢ ∃ a, #↑s ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
use a
[GOAL]
case h
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
s : Set β
hθ : #↑s ≤ #β
h₁ : ℵ₀ ≤ #↑s
h₂ : #α < cof (ord #↑s)
a : α
ha : #↑(f ∘ Subtype.val ⁻¹' {a}) = #↑s
⊢ #↑s ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
rw [← ha, @preimage_comp _ _ _ Subtype.val f]
[GOAL]
case h
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
s : Set β
hθ : #↑s ≤ #β
h₁ : ℵ₀ ≤ #↑s
h₂ : #α < cof (ord #↑s)
a : α
ha : #↑(f ∘ Subtype.val ⁻¹' {a}) = #↑s
⊢ #↑(Subtype.val ⁻¹' (f ⁻¹' {a})) ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
exact mk_preimage_of_injective _ _ Subtype.val_injective
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
⊢ ∃ a t h, θ ≤ #↑t ∧ ∀ ⦃x : β⦄ (hx : x ∈ t), f { val := x, property := (_ : x ∈ s) } = a
[PROOFSTEP]
cases' infinite_pigeonhole_card f θ hθ h₁ h₂ with a ha
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
⊢ ∃ a t h, θ ≤ #↑t ∧ ∀ ⦃x : β⦄ (hx : x ∈ t), f { val := x, property := (_ : x ∈ s) } = a
[PROOFSTEP]
refine' ⟨a, {x | ∃ h, f ⟨x, h⟩ = a}, _, _, _⟩
[GOAL]
case intro.refine'_1
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
⊢ {x | ∃ h, f { val := x, property := h } = a} ⊆ s
[PROOFSTEP]
rintro x ⟨hx, _⟩
[GOAL]
case intro.refine'_1.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
x : β
hx : x ∈ s
h✝ : f { val := x, property := hx } = a
⊢ x ∈ s
[PROOFSTEP]
exact hx
[GOAL]
case intro.refine'_2
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
⊢ θ ≤ #↑{x | ∃ h, f { val := x, property := h } = a}
[PROOFSTEP]
refine' ha.trans (ge_of_eq <| Quotient.sound ⟨Equiv.trans _ (Equiv.subtypeSubtypeEquivSubtypeExists _ _).symm⟩)
[GOAL]
case intro.refine'_2
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
⊢ ↑{x | ∃ h, f { val := x, property := h } = a} ≃ { a_1 // ∃ h, { val := a_1, property := h } ∈ f ⁻¹' {a} }
[PROOFSTEP]
simp only [coe_eq_subtype, mem_singleton_iff, mem_preimage, mem_setOf_eq]
[GOAL]
case intro.refine'_2
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
⊢ { x // ∃ h, f { val := x, property := h } = a } ≃ { a_1 // ∃ h, f { val := a_1, property := (_ : a_1 ∈ s) } = a }
[PROOFSTEP]
rfl
[GOAL]
case intro.refine'_3
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
⊢ ∀ ⦃x : β⦄ (hx : x ∈ {x | ∃ h, f { val := x, property := h } = a}), f { val := x, property := (_ : x ∈ s) } = a
[PROOFSTEP]
rintro x ⟨_, hx'⟩
[GOAL]
case intro.refine'_3.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
s : Set β
f : ↑s → α
θ : Cardinal.{u}
hθ : θ ≤ #↑s
h₁ : ℵ₀ ≤ θ
h₂ : #α < cof (ord θ)
a : α
ha : θ ≤ #↑(f ⁻¹' {a})
x : β
w✝ : x ∈ s
hx' : f { val := x, property := w✝ } = a
⊢ f { val := x, property := (_ : x ∈ s) } = a
[PROOFSTEP]
exact hx'
[GOAL]
α : Type u_1
r : α → α → Prop
x : Cardinal.{u_2}
hx : x < ℵ₀
⊢ 2 ^ x < ℵ₀
[PROOFSTEP]
rcases lt_aleph0.1 hx with ⟨n, rfl⟩
[GOAL]
case intro
α : Type u_1
r : α → α → Prop
n : ℕ
hx : ↑n < ℵ₀
⊢ 2 ^ ↑n < ℵ₀
[PROOFSTEP]
exact_mod_cast nat_lt_aleph0 (2 ^ n)
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
H : IsSuccLimit o
⊢ IsStrongLimit (beth o)
[PROOFSTEP]
rcases eq_or_ne o 0 with (rfl | h)
[GOAL]
case inl
α : Type u_1
r : α → α → Prop
H : IsSuccLimit 0
⊢ IsStrongLimit (beth 0)
[PROOFSTEP]
rw [beth_zero]
[GOAL]
case inl
α : Type u_1
r : α → α → Prop
H : IsSuccLimit 0
⊢ IsStrongLimit ℵ₀
[PROOFSTEP]
exact isStrongLimit_aleph0
[GOAL]
case inr
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
H : IsSuccLimit o
h : o ≠ 0
⊢ IsStrongLimit (beth o)
[PROOFSTEP]
refine' ⟨beth_ne_zero o, fun a ha => _⟩
[GOAL]
case inr
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
H : IsSuccLimit o
h : o ≠ 0
a : Cardinal.{u_2}
ha : a < beth o
⊢ 2 ^ a < beth o
[PROOFSTEP]
rw [beth_limit ⟨h, isSuccLimit_iff_succ_lt.1 H⟩] at ha
[GOAL]
case inr
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
H : IsSuccLimit o
h : o ≠ 0
a : Cardinal.{u_2}
ha : a < ⨆ (a : ↑(Iio o)), beth ↑a
⊢ 2 ^ a < beth o
[PROOFSTEP]
rcases exists_lt_of_lt_ciSup' ha with ⟨⟨i, hi⟩, ha⟩
[GOAL]
case inr.intro.mk
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
H : IsSuccLimit o
h : o ≠ 0
a : Cardinal.{u_2}
ha✝ : a < ⨆ (a : ↑(Iio o)), beth ↑a
i : Ordinal.{u_2}
hi : i ∈ Iio o
ha : a < beth ↑{ val := i, property := hi }
⊢ 2 ^ a < beth o
[PROOFSTEP]
