text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
α : Type u_1
b : ℂ
hb : b ≠ 0
⊢ (fun x => 0 ^ x) =ᶠ[𝓝 b] 0
[PROOFSTEP]
suffices : ∀ᶠ x : ℂ in 𝓝 b, x ≠ 0
[GOAL]
α : Type u_1
b : ℂ
hb : b ≠ 0
this : ∀ᶠ (x : ℂ) in 𝓝 b, x ≠ 0
⊢ (fun x => 0 ^ x) =ᶠ[𝓝 b] 0
case this α : Type u_1 b : ℂ hb : b ≠ 0 ⊢ ∀ᶠ (x : ℂ) in 𝓝 b, x ≠ 0
[PROOFSTEP]
exact
this.mono fun x hx => by
dsimp only
rw [zero_cpow hx, Pi.zero_apply]
[GOAL]
α : Type u_1
b : ℂ
hb : b ≠ 0
this : ∀ᶠ (x : ℂ) in 𝓝 b, x ≠ 0
x : ℂ
hx : x ≠ 0
⊢ (fun x => 0 ^ x) x = OfNat.ofNat 0 x
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
b : ℂ
hb : b ≠ 0
this : ∀ᶠ (x : ℂ) in 𝓝 b, x ≠ 0
x : ℂ
hx : x ≠ 0
⊢ 0 ^ x = OfNat.ofNat 0 x
[PROOFSTEP]
rw [zero_cpow hx, Pi.zero_apply]
[GOAL]
case this
α : Type u_1
b : ℂ
hb : b ≠ 0
⊢ ∀ᶠ (x : ℂ) in 𝓝 b, x ≠ 0
[PROOFSTEP]
exact IsOpen.eventually_mem isOpen_ne hb
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
⊢ (fun x => x ^ b) =ᶠ[𝓝 a] fun x => Complex.exp (Complex.log x * b)
[PROOFSTEP]
suffices : ∀ᶠ x : ℂ in 𝓝 a, x ≠ 0
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
this : ∀ᶠ (x : ℂ) in 𝓝 a, x ≠ 0
⊢ (fun x => x ^ b) =ᶠ[𝓝 a] fun x => Complex.exp (Complex.log x * b)
case this α : Type u_1 a b : ℂ ha : a ≠ 0 ⊢ ∀ᶠ (x : ℂ) in 𝓝 a, x ≠ 0
[PROOFSTEP]
exact
this.mono fun x hx => by
dsimp only
rw [cpow_def_of_ne_zero hx]
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
this : ∀ᶠ (x : ℂ) in 𝓝 a, x ≠ 0
x : ℂ
hx : x ≠ 0
⊢ (fun x => x ^ b) x = (fun x => Complex.exp (Complex.log x * b)) x
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
this : ∀ᶠ (x : ℂ) in 𝓝 a, x ≠ 0
x : ℂ
hx : x ≠ 0
⊢ x ^ b = Complex.exp (Complex.log x * b)
[PROOFSTEP]
rw [cpow_def_of_ne_zero hx]
[GOAL]
case this
α : Type u_1
a b : ℂ
ha : a ≠ 0
⊢ ∀ᶠ (x : ℂ) in 𝓝 a, x ≠ 0
[PROOFSTEP]
exact IsOpen.eventually_mem isOpen_ne ha
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
⊢ (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => Complex.exp (Complex.log x.fst * x.snd)
[PROOFSTEP]
suffices : ∀ᶠ x : ℂ × ℂ in 𝓝 p, x.1 ≠ 0
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
this : ∀ᶠ (x : ℂ × ℂ) in 𝓝 p, x.fst ≠ 0
⊢ (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => Complex.exp (Complex.log x.fst * x.snd)
case this α : Type u_1 p : ℂ × ℂ hp_fst : p.fst ≠ 0 ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 p, x.fst ≠ 0
[PROOFSTEP]
exact
this.mono fun x hx => by
dsimp only
rw [cpow_def_of_ne_zero hx]
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
this : ∀ᶠ (x : ℂ × ℂ) in 𝓝 p, x.fst ≠ 0
x : ℂ × ℂ
hx : x.fst ≠ 0
⊢ (fun x => x.fst ^ x.snd) x = (fun x => Complex.exp (Complex.log x.fst * x.snd)) x
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
this : ∀ᶠ (x : ℂ × ℂ) in 𝓝 p, x.fst ≠ 0
x : ℂ × ℂ
hx : x.fst ≠ 0
⊢ x.fst ^ x.snd = Complex.exp (Complex.log x.fst * x.snd)
[PROOFSTEP]
rw [cpow_def_of_ne_zero hx]
[GOAL]
case this
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 p, x.fst ≠ 0
[PROOFSTEP]
refine' IsOpen.eventually_mem _ hp_fst
[GOAL]
case this
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
⊢ IsOpen fun x => x.fst = 0 → False
[PROOFSTEP]
change IsOpen {x : ℂ × ℂ | x.1 = 0}ᶜ
[GOAL]
case this
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
⊢ IsOpen {x | x.fst = 0}ᶜ
[PROOFSTEP]
rw [isOpen_compl_iff]
[GOAL]
case this
α : Type u_1
p : ℂ × ℂ
hp_fst : p.fst ≠ 0
⊢ IsClosed {x | x.fst = 0}
[PROOFSTEP]
exact isClosed_eq continuous_fst continuous_const
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
⊢ ContinuousAt (fun x => a ^ x) b
[PROOFSTEP]
have cpow_eq : (fun x : ℂ => a ^ x) = fun x => exp (log a * x) :=
by
ext1 b
rw [cpow_def_of_ne_zero ha]
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
⊢ (fun x => a ^ x) = fun x => Complex.exp (Complex.log a * x)
[PROOFSTEP]
ext1 b
[GOAL]
case h
α : Type u_1
a b✝ : ℂ
ha : a ≠ 0
b : ℂ
⊢ a ^ b = Complex.exp (Complex.log a * b)
[PROOFSTEP]
rw [cpow_def_of_ne_zero ha]
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
cpow_eq : (fun x => a ^ x) = fun x => Complex.exp (Complex.log a * x)
⊢ ContinuousAt (fun x => a ^ x) b
[PROOFSTEP]
rw [cpow_eq]
[GOAL]
α : Type u_1
a b : ℂ
ha : a ≠ 0
cpow_eq : (fun x => a ^ x) = fun x => Complex.exp (Complex.log a * x)
⊢ ContinuousAt (fun x => Complex.exp (Complex.log a * x)) b
[PROOFSTEP]
exact continuous_exp.continuousAt.comp (ContinuousAt.mul continuousAt_const continuousAt_id)
[GOAL]
α : Type u_1
a b : ℂ
h : b ≠ 0
⊢ ContinuousAt (fun x => a ^ x) b
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
α : Type u_1
a b : ℂ
h : b ≠ 0
ha : a = 0
⊢ ContinuousAt (fun x => a ^ x) b
[PROOFSTEP]
rw [ha, continuousAt_congr (zero_cpow_eq_nhds h)]
[GOAL]
case pos
α : Type u_1
a b : ℂ
h : b ≠ 0
ha : a = 0
⊢ ContinuousAt 0 b
[PROOFSTEP]
exact continuousAt_const
[GOAL]
case neg
α : Type u_1
a b : ℂ
h : b ≠ 0
ha : ¬a = 0
⊢ ContinuousAt (fun x => a ^ x) b
[PROOFSTEP]
exact continuousAt_const_cpow ha
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : 0 < p.fst.re ∨ p.fst.im ≠ 0
⊢ ContinuousAt (fun x => x.fst ^ x.snd) p
[PROOFSTEP]
have hp_fst_ne_zero : p.fst ≠ 0 := by
intro h
cases' hp_fst with hp_fst hp_fst <;>
· rw [h] at hp_fst
simp at hp_fst
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : 0 < p.fst.re ∨ p.fst.im ≠ 0
⊢ p.fst ≠ 0
[PROOFSTEP]
intro h
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : 0 < p.fst.re ∨ p.fst.im ≠ 0
h : p.fst = 0
⊢ False
[PROOFSTEP]
cases' hp_fst with hp_fst hp_fst
[GOAL]
case inl
α : Type u_1
p : ℂ × ℂ
h : p.fst = 0
hp_fst : 0 < p.fst.re
⊢ False
[PROOFSTEP]
rw [h] at hp_fst
[GOAL]
case inl
α : Type u_1
p : ℂ × ℂ
h : p.fst = 0
hp_fst : 0 < 0.re
⊢ False
[PROOFSTEP]
simp at hp_fst
[GOAL]
case inr
α : Type u_1
p : ℂ × ℂ
h : p.fst = 0
hp_fst : p.fst.im ≠ 0
⊢ False
[PROOFSTEP]
rw [h] at hp_fst
[GOAL]
case inr
α : Type u_1
p : ℂ × ℂ
h : p.fst = 0
hp_fst : 0.im ≠ 0
⊢ False
[PROOFSTEP]
simp at hp_fst
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : 0 < p.fst.re ∨ p.fst.im ≠ 0
hp_fst_ne_zero : p.fst ≠ 0
⊢ ContinuousAt (fun x => x.fst ^ x.snd) p
[PROOFSTEP]
rw [continuousAt_congr (cpow_eq_nhds' hp_fst_ne_zero)]
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : 0 < p.fst.re ∨ p.fst.im ≠ 0
hp_fst_ne_zero : p.fst ≠ 0
⊢ ContinuousAt (fun x => Complex.exp (Complex.log x.fst * x.snd)) p
[PROOFSTEP]
refine' continuous_exp.continuousAt.comp _
[GOAL]
α : Type u_1
p : ℂ × ℂ
hp_fst : 0 < p.fst.re ∨ p.fst.im ≠ 0
hp_fst_ne_zero : p.fst ≠ 0
⊢ ContinuousAt (fun x => Complex.log x.fst * x.snd) p
[PROOFSTEP]
exact
ContinuousAt.mul (ContinuousAt.comp (continuousAt_clog hp_fst) continuous_fst.continuousAt)
continuous_snd.continuousAt
[GOAL]
α : Type u_1
l : Filter α
f : α → ℂ
a b : ℂ
hf : Tendsto f l (𝓝 b)
h : a ≠ 0 ∨ b ≠ 0
⊢ Tendsto (fun x => a ^ f x) l (𝓝 (a ^ b))
[PROOFSTEP]
cases h with
| inl h => exact (continuousAt_const_cpow h).tendsto.comp hf
| inr h => exact (continuousAt_const_cpow' h).tendsto.comp hf
[GOAL]
α : Type u_1
l : Filter α
f : α → ℂ
a b : ℂ
hf : Tendsto f l (𝓝 b)
h : a ≠ 0 ∨ b ≠ 0
⊢ Tendsto (fun x => a ^ f x) l (𝓝 (a ^ b))
[PROOFSTEP]
cases h with
| inl h => exact (continuousAt_const_cpow h).tendsto.comp hf
| inr h => exact (continuousAt_const_cpow' h).tendsto.comp hf
[GOAL]
case inl
α : Type u_1
l : Filter α
f : α → ℂ
a b : ℂ
hf : Tendsto f l (𝓝 b)
h : a ≠ 0
⊢ Tendsto (fun x => a ^ f x) l (𝓝 (a ^ b))
[PROOFSTEP]
| inl h => exact (continuousAt_const_cpow h).tendsto.comp hf
[GOAL]
case inl
α : Type u_1
l : Filter α
f : α → ℂ
a b : ℂ
hf : Tendsto f l (𝓝 b)
h : a ≠ 0
⊢ Tendsto (fun x => a ^ f x) l (𝓝 (a ^ b))
[PROOFSTEP]
exact (continuousAt_const_cpow h).tendsto.comp hf
[GOAL]
case inr
α : Type u_1
l : Filter α
f : α → ℂ
a b : ℂ
hf : Tendsto f l (𝓝 b)
h : b ≠ 0
⊢ Tendsto (fun x => a ^ f x) l (𝓝 (a ^ b))
[PROOFSTEP]
| inr h => exact (continuousAt_const_cpow' h).tendsto.comp hf
[GOAL]
case inr
α : Type u_1
l : Filter α
f : α → ℂ
a b : ℂ
hf : Tendsto f l (𝓝 b)
h : b ≠ 0
⊢ Tendsto (fun x => a ^ f x) l (𝓝 (a ^ b))
[PROOFSTEP]
exact (continuousAt_const_cpow' h).tendsto.comp hf
[GOAL]
a b : ℝ
h : a ≠ 0
⊢ ContinuousAt (rpow a) b
[PROOFSTEP]
have : rpow a = fun x : ℝ => ((a : ℂ) ^ (x : ℂ)).re := by
ext1 x
rw [rpow_eq_pow, rpow_def]
[GOAL]
a b : ℝ
h : a ≠ 0
⊢ rpow a = fun x => (↑a ^ ↑x).re
[PROOFSTEP]
ext1 x
[GOAL]
case h
a b : ℝ
h : a ≠ 0
x : ℝ
⊢ rpow a x = (↑a ^ ↑x).re
[PROOFSTEP]
rw [rpow_eq_pow, rpow_def]
[GOAL]
a b : ℝ
h : a ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ContinuousAt (rpow a) b
[PROOFSTEP]
rw [this]
[GOAL]
a b : ℝ
h : a ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ContinuousAt (fun x => (↑a ^ ↑x).re) b
[PROOFSTEP]
refine' Complex.continuous_re.continuousAt.comp _
[GOAL]
a b : ℝ
h : a ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ContinuousAt (fun x => ↑a ^ ↑x) b
[PROOFSTEP]
refine' (continuousAt_const_cpow _).comp Complex.continuous_ofReal.continuousAt
[GOAL]
a b : ℝ
h : a ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ↑a ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
a b : ℝ
h : b ≠ 0
⊢ ContinuousAt (rpow a) b
[PROOFSTEP]
have : rpow a = fun x : ℝ => ((a : ℂ) ^ (x : ℂ)).re := by
ext1 x
rw [rpow_eq_pow, rpow_def]
[GOAL]
a b : ℝ
h : b ≠ 0
⊢ rpow a = fun x => (↑a ^ ↑x).re
[PROOFSTEP]
ext1 x
[GOAL]
case h
a b : ℝ
h : b ≠ 0
x : ℝ
⊢ rpow a x = (↑a ^ ↑x).re
[PROOFSTEP]
rw [rpow_eq_pow, rpow_def]
[GOAL]
a b : ℝ
h : b ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ContinuousAt (rpow a) b
[PROOFSTEP]
rw [this]
[GOAL]
a b : ℝ
h : b ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ContinuousAt (fun x => (↑a ^ ↑x).re) b
[PROOFSTEP]
refine' Complex.continuous_re.continuousAt.comp _
[GOAL]
a b : ℝ
h : b ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ContinuousAt (fun x => ↑a ^ ↑x) b
[PROOFSTEP]
refine' (continuousAt_const_cpow' _).comp Complex.continuous_ofReal.continuousAt
[GOAL]
a b : ℝ
h : b ≠ 0
this : rpow a = fun x => (↑a ^ ↑x).re
⊢ ↑b ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
p : ℝ × ℝ
hp_fst : p.fst < 0
⊢ (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
[PROOFSTEP]
suffices : ∀ᶠ x : ℝ × ℝ in 𝓝 p, x.1 < 0
[GOAL]
p : ℝ × ℝ
hp_fst : p.fst < 0
this : ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, x.fst < 0
⊢ (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
case this p : ℝ × ℝ hp_fst : p.fst < 0 ⊢ ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, x.fst < 0
[PROOFSTEP]
exact
this.mono fun x hx => by
dsimp only
rw [rpow_def_of_neg hx]
[GOAL]
p : ℝ × ℝ
hp_fst : p.fst < 0
this : ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, x.fst < 0
x : ℝ × ℝ
hx : x.fst < 0
⊢ (fun x => x.fst ^ x.snd) x = (fun x => exp (log x.fst * x.snd) * cos (x.snd * π)) x
[PROOFSTEP]
dsimp only
[GOAL]
p : ℝ × ℝ
hp_fst : p.fst < 0
this : ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, x.fst < 0
x : ℝ × ℝ
hx : x.fst < 0
⊢ x.fst ^ x.snd = exp (log x.fst * x.snd) * cos (x.snd * π)
[PROOFSTEP]
rw [rpow_def_of_neg hx]
[GOAL]
case this
p : ℝ × ℝ
hp_fst : p.fst < 0
⊢ ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, x.fst < 0
[PROOFSTEP]
exact IsOpen.eventually_mem (isOpen_lt continuous_fst continuous_const) hp_fst
[GOAL]
p : ℝ × ℝ
hp_fst : 0 < p.fst
⊢ (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
[PROOFSTEP]
suffices : ∀ᶠ x : ℝ × ℝ in 𝓝 p, 0 < x.1
[GOAL]
p : ℝ × ℝ
hp_fst : 0 < p.fst
this : ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, 0 < x.fst
⊢ (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
case this p : ℝ × ℝ hp_fst : 0 < p.fst ⊢ ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, 0 < x.fst
[PROOFSTEP]
exact
this.mono fun x hx => by
dsimp only
rw [rpow_def_of_pos hx]
[GOAL]
p : ℝ × ℝ
hp_fst : 0 < p.fst
this : ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, 0 < x.fst
x : ℝ × ℝ
hx : 0 < x.fst
⊢ (fun x => x.fst ^ x.snd) x = (fun x => exp (log x.fst * x.snd)) x
[PROOFSTEP]
dsimp only
[GOAL]
p : ℝ × ℝ
hp_fst : 0 < p.fst
this : ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, 0 < x.fst
x : ℝ × ℝ
hx : 0 < x.fst
⊢ x.fst ^ x.snd = exp (log x.fst * x.snd)
[PROOFSTEP]
rw [rpow_def_of_pos hx]
[GOAL]
case this
p : ℝ × ℝ
hp_fst : 0 < p.fst
⊢ ∀ᶠ (x : ℝ × ℝ) in 𝓝 p, 0 < x.fst
[PROOFSTEP]
exact IsOpen.eventually_mem (isOpen_lt continuous_const continuous_fst) hp_fst
[GOAL]
p : ℝ × ℝ
hp : p.fst ≠ 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
rw [ne_iff_lt_or_gt] at hp
[GOAL]
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0 ∨ p.fst > 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
cases hp with
| inl hp =>
rw [continuousAt_congr (rpow_eq_nhds_of_neg hp)]
refine' ContinuousAt.mul _ (continuous_cos.continuousAt.comp _)
· refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
refine' (continuousAt_log _).comp continuous_fst.continuousAt
exact hp.ne
· exact continuous_snd.continuousAt.mul continuousAt_const
| inr hp =>
rw [continuousAt_congr (rpow_eq_nhds_of_pos hp)]
refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
refine' (continuousAt_log _).comp continuous_fst.continuousAt
exact hp.lt.ne.symm
[GOAL]
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0 ∨ p.fst > 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
cases hp with
| inl hp =>
rw [continuousAt_congr (rpow_eq_nhds_of_neg hp)]
refine' ContinuousAt.mul _ (continuous_cos.continuousAt.comp _)
· refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
refine' (continuousAt_log _).comp continuous_fst.continuousAt
exact hp.ne
· exact continuous_snd.continuousAt.mul continuousAt_const
| inr hp =>
rw [continuousAt_congr (rpow_eq_nhds_of_pos hp)]
refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
refine' (continuousAt_log _).comp continuous_fst.continuousAt
exact hp.lt.ne.symm
[GOAL]
case inl
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
| inl hp =>
rw [continuousAt_congr (rpow_eq_nhds_of_neg hp)]
refine' ContinuousAt.mul _ (continuous_cos.continuousAt.comp _)
· refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
refine' (continuousAt_log _).comp continuous_fst.continuousAt
exact hp.ne
· exact continuous_snd.continuousAt.mul continuousAt_const
[GOAL]
case inl
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
rw [continuousAt_congr (rpow_eq_nhds_of_neg hp)]
[GOAL]
case inl
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0
⊢ ContinuousAt (fun x => exp (log x.fst * x.snd) * cos (x.snd * π)) p
[PROOFSTEP]
refine' ContinuousAt.mul _ (continuous_cos.continuousAt.comp _)
[GOAL]
case inl.refine'_1
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0
⊢ ContinuousAt (fun x => exp (log x.fst * x.snd)) p
[PROOFSTEP]
refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
[GOAL]
case inl.refine'_1
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0
⊢ ContinuousAt (fun x => log x.fst) p
[PROOFSTEP]
refine' (continuousAt_log _).comp continuous_fst.continuousAt
[GOAL]
case inl.refine'_1
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0
⊢ p.fst ≠ 0
[PROOFSTEP]
exact hp.ne
[GOAL]
case inl.refine'_2
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst < 0
⊢ ContinuousAt (fun x => x.snd * π) p
[PROOFSTEP]
exact continuous_snd.continuousAt.mul continuousAt_const
[GOAL]
case inr
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst > 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
| inr hp =>
rw [continuousAt_congr (rpow_eq_nhds_of_pos hp)]
refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
refine' (continuousAt_log _).comp continuous_fst.continuousAt
exact hp.lt.ne.symm
[GOAL]
case inr
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst > 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
rw [continuousAt_congr (rpow_eq_nhds_of_pos hp)]
[GOAL]
case inr
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst > 0
⊢ ContinuousAt (fun x => exp (log x.fst * x.snd)) p
[PROOFSTEP]
refine' continuous_exp.continuousAt.comp (ContinuousAt.mul _ continuous_snd.continuousAt)
[GOAL]
case inr
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst > 0
⊢ ContinuousAt (fun x => log x.fst) p
[PROOFSTEP]
refine' (continuousAt_log _).comp continuous_fst.continuousAt
[GOAL]
case inr
p : ℝ × ℝ
hp✝ : p.fst ≠ 0
hp : p.fst > 0
⊢ p.fst ≠ 0
[PROOFSTEP]
exact hp.lt.ne.symm
[GOAL]
p : ℝ × ℝ
hp : 0 < p.snd
⊢ ContinuousAt (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
cases' p with x y
[GOAL]
case mk
x y : ℝ
hp : 0 < (x, y).snd
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (x, y)
[PROOFSTEP]
dsimp only at hp
[GOAL]
case mk
x y : ℝ
hp : 0 < y
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (x, y)
[PROOFSTEP]
obtain hx | rfl := ne_or_eq x 0
[GOAL]
case mk.inl
x y : ℝ
hp : 0 < y
hx : x ≠ 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (x, y)
[PROOFSTEP]
exact continuousAt_rpow_of_ne (x, y) hx
[GOAL]
case mk.inr
y : ℝ
hp : 0 < y
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (0, y)
[PROOFSTEP]
have A : Tendsto (fun p : ℝ × ℝ => exp (log p.1 * p.2)) (𝓝[≠] 0 ×ˢ 𝓝 y) (𝓝 0) :=
tendsto_exp_atBot.comp ((tendsto_log_nhdsWithin_zero.comp tendsto_fst).atBot_mul hp tendsto_snd)
[GOAL]
case mk.inr
y : ℝ
hp : 0 < y
A : Tendsto (fun p => exp (log p.fst * p.snd)) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (0, y)
[PROOFSTEP]
have B : Tendsto (fun p : ℝ × ℝ => p.1 ^ p.2) (𝓝[≠] 0 ×ˢ 𝓝 y) (𝓝 0) :=
squeeze_zero_norm (fun p => abs_rpow_le_exp_log_mul p.1 p.2) A
[GOAL]
case mk.inr
y : ℝ
hp : 0 < y
A : Tendsto (fun p => exp (log p.fst * p.snd)) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
B : Tendsto (fun p => p.fst ^ p.snd) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (0, y)
[PROOFSTEP]
have C : Tendsto (fun p : ℝ × ℝ => p.1 ^ p.2) (𝓝[{0}] 0 ×ˢ 𝓝 y) (pure 0) :=
by
rw [nhdsWithin_singleton, tendsto_pure, pure_prod, eventually_map]
exact (lt_mem_nhds hp).mono fun y hy => zero_rpow hy.ne'
[GOAL]
y : ℝ
hp : 0 < y
A : Tendsto (fun p => exp (log p.fst * p.snd)) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
B : Tendsto (fun p => p.fst ^ p.snd) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
⊢ Tendsto (fun p => p.fst ^ p.snd) (𝓝[{0}] 0 ×ˢ 𝓝 y) (pure 0)
[PROOFSTEP]
rw [nhdsWithin_singleton, tendsto_pure, pure_prod, eventually_map]
[GOAL]
y : ℝ
hp : 0 < y
A : Tendsto (fun p => exp (log p.fst * p.snd)) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
B : Tendsto (fun p => p.fst ^ p.snd) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
⊢ ∀ᶠ (a : ℝ) in 𝓝 y, (0, a).fst ^ (0, a).snd = 0
[PROOFSTEP]
exact (lt_mem_nhds hp).mono fun y hy => zero_rpow hy.ne'
[GOAL]
case mk.inr
y : ℝ
hp : 0 < y
A : Tendsto (fun p => exp (log p.fst * p.snd)) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
B : Tendsto (fun p => p.fst ^ p.snd) (𝓝[{0}ᶜ] 0 ×ˢ 𝓝 y) (𝓝 0)
C : Tendsto (fun p => p.fst ^ p.snd) (𝓝[{0}] 0 ×ˢ 𝓝 y) (pure 0)
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (0, y)
[PROOFSTEP]
simpa only [← sup_prod, ← nhdsWithin_union, compl_union_self, nhdsWithin_univ, nhds_prod_eq, ContinuousAt,
zero_rpow hp.ne'] using B.sup (C.mono_right (pure_le_nhds _))
[GOAL]
x q : ℝ
h : x ≠ 0 ∨ 0 < q
⊢ ContinuousAt (fun x => x ^ q) x
[PROOFSTEP]
change ContinuousAt ((fun p : ℝ × ℝ => p.1 ^ p.2) ∘ fun y : ℝ => (y, q)) x
[GOAL]
x q : ℝ
h : x ≠ 0 ∨ 0 < q
⊢ ContinuousAt ((fun p => p.fst ^ p.snd) ∘ fun y => (y, q)) x
[PROOFSTEP]
apply ContinuousAt.comp
[GOAL]
case hg
x q : ℝ
h : x ≠ 0 ∨ 0 < q
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (x, q)
[PROOFSTEP]
exact continuousAt_rpow (x, q) h
[GOAL]
case hf
x q : ℝ
h : x ≠ 0 ∨ 0 < q
⊢ ContinuousAt (fun y => (y, q)) x
[PROOFSTEP]
exact (continuous_id'.prod_mk continuous_const).continuousAt
[GOAL]
α : Type u_1
l : Filter α
f : α → ℝ
x p : ℝ
hf : Tendsto f l (𝓝 x)
h : x ≠ 0 ∨ 0 ≤ p
h0 : 0 = p
⊢ Tendsto (fun a => f a ^ 0) l (𝓝 (x ^ 0))
[PROOFSTEP]
simp [tendsto_const_nhds]
[GOAL]
z : ℂ
hz : 0 < z.re
⊢ ContinuousAt (fun x => x.fst ^ x.snd) (0, z)
[PROOFSTEP]
have hz₀ : z ≠ 0 := ne_of_apply_ne re hz.ne'
[GOAL]
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ ContinuousAt (fun x => x.fst ^ x.snd) (0, z)
[PROOFSTEP]
rw [ContinuousAt, zero_cpow hz₀, tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ Tendsto (fun e => ‖e.fst ^ e.snd‖) (𝓝 (0, z)) (𝓝 0)
[PROOFSTEP]
refine' squeeze_zero (fun _ => norm_nonneg _) (fun _ => abs_cpow_le _ _) _
[GOAL]
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ Tendsto (fun x => ↑abs x.fst ^ x.snd.re / Real.exp (arg x.fst * x.snd.im)) (𝓝 (0, z)) (𝓝 0)
[PROOFSTEP]
simp only [div_eq_mul_inv, ← Real.exp_neg]
[GOAL]
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ Tendsto (fun x => ↑abs x.fst ^ x.snd.re * Real.exp (-(arg x.fst * x.snd.im))) (𝓝 (0, z)) (𝓝 0)
[PROOFSTEP]
refine' Tendsto.zero_mul_isBoundedUnder_le _ _
[GOAL]
case refine'_1
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ Tendsto (fun x => ↑abs x.fst ^ x.snd.re) (𝓝 (0, z)) (𝓝 0)
[PROOFSTEP]
convert (continuous_fst.norm.tendsto ((0 : ℂ), z)).rpow ((continuous_re.comp continuous_snd).tendsto _) _
[GOAL]
case h.e'_5.h.e'_3
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ 0 = ‖(0, z).fst‖ ^ (re ∘ Prod.snd) (0, z)
[PROOFSTEP]
simp [hz, Real.zero_rpow hz.ne']
[GOAL]
case refine'_1
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ ‖(0, z).fst‖ ≠ 0 ∨ 0 < (re ∘ Prod.snd) (0, z)
[PROOFSTEP]
simp [hz, Real.zero_rpow hz.ne']
[GOAL]
case refine'_2
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) (𝓝 (0, z)) ((fun x => ‖x‖) ∘ fun x => Real.exp (-(arg x.fst * x.snd.im)))
[PROOFSTEP]
simp only [Function.comp, Real.norm_eq_abs, abs_of_pos (Real.exp_pos _)]
[GOAL]
case refine'_2
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) (𝓝 (0, z)) fun x => Real.exp (-(arg x.fst * x.snd.im))
[PROOFSTEP]
rcases exists_gt |im z| with ⟨C, hC⟩
[GOAL]
case refine'_2.intro
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
C : ℝ
hC : |z.im| < C
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) (𝓝 (0, z)) fun x => Real.exp (-(arg x.fst * x.snd.im))
[PROOFSTEP]
refine' ⟨Real.exp (π * C), eventually_map.2 _⟩
[GOAL]
case refine'_2.intro
z : ℂ
hz : 0 < z.re
hz₀ : z ≠ 0
C : ℝ
hC : |z.im| < C
⊢ ∀ᶠ (a : ℂ × ℂ) in 𝓝 (0, z), (fun x x_1 => x ≤ x_1) (Real.exp (-(arg a.fst * a.snd.im))) (Real.exp (π * C))
[PROOFSTEP]
refine'
(((continuous_im.comp continuous_snd).abs.tendsto (_, z)).eventually (gt_mem_nhds hC)).mono fun z hz =>
Real.exp_le_exp.2 <| (neg_le_abs_self _).trans _
[GOAL]
case refine'_2.intro
z✝ : ℂ
hz✝ : 0 < z✝.re
hz₀ : z✝ ≠ 0
C : ℝ
hC : |z✝.im| < C
z : ℂ × ℂ
hz : |(im ∘ Prod.snd) z| < C
⊢ |arg z.fst * z.snd.im| ≤ π * C
[PROOFSTEP]
rw [_root_.abs_mul]
[GOAL]
case refine'_2.intro
z✝ : ℂ
hz✝ : 0 < z✝.re
hz₀ : z✝ ≠ 0
C : ℝ
hC : |z✝.im| < C
z : ℂ × ℂ
hz : |(im ∘ Prod.snd) z| < C
⊢ |arg z.fst| * |z.snd.im| ≤ π * C
[PROOFSTEP]
exact mul_le_mul (abs_le.2 ⟨(neg_pi_lt_arg _).le, arg_le_pi _⟩) hz.le (_root_.abs_nonneg _) Real.pi_pos.le
[GOAL]
p : ℂ × ℂ
h₁ : 0 ≤ p.fst.re ∨ p.fst.im ≠ 0
h₂ : 0 < p.snd.re
⊢ ContinuousAt (fun x => x.fst ^ x.snd) p
[PROOFSTEP]
cases' p with z w
[GOAL]
case mk
z w : ℂ
h₁ : 0 ≤ (z, w).fst.re ∨ (z, w).fst.im ≠ 0
h₂ : 0 < (z, w).snd.re
⊢ ContinuousAt (fun x => x.fst ^ x.snd) (z, w)
[PROOFSTEP]
rw [← not_lt_zero_iff, lt_iff_le_and_ne, not_and_or, Ne.def, Classical.not_not, not_le_zero_iff] at h₁
[GOAL]
case mk
z w : ℂ
h₁ : (0 < (z, w).fst.re ∨ (z, w).fst.im ≠ 0) ∨ (z, w).fst = 0
h₂ : 0 < (z, w).snd.re
⊢ ContinuousAt (fun x => x.fst ^ x.snd) (z, w)
[PROOFSTEP]
rcases h₁ with (h₁ | (rfl : z = 0))
[GOAL]
case mk.inl
z w : ℂ
h₂ : 0 < (z, w).snd.re
h₁ : 0 < (z, w).fst.re ∨ (z, w).fst.im ≠ 0
⊢ ContinuousAt (fun x => x.fst ^ x.snd) (z, w)
case mk.inr w : ℂ h₂ : 0 < (0, w).snd.re ⊢ ContinuousAt (fun x => x.fst ^ x.snd) (0, w)
[PROOFSTEP]
exacts [continuousAt_cpow h₁, continuousAt_cpow_zero_of_re_pos h₂]
[GOAL]
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (x, y)
[PROOFSTEP]
rcases lt_trichotomy (0 : ℝ) x with (hx | rfl | hx)
[GOAL]
case inl
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : 0 < x
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (x, y)
[PROOFSTEP]
have : ContinuousAt (fun p => ⟨↑p.1, p.2⟩ : ℝ × ℂ → ℂ × ℂ) (x, y) :=
continuous_ofReal.continuousAt.prod_map continuousAt_id
[GOAL]
case inl
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : 0 < x
this : ContinuousAt (fun p => (↑p.fst, p.snd)) (x, y)
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (x, y)
[PROOFSTEP]
refine' (continuousAt_cpow (Or.inl _)).comp this
[GOAL]
case inl
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : 0 < x
this : ContinuousAt (fun p => (↑p.fst, p.snd)) (x, y)
⊢ 0 < (↑(x, y).fst, (x, y).snd).fst.re
[PROOFSTEP]
rwa [ofReal_re]
[GOAL]
case inr.inl
y : ℂ
h : 0 < y.re ∨ 0 ≠ 0
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (0, y)
[PROOFSTEP]
have A : ContinuousAt (fun p => p.1 ^ p.2 : ℂ × ℂ → ℂ) ⟨↑(0 : ℝ), y⟩ :=
by
rw [ofReal_zero]
apply continuousAt_cpow_zero_of_re_pos
tauto
[GOAL]
y : ℂ
h : 0 < y.re ∨ 0 ≠ 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (↑0, y)
[PROOFSTEP]
rw [ofReal_zero]
[GOAL]
y : ℂ
h : 0 < y.re ∨ 0 ≠ 0
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (0, y)
[PROOFSTEP]
apply continuousAt_cpow_zero_of_re_pos
[GOAL]
case hz
y : ℂ
h : 0 < y.re ∨ 0 ≠ 0
⊢ 0 < y.re
[PROOFSTEP]
tauto
[GOAL]
case inr.inl
y : ℂ
h : 0 < y.re ∨ 0 ≠ 0
A : ContinuousAt (fun p => p.fst ^ p.snd) (↑0, y)
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (0, y)
[PROOFSTEP]
have B : ContinuousAt (fun p => ⟨↑p.1, p.2⟩ : ℝ × ℂ → ℂ × ℂ) ⟨0, y⟩ :=
continuous_ofReal.continuousAt.prod_map continuousAt_id
[GOAL]
case inr.inl
y : ℂ
h : 0 < y.re ∨ 0 ≠ 0
A : ContinuousAt (fun p => p.fst ^ p.snd) (↑0, y)
B : ContinuousAt (fun p => (↑p.fst, p.snd)) (0, y)
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (0, y)
[PROOFSTEP]
exact @ContinuousAt.comp (ℝ × ℂ) (ℂ × ℂ) ℂ _ _ _ _ (fun p => ⟨↑p.1, p.2⟩) ⟨0, y⟩ A B
[GOAL]
case inr.inr
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (x, y)
[PROOFSTEP]
suffices ContinuousAt (fun p => (-(p.1 : ℂ)) ^ p.2 * exp (π * I * p.2) : ℝ × ℂ → ℂ) (x, y)
by
refine' this.congr (eventually_of_mem (prod_mem_nhds (Iio_mem_nhds hx) univ_mem) _)
exact fun p hp => (ofReal_cpow_of_nonpos (le_of_lt hp.1) p.2).symm
[GOAL]
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
this : ContinuousAt (fun p => (-↑p.fst) ^ p.snd * exp (↑π * I * p.snd)) (x, y)
⊢ ContinuousAt (fun p => ↑p.fst ^ p.snd) (x, y)
[PROOFSTEP]
refine' this.congr (eventually_of_mem (prod_mem_nhds (Iio_mem_nhds hx) univ_mem) _)
[GOAL]
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
this : ContinuousAt (fun p => (-↑p.fst) ^ p.snd * exp (↑π * I * p.snd)) (x, y)
⊢ ∀ (x : ℝ × ℂ),
x ∈ Set.Iio 0 ×ˢ Set.univ → (fun p => (-↑p.fst) ^ p.snd * exp (↑π * I * p.snd)) x = (fun p => ↑p.fst ^ p.snd) x
[PROOFSTEP]
exact fun p hp => (ofReal_cpow_of_nonpos (le_of_lt hp.1) p.2).symm
[GOAL]
case inr.inr
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
⊢ ContinuousAt (fun p => (-↑p.fst) ^ p.snd * exp (↑π * I * p.snd)) (x, y)
[PROOFSTEP]
have A : ContinuousAt (fun p => ⟨-↑p.1, p.2⟩ : ℝ × ℂ → ℂ × ℂ) (x, y) :=
ContinuousAt.prod_map continuous_ofReal.continuousAt.neg continuousAt_id
[GOAL]
case inr.inr
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
A : ContinuousAt (fun p => (-↑p.fst, p.snd)) (x, y)
⊢ ContinuousAt (fun p => (-↑p.fst) ^ p.snd * exp (↑π * I * p.snd)) (x, y)
[PROOFSTEP]
apply ContinuousAt.mul
[GOAL]
case inr.inr.hf
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
A : ContinuousAt (fun p => (-↑p.fst, p.snd)) (x, y)
⊢ ContinuousAt (fun x => (-↑x.fst) ^ x.snd) (x, y)
[PROOFSTEP]
refine' (continuousAt_cpow (Or.inl _)).comp A
[GOAL]
case inr.inr.hf
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
A : ContinuousAt (fun p => (-↑p.fst, p.snd)) (x, y)
⊢ 0 < (-↑(x, y).fst, (x, y).snd).fst.re
[PROOFSTEP]
rwa [neg_re, ofReal_re, neg_pos]
[GOAL]
case inr.inr.hg
x : ℝ
y : ℂ
h : 0 < y.re ∨ x ≠ 0
hx : x < 0
A : ContinuousAt (fun p => (-↑p.fst, p.snd)) (x, y)
⊢ ContinuousAt (fun x => exp (↑π * I * x.snd)) (x, y)
[PROOFSTEP]
exact (continuous_exp.comp (continuous_const.mul continuous_snd)).continuousAt
[GOAL]
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (x, y)
[PROOFSTEP]
have :
(fun p : ℝ≥0 × ℝ => p.1 ^ p.2) = Real.toNNReal ∘ (fun p : ℝ × ℝ => p.1 ^ p.2) ∘ fun p : ℝ≥0 × ℝ => (p.1.1, p.2) :=
by
ext p
erw [coe_rpow, Real.coe_toNNReal _ (Real.rpow_nonneg_of_nonneg p.1.2 _)]
rfl
[GOAL]
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
⊢ (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
[PROOFSTEP]
ext p
[GOAL]
case h.a
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
p : ℝ≥0 × ℝ
⊢ ↑(p.fst ^ p.snd) = ↑((toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)) p)
[PROOFSTEP]
erw [coe_rpow, Real.coe_toNNReal _ (Real.rpow_nonneg_of_nonneg p.1.2 _)]
[GOAL]
case h.a
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
p : ℝ≥0 × ℝ
⊢ ↑p.fst ^ p.snd = ↑p.fst ^ ((fun p => (↑p.fst, p.snd)) p).snd
[PROOFSTEP]
rfl
[GOAL]
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
this : (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (x, y)
[PROOFSTEP]
rw [this]
[GOAL]
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
this : (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
⊢ ContinuousAt (toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)) (x, y)
[PROOFSTEP]
refine' continuous_real_toNNReal.continuousAt.comp (ContinuousAt.comp _ _)
[GOAL]
case refine'_1
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
this : (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
⊢ ContinuousAt (fun p => p.fst ^ p.snd) (↑(x, y).fst, (x, y).snd)
[PROOFSTEP]
apply Real.continuousAt_rpow
[GOAL]
case refine'_1.h
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
this : (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
⊢ (↑(x, y).fst, (x, y).snd).fst ≠ 0 ∨ 0 < (↑(x, y).fst, (x, y).snd).snd
[PROOFSTEP]
simp only [Ne.def] at h
[GOAL]
case refine'_1.h
x : ℝ≥0
y : ℝ
h : ¬x = 0 ∨ 0 < y
this : (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
⊢ (↑(x, y).fst, (x, y).snd).fst ≠ 0 ∨ 0 < (↑(x, y).fst, (x, y).snd).snd
[PROOFSTEP]
rw [← NNReal.coe_eq_zero x] at h
[GOAL]
case refine'_1.h
x : ℝ≥0
y : ℝ
h : ¬↑x = 0 ∨ 0 < y
this : (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
⊢ (↑(x, y).fst, (x, y).snd).fst ≠ 0 ∨ 0 < (↑(x, y).fst, (x, y).snd).snd
[PROOFSTEP]
exact h
[GOAL]
case refine'_2
x : ℝ≥0
y : ℝ
h : x ≠ 0 ∨ 0 < y
this : (fun p => p.fst ^ p.snd) = toNNReal ∘ (fun p => p.fst ^ p.snd) ∘ fun p => (↑p.fst, p.snd)
⊢ ContinuousAt (fun p => (↑p.fst, p.snd)) (x, y)
[PROOFSTEP]
exact ((continuous_subtype_val.comp continuous_fst).prod_mk continuous_snd).continuousAt
[GOAL]
x y : ℝ≥0
hy : 1 < y
⊢ ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
obtain ⟨m, hm⟩ := add_one_pow_unbounded_of_pos x (tsub_pos_of_lt hy)
[GOAL]
case intro
x y : ℝ≥0
hy : 1 < y
m : ℕ
hm : x < (y - 1 + 1) ^ m
⊢ ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
rw [tsub_add_cancel_of_le hy.le] at hm
[GOAL]
case intro
x y : ℝ≥0
hy : 1 < y
m : ℕ
hm : x < y ^ m
⊢ ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
refine' eventually_atTop.2 ⟨m + 1, fun n hn => _⟩
[GOAL]
case intro
x y : ℝ≥0
hy : 1 < y
m : ℕ
hm : x < y ^ m
n : ℕ
hn : n ≥ m + 1
⊢ x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
simpa only [NNReal.rpow_one_div_le_iff (Nat.cast_pos.2 <| m.succ_pos.trans_le hn), NNReal.rpow_nat_cast] using
hm.le.trans (pow_le_pow hy.le (m.le_succ.trans hn))
[GOAL]
x : ℝ≥0
y : ℝ
h✝¹ : x ≠ 0 ∨ 0 ≤ y
h✝ : 0 ≤ y
h : 0 = y
⊢ ContinuousAt (fun z => z ^ 0) x
[PROOFSTEP]
simp only [rpow_zero, continuousAt_const]
[GOAL]
x : ℝ≥0∞
hx : x ≠ ⊤
y : ℝ≥0∞
hy : 1 < y
⊢ ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
lift x to ℝ≥0 using hx
[GOAL]
case intro
y : ℝ≥0∞
hy : 1 < y
x : ℝ≥0
⊢ ∀ᶠ (n : ℕ) in atTop, ↑x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
by_cases y = ∞
[GOAL]
case intro
y : ℝ≥0∞
hy : 1 < y
x : ℝ≥0
⊢ ∀ᶠ (n : ℕ) in atTop, ↑x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
by_cases y = ∞
[GOAL]
case pos
y : ℝ≥0∞
hy : 1 < y
x : ℝ≥0
h : y = ⊤
⊢ ∀ᶠ (n : ℕ) in atTop, ↑x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
exact eventually_of_forall fun n => h.symm ▸ le_top
[GOAL]
case neg
y : ℝ≥0∞
hy : 1 < y
x : ℝ≥0
h : ¬y = ⊤
⊢ ∀ᶠ (n : ℕ) in atTop, ↑x ^ (1 / ↑n) ≤ y
[PROOFSTEP]
lift y to ℝ≥0 using h
[GOAL]
case neg.intro
x y : ℝ≥0
hy : 1 < ↑y
⊢ ∀ᶠ (n : ℕ) in atTop, ↑x ^ (1 / ↑n) ≤ ↑y
[PROOFSTEP]
have := NNReal.eventually_pow_one_div_le x (by exact_mod_cast hy : 1 < y)
[GOAL]
x y : ℝ≥0
hy : 1 < ↑y
⊢ 1 < y
[PROOFSTEP]
exact_mod_cast hy
[GOAL]
case neg.intro
x y : ℝ≥0
hy : 1 < ↑y
this : ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y
⊢ ∀ᶠ (n : ℕ) in atTop, ↑x ^ (1 / ↑n) ≤ ↑y
[PROOFSTEP]
refine' this.congr (eventually_of_forall fun n => _)
[GOAL]
case neg.intro
x y : ℝ≥0
hy : 1 < ↑y
this : ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y
n : ℕ
⊢ x ^ (1 / ↑n) ≤ y ↔ ↑x ^ (1 / ↑n) ≤ ↑y
[PROOFSTEP]
rw [coe_rpow_of_nonneg x (by positivity : 0 ≤ (1 / n : ℝ)), coe_le_coe]
[GOAL]
x y : ℝ≥0
hy : 1 < ↑y
this : ∀ᶠ (n : ℕ) in atTop, x ^ (1 / ↑n) ≤ y
n : ℕ
⊢ 0 ≤ 1 / ↑n
[PROOFSTEP]
positivity
[GOAL]
x : ℝ≥0∞
y : ℝ
h : 0 < y
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
by_cases hx : x = ⊤
[GOAL]
case pos
x : ℝ≥0∞
y : ℝ
h : 0 < y
hx : x = ⊤
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
rw [hx, ContinuousAt]
[GOAL]
case pos
x : ℝ≥0∞
y : ℝ
h : 0 < y
hx : x = ⊤
⊢ Tendsto (fun a => a ^ y) (𝓝 ⊤) (𝓝 (⊤ ^ y))
[PROOFSTEP]
convert ENNReal.tendsto_rpow_at_top h
[GOAL]
case h.e'_5.h.e'_3
x : ℝ≥0∞
y : ℝ
h : 0 < y
hx : x = ⊤
⊢ ⊤ ^ y = ⊤
[PROOFSTEP]
simp [h]
[GOAL]
case neg
x : ℝ≥0∞
y : ℝ
h : 0 < y
hx : ¬x = ⊤
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
lift x to ℝ≥0 using hx
[GOAL]
case neg.intro
y : ℝ
h : 0 < y
x : ℝ≥0
⊢ ContinuousAt (fun a => a ^ y) ↑x
[PROOFSTEP]
rw [continuousAt_coe_iff]
[GOAL]
case neg.intro
y : ℝ
h : 0 < y
x : ℝ≥0
⊢ ContinuousAt ((fun a => a ^ y) ∘ some) x
[PROOFSTEP]
convert continuous_coe.continuousAt.comp (NNReal.continuousAt_rpow_const (Or.inr h.le)) using 1
[GOAL]
case h.e'_5
y : ℝ
h : 0 < y
x : ℝ≥0
⊢ (fun a => a ^ y) ∘ some = some ∘ fun z => z ^ y
[PROOFSTEP]
ext1 x
[GOAL]
case h.e'_5.h
y : ℝ
h : 0 < y
x✝ x : ℝ≥0
⊢ ((fun a => a ^ y) ∘ some) x = (some ∘ fun z => z ^ y) x
[PROOFSTEP]
simp [coe_rpow_of_nonneg _ h.le]
[GOAL]
y : ℝ
⊢ Continuous fun a => a ^ y
[PROOFSTEP]
refine continuous_iff_continuousAt.2 fun x => ?_
[GOAL]
y : ℝ
x : ℝ≥0∞
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
rcases lt_trichotomy (0 : ℝ) y with (hy | rfl | hy)
[GOAL]
case inl
y : ℝ
x : ℝ≥0∞
hy : 0 < y
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
exact continuousAt_rpow_const_of_pos hy
[GOAL]
case inr.inl
x : ℝ≥0∞
⊢ ContinuousAt (fun a => a ^ 0) x
[PROOFSTEP]
simp only [rpow_zero]
[GOAL]
case inr.inl
x : ℝ≥0∞
⊢ ContinuousAt (fun a => 1) x
[PROOFSTEP]
exact continuousAt_const
[GOAL]
case inr.inr
y : ℝ
x : ℝ≥0∞
hy : y < 0
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
obtain ⟨z, hz⟩ : ∃ z, y = -z := ⟨-y, (neg_neg _).symm⟩
[GOAL]
case inr.inr.intro
y : ℝ
x : ℝ≥0∞
hy : y < 0
z : ℝ
hz : y = -z
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
have z_pos : 0 < z := by simpa [hz] using hy
[GOAL]
y : ℝ
x : ℝ≥0∞
hy : y < 0
z : ℝ
hz : y = -z
⊢ 0 < z
[PROOFSTEP]
simpa [hz] using hy
[GOAL]
case inr.inr.intro
y : ℝ
x : ℝ≥0∞
hy : y < 0
z : ℝ
hz : y = -z
z_pos : 0 < z
⊢ ContinuousAt (fun a => a ^ y) x
[PROOFSTEP]
simp_rw [hz, rpow_neg]
[GOAL]
case inr.inr.intro
y : ℝ
x : ℝ≥0∞
hy : y < 0
z : ℝ
hz : y = -z
z_pos : 0 < z
⊢ ContinuousAt (fun a => (a ^ z)⁻¹) x
[PROOFSTEP]
exact continuous_inv.continuousAt.comp (continuousAt_rpow_const_of_pos z_pos)
[GOAL]
c : ℝ≥0∞
hc : c ≠ ⊤
y : ℝ
hy : 0 < y
⊢ Tendsto (fun x => c * x ^ y) (𝓝 0) (𝓝 0)
[PROOFSTEP]
convert ENNReal.Tendsto.const_mul (ENNReal.continuous_rpow_const.tendsto 0) _
[GOAL]
case h.e'_5.h.e'_3
c : ℝ≥0∞
hc : c ≠ ⊤
y : ℝ
hy : 0 < y
⊢ 0 = c * 0 ^ y
[PROOFSTEP]
simp [hy]
[GOAL]
case convert_3
c : ℝ≥0∞
hc : c ≠ ⊤
y : ℝ
hy : 0 < y
⊢ 0 ^ y ≠ 0 ∨ c ≠ ⊤
[PROOFSTEP]
exact Or.inr hc
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Continuity", "llama_tokens": 19808} |
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
c : 𝕜 → 𝕜
c' : 𝕜
n : ℕ
x : 𝕜
⊢ HasStrictDerivAt (fun x => x ^ 0) (↑0 * x ^ (0 - 1)) x
[PROOFSTEP]
simp [hasStrictDerivAt_const]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
c : 𝕜 → 𝕜
c' : 𝕜
n : ℕ
x : 𝕜
⊢ HasStrictDerivAt (fun x => x ^ 1) (↑1 * x ^ (1 - 1)) x
[PROOFSTEP]
simpa using hasStrictDerivAt_id x
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
c : 𝕜 → 𝕜
c' : 𝕜
n✝ n : ℕ
x : 𝕜
⊢ HasStrictDerivAt (fun x => x ^ (n + 1 + 1)) (↑(n + 1 + 1) * x ^ (n + 1 + 1 - 1)) x
[PROOFSTEP]
simpa [pow_succ', add_mul, mul_assoc] using (hasStrictDerivAt_pow (n + 1) x).mul (hasStrictDerivAt_id x)
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
c : 𝕜 → 𝕜
c' : 𝕜
n : ℕ
hc : HasDerivAt c c' x
⊢ HasDerivAt (fun y => c y ^ n) (↑n * c x ^ (n - 1) * c') x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
c : 𝕜 → 𝕜
c' : 𝕜
n : ℕ
hc : HasDerivWithinAt c c' univ x
⊢ HasDerivWithinAt (fun y => c y ^ n) (↑n * c x ^ (n - 1) * c') univ x
[PROOFSTEP]
exact hc.pow n
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Pow", "llama_tokens": 1135} |
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L✝ L₁ L₂ : Filter 𝕜
x : 𝕜
L : Filter 𝕜
⊢ HasDerivAtFilter f f' x L ↔ Tendsto (fun y => slope f x y - (y - x)⁻¹ • (y - x) • f') L (𝓝 0)
[PROOFSTEP]
simp only [hasDerivAtFilter_iff_tendsto, ← norm_inv, ← norm_smul, ← tendsto_zero_iff_norm_tendsto_zero,
slope_def_module, smul_sub]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L✝ L₁ L₂ : Filter 𝕜
x : 𝕜
L : Filter 𝕜
⊢ ∀ (x_1 : 𝕜), ¬x_1 ∈ {x}ᶜ → slope f x x_1 - (x_1 - x)⁻¹ • (x_1 - x) • f' = 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L✝ L₁ L₂ : Filter 𝕜
x : 𝕜
L : Filter 𝕜
⊢ (fun y => slope f x y - (y - x)⁻¹ • (y - x) • f') =ᶠ[L ⊓ 𝓟 {x}ᶜ] fun y => slope f x y - f'
[PROOFSTEP]
refine (EqOn.eventuallyEq fun y hy ↦ ?_).filter_mono inf_le_right
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L✝ L₁ L₂ : Filter 𝕜
x : 𝕜
L : Filter 𝕜
y : 𝕜
hy : y ∈ {x}ᶜ
⊢ slope f x y - (y - x)⁻¹ • (y - x) • f' = slope f x y - f'
[PROOFSTEP]
rw [inv_smul_smul₀ (sub_ne_zero.2 hy) f']
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L✝ L₁ L₂ : Filter 𝕜
x : 𝕜
L : Filter 𝕜
⊢ Tendsto (fun y => slope f x y - f') (L ⊓ 𝓟 {x}ᶜ) (𝓝 0) ↔ Tendsto (slope f x) (L ⊓ 𝓟 {x}ᶜ) (𝓝 f')
[PROOFSTEP]
rw [← nhds_translation_sub f', tendsto_comap_iff]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L✝ L₁ L₂ : Filter 𝕜
x : 𝕜
L : Filter 𝕜
⊢ Tendsto (fun y => slope f x y - f') (L ⊓ 𝓟 {x}ᶜ) (𝓝 0) ↔ Tendsto ((fun x => x - f') ∘ slope f x) (L ⊓ 𝓟 {x}ᶜ) (𝓝 0)
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
⊢ HasDerivWithinAt f f' s x ↔ Tendsto (slope f x) (𝓝[s \ {x}] x) (𝓝 f')
[PROOFSTEP]
simp only [HasDerivWithinAt, nhdsWithin, diff_eq, inf_assoc.symm, inf_principal.symm]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
⊢ HasDerivAtFilter f f' x (𝓝 x ⊓ 𝓟 s) ↔ Tendsto (slope f x) (𝓝 x ⊓ 𝓟 s ⊓ 𝓟 {x}ᶜ) (𝓝 f')
[PROOFSTEP]
exact hasDerivAtFilter_iff_tendsto_slope
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : ¬x ∈ s
⊢ HasDerivWithinAt f f' s x ↔ Tendsto (slope f x) (𝓝[s] x) (𝓝 f')
[PROOFSTEP]
rw [hasDerivWithinAt_iff_tendsto_slope, diff_singleton_eq_self hs]
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
⊢ ∀ᶠ (z : ℝ) in 𝓝[s] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r
[PROOFSTEP]
have hr₀ : 0 < r := lt_of_le_of_lt (norm_nonneg f') hr
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
⊢ ∀ᶠ (z : ℝ) in 𝓝[s] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r
[PROOFSTEP]
have A : ∀ᶠ z in 𝓝[s \ { x }] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r :=
(hasDerivWithinAt_iff_tendsto_slope.1 hf).norm (IsOpen.mem_nhds isOpen_Iio hr)
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
A : ∀ᶠ (z : ℝ) in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
⊢ ∀ᶠ (z : ℝ) in 𝓝[s] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r
[PROOFSTEP]
have B : ∀ᶠ z in 𝓝[{ x }] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r :=
mem_of_superset self_mem_nhdsWithin (singleton_subset_iff.2 <| by simp [hr₀])
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
A : ∀ᶠ (z : ℝ) in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
⊢ x ∈ {x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1}
[PROOFSTEP]
simp [hr₀]
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
A : ∀ᶠ (z : ℝ) in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
B : ∀ᶠ (z : ℝ) in 𝓝[{x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
⊢ ∀ᶠ (z : ℝ) in 𝓝[s] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r
[PROOFSTEP]
have C := mem_sup.2 ⟨A, B⟩
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
A : ∀ᶠ (z : ℝ) in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
B : ∀ᶠ (z : ℝ) in 𝓝[{x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
C : {x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1} ∈ 𝓝[s \ {x}] x ⊔ 𝓝[{x}] x
⊢ ∀ᶠ (z : ℝ) in 𝓝[s] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r
[PROOFSTEP]
rw [← nhdsWithin_union, diff_union_self, nhdsWithin_union, mem_sup] at C
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
A : ∀ᶠ (z : ℝ) in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
B : ∀ᶠ (z : ℝ) in 𝓝[{x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
C :
{x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1} ∈ 𝓝[s] x ∧
{x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1} ∈ 𝓝[{x}] x
⊢ ∀ᶠ (z : ℝ) in 𝓝[s] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r
[PROOFSTEP]
filter_upwards [C.1]
[GOAL]
case h
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
A : ∀ᶠ (z : ℝ) in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
B : ∀ᶠ (z : ℝ) in 𝓝[{x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
C :
{x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1} ∈ 𝓝[s] x ∧
{x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1} ∈ 𝓝[{x}] x
⊢ ∀ (a : ℝ), ‖(a - x)⁻¹ • (f a - f x)‖ ∈ Iio r → ‖a - x‖⁻¹ * ‖f a - f x‖ < r
[PROOFSTEP]
simp only [norm_smul, mem_Iio, norm_inv]
[GOAL]
case h
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
hr₀ : 0 < r
A : ∀ᶠ (z : ℝ) in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
B : ∀ᶠ (z : ℝ) in 𝓝[{x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r
C :
{x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1} ∈ 𝓝[s] x ∧
{x_1 | (fun z => ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r) x_1} ∈ 𝓝[{x}] x
⊢ ∀ (a : ℝ), ‖a - x‖⁻¹ * ‖f a - f x‖ < r → ‖a - x‖⁻¹ * ‖f a - f x‖ < r
[PROOFSTEP]
exact fun _ => id
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
⊢ ∀ᶠ (z : ℝ) in 𝓝[s] x, ‖z - x‖⁻¹ * (‖f z‖ - ‖f x‖) < r
[PROOFSTEP]
apply (hf.limsup_norm_slope_le hr).mono
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
⊢ ∀ (x_1 : ℝ), ‖x_1 - x‖⁻¹ * ‖f x_1 - f x‖ < r → ‖x_1 - x‖⁻¹ * (‖f x_1‖ - ‖f x‖) < r
[PROOFSTEP]
intro z hz
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
z : ℝ
hz : ‖z - x‖⁻¹ * ‖f z - f x‖ < r
⊢ ‖z - x‖⁻¹ * (‖f z‖ - ‖f x‖) < r
[PROOFSTEP]
refine' lt_of_le_of_lt (mul_le_mul_of_nonneg_left (norm_sub_norm_le _ _) _) hz
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' s x
hr : ‖f'‖ < r
z : ℝ
hz : ‖z - x‖⁻¹ * ‖f z - f x‖ < r
⊢ 0 ≤ ‖z - x‖⁻¹
[PROOFSTEP]
exact inv_nonneg.2 (norm_nonneg _)
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' (Ici x) x
hr : ‖f'‖ < r
⊢ ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, (z - x)⁻¹ * (‖f z‖ - ‖f x‖) < r
[PROOFSTEP]
have := (hf.Ioi_of_Ici.limsup_slope_norm_le hr).frequently
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' (Ici x) x
hr : ‖f'‖ < r
this : ∃ᶠ (x_1 : ℝ) in 𝓝[Ioi x] x, ‖x_1 - x‖⁻¹ * (‖f x_1‖ - ‖f x‖) < r
⊢ ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, (z - x)⁻¹ * (‖f z‖ - ‖f x‖) < r
[PROOFSTEP]
refine this.mp (Eventually.mono self_mem_nhdsWithin fun z hxz hz ↦ ?_)
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
f' : E
s : Set ℝ
x r : ℝ
hf : HasDerivWithinAt f f' (Ici x) x
hr : ‖f'‖ < r
this : ∃ᶠ (x_1 : ℝ) in 𝓝[Ioi x] x, ‖x_1 - x‖⁻¹ * (‖f x_1‖ - ‖f x‖) < r
z : ℝ
hxz : x < z
hz : ‖z - x‖⁻¹ * (‖f z‖ - ‖f x‖) < r
⊢ (z - x)⁻¹ * (‖f z‖ - ‖f x‖) < r
[PROOFSTEP]
rwa [Real.norm_eq_abs, abs_of_pos (sub_pos_of_lt hxz)] at hz
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Slope", "llama_tokens": 5887} |
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 →ᵃ[𝕜] E
a b : E
L : Filter 𝕜
s : Set 𝕜
x : 𝕜
⊢ HasStrictDerivAt (↑f) (↑f.linear 1) x
[PROOFSTEP]
rw [f.decomp]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 →ᵃ[𝕜] E
a b : E
L : Filter 𝕜
s : Set 𝕜
x : 𝕜
⊢ HasStrictDerivAt (↑f.linear + fun x => ↑f 0) (↑f.linear 1) x
[PROOFSTEP]
exact f.linear.hasStrictDerivAt.add_const (f 0)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 →ᵃ[𝕜] E
a b : E
L : Filter 𝕜
s : Set 𝕜
x : 𝕜
⊢ HasDerivAtFilter (↑f) (↑f.linear 1) x L
[PROOFSTEP]
rw [f.decomp]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 →ᵃ[𝕜] E
a b : E
L : Filter 𝕜
s : Set 𝕜
x : 𝕜
⊢ HasDerivAtFilter (↑f.linear + fun x => ↑f 0) (↑f.linear 1) x L
[PROOFSTEP]
exact f.linear.hasDerivAtFilter.add_const (f 0)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 →ᵃ[𝕜] E
a b : E
L : Filter 𝕜
s : Set 𝕜
x : 𝕜
⊢ HasStrictDerivAt (↑(lineMap a b)) (b - a) x
[PROOFSTEP]
simpa using (lineMap a b : 𝕜 →ᵃ[𝕜] E).hasStrictDerivAt
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.AffineMap", "llama_tokens": 729} |
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
⊢ Tendsto (fun y => (f (y + c * (y - x) ^ 2) - d) / (y - x)) l (𝓝 a)
[PROOFSTEP]
have L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1) :=
by
have : Tendsto (fun y => 1 + c * (y - x)) l (𝓝 (1 + c * (x - x))) :=
by
apply Tendsto.mono_left _ (hl.trans nhdsWithin_le_nhds)
exact ((tendsto_id.sub_const x).const_mul c).const_add 1
simp only [_root_.sub_self, add_zero, mul_zero] at this
apply Tendsto.congr' (Eventually.filter_mono hl _) this
filter_upwards [self_mem_nhdsWithin] with y hy
field_simp [sub_ne_zero.2 hy]
ring
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
⊢ Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
[PROOFSTEP]
have : Tendsto (fun y => 1 + c * (y - x)) l (𝓝 (1 + c * (x - x))) :=
by
apply Tendsto.mono_left _ (hl.trans nhdsWithin_le_nhds)
exact ((tendsto_id.sub_const x).const_mul c).const_add 1
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
⊢ Tendsto (fun y => 1 + c * (y - x)) l (𝓝 (1 + c * (x - x)))
[PROOFSTEP]
apply Tendsto.mono_left _ (hl.trans nhdsWithin_le_nhds)
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
⊢ Tendsto (fun y => 1 + c * (y - x)) (𝓝 x) (𝓝 (1 + c * (x - x)))
[PROOFSTEP]
exact ((tendsto_id.sub_const x).const_mul c).const_add 1
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
this : Tendsto (fun y => 1 + c * (y - x)) l (𝓝 (1 + c * (x - x)))
⊢ Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
[PROOFSTEP]
simp only [_root_.sub_self, add_zero, mul_zero] at this
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
this : Tendsto (fun y => 1 + c * (y - x)) l (𝓝 1)
⊢ Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
[PROOFSTEP]
apply Tendsto.congr' (Eventually.filter_mono hl _) this
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
this : Tendsto (fun y => 1 + c * (y - x)) l (𝓝 1)
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[{x}ᶜ] x, 1 + c * (x_1 - x) = (x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin] with y hy
[GOAL]
case h
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
this : Tendsto (fun y => 1 + c * (y - x)) l (𝓝 1)
y : ℝ
hy : y ∈ {x}ᶜ
⊢ 1 + c * (y - x) = (y + c * (y - x) ^ 2 - x) / (y - x)
[PROOFSTEP]
field_simp [sub_ne_zero.2 hy]
[GOAL]
case h
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
this : Tendsto (fun y => 1 + c * (y - x)) l (𝓝 1)
y : ℝ
hy : y ∈ {x}ᶜ
⊢ (1 + c * (y - x)) * (y - x) = y + c * (y - x) ^ 2 - x
[PROOFSTEP]
ring
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
⊢ Tendsto (fun y => (f (y + c * (y - x) ^ 2) - d) / (y - x)) l (𝓝 a)
[PROOFSTEP]
have Z := (hf.comp h').mul L
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
Z :
Tendsto
(fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 * ((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x)))
l (𝓝 (a * 1))
⊢ Tendsto (fun y => (f (y + c * (y - x) ^ 2) - d) / (y - x)) l (𝓝 a)
[PROOFSTEP]
rw [mul_one] at Z
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
Z :
Tendsto
(fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 * ((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x)))
l (𝓝 a)
⊢ Tendsto (fun y => (f (y + c * (y - x) ^ 2) - d) / (y - x)) l (𝓝 a)
[PROOFSTEP]
apply Tendsto.congr' _ Z
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
Z :
Tendsto
(fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 * ((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x)))
l (𝓝 a)
⊢ (fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 *
((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x))) =ᶠ[l]
fun y => (f (y + c * (y - x) ^ 2) - d) / (y - x)
[PROOFSTEP]
have : ∀ᶠ y in l, y + c * (y - x) ^ 2 ≠ x := by apply Tendsto.mono_right h' hl self_mem_nhdsWithin
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
Z :
Tendsto
(fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 * ((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x)))
l (𝓝 a)
⊢ ∀ᶠ (y : ℝ) in l, y + c * (y - x) ^ 2 ≠ x
[PROOFSTEP]
apply Tendsto.mono_right h' hl self_mem_nhdsWithin
[GOAL]
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
Z :
Tendsto
(fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 * ((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x)))
l (𝓝 a)
this : ∀ᶠ (y : ℝ) in l, y + c * (y - x) ^ 2 ≠ x
⊢ (fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 *
((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x))) =ᶠ[l]
fun y => (f (y + c * (y - x) ^ 2) - d) / (y - x)
[PROOFSTEP]
filter_upwards [this] with y hy
[GOAL]
case h
f : ℝ → ℝ
x a c d : ℝ
l : Filter ℝ
hl : l ≤ 𝓝[{x}ᶜ] x
hf : Tendsto (fun y => (f y - d) / (y - x)) l (𝓝 a)
h' : Tendsto (fun y => y + c * (y - x) ^ 2) l l
L : Tendsto (fun y => (y + c * (y - x) ^ 2 - x) / (y - x)) l (𝓝 1)
Z :
Tendsto
(fun x_1 =>
((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) x_1 * ((x_1 + c * (x_1 - x) ^ 2 - x) / (x_1 - x)))
l (𝓝 a)
this : ∀ᶠ (y : ℝ) in l, y + c * (y - x) ^ 2 ≠ x
y : ℝ
hy : y + c * (y - x) ^ 2 ≠ x
⊢ ((fun y => (f y - d) / (y - x)) ∘ fun y => y + c * (y - x) ^ 2) y * ((y + c * (y - x) ^ 2 - x) / (y - x)) =
(f (y + c * (y - x) ^ 2) - d) / (y - x)
[PROOFSTEP]
field_simp [sub_ne_zero.2 hy]
[GOAL]
f : StieltjesFunction
⊢ ∀ᵐ (x : ℝ), HasDerivAt (↑f) (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)) x
[PROOFSTEP]
filter_upwards [VitaliFamily.ae_tendsto_rnDeriv (vitaliFamily (volume : Measure ℝ) 1) f.measure,
rnDeriv_lt_top f.measure volume, f.countable_leftLim_ne.ae_not_mem volume] with x hx h'x h''x
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
⊢ HasDerivAt (↑f) (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)) x
[PROOFSTEP]
have L1 : Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[>] x) (𝓝 (rnDeriv f.measure volume x).toReal) :=
by
apply Tendsto.congr' _ ((ENNReal.tendsto_toReal h'x.ne).comp (hx.comp (Real.tendsto_Icc_vitaliFamily_right x)))
filter_upwards [self_mem_nhdsWithin]
rintro y (hxy : x < y)
simp only [comp_apply, StieltjesFunction.measure_Icc, Real.volume_Icc, Classical.not_not.1 h''x]
rw [← ENNReal.ofReal_div_of_pos (sub_pos.2 hxy), ENNReal.toReal_ofReal]
exact div_nonneg (sub_nonneg.2 (f.mono hxy.le)) (sub_pos.2 hxy).le
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
⊢ Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
[PROOFSTEP]
apply Tendsto.congr' _ ((ENNReal.tendsto_toReal h'x.ne).comp (hx.comp (Real.tendsto_Icc_vitaliFamily_right x)))
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
⊢ (ENNReal.toReal ∘ (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) ∘ fun y => Icc x y) =ᶠ[𝓝[Ioi x] x]
fun y => (↑f y - ↑f x) / (y - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
⊢ ∀ (a : ℝ),
a ∈ Ioi x →
(ENNReal.toReal ∘ (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) ∘ fun y => Icc x y) a =
(↑f a - ↑f x) / (a - x)
[PROOFSTEP]
rintro y (hxy : x < y)
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
y : ℝ
hxy : x < y
⊢ (ENNReal.toReal ∘ (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) ∘ fun y => Icc x y) y =
(↑f y - ↑f x) / (y - x)
[PROOFSTEP]
simp only [comp_apply, StieltjesFunction.measure_Icc, Real.volume_Icc, Classical.not_not.1 h''x]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
y : ℝ
hxy : x < y
⊢ ENNReal.toReal (ENNReal.ofReal (↑f y - ↑f x) / ENNReal.ofReal (y - x)) = (↑f y - ↑f x) / (y - x)
[PROOFSTEP]
rw [← ENNReal.ofReal_div_of_pos (sub_pos.2 hxy), ENNReal.toReal_ofReal]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
y : ℝ
hxy : x < y
⊢ 0 ≤ (↑f y - ↑f x) / (y - x)
[PROOFSTEP]
exact div_nonneg (sub_nonneg.2 (f.mono hxy.le)) (sub_pos.2 hxy).le
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ HasDerivAt (↑f) (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)) x
[PROOFSTEP]
have L2 : Tendsto (fun y => (leftLim f y - f x) / (y - x)) (𝓝[<] x) (𝓝 (rnDeriv f.measure volume x).toReal) :=
by
apply Tendsto.congr' _ ((ENNReal.tendsto_toReal h'x.ne).comp (hx.comp (Real.tendsto_Icc_vitaliFamily_left x)))
filter_upwards [self_mem_nhdsWithin]
rintro y (hxy : y < x)
simp only [comp_apply, StieltjesFunction.measure_Icc, Real.volume_Icc]
rw [← ENNReal.ofReal_div_of_pos (sub_pos.2 hxy), ENNReal.toReal_ofReal, ← neg_neg (y - x), div_neg, neg_div', neg_sub,
neg_sub]
exact div_nonneg (sub_nonneg.2 (f.mono.leftLim_le hxy.le)) (sub_pos.2 hxy).le
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
[PROOFSTEP]
apply Tendsto.congr' _ ((ENNReal.tendsto_toReal h'x.ne).comp (hx.comp (Real.tendsto_Icc_vitaliFamily_left x)))
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ (ENNReal.toReal ∘ (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) ∘ fun y => Icc y x) =ᶠ[𝓝[Iio x] x]
fun y => (leftLim (↑f) y - ↑f x) / (y - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ ∀ (a : ℝ),
a ∈ Iio x →
(ENNReal.toReal ∘ (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) ∘ fun y => Icc y x) a =
(leftLim (↑f) a - ↑f x) / (a - x)
[PROOFSTEP]
rintro y (hxy : y < x)
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hxy : y < x
⊢ (ENNReal.toReal ∘ (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) ∘ fun y => Icc y x) y =
(leftLim (↑f) y - ↑f x) / (y - x)
[PROOFSTEP]
simp only [comp_apply, StieltjesFunction.measure_Icc, Real.volume_Icc]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hxy : y < x
⊢ ENNReal.toReal (ENNReal.ofReal (↑f x - leftLim (↑f) y) / ENNReal.ofReal (x - y)) = (leftLim (↑f) y - ↑f x) / (y - x)
[PROOFSTEP]
rw [← ENNReal.ofReal_div_of_pos (sub_pos.2 hxy), ENNReal.toReal_ofReal, ← neg_neg (y - x), div_neg, neg_div', neg_sub,
neg_sub]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hxy : y < x
⊢ 0 ≤ (↑f x - leftLim (↑f) y) / (x - y)
[PROOFSTEP]
exact div_nonneg (sub_nonneg.2 (f.mono.leftLim_le hxy.le)) (sub_pos.2 hxy).le
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ HasDerivAt (↑f) (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)) x
[PROOFSTEP]
have L3 :
Tendsto (fun y => (leftLim f (y + 1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[<] x)
(𝓝 (rnDeriv f.measure volume x).toReal) :=
by
apply tendsto_apply_add_mul_sq_div_sub (nhds_left'_le_nhds_ne x) L2
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
· apply Tendsto.mono_left _ nhdsWithin_le_nhds
have : Tendsto (fun y : ℝ => y + ↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + ↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul ↑1)
simpa using this
· have : Ioo (x - 1) x ∈ 𝓝[<] x := by apply Ioo_mem_nhdsWithin_Iio; exact ⟨by linarith, le_refl _⟩
filter_upwards [this]
rintro y ⟨hy : x - 1 < y, h'y : y < x⟩
rw [mem_Iio]
norm_num;
nlinarith
-- Deduce the correct limit on the left, by sandwiching.
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
[PROOFSTEP]
apply tendsto_apply_add_mul_sq_div_sub (nhds_left'_le_nhds_ne x) L2
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Tendsto (fun y => y + ↑1 * (y - x) ^ 2) (𝓝[Iio x] x) (𝓝[Iio x] x)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
[GOAL]
case h1
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Tendsto (fun y => y + ↑1 * (y - x) ^ 2) (𝓝[Iio x] x) (𝓝 x)
[PROOFSTEP]
apply Tendsto.mono_left _ nhdsWithin_le_nhds
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Tendsto (fun y => y + ↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 x)
[PROOFSTEP]
have : Tendsto (fun y : ℝ => y + ↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + ↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul ↑1)
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
this : Tendsto (fun y => y + 1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + 1 * (x - x) ^ 2))
⊢ Tendsto (fun y => y + ↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 x)
[PROOFSTEP]
simpa using this
[GOAL]
case h2
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Iio x] x, x_1 + ↑1 * (x_1 - x) ^ 2 ∈ Iio x
[PROOFSTEP]
have : Ioo (x - 1) x ∈ 𝓝[<] x := by apply Ioo_mem_nhdsWithin_Iio; exact ⟨by linarith, le_refl _⟩
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Ioo (x - 1) x ∈ 𝓝[Iio x] x
[PROOFSTEP]
apply Ioo_mem_nhdsWithin_Iio
[GOAL]
case H
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ x ∈ Ioc (x - 1) x
[PROOFSTEP]
exact ⟨by linarith, le_refl _⟩
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ x - 1 < x
[PROOFSTEP]
linarith
[GOAL]
case h2
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Iio x] x, x_1 + ↑1 * (x_1 - x) ^ 2 ∈ Iio x
[PROOFSTEP]
filter_upwards [this]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
⊢ ∀ (a : ℝ), a ∈ Ioo (x - 1) x → a + ↑1 * (a - x) ^ 2 ∈ Iio x
[PROOFSTEP]
rintro y ⟨hy : x - 1 < y, h'y : y < x⟩
[GOAL]
case h.intro
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
y : ℝ
hy : x - 1 < y
h'y : y < x
⊢ y + ↑1 * (y - x) ^ 2 ∈ Iio x
[PROOFSTEP]
rw [mem_Iio]
[GOAL]
case h.intro
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
y : ℝ
hy : x - 1 < y
h'y : y < x
⊢ y + ↑1 * (y - x) ^ 2 < x
[PROOFSTEP]
norm_num
[GOAL]
case h.intro
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
y : ℝ
hy : x - 1 < y
h'y : y < x
⊢ y + (y - x) ^ 2 < x
[PROOFSTEP]
nlinarith
-- Deduce the correct limit on the left, by sandwiching.
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ HasDerivAt (↑f) (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)) x
[PROOFSTEP]
have L4 : Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[<] x) (𝓝 (rnDeriv f.measure volume x).toReal) :=
by
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' L3 L2
· filter_upwards [self_mem_nhdsWithin]
rintro y (hy : y < x)
refine' div_le_div_of_nonpos_of_le (by linarith) ((sub_le_sub_iff_right _).2 _)
apply f.mono.le_leftLim
have : ↑0 < (x - y) ^ 2 := sq_pos_of_pos (sub_pos.2 hy)
norm_num; linarith
· filter_upwards [self_mem_nhdsWithin]
rintro y (hy : y < x)
refine' div_le_div_of_nonpos_of_le (by linarith) _
simpa only [sub_le_sub_iff_right] using
f.mono.leftLim_le
(le_refl y)
-- prove the result by splitting into left and right limits.
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
[PROOFSTEP]
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' L3 L2
[GOAL]
case hgf
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ ∀ᶠ (b : ℝ) in 𝓝[Iio x] x, (leftLim (↑f) (b + ↑1 * (b - x) ^ 2) - ↑f x) / (b - x) ≤ (↑f b - ↑f x) / (b - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ ∀ (a : ℝ), a ∈ Iio x → (leftLim (↑f) (a + ↑1 * (a - x) ^ 2) - ↑f x) / (a - x) ≤ (↑f a - ↑f x) / (a - x)
[PROOFSTEP]
rintro y (hy : y < x)
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
⊢ (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x) ≤ (↑f y - ↑f x) / (y - x)
[PROOFSTEP]
refine' div_le_div_of_nonpos_of_le (by linarith) ((sub_le_sub_iff_right _).2 _)
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
⊢ y - x ≤ 0
[PROOFSTEP]
linarith
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
⊢ ↑f y ≤ leftLim (↑f) (y + ↑1 * (y - x) ^ 2)
[PROOFSTEP]
apply f.mono.le_leftLim
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
⊢ y < y + ↑1 * (y - x) ^ 2
[PROOFSTEP]
have : ↑0 < (x - y) ^ 2 := sq_pos_of_pos (sub_pos.2 hy)
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
this : 0 < (x - y) ^ 2
⊢ y < y + ↑1 * (y - x) ^ 2
[PROOFSTEP]
norm_num
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
this : 0 < (x - y) ^ 2
⊢ 0 < (y - x) ^ 2
[PROOFSTEP]
linarith
[GOAL]
case hfh
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ ∀ᶠ (b : ℝ) in 𝓝[Iio x] x, (↑f b - ↑f x) / (b - x) ≤ (leftLim (↑f) b - ↑f x) / (b - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ ∀ (a : ℝ), a ∈ Iio x → (↑f a - ↑f x) / (a - x) ≤ (leftLim (↑f) a - ↑f x) / (a - x)
[PROOFSTEP]
rintro y (hy : y < x)
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
⊢ (↑f y - ↑f x) / (y - x) ≤ (leftLim (↑f) y - ↑f x) / (y - x)
[PROOFSTEP]
refine' div_le_div_of_nonpos_of_le (by linarith) _
[GOAL]
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
⊢ y - x ≤ 0
[PROOFSTEP]
linarith
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
y : ℝ
hy : y < x
⊢ leftLim (↑f) y - ↑f x ≤ ↑f y - ↑f x
[PROOFSTEP]
simpa only [sub_le_sub_iff_right] using
f.mono.leftLim_le
(le_refl y)
-- prove the result by splitting into left and right limits.