have := power_le_power_left two_ne_zero ha.le
[GOAL]
case inr.intro.mk
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
H : IsSuccLimit o
h : o ≠ 0
a : Cardinal.{u_2}
ha✝ : a < ⨆ (a : ↑(Iio o)), beth ↑a
i : Ordinal.{u_2}
hi : i ∈ Iio o
ha : a < beth ↑{ val := i, property := hi }
this : 2 ^ a ≤ 2 ^ beth ↑{ val := i, property := hi }
⊢ 2 ^ a < beth o
[PROOFSTEP]
rw [← beth_succ] at this
[GOAL]
case inr.intro.mk
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
H : IsSuccLimit o
h : o ≠ 0
a : Cardinal.{u_2}
ha✝ : a < ⨆ (a : ↑(Iio o)), beth ↑a
i : Ordinal.{u_2}
hi : i ∈ Iio o
ha : a < beth ↑{ val := i, property := hi }
this : 2 ^ a ≤ beth (succ ↑{ val := i, property := hi })
⊢ 2 ^ a < beth o
[PROOFSTEP]
exact this.trans_lt (beth_lt.2 (H.succ_lt hi))
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
⊢ #{ s // Bounded r s } = #α
[PROOFSTEP]
rcases eq_or_ne (#α) 0 with (ha | ha)
[GOAL]
case inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α = 0
⊢ #{ s // Bounded r s } = #α
[PROOFSTEP]
rw [ha]
[GOAL]
case inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α = 0
⊢ #{ s // Bounded r s } = 0
[PROOFSTEP]
haveI := mk_eq_zero_iff.1 ha
[GOAL]
case inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α = 0
this : IsEmpty α
⊢ #{ s // Bounded r s } = 0
[PROOFSTEP]
rw [mk_eq_zero_iff]
[GOAL]
case inl
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α = 0
this : IsEmpty α
⊢ IsEmpty { s // Bounded r s }
[PROOFSTEP]
constructor
[GOAL]
case inl.false
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α = 0
this : IsEmpty α
⊢ { s // Bounded r s } → False
[PROOFSTEP]
rintro ⟨s, hs⟩
[GOAL]
case inl.false.mk
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α = 0
this : IsEmpty α
s : Set α
hs : Bounded r s
⊢ False
[PROOFSTEP]
exact (not_unbounded_iff s).2 hs (unbounded_of_isEmpty s)
[GOAL]
case inr
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α ≠ 0
⊢ #{ s // Bounded r s } = #α
[PROOFSTEP]
have h' : IsStrongLimit #α := ⟨ha, h⟩
[GOAL]
case inr
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha : #α ≠ 0
h' : IsStrongLimit #α
⊢ #{ s // Bounded r s } = #α
[PROOFSTEP]
have ha := h'.isLimit.aleph0_le
[GOAL]
case inr
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
⊢ #{ s // Bounded r s } = #α
[PROOFSTEP]
apply le_antisymm
[GOAL]
case inr.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
⊢ #{ s // Bounded r s } ≤ #α
[PROOFSTEP]
have : {s : Set α | Bounded r s} = ⋃ i, 𝒫{j | r j i} := setOf_exists _
[GOAL]
case inr.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
⊢ #{ s // Bounded r s } ≤ #α
[PROOFSTEP]
rw [← coe_setOf, this]
[GOAL]
case inr.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
⊢ #↑(⋃ (i : α), 𝒫{j | r j i}) ≤ #α
[PROOFSTEP]
refine
mk_iUnion_le_sum_mk.trans
((sum_le_iSup (fun i => #(𝒫{j | r j i}))).trans ((mul_le_max_of_aleph0_le_left ha).trans ?_))
[GOAL]
case inr.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
⊢ max (#α) (⨆ (i : α), #↑(𝒫{j | r j i})) ≤ #α
[PROOFSTEP]
rw [max_eq_left]
[GOAL]
case inr.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
⊢ ⨆ (i : α), #↑(𝒫{j | r j i}) ≤ #α
[PROOFSTEP]
apply ciSup_le' _
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
⊢ ∀ (i : α), #↑(𝒫{j | r j i}) ≤ #α
[PROOFSTEP]
intro i
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
i : α
⊢ #↑(𝒫{j | r j i}) ≤ #α
[PROOFSTEP]
rw [mk_powerset]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
i : α
⊢ 2 ^ #↑{j | r j i} ≤ #α
[PROOFSTEP]
apply (h'.two_power_lt _).le
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
i : α
⊢ #↑{j | r j i} < #α
[PROOFSTEP]
rw [coe_setOf, card_typein, ← lt_ord, hr]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
this : {s | Bounded r s} = ⋃ (i : α), 𝒫{j | r j i}
i : α
⊢ typein (fun x => r x) i < type r
[PROOFSTEP]
apply typein_lt_type
[GOAL]
case inr.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
⊢ #α ≤ #{ s // Bounded r s }
[PROOFSTEP]
refine' @mk_le_of_injective α _ (fun x => Subtype.mk { x } _) _
[GOAL]
case inr.a.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
x : α
⊢ Bounded r {x}
[PROOFSTEP]
apply bounded_singleton
[GOAL]
case inr.a.refine'_1.hr
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
x : α
⊢ Ordinal.IsLimit (type r)
[PROOFSTEP]
rw [← hr]
[GOAL]
case inr.a.refine'_1.hr