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L4 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ HasDerivAt (↑f) (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)) x
[PROOFSTEP]
rw [hasDerivAt_iff_tendsto_slope, slope_fun_def_field, ← nhds_left'_sup_nhds_right', tendsto_sup]
[GOAL]
case h
f : StieltjesFunction
x : ℝ
hx :
Tendsto (fun a => ↑↑(StieltjesFunction.measure f) a / ↑↑volume a) (VitaliFamily.filterAt (vitaliFamily volume 1) x)
(𝓝 (rnDeriv (StieltjesFunction.measure f) volume x))
h'x : rnDeriv (StieltjesFunction.measure f) volume x < ⊤
h''x : ¬leftLim (↑f) x ≠ ↑f x
L1 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L2 :
Tendsto (fun y => (leftLim (↑f) y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L3 :
Tendsto (fun y => (leftLim (↑f) (y + ↑1 * (y - x) ^ 2) - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
L4 :
Tendsto (fun y => (↑f y - ↑f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
⊢ Tendsto (fun b => (↑f b - ↑f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x))) ∧
Tendsto (fun b => (↑f b - ↑f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure f) volume x)))
[PROOFSTEP]
exact ⟨L4, L1⟩
[GOAL]
f : ℝ → ℝ
hf : Monotone f
⊢ ∀ᵐ (x : ℝ), HasDerivAt f (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
[PROOFSTEP]
filter_upwards [hf.stieltjesFunction.ae_hasDerivAt, hf.countable_not_continuousAt.ae_not_mem volume] with x hx h'x
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
HasDerivAt (↑(stieltjesFunction hf))
(ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
h'x : ¬¬ContinuousAt f x
⊢ HasDerivAt f (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
[PROOFSTEP]
have A : hf.stieltjesFunction x = f x :=
by
rw [Classical.not_not, hf.continuousAt_iff_leftLim_eq_rightLim] at h'x
apply le_antisymm _ (hf.le_rightLim (le_refl _))
rw [← h'x]
exact hf.leftLim_le (le_refl _)
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
HasDerivAt (↑(stieltjesFunction hf))
(ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
h'x : ¬¬ContinuousAt f x
⊢ ↑(stieltjesFunction hf) x = f x
[PROOFSTEP]
rw [Classical.not_not, hf.continuousAt_iff_leftLim_eq_rightLim] at h'x
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
HasDerivAt (↑(stieltjesFunction hf))
(ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
h'x : leftLim f x = rightLim f x
⊢ ↑(stieltjesFunction hf) x = f x
[PROOFSTEP]
apply le_antisymm _ (hf.le_rightLim (le_refl _))
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
HasDerivAt (↑(stieltjesFunction hf))
(ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
h'x : leftLim f x = rightLim f x
⊢ rightLim f x ≤ f x
[PROOFSTEP]
rw [← h'x]
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
HasDerivAt (↑(stieltjesFunction hf))
(ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
h'x : leftLim f x = rightLim f x
⊢ leftLim f x ≤ f x
[PROOFSTEP]
exact hf.leftLim_le (le_refl _)
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
HasDerivAt (↑(stieltjesFunction hf))
(ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ HasDerivAt f (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
[PROOFSTEP]
rw [hasDerivAt_iff_tendsto_slope, (nhds_left'_sup_nhds_right' x).symm, tendsto_sup, slope_fun_def_field, A] at hx
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ HasDerivAt f (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
[PROOFSTEP]
have L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[>] x) (𝓝 (rnDeriv hf.stieltjesFunction.measure volume x).toReal) := by
-- limit of a helper function, with a small shift compared to `g`
have :
Tendsto (fun y => (hf.stieltjesFunction (y + -1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[>] x)
(𝓝 (rnDeriv hf.stieltjesFunction.measure volume x).toReal) :=
by
apply tendsto_apply_add_mul_sq_div_sub (nhds_right'_le_nhds_ne x) hx.2
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
· apply Tendsto.mono_left _ nhdsWithin_le_nhds
have : Tendsto (fun y : ℝ => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul (-1))
simpa using this
· have : Ioo x (x + 1) ∈ 𝓝[>] x := by apply Ioo_mem_nhdsWithin_Ioi; exact ⟨le_refl _, by linarith⟩
filter_upwards [this]
rintro y ⟨hy : x < y, h'y : y < x + 1⟩
rw [mem_Ioi]
norm_num;
nlinarith
-- apply the sandwiching argument, with the helper function and `g`
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' this hx.2
· filter_upwards [self_mem_nhdsWithin]
rintro y (hy : x < y)
have : ↑0 < (y - x) ^ 2 := sq_pos_of_pos (sub_pos.2 hy)
apply div_le_div_of_le_of_nonneg _ (sub_pos.2 hy).le
exact (sub_le_sub_iff_right _).2 (hf.rightLim_le (by norm_num; linarith))
· filter_upwards [self_mem_nhdsWithin]
rintro y (hy : x < y)
apply div_le_div_of_le_of_nonneg _ (sub_pos.2 hy).le
exact
(sub_le_sub_iff_right _).2
(hf.le_rightLim (le_refl y))
-- prove differentiability on the left, by sandwiching with values of `g`
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
[PROOFSTEP]
have :
Tendsto (fun y => (hf.stieltjesFunction (y + -1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[>] x)
(𝓝 (rnDeriv hf.stieltjesFunction.measure volume x).toReal) :=
by
apply tendsto_apply_add_mul_sq_div_sub (nhds_right'_le_nhds_ne x) hx.2
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
· apply Tendsto.mono_left _ nhdsWithin_le_nhds
have : Tendsto (fun y : ℝ => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul (-1))
simpa using this
· have : Ioo x (x + 1) ∈ 𝓝[>] x := by apply Ioo_mem_nhdsWithin_Ioi; exact ⟨le_refl _, by linarith⟩
filter_upwards [this]
rintro y ⟨hy : x < y, h'y : y < x + 1⟩
rw [mem_Ioi]
norm_num;
nlinarith
-- apply the sandwiching argument, with the helper function and `g`
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
[PROOFSTEP]
apply tendsto_apply_add_mul_sq_div_sub (nhds_right'_le_nhds_ne x) hx.2
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝[Ioi x] x) (𝓝[Ioi x] x)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
[GOAL]
case h1
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝[Ioi x] x) (𝓝 x)
[PROOFSTEP]
apply Tendsto.mono_left _ nhdsWithin_le_nhds
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 x)
[PROOFSTEP]
have : Tendsto (fun y : ℝ => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul (-1))
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this : Tendsto (fun y => y + -1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -1 * (x - x) ^ 2))
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 x)
[PROOFSTEP]
simpa using this
[GOAL]
case h2
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ioi x] x, x_1 + -↑1 * (x_1 - x) ^ 2 ∈ Ioi x
[PROOFSTEP]
have : Ioo x (x + 1) ∈ 𝓝[>] x := by apply Ioo_mem_nhdsWithin_Ioi; exact ⟨le_refl _, by linarith⟩
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ Ioo x (x + 1) ∈ 𝓝[Ioi x] x
[PROOFSTEP]
apply Ioo_mem_nhdsWithin_Ioi
[GOAL]
case H
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ x ∈ Ico x (x + 1)
[PROOFSTEP]
exact ⟨le_refl _, by linarith⟩
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
⊢ x < x + 1
[PROOFSTEP]
linarith
[GOAL]
case h2
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this : Ioo x (x + 1) ∈ 𝓝[Ioi x] x
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ioi x] x, x_1 + -↑1 * (x_1 - x) ^ 2 ∈ Ioi x
[PROOFSTEP]
filter_upwards [this]
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this : Ioo x (x + 1) ∈ 𝓝[Ioi x] x
⊢ ∀ (a : ℝ), a ∈ Ioo x (x + 1) → a + -↑1 * (a - x) ^ 2 ∈ Ioi x
[PROOFSTEP]
rintro y ⟨hy : x < y, h'y : y < x + 1⟩
[GOAL]
case h.intro
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this : Ioo x (x + 1) ∈ 𝓝[Ioi x] x
y : ℝ
hy : x < y
h'y : y < x + 1
⊢ y + -↑1 * (y - x) ^ 2 ∈ Ioi x
[PROOFSTEP]
rw [mem_Ioi]
[GOAL]
case h.intro
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this : Ioo x (x + 1) ∈ 𝓝[Ioi x] x
y : ℝ
hy : x < y
h'y : y < x + 1
⊢ x < y + -↑1 * (y - x) ^ 2
[PROOFSTEP]
norm_num
[GOAL]
case h.intro
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this : Ioo x (x + 1) ∈ 𝓝[Ioi x] x
y : ℝ
hy : x < y
h'y : y < x + 1
⊢ x + (y - x) ^ 2 < y
[PROOFSTEP]
nlinarith
-- apply the sandwiching argument, with the helper function and `g`
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
[PROOFSTEP]
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' this hx.2
[GOAL]
case hgf
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioi x] x, (↑(stieltjesFunction hf) (b + -↑1 * (b - x) ^ 2) - f x) / (b - x) ≤ (f b - f x) / (b - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ (a : ℝ), a ∈ Ioi x → (↑(stieltjesFunction hf) (a + -↑1 * (a - x) ^ 2) - f x) / (a - x) ≤ (f a - f x) / (a - x)
[PROOFSTEP]
rintro y (hy : x < y)
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : x < y
⊢ (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x) ≤ (f y - f x) / (y - x)
[PROOFSTEP]
have : ↑0 < (y - x) ^ 2 := sq_pos_of_pos (sub_pos.2 hy)
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : x < y
this : 0 < (y - x) ^ 2
⊢ (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x) ≤ (f y - f x) / (y - x)
[PROOFSTEP]
apply div_le_div_of_le_of_nonneg _ (sub_pos.2 hy).le
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : x < y
this : 0 < (y - x) ^ 2
⊢ ↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x ≤ f y - f x
[PROOFSTEP]
exact (sub_le_sub_iff_right _).2 (hf.rightLim_le (by norm_num; linarith))
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : x < y
this : 0 < (y - x) ^ 2
⊢ y + -↑1 * (y - x) ^ 2 < y
[PROOFSTEP]
norm_num
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : x < y
this : 0 < (y - x) ^ 2
⊢ 0 < (y - x) ^ 2
[PROOFSTEP]
linarith
[GOAL]
case hfh
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioi x] x, (f b - f x) / (b - x) ≤ (↑(stieltjesFunction hf) b - f x) / (b - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ (a : ℝ), a ∈ Ioi x → (f a - f x) / (a - x) ≤ (↑(stieltjesFunction hf) a - f x) / (a - x)
[PROOFSTEP]
rintro y (hy : x < y)
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : x < y
⊢ (f y - f x) / (y - x) ≤ (↑(stieltjesFunction hf) y - f x) / (y - x)
[PROOFSTEP]
apply div_le_div_of_le_of_nonneg _ (sub_pos.2 hy).le
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : x < y
⊢ f y - f x ≤ ↑(stieltjesFunction hf) y - f x
[PROOFSTEP]
exact
(sub_le_sub_iff_right _).2
(hf.le_rightLim (le_refl y))
-- prove differentiability on the left, by sandwiching with values of `g`
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ HasDerivAt f (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
[PROOFSTEP]
have L2 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[<] x) (𝓝 (rnDeriv hf.stieltjesFunction.measure volume x).toReal) := by
-- limit of a helper function, with a small shift compared to `g`
have :
Tendsto (fun y => (hf.stieltjesFunction (y + -1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[<] x)
(𝓝 (rnDeriv hf.stieltjesFunction.measure volume x).toReal) :=
by
apply tendsto_apply_add_mul_sq_div_sub (nhds_left'_le_nhds_ne x) hx.1
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
· apply Tendsto.mono_left _ nhdsWithin_le_nhds
have : Tendsto (fun y : ℝ => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul (-1))
simpa using this
· have : Ioo (x - 1) x ∈ 𝓝[<] x := by apply Ioo_mem_nhdsWithin_Iio; exact ⟨by linarith, le_refl _⟩
filter_upwards [this]
rintro y ⟨hy : x - 1 < y, h'y : y < x⟩
rw [mem_Iio]
norm_num;
nlinarith
-- apply the sandwiching argument, with `g` and the helper function
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' hx.1 this
· filter_upwards [self_mem_nhdsWithin]
rintro y (hy : y < x)
apply div_le_div_of_nonpos_of_le (sub_neg.2 hy).le
exact (sub_le_sub_iff_right _).2 (hf.le_rightLim (le_refl _))
· filter_upwards [self_mem_nhdsWithin]
rintro y (hy : y < x)
have : ↑0 < (y - x) ^ 2 := sq_pos_of_neg (sub_neg.2 hy)
apply div_le_div_of_nonpos_of_le (sub_neg.2 hy).le
exact
(sub_le_sub_iff_right _).2
(hf.rightLim_le (by norm_num; linarith))
-- conclude global differentiability
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
[PROOFSTEP]
have :
Tendsto (fun y => (hf.stieltjesFunction (y + -1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[<] x)
(𝓝 (rnDeriv hf.stieltjesFunction.measure volume x).toReal) :=
by
apply tendsto_apply_add_mul_sq_div_sub (nhds_left'_le_nhds_ne x) hx.1
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
· apply Tendsto.mono_left _ nhdsWithin_le_nhds
have : Tendsto (fun y : ℝ => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul (-1))
simpa using this
· have : Ioo (x - 1) x ∈ 𝓝[<] x := by apply Ioo_mem_nhdsWithin_Iio; exact ⟨by linarith, le_refl _⟩
filter_upwards [this]
rintro y ⟨hy : x - 1 < y, h'y : y < x⟩
rw [mem_Iio]
norm_num;
nlinarith
-- apply the sandwiching argument, with `g` and the helper function
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
[PROOFSTEP]
apply tendsto_apply_add_mul_sq_div_sub (nhds_left'_le_nhds_ne x) hx.1
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝[Iio x] x) (𝓝[Iio x] x)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
[GOAL]
case h1
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝[Iio x] x) (𝓝 x)
[PROOFSTEP]
apply Tendsto.mono_left _ nhdsWithin_le_nhds
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 x)
[PROOFSTEP]
have : Tendsto (fun y : ℝ => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -↑1 * (x - x) ^ 2)) :=
tendsto_id.add (((tendsto_id.sub_const x).pow 2).const_mul (-1))
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this : Tendsto (fun y => y + -1 * (y - x) ^ 2) (𝓝 x) (𝓝 (x + -1 * (x - x) ^ 2))
⊢ Tendsto (fun y => y + -↑1 * (y - x) ^ 2) (𝓝 x) (𝓝 x)
[PROOFSTEP]
simpa using this
[GOAL]
case h2
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Iio x] x, x_1 + -↑1 * (x_1 - x) ^ 2 ∈ Iio x
[PROOFSTEP]
have : Ioo (x - 1) x ∈ 𝓝[<] x := by apply Ioo_mem_nhdsWithin_Iio; exact ⟨by linarith, le_refl _⟩
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Ioo (x - 1) x ∈ 𝓝[Iio x] x
[PROOFSTEP]
apply Ioo_mem_nhdsWithin_Iio
[GOAL]
case H
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ x ∈ Ioc (x - 1) x
[PROOFSTEP]
exact ⟨by linarith, le_refl _⟩
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ x - 1 < x
[PROOFSTEP]
linarith
[GOAL]
case h2
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Iio x] x, x_1 + -↑1 * (x_1 - x) ^ 2 ∈ Iio x
[PROOFSTEP]
filter_upwards [this]
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
⊢ ∀ (a : ℝ), a ∈ Ioo (x - 1) x → a + -↑1 * (a - x) ^ 2 ∈ Iio x
[PROOFSTEP]
rintro y ⟨hy : x - 1 < y, h'y : y < x⟩
[GOAL]
case h.intro
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
y : ℝ
hy : x - 1 < y
h'y : y < x
⊢ y + -↑1 * (y - x) ^ 2 ∈ Iio x
[PROOFSTEP]
rw [mem_Iio]
[GOAL]
case h.intro
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
y : ℝ
hy : x - 1 < y
h'y : y < x
⊢ y + -↑1 * (y - x) ^ 2 < x
[PROOFSTEP]
norm_num
[GOAL]
case h.intro
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this : Ioo (x - 1) x ∈ 𝓝[Iio x] x
y : ℝ
hy : x - 1 < y
h'y : y < x
⊢ y < x + (y - x) ^ 2
[PROOFSTEP]
nlinarith
-- apply the sandwiching argument, with `g` and the helper function
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
[PROOFSTEP]
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' hx.1 this
[GOAL]
case hgf
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ᶠ (b : ℝ) in 𝓝[Iio x] x, (↑(stieltjesFunction hf) b - f x) / (b - x) ≤ (f b - f x) / (b - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ (a : ℝ), a ∈ Iio x → (↑(stieltjesFunction hf) a - f x) / (a - x) ≤ (f a - f x) / (a - x)
[PROOFSTEP]
rintro y (hy : y < x)
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : y < x
⊢ (↑(stieltjesFunction hf) y - f x) / (y - x) ≤ (f y - f x) / (y - x)
[PROOFSTEP]
apply div_le_div_of_nonpos_of_le (sub_neg.2 hy).le
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : y < x
⊢ f y - f x ≤ ↑(stieltjesFunction hf) y - f x
[PROOFSTEP]
exact (sub_le_sub_iff_right _).2 (hf.le_rightLim (le_refl _))
[GOAL]
case hfh
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ᶠ (b : ℝ) in 𝓝[Iio x] x, (f b - f x) / (b - x) ≤ (↑(stieltjesFunction hf) (b + -↑1 * (b - x) ^ 2) - f x) / (b - x)
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ ∀ (a : ℝ), a ∈ Iio x → (f a - f x) / (a - x) ≤ (↑(stieltjesFunction hf) (a + -↑1 * (a - x) ^ 2) - f x) / (a - x)
[PROOFSTEP]
rintro y (hy : y < x)
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : y < x
⊢ (f y - f x) / (y - x) ≤ (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)
[PROOFSTEP]
have : ↑0 < (y - x) ^ 2 := sq_pos_of_neg (sub_neg.2 hy)
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : y < x
this : 0 < (y - x) ^ 2
⊢ (f y - f x) / (y - x) ≤ (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)
[PROOFSTEP]
apply div_le_div_of_nonpos_of_le (sub_neg.2 hy).le
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : y < x
this : 0 < (y - x) ^ 2
⊢ ↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x ≤ f y - f x
[PROOFSTEP]
exact
(sub_le_sub_iff_right _).2
(hf.rightLim_le (by norm_num; linarith))
-- conclude global differentiability
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : y < x
this : 0 < (y - x) ^ 2
⊢ y + -↑1 * (y - x) ^ 2 < y
[PROOFSTEP]
norm_num
[GOAL]
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
this✝ :
Tendsto (fun y => (↑(stieltjesFunction hf) (y + -↑1 * (y - x) ^ 2) - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
y : ℝ
hy : y < x
this : 0 < (y - x) ^ 2
⊢ 0 < (y - x) ^ 2
[PROOFSTEP]
linarith
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
L2 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ HasDerivAt f (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)) x
[PROOFSTEP]
rw [hasDerivAt_iff_tendsto_slope, slope_fun_def_field, (nhds_left'_sup_nhds_right' x).symm, tendsto_sup]
[GOAL]
case h
f : ℝ → ℝ
hf : Monotone f
x : ℝ
hx :
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (↑(stieltjesFunction hf) b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
h'x : ¬¬ContinuousAt f x
A : ↑(stieltjesFunction hf) x = f x
L1 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
L2 :
Tendsto (fun y => (f y - f x) / (y - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
⊢ Tendsto (fun b => (f b - f x) / (b - x)) (𝓝[Iio x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x))) ∧
Tendsto (fun b => (f b - f x) / (b - x)) (𝓝[Ioi x] x)
(𝓝 (ENNReal.toReal (rnDeriv (StieltjesFunction.measure (stieltjesFunction hf)) volume x)))
[PROOFSTEP]
exact ⟨L2, L1⟩
[GOAL]
f : ℝ → ℝ
hf : Monotone f
⊢ ∀ᵐ (x : ℝ), DifferentiableAt ℝ f x
[PROOFSTEP]
filter_upwards [hf.ae_hasDerivAt] with x hx using hx.differentiableAt
[GOAL]
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
apply ae_of_mem_of_ae_of_mem_inter_Ioo
[GOAL]
case h
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
⊢ ∀ (a b : ℝ), a ∈ s → b ∈ s → a < b → ∀ᵐ (x : ℝ), x ∈ s ∩ Ioo a b → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
intro a b as bs _
[GOAL]
case h
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
a b : ℝ
as : a ∈ s
bs : b ∈ s
a✝ : a < b
⊢ ∀ᵐ (x : ℝ), x ∈ s ∩ Ioo a b → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
obtain ⟨g, hg, gf⟩ : ∃ g : ℝ → ℝ, Monotone g ∧ EqOn f g (s ∩ Icc a b) :=
(hf.mono (inter_subset_left s (Icc a b))).exists_monotone_extension
(hf.map_bddBelow (inter_subset_left _ _) ⟨a, fun x hx => hx.2.1, as⟩)
(hf.map_bddAbove (inter_subset_left _ _) ⟨b, fun x hx => hx.2.2, bs⟩)
[GOAL]
case h.intro.intro
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
a b : ℝ
as : a ∈ s
bs : b ∈ s
a✝ : a < b
g : ℝ → ℝ
hg : Monotone g
gf : EqOn f g (s ∩ Icc a b)
⊢ ∀ᵐ (x : ℝ), x ∈ s ∩ Ioo a b → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
filter_upwards [hg.ae_differentiableAt] with x hx
[GOAL]
case h
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
a b : ℝ
as : a ∈ s
bs : b ∈ s
a✝ : a < b
g : ℝ → ℝ
hg : Monotone g
gf : EqOn f g (s ∩ Icc a b)
x : ℝ
hx : DifferentiableAt ℝ g x
⊢ x ∈ s ∩ Ioo a b → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
intro h'x
[GOAL]
case h
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
a b : ℝ
as : a ∈ s
bs : b ∈ s
a✝ : a < b
g : ℝ → ℝ
hg : Monotone g
gf : EqOn f g (s ∩ Icc a b)
x : ℝ
hx : DifferentiableAt ℝ g x
h'x : x ∈ s ∩ Ioo a b
⊢ DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
apply hx.differentiableWithinAt.congr_of_eventuallyEq _ (gf ⟨h'x.1, h'x.2.1.le, h'x.2.2.le⟩)
[GOAL]
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
a b : ℝ
as : a ∈ s
bs : b ∈ s
a✝ : a < b
g : ℝ → ℝ
hg : Monotone g
gf : EqOn f g (s ∩ Icc a b)
x : ℝ
hx : DifferentiableAt ℝ g x
h'x : x ∈ s ∩ Ioo a b
⊢ f =ᶠ[𝓝[s] x] g
[PROOFSTEP]
have : Ioo a b ∈ 𝓝[s] x := nhdsWithin_le_nhds (Ioo_mem_nhds h'x.2.1 h'x.2.2)
[GOAL]
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
a b : ℝ
as : a ∈ s
bs : b ∈ s
a✝ : a < b
g : ℝ → ℝ
hg : Monotone g
gf : EqOn f g (s ∩ Icc a b)
x : ℝ
hx : DifferentiableAt ℝ g x
h'x : x ∈ s ∩ Ioo a b
this : Ioo a b ∈ 𝓝[s] x
⊢ f =ᶠ[𝓝[s] x] g
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin, this] with y hy h'y
[GOAL]
case h
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
a b : ℝ
as : a ∈ s
bs : b ∈ s
a✝ : a < b
g : ℝ → ℝ
hg : Monotone g
gf : EqOn f g (s ∩ Icc a b)
x : ℝ
hx : DifferentiableAt ℝ g x
h'x : x ∈ s ∩ Ioo a b
this : Ioo a b ∈ 𝓝[s] x
y : ℝ
hy : y ∈ s
h'y : y ∈ Ioo a b
⊢ f y = g y
[PROOFSTEP]
exact gf ⟨hy, h'y.1.le, h'y.2.le⟩
[GOAL]
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
hs : MeasurableSet s
⊢ ∀ᵐ (x : ℝ) ∂Measure.restrict volume s, DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
rw [ae_restrict_iff' hs]
[GOAL]
f : ℝ → ℝ
s : Set ℝ
hf : MonotoneOn f s
hs : MeasurableSet s
⊢ ∀ᵐ (x : ℝ), x ∈ s → DifferentiableWithinAt ℝ f s x
[PROOFSTEP]
exact hf.ae_differentiableWithinAt_of_mem
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Monotone", "llama_tokens": 48256} |
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
have : ∀ m : ℤ, 0 < m → HasStrictDerivAt (· ^ m) ((m : 𝕜) * x ^ (m - 1)) x := fun m hm ↦
by
lift m to ℕ using hm.le
simp only [zpow_ofNat, Int.cast_ofNat]
convert hasStrictDerivAt_pow m x using 2
rw [← Int.ofNat_one, ← Int.ofNat_sub, zpow_ofNat]
norm_cast at hm
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝¹ m✝ : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m✝
m : ℤ
hm : 0 < m
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
lift m to ℕ using hm.le
[GOAL]
case intro
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝¹ m✝ : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m✝
m : ℕ
hm : 0 < ↑m
⊢ HasStrictDerivAt (fun x => x ^ ↑m) (↑↑m * x ^ (↑m - 1)) x
[PROOFSTEP]
simp only [zpow_ofNat, Int.cast_ofNat]
[GOAL]
case intro
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝¹ m✝ : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m✝
m : ℕ
hm : 0 < ↑m
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (↑m - 1)) x
[PROOFSTEP]
convert hasStrictDerivAt_pow m x using 2
[GOAL]
case h.e'_7.h.e'_6
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝¹ m✝ : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m✝
m : ℕ
hm : 0 < ↑m
⊢ x ^ (↑m - 1) = x ^ (m - 1)
[PROOFSTEP]
rw [← Int.ofNat_one, ← Int.ofNat_sub, zpow_ofNat]
[GOAL]
case h.e'_7.h.e'_6
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝¹ m✝ : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m✝
m : ℕ
hm : 0 < ↑m
⊢ 1 ≤ m
[PROOFSTEP]
norm_cast at hm
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
rcases lt_trichotomy m 0 with (hm | hm | hm)
[GOAL]
case inl
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
have hx : x ≠ 0 := h.resolve_right hm.not_le
[GOAL]
case inl
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
have := (hasStrictDerivAt_inv ?_).scomp _ (this (-m) (neg_pos.2 hm)) <;> [skip; exact zpow_ne_zero_of_ne_zero hx _]
[GOAL]
case inl
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
have := (hasStrictDerivAt_inv ?_).scomp _ (this (-m) (neg_pos.2 hm))
[GOAL]
case inl.refine_2
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
this : HasStrictDerivAt (Inv.inv ∘ fun x => x ^ (-m)) ((↑(-m) * x ^ (-m - 1)) • -((x ^ (-m)) ^ 2)⁻¹) x
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
skip
[GOAL]
case inl.refine_1
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
⊢ x ^ (-m) ≠ 0
[PROOFSTEP]
exact zpow_ne_zero_of_ne_zero hx _
[GOAL]
case inl.refine_2
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
this : HasStrictDerivAt (Inv.inv ∘ fun x => x ^ (-m)) ((↑(-m) * x ^ (-m - 1)) • -((x ^ (-m)) ^ 2)⁻¹) x
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
simp only [(· ∘ ·), zpow_neg, one_div, inv_inv, smul_eq_mul] at this
[GOAL]
case inl.refine_2
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
this : HasStrictDerivAt (fun x => x ^ m) (↑(-m) * x ^ (-m - 1) * -((x ^ m)⁻¹ ^ 2)⁻¹) x
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
this : HasStrictDerivAt (fun x => x ^ m) (↑(-m) * x ^ (-m - 1) * -((x ^ m)⁻¹ ^ 2)⁻¹) x
⊢ ↑m * x ^ (m - 1) = ↑(-m) * x ^ (-m - 1) * -((x ^ m)⁻¹ ^ 2)⁻¹
[PROOFSTEP]
rw [sq, mul_inv, inv_inv, Int.cast_neg, neg_mul, neg_mul_neg, ← zpow_add₀ hx, mul_assoc, ← zpow_add₀ hx]
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
this : HasStrictDerivAt (fun x => x ^ m) (↑(-m) * x ^ (-m - 1) * -((x ^ m)⁻¹ ^ 2)⁻¹) x
⊢ ↑m * x ^ (m - 1) = ↑m * x ^ (-m - 1 + (m + m))
[PROOFSTEP]
congr
[GOAL]
case h.e'_7.e_a.e_a
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
this : HasStrictDerivAt (fun x => x ^ m) (↑(-m) * x ^ (-m - 1) * -((x ^ m)⁻¹ ^ 2)⁻¹) x
⊢ m - 1 = -m - 1 + (m + m)
[PROOFSTEP]
abel
[GOAL]
case h.e'_7.e_a.e_a
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m < 0
hx : x ≠ 0
this : HasStrictDerivAt (fun x => x ^ m) (↑(-m) * x ^ (-m - 1) * -((x ^ m)⁻¹ ^ 2)⁻¹) x
⊢ m - 1 = -m - 1 + (m + m)
[PROOFSTEP]
abel
[GOAL]
case inr.inl
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : m = 0
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
simp only [hm, zpow_zero, Int.cast_zero, zero_mul, hasStrictDerivAt_const]
[GOAL]
case inr.inr
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
h : x ≠ 0 ∨ 0 ≤ m
this : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
hm : 0 < m
⊢ HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
[PROOFSTEP]
exact this m hm
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
⊢ deriv (fun x => x ^ m) x = ↑m * x ^ (m - 1)
[PROOFSTEP]
by_cases H : x ≠ 0 ∨ 0 ≤ m
[GOAL]
case pos
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
H : x ≠ 0 ∨ 0 ≤ m
⊢ deriv (fun x => x ^ m) x = ↑m * x ^ (m - 1)
[PROOFSTEP]
exact (hasDerivAt_zpow m x H).deriv
[GOAL]
case neg
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
H : ¬(x ≠ 0 ∨ 0 ≤ m)
⊢ deriv (fun x => x ^ m) x = ↑m * x ^ (m - 1)
[PROOFSTEP]
rw [deriv_zero_of_not_differentiableAt (mt differentiableAt_zpow.1 H)]
[GOAL]
case neg
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
H : ¬(x ≠ 0 ∨ 0 ≤ m)
⊢ 0 = ↑m * x ^ (m - 1)
[PROOFSTEP]
push_neg at H
[GOAL]
case neg
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m✝ m : ℤ
x : 𝕜
H : x = 0 ∧ m < 0
⊢ 0 = ↑m * x ^ (m - 1)
[PROOFSTEP]
rcases H with ⟨rfl, hm⟩
[GOAL]
case neg.intro
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : 𝕜
s : Set 𝕜
m✝ m : ℤ
hm : m < 0
⊢ 0 = ↑m * 0 ^ (m - 1)
[PROOFSTEP]
rw [zero_zpow _ ((sub_one_lt _).trans hm).ne, mul_zero]
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : 𝕜
s : Set 𝕜
m✝ m : ℤ
k : ℕ
⊢ (deriv^[k] fun x => x ^ m) = fun x => (∏ i in Finset.range k, (↑m - ↑i)) * x ^ (m - ↑k)
[PROOFSTEP]
induction' k with k ihk
[GOAL]
case zero
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : 𝕜
s : Set 𝕜
m✝ m : ℤ
⊢ (deriv^[Nat.zero] fun x => x ^ m) = fun x => (∏ i in Finset.range Nat.zero, (↑m - ↑i)) * x ^ (m - ↑Nat.zero)
[PROOFSTEP]
simp only [Nat.zero_eq, one_mul, Int.ofNat_zero, id, sub_zero, Finset.prod_range_zero, Function.iterate_zero]
[GOAL]
case succ
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : 𝕜
s : Set 𝕜
m✝ m : ℤ
k : ℕ
ihk : (deriv^[k] fun x => x ^ m) = fun x => (∏ i in Finset.range k, (↑m - ↑i)) * x ^ (m - ↑k)
⊢ (deriv^[Nat.succ k] fun x => x ^ m) = fun x => (∏ i in Finset.range (Nat.succ k), (↑m - ↑i)) * x ^ (m - ↑(Nat.succ k))
[PROOFSTEP]
simp only [Function.iterate_succ_apply', ihk, deriv_const_mul_field', deriv_zpow', Finset.prod_range_succ,
Int.ofNat_succ, ← sub_sub, Int.cast_sub, Int.cast_ofNat, mul_assoc]
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m : ℤ
n : ℕ
x : 𝕜
k : ℕ
⊢ deriv^[k] (fun x => x ^ n) x = (∏ i in Finset.range k, (↑n - ↑i)) * x ^ (n - k)
[PROOFSTEP]
simp only [← zpow_ofNat, iter_deriv_zpow, Int.cast_ofNat]
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m : ℤ
n : ℕ
x : 𝕜
k : ℕ
⊢ (∏ x in Finset.range k, (↑n - ↑x)) * x ^ (↑n - ↑k) = (∏ i in Finset.range k, (↑n - ↑i)) * x ^ ↑(n - k)
[PROOFSTEP]
cases' le_or_lt k n with hkn hnk
[GOAL]
case inl
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m : ℤ
n : ℕ
x : 𝕜
k : ℕ
hkn : k ≤ n
⊢ (∏ x in Finset.range k, (↑n - ↑x)) * x ^ (↑n - ↑k) = (∏ i in Finset.range k, (↑n - ↑i)) * x ^ ↑(n - k)
[PROOFSTEP]
rw [Int.ofNat_sub hkn]
[GOAL]
case inr
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m : ℤ
n : ℕ
x : 𝕜
k : ℕ
hnk : n < k
⊢ (∏ x in Finset.range k, (↑n - ↑x)) * x ^ (↑n - ↑k) = (∏ i in Finset.range k, (↑n - ↑i)) * x ^ ↑(n - k)
[PROOFSTEP]
have : (∏ i in Finset.range k, (n - i : 𝕜)) = 0 := Finset.prod_eq_zero (Finset.mem_range.2 hnk) (sub_self _)
[GOAL]
case inr
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m : ℤ
n : ℕ
x : 𝕜
k : ℕ
hnk : n < k
this : ∏ i in Finset.range k, (↑n - ↑i) = 0
⊢ (∏ x in Finset.range k, (↑n - ↑x)) * x ^ (↑n - ↑k) = (∏ i in Finset.range k, (↑n - ↑i)) * x ^ ↑(n - k)
[PROOFSTEP]
simp only [this, zero_mul]
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x✝ : 𝕜
s : Set 𝕜
m : ℤ
k : ℕ
x : 𝕜
⊢ deriv^[k] Inv.inv x = (∏ i in Finset.range k, (-1 - ↑i)) * x ^ (-1 - ↑k)
[PROOFSTEP]
simpa only [zpow_neg_one, Int.cast_neg, Int.cast_one] using iter_deriv_zpow (-1) x k
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.ZPow", "llama_tokens": 7212} |
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDerivWithin n f univ = iteratedDeriv n f
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDerivWithin n f univ x = iteratedDeriv n f x
[PROOFSTEP]
rw [iteratedDerivWithin, iteratedDeriv, iteratedFDerivWithin_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDerivWithin n f s =
↑(LinearIsometryEquiv.symm (ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F)) ∘ iteratedFDerivWithin 𝕜 n f s
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDerivWithin n f s x =
(↑(LinearIsometryEquiv.symm (ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F)) ∘ iteratedFDerivWithin 𝕜 n f s) x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedFDerivWithin 𝕜 n f s = ↑(ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F) ∘ iteratedDerivWithin n f s
[PROOFSTEP]
rw [iteratedDerivWithin_eq_equiv_comp, ← Function.comp.assoc, LinearIsometryEquiv.self_comp_symm, Function.left_id]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
m : Fin n → 𝕜
⊢ ↑(iteratedFDerivWithin 𝕜 n f s x) m = (∏ i : Fin n, m i) • iteratedDerivWithin n f s x
[PROOFSTEP]
rw [iteratedDerivWithin_eq_iteratedFDerivWithin, ← ContinuousMultilinearMap.map_smul_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
m : Fin n → 𝕜
⊢ ↑(iteratedFDerivWithin 𝕜 n f s x) m = ↑(iteratedFDerivWithin 𝕜 n f s x) fun i => m i • 1
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ ‖iteratedFDerivWithin 𝕜 n f s x‖ = ‖iteratedDerivWithin n f s x‖
[PROOFSTEP]
rw [iteratedDerivWithin_eq_equiv_comp, Function.comp_apply, LinearIsometryEquiv.norm_map]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDerivWithin 0 f s = f
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDerivWithin 0 f s x = f x
[PROOFSTEP]
simp [iteratedDerivWithin]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
h : UniqueDiffWithinAt 𝕜 s x
⊢ iteratedDerivWithin 1 f s x = derivWithin f s x
[PROOFSTEP]
simp only [iteratedDerivWithin, iteratedFDerivWithin_one_apply h]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
h : UniqueDiffWithinAt 𝕜 s x
⊢ ↑(fderivWithin 𝕜 f s x) 1 = derivWithin f s x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
Hcont : ∀ (m : ℕ), ↑m ≤ n → ContinuousOn (fun x => iteratedDerivWithin m f s x) s
Hdiff : ∀ (m : ℕ), ↑m < n → DifferentiableOn 𝕜 (fun x => iteratedDerivWithin m f s x) s
⊢ ContDiffOn 𝕜 n f s
[PROOFSTEP]
apply contDiffOn_of_continuousOn_differentiableOn
[GOAL]
case Hcont
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
Hcont : ∀ (m : ℕ), ↑m ≤ n → ContinuousOn (fun x => iteratedDerivWithin m f s x) s
Hdiff : ∀ (m : ℕ), ↑m < n → DifferentiableOn 𝕜 (fun x => iteratedDerivWithin m f s x) s
⊢ ∀ (m : ℕ), ↑m ≤ n → ContinuousOn (fun x => iteratedFDerivWithin 𝕜 m f s x) s
[PROOFSTEP]
simpa only [iteratedFDerivWithin_eq_equiv_comp, LinearIsometryEquiv.comp_continuousOn_iff]
[GOAL]
case Hdiff
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
Hcont : ∀ (m : ℕ), ↑m ≤ n → ContinuousOn (fun x => iteratedDerivWithin m f s x) s
Hdiff : ∀ (m : ℕ), ↑m < n → DifferentiableOn 𝕜 (fun x => iteratedDerivWithin m f s x) s
⊢ ∀ (m : ℕ), ↑m < n → DifferentiableOn 𝕜 (fun x => iteratedFDerivWithin 𝕜 m f s x) s
[PROOFSTEP]
simpa only [iteratedFDerivWithin_eq_equiv_comp, LinearIsometryEquiv.comp_differentiableOn_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
h : ∀ (m : ℕ), ↑m ≤ n → DifferentiableOn 𝕜 (iteratedDerivWithin m f s) s
⊢ ContDiffOn 𝕜 n f s
[PROOFSTEP]
apply contDiffOn_of_differentiableOn
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
h : ∀ (m : ℕ), ↑m ≤ n → DifferentiableOn 𝕜 (iteratedDerivWithin m f s) s
⊢ ∀ (m : ℕ), ↑m ≤ n → DifferentiableOn 𝕜 (iteratedFDerivWithin 𝕜 m f s) s
[PROOFSTEP]
simpa only [iteratedFDerivWithin_eq_equiv_comp, LinearIsometryEquiv.comp_differentiableOn_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
m : ℕ
h : ContDiffOn 𝕜 n f s
hmn : ↑m ≤ n
hs : UniqueDiffOn 𝕜 s
⊢ ContinuousOn (iteratedDerivWithin m f s) s
[PROOFSTEP]
simpa only [iteratedDerivWithin_eq_equiv_comp, LinearIsometryEquiv.comp_continuousOn_iff] using
h.continuousOn_iteratedFDerivWithin hmn hs
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
m : ℕ
h : ContDiffWithinAt 𝕜 n f s x
hmn : ↑m < n
hs : UniqueDiffOn 𝕜 (insert x s)
⊢ DifferentiableWithinAt 𝕜 (iteratedDerivWithin m f s) s x
[PROOFSTEP]
simpa only [iteratedDerivWithin_eq_equiv_comp, LinearIsometryEquiv.comp_differentiableWithinAt_iff] using
h.differentiableWithinAt_iteratedFDerivWithin hmn hs
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ : 𝕜
n : ℕ∞
m : ℕ
h : ContDiffOn 𝕜 n f s
hmn : ↑m < n
hs : UniqueDiffOn 𝕜 s
x : 𝕜
hx : x ∈ s
⊢ UniqueDiffOn 𝕜 (insert x s)
[PROOFSTEP]
rwa [insert_eq_of_mem hx]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
hs : UniqueDiffOn 𝕜 s
⊢ ContDiffOn 𝕜 n f s ↔
(∀ (m : ℕ), ↑m ≤ n → ContinuousOn (iteratedDerivWithin m f s) s) ∧
∀ (m : ℕ), ↑m < n → DifferentiableOn 𝕜 (iteratedDerivWithin m f s) s
[PROOFSTEP]
simp only [contDiffOn_iff_continuousOn_differentiableOn hs, iteratedFDerivWithin_eq_equiv_comp,
LinearIsometryEquiv.comp_continuousOn_iff, LinearIsometryEquiv.comp_differentiableOn_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ iteratedDerivWithin (n + 1) f s x = derivWithin (iteratedDerivWithin n f s) s x
[PROOFSTEP]
rw [iteratedDerivWithin_eq_iteratedFDerivWithin, iteratedFDerivWithin_succ_apply_left,
iteratedFDerivWithin_eq_equiv_comp, LinearIsometryEquiv.comp_fderivWithin _ hxs, derivWithin]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ ↑(↑(ContinuousLinearMap.comp
(↑(ContinuousLinearEquiv.mk (ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F).toLinearEquiv))
(fderivWithin 𝕜 (iteratedDerivWithin n f s) s x))
1)
(Fin.tail fun x => 1) =
↑(fderivWithin 𝕜 (iteratedDerivWithin n f s) s x) 1
[PROOFSTEP]
change
((ContinuousMultilinearMap.mkPiField 𝕜 (Fin n) ((fderivWithin 𝕜 (iteratedDerivWithin n f s) s x : 𝕜 → F) 1) :
(Fin n → 𝕜) → F)
fun i : Fin n => 1) =
(fderivWithin 𝕜 (iteratedDerivWithin n f s) s x : 𝕜 → F) 1
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ (↑(ContinuousMultilinearMap.mkPiField 𝕜 (Fin n) (↑(fderivWithin 𝕜 (iteratedDerivWithin n f s) s x) 1)) fun i => 1) =
↑(fderivWithin 𝕜 (iteratedDerivWithin n f s) s x) 1
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
hs : UniqueDiffOn 𝕜 s
hx : x ∈ s
⊢ iteratedDerivWithin n f s x = (fun g => derivWithin g s)^[n] f x
[PROOFSTEP]
induction' n with n IH generalizing x
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝¹ x✝ : 𝕜
hs : UniqueDiffOn 𝕜 s
hx✝ : x✝ ∈ s
x : 𝕜
hx : x ∈ s
⊢ iteratedDerivWithin Nat.zero f s x = (fun g => derivWithin g s)^[Nat.zero] f x
[PROOFSTEP]
simp
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝¹ x✝ : 𝕜
hs : UniqueDiffOn 𝕜 s
hx✝ : x✝ ∈ s
n : ℕ
IH : ∀ {x : 𝕜}, x ∈ s → iteratedDerivWithin n f s x = (fun g => derivWithin g s)^[n] f x
x : 𝕜
hx : x ∈ s
⊢ iteratedDerivWithin (Nat.succ n) f s x = (fun g => derivWithin g s)^[Nat.succ n] f x
[PROOFSTEP]
rw [iteratedDerivWithin_succ (hs x hx), Function.iterate_succ']
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝¹ x✝ : 𝕜
hs : UniqueDiffOn 𝕜 s
hx✝ : x✝ ∈ s
n : ℕ
IH : ∀ {x : 𝕜}, x ∈ s → iteratedDerivWithin n f s x = (fun g => derivWithin g s)^[n] f x
x : 𝕜
hx : x ∈ s
⊢ derivWithin (iteratedDerivWithin n f s) s x = ((fun g => derivWithin g s) ∘ (fun g => derivWithin g s)^[n]) f x
[PROOFSTEP]
exact derivWithin_congr (fun y hy => IH hy) (IH hx)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
hxs : UniqueDiffOn 𝕜 s
hx : x ∈ s
⊢ iteratedDerivWithin (n + 1) f s x = iteratedDerivWithin n (derivWithin f s) s x
[PROOFSTEP]
rw [iteratedDerivWithin_eq_iterate hxs hx, iteratedDerivWithin_eq_iterate hxs hx]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
hxs : UniqueDiffOn 𝕜 s
hx : x ∈ s
⊢ (fun g => derivWithin g s)^[n + 1] f x = (fun g => derivWithin g s)^[n] (derivWithin f s) x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDeriv n f =
↑(LinearIsometryEquiv.symm (ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F)) ∘ iteratedFDeriv 𝕜 n f
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDeriv n f x =
(↑(LinearIsometryEquiv.symm (ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F)) ∘ iteratedFDeriv 𝕜 n f) x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedFDeriv 𝕜 n f = ↑(ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F) ∘ iteratedDeriv n f
[PROOFSTEP]
rw [iteratedDeriv_eq_equiv_comp, ← Function.comp.assoc, LinearIsometryEquiv.self_comp_symm, Function.left_id]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
m : Fin n → 𝕜
⊢ ↑(iteratedFDeriv 𝕜 n f x) m = (∏ i : Fin n, m i) • iteratedDeriv n f x
[PROOFSTEP]
rw [iteratedDeriv_eq_iteratedFDeriv, ← ContinuousMultilinearMap.map_smul_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
m : Fin n → 𝕜
⊢ ↑(iteratedFDeriv 𝕜 n f x) m = ↑(iteratedFDeriv 𝕜 n f x) fun i => m i • 1
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ ‖iteratedFDeriv 𝕜 n f x‖ = ‖iteratedDeriv n f x‖
[PROOFSTEP]
rw [iteratedDeriv_eq_equiv_comp, Function.comp_apply, LinearIsometryEquiv.norm_map]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDeriv 0 f = f
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDeriv 0 f x = f x
[PROOFSTEP]
simp [iteratedDeriv]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDeriv 1 f = deriv f
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDeriv 1 f x = deriv f x
[PROOFSTEP]
simp [iteratedDeriv]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ ↑(fderiv 𝕜 f x) 1 = deriv f x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
n : ℕ∞
⊢ ContDiff 𝕜 n f ↔
(∀ (m : ℕ), ↑m ≤ n → Continuous (iteratedDeriv m f)) ∧ ∀ (m : ℕ), ↑m < n → Differentiable 𝕜 (iteratedDeriv m f)
[PROOFSTEP]
simp only [contDiff_iff_continuous_differentiable, iteratedFDeriv_eq_equiv_comp,
LinearIsometryEquiv.comp_continuous_iff, LinearIsometryEquiv.comp_differentiable_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDeriv (n + 1) f = deriv (iteratedDeriv n f)
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDeriv (n + 1) f x = deriv (iteratedDeriv n f) x
[PROOFSTEP]
rw [← iteratedDerivWithin_univ, ← iteratedDerivWithin_univ, ← derivWithin_univ]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDerivWithin (n + 1) f univ x = derivWithin (iteratedDerivWithin n f univ) univ x
[PROOFSTEP]
exact iteratedDerivWithin_succ uniqueDiffWithinAt_univ
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDeriv n f = deriv^[n] f