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
x : α
⊢ Ordinal.IsLimit (ord #α)
[PROOFSTEP]
apply ord_isLimit ha
[GOAL]
case inr.a.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
⊢ Injective fun x => { val := {x}, property := (_ : Bounded r {x}) }
[PROOFSTEP]
intro a b hab
[GOAL]
case inr.a.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
r : α → α → Prop
inst✝ : IsWellOrder α r
hr : ord #α = type r
ha✝ : #α ≠ 0
h' : IsStrongLimit #α
ha : ℵ₀ ≤ #α
a b : α
hab :
(fun x => { val := {x}, property := (_ : Bounded r {x}) }) a =
(fun x => { val := {x}, property := (_ : Bounded r {x}) }) b
⊢ a = b
[PROOFSTEP]
simpa [singleton_eq_singleton_iff] using hab
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α
[PROOFSTEP]
rcases eq_or_ne (#α) 0 with (ha | ha)
[GOAL]
case inl
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α = 0
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α
[PROOFSTEP]
rw [ha]
[GOAL]
case inl
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α = 0
⊢ #{ s // #↑s < Ordinal.cof (ord 0) } = 0
[PROOFSTEP]
simp [fun s => (Cardinal.zero_le s).not_lt]
[GOAL]
case inr
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α
[PROOFSTEP]
have h' : IsStrongLimit #α := ⟨ha, h⟩
[GOAL]
case inr
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α
[PROOFSTEP]
rcases ord_eq α with ⟨r, wo, hr⟩
[GOAL]
case inr.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α
[PROOFSTEP]
haveI := wo
[GOAL]
case inr.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } = #α
[PROOFSTEP]
apply le_antisymm
[GOAL]
case inr.intro.intro.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } ≤ #α
[PROOFSTEP]
conv_rhs => rw [← mk_bounded_subset h hr]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
| #α
[PROOFSTEP]
rw [← mk_bounded_subset h hr]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
| #α
[PROOFSTEP]
rw [← mk_bounded_subset h hr]
[GOAL]
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
| #α
[PROOFSTEP]
rw [← mk_bounded_subset h hr]
[GOAL]
case inr.intro.intro.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
⊢ #{ s // #↑s < Ordinal.cof (ord #α) } ≤ #{ s // Bounded r s }
[PROOFSTEP]
apply mk_le_mk_of_subset
[GOAL]
case inr.intro.intro.a.h
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
⊢ (fun x =>
Quotient.liftOn₂ (#↑x) (Ordinal.cof (ord #α)) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ∧
¬Quotient.liftOn₂ (Ordinal.cof (ord #α)) (#↑x) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1) ⊆
fun x => ∃ a, ∀ (b : α), b ∈ x → r b a
[PROOFSTEP]
intro s hs
[GOAL]
case inr.intro.intro.a.h
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
s : Set α
hs :
s ∈ fun x =>
Quotient.liftOn₂ (#↑x) (Ordinal.cof (ord #α)) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ∧
¬Quotient.liftOn₂ (Ordinal.cof (ord #α)) (#↑x) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1
⊢ s ∈ fun x => ∃ a, ∀ (b : α), b ∈ x → r b a
[PROOFSTEP]
rw [hr] at hs
[GOAL]
case inr.intro.intro.a.h
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
s : Set α
hs :
s ∈ fun x =>
Quotient.liftOn₂ (#↑x) (Ordinal.cof (type r)) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1 ∧
¬Quotient.liftOn₂ (Ordinal.cof (type r)) (#↑x) (fun α β => Nonempty (α ↪ β)) instLECardinal.proof_1
⊢ s ∈ fun x => ∃ a, ∀ (b : α), b ∈ x → r b a
[PROOFSTEP]
exact lt_cof_type hs
[GOAL]
case inr.intro.intro.a
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
⊢ #α ≤ #{ s // #↑s < Ordinal.cof (ord #α) }
[PROOFSTEP]
refine' @mk_le_of_injective α _ (fun x => Subtype.mk { x } _) _
[GOAL]
case inr.intro.intro.a.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
x : α
⊢ #↑{x} < Ordinal.cof (ord #α)
[PROOFSTEP]
rw [mk_singleton]
[GOAL]
case inr.intro.intro.a.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
x : α
⊢ 1 < Ordinal.cof (ord #α)
[PROOFSTEP]
exact one_lt_aleph0.trans_le (aleph0_le_cof.2 (ord_isLimit h'.isLimit.aleph0_le))
[GOAL]
case inr.intro.intro.a.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
⊢ Injective fun x => { val := {x}, property := (_ : #↑{x} < Ordinal.cof (ord #α)) }
[PROOFSTEP]
intro a b hab
[GOAL]
case inr.intro.intro.a.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
α : Type u_2
h : ∀ (x : Cardinal.{u_2}), x < #α → 2 ^ x < #α
ha : #α ≠ 0
h' : IsStrongLimit #α