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDeriv n f x = deriv^[n] f x
[PROOFSTEP]
rw [← iteratedDerivWithin_univ]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝ x : 𝕜
⊢ iteratedDerivWithin n f univ x = deriv^[n] f x
[PROOFSTEP]
convert iteratedDerivWithin_eq_iterate uniqueDiffOn_univ (F := F) (mem_univ x)
[GOAL]
case h.e'_3.h.e'_1.h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x✝¹ x : 𝕜
x✝ : 𝕜 → F
⊢ deriv x✝ = derivWithin x✝ univ
[PROOFSTEP]
simp [derivWithin_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ iteratedDeriv (n + 1) f = iteratedDeriv n (deriv f)
[PROOFSTEP]
rw [iteratedDeriv_eq_iterate, iteratedDeriv_eq_iterate]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n : ℕ
f : 𝕜 → F
s : Set 𝕜
x : 𝕜
⊢ deriv^[n + 1] f = deriv^[n] (deriv f)
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Analysis.Calculus.IteratedDeriv", "llama_tokens": 10315} |
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have x₀_in : x₀ ∈ ball x₀ ε := mem_ball_self ε_pos
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have nneg : ∀ x, 0 ≤ ‖x - x₀‖⁻¹ := fun x => inv_nonneg.mpr (norm_nonneg _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
set b : α → ℝ := fun a => |bound a|
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have b_int : Integrable b μ := bound_integrable.norm
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have b_nonneg : ∀ a, 0 ≤ b a := fun a => abs_nonneg _
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
replace h_lipsch : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
[GOAL]
case h_lipsch
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
⊢ ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
exact h_lipsch.mono fun a ha x hx => (ha x hx).trans <| mul_le_mul_of_nonneg_right (le_abs_self _) (norm_nonneg _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have hF_int' : ∀ x ∈ ball x₀ ε, Integrable (F x) μ := fun x x_in ↦
by
have : ∀ᵐ a ∂μ, ‖F x₀ a - F x a‖ ≤ ε * b a :=
by
simp only [norm_sub_rev (F x₀ _)]
refine' h_lipsch.mono fun a ha => (ha x x_in).trans _
rw [mul_comm ε]
rw [mem_ball, dist_eq_norm] at x_in
exact mul_le_mul_of_nonneg_left x_in.le (b_nonneg _)
exact integrable_of_norm_sub_le (hF_meas x x_in) hF_int (bound_integrable.norm.const_mul ε) this
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
x : H
x_in : x ∈ ball x₀ ε
⊢ Integrable (F x)
[PROOFSTEP]
have : ∀ᵐ a ∂μ, ‖F x₀ a - F x a‖ ≤ ε * b a :=
by
simp only [norm_sub_rev (F x₀ _)]
refine' h_lipsch.mono fun a ha => (ha x x_in).trans _
rw [mul_comm ε]
rw [mem_ball, dist_eq_norm] at x_in
exact mul_le_mul_of_nonneg_left x_in.le (b_nonneg _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
x : H
x_in : x ∈ ball x₀ ε
⊢ ∀ᵐ (a : α) ∂μ, ‖F x₀ a - F x a‖ ≤ ε * b a
[PROOFSTEP]
simp only [norm_sub_rev (F x₀ _)]
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
x : H
x_in : x ∈ ball x₀ ε
⊢ ∀ᵐ (a : α) ∂μ, ‖F x a - F x₀ a‖ ≤ ε * |bound a|
[PROOFSTEP]
refine' h_lipsch.mono fun a ha => (ha x x_in).trans _
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
x : H
x_in : x ∈ ball x₀ ε
a : α
ha : ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ b a * ‖x - x₀‖ ≤ ε * |bound a|
[PROOFSTEP]
rw [mul_comm ε]
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
x : H
x_in : x ∈ ball x₀ ε
a : α
ha : ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ b a * ‖x - x₀‖ ≤ |bound a| * ε
[PROOFSTEP]
rw [mem_ball, dist_eq_norm] at x_in
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
x : H
x_in : ‖x - x₀‖ < ε
a : α
ha : ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ b a * ‖x - x₀‖ ≤ |bound a| * ε
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left x_in.le (b_nonneg _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
x : H
x_in : x ∈ ball x₀ ε
this : ∀ᵐ (a : α) ∂μ, ‖F x₀ a - F x a‖ ≤ ε * b a
⊢ Integrable (F x)
[PROOFSTEP]
exact integrable_of_norm_sub_le (hF_meas x x_in) hF_int (bound_integrable.norm.const_mul ε) this
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have hF'_int : Integrable F' μ :=
have : ∀ᵐ a ∂μ, ‖F' a‖ ≤ b a := by
apply (h_diff.and h_lipsch).mono
rintro a ⟨ha_diff, ha_lip⟩
refine' ha_diff.le_of_lip' (b_nonneg a) (mem_of_superset (ball_mem_nhds _ ε_pos) <| ha_lip)
b_int.mono' hF'_meas this
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
⊢ ∀ᵐ (a : α) ∂μ, ‖F' a‖ ≤ b a
[PROOFSTEP]
apply (h_diff.and h_lipsch).mono
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
⊢ ∀ (x : α),
(HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀ ∧
∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F x_1 x - F x₀ x‖ ≤ b x * ‖x_1 - x₀‖) →
‖F' x‖ ≤ b x
[PROOFSTEP]
rintro a ⟨ha_diff, ha_lip⟩
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
a : α
ha_diff : HasFDerivAt (fun x => F x a) (F' a) x₀
ha_lip : ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖F' a‖ ≤ b a
[PROOFSTEP]
refine' ha_diff.le_of_lip' (b_nonneg a) (mem_of_superset (ball_mem_nhds _ ε_pos) <| ha_lip)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
refine' ⟨hF'_int, _⟩
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have h_ball : ball x₀ ε ∈ 𝓝 x₀ := ball_mem_nhds x₀ ε_pos
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have :
∀ᶠ x in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖((∫ a, F x a ∂μ) - ∫ a, F x₀ a ∂μ) - (∫ a, F' a ∂μ) (x - x₀)‖ =
‖∫ a, ‖x - x₀‖⁻¹ • (F x a - F x₀ a - F' a (x - x₀)) ∂μ‖ :=
by
apply mem_of_superset (ball_mem_nhds _ ε_pos)
intro x x_in; simp only
rw [Set.mem_setOf_eq, ← norm_smul_of_nonneg (nneg _), integral_smul, integral_sub, integral_sub, ←
ContinuousLinearMap.integral_apply hF'_int]
exacts [hF_int' x x_in, hF_int, (hF_int' x x_in).sub hF_int, hF'_int.apply_continuousLinearMap _]
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
⊢ ∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
[PROOFSTEP]
apply mem_of_superset (ball_mem_nhds _ ε_pos)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
⊢ ball x₀ ε ⊆
{x |
(fun x =>
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖)
x}
[PROOFSTEP]
intro x x_in
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
x : H
x_in : x ∈ ball x₀ ε
⊢ x ∈
{x |
(fun x =>
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖)
x}
[PROOFSTEP]
simp only
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
x : H
x_in : x ∈ ball x₀ ε
⊢ x ∈
{x |
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖}
[PROOFSTEP]
rw [Set.mem_setOf_eq, ← norm_smul_of_nonneg (nneg _), integral_smul, integral_sub, integral_sub, ←
ContinuousLinearMap.integral_apply hF'_int]
[GOAL]
case hf
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
x : H
x_in : x ∈ ball x₀ ε
⊢ Integrable fun a => F x a
case hg
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
x : H
x_in : x ∈ ball x₀ ε
⊢ Integrable fun a => F x₀ a
case hf
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
x : H
x_in : x ∈ ball x₀ ε
⊢ Integrable fun a => F x a - F x₀ a
case hg
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
x : H
x_in : x ∈ ball x₀ ε
⊢ Integrable fun a => ↑(F' a) (x - x₀)
[PROOFSTEP]
exacts [hF_int' x x_in, hF_int, (hF_int' x x_in).sub hF_int, hF'_int.apply_continuousLinearMap _]
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
rw [hasFDerivAt_iff_tendsto, tendsto_congr' this, ← tendsto_zero_iff_norm_tendsto_zero, ←
show (∫ a : α, ‖x₀ - x₀‖⁻¹ • (F x₀ a - F x₀ a - (F' a) (x₀ - x₀)) ∂μ) = 0 by simp]
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ ∫ (a : α), ‖x₀ - x₀‖⁻¹ • (F x₀ a - F x₀ a - ↑(F' a) (x₀ - x₀)) ∂μ = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ Tendsto (fun x => ∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ) (𝓝 x₀)
(𝓝 (∫ (a : α), ‖x₀ - x₀‖⁻¹ • (F x₀ a - F x₀ a - ↑(F' a) (x₀ - x₀)) ∂μ))
[PROOFSTEP]
apply tendsto_integral_filter_of_dominated_convergence
[GOAL]
case hF_meas
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ ∀ᶠ (n : H) in 𝓝 x₀, AEStronglyMeasurable (fun a => ‖n - x₀‖⁻¹ • (F n a - F x₀ a - ↑(F' a) (n - x₀))) μ
[PROOFSTEP]
filter_upwards [h_ball] with _ x_in
[GOAL]
case h
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a✝ : H
x_in : a✝ ∈ ball x₀ ε
⊢ AEStronglyMeasurable (fun a => ‖a✝ - x₀‖⁻¹ • (F a✝ a - F x₀ a - ↑(F' a) (a✝ - x₀))) μ
[PROOFSTEP]
apply AEStronglyMeasurable.const_smul
[GOAL]
case h.hf
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a✝ : H
x_in : a✝ ∈ ball x₀ ε
⊢ AEStronglyMeasurable (fun a => F a✝ a - F x₀ a - ↑(F' a) (a✝ - x₀)) μ
[PROOFSTEP]
exact ((hF_meas _ x_in).sub (hF_meas _ x₀_in)).sub (hF'_meas.apply_continuousLinearMap _)
[GOAL]
case h_bound
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ ∀ᶠ (n : H) in 𝓝 x₀, ∀ᵐ (a : α) ∂μ, ‖‖n - x₀‖⁻¹ • (F n a - F x₀ a - ↑(F' a) (n - x₀))‖ ≤ ?bound a
[PROOFSTEP]
refine mem_of_superset h_ball fun x hx ↦ ?_
[GOAL]
case h_bound
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
⊢ x ∈ {x | (fun n => ∀ᵐ (a : α) ∂μ, ‖‖n - x₀‖⁻¹ • (F n a - F x₀ a - ↑(F' a) (n - x₀))‖ ≤ ?bound a) x}
[PROOFSTEP]
apply (h_diff.and h_lipsch).mono
[GOAL]
case h_bound
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
⊢ ∀ (x_1 : α),
(HasFDerivAt (fun x => F x x_1) (F' x_1) x₀ ∧ ∀ (x : H), x ∈ ball x₀ ε → ‖F x x_1 - F x₀ x_1‖ ≤ b x_1 * ‖x - x₀‖) →
‖‖x - x₀‖⁻¹ • (F x x_1 - F x₀ x_1 - ↑(F' x_1) (x - x₀))‖ ≤ ?bound x_1
case bound
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ α → ℝ
[PROOFSTEP]
rintro a ⟨-, ha_bound⟩
[GOAL]
case h_bound.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))‖ ≤ ?bound a
case bound
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ α → ℝ
[PROOFSTEP]
show ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - F' a (x - x₀))‖ ≤ b a + ‖F' a‖
[GOAL]
case h_bound.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))‖ ≤ b a + ‖F' a‖
[PROOFSTEP]
replace ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖ := ha_bound x hx
[GOAL]
case h_bound.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))‖ ≤ b a + ‖F' a‖
[PROOFSTEP]
calc
‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - F' a (x - x₀))‖ = ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a) - ‖x - x₀‖⁻¹ • F' a (x - x₀)‖ := by
rw [smul_sub]
_ ≤ ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a)‖ + ‖‖x - x₀‖⁻¹ • F' a (x - x₀)‖ := (norm_sub_le _ _)
_ = ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a‖ + ‖x - x₀‖⁻¹ * ‖F' a (x - x₀)‖ := by
rw [norm_smul_of_nonneg, norm_smul_of_nonneg] <;> exact nneg _
_ ≤ ‖x - x₀‖⁻¹ * (b a * ‖x - x₀‖) + ‖x - x₀‖⁻¹ * (‖F' a‖ * ‖x - x₀‖) := by gcongr; exact (F' a).le_op_norm _
_ ≤ b a + ‖F' a‖ := ?_
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))‖ = ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a) - ‖x - x₀‖⁻¹ • ↑(F' a) (x - x₀)‖
[PROOFSTEP]
rw [smul_sub]
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a)‖ + ‖‖x - x₀‖⁻¹ • ↑(F' a) (x - x₀)‖ =
‖x - x₀‖⁻¹ * ‖F x a - F x₀ a‖ + ‖x - x₀‖⁻¹ * ‖↑(F' a) (x - x₀)‖
[PROOFSTEP]
rw [norm_smul_of_nonneg, norm_smul_of_nonneg]
[GOAL]
case ht
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖⁻¹
[PROOFSTEP]
exact nneg _
[GOAL]
case ht
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖⁻¹
[PROOFSTEP]
exact nneg _
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a‖ + ‖x - x₀‖⁻¹ * ‖↑(F' a) (x - x₀)‖ ≤
‖x - x₀‖⁻¹ * (b a * ‖x - x₀‖) + ‖x - x₀‖⁻¹ * (‖F' a‖ * ‖x - x₀‖)
[PROOFSTEP]
gcongr
[GOAL]
case h₂.h
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖↑(F' a) (x - x₀)‖ ≤ ‖F' a‖ * ‖x - x₀‖
[PROOFSTEP]
exact (F' a).le_op_norm _
[GOAL]
case h_bound.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖x - x₀‖⁻¹ * (b a * ‖x - x₀‖) + ‖x - x₀‖⁻¹ * (‖F' a‖ * ‖x - x₀‖) ≤ b a + ‖F' a‖
[PROOFSTEP]
simp only [← div_eq_inv_mul]
[GOAL]
case h_bound.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ |bound a| * ‖x - x₀‖ / ‖x - x₀‖ + ‖F' a‖ * ‖x - x₀‖ / ‖x - x₀‖ ≤ |bound a| + ‖F' a‖
[PROOFSTEP]
apply_rules [add_le_add, div_le_of_nonneg_of_le_mul]
[GOAL]
case h_bound.intro.h₁.hb
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖
[PROOFSTEP]
first
| rfl
| positivity
[GOAL]
case h_bound.intro.h₁.hb
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖
[PROOFSTEP]
rfl
[GOAL]
case h_bound.intro.h₁.hb
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖
[PROOFSTEP]
positivity
[GOAL]
case h_bound.intro.h₁.h
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ |bound a| * ‖x - x₀‖ ≤ |bound a| * ‖x - x₀‖
[PROOFSTEP]
first
| rfl
| positivity
[GOAL]
case h_bound.intro.h₁.h
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ |bound a| * ‖x - x₀‖ ≤ |bound a| * ‖x - x₀‖
[PROOFSTEP]
rfl
[GOAL]
case h_bound.intro.h₂.hb
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖
[PROOFSTEP]
first
| rfl
| positivity
[GOAL]
case h_bound.intro.h₂.hb
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖
[PROOFSTEP]
rfl
[GOAL]
case h_bound.intro.h₂.hb
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖x - x₀‖
[PROOFSTEP]
positivity
[GOAL]
case h_bound.intro.h₂.hc
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖F' a‖
[PROOFSTEP]
first
| rfl
| positivity
[GOAL]
case h_bound.intro.h₂.hc
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖F' a‖
[PROOFSTEP]
rfl
[GOAL]
case h_bound.intro.h₂.hc
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ 0 ≤ ‖F' a‖
[PROOFSTEP]
positivity
[GOAL]
case h_bound.intro.h₂.h
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖F' a‖ * ‖x - x₀‖ ≤ ‖F' a‖ * ‖x - x₀‖
[PROOFSTEP]
first
| rfl
| positivity
[GOAL]
case h_bound.intro.h₂.h
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
x : H
hx : x ∈ ball x₀ ε
a : α
ha_bound : ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
⊢ ‖F' a‖ * ‖x - x₀‖ ≤ ‖F' a‖ * ‖x - x₀‖
[PROOFSTEP]
rfl
[GOAL]
case bound_integrable
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ Integrable fun a => b a + ‖F' a‖
[PROOFSTEP]
exact b_int.add hF'_int.norm
[GOAL]
case h_lim
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ ∀ᵐ (a : α) ∂μ,
Tendsto (fun n => ‖n - x₀‖⁻¹ • (F n a - F x₀ a - ↑(F' a) (n - x₀))) (𝓝 x₀)
(𝓝 (‖x₀ - x₀‖⁻¹ • (F x₀ a - F x₀ a - ↑(F' a) (x₀ - x₀))))
[PROOFSTEP]
apply h_diff.mono
[GOAL]
case h_lim
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
⊢ ∀ (x : α),
HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀ →
Tendsto (fun n => ‖n - x₀‖⁻¹ • (F n x - F x₀ x - ↑(F' x) (n - x₀))) (𝓝 x₀)
(𝓝 (‖x₀ - x₀‖⁻¹ • (F x₀ x - F x₀ x - ↑(F' x) (x₀ - x₀))))
[PROOFSTEP]
intro a ha
[GOAL]
case h_lim
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a : α
ha : HasFDerivAt (fun x => F x a) (F' a) x₀
⊢ Tendsto (fun n => ‖n - x₀‖⁻¹ • (F n a - F x₀ a - ↑(F' a) (n - x₀))) (𝓝 x₀)
(𝓝 (‖x₀ - x₀‖⁻¹ • (F x₀ a - F x₀ a - ↑(F' a) (x₀ - x₀))))
[PROOFSTEP]
suffices Tendsto (fun x => ‖x - x₀‖⁻¹ • (F x a - F x₀ a - F' a (x - x₀))) (𝓝 x₀) (𝓝 0) by simpa
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this✝ :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a : α
ha : HasFDerivAt (fun x => F x a) (F' a) x₀
this : Tendsto (fun x => ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))) (𝓝 x₀) (𝓝 0)
⊢ Tendsto (fun n => ‖n - x₀‖⁻¹ • (F n a - F x₀ a - ↑(F' a) (n - x₀))) (𝓝 x₀)
(𝓝 (‖x₀ - x₀‖⁻¹ • (F x₀ a - F x₀ a - ↑(F' a) (x₀ - x₀))))
[PROOFSTEP]
simpa
[GOAL]
case h_lim
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a : α
ha : HasFDerivAt (fun x => F x a) (F' a) x₀
⊢ Tendsto (fun x => ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))) (𝓝 x₀) (𝓝 0)
[PROOFSTEP]
rw [tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
case h_lim
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a : α
ha : HasFDerivAt (fun x => F x a) (F' a) x₀
⊢ Tendsto (fun e => ‖‖e - x₀‖⁻¹ • (F e a - F x₀ a - ↑(F' a) (e - x₀))‖) (𝓝 x₀) (𝓝 0)
[PROOFSTEP]
have :
(fun x => ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a - F' a (x - x₀)‖) = fun x => ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - F' a (x - x₀))‖ :=
by
ext x
rw [norm_smul_of_nonneg (nneg _)]
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a : α
ha : HasFDerivAt (fun x => F x a) (F' a) x₀
⊢ (fun x => ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a - ↑(F' a) (x - x₀)‖) = fun x =>
‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))‖
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a : α
ha : HasFDerivAt (fun x => F x a) (F' a) x₀
x : H
⊢ ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a - ↑(F' a) (x - x₀)‖ = ‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))‖
[PROOFSTEP]
rw [norm_smul_of_nonneg (nneg _)]
[GOAL]
case h_lim
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ (x : H), x ∈ ball x₀ ε → AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
x₀_in : x₀ ∈ ball x₀ ε
nneg : ∀ (x : H), 0 ≤ ‖x - x₀‖⁻¹
b : α → ℝ := fun a => |bound a|
b_int : Integrable b
b_nonneg : ∀ (a : α), 0 ≤ b a
h_lipsch : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F x a - F x₀ a‖ ≤ b a * ‖x - x₀‖
hF_int' : ∀ (x : H), x ∈ ball x₀ ε → Integrable (F x)
hF'_int : Integrable F'
h_ball : ball x₀ ε ∈ 𝓝 x₀
this✝ :
∀ᶠ (x : H) in 𝓝 x₀,
‖x - x₀‖⁻¹ * ‖∫ (a : α), F x a ∂μ - ∫ (a : α), F x₀ a ∂μ - ↑(∫ (a : α), F' a ∂μ) (x - x₀)‖ =
‖∫ (a : α), ‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀)) ∂μ‖
a : α
ha : HasFDerivAt (fun x => F x a) (F' a) x₀
this :
(fun x => ‖x - x₀‖⁻¹ * ‖F x a - F x₀ a - ↑(F' a) (x - x₀)‖) = fun x =>
‖‖x - x₀‖⁻¹ • (F x a - F x₀ a - ↑(F' a) (x - x₀))‖
⊢ Tendsto (fun e => ‖‖e - x₀‖⁻¹ • (F e a - F x₀ a - ↑(F' a) (e - x₀))‖) (𝓝 x₀) (𝓝 0)
[PROOFSTEP]
rwa [hasFDerivAt_iff_tendsto, this] at ha
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lip : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
obtain ⟨δ, δ_pos, hδ⟩ : ∃ δ > 0, ∀ x ∈ ball x₀ δ, AEStronglyMeasurable (F x) μ ∧ x ∈ ball x₀ ε
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lip : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
⊢ ∃ δ, δ > 0 ∧ ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ ∧ x ∈ ball x₀ ε
case intro.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lip : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ ∧ x ∈ ball x₀ ε
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
exact eventually_nhds_iff_ball.mp (hF_meas.and (ball_mem_nhds x₀ ε_pos))
[GOAL]
case intro.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lip : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ ∧ x ∈ ball x₀ ε
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
choose hδ_meas hδε using hδ
[GOAL]
case intro.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lip : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
replace h_lip : ∀ᵐ a : α ∂μ, ∀ x ∈ ball x₀ δ, ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
[GOAL]
case h_lip
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_lip : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
⊢ ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
case intro.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
exact h_lip.mono fun a lip x hx => lip.norm_sub_le (hδε x hx) (mem_ball_self ε_pos)
[GOAL]
case intro.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
replace bound_integrable := bound_integrable.norm
[GOAL]
case intro.intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
bound_integrable : Integrable fun a => ‖bound a‖
⊢ Integrable F' ∧ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
apply hasFDerivAt_integral_of_dominated_loc_of_lip' δ_pos
[GOAL]
case intro.intro.hF_meas
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
bound_integrable : Integrable fun a => ‖bound a‖
⊢ ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (fun a => F x a) μ
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.hF_int
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
bound_integrable : Integrable fun a => ‖bound a‖
⊢ Integrable fun a => F x₀ a
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.hF'_meas
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
bound_integrable : Integrable fun a => ‖bound a‖
⊢ AEStronglyMeasurable F' μ
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.h_lipsch
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
bound_integrable : Integrable fun a => ‖bound a‖
⊢ ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ ?m.181944 a * ‖x - x₀‖
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.bound_integrable
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
bound_integrable : Integrable fun a => ‖bound a‖
⊢ Integrable fun a => |bound a|
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.h_diff
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
δ : ℝ
δ_pos : δ > 0
hδ_meas : ∀ (x : H), x ∈ ball x₀ δ → AEStronglyMeasurable (F x) μ
hδε : ∀ (x : H), x ∈ ball x₀ δ → x ∈ ball x₀ ε
h_lip : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ δ → ‖F x a - F x₀ a‖ ≤ |bound a| * ‖x - x₀‖
bound_integrable : Integrable fun a => ‖bound a‖
⊢ ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
letI : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
have x₀_in : x₀ ∈ ball x₀ ε := mem_ball_self ε_pos
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
have diff_x₀ : ∀ᵐ a ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀ := h_diff.mono fun a ha => ha x₀ x₀_in
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
have : ∀ᵐ a ∂μ, LipschitzOnWith (Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε) :=
by
apply (h_diff.and h_bound).mono
rintro a ⟨ha_deriv, ha_bound⟩
refine'
(convex_ball _ _).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x x_in => (ha_deriv x x_in).hasFDerivWithinAt)
fun x x_in => _
rw [← NNReal.coe_le_coe, coe_nnnorm, Real.coe_nnabs]
exact (ha_bound x x_in).trans (le_abs_self _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀
⊢ ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
[PROOFSTEP]
apply (h_diff.and h_bound).mono
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀
⊢ ∀ (x : α),
((∀ (x_1 : H), x_1 ∈ ball x₀ ε → HasFDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1) ∧
∀ (x_1 : H), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x) →
LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
[PROOFSTEP]
rintro a ⟨ha_deriv, ha_bound⟩
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀
a : α
ha_deriv : ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
ha_bound : ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
⊢ LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
[PROOFSTEP]
refine'
(convex_ball _ _).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le (fun x x_in => (ha_deriv x x_in).hasFDerivWithinAt)
fun x x_in => _
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀
a : α
ha_deriv : ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
ha_bound : ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
x : H
x_in : x ∈ ball x₀ ε
⊢ ‖F' x a‖₊ ≤ ↑Real.nnabs (bound a)
[PROOFSTEP]
rw [← NNReal.coe_le_coe, coe_nnnorm, Real.coe_nnabs]
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀
a : α
ha_deriv : ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
ha_bound : ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
x : H
x_in : x ∈ ball x₀ ε
⊢ ‖F' x a‖ ≤ |bound a|
[PROOFSTEP]
exact (ha_bound x x_in).trans (le_abs_self _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : H → α → E
F' : H → α → H →L[𝕜] E
x₀ : H
bound : α → ℝ
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : H), x ∈ ball x₀ ε → HasFDerivAt (fun x => F x a) (F' x a) x
this✝ : NormedSpace ℝ H := NormedSpace.restrictScalars ℝ 𝕜 H
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (F' x₀ a) x₀
this : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
exact (hasFDerivAt_integral_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas this bound_integrable diff_x₀).2
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' a) x₀
⊢ Integrable F' ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
set L : E →L[𝕜] 𝕜 →L[𝕜] E := ContinuousLinearMap.smulRightL 𝕜 𝕜 E 1
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' a) x₀
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
⊢ Integrable F' ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
replace h_diff : ∀ᵐ a ∂μ, HasFDerivAt (fun x => F x a) (L (F' a)) x₀ := h_diff.mono fun x hx => hx.hasFDerivAt
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑L (F' a)) x₀
⊢ Integrable F' ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
have hm : AEStronglyMeasurable (L ∘ F') μ := L.continuous.comp_aestronglyMeasurable hF'_meas
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑L (F' a)) x₀
hm : AEStronglyMeasurable (↑L ∘ F') μ
⊢ Integrable F' ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
cases' hasFDerivAt_integral_of_dominated_loc_of_lip ε_pos hF_meas hF_int hm h_lipsch bound_integrable h_diff with
hF'_int key
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑L (F' a)) x₀
hm : AEStronglyMeasurable (↑L ∘ F') μ
hF'_int : Integrable (↑L ∘ F')
key : HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), (↑L ∘ F') a ∂μ) x₀
⊢ Integrable F' ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
replace hF'_int : Integrable F' μ
[GOAL]
case hF'_int
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑L (F' a)) x₀
hm : AEStronglyMeasurable (↑L ∘ F') μ
hF'_int : Integrable (↑L ∘ F')
key : HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), (↑L ∘ F') a ∂μ) x₀
⊢ Integrable F'
[PROOFSTEP]
rw [← integrable_norm_iff hm] at hF'_int
[GOAL]
case hF'_int
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑L (F' a)) x₀
hm : AEStronglyMeasurable (↑L ∘ F') μ
hF'_int : Integrable fun a => ‖(↑L ∘ F') a‖
key : HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), (↑L ∘ F') a ∂μ) x₀
⊢ Integrable F'
[PROOFSTEP]
simpa only [(· ∘ ·), integrable_norm_iff, hF'_meas, one_mul, norm_one, ContinuousLinearMap.comp_apply,
ContinuousLinearMap.coe_restrict_scalarsL', ContinuousLinearMap.norm_restrictScalars,
ContinuousLinearMap.norm_smulRightL_apply] using hF'_int
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑L (F' a)) x₀
hm : AEStronglyMeasurable (↑L ∘ F') μ
key : HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), (↑L ∘ F') a ∂μ) x₀
hF'_int : Integrable F'
⊢ Integrable F' ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
refine' ⟨hF'_int, _⟩
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑L (F' a)) x₀
hm : AEStronglyMeasurable (↑L ∘ F') μ
key : HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), (↑L ∘ F') a ∂μ) x₀
hF'_int : Integrable F'
⊢ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
[PROOFSTEP]
simp_rw [hasDerivAt_iff_hasFDerivAt] at h_diff ⊢
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F : 𝕜 → α → E
F' : α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable F' μ
bound : α → ℝ
h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
bound_integrable : Integrable bound
L : E →L[𝕜] 𝕜 →L[𝕜] E := ↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1
h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (↑(↑(ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1) (F' a)) x₀
hm : AEStronglyMeasurable (↑L ∘ F') μ
key : HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), (↑L ∘ F') a ∂μ) x₀
hF'_int : Integrable F'
⊢ HasFDerivAt (fun x => ∫ (a : α), F x a ∂μ) (ContinuousLinearMap.smulRight 1 (∫ (a : α), F' a ∂μ)) x₀
[PROOFSTEP]
simpa only [(· ∘ ·), ContinuousLinearMap.integral_comp_comm _ hF'_int] using key
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
⊢ Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : α), F n a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
have x₀_in : x₀ ∈ ball x₀ ε := mem_ball_self ε_pos
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
⊢ Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : α), F n a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
have diff_x₀ : ∀ᵐ a ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀ := h_diff.mono fun a ha => ha x₀ x₀_in
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀
⊢ Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : α), F n a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
have : ∀ᵐ a ∂μ, LipschitzOnWith (Real.nnabs (bound a)) (fun x : 𝕜 => F x a) (ball x₀ ε) :=
by
apply (h_diff.and h_bound).mono
rintro a ⟨ha_deriv, ha_bound⟩
refine'
(convex_ball _ _).lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x x_in => (ha_deriv x x_in).hasDerivWithinAt)
fun x x_in => _
rw [← NNReal.coe_le_coe, coe_nnnorm, Real.coe_nnabs]
exact (ha_bound x x_in).trans (le_abs_self _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀
⊢ ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
[PROOFSTEP]
apply (h_diff.and h_bound).mono
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀
⊢ ∀ (x : α),
((∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1) ∧
∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x) →
LipschitzOnWith (↑Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)
[PROOFSTEP]
rintro a ⟨ha_deriv, ha_bound⟩
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀
a : α
ha_deriv : ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
ha_bound : ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
⊢ LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
[PROOFSTEP]
refine'
(convex_ball _ _).lipschitzOnWith_of_nnnorm_hasDerivWithin_le (fun x x_in => (ha_deriv x x_in).hasDerivWithinAt)
fun x x_in => _
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀
a : α
ha_deriv : ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
ha_bound : ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
x : 𝕜
x_in : x ∈ ball x₀ ε
⊢ ‖F' x a‖₊ ≤ ↑Real.nnabs (bound a)
[PROOFSTEP]
rw [← NNReal.coe_le_coe, coe_nnnorm, Real.coe_nnabs]
[GOAL]
case intro
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀
a : α
ha_deriv : ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
ha_bound : ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
x : 𝕜
x_in : x ∈ ball x₀ ε
⊢ ‖F' x a‖ ≤ |bound a|
[PROOFSTEP]
exact (ha_bound x x_in).trans (le_abs_self _)
[GOAL]
α : Type u_1
inst✝⁷ : MeasurableSpace α
μ : Measure α
𝕜 : Type u_2
inst✝⁶ : IsROrC 𝕜
E : Type u_3
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedSpace 𝕜 E
inst✝² : CompleteSpace E
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
F F' : 𝕜 → α → E
x₀ : 𝕜
ε : ℝ
ε_pos : 0 < ε
hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ
hF_int : Integrable (F x₀)
hF'_meas : AEStronglyMeasurable (F' x₀) μ
bound : α → ℝ
h_bound : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x a‖ ≤ bound a
bound_integrable : Integrable bound
h_diff : ∀ᵐ (a : α) ∂μ, ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x a) (F' x a) x
x₀_in : x₀ ∈ ball x₀ ε
diff_x₀ : ∀ᵐ (a : α) ∂μ, HasDerivAt (fun x => F x a) (F' x₀ a) x₀
this : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (↑Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε)
⊢ Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : α), F n a ∂μ) (∫ (a : α), F' x₀ a ∂μ) x₀
[PROOFSTEP]
exact hasDerivAt_integral_of_dominated_loc_of_lip ε_pos hF_meas hF_int hF'_meas this bound_integrable diff_x₀
| {"mathlib_filename": "Mathlib.Analysis.Calculus.ParametricIntegral", "llama_tokens": 76183} |
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
⊢ HasStrictDerivAt Inv.inv (-(x ^ 2)⁻¹) x
[PROOFSTEP]
suffices (fun p : 𝕜 × 𝕜 => (p.1 - p.2) * ((x * x)⁻¹ - (p.1 * p.2)⁻¹)) =o[𝓝 (x, x)] fun p => (p.1 - p.2) * 1
by
refine' this.congr' _ (eventually_of_forall fun _ => mul_one _)
refine' Eventually.mono ((isOpen_ne.prod isOpen_ne).mem_nhds ⟨hx, hx⟩) _
rintro ⟨y, z⟩ ⟨hy, hz⟩
simp only [mem_setOf_eq] at hy hz
field_simp [hx, hy, hz]
ring
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
this : (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =o[𝓝 (x, x)] fun p => (p.fst - p.snd) * 1
⊢ HasStrictDerivAt Inv.inv (-(x ^ 2)⁻¹) x
[PROOFSTEP]
refine' this.congr' _ (eventually_of_forall fun _ => mul_one _)
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
this : (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =o[𝓝 (x, x)] fun p => (p.fst - p.snd) * 1
⊢ (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =ᶠ[𝓝 (x, x)] fun p =>
p.fst⁻¹ - p.snd⁻¹ - ↑(smulRight 1 (-(x ^ 2)⁻¹)) (p.fst - p.snd)
[PROOFSTEP]
refine' Eventually.mono ((isOpen_ne.prod isOpen_ne).mem_nhds ⟨hx, hx⟩) _
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
this : (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =o[𝓝 (x, x)] fun p => (p.fst - p.snd) * 1
⊢ ∀ (x_1 : 𝕜 × 𝕜),
({y | y ≠ 0} ×ˢ {y | y ≠ 0}) x_1 →
(fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) x_1 =
(fun p => p.fst⁻¹ - p.snd⁻¹ - ↑(smulRight 1 (-(x ^ 2)⁻¹)) (p.fst - p.snd)) x_1
[PROOFSTEP]
rintro ⟨y, z⟩ ⟨hy, hz⟩
[GOAL]
case mk.intro
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
this : (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =o[𝓝 (x, x)] fun p => (p.fst - p.snd) * 1
y z : 𝕜
hy : (y, z).fst ∈ {y | y ≠ 0}
hz : (y, z).snd ∈ {y | y ≠ 0}
⊢ (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) (y, z) =
(fun p => p.fst⁻¹ - p.snd⁻¹ - ↑(smulRight 1 (-(x ^ 2)⁻¹)) (p.fst - p.snd)) (y, z)
[PROOFSTEP]
simp only [mem_setOf_eq] at hy hz
[GOAL]
case mk.intro
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
this : (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =o[𝓝 (x, x)] fun p => (p.fst - p.snd) * 1
y z : 𝕜
hy : y ≠ 0
hz : z ≠ 0
⊢ (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) (y, z) =
(fun p => p.fst⁻¹ - p.snd⁻¹ - ↑(smulRight 1 (-(x ^ 2)⁻¹)) (p.fst - p.snd)) (y, z)
[PROOFSTEP]
field_simp [hx, hy, hz]
[GOAL]
case mk.intro
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
this : (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =o[𝓝 (x, x)] fun p => (p.fst - p.snd) * 1
y z : 𝕜
hy : y ≠ 0
hz : z ≠ 0
⊢ (y - z) * (y * z - x * x) * (y * z * (x ^ 2 * x ^ 2)) =
((z - y) * (x ^ 2 * x ^ 2) - y * z * (-(y * x ^ 2) + x ^ 2 * z)) * (x * x * (y * z))
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
⊢ (fun p => (p.fst - p.snd) * ((x * x)⁻¹ - (p.fst * p.snd)⁻¹)) =o[𝓝 (x, x)] fun p => (p.fst - p.snd) * 1
[PROOFSTEP]
refine' (isBigO_refl (fun p : 𝕜 × 𝕜 => p.1 - p.2) _).mul_isLittleO ((isLittleO_one_iff 𝕜).2 _)
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
⊢ Tendsto (fun p => (x * x)⁻¹ - (p.fst * p.snd)⁻¹) (𝓝 (x, x)) (𝓝 0)
[PROOFSTEP]
rw [← sub_self (x * x)⁻¹]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hx : x ≠ 0
⊢ Tendsto (fun p => (x * x)⁻¹ - (p.fst * p.snd)⁻¹) (𝓝 (x, x)) (𝓝 ((x * x)⁻¹ - (x * x)⁻¹))
[PROOFSTEP]
exact tendsto_const_nhds.sub ((continuous_mul.tendsto (x, x)).inv₀ <| mul_ne_zero hx hx)
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
⊢ deriv (fun x => x⁻¹) x = -(x ^ 2)⁻¹
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hne)
[GOAL]
case inl
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
s t : Set 𝕜
L : Filter 𝕜
⊢ deriv (fun x => x⁻¹) 0 = -(0 ^ 2)⁻¹
[PROOFSTEP]
simp [deriv_zero_of_not_differentiableAt (mt differentiableAt_inv.1 (not_not.2 rfl))]
[GOAL]
case inr
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hne : x ≠ 0
⊢ deriv (fun x => x⁻¹) x = -(x ^ 2)⁻¹
[PROOFSTEP]
exact (hasDerivAt_inv hne).deriv
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
x_ne_zero : x ≠ 0
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ derivWithin (fun x => x⁻¹) s x = -(x ^ 2)⁻¹
[PROOFSTEP]
rw [DifferentiableAt.derivWithin (differentiableAt_inv.2 x_ne_zero) hxs]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
x_ne_zero : x ≠ 0
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ deriv (fun x => x⁻¹) x = -(x ^ 2)⁻¹
[PROOFSTEP]
exact deriv_inv
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
⊢ fderiv 𝕜 (fun x => x⁻¹) x = smulRight 1 (-(x ^ 2)⁻¹)
[PROOFSTEP]
rw [← deriv_fderiv, deriv_inv]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
x_ne_zero : x ≠ 0
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderivWithin 𝕜 (fun x => x⁻¹) s x = smulRight 1 (-(x ^ 2)⁻¹)
[PROOFSTEP]
rw [DifferentiableAt.fderivWithin (differentiableAt_inv.2 x_ne_zero) hxs]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
x_ne_zero : x ≠ 0
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderiv 𝕜 (fun x => x⁻¹) x = smulRight 1 (-(x ^ 2)⁻¹)
[PROOFSTEP]
exact fderiv_inv
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : 𝕜 → 𝕜
h : E → 𝕜
c' : 𝕜
z : E
S : Set E
hc : HasDerivWithinAt c c' s x
hx : c x ≠ 0
⊢ HasDerivWithinAt (fun y => (c y)⁻¹) (-c' / c x ^ 2) s x
[PROOFSTEP]
convert (hasDerivAt_inv hx).comp_hasDerivWithinAt x hc using 1
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : 𝕜 → 𝕜
h : E → 𝕜
c' : 𝕜
z : E
S : Set E
hc : HasDerivWithinAt c c' s x
hx : c x ≠ 0
⊢ -c' / c x ^ 2 = -(c x ^ 2)⁻¹ * c'
[PROOFSTEP]
field_simp
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : 𝕜 → 𝕜
h : E → 𝕜
c' : 𝕜
z : E
S : Set E
hc : HasDerivAt c c' x
hx : c x ≠ 0
⊢ HasDerivAt (fun y => (c y)⁻¹) (-c' / c x ^ 2) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : 𝕜 → 𝕜
h : E → 𝕜
c' : 𝕜
z : E
S : Set E
hc : HasDerivWithinAt c c' univ x
hx : c x ≠ 0
⊢ HasDerivWithinAt (fun y => (c y)⁻¹) (-c' / c x ^ 2) univ x
[PROOFSTEP]
exact hc.inv hx
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
hx : d x ≠ 0
⊢ HasDerivWithinAt (fun y => c y / d y) ((c' * d x - c x * d') / d x ^ 2) s x
[PROOFSTEP]
convert hc.mul ((hasDerivAt_inv hx).comp_hasDerivWithinAt x hd) using 1
[GOAL]
case h.e'_6
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
hx : d x ≠ 0
⊢ (fun y => c y / d y) = fun y => c y * ((fun y => y⁻¹) ∘ d) y
[PROOFSTEP]
simp only [div_eq_mul_inv, (· ∘ ·)]
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
hx : d x ≠ 0
⊢ (c' * d x - c x * d') / d x ^ 2 = c' * ((fun y => y⁻¹) ∘ d) x + c x * (-(d x ^ 2)⁻¹ * d')
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
hx : d x ≠ 0
⊢ (c' * d x - c x * d') * (d x * d x ^ 2) = (c' * d x ^ 2 + -(c x * d' * d x)) * d x ^ 2
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
hx : d x ≠ 0
⊢ HasStrictDerivAt (fun y => c y / d y) ((c' * d x - c x * d') / d x ^ 2) x
[PROOFSTEP]
convert hc.mul ((hasStrictDerivAt_inv hx).comp x hd) using 1
[GOAL]
case h.e'_6
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
hx : d x ≠ 0
⊢ (fun y => c y / d y) = fun y => c y * (Inv.inv ∘ d) y
[PROOFSTEP]
simp only [div_eq_mul_inv, (· ∘ ·)]
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
hx : d x ≠ 0
⊢ (c' * d x - c x * d') / d x ^ 2 = c' * (Inv.inv ∘ d) x + c x * (-(d x ^ 2)⁻¹ * d')
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
hx : d x ≠ 0
⊢ (c' * d x - c x * d') * (d x * d x ^ 2) = (c' * d x ^ 2 + -(c x * d' * d x)) * d x ^ 2
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivAt c c' x
hd : HasDerivAt d d' x
hx : d x ≠ 0
⊢ HasDerivAt (fun y => c y / d y) ((c' * d x - c x * d') / d x ^ 2) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivWithinAt c c' univ x
hd : HasDerivWithinAt d d' univ x
hx : d x ≠ 0
⊢ HasDerivWithinAt (fun y => c y / d y) ((c' * d x - c x * d') / d x ^ 2) univ x
[PROOFSTEP]
exact hc.div hd hx
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Inv", "llama_tokens": 8613} |
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
x : 𝕜
⊢ HasStrictDerivAt (fun x => eval x p) (eval x (↑derivative p)) x
[PROOFSTEP]
induction p using Polynomial.induction_on'
[GOAL]
case h_add
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
x : 𝕜
p✝ q✝ : 𝕜[X]
a✝¹ : HasStrictDerivAt (fun x => eval x p✝) (eval x (↑derivative p✝)) x
a✝ : HasStrictDerivAt (fun x => eval x q✝) (eval x (↑derivative q✝)) x
⊢ HasStrictDerivAt (fun x => eval x (p✝ + q✝)) (eval x (↑derivative (p✝ + q✝))) x
case h_monomial
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
x : 𝕜
n✝ : ℕ
a✝ : 𝕜
⊢ HasStrictDerivAt (fun x => eval x (↑(monomial n✝) a✝)) (eval x (↑derivative (↑(monomial n✝) a✝))) x
[PROOFSTEP]
case h_add p q hp hq => simpa using hp.add hq
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p✝ : 𝕜[X]
q✝ : R[X]
x : 𝕜
p q : 𝕜[X]
hp : HasStrictDerivAt (fun x => eval x p) (eval x (↑derivative p)) x
hq : HasStrictDerivAt (fun x => eval x q) (eval x (↑derivative q)) x
⊢ HasStrictDerivAt (fun x => eval x (p + q)) (eval x (↑derivative (p + q))) x
[PROOFSTEP]
case h_add p q hp hq => simpa using hp.add hq
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p✝ : 𝕜[X]
q✝ : R[X]
x : 𝕜
p q : 𝕜[X]
hp : HasStrictDerivAt (fun x => eval x p) (eval x (↑derivative p)) x
hq : HasStrictDerivAt (fun x => eval x q) (eval x (↑derivative q)) x
⊢ HasStrictDerivAt (fun x => eval x (p + q)) (eval x (↑derivative (p + q))) x
[PROOFSTEP]
simpa using hp.add hq
[GOAL]
case h_monomial
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