r : α → α → Prop
wo : IsWellOrder α r
hr : ord #α = type r
this : IsWellOrder α r
a b : α
hab :
(fun x => { val := {x}, property := (_ : #↑{x} < Ordinal.cof (ord #α)) }) a =
(fun x => { val := {x}, property := (_ : #↑{x} < Ordinal.cof (ord #α)) }) b
⊢ a = b
[PROOFSTEP]
simpa [singleton_eq_singleton_iff] using hab
[GOAL]
α : Type u_1
r : α → α → Prop
c : Cardinal.{u_2}
H : IsRegular c
⊢ 0 < ord c
[PROOFSTEP]
rw [Cardinal.lt_ord, card_zero]
[GOAL]
α : Type u_1
r : α → α → Prop
c : Cardinal.{u_2}
H : IsRegular c
⊢ 0 < c
[PROOFSTEP]
exact H.pos
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ ℵ₀ ≤ Ordinal.cof (ord ℵ₀)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
⊢ c < Ordinal.cof (ord (succ c))
[PROOFSTEP]
cases' Quotient.exists_rep (@succ Cardinal _ _ c) with α αe
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : Quotient.mk isEquivalent α = succ c
⊢ c < Ordinal.cof (ord (succ c))
[PROOFSTEP]
simp at αe
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
⊢ c < Ordinal.cof (ord (succ c))
[PROOFSTEP]
rcases ord_eq α with ⟨r, wo, re⟩
[GOAL]
case intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
⊢ c < Ordinal.cof (ord (succ c))
[PROOFSTEP]
skip
[GOAL]
case intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
⊢ c < Ordinal.cof (ord (succ c))
[PROOFSTEP]
have := ord_isLimit (h.trans (le_succ _))
[GOAL]
case intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (ord (succ c))
⊢ c < Ordinal.cof (ord (succ c))
[PROOFSTEP]
rw [← αe, re] at this ⊢
[GOAL]
case intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
⊢ c < Ordinal.cof (type r)
[PROOFSTEP]
rcases cof_eq' r this with ⟨S, H, Se⟩
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
⊢ c < Ordinal.cof (type r)
[PROOFSTEP]
rw [← Se]
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
⊢ c < #↑S
[PROOFSTEP]
apply lt_imp_lt_of_le_imp_le fun h => mul_le_mul_right' h c
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
⊢ c * c < #↑S * c
[PROOFSTEP]
rw [mul_eq_self h, ← succ_le_iff, ← αe, ← sum_const']
[GOAL]
case intro.intro.intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
⊢ #α ≤ sum fun x => c
[PROOFSTEP]
refine' le_trans _ (sum_le_sum (fun (x : S) => card (typein r (x : α))) _ fun i => _)
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
⊢ #α ≤ sum fun x => card (typein r ↑x)
[PROOFSTEP]
simp only [← card_typein, ← mk_sigma]
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
⊢ #α ≤ #((i : ↑S) × { y // r y ↑i })
[PROOFSTEP]
exact
⟨Embedding.ofSurjective (fun x => x.2.1) fun a =>
let ⟨b, h, ab⟩ := H a
⟨⟨⟨_, h⟩, _, ab⟩, rfl⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
i : ↑S
⊢ (fun x => card (typein r ↑x)) i ≤ c
[PROOFSTEP]
rw [← lt_succ_iff, ← lt_ord, ← αe, re]
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
h : ℵ₀ ≤ c
α : Type u
αe : #α = succ c
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
i : ↑S
⊢ typein r ↑i < type r
[PROOFSTEP]
apply typein_lt_type
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ IsRegular (aleph 1)
[PROOFSTEP]
rw [← succ_aleph0]
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ IsRegular (succ ℵ₀)
[PROOFSTEP]
exact isRegular_succ le_rfl
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
h : ω ≤ o
⊢ IsRegular (aleph' (succ o))
[PROOFSTEP]
rw [aleph'_succ]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
h : ω ≤ o
⊢ IsRegular (succ (aleph' o))
[PROOFSTEP]
exact isRegular_succ (aleph0_le_aleph'.2 h)
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ IsRegular (aleph (succ o))
[PROOFSTEP]
rw [aleph_succ]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u_2}
⊢ IsRegular (succ (aleph o))
[PROOFSTEP]
exact isRegular_succ (aleph0_le_aleph o)
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
w : #α < #β
w' : ℵ₀ ≤ #α
⊢ ∃ a, #α < #↑(f ⁻¹' {a})
[PROOFSTEP]
simp_rw [← succ_le_iff]
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u
f : β → α
w : #α < #β
w' : ℵ₀ ≤ #α
⊢ ∃ a, succ #α ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
exact
Ordinal.infinite_pigeonhole_card f (succ #α) (succ_le_of_lt w) (w'.trans (lt_succ _).le)
((lt_succ _).trans_le (isRegular_succ w').2.ge)
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u_2
f : β → α
w : #α < #β
w' : Infinite α
⊢ ∃ a, Infinite ↑(f ⁻¹' {a})
[PROOFSTEP]
simp_rw [Cardinal.infinite_iff] at w' ⊢
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u_2
f : β → α
w : #α < #β
w' : ℵ₀ ≤ #α
⊢ ∃ a, ℵ₀ ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
cases' infinite_pigeonhole_card_lt f w w' with a ha
[GOAL]
case intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
β α : Type u_2
f : β → α
w : #α < #β
w' : ℵ₀ ≤ #α
a : α
ha : #α < #↑(f ⁻¹' {a})
⊢ ∃ a, ℵ₀ ≤ #↑(f ⁻¹' {a})
[PROOFSTEP]
exact ⟨a, w'.trans ha.le⟩
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
⊢ #β ≤ #↑(range f)
[PROOFSTEP]
have k : _root_.Infinite (range f) := by
rw [infinite_coe_iff]
apply mt (union_finset_finite_of_range_finite f)
rw [w]
exact infinite_univ
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
⊢ Infinite ↑(range f)
[PROOFSTEP]
rw [infinite_coe_iff]
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
⊢ Set.Infinite (range f)
[PROOFSTEP]
apply mt (union_finset_finite_of_range_finite f)
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
⊢ ¬Set.Finite (⋃ (a : α), ↑(f a))
[PROOFSTEP]
rw [w]
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
⊢ ¬Set.Finite ⊤
[PROOFSTEP]
exact infinite_univ
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
⊢ #β ≤ #↑(range f)
[PROOFSTEP]
by_contra h
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : ¬#β ≤ #↑(range f)
⊢ False
[PROOFSTEP]
simp only [not_le] at h
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
⊢ False
[PROOFSTEP]
let u : ∀ b, ∃ a, b ∈ f a := fun b => by simpa using (w.ge : _) (Set.mem_univ b)
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
b : β
⊢ ∃ a, b ∈ f a
[PROOFSTEP]
simpa using (w.ge : _) (Set.mem_univ b)
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
⊢ False
[PROOFSTEP]
let u' : β → range f := fun b => ⟨f (u b).choose, by simp⟩
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
b : β
⊢ f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
⊢ False
[PROOFSTEP]
have v' : ∀ a, u' ⁻¹' {⟨f a, by simp⟩} ≤ f a := by
rintro a p m
simp at m
rw [← m]
apply fun b => (u b).choose_spec
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
a : α
⊢ f a ∈ range f
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
⊢ ∀ (a : α), u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }} ≤ ↑(f a)
[PROOFSTEP]
rintro a p m
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
a : α
p : β
m : p ∈ u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }}
⊢ p ∈ ↑(f a)
[PROOFSTEP]
simp at m
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
a : α
p : β
m : f (Exists.choose (_ : ∃ a, p ∈ f a)) = f a
⊢ p ∈ ↑(f a)
[PROOFSTEP]
rw [← m]
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
a : α
p : β
m : f (Exists.choose (_ : ∃ a, p ∈ f a)) = f a
⊢ p ∈ ↑(f (Exists.choose (_ : ∃ a, p ∈ f a)))
[PROOFSTEP]
apply fun b => (u b).choose_spec
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
v' : ∀ (a : α), u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }} ≤ ↑(f a)
⊢ False
[PROOFSTEP]
obtain ⟨⟨-, ⟨a, rfl⟩⟩, p⟩ := exists_infinite_fiber u' h k
[GOAL]
case intro.mk.intro
α✝ : Type u_1
r : α✝ → α✝ → Prop
α : Type u_2
β : Type u_3
inst✝ : Infinite β
f : α → Finset β
w : ⋃ (a : α), ↑(f a) = ⊤
k : Infinite ↑(range f)
h : #↑(range f) < #β
u : ∀ (b : β), ∃ a, b ∈ f a :=
fun b =>
Eq.mp
(Eq.trans Mathlib.Data.Set.Lattice._auxLemma.3
(congrArg Exists (funext fun i => Mathlib.Data.Finset.Basic._auxLemma.4)))
(Eq.ge w (mem_univ b))
u' : β → ↑(range f) :=
fun b =>
{ val := f (Exists.choose (_ : ∃ a, b ∈ f a)), property := (_ : f (Exists.choose (_ : ∃ a, b ∈ f a)) ∈ range f) }
v' : ∀ (a : α), u' ⁻¹' {{ val := f a, property := (_ : f a ∈ range f) }} ≤ ↑(f a)
a : α
p : Infinite ↑(u' ⁻¹' {{ val := f a, property := (_ : ∃ y, f y = f a) }})
⊢ False
[PROOFSTEP]
exact (@Infinite.of_injective _ _ p (inclusion (v' a)) (inclusion_injective _)).false
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
⊢ lift #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type (max u_2 u_3)
f : ι → Ordinal.{max u_2 u_3}
c : Cardinal.{max u_2 u_3}
hc : IsRegular c
hι : #ι < c
⊢ #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
⊢ lift #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type (max u_2 u_3)
f : ι → Ordinal.{max u_2 u_3}
c : Cardinal.{max u_2 u_3}
hc : IsRegular c
hι : #ι < c
⊢ #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