x : 𝕜
n✝ : ℕ
a✝ : 𝕜
⊢ HasStrictDerivAt (fun x => eval x (↑(monomial n✝) a✝)) (eval x (↑derivative (↑(monomial n✝) a✝))) x
[PROOFSTEP]
case h_monomial n a => simpa [mul_assoc] using (hasStrictDerivAt_pow n x).const_mul a
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
x : 𝕜
n : ℕ
a : 𝕜
⊢ HasStrictDerivAt (fun x => eval x (↑(monomial n) a)) (eval x (↑derivative (↑(monomial n) a))) x
[PROOFSTEP]
case h_monomial n a => simpa [mul_assoc] using (hasStrictDerivAt_pow n x).const_mul a
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
x : 𝕜
n : ℕ
a : 𝕜
⊢ HasStrictDerivAt (fun x => eval x (↑(monomial n) a)) (eval x (↑derivative (↑(monomial n) a))) x
[PROOFSTEP]
simpa [mul_assoc] using (hasStrictDerivAt_pow n x).const_mul a
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
x : 𝕜
⊢ HasStrictDerivAt (fun x => ↑(aeval x) q) (↑(aeval x) (↑derivative q)) x
[PROOFSTEP]
simpa only [aeval_def, eval₂_eq_eval_map, derivative_map] using (q.map (algebraMap R 𝕜)).hasStrictDerivAt x
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ derivWithin (fun x => eval x p) s x = eval x (↑derivative p)
[PROOFSTEP]
rw [DifferentiableAt.derivWithin p.differentiableAt hxs]
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ deriv (fun x => eval x p) x = eval x (↑derivative p)
[PROOFSTEP]
exact p.deriv
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝¹ : CommSemiring R
inst✝ : Algebra R 𝕜
p : 𝕜[X]
q : R[X]
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ derivWithin (fun x => ↑(aeval x) q) s x = ↑(aeval x) (↑derivative q)
[PROOFSTEP]
simpa only [aeval_def, eval₂_eq_eval_map, derivative_map] using (q.map (algebraMap R 𝕜)).derivWithin hxs
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Polynomial", "llama_tokens": 3362} |
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : HasDerivAt f f' x
hf' : f' ≠ 0
z : 𝕜
⊢ ‖z‖ ≤ ‖f'‖⁻¹ * ‖↑(ContinuousLinearMap.smulRight 1 f') z‖
[PROOFSTEP]
field_simp [norm_smul, mt norm_eq_zero.1 hf']
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g✝ : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s✝ t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
f g : 𝕜 → 𝕜
a : 𝕜
s t : Set 𝕜
ha : a ∈ s
hsu : UniqueDiffWithinAt 𝕜 s a
hf : HasDerivWithinAt f 0 t (g a)
hst : MapsTo g s t
hfg : f ∘ g =ᶠ[𝓝[s] a] id
⊢ ¬DifferentiableWithinAt 𝕜 g s a
[PROOFSTEP]
intro hg
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g✝ : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s✝ t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
f g : 𝕜 → 𝕜
a : 𝕜
s t : Set 𝕜
ha : a ∈ s
hsu : UniqueDiffWithinAt 𝕜 s a
hf : HasDerivWithinAt f 0 t (g a)
hst : MapsTo g s t
hfg : f ∘ g =ᶠ[𝓝[s] a] id
hg : DifferentiableWithinAt 𝕜 g s a
⊢ False
[PROOFSTEP]
have := (hf.comp a hg.hasDerivWithinAt hst).congr_of_eventuallyEq_of_mem hfg.symm ha
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g✝ : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s✝ t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
f g : 𝕜 → 𝕜
a : 𝕜
s t : Set 𝕜
ha : a ∈ s
hsu : UniqueDiffWithinAt 𝕜 s a
hf : HasDerivWithinAt f 0 t (g a)
hst : MapsTo g s t
hfg : f ∘ g =ᶠ[𝓝[s] a] id
hg : DifferentiableWithinAt 𝕜 g s a
this : HasDerivWithinAt id (0 * derivWithin g s a) s a
⊢ False
[PROOFSTEP]
simpa using hsu.eq_deriv _ this (hasDerivWithinAt_id _ _)
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g✝ : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f g : 𝕜 → 𝕜
a : 𝕜
hf : HasDerivAt f 0 (g a)
hfg : f ∘ g =ᶠ[𝓝 a] id
⊢ ¬DifferentiableAt 𝕜 g a
[PROOFSTEP]
intro hg
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g✝ : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f g : 𝕜 → 𝕜
a : 𝕜
hf : HasDerivAt f 0 (g a)
hfg : f ∘ g =ᶠ[𝓝 a] id
hg : DifferentiableAt 𝕜 g a
⊢ False
[PROOFSTEP]
have := (hf.comp a hg.hasDerivAt).congr_of_eventuallyEq hfg.symm
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g✝ : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f g : 𝕜 → 𝕜
a : 𝕜
hf : HasDerivAt f 0 (g a)
hfg : f ∘ g =ᶠ[𝓝 a] id
hg : DifferentiableAt 𝕜 g a
this : HasDerivAt id (0 * deriv g a) a
⊢ False
[PROOFSTEP]
simpa using this.unique (hasDerivAt_id a)
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Inverse", "llama_tokens": 1791} |
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hf : HasDerivAtFilter f f' x L
hg : HasDerivAtFilter g g' x L
⊢ HasDerivAtFilter (fun y => f y + g y) (f' + g') x L
[PROOFSTEP]
simpa using (hf.add hg).hasDerivAtFilter
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hf : HasStrictDerivAt f f' x
hg : HasStrictDerivAt g g' x
⊢ HasStrictDerivAt (fun y => f y + g y) (f' + g') x
[PROOFSTEP]
simpa using (hf.add hg).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
⊢ derivWithin (fun y => f y + c) s x = derivWithin f s x
[PROOFSTEP]
simp only [derivWithin, fderivWithin_add_const hxs]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : F
⊢ deriv (fun y => f y + c) x = deriv f x
[PROOFSTEP]
simp only [deriv, fderiv_add_const]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
⊢ derivWithin (fun y => c + f y) s x = derivWithin f s x
[PROOFSTEP]
simp only [derivWithin, fderivWithin_const_add hxs]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : F
⊢ deriv (fun y => c + f y) x = deriv f x
[PROOFSTEP]
simp only [deriv, fderiv_const_add]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
ι : Type u_1
u : Finset ι
A : ι → 𝕜 → F
A' : ι → F
h : ∀ (i : ι), i ∈ u → HasDerivAtFilter (A i) (A' i) x L
⊢ HasDerivAtFilter (fun y => ∑ i in u, A i y) (∑ i in u, A' i) x L
[PROOFSTEP]
simpa [ContinuousLinearMap.sum_apply] using (HasFDerivAtFilter.sum h).hasDerivAtFilter
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
ι : Type u_1
u : Finset ι
A : ι → 𝕜 → F
A' : ι → F
h : ∀ (i : ι), i ∈ u → HasStrictDerivAt (A i) (A' i) x
⊢ HasStrictDerivAt (fun y => ∑ i in u, A i y) (∑ i in u, A' i) x
[PROOFSTEP]
simpa [ContinuousLinearMap.sum_apply] using (HasStrictFDerivAt.sum h).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
h : HasDerivAtFilter f f' x L
⊢ HasDerivAtFilter (fun x => -f x) (-f') x L
[PROOFSTEP]
simpa using h.neg.hasDerivAtFilter
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
h : HasStrictDerivAt f f' x
⊢ HasStrictDerivAt (fun x => -f x) (-f') x
[PROOFSTEP]
simpa using h.neg.hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ derivWithin (fun y => -f y) s x = -derivWithin f s x
[PROOFSTEP]
simp only [derivWithin, fderivWithin_neg hxs, ContinuousLinearMap.neg_apply]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
⊢ deriv (fun y => -f y) x = -deriv f x
[PROOFSTEP]
simp only [deriv, fderiv_neg, ContinuousLinearMap.neg_apply]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hf : HasDerivAtFilter f f' x L
hg : HasDerivAtFilter g g' x L
⊢ HasDerivAtFilter (fun x => f x - g x) (f' - g') x L
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hf : HasStrictDerivAt f f' x
hg : HasStrictDerivAt g g' x
⊢ HasStrictDerivAt (fun x => f x - g x) (f' - g') x
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hf : HasDerivAtFilter f f' x L
c : F
⊢ HasDerivAtFilter (fun x => f x - c) f' x L
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add_const (-c)
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
⊢ derivWithin (fun y => f y - c) s x = derivWithin f s x
[PROOFSTEP]
simp only [derivWithin, fderivWithin_sub_const hxs]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : F
⊢ deriv (fun y => f y - c) x = deriv f x
[PROOFSTEP]
simp only [deriv, fderiv_sub_const]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : F
hf : HasDerivAtFilter f f' x L
⊢ HasDerivAtFilter (fun x => c - f x) (-f') x L
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.neg.const_add c
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : F
hf : HasStrictDerivAt f f' x
⊢ HasStrictDerivAt (fun x => c - f x) (-f') x
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.neg.const_add c
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
⊢ derivWithin (fun y => c - f y) s x = -derivWithin f s x
[PROOFSTEP]
simp [derivWithin, fderivWithin_const_sub hxs]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L : Filter 𝕜
c : F
⊢ deriv (fun y => c - f y) x = -deriv f x
[PROOFSTEP]
simp only [← derivWithin_univ, derivWithin_const_sub (uniqueDiffWithinAt_univ : UniqueDiffWithinAt 𝕜 _ _)]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Add", "llama_tokens": 4253} |
[GOAL]
x : ℂ
⊢ HasStrictDerivAt sin (cos x) x
[PROOFSTEP]
simp only [cos, div_eq_mul_inv]
[GOAL]
x : ℂ
⊢ HasStrictDerivAt sin ((exp (x * I) + exp (-x * I)) * 2⁻¹) x
[PROOFSTEP]
convert
((((hasStrictDerivAt_id x).neg.mul_const I).cexp.sub ((hasStrictDerivAt_id x).mul_const I).cexp).mul_const
I).mul_const
(2 : ℂ)⁻¹ using
1
[GOAL]
case h.e'_7
x : ℂ
⊢ (exp (x * I) + exp (-x * I)) * 2⁻¹ = (exp (-id x * I) * (-1 * I) - exp (id x * I) * (1 * I)) * I * 2⁻¹
[PROOFSTEP]
simp only [Function.comp, id]
[GOAL]
case h.e'_7
x : ℂ
⊢ (exp (x * I) + exp (-x * I)) * 2⁻¹ = (exp (-x * I) * (-1 * I) - exp (x * I) * (1 * I)) * I * 2⁻¹
[PROOFSTEP]
rw [sub_mul, mul_assoc, mul_assoc, I_mul_I, neg_one_mul, neg_neg, mul_one, one_mul, mul_assoc, I_mul_I, mul_neg_one,
sub_neg_eq_add, add_comm]
[GOAL]
x : ℂ
⊢ HasStrictDerivAt cos (-sin x) x
[PROOFSTEP]
simp only [sin, div_eq_mul_inv, neg_mul_eq_neg_mul]
[GOAL]
x : ℂ
⊢ HasStrictDerivAt cos (-(exp (-x * I) - exp (x * I)) * I * 2⁻¹) x
[PROOFSTEP]
convert
(((hasStrictDerivAt_id x).mul_const I).cexp.add ((hasStrictDerivAt_id x).neg.mul_const I).cexp).mul_const
(2 : ℂ)⁻¹ using
1
[GOAL]
case h.e'_7
x : ℂ
⊢ -(exp (-x * I) - exp (x * I)) * I * 2⁻¹ = (exp (id x * I) * (1 * I) + exp (-id x * I) * (-1 * I)) * 2⁻¹
[PROOFSTEP]
simp only [Function.comp, id]
[GOAL]
case h.e'_7
x : ℂ
⊢ -(exp (-x * I) - exp (x * I)) * I * 2⁻¹ = (exp (x * I) * (1 * I) + exp (-x * I) * (-1 * I)) * 2⁻¹
[PROOFSTEP]
ring
[GOAL]
x : ℂ
⊢ HasStrictDerivAt sinh (cosh x) x
[PROOFSTEP]
simp only [cosh, div_eq_mul_inv]
[GOAL]
x : ℂ
⊢ HasStrictDerivAt sinh ((exp x + exp (-x)) * 2⁻¹) x
[PROOFSTEP]
convert ((hasStrictDerivAt_exp x).sub (hasStrictDerivAt_id x).neg.cexp).mul_const (2 : ℂ)⁻¹ using 1
[GOAL]
case h.e'_7
x : ℂ
⊢ (exp x + exp (-x)) * 2⁻¹ = (exp x - exp (-id x) * -1) * 2⁻¹
[PROOFSTEP]
rw [id, mul_neg_one, sub_eq_add_neg, neg_neg]
[GOAL]
x : ℂ
⊢ HasStrictDerivAt cosh (sinh x) x
[PROOFSTEP]
simp only [sinh, div_eq_mul_inv]
[GOAL]
x : ℂ
⊢ HasStrictDerivAt cosh ((exp x - exp (-x)) * 2⁻¹) x
[PROOFSTEP]
convert ((hasStrictDerivAt_exp x).add (hasStrictDerivAt_id x).neg.cexp).mul_const (2 : ℂ)⁻¹ using 1
[GOAL]
case h.e'_7
x : ℂ
⊢ (exp x - exp (-x)) * 2⁻¹ = (exp x + exp (-id x) * -1) * 2⁻¹
[PROOFSTEP]
rw [id, mul_neg_one, sub_eq_add_neg]
[GOAL]
x y z : ℝ
⊢ ∀ (x : ℝ), 0 < deriv sinh x
[PROOFSTEP]
rw [Real.deriv_sinh]
[GOAL]
x y z : ℝ
⊢ ∀ (x : ℝ), 0 < cosh x
[PROOFSTEP]
exact cosh_pos
[GOAL]
x y z : ℝ
⊢ 0 < sinh x ↔ 0 < x
[PROOFSTEP]
simpa only [sinh_zero] using @sinh_lt_sinh 0 x
[GOAL]
x y z : ℝ
⊢ sinh x ≤ 0 ↔ x ≤ 0
[PROOFSTEP]
simpa only [sinh_zero] using @sinh_le_sinh x 0
[GOAL]
x y z : ℝ
⊢ sinh x < 0 ↔ x < 0
[PROOFSTEP]
simpa only [sinh_zero] using @sinh_lt_sinh x 0
[GOAL]
x y z : ℝ
⊢ 0 ≤ sinh x ↔ 0 ≤ x
[PROOFSTEP]
simpa only [sinh_zero] using @sinh_le_sinh 0 x
[GOAL]
x✝ y z x : ℝ
⊢ |sinh x| = sinh |x|
[PROOFSTEP]
cases le_total x 0
[GOAL]
case inl
x✝ y z x : ℝ
h✝ : x ≤ 0
⊢ |sinh x| = sinh |x|
[PROOFSTEP]
simp [abs_of_nonneg, abs_of_nonpos, *]
[GOAL]
case inr
x✝ y z x : ℝ
h✝ : 0 ≤ x
⊢ |sinh x| = sinh |x|
[PROOFSTEP]
simp [abs_of_nonneg, abs_of_nonpos, *]
[GOAL]
x✝ y z x : ℝ
hx : x ∈ interior (Ici 0)
⊢ 0 < deriv cosh x
[PROOFSTEP]
rw [interior_Ici, mem_Ioi] at hx
[GOAL]
x✝ y z x : ℝ
hx : 0 < x
⊢ 0 < deriv cosh x
[PROOFSTEP]
rwa [deriv_cosh, sinh_pos_iff]
[GOAL]
x✝ y z x : ℝ
⊢ |0| ≤ |x|
[PROOFSTEP]
simp only [_root_.abs_zero, _root_.abs_nonneg]
[GOAL]
x y z : ℝ
⊢ |0| < |x| ↔ x ≠ 0
[PROOFSTEP]
simp only [_root_.abs_zero, abs_pos]
[GOAL]
x y z : ℝ
⊢ StrictMono fun x => sinh x - x
[PROOFSTEP]
refine' strictMono_of_odd_strictMonoOn_nonneg (fun x => by simp; abel) _
[GOAL]
x✝ y z x : ℝ
⊢ sinh (-x) - -x = -(sinh x - x)
[PROOFSTEP]
simp
[GOAL]
x✝ y z x : ℝ
⊢ -sinh x + x = x - sinh x
[PROOFSTEP]
abel
[GOAL]
x✝ y z x : ℝ
⊢ -sinh x + x = x - sinh x
[PROOFSTEP]
abel
[GOAL]
x y z : ℝ
⊢ StrictMonoOn (fun x => sinh x - x) (Ici 0)
[PROOFSTEP]
refine' (convex_Ici _).strictMonoOn_of_deriv_pos _ fun x hx => _
[GOAL]
case refine'_1
x y z : ℝ
⊢ ContinuousOn (fun x => sinh x - x) (Ici 0)
[PROOFSTEP]
exact (continuous_sinh.sub continuous_id).continuousOn
[GOAL]
case refine'_2
x✝ y z x : ℝ
hx : x ∈ interior (Ici 0)
⊢ 0 < deriv (fun x => sinh x - x) x
[PROOFSTEP]
rw [interior_Ici, mem_Ioi] at hx
[GOAL]
case refine'_2
x✝ y z x : ℝ
hx : 0 < x
⊢ 0 < deriv (fun x => sinh x - x) x
[PROOFSTEP]
rw [deriv_sub, deriv_sinh, deriv_id'', sub_pos, one_lt_cosh]
[GOAL]
case refine'_2
x✝ y z x : ℝ
hx : 0 < x
⊢ x ≠ 0
case refine'_2.hf
x✝ y z x : ℝ
hx : 0 < x
⊢ DifferentiableAt ℝ (fun x => sinh x) x
case refine'_2.hg x✝ y z x : ℝ hx : 0 < x ⊢ DifferentiableAt ℝ (fun x => x) x
[PROOFSTEP]
exacts [hx.ne', differentiableAt_sinh, differentiableAt_id]
[GOAL]
x y z : ℝ
⊢ x ≤ sinh x ↔ sinh 0 - 0 ≤ sinh x - x
[PROOFSTEP]
simp
[GOAL]
x y z : ℝ
⊢ sinh x ≤ x ↔ sinh x - x ≤ sinh 0 - 0
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv", "llama_tokens": 2619} |
{"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Prod", "llama_tokens": 0} |
|
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
⊢ support (deriv f) ⊆ tsupport f
[PROOFSTEP]
intro x
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
x : 𝕜
⊢ x ∈ support (deriv f) → x ∈ tsupport f
[PROOFSTEP]
rw [← not_imp_not]
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
x : 𝕜
⊢ ¬x ∈ tsupport f → ¬x ∈ support (deriv f)
[PROOFSTEP]
intro h2x
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
x : 𝕜
h2x : ¬x ∈ tsupport f
⊢ ¬x ∈ support (deriv f)
[PROOFSTEP]
rw [not_mem_tsupport_iff_eventuallyEq] at h2x
[GOAL]
𝕜 : Type u
inst✝² : NontriviallyNormedField 𝕜
E : Type v
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f : 𝕜 → E
x : 𝕜
h2x : f =ᶠ[nhds x] 0
⊢ ¬x ∈ support (deriv f)
[PROOFSTEP]
exact nmem_support.mpr (h2x.deriv_eq.trans (deriv_const x 0))
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Support", "llama_tokens": 555} |
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : UniformCauchySeqOnFilter f' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
⊢ UniformCauchySeqOnFilter f l (𝓝 x)
[PROOFSTEP]
letI : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 _
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : UniformCauchySeqOnFilter f' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ UniformCauchySeqOnFilter f l (𝓝 x)
[PROOFSTEP]
rw [SeminormedAddGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_zero] at hf' ⊢
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
suffices
TendstoUniformlyOnFilter (fun (n : ι × ι) (z : E) => f n.1 z - f n.2 z - (f n.1 x - f n.2 x)) 0 (l ×ˢ l) (𝓝 x) ∧
TendstoUniformlyOnFilter (fun (n : ι × ι) (_ : E) => f n.1 x - f n.2 x) 0 (l ×ˢ l) (𝓝 x)
by
have := this.1.add this.2
rw [add_zero] at this
exact this.congr (by simp)
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this :
TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (𝓝 x) ∧
TendstoUniformlyOnFilter (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
⊢ TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
have := this.1.add this.2
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝ :
TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (𝓝 x) ∧
TendstoUniformlyOnFilter (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
this :
TendstoUniformlyOnFilter
((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x) (0 + 0) (l ×ˢ l)
(𝓝 x)
⊢ TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
rw [add_zero] at this
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝ :
TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (𝓝 x) ∧
TendstoUniformlyOnFilter (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
this :
TendstoUniformlyOnFilter
((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
⊢ TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
exact this.congr (by simp)
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝ :
TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (𝓝 x) ∧
TendstoUniformlyOnFilter (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
this :
TendstoUniformlyOnFilter
((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x) n.fst n.snd =
f n.fst.fst n.snd - f n.fst.snd n.snd
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (𝓝 x) ∧
TendstoUniformlyOnFilter (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
constructor
[GOAL]
case left
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ TendstoUniformlyOnFilter (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
rw [Metric.tendstoUniformlyOnFilter_iff] at hf' ⊢
[GOAL]
case left
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
intro ε hε
[GOAL]
case left
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
have := (tendsto_swap4_prod.eventually (hf.prod_mk hf)).diag_of_prod_right
[GOAL]
case left
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
obtain ⟨a, b, c, d, e⟩ := eventually_prod_iff.1 ((hf' ε hε).and this)
[GOAL]
case left.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
obtain ⟨R, hR, hR'⟩ := Metric.nhds_basis_ball.eventually_iff.mp d
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
let r := min 1 R
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
have hr : 0 < r := by simp [hR]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
⊢ 0 < r
[PROOFSTEP]
simp [hR]
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
have hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y := fun y hy =>
hR' (lt_of_lt_of_le (Metric.mem_ball.mp hy) (min_le_right _ _))
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
have hxy : ∀ y : E, y ∈ Metric.ball x r → ‖y - x‖ < 1 :=
by
intro y hy
rw [Metric.mem_ball, dist_eq_norm] at hy
exact lt_of_lt_of_le hy (min_le_left _ _)
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
⊢ ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
[PROOFSTEP]
intro y hy
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
y : E
hy : y ∈ Metric.ball x r
⊢ ‖y - x‖ < 1
[PROOFSTEP]
rw [Metric.mem_ball, dist_eq_norm] at hy
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
y : E
hy : ‖y - x‖ < r
⊢ ‖y - x‖ < 1
[PROOFSTEP]
exact lt_of_lt_of_le hy (min_le_left _ _)
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
hxy : ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
have hxyε : ∀ y : E, y ∈ Metric.ball x r → ε * ‖y - x‖ < ε :=
by
intro y hy
exact
(mul_lt_iff_lt_one_right hε.lt).mpr
(hxy y hy)
-- With a small ball in hand, apply the mean value theorem
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
hxy : ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
⊢ ∀ (y : E), y ∈ Metric.ball x r → ε * ‖y - x‖ < ε
[PROOFSTEP]
intro y hy
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
hxy : ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
y : E
hy : y ∈ Metric.ball x r
⊢ ε * ‖y - x‖ < ε
[PROOFSTEP]
exact
(mul_lt_iff_lt_one_right hε.lt).mpr
(hxy y hy)
-- With a small ball in hand, apply the mean value theorem
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
hxy : ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
hxyε : ∀ (y : E), y ∈ Metric.ball x r → ε * ‖y - x‖ < ε
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd) (f n.fst.fst n.snd - f n.fst.snd n.snd - (f n.fst.fst x - f n.fst.snd x)) < ε
[PROOFSTEP]
refine'
eventually_prod_iff.mpr
⟨_, b, fun e : E => Metric.ball x r e, eventually_mem_set.mpr (Metric.nhds_basis_ball.mem_of_mem hr),
fun {n} hn {y} hy => _⟩
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ε ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
hxy : ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
hxyε : ∀ (y : E), y ∈ Metric.ball x r → ε * ‖y - x‖ < ε
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
⊢ dist (OfNat.ofNat 0 (n, y).snd)
(f (n, y).fst.fst (n, y).snd - f (n, y).fst.snd (n, y).snd - (f (n, y).fst.fst x - f (n, y).fst.snd x)) <
ε
[PROOFSTEP]
simp only [Pi.zero_apply, dist_zero_left] at e ⊢
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
hxy : ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
hxyε : ∀ (y : E), y ∈ Metric.ball x r → ε * ‖y - x‖ < ε
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
‖f' x.fst y - f' x.snd y‖ < ε ∧ HasFDerivAt (f x.fst) (f' x.fst y) y ∧ HasFDerivAt (f x.snd) (f' x.snd y) y
⊢ ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ < ε
[PROOFSTEP]
refine' lt_of_le_of_lt _ (hxyε y hy)
[GOAL]
case left.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
R : ℝ
hR : 0 < R
hR' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x R → c x_1
r : ℝ := min 1 R
hr : 0 < r
hr' : ∀ ⦃y : E⦄, y ∈ Metric.ball x r → c y
hxy : ∀ (y : E), y ∈ Metric.ball x r → ‖y - x‖ < 1
hxyε : ∀ (y : E), y ∈ Metric.ball x r → ε * ‖y - x‖ < ε
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
‖f' x.fst y - f' x.snd y‖ < ε ∧ HasFDerivAt (f x.fst) (f' x.fst y) y ∧ HasFDerivAt (f x.snd) (f' x.snd y) y
⊢ ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
exact
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun y hy => ((e hn (hr' hy)).2.1.sub (e hn (hr' hy)).2.2).hasFDerivWithinAt) (fun y hy => (e hn (hr' hy)).1.le)
(convex_ball x r) (Metric.mem_ball_self hr) hy
[GOAL]
case right
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ TendstoUniformlyOnFilter (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
refine' Metric.tendstoUniformlyOnFilter_iff.mpr fun ε hε => _
[GOAL]
case right
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f n.fst.fst x - f n.fst.snd x) < ε
[PROOFSTEP]
obtain ⟨t, ht, ht'⟩ := (Metric.cauchy_iff.mp hfg).2 ε hε
[GOAL]
case right.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f n.fst.fst x - f n.fst.snd x) < ε
[PROOFSTEP]
exact
eventually_prod_iff.mpr
⟨fun n : ι × ι => f n.1 x ∈ t ∧ f n.2 x ∈ t,
eventually_prod_iff.mpr ⟨_, ht, _, ht, fun {n} hn {n'} hn' => ⟨hn, hn'⟩⟩, fun _ => True, by simp,
fun {n} hn {y} _ => by simpa [norm_sub_rev, dist_eq_norm] using ht' _ hn.1 _ hn.2⟩
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
⊢ ∀ᶠ (y : E) in 𝓝 x, (fun x => True) y
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
n : ι × ι
hn : (fun n => f n.fst x ∈ t ∧ f n.snd x ∈ t) n
y : E
x✝ : (fun x => True) y
⊢ dist (OfNat.ofNat 0 (n, y).snd) (f (n, y).fst.fst x - f (n, y).fst.snd x) < ε
[PROOFSTEP]
simpa [norm_sub_rev, dist_eq_norm] using ht' _ hn.1 _ hn.2
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : UniformCauchySeqOn f' l (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
letI : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 _
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : UniformCauchySeqOn f' l (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
have : NeBot l := (cauchy_map_iff.1 hfg).1
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : UniformCauchySeqOn f' l (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
rcases le_or_lt r 0 with (hr | hr)
[GOAL]
case inl
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : UniformCauchySeqOn f' l (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : r ≤ 0
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
simp only [Metric.ball_eq_empty.2 hr, UniformCauchySeqOn, Set.mem_empty_iff_false, IsEmpty.forall_iff, eventually_const,
imp_true_iff]
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : UniformCauchySeqOn f' l (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
rw [SeminormedAddGroup.uniformCauchySeqOn_iff_tendstoUniformlyOn_zero] at hf' ⊢
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
⊢ TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
[PROOFSTEP]
suffices
TendstoUniformlyOn (fun (n : ι × ι) (z : E) => f n.1 z - f n.2 z - (f n.1 x - f n.2 x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun (n : ι × ι) (_ : E) => f n.1 x - f n.2 x) 0 (l ×ˢ l) (Metric.ball x r)
by
have := this.1.add this.2
rw [add_zero] at this
refine' this.congr _
apply eventually_of_forall
intro n z _
simp
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝ : NeBot l
hr : 0 < r
this :
TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
⊢ TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
[PROOFSTEP]
have := this.1.add this.2
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝² : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝¹ : NeBot l
hr : 0 < r
this✝ :
TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
this :
TendstoUniformlyOn ((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x)
(0 + 0) (l ×ˢ l) (Metric.ball x r)
⊢ TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
[PROOFSTEP]
rw [add_zero] at this
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝² : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝¹ : NeBot l
hr : 0 < r
this✝ :
TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
this :
TendstoUniformlyOn ((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x)
0 (l ×ˢ l) (Metric.ball x r)
⊢ TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
[PROOFSTEP]
refine' this.congr _
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝² : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝¹ : NeBot l
hr : 0 < r
this✝ :
TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
this :
TendstoUniformlyOn ((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x)
0 (l ×ˢ l) (Metric.ball x r)
⊢ ∀ᶠ (n : ι × ι) in l ×ˢ l,
Set.EqOn (((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x) n)
(fun z => f n.fst z - f n.snd z) (Metric.ball x r)
[PROOFSTEP]
apply eventually_of_forall
[GOAL]
case hp
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝² : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝¹ : NeBot l
hr : 0 < r
this✝ :
TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
this :
TendstoUniformlyOn ((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x)
0 (l ×ˢ l) (Metric.ball x r)
⊢ ∀ (x_1 : ι × ι),
Set.EqOn (((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_2 => f n.fst x - f n.snd x) x_1)
(fun z => f x_1.fst z - f x_1.snd z) (Metric.ball x r)
[PROOFSTEP]
intro n z _
[GOAL]
case hp
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝² : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝¹ : NeBot l
hr : 0 < r
this✝ :
TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
this :
TendstoUniformlyOn ((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x)
0 (l ×ˢ l) (Metric.ball x r)
n : ι × ι
z : E
a✝ : z ∈ Metric.ball x r
⊢ ((fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) + fun n x_1 => f n.fst x - f n.snd x) n z =
(fun z => f n.fst z - f n.snd z) z
[PROOFSTEP]
simp
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
⊢ TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r) ∧
TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
[PROOFSTEP]
constructor
[GOAL]
case inr.left
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
⊢ TendstoUniformlyOn (fun n z => f n.fst z - f n.snd z - (f n.fst x - f n.snd x)) 0 (l ×ˢ l) (Metric.ball x r)
[PROOFSTEP]
rw [Metric.tendstoUniformlyOn_iff] at hf' ⊢
[GOAL]
case inr.left
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E),
x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f n.fst x_1 - f n.snd x_1 - (f n.fst x - f n.snd x)) < ε
[PROOFSTEP]
intro ε hε
[GOAL]
case inr.left
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E),
x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f n.fst x_1 - f n.snd x_1 - (f n.fst x - f n.snd x)) < ε
[PROOFSTEP]
obtain ⟨q, hqpos, hq⟩ : ∃ q : ℝ, 0 < q ∧ q * r < ε :=
by
simp_rw [mul_comm]
exact exists_pos_mul_lt hε.lt r
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
⊢ ∃ q, 0 < q ∧ q * r < ε
[PROOFSTEP]
simp_rw [mul_comm]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
⊢ ∃ q, 0 < q ∧ r * q < ε
[PROOFSTEP]
exact exists_pos_mul_lt hε.lt r
[GOAL]
case inr.left.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
⊢ ∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E),
x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f n.fst x_1 - f n.snd x_1 - (f n.fst x - f n.snd x)) < ε
[PROOFSTEP]
apply (hf' q hqpos.gt).mono
[GOAL]
case inr.left.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
⊢ ∀ (x_1 : ι × ι),
(∀ (x_2 : E), x_2 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_2) (f' x_1.fst x_2 - f' x_1.snd x_2) < q) →
∀ (x_2 : E),
x_2 ∈ Metric.ball x r →
dist (OfNat.ofNat 0 x_2) (f x_1.fst x_2 - f x_1.snd x_2 - (f x_1.fst x - f x_1.snd x)) < ε
[PROOFSTEP]
intro n hn y hy
[GOAL]
case inr.left.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
n : ι × ι
hn : ∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < q
y : E
hy : y ∈ Metric.ball x r
⊢ dist (OfNat.ofNat 0 y) (f n.fst y - f n.snd y - (f n.fst x - f n.snd x)) < ε
[PROOFSTEP]
simp_rw [dist_eq_norm, Pi.zero_apply, zero_sub, norm_neg] at hn ⊢
[GOAL]
case inr.left.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
n : ι × ι
y : E
hy : y ∈ Metric.ball x r
hn : ∀ (x_1 : E), x_1 ∈ Metric.ball x r → ‖f' n.fst x_1 - f' n.snd x_1‖ < q
⊢ ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ < ε
[PROOFSTEP]
have mvt :=
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le (fun z hz => ((hf n.1 z hz).sub (hf n.2 z hz)).hasFDerivWithinAt)
(fun z hz => (hn z hz).le) (convex_ball x r) (Metric.mem_ball_self hr) hy
[GOAL]
case inr.left.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
n : ι × ι
y : E
hy : y ∈ Metric.ball x r
hn : ∀ (x_1 : E), x_1 ∈ Metric.ball x r → ‖f' n.fst x_1 - f' n.snd x_1‖ < q
mvt : ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ ≤ q * ‖y - x‖
⊢ ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ < ε
[PROOFSTEP]
refine' lt_of_le_of_lt mvt _
[GOAL]
case inr.left.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
n : ι × ι
y : E
hy : y ∈ Metric.ball x r
hn : ∀ (x_1 : E), x_1 ∈ Metric.ball x r → ‖f' n.fst x_1 - f' n.snd x_1‖ < q
mvt : ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ ≤ q * ‖y - x‖
⊢ q * ‖y - x‖ < ε
[PROOFSTEP]
have : q * ‖y - x‖ < q * r :=
mul_lt_mul' rfl.le (by simpa only [dist_eq_norm] using Metric.mem_ball.mp hy) (norm_nonneg _) hqpos
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
n : ι × ι
y : E
hy : y ∈ Metric.ball x r
hn : ∀ (x_1 : E), x_1 ∈ Metric.ball x r → ‖f' n.fst x_1 - f' n.snd x_1‖ < q
mvt : ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ ≤ q * ‖y - x‖
⊢ ‖y - x‖ < r
[PROOFSTEP]
simpa only [dist_eq_norm] using Metric.mem_ball.mp hy
[GOAL]
case inr.left.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × ι) in l ×ˢ l,
∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f' n.fst x_1 - f' n.snd x_1) < ε
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this✝ : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
q : ℝ
hqpos : 0 < q
hq : q * r < ε
n : ι × ι
y : E
hy : y ∈ Metric.ball x r
hn : ∀ (x_1 : E), x_1 ∈ Metric.ball x r → ‖f' n.fst x_1 - f' n.snd x_1‖ < q
mvt : ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ ≤ q * ‖y - x‖
this : q * ‖y - x‖ < q * r
⊢ q * ‖y - x‖ < ε
[PROOFSTEP]
exact this.trans hq
[GOAL]
case inr.right
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
⊢ TendstoUniformlyOn (fun n x_1 => f n.fst x - f n.snd x) 0 (l ×ˢ l) (Metric.ball x r)
[PROOFSTEP]
refine' Metric.tendstoUniformlyOn_iff.mpr fun ε hε => _
[GOAL]
case inr.right
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (n : ι × ι) in l ×ˢ l, ∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f n.fst x - f n.snd x) < ε
[PROOFSTEP]
obtain ⟨t, ht, ht'⟩ := (Metric.cauchy_iff.mp hfg).2 ε hε
[GOAL]
case inr.right.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
⊢ ∀ᶠ (n : ι × ι) in l ×ˢ l, ∀ (x_1 : E), x_1 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_1) (f n.fst x - f n.snd x) < ε
[PROOFSTEP]
rw [eventually_prod_iff]
[GOAL]
case inr.right.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
⊢ ∃ pa,
(∀ᶠ (x : ι) in l, pa x) ∧
∃ pb,
(∀ᶠ (y : ι) in l, pb y) ∧
∀ {x_1 : ι},
pa x_1 →
∀ {y : ι},
pb y →
∀ (x_2 : E),
x_2 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_2) (f (x_1, y).fst x - f (x_1, y).snd x) < ε
[PROOFSTEP]
refine' ⟨fun n => f n x ∈ t, ht, fun n => f n x ∈ t, ht, _⟩
[GOAL]
case inr.right.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
⊢ ∀ {x_1 : ι},
(fun n => f n x ∈ t) x_1 →
∀ {y : ι},
(fun n => f n x ∈ t) y →
∀ (x_2 : E), x_2 ∈ Metric.ball x r → dist (OfNat.ofNat 0 x_2) (f (x_1, y).fst x - f (x_1, y).snd x) < ε
[PROOFSTEP]
intro n hn n' hn' z _
[GOAL]
case inr.right.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
n : ι
hn : f n x ∈ t
n' : ι
hn' : f n' x ∈ t
z : E
a✝ : z ∈ Metric.ball x r
⊢ dist (OfNat.ofNat 0 z) (f (n, n').fst x - f (n, n').snd x) < ε
[PROOFSTEP]
rw [dist_eq_norm, Pi.zero_apply, zero_sub, norm_neg, ← dist_eq_norm]
[GOAL]
case inr.right.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
r : ℝ
hf' : TendstoUniformlyOn (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (Metric.ball x r)
hf : ∀ (n : ι) (y : E), y ∈ Metric.ball x r → HasFDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
this : NeBot l
hr : 0 < r
ε : ℝ
hε : ε > 0
t : Set G
ht : t ∈ map (fun n => f n x) l
ht' : ∀ (x : G), x ∈ t → ∀ (y : G), y ∈ t → dist x y < ε
n : ι
hn : f n x ∈ t
n' : ι
hn' : f n' x ∈ t
z : E
a✝ : z ∈ Metric.ball x r
⊢ dist (f (n, n').fst x) (f (n, n').snd x) < ε
[PROOFSTEP]
exact ht' _ hn _ hn'
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
⊢ Cauchy (map (fun n => f n x) l)
[PROOFSTEP]
have : NeBot l := (cauchy_map_iff.1 hfg).1
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
⊢ Cauchy (map (fun n => f n x) l)
[PROOFSTEP]
let t := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
⊢ Cauchy (map (fun n => f n x) l)
[PROOFSTEP]
suffices H : s ⊆ t
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
H : s ⊆ t
⊢ Cauchy (map (fun n => f n x) l)
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
⊢ s ⊆ t
[PROOFSTEP]
exact (H hx).2
[GOAL]
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
⊢ s ⊆ t
[PROOFSTEP]
have A : ∀ x ε, x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t := fun x ε xt hx y hy =>
⟨hx hy, (uniformCauchySeqOn_ball_of_fderiv (hf'.mono hx) (fun n y hy => hf n y (hx hy)) xt.2).cauchy_map hy⟩
[GOAL]
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
⊢ s ⊆ t
[PROOFSTEP]
have open_t : IsOpen t := by
rw [Metric.isOpen_iff]
intro x hx
rcases Metric.isOpen_iff.1 hs x hx.1 with ⟨ε, εpos, hε⟩
exact ⟨ε, εpos, A x ε hx hε⟩
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
⊢ IsOpen t
[PROOFSTEP]
rw [Metric.isOpen_iff]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
⊢ ∀ (x : E), x ∈ t → ∃ ε, ε > 0 ∧ Metric.ball x ε ⊆ t
[PROOFSTEP]
intro x hx
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx✝ : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
x : E
hx : x ∈ t
⊢ ∃ ε, ε > 0 ∧ Metric.ball x ε ⊆ t
[PROOFSTEP]
rcases Metric.isOpen_iff.1 hs x hx.1 with ⟨ε, εpos, hε⟩
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx✝ : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
x : E
hx : x ∈ t
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ s
⊢ ∃ ε, ε > 0 ∧ Metric.ball x ε ⊆ t
[PROOFSTEP]
exact ⟨ε, εpos, A x ε hx hε⟩
[GOAL]
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
⊢ s ⊆ t
[PROOFSTEP]
have st_nonempty : (s ∩ t).Nonempty := ⟨x₀, hx₀, ⟨hx₀, hfg⟩⟩
[GOAL]
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
⊢ s ⊆ t
[PROOFSTEP]
suffices H : closure t ∩ s ⊆ t
[GOAL]
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
H : closure t ∩ s ⊆ t
⊢ s ⊆ t
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
⊢ closure t ∩ s ⊆ t
[PROOFSTEP]
exact h's.subset_of_closure_inter_subset open_t st_nonempty H
[GOAL]
case H
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x : E
hx₀ : x₀ ∈ s
hx : x ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
⊢ closure t ∩ s ⊆ t
[PROOFSTEP]
rintro x ⟨xt, xs⟩
[GOAL]
case H.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
x : E
xt : x ∈ closure t
xs : x ∈ s
⊢ x ∈ t
[PROOFSTEP]
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ), ε > 0 ∧ Metric.ball x ε ⊆ s := Metric.isOpen_iff.1 hs x xs
[GOAL]
case H.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
x : E
xt : x ∈ closure t
xs : x ∈ s
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ s
⊢ x ∈ t
[PROOFSTEP]
obtain ⟨y, yt, hxy⟩ : ∃ (y : E), y ∈ t ∧ dist x y < ε / 2 := Metric.mem_closure_iff.1 xt _ (half_pos εpos)
[GOAL]
case H.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
x : E
xt : x ∈ closure t
xs : x ∈ s
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ s
y : E
yt : y ∈ t
hxy : dist x y < ε / 2
⊢ x ∈ t
[PROOFSTEP]
have B : Metric.ball y (ε / 2) ⊆ Metric.ball x ε := by apply Metric.ball_subset_ball'; rw [dist_comm]; linarith
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
x : E
xt : x ∈ closure t
xs : x ∈ s
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ s
y : E
yt : y ∈ t
hxy : dist x y < ε / 2
⊢ Metric.ball y (ε / 2) ⊆ Metric.ball x ε
[PROOFSTEP]
apply Metric.ball_subset_ball'
[GOAL]
case h
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
x : E
xt : x ∈ closure t
xs : x ∈ s
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ s
y : E
yt : y ∈ t
hxy : dist x y < ε / 2
⊢ ε / 2 + dist y x ≤ ε
[PROOFSTEP]
rw [dist_comm]
[GOAL]
case h
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
x : E
xt : x ∈ closure t
xs : x ∈ s
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ s
y : E
yt : y ∈ t
hxy : dist x y < ε / 2
⊢ ε / 2 + dist x y ≤ ε
[PROOFSTEP]
linarith
[GOAL]
case H.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝¹ : E
s : Set E
hs : IsOpen s
h's : IsPreconnected s
hf' : UniformCauchySeqOn f' l s
hf : ∀ (n : ι) (y : E), y ∈ s → HasFDerivAt (f n) (f' n y) y
x₀ x✝ : E
hx₀ : x₀ ∈ s
hx : x✝ ∈ s
hfg : Cauchy (map (fun n => f n x₀) l)
this : NeBot l
t : Set E := {y | y ∈ s ∧ Cauchy (map (fun n => f n y) l)}
A : ∀ (x : E) (ε : ℝ), x ∈ t → Metric.ball x ε ⊆ s → Metric.ball x ε ⊆ t
open_t : IsOpen t
st_nonempty : Set.Nonempty (s ∩ t)
x : E
xt : x ∈ closure t
xs : x ∈ s
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ s
y : E
yt : y ∈ t
hxy : dist x y < ε / 2
B : Metric.ball y (ε / 2) ⊆ Metric.ball x ε
⊢ x ∈ t
[PROOFSTEP]
exact A y (ε / 2) yt (B.trans hε) (Metric.mem_ball.2 hxy)
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ TendstoUniformlyOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) (fun y => (↑‖y - x‖)⁻¹ • (g y - g x)) l (𝓝 x)
[PROOFSTEP]
let : NormedSpace ℝ E
[GOAL]
case this
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ NormedSpace ℝ E
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this : NormedSpace ℝ E := ?this
⊢ TendstoUniformlyOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) (fun y => (↑‖y - x‖)⁻¹ • (g y - g x)) l (𝓝 x)
[PROOFSTEP]
exact NormedSpace.restrictScalars ℝ 𝕜 _
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ TendstoUniformlyOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) (fun y => (↑‖y - x‖)⁻¹ • (g y - g x)) l (𝓝 x)
[PROOFSTEP]
rcases eq_or_ne l ⊥ with (hl | hl)
[GOAL]
case inl
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l = ⊥
⊢ TendstoUniformlyOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) (fun y => (↑‖y - x‖)⁻¹ • (g y - g x)) l (𝓝 x)
[PROOFSTEP]
simp only [hl, TendstoUniformlyOnFilter, bot_prod, eventually_bot, imp_true_iff]
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
⊢ TendstoUniformlyOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) (fun y => (↑‖y - x‖)⁻¹ • (g y - g x)) l (𝓝 x)
[PROOFSTEP]
haveI : NeBot l := ⟨hl⟩
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
⊢ TendstoUniformlyOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) (fun y => (↑‖y - x‖)⁻¹ • (g y - g x)) l (𝓝 x)
[PROOFSTEP]
refine'
UniformCauchySeqOnFilter.tendstoUniformlyOnFilter_of_tendsto _
((hfg.and (eventually_const.mpr hfg.self_of_nhds)).mono fun y hy => (hy.1.sub hy.2).const_smul _)
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
⊢ UniformCauchySeqOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) l (𝓝 x)
[PROOFSTEP]
rw [SeminormedAddGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_zero]
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