ho : lift (card o) < c
⊢ lift (card o) < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{max u_2 u_3}
f : (a : Ordinal.{max u_2 u_3}) → a < o → Ordinal.{max u_2 u_3}
c : Cardinal.{max u_2 u_3}
hc : IsRegular c
ho : card o < c
⊢ card o < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift (card o) < c
⊢ lift (card o) < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{max u_2 u_3}
f : (a : Ordinal.{max u_2 u_3}) → a < o → Ordinal.{max u_2 u_3}
c : Cardinal.{max u_2 u_3}
hc : IsRegular c
hι : card o < c
⊢ card o < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Cardinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
⊢ lift #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u_2
f : ι → Cardinal.{u_2}
c : Cardinal.{u_2}
hc : IsRegular c
hι : #ι < c
⊢ #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Cardinal.{u}
c : Cardinal.{u}
hc : IsRegular c
hι : #ι < c
⊢ lift #ι < c
[PROOFSTEP]
rwa [lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
ha : a < ord c
⊢ nfpFamily f a < ord c
[PROOFSTEP]
apply nfpFamily_lt_ord_lift.{u, v} _ _ hf ha
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
ha : a < ord c
⊢ ℵ₀ < Ordinal.cof (ord c)
[PROOFSTEP]
rw [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
ha : a < ord c
⊢ lift #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rw [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
ha : a < ord c
⊢ ℵ₀ < c
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
ha : a < ord c
⊢ lift #ι < c
[PROOFSTEP]
exact lt_of_le_of_ne hc.1 hc'.symm
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
ha : a < ord c
⊢ lift #ι < c
[PROOFSTEP]
exact hι
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u} → Ordinal.{u}
c : Cardinal.{u}
hc : IsRegular c
hι : #ι < c
hc' : c ≠ ℵ₀
a : Ordinal.{u}
hf : ∀ (i : ι) (b : Ordinal.{u}), b < ord c → f i b < ord c
⊢ lift #ι < c
[PROOFSTEP]
rwa [lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
ho : lift (card o) < c
hc' : c ≠ ℵ₀
hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{max u v}), b < ord c → f i hi b < ord c
a : Ordinal.{max u v}
⊢ lift #(Quotient.out o).α < c
[PROOFSTEP]
rwa [mk_ordinal_out]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u}
c : Cardinal.{u}
hc : IsRegular c
ho : card o < c
hc' : c ≠ ℵ₀
hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{u}), b < ord c → f i hi b < ord c
a : Ordinal.{u}
⊢ lift (card o) < c
[PROOFSTEP]
rwa [lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
c : Cardinal.{u_2}
hc : IsRegular c
hc' : c ≠ ℵ₀
hf : ∀ (i : Ordinal.{u_2}), i < ord c → f i < ord c
a : Ordinal.{u_2}
⊢ ℵ₀ < Ordinal.cof (ord c)
[PROOFSTEP]
rw [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u_2} → Ordinal.{u_2}
c : Cardinal.{u_2}
hc : IsRegular c
hc' : c ≠ ℵ₀
hf : ∀ (i : Ordinal.{u_2}), i < ord c → f i < ord c
a : Ordinal.{u_2}
⊢ ℵ₀ < c
[PROOFSTEP]
exact lt_of_le_of_ne hc.1 hc'.symm
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
⊢ a < ord c → derivFamily f a < ord c
[PROOFSTEP]
have hω : ℵ₀ < c.ord.cof := by
rw [hc.cof_eq]
exact lt_of_le_of_ne hc.1 hc'.symm
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
⊢ ℵ₀ < Ordinal.cof (ord c)
[PROOFSTEP]
rw [hc.cof_eq]
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
⊢ ℵ₀ < c
[PROOFSTEP]
exact lt_of_le_of_ne hc.1 hc'.symm
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
hω : ℵ₀ < Ordinal.cof (ord c)
⊢ a < ord c → derivFamily f a < ord c
[PROOFSTEP]
induction a using limitRecOn with
| H₁ =>
rw [derivFamily_zero]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf
| H₂ b hb =>
intro hb'
rw [derivFamily_succ]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb')))
| H₃ b hb H =>
intro hb'
rw [derivFamily_limit f hb]
exact
bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' =>
H o' ho' (ho'.trans hb')
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
a : Ordinal.{max u v}
hω : ℵ₀ < Ordinal.cof (ord c)
⊢ a < ord c → derivFamily f a < ord c
[PROOFSTEP]
induction a using limitRecOn with
| H₁ =>
rw [derivFamily_zero]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf
| H₂ b hb =>
intro hb'
rw [derivFamily_succ]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb')))
| H₃ b hb H =>
intro hb'
rw [derivFamily_limit f hb]
exact
bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' =>
H o' ho' (ho'.trans hb')
[GOAL]
case H₁
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
⊢ 0 < ord c → derivFamily f 0 < ord c
[PROOFSTEP]
| H₁ =>
rw [derivFamily_zero]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf
[GOAL]
case H₁
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
⊢ 0 < ord c → derivFamily f 0 < ord c
[PROOFSTEP]
rw [derivFamily_zero]
[GOAL]
case H₁
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
⊢ 0 < ord c → nfpFamily f 0 < ord c
[PROOFSTEP]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
⊢ lift #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
case H₂
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : b < ord c → derivFamily f b < ord c
⊢ succ b < ord c → derivFamily f (succ b) < ord c
[PROOFSTEP]
| H₂ b hb =>
intro hb'
rw [derivFamily_succ]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb')))
[GOAL]
case H₂
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : b < ord c → derivFamily f b < ord c
⊢ succ b < ord c → derivFamily f (succ b) < ord c
[PROOFSTEP]
intro hb'
[GOAL]
case H₂
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : b < ord c → derivFamily f b < ord c
hb' : succ b < ord c
⊢ derivFamily f (succ b) < ord c
[PROOFSTEP]
rw [derivFamily_succ]
[GOAL]
case H₂
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : b < ord c → derivFamily f b < ord c
hb' : succ b < ord c
⊢ nfpFamily f (succ (derivFamily f b)) < ord c
[PROOFSTEP]
exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb')))
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : b < ord c → derivFamily f b < ord c
hb' : succ b < ord c
⊢ lift #ι < Ordinal.cof (ord c)
[PROOFSTEP]
rwa [hc.cof_eq]
[GOAL]
case H₃
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : Ordinal.IsLimit b
H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c
⊢ b < ord c → derivFamily f b < ord c
[PROOFSTEP]
| H₃ b hb H =>
intro hb'
rw [derivFamily_limit f hb]
exact
bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' =>
H o' ho' (ho'.trans hb')
[GOAL]
case H₃
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : Ordinal.IsLimit b
H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c
⊢ b < ord c → derivFamily f b < ord c
[PROOFSTEP]
intro hb'
[GOAL]
case H₃
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : Ordinal.IsLimit b
H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c
hb' : b < ord c
⊢ derivFamily f b < ord c
[PROOFSTEP]
rw [derivFamily_limit f hb]
[GOAL]
case H₃
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{max u v}), b < ord c → f i b < ord c
hω : ℵ₀ < Ordinal.cof (ord c)
b : Ordinal.{max u v}
hb : Ordinal.IsLimit b
H : ∀ (o' : Ordinal.{max u v}), o' < b → o' < ord c → derivFamily f o' < ord c
hb' : b < ord c
⊢ (bsup b fun a x => derivFamily f a) < ord c
[PROOFSTEP]
exact
bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' =>
H o' ho' (ho'.trans hb')
[GOAL]
α : Type u_1
r : α → α → Prop
ι : Type u
f : ι → Ordinal.{u} → Ordinal.{u}
c : Cardinal.{u}
hc : IsRegular c
hι : #ι < c
hc' : c ≠ ℵ₀
hf : ∀ (i : ι) (b : Ordinal.{u}), b < ord c → f i b < ord c
a : Ordinal.{u}
⊢ lift #ι < c
[PROOFSTEP]
rwa [lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} → Ordinal.{max u v}
c : Cardinal.{max u v}
hc : IsRegular c
hι : lift (card o) < c
hc' : c ≠ ℵ₀
hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{max u v}), b < ord c → f i hi b < ord c
a : Ordinal.{max u v}
⊢ lift #(Quotient.out o).α < c
[PROOFSTEP]
rwa [mk_ordinal_out]
[GOAL]
α : Type u_1
r : α → α → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{u} → Ordinal.{u}
c : Cardinal.{u}
hc : IsRegular c
hι : card o < c
hc' : c ≠ ℵ₀
hf : ∀ (i : Ordinal.{u}) (hi : i < o) (b : Ordinal.{u}), b < ord c → f i hi b < ord c
a : Ordinal.{u}
⊢ lift (card o) < c
[PROOFSTEP]
rwa [lift_id]
[GOAL]
α : Type u_1
r : α → α → Prop
f : Ordinal.{u} → Ordinal.{u}
c : Cardinal.{u}
hc : IsRegular c
hc' : c ≠ ℵ₀
hf : ∀ (i : Ordinal.{u}), i < ord c → f i < ord c
a : Ordinal.{u}
⊢ lift #Unit < c
[PROOFSTEP]
simpa using Cardinal.one_lt_aleph0.trans (lt_of_le_of_ne hc.1 hc'.symm)
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ ℵ₀ < univ
[PROOFSTEP]
simpa using lift_lt_univ' ℵ₀
[GOAL]
α : Type u_1
r : α → α → Prop
⊢ univ ≤ Ordinal.cof (ord univ)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