⊢ TendstoUniformlyOnFilter (fun n z => (↑‖z - x‖)⁻¹ • (f n.fst z - f n.fst x) - (↑‖z - x‖)⁻¹ • (f n.snd z - f n.snd x))
0 (l ×ˢ l) (𝓝 x)
[PROOFSTEP]
rw [Metric.tendstoUniformlyOnFilter_iff]
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
have hfg' := hf'.uniformCauchySeqOnFilter
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
hfg' : UniformCauchySeqOnFilter f' l (𝓝 x)
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
rw [SeminormedAddGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_zero] at hfg'
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
hfg' : TendstoUniformlyOnFilter (fun n z => f' n.fst z - f' n.snd z) 0 (l ×ˢ l) (𝓝 x)
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
rw [Metric.tendstoUniformlyOnFilter_iff] at hfg'
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
hfg' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
intro ε hε
[GOAL]
case inr
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
hfg' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
obtain ⟨q, hqpos, hqε⟩ := exists_pos_rat_lt hε
[GOAL]
case inr.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
hfg' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
specialize hfg' (q : ℝ) (by simp [hqpos])
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
hfg' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
⊢ ↑q > 0
[PROOFSTEP]
simp [hqpos]
[GOAL]
case inr.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
have := (tendsto_swap4_prod.eventually (hf.prod_mk hf)).diag_of_prod_right
[GOAL]
case inr.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
obtain ⟨a, b, c, d, e⟩ := eventually_prod_iff.1 (hfg'.and this)
[GOAL]
case inr.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
obtain ⟨r, hr, hr'⟩ := Metric.nhds_basis_ball.eventually_iff.mp d
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
⊢ ∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
dist (OfNat.ofNat 0 n.snd)
((↑‖n.snd - x‖)⁻¹ • (f n.fst.fst n.snd - f n.fst.fst x) -
(↑‖n.snd - x‖)⁻¹ • (f n.fst.snd n.snd - f n.fst.snd x)) <
ε
[PROOFSTEP]
rw [eventually_prod_iff]
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
⊢ ∃ pa,
(∀ᶠ (x : ι × ι) in l ×ˢ l, pa x) ∧
∃ pb,
(∀ᶠ (y : E) in 𝓝 x, pb y) ∧
∀ {x_1 : ι × ι},
pa x_1 →
∀ {y : E},
pb y →
dist (OfNat.ofNat 0 (x_1, y).snd)
((↑‖(x_1, y).snd - x‖)⁻¹ • (f (x_1, y).fst.fst (x_1, y).snd - f (x_1, y).fst.fst x) -
(↑‖(x_1, y).snd - x‖)⁻¹ • (f (x_1, y).fst.snd (x_1, y).snd - f (x_1, y).fst.snd x)) <
ε
[PROOFSTEP]
refine'
⟨_, b, fun e : E => Metric.ball x r e, eventually_mem_set.mpr (Metric.nhds_basis_ball.mem_of_mem hr),
fun {n} hn {y} hy => _⟩
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
⊢ dist (OfNat.ofNat 0 (n, y).snd)
((↑‖(n, y).snd - x‖)⁻¹ • (f (n, y).fst.fst (n, y).snd - f (n, y).fst.fst x) -
(↑‖(n, y).snd - x‖)⁻¹ • (f (n, y).fst.snd (n, y).snd - f (n, y).fst.snd x)) <
ε
[PROOFSTEP]
simp only [Pi.zero_apply, dist_zero_left]
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
⊢ ‖(↑‖y - x‖)⁻¹ • (f n.fst y - f n.fst x) - (↑‖y - x‖)⁻¹ • (f n.snd y - f n.snd x)‖ < ε
[PROOFSTEP]
rw [← smul_sub, norm_smul, norm_inv, IsROrC.norm_coe_norm]
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
⊢ ‖y - x‖⁻¹ * ‖f n.fst y - f n.fst x - (f n.snd y - f n.snd x)‖ < ε
[PROOFSTEP]
refine' lt_of_le_of_lt _ hqε
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
⊢ ‖y - x‖⁻¹ * ‖f n.fst y - f n.fst x - (f n.snd y - f n.snd x)‖ ≤ ↑q
[PROOFSTEP]
by_cases hyz' : x = y
[GOAL]
case pos
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : x = y
⊢ ‖y - x‖⁻¹ * ‖f n.fst y - f n.fst x - (f n.snd y - f n.snd x)‖ ≤ ↑q
[PROOFSTEP]
simp [hyz', hqpos.le]
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : ¬x = y
⊢ ‖y - x‖⁻¹ * ‖f n.fst y - f n.fst x - (f n.snd y - f n.snd x)‖ ≤ ↑q
[PROOFSTEP]
have hyz : 0 < ‖y - x‖ := by rw [norm_pos_iff]; intro hy'; exact hyz' (eq_of_sub_eq_zero hy').symm
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : ¬x = y
⊢ 0 < ‖y - x‖
[PROOFSTEP]
rw [norm_pos_iff]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : ¬x = y
⊢ y - x ≠ 0
[PROOFSTEP]
intro hy'
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : ¬x = y
hy' : y - x = 0
⊢ False
[PROOFSTEP]
exact hyz' (eq_of_sub_eq_zero hy').symm
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : ¬x = y
hyz : 0 < ‖y - x‖
⊢ ‖y - x‖⁻¹ * ‖f n.fst y - f n.fst x - (f n.snd y - f n.snd x)‖ ≤ ↑q
[PROOFSTEP]
rw [inv_mul_le_iff hyz, mul_comm, sub_sub_sub_comm]
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
dist (OfNat.ofNat 0 (x, y).snd) (f' (x, y).fst.fst (x, y).snd - f' (x, y).fst.snd (x, y).snd) < ↑q ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst)
(f'
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.fst
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd)
((((x, y).fst, (x, y).snd, (x, y).snd).fst.fst, ((x, y).fst, (x, y).snd, (x, y).snd).snd.fst),
((x, y).fst, (x, y).snd, (x, y).snd).fst.snd,
((x, y).fst, (x, y).snd, (x, y).snd).snd.snd).snd.snd
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : ¬x = y
hyz : 0 < ‖y - x‖
⊢ ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ ≤ ↑q * ‖y - x‖
[PROOFSTEP]
simp only [Pi.zero_apply, dist_zero_left] at e
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
hl : l ≠ ⊥
this✝ : NeBot l
ε : ℝ
hε : ε > 0
q : ℚ
hqpos : 0 < q
hqε : ↑q < ε
hfg' :
∀ᶠ (n : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x, dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ↑q
this :
∀ᶠ (x : (ι × ι) × E) in (l ×ˢ l) ×ˢ 𝓝 x,
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).fst.snd ∧
HasFDerivAt
(f
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst)
(f'
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.fst
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd)
(((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd,
(x.fst, x.snd, x.snd).snd.snd).snd.snd
a : ι × ι → Prop
b : ∀ᶠ (x : ι × ι) in l ×ˢ l, a x
c : E → Prop
d : ∀ᶠ (y : E) in 𝓝 x, c y
r : ℝ
hr : 0 < r
hr' : ∀ ⦃x_1 : E⦄, x_1 ∈ Metric.ball x r → c x_1
n : ι × ι
hn : a n
y : E
hy : (fun e => Metric.ball x r e) y
hyz' : ¬x = y
hyz : 0 < ‖y - x‖
e :
∀ {x : ι × ι},
a x →
∀ {y : E},
c y →
‖f' x.fst y - f' x.snd y‖ < ↑q ∧ HasFDerivAt (f x.fst) (f' x.fst y) y ∧ HasFDerivAt (f x.snd) (f' x.snd y) y
⊢ ‖f n.fst y - f n.snd y - (f n.fst x - f n.snd x)‖ ≤ ↑q * ‖y - x‖
[PROOFSTEP]
refine'
Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le
(fun y hy => ((e hn (hr' hy)).2.1.sub (e hn (hr' hy)).2.2).hasFDerivWithinAt) (fun y hy => (e hn (hr' hy)).1.le)
(convex_ball x r) (Metric.mem_ball_self hr) hy
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
rw [hasFDerivAt_iff_tendsto]
-- Introduce extra quantifier via curried filters
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖g x' - g x - ↑(g' x) (x' - x)‖) (𝓝 x) (𝓝 0)
[PROOFSTEP]
suffices Tendsto (fun y : ι × E => ‖y.2 - x‖⁻¹ * ‖g y.2 - g x - (g' x) (y.2 - x)‖) (l.curry (𝓝 x)) (𝓝 0)
by
rw [Metric.tendsto_nhds] at this ⊢
intro ε hε
specialize this ε hε
rw [eventually_curry_iff] at this
simp only at this
exact
(eventually_const.mp this).mono
(by simp only [imp_self, forall_const])
-- With the new quantifier in hand, we can perform the famous `ε/3` proof. Specifically,
-- we will break up the limit (the difference functions minus the derivative go to 0) into 3:
-- * The difference functions of the `f n` converge *uniformly* to the difference functions
-- of the `g n`
-- * The `f' n` are the derivatives of the `f n`
-- * The `f' n` converge to `g'` at `x`
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this : Tendsto (fun y => ‖y.snd - x‖⁻¹ * ‖g y.snd - g x - ↑(g' x) (y.snd - x)‖) (curry l (𝓝 x)) (𝓝 0)
⊢ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖g x' - g x - ↑(g' x) (x' - x)‖) (𝓝 x) (𝓝 0)
[PROOFSTEP]
rw [Metric.tendsto_nhds] at this ⊢
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this :
∀ (ε : ℝ),
ε > 0 → ∀ᶠ (x_1 : ι × E) in curry l (𝓝 x), dist (‖x_1.snd - x‖⁻¹ * ‖g x_1.snd - g x - ↑(g' x) (x_1.snd - x)‖) 0 < ε
⊢ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x_1 : E) in 𝓝 x, dist (‖x_1 - x‖⁻¹ * ‖g x_1 - g x - ↑(g' x) (x_1 - x)‖) 0 < ε
[PROOFSTEP]
intro ε hε
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this :
∀ (ε : ℝ),
ε > 0 → ∀ᶠ (x_1 : ι × E) in curry l (𝓝 x), dist (‖x_1.snd - x‖⁻¹ * ‖g x_1.snd - g x - ↑(g' x) (x_1.snd - x)‖) 0 < ε
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (x_1 : E) in 𝓝 x, dist (‖x_1 - x‖⁻¹ * ‖g x_1 - g x - ↑(g' x) (x_1 - x)‖) 0 < ε
[PROOFSTEP]
specialize this ε hε
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
ε : ℝ
hε : ε > 0
this : ∀ᶠ (x_1 : ι × E) in curry l (𝓝 x), dist (‖x_1.snd - x‖⁻¹ * ‖g x_1.snd - g x - ↑(g' x) (x_1.snd - x)‖) 0 < ε
⊢ ∀ᶠ (x_1 : E) in 𝓝 x, dist (‖x_1 - x‖⁻¹ * ‖g x_1 - g x - ↑(g' x) (x_1 - x)‖) 0 < ε
[PROOFSTEP]
rw [eventually_curry_iff] at this
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
ε : ℝ
hε : ε > 0
this :
∀ᶠ (x_1 : ι) in l,
∀ᶠ (y : E) in 𝓝 x, dist (‖(x_1, y).snd - x‖⁻¹ * ‖g (x_1, y).snd - g x - ↑(g' x) ((x_1, y).snd - x)‖) 0 < ε
⊢ ∀ᶠ (x_1 : E) in 𝓝 x, dist (‖x_1 - x‖⁻¹ * ‖g x_1 - g x - ↑(g' x) (x_1 - x)‖) 0 < ε
[PROOFSTEP]
simp only at this
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
ε : ℝ
hε : ε > 0
this : ∀ᶠ (x_1 : ι) in l, ∀ᶠ (y : E) in 𝓝 x, dist (‖y - x‖⁻¹ * ‖g y - g x - ↑(g' x) (y - x)‖) 0 < ε
⊢ ∀ᶠ (x_1 : E) in 𝓝 x, dist (‖x_1 - x‖⁻¹ * ‖g x_1 - g x - ↑(g' x) (x_1 - x)‖) 0 < ε
[PROOFSTEP]
exact
(eventually_const.mp this).mono
(by simp only [imp_self, forall_const])
-- With the new quantifier in hand, we can perform the famous `ε/3` proof. Specifically,
-- we will break up the limit (the difference functions minus the derivative go to 0) into 3:
-- * The difference functions of the `f n` converge *uniformly* to the difference functions
-- of the `g n`
-- * The `f' n` are the derivatives of the `f n`
-- * The `f' n` converge to `g'` at `x`
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
ε : ℝ
hε : ε > 0
this : ∀ᶠ (x_1 : ι) in l, ∀ᶠ (y : E) in 𝓝 x, dist (‖y - x‖⁻¹ * ‖g y - g x - ↑(g' x) (y - x)‖) 0 < ε
⊢ ∀ (x_1 : E),
dist (‖x_1 - x‖⁻¹ * ‖g x_1 - g x - ↑(g' x) (x_1 - x)‖) 0 < ε →
dist (‖x_1 - x‖⁻¹ * ‖g x_1 - g x - ↑(g' x) (x_1 - x)‖) 0 < ε
[PROOFSTEP]
simp only [imp_self, forall_const]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ Tendsto (fun y => ‖y.snd - x‖⁻¹ * ‖g y.snd - g x - ↑(g' x) (y.snd - x)‖) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
conv =>
congr
ext
rw [← abs_norm, ← abs_inv, ← @IsROrC.norm_ofReal 𝕜 _ _, IsROrC.ofReal_inv, ← norm_smul]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| Tendsto (fun y => ‖y.snd - x‖⁻¹ * ‖g y.snd - g x - ↑(g' x) (y.snd - x)‖) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
congr
ext
rw [← abs_norm, ← abs_inv, ← @IsROrC.norm_ofReal 𝕜 _ _, IsROrC.ofReal_inv, ← norm_smul]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| Tendsto (fun y => ‖y.snd - x‖⁻¹ * ‖g y.snd - g x - ↑(g' x) (y.snd - x)‖) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
congr
ext
rw [← abs_norm, ← abs_inv, ← @IsROrC.norm_ofReal 𝕜 _ _, IsROrC.ofReal_inv, ← norm_smul]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| Tendsto (fun y => ‖y.snd - x‖⁻¹ * ‖g y.snd - g x - ↑(g' x) (y.snd - x)‖) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
congr
[GOAL]
case f
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| fun y => ‖y.snd - x‖⁻¹ * ‖g y.snd - g x - ↑(g' x) (y.snd - x)‖
case l₁
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| curry l (𝓝 x)
case l₂
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| 𝓝 0
[PROOFSTEP]
ext
[GOAL]
case f.h
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
x✝ : ι × E
| ‖x✝.snd - x‖⁻¹ * ‖g x✝.snd - g x - ↑(g' x) (x✝.snd - x)‖
case l₁
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| curry l (𝓝 x)
case l₂
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
| 𝓝 0
[PROOFSTEP]
rw [← abs_norm, ← abs_inv, ← @IsROrC.norm_ofReal 𝕜 _ _, IsROrC.ofReal_inv, ← norm_smul]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ Tendsto (fun x_1 => ‖(↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - ↑(g' x) (x_1.snd - x))‖) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
rw [← tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ Tendsto (fun x_1 => (↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - ↑(g' x) (x_1.snd - x))) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
have :
(fun a : ι × E => (‖a.2 - x‖⁻¹ : 𝕜) • (g a.2 - g x - (g' x) (a.2 - x))) =
((fun a : ι × E => (‖a.2 - x‖⁻¹ : 𝕜) • (g a.2 - g x - (f a.1 a.2 - f a.1 x))) + fun a : ι × E =>
(‖a.2 - x‖⁻¹ : 𝕜) • (f a.1 a.2 - f a.1 x - ((f' a.1 x) a.2 - (f' a.1 x) x))) +
fun a : ι × E => (‖a.2 - x‖⁻¹ : 𝕜) • (f' a.1 x - g' x) (a.2 - x) :=
by
ext; simp only [Pi.add_apply]; rw [← smul_add, ← smul_add]; congr
simp only [map_sub, sub_add_sub_cancel, ContinuousLinearMap.coe_sub', Pi.sub_apply]
-- Porting note: added
abel
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ (fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
x✝ : ι × E
⊢ (↑‖x✝.snd - x‖)⁻¹ • (g x✝.snd - g x - ↑(g' x) (x✝.snd - x)) =
(((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x))
x✝
[PROOFSTEP]
simp only [Pi.add_apply]
[GOAL]
case h
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
x✝ : ι × E
⊢ (↑‖x✝.snd - x‖)⁻¹ • (g x✝.snd - g x - ↑(g' x) (x✝.snd - x)) =
(↑‖x✝.snd - x‖)⁻¹ • (g x✝.snd - g x - (f x✝.fst x✝.snd - f x✝.fst x)) +
(↑‖x✝.snd - x‖)⁻¹ • (f x✝.fst x✝.snd - f x✝.fst x - (↑(f' x✝.fst x) x✝.snd - ↑(f' x✝.fst x) x)) +
(↑‖x✝.snd - x‖)⁻¹ • ↑(f' x✝.fst x - g' x) (x✝.snd - x)
[PROOFSTEP]
rw [← smul_add, ← smul_add]
[GOAL]
case h
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
x✝ : ι × E
⊢ (↑‖x✝.snd - x‖)⁻¹ • (g x✝.snd - g x - ↑(g' x) (x✝.snd - x)) =
(↑‖x✝.snd - x‖)⁻¹ •
(g x✝.snd - g x - (f x✝.fst x✝.snd - f x✝.fst x) +
(f x✝.fst x✝.snd - f x✝.fst x - (↑(f' x✝.fst x) x✝.snd - ↑(f' x✝.fst x) x)) +
↑(f' x✝.fst x - g' x) (x✝.snd - x))
[PROOFSTEP]
congr
[GOAL]
case h.e_a
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
x✝ : ι × E
⊢ g x✝.snd - g x - ↑(g' x) (x✝.snd - x) =
g x✝.snd - g x - (f x✝.fst x✝.snd - f x✝.fst x) +
(f x✝.fst x✝.snd - f x✝.fst x - (↑(f' x✝.fst x) x✝.snd - ↑(f' x✝.fst x) x)) +
↑(f' x✝.fst x - g' x) (x✝.snd - x)
[PROOFSTEP]
simp only [map_sub, sub_add_sub_cancel, ContinuousLinearMap.coe_sub', Pi.sub_apply]
-- Porting note: added
[GOAL]
case h.e_a
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
x✝ : ι × E
⊢ g x✝.snd - g x - (↑(g' x) x✝.snd - ↑(g' x) x) =
g x✝.snd - g x - (↑(f' x✝.fst x) x✝.snd - ↑(f' x✝.fst x) x) +
(↑(f' x✝.fst x) x✝.snd - ↑(g' x) x✝.snd - (↑(f' x✝.fst x) x - ↑(g' x) x))
[PROOFSTEP]
abel
[GOAL]
case h.e_a
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
x✝ : ι × E
⊢ g x✝.snd - g x - (↑(g' x) x✝.snd - ↑(g' x) x) =
g x✝.snd - g x - (↑(f' x✝.fst x) x✝.snd - ↑(f' x✝.fst x) x) +
(↑(f' x✝.fst x) x✝.snd - ↑(g' x) x✝.snd - (↑(f' x✝.fst x) x - ↑(g' x) x))
[PROOFSTEP]
abel
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
⊢ Tendsto (fun x_1 => (↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - ↑(g' x) (x_1.snd - x))) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
simp_rw [this]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
⊢ Tendsto
(((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x))
(curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
have : 𝓝 (0 : G) = 𝓝 (0 + 0 + 0)
[GOAL]
case this
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
⊢ 𝓝 0 = 𝓝 (0 + 0 + 0)
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto
(((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x))
(curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
simp only [add_zero]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto
(((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x))
(curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
rw [this]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto
(((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x))
(curry l (𝓝 x)) (𝓝 (0 + 0 + 0))
[PROOFSTEP]
refine' Tendsto.add (Tendsto.add _ _) _
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto (fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) x_1) (curry l (𝓝 x))
(𝓝 0)
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto
(fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) x_1)
(curry l (𝓝 x)) (𝓝 0)
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto (fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)) x_1) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
simp only
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto (fun x_1 => (↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - (f x_1.fst x_1.snd - f x_1.fst x))) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
have := difference_quotients_converge_uniformly hf' hf hfg
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
TendstoUniformlyOnFilter (fun n y => (↑‖y - x‖)⁻¹ • (f n y - f n x)) (fun y => (↑‖y - x‖)⁻¹ • (g y - g x)) l (𝓝 x)
⊢ Tendsto (fun x_1 => (↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - (f x_1.fst x_1.snd - f x_1.fst x))) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
rw [Metric.tendstoUniformlyOnFilter_iff] at this
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x,
dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
⊢ Tendsto (fun x_1 => (↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - (f x_1.fst x_1.snd - f x_1.fst x))) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
rw [Metric.tendsto_nhds]
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x,
dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (x_1 : ι × E) in curry l (𝓝 x),
dist ((↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - (f x_1.fst x_1.snd - f x_1.fst x))) 0 < ε
[PROOFSTEP]
intro ε hε
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x,
dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (x_1 : ι × E) in curry l (𝓝 x),
dist ((↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - (f x_1.fst x_1.snd - f x_1.fst x))) 0 < ε
[PROOFSTEP]
apply ((this ε hε).filter_mono curry_le_prod).mono
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x,
dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
ε : ℝ
hε : ε > 0
⊢ ∀ (x_1 : ι × E),
dist ((↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x)) ((↑‖x_1.snd - x‖)⁻¹ • (f x_1.fst x_1.snd - f x_1.fst x)) < ε →
dist ((↑‖x_1.snd - x‖)⁻¹ • (g x_1.snd - g x - (f x_1.fst x_1.snd - f x_1.fst x))) 0 < ε
[PROOFSTEP]
intro n hn
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x,
dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
ε : ℝ
hε : ε > 0
n : ι × E
hn : dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
⊢ dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x - (f n.fst n.snd - f n.fst x))) 0 < ε
[PROOFSTEP]
rw [dist_eq_norm] at hn ⊢
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x,
dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
ε : ℝ
hε : ε > 0
n : ι × E
hn : ‖(↑‖n.snd - x‖)⁻¹ • (g n.snd - g x) - (↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)‖ < ε
⊢ ‖(↑‖n.snd - x‖)⁻¹ • (g n.snd - g x - (f n.fst n.snd - f n.fst x)) - 0‖ < ε
[PROOFSTEP]
rw [← smul_sub] at hn
[GOAL]
case refine'_1
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x,
dist ((↑‖n.snd - x‖)⁻¹ • (g n.snd - g x)) ((↑‖n.snd - x‖)⁻¹ • (f n.fst n.snd - f n.fst x)) < ε
ε : ℝ
hε : ε > 0
n : ι × E
hn : ‖(↑‖n.snd - x‖)⁻¹ • (g n.snd - g x - (f n.fst n.snd - f n.fst x))‖ < ε
⊢ ‖(↑‖n.snd - x‖)⁻¹ • (g n.snd - g x - (f n.fst n.snd - f n.fst x)) - 0‖ < ε
[PROOFSTEP]
rwa [sub_zero]
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto
(fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) x_1)
(curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
rw [Metric.tendsto_nhds]
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (x_1 : ι × E) in curry l (𝓝 x),
dist ((fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) x_1)
0 <
ε
[PROOFSTEP]
intro ε hε
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (x_1 : ι × E) in curry l (𝓝 x),
dist ((fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) x_1) 0 < ε
[PROOFSTEP]
rw [eventually_curry_iff]
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (x_1 : ι) in l,
∀ᶠ (y : E) in 𝓝 x,
dist
((fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) (x_1, y))
0 <
ε
[PROOFSTEP]
refine' hf.curry.mono fun n hn => _
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
n : ι
hn : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt (f (n, y).fst) (f' (n, y).fst (n, y).snd) (n, y).snd
⊢ ∀ᶠ (y : E) in 𝓝 x,
dist ((fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) (n, y))
0 <
ε
[PROOFSTEP]
have := hn.self_of_nhds
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
n : ι
hn : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt (f (n, y).fst) (f' (n, y).fst (n, y).snd) (n, y).snd
this : HasFDerivAt (f (n, x).fst) (f' (n, x).fst (n, x).snd) (n, x).snd
⊢ ∀ᶠ (y : E) in 𝓝 x,
dist ((fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) (n, y))
0 <
ε
[PROOFSTEP]
rw [hasFDerivAt_iff_tendsto, Metric.tendsto_nhds] at this
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
n : ι
hn : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt (f (n, y).fst) (f' (n, y).fst (n, y).snd) (n, y).snd
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (x_1 : E) in 𝓝 (n, x).snd,
dist
(‖x_1 - (n, x).snd‖⁻¹ *
‖f (n, x).fst x_1 - f (n, x).fst (n, x).snd - ↑(f' (n, x).fst (n, x).snd) (x_1 - (n, x).snd)‖)
0 <
ε
⊢ ∀ᶠ (y : E) in 𝓝 x,
dist ((fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) (n, y))
0 <
ε
[PROOFSTEP]
refine' (this ε hε).mono fun y hy => _
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
n : ι
hn : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt (f (n, y).fst) (f' (n, y).fst (n, y).snd) (n, y).snd
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (x_1 : E) in 𝓝 (n, x).snd,
dist
(‖x_1 - (n, x).snd‖⁻¹ *
‖f (n, x).fst x_1 - f (n, x).fst (n, x).snd - ↑(f' (n, x).fst (n, x).snd) (x_1 - (n, x).snd)‖)
0 <
ε
y : E
hy :
dist (‖y - (n, x).snd‖⁻¹ * ‖f (n, x).fst y - f (n, x).fst (n, x).snd - ↑(f' (n, x).fst (n, x).snd) (y - (n, x).snd)‖)
0 <
ε
⊢ dist ((fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) (n, y)) 0 <
ε
[PROOFSTEP]
rw [dist_eq_norm] at hy ⊢
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
n : ι
hn : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt (f (n, y).fst) (f' (n, y).fst (n, y).snd) (n, y).snd
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (x_1 : E) in 𝓝 (n, x).snd,
dist
(‖x_1 - (n, x).snd‖⁻¹ *
‖f (n, x).fst x_1 - f (n, x).fst (n, x).snd - ↑(f' (n, x).fst (n, x).snd) (x_1 - (n, x).snd)‖)
0 <
ε
y : E
hy :
‖‖y - (n, x).snd‖⁻¹ * ‖f (n, x).fst y - f (n, x).fst (n, x).snd - ↑(f' (n, x).fst (n, x).snd) (y - (n, x).snd)‖ - 0‖ <
ε
⊢ ‖(fun a => (↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) (n, y) - 0‖ < ε
[PROOFSTEP]
simp only [sub_zero, map_sub, norm_mul, norm_inv, norm_norm] at hy ⊢
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
n : ι
hn : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt (f (n, y).fst) (f' (n, y).fst (n, y).snd) (n, y).snd
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (x_1 : E) in 𝓝 (n, x).snd,
dist
(‖x_1 - (n, x).snd‖⁻¹ *
‖f (n, x).fst x_1 - f (n, x).fst (n, x).snd - ↑(f' (n, x).fst (n, x).snd) (x_1 - (n, x).snd)‖)
0 <
ε
y : E
hy : ‖y - x‖⁻¹ * ‖f n y - f n x - (↑(f' n x) y - ↑(f' n x) x)‖ < ε
⊢ ‖(↑‖y - x‖)⁻¹ • (f n y - f n x - (↑(f' n x) y - ↑(f' n x) x))‖ < ε
[PROOFSTEP]
rw [norm_smul, norm_inv, IsROrC.norm_coe_norm]
[GOAL]
case refine'_2
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝¹ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this✝ : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
n : ι
hn : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt (f (n, y).fst) (f' (n, y).fst (n, y).snd) (n, y).snd
this :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (x_1 : E) in 𝓝 (n, x).snd,
dist
(‖x_1 - (n, x).snd‖⁻¹ *
‖f (n, x).fst x_1 - f (n, x).fst (n, x).snd - ↑(f' (n, x).fst (n, x).snd) (x_1 - (n, x).snd)‖)
0 <
ε
y : E
hy : ‖y - x‖⁻¹ * ‖f n y - f n x - (↑(f' n x) y - ↑(f' n x) x)‖ < ε
⊢ ‖y - x‖⁻¹ * ‖f n y - f n x - (↑(f' n x) y - ↑(f' n x) x)‖ < ε
[PROOFSTEP]
exact hy
[GOAL]
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto (fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)) x_1) (curry l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
refine' Tendsto.mono_left _ curry_le_prod
[GOAL]
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto (fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)) x_1) (Filter.prod l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
have h1 : Tendsto (fun n : ι × E => g' n.2 - f' n.1 n.2) (l ×ˢ 𝓝 x) (𝓝 0) :=
by
rw [Metric.tendstoUniformlyOnFilter_iff] at hf'
exact Metric.tendsto_nhds.mpr fun ε hε => by simpa using hf' ε hε
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
[PROOFSTEP]
rw [Metric.tendstoUniformlyOnFilter_iff] at hf'
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
⊢ Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
[PROOFSTEP]
exact Metric.tendsto_nhds.mpr fun ε hε => by simpa using hf' ε hε
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (x : ι × E) in l ×ˢ 𝓝 x, dist (g' x.snd - f' x.fst x.snd) 0 < ε
[PROOFSTEP]
simpa using hf' ε hε
[GOAL]
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
⊢ Tendsto (fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)) x_1) (Filter.prod l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
have h2 : Tendsto (fun n : ι => g' x - f' n x) l (𝓝 0) :=
by
rw [Metric.tendsto_nhds] at h1 ⊢
exact fun ε hε => (h1 ε hε).curry.mono fun n hn => hn.self_of_nhds
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
⊢ Tendsto (fun n => g' x - f' n x) l (𝓝 0)
[PROOFSTEP]
rw [Metric.tendsto_nhds] at h1 ⊢
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : ι × E) in l ×ˢ 𝓝 x, dist (g' x.snd - f' x.fst x.snd) 0 < ε
⊢ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x_1 : ι) in l, dist (g' x - f' x_1 x) 0 < ε
[PROOFSTEP]
exact fun ε hε => (h1 ε hε).curry.mono fun n hn => hn.self_of_nhds
[GOAL]
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
⊢ Tendsto (fun x_1 => (fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)) x_1) (Filter.prod l (𝓝 x)) (𝓝 0)
[PROOFSTEP]
refine' squeeze_zero_norm _ (tendsto_zero_iff_norm_tendsto_zero.mp (tendsto_fst.comp (h2.prod_map tendsto_id)))
[GOAL]
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
⊢ ∀ (n : ι × E),
‖(fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)) n‖ ≤
‖(Prod.fst ∘ Prod.map (fun n => g' x - f' n x) id) n‖
[PROOFSTEP]
intro n
[GOAL]
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
⊢ ‖(fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)) n‖ ≤
‖(Prod.fst ∘ Prod.map (fun n => g' x - f' n x) id) n‖
[PROOFSTEP]
simp_rw [norm_smul, norm_inv, IsROrC.norm_coe_norm]
[GOAL]
case refine'_3
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
⊢ ‖n.snd - x‖⁻¹ * ‖↑(f' n.fst x - g' x) (n.snd - x)‖ ≤ ‖(Prod.fst ∘ Prod.map (fun n => g' x - f' n x) id) n‖
[PROOFSTEP]
by_cases hx : x = n.2
[GOAL]
case pos
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : x = n.snd
⊢ ‖n.snd - x‖⁻¹ * ‖↑(f' n.fst x - g' x) (n.snd - x)‖ ≤ ‖(Prod.fst ∘ Prod.map (fun n => g' x - f' n x) id) n‖
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
⊢ ‖n.snd - x‖⁻¹ * ‖↑(f' n.fst x - g' x) (n.snd - x)‖ ≤ ‖(Prod.fst ∘ Prod.map (fun n => g' x - f' n x) id) n‖
[PROOFSTEP]
have hnx : 0 < ‖n.2 - x‖ := by rw [norm_pos_iff]; intro hx'; exact hx (eq_of_sub_eq_zero hx').symm
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
⊢ 0 < ‖n.snd - x‖
[PROOFSTEP]
rw [norm_pos_iff]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
⊢ n.snd - x ≠ 0
[PROOFSTEP]
intro hx'
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
hx' : n.snd - x = 0
⊢ False
[PROOFSTEP]
exact hx (eq_of_sub_eq_zero hx').symm
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
hnx : 0 < ‖n.snd - x‖
⊢ ‖n.snd - x‖⁻¹ * ‖↑(f' n.fst x - g' x) (n.snd - x)‖ ≤ ‖(Prod.fst ∘ Prod.map (fun n => g' x - f' n x) id) n‖
[PROOFSTEP]
rw [inv_mul_le_iff hnx, mul_comm]
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
hnx : 0 < ‖n.snd - x‖
⊢ ‖↑(f' n.fst x - g' x) (n.snd - x)‖ ≤ ‖(Prod.fst ∘ Prod.map (fun n => g' x - f' n x) id) n‖ * ‖n.snd - x‖
[PROOFSTEP]
simp only [Function.comp_apply, Prod_map]
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
hnx : 0 < ‖n.snd - x‖
⊢ ‖↑(f' n.fst x - g' x) (n.snd - x)‖ ≤ ‖g' x - f' n.fst x‖ * ‖n.snd - x‖
[PROOFSTEP]
rw [norm_sub_rev]
[GOAL]
case neg
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : E) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
this✝ :
(fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - ↑(g' x) (a.snd - x))) =
((fun a => (↑‖a.snd - x‖)⁻¹ • (g a.snd - g x - (f a.fst a.snd - f a.fst x))) + fun a =>
(↑‖a.snd - x‖)⁻¹ • (f a.fst a.snd - f a.fst x - (↑(f' a.fst x) a.snd - ↑(f' a.fst x) x))) +
fun a => (↑‖a.snd - x‖)⁻¹ • ↑(f' a.fst x - g' x) (a.snd - x)
this : 𝓝 0 = 𝓝 (0 + 0 + 0)
h1 : Tendsto (fun n => g' n.snd - f' n.fst n.snd) (l ×ˢ 𝓝 x) (𝓝 0)
h2 : Tendsto (fun n => g' x - f' n x) l (𝓝 0)
n : ι × E
hx : ¬x = n.snd
hnx : 0 < ‖n.snd - x‖
⊢ ‖↑(f' n.fst x - g' x) (n.snd - x)‖ ≤ ‖f' n.fst x - g' x‖ * ‖n.snd - x‖
[PROOFSTEP]
exact (f' n.1 x - g' x).le_op_norm (n.2 - x)
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ (n : ι) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
have h1 : s ∈ 𝓝 x := hs.mem_nhds hx
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ (n : ι) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
have h3 : Set.univ ×ˢ s ∈ l ×ˢ 𝓝 x := by simp only [h1, prod_mem_prod_iff, univ_mem, and_self_iff]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ (n : ι) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
⊢ Set.univ ×ˢ s ∈ l ×ˢ 𝓝 x
[PROOFSTEP]
simp only [h1, prod_mem_prod_iff, univ_mem, and_self_iff]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ (n : ι) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
h3 : Set.univ ×ˢ s ∈ l ×ˢ 𝓝 x
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
have h4 : ∀ᶠ n : ι × E in l ×ˢ 𝓝 x, HasFDerivAt (f n.1) (f' n.1 n.2) n.2 :=
eventually_of_mem h3 fun ⟨n, z⟩ ⟨_, hz⟩ => hf n z hz
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ (n : ι) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
h3 : Set.univ ×ˢ s ∈ l ×ˢ 𝓝 x
h4 : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
refine' hasFDerivAt_of_tendstoUniformlyOnFilter _ h4 (eventually_of_mem h1 hfg)
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ (n : ι) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
h3 : Set.univ ×ˢ s ∈ l ×ˢ 𝓝 x
h4 : ∀ᶠ (n : ι × E) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (f' n.fst n.snd) n.snd
⊢ TendstoUniformlyOnFilter f' g' l (𝓝 x)
[PROOFSTEP]
simpa [IsOpen.nhdsWithin_eq hs hx] using tendstoLocallyUniformlyOn_iff_filter.mp hf' x hx
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn (fderiv 𝕜 ∘ f) g' l s
hf : ∀ (n : ι), DifferentiableOn 𝕜 (f n) s
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
refine' hasFDerivAt_of_tendstoLocallyUniformlyOn hs hf' (fun n z hz => _) hfg hx
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
s : Set E
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn (fderiv 𝕜 ∘ f) g' l s
hf : ∀ (n : ι), DifferentiableOn 𝕜 (f n) s
hfg : ∀ (x : E), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
n : ι
z : E
hz : z ∈ s
⊢ HasFDerivAt (fun x => f n x) ((fderiv 𝕜 ∘ f) n z) z
[PROOFSTEP]
exact ((hf n z hz).differentiableAt (hs.mem_nhds hz)).hasFDerivAt
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x : E
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
⊢ ∀ (x : E), HasFDerivAt g (g' x) x
[PROOFSTEP]
intro x
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
x : E
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
have hf : ∀ n : ι, ∀ x : E, x ∈ Set.univ → HasFDerivAt (f n) (f' n x) x := by simp [hf]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
x : E
⊢ ∀ (n : ι) (x : E), x ∈ Set.univ → HasFDerivAt (f n) (f' n x) x
[PROOFSTEP]
simp [hf]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
x : E
hf : ∀ (n : ι) (x : E), x ∈ Set.univ → HasFDerivAt (f n) (f' n x) x
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
have hfg : ∀ x : E, x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x)) := by simp [hfg]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
x : E
hf : ∀ (n : ι) (x : E), x ∈ Set.univ → HasFDerivAt (f n) (f' n x) x
⊢ ∀ (x : E), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
[PROOFSTEP]
simp [hfg]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg✝ : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
x : E
hf : ∀ (n : ι) (x : E), x ∈ Set.univ → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
have hf' : TendstoUniformlyOn f' g' l Set.univ := by rwa [tendstoUniformlyOn_univ]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg✝ : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
x : E
hf : ∀ (n : ι) (x : E), x ∈ Set.univ → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
⊢ TendstoUniformlyOn f' g' l Set.univ
[PROOFSTEP]
rwa [tendstoUniformlyOn_univ]
[GOAL]
ι : Type u_1
l : Filter ι
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedSpace 𝕜 E
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → E → G
g : E → G
f' : ι → E → E →L[𝕜] G
g' : E → E →L[𝕜] G
x✝ : E
inst✝ : NeBot l
hf'✝ : TendstoUniformly f' g' l
hf✝ : ∀ (n : ι) (x : E), HasFDerivAt (f n) (f' n x) x
hfg✝ : ∀ (x : E), Tendsto (fun n => f n x) l (𝓝 (g x))
x : E
hf : ∀ (n : ι) (x : E), x ∈ Set.univ → HasFDerivAt (f n) (f' n x) x
hfg : ∀ (x : E), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
hf' : TendstoUniformlyOn f' g' l Set.univ
⊢ HasFDerivAt g (g' x) x
[PROOFSTEP]
refine' hasFDerivAt_of_tendstoUniformlyOn isOpen_univ hf' hf hfg x (Set.mem_univ x)
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' : UniformCauchySeqOnFilter f' l l'
⊢ UniformCauchySeqOnFilter (fun n z => ContinuousLinearMap.smulRight 1 (f' n z)) l l'
[PROOFSTEP]
rw [SeminormedAddGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_zero,
Metric.tendstoUniformlyOnFilter_iff] at hf' ⊢
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
⊢ ∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l',
dist (OfNat.ofNat 0 n.snd)
(ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) -
ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)) <
ε
[PROOFSTEP]
intro ε hε
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l',
dist (OfNat.ofNat 0 n.snd)
(ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)) <
ε
[PROOFSTEP]
obtain ⟨q, hq, hq'⟩ := exists_between hε.lt
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
⊢ ∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l',
dist (OfNat.ofNat 0 n.snd)
(ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)) <
ε
[PROOFSTEP]
apply (hf' q hq).mono
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
⊢ ∀ (x : (ι × ι) × 𝕜),
dist (OfNat.ofNat 0 x.snd) (f' x.fst.fst x.snd - f' x.fst.snd x.snd) < q →
dist (OfNat.ofNat 0 x.snd)
(ContinuousLinearMap.smulRight 1 (f' x.fst.fst x.snd) -
ContinuousLinearMap.smulRight 1 (f' x.fst.snd x.snd)) <
ε
[PROOFSTEP]
intro n hn
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : (ι × ι) × 𝕜
hn : dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < q
⊢ dist (OfNat.ofNat 0 n.snd)
(ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)) <
ε
[PROOFSTEP]
refine' lt_of_le_of_lt _ hq'
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : (ι × ι) × 𝕜
hn : dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < q
⊢ dist (OfNat.ofNat 0 n.snd)
(ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)) ≤
q
[PROOFSTEP]
simp only [dist_eq_norm, Pi.zero_apply, zero_sub, norm_neg] at hn ⊢
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : (ι × ι) × 𝕜
hn : ‖f' n.fst.fst n.snd - f' n.fst.snd n.snd‖ < q
⊢ ‖ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)‖ ≤ q
[PROOFSTEP]
refine' ContinuousLinearMap.op_norm_le_bound _ hq.le _
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : (ι × ι) × 𝕜
hn : ‖f' n.fst.fst n.snd - f' n.fst.snd n.snd‖ < q
⊢ ∀ (x : 𝕜),
‖↑(ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)) x‖ ≤
q * ‖x‖
[PROOFSTEP]
intro z
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : (ι × ι) × 𝕜
hn : ‖f' n.fst.fst n.snd - f' n.fst.snd n.snd‖ < q
z : 𝕜
⊢ ‖↑(ContinuousLinearMap.smulRight 1 (f' n.fst.fst n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst.snd n.snd)) z‖ ≤
q * ‖z‖
[PROOFSTEP]
simp only [ContinuousLinearMap.coe_sub', Pi.sub_apply, ContinuousLinearMap.smulRight_apply,
ContinuousLinearMap.one_apply]
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : (ι × ι) × 𝕜
hn : ‖f' n.fst.fst n.snd - f' n.fst.snd n.snd‖ < q
z : 𝕜
⊢ ‖z • f' n.fst.fst n.snd - z • f' n.fst.snd n.snd‖ ≤ q * ‖z‖
[PROOFSTEP]
rw [← smul_sub, norm_smul, mul_comm]
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
l' : Filter 𝕜
hf' :
∀ (ε : ℝ),
ε > 0 →
∀ᶠ (n : (ι × ι) × 𝕜) in (l ×ˢ l) ×ˢ l', dist (OfNat.ofNat 0 n.snd) (f' n.fst.fst n.snd - f' n.fst.snd n.snd) < ε
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : (ι × ι) × 𝕜
hn : ‖f' n.fst.fst n.snd - f' n.fst.snd n.snd‖ < q
z : 𝕜
⊢ ‖f' n.fst.fst n.snd - f' n.fst.snd n.snd‖ * ‖z‖ ≤ q * ‖z‖
[PROOFSTEP]
gcongr
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
hf' : UniformCauchySeqOnFilter f' l (𝓝 x)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : Cauchy (map (fun n => f n x) l)
⊢ UniformCauchySeqOnFilter f l (𝓝 x)
[PROOFSTEP]
simp_rw [hasDerivAt_iff_hasFDerivAt] at hf
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
hf' : UniformCauchySeqOnFilter f' l (𝓝 x)
hfg : Cauchy (map (fun n => f n x) l)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
⊢ UniformCauchySeqOnFilter f l (𝓝 x)
[PROOFSTEP]
exact uniformCauchySeqOnFilter_of_fderiv hf'.one_smulRight hf hfg
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
r : ℝ
hf' : UniformCauchySeqOn f' l (Metric.ball x r)
hf : ∀ (n : ι) (y : 𝕜), y ∈ Metric.ball x r → HasDerivAt (f n) (f' n y) y
hfg : Cauchy (map (fun n => f n x) l)
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
simp_rw [hasDerivAt_iff_hasFDerivAt] at hf
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
r : ℝ
hf' : UniformCauchySeqOn f' l (Metric.ball x r)
hfg : Cauchy (map (fun n => f n x) l)
hf : ∀ (n : ι) (y : 𝕜), y ∈ Metric.ball x r → HasFDerivAt (f n) (ContinuousLinearMap.smulRight 1 (f' n y)) y
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
rw [uniformCauchySeqOn_iff_uniformCauchySeqOnFilter] at hf'
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
r : ℝ
hf' : UniformCauchySeqOnFilter f' l (𝓟 (Metric.ball x r))
hfg : Cauchy (map (fun n => f n x) l)
hf : ∀ (n : ι) (y : 𝕜), y ∈ Metric.ball x r → HasFDerivAt (f n) (ContinuousLinearMap.smulRight 1 (f' n y)) y
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
have hf' : UniformCauchySeqOn (fun n => fun z => (1 : 𝕜 →L[𝕜] 𝕜).smulRight (f' n z)) l (Metric.ball x r) :=
by
rw [uniformCauchySeqOn_iff_uniformCauchySeqOnFilter]
exact hf'.one_smulRight
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
r : ℝ
hf' : UniformCauchySeqOnFilter f' l (𝓟 (Metric.ball x r))
hfg : Cauchy (map (fun n => f n x) l)
hf : ∀ (n : ι) (y : 𝕜), y ∈ Metric.ball x r → HasFDerivAt (f n) (ContinuousLinearMap.smulRight 1 (f' n y)) y
⊢ UniformCauchySeqOn (fun n z => ContinuousLinearMap.smulRight 1 (f' n z)) l (Metric.ball x r)
[PROOFSTEP]
rw [uniformCauchySeqOn_iff_uniformCauchySeqOnFilter]
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
r : ℝ
hf' : UniformCauchySeqOnFilter f' l (𝓟 (Metric.ball x r))
hfg : Cauchy (map (fun n => f n x) l)
hf : ∀ (n : ι) (y : 𝕜), y ∈ Metric.ball x r → HasFDerivAt (f n) (ContinuousLinearMap.smulRight 1 (f' n y)) y
⊢ UniformCauchySeqOnFilter (fun n z => ContinuousLinearMap.smulRight 1 (f' n z)) l (𝓟 (Metric.ball x r))
[PROOFSTEP]
exact hf'.one_smulRight
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
G : Type u_3
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
r : ℝ
hf'✝ : UniformCauchySeqOnFilter f' l (𝓟 (Metric.ball x r))
hfg : Cauchy (map (fun n => f n x) l)
hf : ∀ (n : ι) (y : 𝕜), y ∈ Metric.ball x r → HasFDerivAt (f n) (ContinuousLinearMap.smulRight 1 (f' n y)) y
hf' : UniformCauchySeqOn (fun n z => ContinuousLinearMap.smulRight 1 (f' n z)) l (Metric.ball x r)
⊢ UniformCauchySeqOn f l (Metric.ball x r)
[PROOFSTEP]
exact uniformCauchySeqOn_ball_of_fderiv hf' hf hfg
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
let F' n z := (1 : 𝕜 →L[𝕜] 𝕜).smulRight (f' n z)
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
let G' z := (1 : 𝕜 →L[𝕜] 𝕜).smulRight (g' z)
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.fst) (f' n.fst n.snd) n.snd
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
simp_rw [hasDerivAt_iff_hasFDerivAt] at hf ⊢
-- Now we need to rewrite hf' in terms of continuous_linear_maps. The tricky part is that
-- operator norms are written in terms of `≤` whereas metrics are written in terms of `<`. So we
-- need to shrink `ε` utilizing the archimedean property of `ℝ`
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
⊢ HasFDerivAt g (ContinuousLinearMap.smulRight 1 (g' x)) x
[PROOFSTEP]
have hf' : TendstoUniformlyOnFilter F' G' l (𝓝 x) :=
by
rw [Metric.tendstoUniformlyOnFilter_iff] at hf' ⊢
intro ε hε
obtain ⟨q, hq, hq'⟩ := exists_between hε.lt
apply (hf' q hq).mono
intro n hn
refine' lt_of_le_of_lt _ hq'
simp only [dist_eq_norm] at hn ⊢
refine' ContinuousLinearMap.op_norm_le_bound _ hq.le _
intro z
simp only [ContinuousLinearMap.coe_sub', Pi.sub_apply, ContinuousLinearMap.smulRight_apply,
ContinuousLinearMap.one_apply]
rw [← smul_sub, norm_smul, mul_comm]
gcongr
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
⊢ TendstoUniformlyOnFilter F' G' l (𝓝 x)
[PROOFSTEP]
rw [Metric.tendstoUniformlyOnFilter_iff] at hf' ⊢
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
⊢ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (G' n.snd) (F' n.fst n.snd) < ε
[PROOFSTEP]
intro ε hε
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (G' n.snd) (F' n.fst n.snd) < ε
[PROOFSTEP]
obtain ⟨q, hq, hq'⟩ := exists_between hε.lt
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
⊢ ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (G' n.snd) (F' n.fst n.snd) < ε
[PROOFSTEP]
apply (hf' q hq).mono
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
⊢ ∀ (x : ι × 𝕜), dist (g' x.snd) (f' x.fst x.snd) < q → dist (G' x.snd) (F' x.fst x.snd) < ε
[PROOFSTEP]
intro n hn
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : ι × 𝕜
hn : dist (g' n.snd) (f' n.fst n.snd) < q
⊢ dist (G' n.snd) (F' n.fst n.snd) < ε
[PROOFSTEP]
refine' lt_of_le_of_lt _ hq'
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : ι × 𝕜
hn : dist (g' n.snd) (f' n.fst n.snd) < q
⊢ dist (G' n.snd) (F' n.fst n.snd) ≤ q
[PROOFSTEP]
simp only [dist_eq_norm] at hn ⊢
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : ι × 𝕜
hn : ‖g' n.snd - f' n.fst n.snd‖ < q
⊢ ‖ContinuousLinearMap.smulRight 1 (g' n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)‖ ≤ q
[PROOFSTEP]
refine' ContinuousLinearMap.op_norm_le_bound _ hq.le _
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : ι × 𝕜
hn : ‖g' n.snd - f' n.fst n.snd‖ < q
⊢ ∀ (x : 𝕜),
‖↑(ContinuousLinearMap.smulRight 1 (g' n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) x‖ ≤ q * ‖x‖
[PROOFSTEP]
intro z
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : ι × 𝕜
hn : ‖g' n.snd - f' n.fst n.snd‖ < q
z : 𝕜
⊢ ‖↑(ContinuousLinearMap.smulRight 1 (g' n.snd) - ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) z‖ ≤ q * ‖z‖
[PROOFSTEP]
simp only [ContinuousLinearMap.coe_sub', Pi.sub_apply, ContinuousLinearMap.smulRight_apply,
ContinuousLinearMap.one_apply]
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : ι × 𝕜
hn : ‖g' n.snd - f' n.fst n.snd‖ < q
z : 𝕜
⊢ ‖z • g' n.snd - z • f' n.fst n.snd‖ ≤ q * ‖z‖
[PROOFSTEP]
rw [← smul_sub, norm_smul, mul_comm]
[GOAL]
case intro.intro
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, dist (g' n.snd) (f' n.fst n.snd) < ε
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
ε : ℝ
hε : ε > 0
q : ℝ
hq : 0 < q
hq' : q < ε
n : ι × 𝕜
hn : ‖g' n.snd - f' n.fst n.snd‖ < q
z : 𝕜
⊢ ‖g' n.snd - f' n.fst n.snd‖ * ‖z‖ ≤ q * ‖z‖
[PROOFSTEP]
gcongr
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf'✝ : TendstoUniformlyOnFilter f' g' l (𝓝 x)
hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))
F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z)
G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z)
hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasFDerivAt (f n.fst) (ContinuousLinearMap.smulRight 1 (f' n.fst n.snd)) n.snd
hf' : TendstoUniformlyOnFilter F' G' l (𝓝 x)
⊢ HasFDerivAt g (ContinuousLinearMap.smulRight 1 (g' x)) x
[PROOFSTEP]
exact hasFDerivAt_of_tendstoUniformlyOnFilter hf' hf hfg
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
s : Set 𝕜
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ s → HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
have h1 : s ∈ 𝓝 x := hs.mem_nhds hx
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
s : Set 𝕜
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ s → HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
have h2 : ∀ᶠ n : ι × 𝕜 in l ×ˢ 𝓝 x, HasDerivAt (f n.1) (f' n.1 n.2) n.2 :=
eventually_prod_iff.2 ⟨_, hf, fun x => x ∈ s, h1, fun {n} => id⟩
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
s : Set 𝕜
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ s → HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
h2 : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.fst) (f' n.fst n.snd) n.snd
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
refine' hasDerivAt_of_tendstoUniformlyOnFilter _ h2 (eventually_of_mem h1 hfg)
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
s : Set 𝕜
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn f' g' l s
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ s → HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
h1 : s ∈ 𝓝 x
h2 : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.fst) (f' n.fst n.snd) n.snd
⊢ TendstoUniformlyOnFilter f' g' l (𝓝 x)
[PROOFSTEP]
simpa [IsOpen.nhdsWithin_eq hs hx] using tendstoLocallyUniformlyOn_iff_filter.mp hf' x hx
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
s : Set 𝕜
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn (deriv ∘ f) g' l s
hf : ∀ᶠ (n : ι) in l, DifferentiableOn 𝕜 (f n) s
hfg : ∀ (x : 𝕜), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
refine' hasDerivAt_of_tendstoLocallyUniformlyOn hs hf' _ hfg hx
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
s : Set 𝕜
hs : IsOpen s
hf' : TendstoLocallyUniformlyOn (deriv ∘ f) g' l s
hf : ∀ᶠ (n : ι) in l, DifferentiableOn 𝕜 (f n) s
hfg : ∀ (x : 𝕜), x ∈ s → Tendsto (fun n => f n x) l (𝓝 (g x))
hx : x ∈ s
⊢ ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ s → HasDerivAt (fun x => f n x) ((deriv ∘ f) n x) x
[PROOFSTEP]
filter_upwards [hf] with n h z hz using ((h z hz).differentiableAt (hs.mem_nhds hz)).hasDerivAt
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
⊢ ∀ (x : 𝕜), HasDerivAt g (g' x) x
[PROOFSTEP]
intro x
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x✝ : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
x : 𝕜
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
have hf : ∀ᶠ n in l, ∀ x : 𝕜, x ∈ Set.univ → HasDerivAt (f n) (f' n x) x := by
filter_upwards [hf] with n h x _ using h x
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x✝ : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
x : 𝕜
⊢ ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ Set.univ → HasDerivAt (f n) (f' n x) x
[PROOFSTEP]
filter_upwards [hf] with n h x _ using h x
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x✝ : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
x : 𝕜
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ Set.univ → HasDerivAt (f n) (f' n x) x
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
have hfg : ∀ x : 𝕜, x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x)) := by simp [hfg]
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x✝ : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
x : 𝕜
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ Set.univ → HasDerivAt (f n) (f' n x) x
⊢ ∀ (x : 𝕜), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
[PROOFSTEP]
simp [hfg]
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x✝ : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg✝ : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
x : 𝕜
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ Set.univ → HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
have hf' : TendstoUniformlyOn f' g' l Set.univ := by rwa [tendstoUniformlyOn_univ]
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x✝ : 𝕜
inst✝ : NeBot l
hf' : TendstoUniformly f' g' l
hf✝ : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg✝ : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
x : 𝕜
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ Set.univ → HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
⊢ TendstoUniformlyOn f' g' l Set.univ
[PROOFSTEP]
rwa [tendstoUniformlyOn_univ]
[GOAL]
ι : Type u_1
l : Filter ι
𝕜 : Type u_2
inst✝³ : IsROrC 𝕜
G : Type u_3
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
f : ι → 𝕜 → G
g : 𝕜 → G
f' : ι → 𝕜 → G
g' : 𝕜 → G
x✝ : 𝕜
inst✝ : NeBot l
hf'✝ : TendstoUniformly f' g' l
hf✝ : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), HasDerivAt (f n) (f' n x) x
hfg✝ : ∀ (x : 𝕜), Tendsto (fun n => f n x) l (𝓝 (g x))
x : 𝕜
hf : ∀ᶠ (n : ι) in l, ∀ (x : 𝕜), x ∈ Set.univ → HasDerivAt (f n) (f' n x) x
hfg : ∀ (x : 𝕜), x ∈ Set.univ → Tendsto (fun n => f n x) l (𝓝 (g x))
hf' : TendstoUniformlyOn f' g' l Set.univ
⊢ HasDerivAt g (g' x) x
[PROOFSTEP]
exact hasDerivAt_of_tendstoUniformlyOn isOpen_univ hf' hf hfg x (Set.mem_univ x)
| {"mathlib_filename": "Mathlib.Analysis.Calculus.UniformLimitsDeriv", "llama_tokens": 198155} |
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ E
inst✝ : InnerProductSpace ℝ F
f : E → F
x : E
⊢ ConformalAt f x ↔ ∃ c, 0 < c ∧ ∀ (u v : E), inner (↑(fderiv ℝ f x) u) (↑(fderiv ℝ f x) v) = c * inner u v
[PROOFSTEP]
rw [conformalAt_iff_isConformalMap_fderiv, isConformalMap_iff]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ E
inst✝ : InnerProductSpace ℝ F
f : E → F
x : E
f' : E →L[ℝ] F
h : HasFDerivAt f f' x
⊢ ConformalAt f x ↔ ∃ c, 0 < c ∧ ∀ (u v : E), inner (↑f' u) (↑f' v) = c * inner u v
[PROOFSTEP]
simp only [conformalAt_iff', h.fderiv]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Conformal.InnerProduct", "llama_tokens": 350} |
[GOAL]
𝕜 : Type u
inst✝⁷ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
f : 𝕜 → F
inst✝⁴ : StarRing 𝕜
inst✝³ : TrivialStar 𝕜
inst✝² : StarAddMonoid F
inst✝¹ : ContinuousStar F
inst✝ : StarModule 𝕜 F
f' : F
x : 𝕜
L : Filter 𝕜
h : HasDerivAtFilter f f' x L
⊢ HasDerivAtFilter (fun x => star (f x)) (star f') x L
[PROOFSTEP]
simpa using h.star.hasDerivAtFilter
[GOAL]
𝕜 : Type u
inst✝⁷ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
f : 𝕜 → F
inst✝⁴ : StarRing 𝕜
inst✝³ : TrivialStar 𝕜
inst✝² : StarAddMonoid F
inst✝¹ : ContinuousStar F
inst✝ : StarModule 𝕜 F
f' : F
x : 𝕜
h : HasStrictDerivAt f f' x
⊢ HasStrictDerivAt (fun x => star (f x)) (star f') x
[PROOFSTEP]
simpa using h.star.hasStrictDerivAt
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Star", "llama_tokens": 387} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ : ℝ
⊢ taylorWithin f (n + 1) s x₀ =
taylorWithin f n s x₀ +
↑(PolynomialModule.comp (Polynomial.X - ↑Polynomial.C x₀))
(↑(PolynomialModule.single ℝ (n + 1)) (taylorCoeffWithin f (n + 1) s x₀))
[PROOFSTEP]
dsimp only [taylorWithin]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ : ℝ
⊢ ∑ k in Finset.range (n + 1 + 1),
↑(PolynomialModule.comp (Polynomial.X - ↑Polynomial.C x₀))
(↑(PolynomialModule.single ℝ k) (taylorCoeffWithin f k s x₀)) =
∑ k in Finset.range (n + 1),
↑(PolynomialModule.comp (Polynomial.X - ↑Polynomial.C x₀))
(↑(PolynomialModule.single ℝ k) (taylorCoeffWithin f k s x₀)) +
↑(PolynomialModule.comp (Polynomial.X - ↑Polynomial.C x₀))
(↑(PolynomialModule.single ℝ (n + 1)) (taylorCoeffWithin f (n + 1) s x₀))
[PROOFSTEP]
rw [Finset.sum_range_succ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ x : ℝ
⊢ taylorWithinEval f (n + 1) s x₀ x =
taylorWithinEval f n s x₀ x + (((↑n + 1) * ↑n !)⁻¹ * (x - x₀) ^ (n + 1)) • iteratedDerivWithin (n + 1) f s x₀
[PROOFSTEP]
simp_rw [taylorWithinEval, taylorWithin_succ, LinearMap.map_add, PolynomialModule.comp_eval]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ x : ℝ
⊢ ↑(PolynomialModule.eval x) (taylorWithin f n s x₀) +
↑(PolynomialModule.eval (Polynomial.eval x (Polynomial.X - ↑Polynomial.C x₀)))
(↑(PolynomialModule.single ℝ (n + 1)) (taylorCoeffWithin f (n + 1) s x₀)) =
↑(PolynomialModule.eval x) (taylorWithin f n s x₀) +
(((↑n + 1) * ↑n !)⁻¹ * (x - x₀) ^ (n + 1)) • iteratedDerivWithin (n + 1) f s x₀
[PROOFSTEP]
congr
[GOAL]
case e_a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ x : ℝ
⊢ ↑(PolynomialModule.eval (Polynomial.eval x (Polynomial.X - ↑Polynomial.C x₀)))
(↑(PolynomialModule.single ℝ (n + 1)) (taylorCoeffWithin f (n + 1) s x₀)) =
(((↑n + 1) * ↑n !)⁻¹ * (x - x₀) ^ (n + 1)) • iteratedDerivWithin (n + 1) f s x₀
[PROOFSTEP]
simp only [Polynomial.eval_sub, Polynomial.eval_X, Polynomial.eval_C, PolynomialModule.eval_single, mul_inv_rev]
[GOAL]
case e_a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ x : ℝ
⊢ (x - x₀) ^ (n + 1) • taylorCoeffWithin f (n + 1) s x₀ =
((↑n !)⁻¹ * (↑n + 1)⁻¹ * (x - x₀) ^ (n + 1)) • iteratedDerivWithin (n + 1) f s x₀
[PROOFSTEP]
dsimp only [taylorCoeffWithin]
[GOAL]
case e_a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ x : ℝ
⊢ (x - x₀) ^ (n + 1) • (↑(n + 1)!)⁻¹ • iteratedDerivWithin (n + 1) f s x₀ =
((↑n !)⁻¹ * (↑n + 1)⁻¹ * (x - x₀) ^ (n + 1)) • iteratedDerivWithin (n + 1) f s x₀
[PROOFSTEP]
rw [← mul_smul, mul_comm, Nat.factorial_succ, Nat.cast_mul, Nat.cast_add, Nat.cast_one, mul_inv_rev]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ x : ℝ
⊢ taylorWithinEval f 0 s x₀ x = f x₀
[PROOFSTEP]
dsimp only [taylorWithinEval]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ x : ℝ
⊢ ↑(PolynomialModule.eval x) (taylorWithin f 0 s x₀) = f x₀
[PROOFSTEP]
dsimp only [taylorWithin]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ x : ℝ
⊢ ↑(PolynomialModule.eval x)
(∑ k in Finset.range (0 + 1),
↑(PolynomialModule.comp (Polynomial.X - ↑Polynomial.C x₀))
(↑(PolynomialModule.single ℝ k) (taylorCoeffWithin f k s x₀))) =
f x₀
[PROOFSTEP]
dsimp only [taylorCoeffWithin]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ x : ℝ
⊢ ↑(PolynomialModule.eval x)
(∑ k in Finset.range (0 + 1),
↑(PolynomialModule.comp (Polynomial.X - ↑Polynomial.C x₀))
(↑(PolynomialModule.single ℝ k) ((↑k !)⁻¹ • iteratedDerivWithin k f s x₀))) =
f x₀
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ : ℝ
⊢ taylorWithinEval f n s x₀ x₀ = f x₀
[PROOFSTEP]
induction' n with k hk
[GOAL]
case zero
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ : ℝ
⊢ taylorWithinEval f Nat.zero s x₀ x₀ = f x₀
[PROOFSTEP]
exact taylor_within_zero_eval _ _ _ _
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ : ℝ
k : ℕ
hk : taylorWithinEval f k s x₀ x₀ = f x₀
⊢ taylorWithinEval f (Nat.succ k) s x₀ x₀ = f x₀
[PROOFSTEP]
simp [hk]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
n : ℕ
s : Set ℝ
x₀ x : ℝ
⊢ taylorWithinEval f n s x₀ x = ∑ k in Finset.range (n + 1), ((↑k !)⁻¹ * (x - x₀) ^ k) • iteratedDerivWithin k f s x₀
[PROOFSTEP]
induction' n with k hk
[GOAL]
case zero
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ x : ℝ
⊢ taylorWithinEval f Nat.zero s x₀ x =
∑ k in Finset.range (Nat.zero + 1), ((↑k !)⁻¹ * (x - x₀) ^ k) • iteratedDerivWithin k f s x₀
[PROOFSTEP]
simp
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ x : ℝ
k : ℕ
hk : taylorWithinEval f k s x₀ x = ∑ k in Finset.range (k + 1), ((↑k !)⁻¹ * (x - x₀) ^ k) • iteratedDerivWithin k f s x₀
⊢ taylorWithinEval f (Nat.succ k) s x₀ x =
∑ k in Finset.range (Nat.succ k + 1), ((↑k !)⁻¹ * (x - x₀) ^ k) • iteratedDerivWithin k f s x₀
[PROOFSTEP]
rw [taylorWithinEval_succ, Finset.sum_range_succ, hk]
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
s : Set ℝ
x₀ x : ℝ
k : ℕ
hk : taylorWithinEval f k s x₀ x = ∑ k in Finset.range (k + 1), ((↑k !)⁻¹ * (x - x₀) ^ k) • iteratedDerivWithin k f s x₀
⊢ ∑ k in Finset.range (k + 1), ((↑k !)⁻¹ * (x - x₀) ^ k) • iteratedDerivWithin k f s x₀ +
(((↑k + 1) * ↑k !)⁻¹ * (x - x₀) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s x₀ =
∑ x_1 in Finset.range (k + 1), ((↑x_1 !)⁻¹ * (x - x₀) ^ x_1) • iteratedDerivWithin x_1 f s x₀ +
((↑(k + 1)!)⁻¹ * (x - x₀) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s x₀
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
hf : ContDiffOn ℝ (↑n) f s
⊢ ContinuousOn (fun t => taylorWithinEval f n s t x) s
[PROOFSTEP]
simp_rw [taylor_within_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
hf : ContDiffOn ℝ (↑n) f s
⊢ ContinuousOn (fun t => ∑ k in Finset.range (n + 1), ((↑k !)⁻¹ * (x - t) ^ k) • iteratedDerivWithin k f s t) s
[PROOFSTEP]
refine' continuousOn_finset_sum (Finset.range (n + 1)) fun i hi => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
hf : ContDiffOn ℝ (↑n) f s
i : ℕ
hi : i ∈ Finset.range (n + 1)
⊢ ContinuousOn (fun t => ((↑i !)⁻¹ * (x - t) ^ i) • iteratedDerivWithin i f s t) s
[PROOFSTEP]
refine' (continuousOn_const.mul ((continuousOn_const.sub continuousOn_id).pow _)).smul _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
hf : ContDiffOn ℝ (↑n) f s
i : ℕ
hi : i ∈ Finset.range (n + 1)
⊢ ContinuousOn (fun t => iteratedDerivWithin i f s t) s
[PROOFSTEP]
rw [contDiffOn_iff_continuousOn_differentiableOn_deriv hs] at hf
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
hf :
(∀ (m : ℕ), ↑m ≤ ↑n → ContinuousOn (iteratedDerivWithin m f s) s) ∧
∀ (m : ℕ), ↑m < ↑n → DifferentiableOn ℝ (iteratedDerivWithin m f s) s
i : ℕ
hi : i ∈ Finset.range (n + 1)
⊢ ContinuousOn (fun t => iteratedDerivWithin i f s t) s
[PROOFSTEP]
cases' hf with hf_left
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
i : ℕ
hi : i ∈ Finset.range (n + 1)
hf_left : ∀ (m : ℕ), ↑m ≤ ↑n → ContinuousOn (iteratedDerivWithin m f s) s
right✝ : ∀ (m : ℕ), ↑m < ↑n → DifferentiableOn ℝ (iteratedDerivWithin m f s) s
⊢ ContinuousOn (fun t => iteratedDerivWithin i f s t) s
[PROOFSTEP]
specialize hf_left i
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
i : ℕ
hi : i ∈ Finset.range (n + 1)
right✝ : ∀ (m : ℕ), ↑m < ↑n → DifferentiableOn ℝ (iteratedDerivWithin m f s) s
hf_left : ↑i ≤ ↑n → ContinuousOn (iteratedDerivWithin i f s) s
⊢ ContinuousOn (fun t => iteratedDerivWithin i f s t) s
[PROOFSTEP]
simp only [Finset.mem_range] at hi
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
i : ℕ
right✝ : ∀ (m : ℕ), ↑m < ↑n → DifferentiableOn ℝ (iteratedDerivWithin m f s) s
hf_left : ↑i ≤ ↑n → ContinuousOn (iteratedDerivWithin i f s) s
hi : i < n + 1
⊢ ContinuousOn (fun t => iteratedDerivWithin i f s t) s
[PROOFSTEP]
refine' hf_left _
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
n : ℕ
s : Set ℝ
hs : UniqueDiffOn ℝ s
i : ℕ
right✝ : ∀ (m : ℕ), ↑m < ↑n → DifferentiableOn ℝ (iteratedDerivWithin m f s) s
hf_left : ↑i ≤ ↑n → ContinuousOn (iteratedDerivWithin i f s) s
hi : i < n + 1
⊢ ↑i ≤ ↑n
[PROOFSTEP]
simp only [WithTop.coe_le_coe, Nat.cast_le, Nat.lt_succ_iff.mp hi]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
t x : ℝ
n : ℕ
⊢ HasDerivAt (fun y => (x - y) ^ (n + 1)) (-(↑n + 1) * (x - t) ^ n) t
[PROOFSTEP]
simp_rw [sub_eq_neg_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
t x : ℝ
n : ℕ
⊢ HasDerivAt (fun y => (-y + x) ^ (n + 1)) (-(↑n + 1) * (-t + x) ^ n) t
[PROOFSTEP]
rw [← neg_one_mul, mul_comm (-1 : ℝ), mul_assoc, mul_comm (-1 : ℝ), ← mul_assoc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
t x : ℝ
n : ℕ
⊢ HasDerivAt (fun y => (-y + x) ^ (n + 1)) ((↑n + 1) * (-t + x) ^ n * -1) t
[PROOFSTEP]
convert HasDerivAt.pow (n + 1) ((hasDerivAt_id t).neg.add_const x)
[GOAL]
case h.e'_7.h.e'_5.h.e'_5
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
t x : ℝ
n : ℕ
⊢ ↑n + 1 = ↑(n + 1)
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_one]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : DifferentiableWithinAt ℝ (iteratedDerivWithin (k + 1) f s) s y
⊢ HasDerivWithinAt (fun z => (((↑k + 1) * ↑k !)⁻¹ * (x - z) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s z)
((((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ (k + 1)) • iteratedDerivWithin (k + 2) f s y -
((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y)
t y
[PROOFSTEP]
replace hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y :=
by
convert (hf.mono_of_mem hs).hasDerivWithinAt using 1
rw [iteratedDerivWithin_succ (ht.mono_nhds (nhdsWithin_le_iff.mpr hs))]
exact (derivWithin_of_mem hs ht hf).symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : DifferentiableWithinAt ℝ (iteratedDerivWithin (k + 1) f s) s y
⊢ HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
[PROOFSTEP]
convert (hf.mono_of_mem hs).hasDerivWithinAt using 1
[GOAL]
case h.e'_7
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : DifferentiableWithinAt ℝ (iteratedDerivWithin (k + 1) f s) s y
⊢ iteratedDerivWithin (k + 2) f s y = derivWithin (iteratedDerivWithin (k + 1) f s) t y
[PROOFSTEP]
rw [iteratedDerivWithin_succ (ht.mono_nhds (nhdsWithin_le_iff.mpr hs))]
[GOAL]
case h.e'_7
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : DifferentiableWithinAt ℝ (iteratedDerivWithin (k + 1) f s) s y
⊢ derivWithin (iteratedDerivWithin (k + 1) f s) s y = derivWithin (iteratedDerivWithin (k + 1) f s) t y
[PROOFSTEP]
exact (derivWithin_of_mem hs ht hf).symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
⊢ HasDerivWithinAt (fun z => (((↑k + 1) * ↑k !)⁻¹ * (x - z) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s z)
((((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ (k + 1)) • iteratedDerivWithin (k + 2) f s y -
((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y)
t y
[PROOFSTEP]
have : HasDerivWithinAt (fun t => ((k + 1 : ℝ) * k !)⁻¹ * (x - t) ^ (k + 1)) (-((k ! : ℝ)⁻¹ * (x - y) ^ k)) t y := by
-- Commuting the factors:
have : -((k ! : ℝ)⁻¹ * (x - y) ^ k) = ((k + 1 : ℝ) * k !)⁻¹ * (-(k + 1) * (x - y) ^ k) :=
by
field_simp [k.factorial_ne_zero]
-- Porting note: was `ring_nf`
rw [mul_div_mul_right, ← neg_add_rev, neg_mul, neg_div, mul_div_cancel_left]
· exact k.cast_add_one_ne_zero
· simp [k.factorial_ne_zero]
rw [this]
exact (monomial_has_deriv_aux y x _).hasDerivWithinAt.const_mul _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
⊢ HasDerivWithinAt (fun t => ((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) (-((↑k !)⁻¹ * (x - y) ^ k)) t y
[PROOFSTEP]
have : -((k ! : ℝ)⁻¹ * (x - y) ^ k) = ((k + 1 : ℝ) * k !)⁻¹ * (-(k + 1) * (x - y) ^ k) :=
by
field_simp [k.factorial_ne_zero]
-- Porting note: was `ring_nf`
rw [mul_div_mul_right, ← neg_add_rev, neg_mul, neg_div, mul_div_cancel_left]
· exact k.cast_add_one_ne_zero
· simp [k.factorial_ne_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
⊢ -((↑k !)⁻¹ * (x - y) ^ k) = ((↑k + 1) * ↑k !)⁻¹ * (-(↑k + 1) * (x - y) ^ k)
[PROOFSTEP]
field_simp [k.factorial_ne_zero]
-- Porting note: was `ring_nf`
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
⊢ -(x - y) ^ k = (-1 + -↑k) * (x - y) ^ k * ↑k ! / ((↑k + 1) * ↑k !)
[PROOFSTEP]
rw [mul_div_mul_right, ← neg_add_rev, neg_mul, neg_div, mul_div_cancel_left]
[GOAL]
case ha
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
⊢ ↑k + 1 ≠ 0
[PROOFSTEP]
exact k.cast_add_one_ne_zero
[GOAL]
case hc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
⊢ ↑k ! ≠ 0
[PROOFSTEP]
simp [k.factorial_ne_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
this : -((↑k !)⁻¹ * (x - y) ^ k) = ((↑k + 1) * ↑k !)⁻¹ * (-(↑k + 1) * (x - y) ^ k)
⊢ HasDerivWithinAt (fun t => ((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) (-((↑k !)⁻¹ * (x - y) ^ k)) t y
[PROOFSTEP]
rw [this]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
this : -((↑k !)⁻¹ * (x - y) ^ k) = ((↑k + 1) * ↑k !)⁻¹ * (-(↑k + 1) * (x - y) ^ k)
⊢ HasDerivWithinAt (fun t => ((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) (((↑k + 1) * ↑k !)⁻¹ * (-(↑k + 1) * (x - y) ^ k))
t y
[PROOFSTEP]
exact (monomial_has_deriv_aux y x _).hasDerivWithinAt.const_mul _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
this : HasDerivWithinAt (fun t => ((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) (-((↑k !)⁻¹ * (x - y) ^ k)) t y
⊢ HasDerivWithinAt (fun z => (((↑k + 1) * ↑k !)⁻¹ * (x - z) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s z)
((((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ (k + 1)) • iteratedDerivWithin (k + 2) f s y -
((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y)
t y
[PROOFSTEP]
convert this.smul hf using 1
[GOAL]
case h.e'_7
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
this : HasDerivWithinAt (fun t => ((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) (-((↑k !)⁻¹ * (x - y) ^ k)) t y
⊢ (((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ (k + 1)) • iteratedDerivWithin (k + 2) f s y -
((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y =
(((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ (k + 1)) • iteratedDerivWithin (k + 2) f s y +
-((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y
[PROOFSTEP]
field_simp [Nat.cast_add_one_ne_zero k, Nat.factorial_ne_zero k]
[GOAL]
case h.e'_7
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
k : ℕ
s t : Set ℝ
ht : UniqueDiffWithinAt ℝ t y
hs : s ∈ 𝓝[t] y
hf : HasDerivWithinAt (iteratedDerivWithin (k + 1) f s) (iteratedDerivWithin (k + 2) f s y) t y
this : HasDerivWithinAt (fun t => ((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) (-((↑k !)⁻¹ * (x - y) ^ k)) t y
⊢ ((x - y) ^ (k + 1) / ((↑k + 1) * ↑k !)) • iteratedDerivWithin (k + 2) f s y -
((x - y) ^ k / ↑k !) • iteratedDerivWithin (k + 1) f s y =
((x - y) ^ (k + 1) / ((↑k + 1) * ↑k !)) • iteratedDerivWithin (k + 2) f s y +
(-(x - y) ^ k / ↑k !) • iteratedDerivWithin (k + 1) f s y
[PROOFSTEP]
rw [neg_div, neg_smul, sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf : ContDiffOn ℝ (↑n) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
⊢ HasDerivWithinAt (fun t => taylorWithinEval f n s t x) (((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f s y)
s' y
[PROOFSTEP]
induction' n with k hk
[GOAL]
case zero
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
hf : ContDiffOn ℝ (↑Nat.zero) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin Nat.zero f s) s y
⊢ HasDerivWithinAt (fun t => taylorWithinEval f Nat.zero s t x)
(((↑Nat.zero !)⁻¹ * (x - y) ^ Nat.zero) • iteratedDerivWithin (Nat.zero + 1) f s y) s' y
[PROOFSTEP]
simp only [taylor_within_zero_eval, Nat.factorial_zero, Nat.cast_one, inv_one, pow_zero, mul_one, zero_add, one_smul]
[GOAL]
case zero
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
hf : ContDiffOn ℝ (↑Nat.zero) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin Nat.zero f s) s y
⊢ HasDerivWithinAt (fun t => f t) (iteratedDerivWithin (Nat.zero + 1) f s y) s' y
[PROOFSTEP]
simp only [iteratedDerivWithin_zero] at hf'
[GOAL]
case zero
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
hf : ContDiffOn ℝ (↑Nat.zero) f s
hf' : DifferentiableWithinAt ℝ f s y
⊢ HasDerivWithinAt (fun t => f t) (iteratedDerivWithin (Nat.zero + 1) f s y) s' y
[PROOFSTEP]
rw [iteratedDerivWithin_one (hs_unique _ (h hy))]
[GOAL]
case zero
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
hf : ContDiffOn ℝ (↑Nat.zero) f s
hf' : DifferentiableWithinAt ℝ f s y
⊢ HasDerivWithinAt (fun t => f t) (derivWithin f s y) s' y
[PROOFSTEP]
norm_num
[GOAL]
case zero
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
hf : ContDiffOn ℝ (↑Nat.zero) f s
hf' : DifferentiableWithinAt ℝ f s y
⊢ HasDerivWithinAt (fun t => f t) (derivWithin f s y) s' y
[PROOFSTEP]
exact hf'.hasDerivWithinAt.mono h
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hk :
ContDiffOn ℝ (↑k) f s →
DifferentiableWithinAt ℝ (iteratedDerivWithin k f s) s y →
HasDerivWithinAt (fun t => taylorWithinEval f k s t x)
(((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y) s' y
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
⊢ HasDerivWithinAt (fun t => taylorWithinEval f (Nat.succ k) s t x)
(((↑(Nat.succ k)!)⁻¹ * (x - y) ^ Nat.succ k) • iteratedDerivWithin (Nat.succ k + 1) f s y) s' y
[PROOFSTEP]
simp_rw [Nat.add_succ, taylorWithinEval_succ]
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hk :
ContDiffOn ℝ (↑k) f s →
DifferentiableWithinAt ℝ (iteratedDerivWithin k f s) s y →
HasDerivWithinAt (fun t => taylorWithinEval f k s t x)
(((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y) s' y
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
⊢ HasDerivWithinAt
(fun t =>
taylorWithinEval f k s t x + (((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s t)
(((↑(Nat.succ k)!)⁻¹ * (x - y) ^ Nat.succ k) • iteratedDerivWithin (Nat.succ (Nat.succ k + 0)) f s y) s' y
[PROOFSTEP]
simp only [add_zero, Nat.factorial_succ, Nat.cast_mul, Nat.cast_add, Nat.cast_one]
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hk :
ContDiffOn ℝ (↑k) f s →
DifferentiableWithinAt ℝ (iteratedDerivWithin k f s) s y →
HasDerivWithinAt (fun t => taylorWithinEval f k s t x)
(((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y) s' y
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
⊢ HasDerivWithinAt
(fun t =>
taylorWithinEval f k s t x + (((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s t)
((((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ Nat.succ k) • iteratedDerivWithin (Nat.succ (Nat.succ k)) f s y) s' y
[PROOFSTEP]
have hdiff : DifferentiableOn ℝ (iteratedDerivWithin k f s) s' :=
by
have coe_lt_succ : (k : WithTop ℕ) < k.succ := Nat.cast_lt.2 k.lt_succ_self
refine' DifferentiableOn.mono _ h
exact hf.differentiableOn_iteratedDerivWithin coe_lt_succ hs_unique
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hk :
ContDiffOn ℝ (↑k) f s →
DifferentiableWithinAt ℝ (iteratedDerivWithin k f s) s y →
HasDerivWithinAt (fun t => taylorWithinEval f k s t x)
(((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y) s' y
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
⊢ DifferentiableOn ℝ (iteratedDerivWithin k f s) s'
[PROOFSTEP]
have coe_lt_succ : (k : WithTop ℕ) < k.succ := Nat.cast_lt.2 k.lt_succ_self
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hk :
ContDiffOn ℝ (↑k) f s →
DifferentiableWithinAt ℝ (iteratedDerivWithin k f s) s y →
HasDerivWithinAt (fun t => taylorWithinEval f k s t x)
(((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y) s' y
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
coe_lt_succ : ↑k < ↑(Nat.succ k)
⊢ DifferentiableOn ℝ (iteratedDerivWithin k f s) s'
[PROOFSTEP]
refine' DifferentiableOn.mono _ h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hk :
ContDiffOn ℝ (↑k) f s →
DifferentiableWithinAt ℝ (iteratedDerivWithin k f s) s y →
HasDerivWithinAt (fun t => taylorWithinEval f k s t x)
(((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y) s' y
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
coe_lt_succ : ↑k < ↑(Nat.succ k)
⊢ DifferentiableOn ℝ (iteratedDerivWithin k f s) s
[PROOFSTEP]
exact hf.differentiableOn_iteratedDerivWithin coe_lt_succ hs_unique
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hk :
ContDiffOn ℝ (↑k) f s →
DifferentiableWithinAt ℝ (iteratedDerivWithin k f s) s y →
HasDerivWithinAt (fun t => taylorWithinEval f k s t x)
(((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y) s' y
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
hdiff : DifferentiableOn ℝ (iteratedDerivWithin k f s) s'
⊢ HasDerivWithinAt
(fun t =>
taylorWithinEval f k s t x + (((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s t)
((((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ Nat.succ k) • iteratedDerivWithin (Nat.succ (Nat.succ k)) f s y) s' y
[PROOFSTEP]
specialize hk hf.of_succ ((hdiff y hy).mono_of_mem hs')
[GOAL]
case succ
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
hdiff : DifferentiableOn ℝ (iteratedDerivWithin k f s) s'
hk :
HasDerivWithinAt (fun t => taylorWithinEval f k s t x) (((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y)
s' y
⊢ HasDerivWithinAt
(fun t =>
taylorWithinEval f k s t x + (((↑k + 1) * ↑k !)⁻¹ * (x - t) ^ (k + 1)) • iteratedDerivWithin (k + 1) f s t)
((((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ Nat.succ k) • iteratedDerivWithin (Nat.succ (Nat.succ k)) f s y) s' y
[PROOFSTEP]
convert hk.add (hasDerivWithinAt_taylor_coeff_within hs'_unique (nhdsWithin_mono _ h self_mem_nhdsWithin) hf') using 1
[GOAL]
case h.e'_7
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x y : ℝ
n : ℕ
s s' : Set ℝ
hs'_unique : UniqueDiffWithinAt ℝ s' y
hs_unique : UniqueDiffOn ℝ s
hs' : s' ∈ 𝓝[s] y
hy : y ∈ s'
h : s' ⊆ s
hf✝ : ContDiffOn ℝ (↑n) f s
hf'✝ : DifferentiableWithinAt ℝ (iteratedDerivWithin n f s) s y
k : ℕ
hf : ContDiffOn ℝ (↑(Nat.succ k)) f s
hf' : DifferentiableWithinAt ℝ (iteratedDerivWithin (Nat.succ k) f s) s y
hdiff : DifferentiableOn ℝ (iteratedDerivWithin k f s) s'
hk :
HasDerivWithinAt (fun t => taylorWithinEval f k s t x) (((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y)
s' y
⊢ (((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ Nat.succ k) • iteratedDerivWithin (Nat.succ (Nat.succ k)) f s y =
((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y +
((((↑k + 1) * ↑k !)⁻¹ * (x - y) ^ (k + 1)) • iteratedDerivWithin (k + 2) f s y -
((↑k !)⁻¹ * (x - y) ^ k) • iteratedDerivWithin (k + 1) f s y)
[PROOFSTEP]
exact (add_sub_cancel'_right _ _).symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g g' : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn g (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt g (g' x_1) x_1
g'_ne : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → g' x_1 ≠ 0
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - x') ^ n / ↑n ! * (g x - g x₀) / g' x') • iteratedDerivWithin (n + 1) f (Icc x₀ x) x'
[PROOFSTEP]
rcases exists_ratio_hasDerivAt_eq_ratio_slope (fun t => taylorWithinEval f n (Icc x₀ x) t x)
(fun t => ((n ! : ℝ)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) t) hx
(continuousOn_taylorWithinEval (uniqueDiffOn_Icc hx) hf)
(fun _ hy => taylorWithinEval_hasDerivAt_Ioo x hx hy hf hf') g g' gcont gdiff with
⟨y, hy, h⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g g' : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn g (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt g (g' x_1) x_1
g'_ne : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → g' x_1 ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
(g x - g x₀) * ((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y =
(taylorWithinEval f n (Icc x₀ x) x x - taylorWithinEval f n (Icc x₀ x) x₀ x) * g' y
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - x') ^ n / ↑n ! * (g x - g x₀) / g' x') • iteratedDerivWithin (n + 1) f (Icc x₀ x) x'
[PROOFSTEP]
use y, hy
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g g' : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn g (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt g (g' x_1) x_1
g'_ne : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → g' x_1 ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
(g x - g x₀) * ((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y =
(taylorWithinEval f n (Icc x₀ x) x x - taylorWithinEval f n (Icc x₀ x) x₀ x) * g' y
⊢ f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * (g x - g x₀) / g' y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
[PROOFSTEP]
simp only [taylorWithinEval_self] at h
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g g' : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn g (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt g (g' x_1) x_1
g'_ne : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → g' x_1 ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
(g x - g x₀) * ((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y =
(f x - taylorWithinEval f n (Icc x₀ x) x₀ x) * g' y
⊢ f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * (g x - g x₀) / g' y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
[PROOFSTEP]
rw [mul_comm, ← div_left_inj' (g'_ne y hy), mul_div_cancel _ (g'_ne y hy)] at h
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g g' : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn g (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt g (g' x_1) x_1
g'_ne : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → g' x_1 ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (g x - g x₀) / g' y =
f x - taylorWithinEval f n (Icc x₀ x) x₀ x
⊢ f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * (g x - g x₀) / g' y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
[PROOFSTEP]
rw [← h]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g g' : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn g (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt g (g' x_1) x_1
g'_ne : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → g' x_1 ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (g x - g x₀) / g' y =
f x - taylorWithinEval f n (Icc x₀ x) x₀ x
⊢ ((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (g x - g x₀) / g' y =
((x - y) ^ n / ↑n ! * (g x - g x₀) / g' y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
[PROOFSTEP]
field_simp [g'_ne y hy, n.factorial_ne_zero]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g g' : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn g (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt g (g' x_1) x_1
g'_ne : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → g' x_1 ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (g x - g x₀) / g' y =
f x - taylorWithinEval f n (Icc x₀ x) x₀ x
⊢ (x - y) ^ n * iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (g x - g x₀) =
(x - y) ^ n * (g x - g x₀) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
have gcont : ContinuousOn (fun t : ℝ => (x - t) ^ (n + 1)) (Icc x₀ x) :=
by
refine' Continuous.continuousOn _
exact
(continuous_const.sub continuous_id').pow
_
-- Porting note: was `continuity`
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
⊢ ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
[PROOFSTEP]
refine' Continuous.continuousOn _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
⊢ Continuous fun t => (x - t) ^ (n + 1)
[PROOFSTEP]
exact
(continuous_const.sub continuous_id').pow
_
-- Porting note: was `continuity`
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
have xy_ne : ∀ y : ℝ, y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0 :=
by
intro y hy
refine' pow_ne_zero _ _
rw [mem_Ioo] at hy
rw [sub_ne_zero]
exact hy.2.ne.symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
⊢ ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
[PROOFSTEP]
intro y hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
y : ℝ
hy : y ∈ Ioo x₀ x
⊢ (x - y) ^ n ≠ 0
[PROOFSTEP]
refine' pow_ne_zero _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
y : ℝ
hy : y ∈ Ioo x₀ x
⊢ x - y ≠ 0
[PROOFSTEP]
rw [mem_Ioo] at hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
y : ℝ
hy : x₀ < y ∧ y < x
⊢ x - y ≠ 0
[PROOFSTEP]
rw [sub_ne_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
y : ℝ
hy : x₀ < y ∧ y < x
⊢ x ≠ y
[PROOFSTEP]
exact hy.2.ne.symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
have hg' : ∀ y : ℝ, y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0 := fun y hy =>
mul_ne_zero (neg_ne_zero.mpr (Nat.cast_add_one_ne_zero n))
(xy_ne y hy)
-- We apply the general theorem with g(t) = (x - t)^(n+1)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
rcases taylor_mean_remainder hx hf hf' gcont (fun y _ => monomial_has_deriv_aux y x _) hg' with ⟨y, hy, h⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * ((x - x) ^ (n + 1) - (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
use y, hy
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * ((x - x) ^ (n + 1) - (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
simp only [sub_self, zero_pow', Ne.def, Nat.succ_ne_zero, not_false_iff, zero_sub, mul_neg] at h
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
rw [h, neg_div, ← div_neg, neg_mul, neg_neg]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ ((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1) / ((↑n + 1) * (x - y) ^ n)) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - x₀) ^ (n + 1) / ↑(n + 1)!