r : α → α → Prop
c : Cardinal.{max (u + 1) v}
h : c < univ
⊢ 2 ^ c < univ
[PROOFSTEP]
rcases lt_univ'.1 h with ⟨c, rfl⟩
[GOAL]
case intro
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h : lift c < univ
⊢ 2 ^ lift c < univ
[PROOFSTEP]
rw [← lift_two_power.{u, max (u + 1) v}]
[GOAL]
case intro
α : Type u_1
r : α → α → Prop
c : Cardinal.{u}
h : lift c < univ
⊢ lift (2 ^ c) < univ
[PROOFSTEP]
apply lift_lt_univ'
[GOAL]
α✝ : Type u_1
r : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α))
[PROOFSTEP]
rcases ord_eq α with ⟨r, wo, re⟩
[GOAL]
case intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α))
[PROOFSTEP]
skip
[GOAL]
case intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α))
[PROOFSTEP]
have := ord_isLimit h
[GOAL]
case intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (ord (Quotient.mk isEquivalent α))
⊢ Quotient.mk isEquivalent α < Quotient.mk isEquivalent α ^ Ordinal.cof (ord (Quotient.mk isEquivalent α))
[PROOFSTEP]
rw [mk'_def, re] at this ⊢
[GOAL]
case intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
⊢ #α < #α ^ Ordinal.cof (type r)
[PROOFSTEP]
rcases cof_eq' r this with ⟨S, H, Se⟩
[GOAL]
case intro.intro.intro.intro
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
⊢ #α < #α ^ Ordinal.cof (type r)
[PROOFSTEP]
have := sum_lt_prod (fun a : S => #{ x // r x a }) (fun _ => #α) fun i => ?_
[GOAL]
case intro.intro.intro.intro.refine_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this✝ : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
this : (sum fun a => #{ x // r x ↑a }) < prod fun x => #α
⊢ #α < #α ^ Ordinal.cof (type r)
[PROOFSTEP]
simp only [Cardinal.prod_const, Cardinal.lift_id, ← Se, ← mk_sigma, power_def] at this ⊢
[GOAL]
case intro.intro.intro.intro.refine_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this✝ : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α)
⊢ #α < #(↑S → α)
[PROOFSTEP]
refine' lt_of_le_of_lt _ this
[GOAL]
case intro.intro.intro.intro.refine_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this✝ : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α)
⊢ #α ≤ #((i : ↑S) × { x // r x ↑i })
[PROOFSTEP]
refine' ⟨Embedding.ofSurjective _ _⟩
[GOAL]
case intro.intro.intro.intro.refine_2.refine'_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this✝ : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α)
⊢ (i : ↑S) × { x // r x ↑i } → α
[PROOFSTEP]
exact fun x => x.2.1
[GOAL]
case intro.intro.intro.intro.refine_2.refine'_2
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this✝ : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
this : #((i : ↑S) × { x // r x ↑i }) < #(↑S → α)
⊢ Surjective fun x => ↑x.snd
[PROOFSTEP]
exact fun a =>
let ⟨b, h, ab⟩ := H a
⟨⟨⟨_, h⟩, _, ab⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.refine_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
i : ↑S
⊢ (fun a => #{ x // r x ↑a }) i < (fun x => #α) i
[PROOFSTEP]
have := typein_lt_type r i
[GOAL]
case intro.intro.intro.intro.refine_1
α✝ : Type u_1
r✝ : α✝ → α✝ → Prop
c : Cardinal.{u}
α : Type u
h : ℵ₀ ≤ Quotient.mk isEquivalent α
r : α → α → Prop
wo : IsWellOrder α r
re : ord #α = type r
this✝ : Ordinal.IsLimit (type r)
S : Set α
H : ∀ (a : α), ∃ b, b ∈ S ∧ r a b
Se : #↑S = Ordinal.cof (type r)
i : ↑S
this : typein r ↑i < type r
⊢ (fun a => #{ x // r x ↑a }) i < (fun x => #α) i
[PROOFSTEP]
rwa [← re, lt_ord] at this
[GOAL]
α : Type u_1
r : α → α → Prop
a b : Cardinal.{u_2}
ha : ℵ₀ ≤ a
b1 : 1 < b
⊢ a < Ordinal.cof (ord (b ^ a))
[PROOFSTEP]
have b0 : b ≠ 0 := (zero_lt_one.trans b1).ne'
[GOAL]
α : Type u_1
r : α → α → Prop
a b : Cardinal.{u_2}
ha : ℵ₀ ≤ a
b1 : 1 < b
b0 : b ≠ 0
⊢ a < Ordinal.cof (ord (b ^ a))
[PROOFSTEP]
apply lt_imp_lt_of_le_imp_le (power_le_power_left <| power_ne_zero a b0)
[GOAL]
α : Type u_1
r : α → α → Prop
a b : Cardinal.{u_2}
ha : ℵ₀ ≤ a
b1 : 1 < b
b0 : b ≠ 0
⊢ (b ^ a) ^ a < (b ^ a) ^ Ordinal.cof (ord (b ^ a))
[PROOFSTEP]
rw [← power_mul, mul_eq_self ha]
[GOAL]
α : Type u_1
r : α → α → Prop
a b : Cardinal.{u_2}
ha : ℵ₀ ≤ a
b1 : 1 < b
b0 : b ≠ 0
⊢ b ^ a < (b ^ a) ^ Ordinal.cof (ord (b ^ a))
[PROOFSTEP]
exact lt_power_cof (ha.trans <| (cantor' _ b1).le)
| {"mathlib_filename": "Mathlib.SetTheory.Cardinal.Cofinality", "llama_tokens": 93081} |