[PROOFSTEP]
field_simp
-- Porting note: was `ring`
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ (x - y) ^ n * (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * ((↑n + 1) * (x - y) ^ n)) =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - x₀) ^ (n + 1) / ((↑n + 1) * ↑n !)
[PROOFSTEP]
conv_lhs =>
arg 2
rw [← mul_assoc, mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| (x - y) ^ n * (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * ((↑n + 1) * (x - y) ^ n))
[PROOFSTEP]
arg 2
rw [← mul_assoc, mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| (x - y) ^ n * (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * ((↑n + 1) * (x - y) ^ n))
[PROOFSTEP]
arg 2
rw [← mul_assoc, mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| (x - y) ^ n * (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * ((↑n + 1) * (x - y) ^ n))
[PROOFSTEP]
arg 2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| ↑n ! * ((↑n + 1) * (x - y) ^ n)
[PROOFSTEP]
rw [← mul_assoc, mul_comm]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ (x - y) ^ n * (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / ((x - y) ^ n * (↑n ! * (↑n + 1))) =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - x₀) ^ (n + 1) / ((↑n + 1) * ↑n !)
[PROOFSTEP]
rw [mul_assoc, mul_div_mul_left _ _ (xy_ne y hy)]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * (↑n + 1)) =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - x₀) ^ (n + 1) / ((↑n + 1) * ↑n !)
[PROOFSTEP]
conv_lhs =>
arg 2
rw [mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * (↑n + 1))
[PROOFSTEP]
arg 2
rw [mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * (↑n + 1))
[PROOFSTEP]
arg 2
rw [mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / (↑n ! * (↑n + 1))
[PROOFSTEP]
arg 2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
| ↑n ! * (↑n + 1)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn (fun t => (x - t) ^ (n + 1)) (Icc x₀ x)
xy_ne : ∀ (y : ℝ), y ∈ Ioo x₀ x → (x - y) ^ n ≠ 0
hg' : ∀ (y : ℝ), y ∈ Ioo x₀ x → -(↑n + 1) * (x - y) ^ n ≠ 0
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
(-((x - y) ^ n / ↑n ! * (x - x₀) ^ (n + 1)) / (-(↑n + 1) * (x - y) ^ n)) •
iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ (x - x₀) ^ (n + 1) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y / ((↑n + 1) * ↑n !) =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - x₀) ^ (n + 1) / ((↑n + 1) * ↑n !)
[PROOFSTEP]
nth_rw 1 [mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x') ^ n / ↑n ! * (x - x₀)
[PROOFSTEP]
have gcont : ContinuousOn id (Icc x₀ x) := Continuous.continuousOn (by continuity)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
⊢ Continuous id
[PROOFSTEP]
continuity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn id (Icc x₀ x)
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x') ^ n / ↑n ! * (x - x₀)
[PROOFSTEP]
have gdiff : ∀ x_1 : ℝ, x_1 ∈ Ioo x₀ x → HasDerivAt id ((fun _ : ℝ => (1 : ℝ)) x_1) x_1 := fun _ _ =>
hasDerivAt_id
_
-- We apply the general theorem with g = id
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn id (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt id ((fun x => 1) x_1) x_1
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x') ^ n / ↑n ! * (x - x₀)
[PROOFSTEP]
rcases taylor_mean_remainder hx hf hf' gcont gdiff fun _ _ => by simp with ⟨y, hy, h⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn id (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt id ((fun x => 1) x_1) x_1
x✝¹ : ℝ
x✝ : x✝¹ ∈ Ioo x₀ x
⊢ (fun x => 1) x✝¹ ≠ 0
[PROOFSTEP]
simp
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn id (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt id ((fun x => 1) x_1) x_1
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * (id x - id x₀) / (fun x => 1) y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ ∃ x' x_1,
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) x' * (x - x') ^ n / ↑n ! * (x - x₀)
[PROOFSTEP]
use y, hy
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn id (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt id ((fun x => 1) x_1) x_1
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * (id x - id x₀) / (fun x => 1) y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - y) ^ n / ↑n ! * (x - x₀)
[PROOFSTEP]
rw [h]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn id (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt id ((fun x => 1) x_1) x_1
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * (id x - id x₀) / (fun x => 1) y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ ((x - y) ^ n / ↑n ! * (id x - id x₀) / (fun x => 1) y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - y) ^ n / ↑n ! * (x - x₀)
[PROOFSTEP]
field_simp [n.factorial_ne_zero]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → ℝ
x x₀ : ℝ
n : ℕ
hx : x₀ < x
hf : ContDiffOn ℝ (↑n) f (Icc x₀ x)
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc x₀ x)) (Ioo x₀ x)
gcont : ContinuousOn id (Icc x₀ x)
gdiff : ∀ (x_1 : ℝ), x_1 ∈ Ioo x₀ x → HasDerivAt id ((fun x => 1) x_1) x_1
y : ℝ
hy : y ∈ Ioo x₀ x
h :
f x - taylorWithinEval f n (Icc x₀ x) x₀ x =
((x - y) ^ n / ↑n ! * (id x - id x₀) / (fun x => 1) y) • iteratedDerivWithin (n + 1) f (Icc x₀ x) y
⊢ (x - y) ^ n * (x - x₀) * iteratedDerivWithin (n + 1) f (Icc x₀ x) y =
iteratedDerivWithin (n + 1) f (Icc x₀ x) y * (x - y) ^ n * (x - x₀)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
rcases eq_or_lt_of_le hab with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a C x : ℝ
n : ℕ
hab : a ≤ a
hf : ContDiffOn ℝ (↑n + 1) f (Icc a a)
hx : x ∈ Icc a a
hC : ∀ (y : ℝ), y ∈ Icc a a → ‖iteratedDerivWithin (n + 1) f (Icc a a) y‖ ≤ C
⊢ ‖f x - taylorWithinEval f n (Icc a a) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
rw [Icc_self, mem_singleton_iff] at hx
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a C x : ℝ
n : ℕ
hab : a ≤ a
hf : ContDiffOn ℝ (↑n + 1) f (Icc a a)
hx : x = a
hC : ∀ (y : ℝ), y ∈ Icc a a → ‖iteratedDerivWithin (n + 1) f (Icc a a) y‖ ≤ C
⊢ ‖f x - taylorWithinEval f n (Icc a a) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
simp [hx]
-- The nth iterated derivative is differentiable
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
have hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b) :=
hf.differentiableOn_iteratedDerivWithin (WithTop.coe_lt_coe.mpr n.lt_succ_self)
(uniqueDiffOn_Icc h)
-- We can uniformly bound the derivative of the Taylor polynomial
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
have h' :
∀ (y : ℝ) (_ : y ∈ Ico a x),
‖((n ! : ℝ)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (n ! : ℝ)⁻¹ * |x - a| ^ n * C :=
by
rintro y ⟨hay, hyx⟩
rw [norm_smul, Real.norm_eq_abs]
-- Estimate the iterated derivative by `C`
refine'
mul_le_mul _ (hC y ⟨hay, hyx.le.trans hx.2⟩) (by positivity)
(by positivity)
-- The rest is a trivial calculation
rw [abs_mul, abs_pow, abs_inv, Nat.abs_cast]
-- Porting note: was `mono* with 0 ≤ (n ! : ℝ)⁻¹; any_goals positivity; linarith [hx.1, hyx]`
gcongr
rw [abs_of_nonneg, abs_of_nonneg] <;>
linarith
-- Apply the mean value theorem for vector valued functions:
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
⊢ ∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
[PROOFSTEP]
rintro y ⟨hay, hyx⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
[PROOFSTEP]
rw [norm_smul, Real.norm_eq_abs]
-- Estimate the iterated derivative by `C`
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ |(↑n !)⁻¹ * (x - y) ^ n| * ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
[PROOFSTEP]
refine'
mul_le_mul _ (hC y ⟨hay, hyx.le.trans hx.2⟩) (by positivity)
(by positivity)
-- The rest is a trivial calculation
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ 0 ≤ ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ 0 ≤ (↑n !)⁻¹ * |x - a| ^ n
[PROOFSTEP]
positivity
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ |(↑n !)⁻¹ * (x - y) ^ n| ≤ (↑n !)⁻¹ * |x - a| ^ n
[PROOFSTEP]
rw [abs_mul, abs_pow, abs_inv, Nat.abs_cast]
-- Porting note: was `mono* with 0 ≤ (n ! : ℝ)⁻¹; any_goals positivity; linarith [hx.1, hyx]`
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ (↑n !)⁻¹ * |x - y| ^ n ≤ (↑n !)⁻¹ * |x - a| ^ n
[PROOFSTEP]
gcongr
[GOAL]
case intro.h.hab
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ |x - y| ≤ |x - a|
[PROOFSTEP]
rw [abs_of_nonneg, abs_of_nonneg]
[GOAL]
case intro.h.hab
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ x - y ≤ x - a
[PROOFSTEP]
linarith
-- Apply the mean value theorem for vector valued functions:
[GOAL]
case intro.h.hab
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ 0 ≤ x - a
[PROOFSTEP]
linarith
-- Apply the mean value theorem for vector valued functions:
[GOAL]
case intro.h.hab
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
y : ℝ
hay : a ≤ y
hyx : y < x
⊢ 0 ≤ x - y
[PROOFSTEP]
linarith
-- Apply the mean value theorem for vector valued functions:
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
have A :
∀ t ∈ Icc a x,
HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t :=
by
intro t ht
have I : Icc a x ⊆ Icc a b := Icc_subset_Icc_right hx.2
exact (has_deriv_within_taylorWithinEval_at_Icc x h (I ht) hf.of_succ hf').mono I
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
⊢ ∀ (t : ℝ),
t ∈ Icc a x →
HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
[PROOFSTEP]
intro t ht
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
t : ℝ
ht : t ∈ Icc a x
⊢ HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
[PROOFSTEP]
have I : Icc a x ⊆ Icc a b := Icc_subset_Icc_right hx.2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
t : ℝ
ht : t ∈ Icc a x
I : Icc a x ⊆ Icc a b
⊢ HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
[PROOFSTEP]
exact (has_deriv_within_taylorWithinEval_at_Icc x h (I ht) hf.of_succ hf').mono I
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
A :
∀ (t : ℝ),
t ∈ Icc a x →
HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
have := norm_image_sub_le_of_norm_deriv_le_segment' A h' x (right_mem_Icc.2 hx.1)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
A :
∀ (t : ℝ),
t ∈ Icc a x →
HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
this : ‖taylorWithinEval f n (Icc a b) x x - taylorWithinEval f n (Icc a b) a x‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C * (x - a)
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
simp only [taylorWithinEval_self] at this
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
A :
∀ (t : ℝ),
t ∈ Icc a x →
HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
this : ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C * (x - a)
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
refine'
this.trans_eq
_
-- The rest is a trivial calculation
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
A :
∀ (t : ℝ),
t ∈ Icc a x →
HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
this : ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C * (x - a)
⊢ (↑n !)⁻¹ * |x - a| ^ n * C * (x - a) = C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
rw [abs_of_nonneg (sub_nonneg.mpr hx.1)]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b C x : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
hx : x ∈ Icc a b
hC : ∀ (y : ℝ), y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ C
h : a < b
hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b)
h' :
∀ (y : ℝ),
y ∈ Ico a x → ‖((↑n !)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C
A :
∀ (t : ℝ),
t ∈ Icc a x →
HasDerivWithinAt (fun y => taylorWithinEval f n (Icc a b) y x)
(((↑n !)⁻¹ * (x - t) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) t) (Icc a x) t
this : ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ (↑n !)⁻¹ * |x - a| ^ n * C * (x - a)
⊢ (↑n !)⁻¹ * (x - a) ^ n * C * (x - a) = C * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
⊢ ∃ C, ∀ (x : ℝ), x ∈ Icc a b → ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1)
[PROOFSTEP]
rcases eq_or_lt_of_le hab with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a : ℝ
n : ℕ
hab : a ≤ a
hf : ContDiffOn ℝ (↑n + 1) f (Icc a a)
⊢ ∃ C, ∀ (x : ℝ), x ∈ Icc a a → ‖f x - taylorWithinEval f n (Icc a a) a x‖ ≤ C * (x - a) ^ (n + 1)
[PROOFSTEP]
refine' ⟨0, fun x hx => _⟩
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a : ℝ
n : ℕ
hab : a ≤ a
hf : ContDiffOn ℝ (↑n + 1) f (Icc a a)
x : ℝ
hx : x ∈ Icc a a
⊢ ‖f x - taylorWithinEval f n (Icc a a) a x‖ ≤ 0 * (x - a) ^ (n + 1)
[PROOFSTEP]
have : x = a := by simpa [← le_antisymm_iff] using hx
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a : ℝ
n : ℕ
hab : a ≤ a
hf : ContDiffOn ℝ (↑n + 1) f (Icc a a)
x : ℝ
hx : x ∈ Icc a a
⊢ x = a
[PROOFSTEP]
simpa [← le_antisymm_iff] using hx
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a : ℝ
n : ℕ
hab : a ≤ a
hf : ContDiffOn ℝ (↑n + 1) f (Icc a a)
x : ℝ
hx : x ∈ Icc a a
this : x = a
⊢ ‖f x - taylorWithinEval f n (Icc a a) a x‖ ≤ 0 * (x - a) ^ (n + 1)
[PROOFSTEP]
simp [← this]
-- We estimate by the supremum of the norm of the iterated derivative
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
h : a < b
⊢ ∃ C, ∀ (x : ℝ), x ∈ Icc a b → ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1)
[PROOFSTEP]
let g : ℝ → ℝ := fun y => ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
h : a < b
g : ℝ → ℝ := fun y => ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖
⊢ ∃ C, ∀ (x : ℝ), x ∈ Icc a b → ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ C * (x - a) ^ (n + 1)
[PROOFSTEP]
use SupSet.sSup (g '' Icc a b) / (n !)
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
h : a < b
g : ℝ → ℝ := fun y => ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ sSup (g '' Icc a b) / ↑n ! * (x - a) ^ (n + 1)
[PROOFSTEP]
intro x hx
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
h : a < b
g : ℝ → ℝ := fun y => ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖
x : ℝ
hx : x ∈ Icc a b
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ sSup (g '' Icc a b) / ↑n ! * (x - a) ^ (n + 1)
[PROOFSTEP]
rw [div_mul_eq_mul_div₀]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
h : a < b
g : ℝ → ℝ := fun y => ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖
x : ℝ
hx : x ∈ Icc a b
⊢ ‖f x - taylorWithinEval f n (Icc a b) a x‖ ≤ sSup (g '' Icc a b) * (x - a) ^ (n + 1) / ↑n !
[PROOFSTEP]
refine' taylor_mean_remainder_bound hab hf hx fun y => _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
a b : ℝ
n : ℕ
hab : a ≤ b
hf : ContDiffOn ℝ (↑n + 1) f (Icc a b)
h : a < b
g : ℝ → ℝ := fun y => ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖
x : ℝ
hx : x ∈ Icc a b
y : ℝ
⊢ y ∈ Icc a b → ‖iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ sSup (g '' Icc a b)
[PROOFSTEP]
exact (hf.continuousOn_iteratedDerivWithin rfl.le <| uniqueDiffOn_Icc h).norm.le_sSup_image_Icc
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Taylor", "llama_tokens": 43769} |
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
x✝¹ : ℝ
x✝ : E
⊢ (fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) x✝¹ (-x✝) =
(fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) x✝¹ x✝
[PROOFSTEP]
simp only [norm_neg]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
⊢ ContDiffOn ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (Set.Ioi 1 ×ˢ Set.univ)
[PROOFSTEP]
rintro ⟨R, x⟩ ⟨hR : 1 < R, -⟩
[GOAL]
case mk.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
x : E
hR : 1 < R
⊢ ContDiffWithinAt ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (Set.Ioi 1 ×ˢ Set.univ) (R, x)
[PROOFSTEP]
apply ContDiffAt.contDiffWithinAt
[GOAL]
case mk.intro.h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
x : E
hR : 1 < R
⊢ ContDiffAt ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (R, x)
[PROOFSTEP]
rw [← sub_pos] at hR
[GOAL]
case mk.intro.h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
x : E
hR✝ : 1 < R
hR : 0 < R - 1
⊢ ContDiffAt ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (R, x)
[PROOFSTEP]
rcases eq_or_ne x 0 with rfl | hx
[GOAL]
case mk.intro.h.inl
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
hR✝ : 1 < R
hR : 0 < R - 1
⊢ ContDiffAt ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (R, 0)
[PROOFSTEP]
have A : ContinuousAt (fun p : ℝ × E ↦ (p.1 - ‖p.2‖) / (p.1 - 1)) (R, 0) :=
(continuousAt_fst.sub continuousAt_snd.norm).div (continuousAt_fst.sub continuousAt_const) hR.ne'
[GOAL]
case mk.intro.h.inl
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
hR✝ : 1 < R
hR : 0 < R - 1
A : ContinuousAt (fun p => (p.fst - ‖p.snd‖) / (p.fst - 1)) (R, 0)
⊢ ContDiffAt ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (R, 0)
[PROOFSTEP]
have B : ∀ᶠ p in 𝓝 (R, (0 : E)), 1 ≤ (p.1 - ‖p.2‖) / (p.1 - 1) :=
A.eventually <| le_mem_nhds <| (one_lt_div hR).2 <| sub_lt_sub_left (by simp) _
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
hR✝ : 1 < R
hR : 0 < R - 1
A : ContinuousAt (fun p => (p.fst - ‖p.snd‖) / (p.fst - 1)) (R, 0)
⊢ ‖(R, 0).snd‖ < 1
[PROOFSTEP]
simp
[GOAL]
case mk.intro.h.inl
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
hR✝ : 1 < R
hR : 0 < R - 1
A : ContinuousAt (fun p => (p.fst - ‖p.snd‖) / (p.fst - 1)) (R, 0)
B : ∀ᶠ (p : ℝ × E) in 𝓝 (R, 0), 1 ≤ (p.fst - ‖p.snd‖) / (p.fst - 1)
⊢ ContDiffAt ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (R, 0)
[PROOFSTEP]
refine (contDiffAt_const (c := 1)).congr_of_eventuallyEq <| B.mono fun _ ↦ smoothTransition.one_of_one_le
[GOAL]
case mk.intro.h.inr
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
x : E
hR✝ : 1 < R
hR : 0 < R - 1
hx : x ≠ 0
⊢ ContDiffAt ℝ ⊤ (uncurry fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) (R, x)
[PROOFSTEP]
refine smoothTransition.contDiffAt.comp _ (ContDiffAt.div ?_ ?_ hR.ne')
[GOAL]
case mk.intro.h.inr.refine_1
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
x : E
hR✝ : 1 < R
hR : 0 < R - 1
hx : x ≠ 0
⊢ ContDiffAt ℝ ⊤ (fun a => a.fst - ‖a.snd‖) (R, x)
[PROOFSTEP]
exact contDiffAt_fst.sub (contDiffAt_snd.norm ℝ hx)
[GOAL]
case mk.intro.h.inr.refine_2
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
x : E
hR✝ : 1 < R
hR : 0 < R - 1
hx : x ≠ 0
⊢ ContDiffAt ℝ ⊤ (fun a => a.fst - 1) (R, x)
[PROOFSTEP]
exact contDiffAt_fst.sub contDiffAt_const
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
hR : 1 < R
⊢ Function.support ((fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) R) = Metric.ball 0 R
[PROOFSTEP]
ext x
[GOAL]
case h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
hR : 1 < R
x : E
⊢ x ∈ Function.support ((fun R x => smoothTransition ((R - ‖x‖) / (R - 1))) R) ↔ x ∈ Metric.ball 0 R
[PROOFSTEP]
rw [mem_support, Ne.def, smoothTransition.zero_iff_nonpos, not_le, mem_ball_zero_iff]
[GOAL]
case h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
R : ℝ
hR : 1 < R
x : E
⊢ 0 < (R - ‖x‖) / (R - 1) ↔ ‖x‖ < R
[PROOFSTEP]
simp [div_pos_iff, sq_lt_sq, abs_of_pos (one_pos.trans hR), hR, hR.not_lt]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.BumpFunction.InnerProduct", "llama_tokens": 2329} |
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x
[PROOFSTEP]
have a : HasDerivAt (fun y : ℂ => y * (2 * z)) _ x := hasDerivAt_mul_const _
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x
[PROOFSTEP]
have b : HasDerivAt (fun y : ℂ => Complex.sin (y * (2 * z))) _ x :=
HasDerivAt.comp (x : ℂ) (Complex.hasDerivAt_sin (x * (2 * z))) a
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x
⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x
[PROOFSTEP]
have c := b.comp_ofReal.div_const (2 * z)
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x
c : HasDerivAt (fun x => Complex.sin (↑x * (2 * z)) / (2 * z)) (Complex.cos (↑x * (2 * z)) * (2 * z) / (2 * z)) x
⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x
[PROOFSTEP]
field_simp at c
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x
c : HasDerivAt (fun x => Complex.sin (↑x * (2 * z)) / (2 * z)) (Complex.cos (↑x * (2 * z))) x
⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x
[PROOFSTEP]
simp only [fun y => mul_comm y (2 * z)] at c
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x
c : HasDerivAt (fun x => Complex.sin (2 * z * ↑x) / (2 * z)) (Complex.cos (2 * z * ↑x)) x
⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x
[PROOFSTEP]
exact c
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
⊢ HasDerivAt (fun y => -Complex.cos (2 * z * ↑y) / (2 * z)) (Complex.sin (2 * z * ↑x)) x
[PROOFSTEP]
have a : HasDerivAt (fun y : ℂ => y * (2 * z)) _ x := hasDerivAt_mul_const _
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
⊢ HasDerivAt (fun y => -Complex.cos (2 * z * ↑y) / (2 * z)) (Complex.sin (2 * z * ↑x)) x
[PROOFSTEP]
have b : HasDerivAt (fun y : ℂ => Complex.cos (y * (2 * z))) _ x :=
HasDerivAt.comp (x : ℂ) (Complex.hasDerivAt_cos (x * (2 * z))) a
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.cos (y * (2 * z))) (-Complex.sin (↑x * (2 * z)) * (2 * z)) ↑x
⊢ HasDerivAt (fun y => -Complex.cos (2 * z * ↑y) / (2 * z)) (Complex.sin (2 * z * ↑x)) x
[PROOFSTEP]
have c := (b.comp_ofReal.div_const (2 * z)).neg
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.cos (y * (2 * z))) (-Complex.sin (↑x * (2 * z)) * (2 * z)) ↑x
c : HasDerivAt (fun x => -(Complex.cos (↑x * (2 * z)) / (2 * z))) (-(-Complex.sin (↑x * (2 * z)) * (2 * z) / (2 * z))) x
⊢ HasDerivAt (fun y => -Complex.cos (2 * z * ↑y) / (2 * z)) (Complex.sin (2 * z * ↑x)) x
[PROOFSTEP]
field_simp at c
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.cos (y * (2 * z))) (-Complex.sin (↑x * (2 * z)) * (2 * z)) ↑x
c : HasDerivAt (fun x => -Complex.cos (↑x * (2 * z)) / (2 * z)) (Complex.sin (↑x * (2 * z))) x
⊢ HasDerivAt (fun y => -Complex.cos (2 * z * ↑y) / (2 * z)) (Complex.sin (2 * z * ↑x)) x
[PROOFSTEP]
simp only [fun y => mul_comm y (2 * z)] at c
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
x : ℝ
a : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x
b : HasDerivAt (fun y => Complex.cos (y * (2 * z))) (-Complex.sin (↑x * (2 * z)) * (2 * z)) ↑x
c : HasDerivAt (fun x => -Complex.cos (2 * z * ↑x) / (2 * z)) (Complex.sin (2 * z * ↑x)) x
⊢ HasDerivAt (fun y => -Complex.cos (2 * z * ↑y) / (2 * z)) (Complex.sin (2 * z * ↑x)) x
[PROOFSTEP]
exact c
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
⊢ ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1)
[PROOFSTEP]
have der1 :
∀ x : ℝ, x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y : ℝ => (cos y : ℂ) ^ n) (-n * sin x * (cos x : ℂ) ^ (n - 1)) x :=
by
intro x _
have b : HasDerivAt (fun y : ℝ => (cos y : ℂ)) (-sin x) x := by simpa using (hasDerivAt_cos x).ofReal_comp
convert HasDerivAt.comp x (hasDerivAt_pow _ _) b using 1
ring
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
⊢ ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
[PROOFSTEP]
intro x _
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
⊢ HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
[PROOFSTEP]
have b : HasDerivAt (fun y : ℝ => (cos y : ℂ)) (-sin x) x := by simpa using (hasDerivAt_cos x).ofReal_comp
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
⊢ HasDerivAt (fun y => ↑(cos y)) (-↑(sin x)) x
[PROOFSTEP]
simpa using (hasDerivAt_cos x).ofReal_comp
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
b : HasDerivAt (fun y => ↑(cos y)) (-↑(sin x)) x
⊢ HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
[PROOFSTEP]
convert HasDerivAt.comp x (hasDerivAt_pow _ _) b using 1
[GOAL]
case h.e'_7
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
b : HasDerivAt (fun y => ↑(cos y)) (-↑(sin x)) x
⊢ -↑n * ↑(sin x) * ↑(cos x) ^ (n - 1) = ↑n * ↑(cos x) ^ (n - 1) * -↑(sin x)
[PROOFSTEP]
ring
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1)
[PROOFSTEP]
convert (config := { sameFun := true })
integral_mul_deriv_eq_deriv_mul der1 (fun x _ => antideriv_cos_comp_const_mul hz x) _ _ using 2
[GOAL]
case h.e'_2.h.e'_4
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ (fun x => Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) = fun x => ↑(cos x) ^ n * Complex.cos (2 * z * ↑x)
[PROOFSTEP]
ext1 x
[GOAL]
case h.e'_2.h.e'_4.h
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
x : ℝ
⊢ Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n = ↑(cos x) ^ n * Complex.cos (2 * z * ↑x)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ ↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1) =
↑(cos (π / 2)) ^ n * (Complex.sin (2 * z * ↑(π / 2)) / (2 * z)) -
↑(cos 0) ^ n * (Complex.sin (2 * z * ↑0) / (2 * z)) -
∫ (x : ℝ) in 0 ..π / 2, -↑n * ↑(sin x) * ↑(cos x) ^ (n - 1) * (Complex.sin (2 * z * ↑x) / (2 * z))
[PROOFSTEP]
rw [Complex.ofReal_zero, mul_zero, Complex.sin_zero, zero_div, mul_zero, sub_zero, cos_pi_div_two, Complex.ofReal_zero,
zero_pow (by positivity : 0 < n), zero_mul, zero_sub, ← integral_neg, ← integral_const_mul]
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ 0 < n
[PROOFSTEP]
positivity
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ ∫ (x : ℝ) in 0 ..π / 2, ↑n / (2 * z) * (Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1)) =
∫ (x : ℝ) in 0 ..π / 2, -(-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1) * (Complex.sin (2 * z * ↑x) / (2 * z)))
[PROOFSTEP]
refine' integral_congr fun x _ => _
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ ↑n / (2 * z) * (Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1)) =
-(-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1) * (Complex.sin (2 * z * ↑x) / (2 * z)))
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ ↑n * (Complex.sin (2 * z * ↑x) * Complex.sin ↑x * Complex.cos ↑x ^ (n - 1)) =
↑n * Complex.sin ↑x * Complex.cos ↑x ^ (n - 1) * Complex.sin (2 * z * ↑x)
[PROOFSTEP]
ring
[GOAL]
case convert_1
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ IntervalIntegrable (fun x => -↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) volume 0 (π / 2)
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case convert_1.hu
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ Continuous fun x => -↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)
[PROOFSTEP]
exact
(continuous_const.mul (Complex.continuous_ofReal.comp continuous_sin)).mul
((Complex.continuous_ofReal.comp continuous_cos).pow (n - 1))
[GOAL]
case convert_2
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ IntervalIntegrable (fun x => Complex.cos (2 * z * ↑x)) volume 0 (π / 2)
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case convert_2.hu
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 : ∀ (x : ℝ), x ∈ uIcc 0 (π / 2) → HasDerivAt (fun y => ↑(cos y) ^ n) (-↑n * ↑(sin x) * ↑(cos x) ^ (n - 1)) x
⊢ Continuous fun x => Complex.cos (2 * z * ↑x)
[PROOFSTEP]
exact Complex.continuous_cos.comp (continuous_const.mul Complex.continuous_ofReal)
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
⊢ ∫ (x : ℝ) in 0 ..π / 2, Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1) =
(↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
(↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)
[PROOFSTEP]
have der1 :
∀ x : ℝ,
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y : ℝ => sin y * (cos y : ℂ) ^ (n - 1))
((cos x : ℂ) ^ n - (n - 1) * (sin x : ℂ) ^ 2 * (cos x : ℂ) ^ (n - 2)) x :=
by
intro x _
have c := HasDerivAt.comp (x : ℂ) (hasDerivAt_pow (n - 1) _) (Complex.hasDerivAt_cos x)
convert ((Complex.hasDerivAt_sin x).mul c).comp_ofReal using 1
· ext1 y; simp only [Complex.ofReal_sin, Complex.ofReal_cos, Function.comp]
· simp only [Complex.ofReal_cos, Complex.ofReal_sin]
rw [mul_neg, mul_neg, ← sub_eq_add_neg, Function.comp_apply]
congr 1
· rw [← pow_succ, Nat.sub_add_cancel (by linarith : 1 ≤ n)]
· have : ((n - 1 : ℕ) : ℂ) = (n : ℂ) - 1 := by rw [Nat.cast_sub (one_le_two.trans hn), Nat.cast_one]
rw [Nat.sub_sub, this]
ring
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
⊢ ∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
[PROOFSTEP]
intro x _
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
⊢ HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) x
[PROOFSTEP]
have c := HasDerivAt.comp (x : ℂ) (hasDerivAt_pow (n - 1) _) (Complex.hasDerivAt_cos x)
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) x
[PROOFSTEP]
convert ((Complex.hasDerivAt_sin x).mul c).comp_ofReal using 1
[GOAL]
case h.e'_6
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) = fun y => Complex.sin ↑y * ((fun x => x ^ (n - 1)) ∘ Complex.cos) ↑y
[PROOFSTEP]
ext1 y
[GOAL]
case h.e'_6.h
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
y : ℝ
⊢ ↑(sin y) * ↑(cos y) ^ (n - 1) = Complex.sin ↑y * ((fun x => x ^ (n - 1)) ∘ Complex.cos) ↑y
[PROOFSTEP]
simp only [Complex.ofReal_sin, Complex.ofReal_cos, Function.comp]
[GOAL]
case h.e'_7
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ ↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2) =
Complex.cos ↑x * ((fun x => x ^ (n - 1)) ∘ Complex.cos) ↑x +
Complex.sin ↑x * (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x)
[PROOFSTEP]
simp only [Complex.ofReal_cos, Complex.ofReal_sin]
[GOAL]
case h.e'_7
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ Complex.cos ↑x ^ n - (↑n - ↑1) * Complex.sin ↑x ^ 2 * Complex.cos ↑x ^ (n - 2) =
Complex.cos ↑x * ((fun x => x ^ (n - 1)) ∘ Complex.cos) ↑x +
Complex.sin ↑x * (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x)
[PROOFSTEP]
rw [mul_neg, mul_neg, ← sub_eq_add_neg, Function.comp_apply]
[GOAL]
case h.e'_7
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ Complex.cos ↑x ^ n - (↑n - ↑1) * Complex.sin ↑x ^ 2 * Complex.cos ↑x ^ (n - 2) =
Complex.cos ↑x * Complex.cos ↑x ^ (n - 1) -
Complex.sin ↑x * (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * Complex.sin ↑x)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_7.e_a
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ Complex.cos ↑x ^ n = Complex.cos ↑x * Complex.cos ↑x ^ (n - 1)
[PROOFSTEP]
rw [← pow_succ, Nat.sub_add_cancel (by linarith : 1 ≤ n)]
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ 1 ≤ n
[PROOFSTEP]
linarith
[GOAL]
case h.e'_7.e_a
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ (↑n - ↑1) * Complex.sin ↑x ^ 2 * Complex.cos ↑x ^ (n - 2) =
Complex.sin ↑x * (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * Complex.sin ↑x)
[PROOFSTEP]
have : ((n - 1 : ℕ) : ℂ) = (n : ℂ) - 1 := by rw [Nat.cast_sub (one_le_two.trans hn), Nat.cast_one]
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
⊢ ↑(n - 1) = ↑n - 1
[PROOFSTEP]
rw [Nat.cast_sub (one_le_two.trans hn), Nat.cast_one]
[GOAL]
case h.e'_7.e_a
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
this : ↑(n - 1) = ↑n - 1
⊢ (↑n - ↑1) * Complex.sin ↑x ^ 2 * Complex.cos ↑x ^ (n - 2) =
Complex.sin ↑x * (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * Complex.sin ↑x)
[PROOFSTEP]
rw [Nat.sub_sub, this]
[GOAL]
case h.e'_7.e_a
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
this : ↑(n - 1) = ↑n - 1
⊢ (↑n - ↑1) * Complex.sin ↑x ^ 2 * Complex.cos ↑x ^ (n - 2) =
Complex.sin ↑x * ((↑n - 1) * Complex.cos ↑x ^ (n - (1 + 1)) * Complex.sin ↑x)
[PROOFSTEP]
ring
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ ∫ (x : ℝ) in 0 ..π / 2, Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1) =
(↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
(↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)
[PROOFSTEP]
convert integral_mul_deriv_eq_deriv_mul der1 (fun x _ => antideriv_sin_comp_const_mul hz x) _ _ using 1
[GOAL]
case h.e'_2
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ ∫ (x : ℝ) in 0 ..π / 2, Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1) =
∫ (x : ℝ) in 0 ..π / 2, ↑(sin x) * ↑(cos x) ^ (n - 1) * Complex.sin (2 * z * ↑x)
[PROOFSTEP]
refine' integral_congr fun x _ => _
[GOAL]
case h.e'_2
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1) = ↑(sin x) * ↑(cos x) ^ (n - 1) * Complex.sin (2 * z * ↑x)
[PROOFSTEP]
ring_nf
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ (↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
(↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2) =
↑(sin (π / 2)) * ↑(cos (π / 2)) ^ (n - 1) * (-Complex.cos (2 * z * ↑(π / 2)) / (2 * z)) -
↑(sin 0) * ↑(cos 0) ^ (n - 1) * (-Complex.cos (2 * z * ↑0) / (2 * z)) -
∫ (x : ℝ) in 0 ..π / 2,
(↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) * (-Complex.cos (2 * z * ↑x) / (2 * z))
[PROOFSTEP]
rw [sin_zero, cos_pi_div_two, Complex.ofReal_zero, zero_pow, zero_mul, mul_zero, zero_mul, zero_mul, sub_zero, zero_sub,
← integral_neg, ← integral_const_mul, ← integral_const_mul, ← integral_sub]
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ ∫ (x : ℝ) in 0 ..π / 2,
↑n / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
(↑n - 1) / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)) =
∫ (x : ℝ) in 0 ..π / 2,
-((↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) * (-Complex.cos (2 * z * ↑x) / (2 * z)))
case h.e'_3.hf
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ IntervalIntegrable (fun x => ↑n / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n)) volume 0 (π / 2)
case h.e'_3.hg
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ IntervalIntegrable (fun x => (↑n - 1) / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))) volume 0 (π / 2)
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ 0 < n - 1
[PROOFSTEP]
rotate_left
[GOAL]
case h.e'_3.hf
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ IntervalIntegrable (fun x => ↑n / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n)) volume 0 (π / 2)
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case h.e'_3.hf.hu
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ Continuous fun x => ↑n / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n)
[PROOFSTEP]
exact
continuous_const.mul
((Complex.continuous_cos.comp (continuous_const.mul Complex.continuous_ofReal)).mul
((Complex.continuous_ofReal.comp continuous_cos).pow n))
[GOAL]
case h.e'_3.hg
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ IntervalIntegrable (fun x => (↑n - 1) / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))) volume 0 (π / 2)
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case h.e'_3.hg.hu
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ Continuous fun x => (↑n - 1) / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))
[PROOFSTEP]
exact
continuous_const.mul
((Complex.continuous_cos.comp (continuous_const.mul Complex.continuous_ofReal)).mul
((Complex.continuous_ofReal.comp continuous_cos).pow (n - 2)))
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ 0 < n - 1
[PROOFSTEP]
apply Nat.sub_pos_of_lt
[GOAL]
case h.e'_3.h
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ 1 < n
[PROOFSTEP]
exact one_lt_two.trans_le hn
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ ∫ (x : ℝ) in 0 ..π / 2,
↑n / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
(↑n - 1) / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)) =
∫ (x : ℝ) in 0 ..π / 2,
-((↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) * (-Complex.cos (2 * z * ↑x) / (2 * z)))
[PROOFSTEP]
refine' integral_congr fun x _ => _
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ ↑n / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
(↑n - 1) / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)) =
-((↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) * (-Complex.cos (2 * z * ↑x) / (2 * z)))
[PROOFSTEP]
dsimp only
-- get rid of real trig functions and divisions by 2 * z:
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ ↑n / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
(↑n - 1) / (2 * z) * (Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)) =
-((↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) * (-Complex.cos (2 * z * ↑x) / (2 * z)))
[PROOFSTEP]
rw [Complex.ofReal_cos, Complex.ofReal_sin, Complex.sin_sq, ← mul_div_right_comm, ← mul_div_right_comm, ← sub_div,
mul_div, ← neg_div]
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ (↑n * (Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ n) -
(↑n - 1) * (Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (n - 2))) /
(2 * z) =
-((Complex.cos ↑x ^ n - (↑n - ↑1) * (1 - Complex.cos ↑x ^ 2) * Complex.cos ↑x ^ (n - 2)) *
-Complex.cos (2 * z * ↑x)) /
(2 * z)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.e_a
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ ↑n * (Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ n) -
(↑n - 1) * (Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (n - 2)) =
-((Complex.cos ↑x ^ n - (↑n - ↑1) * (1 - Complex.cos ↑x ^ 2) * Complex.cos ↑x ^ (n - 2)) *
-Complex.cos (2 * z * ↑x))
[PROOFSTEP]
have : Complex.cos x ^ n = Complex.cos x ^ (n - 2) * Complex.cos x ^ 2 := by
conv_lhs => rw [← Nat.sub_add_cancel hn, pow_add]
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ Complex.cos ↑x ^ n = Complex.cos ↑x ^ (n - 2) * Complex.cos ↑x ^ 2
[PROOFSTEP]
conv_lhs => rw [← Nat.sub_add_cancel hn, pow_add]
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
| Complex.cos ↑x ^ n
[PROOFSTEP]
rw [← Nat.sub_add_cancel hn, pow_add]
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
| Complex.cos ↑x ^ n
[PROOFSTEP]
rw [← Nat.sub_add_cancel hn, pow_add]
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
| Complex.cos ↑x ^ n
[PROOFSTEP]
rw [← Nat.sub_add_cancel hn, pow_add]
[GOAL]
case h.e'_3.e_a
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
this : Complex.cos ↑x ^ n = Complex.cos ↑x ^ (n - 2) * Complex.cos ↑x ^ 2
⊢ ↑n * (Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ n) -
(↑n - 1) * (Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (n - 2)) =
-((Complex.cos ↑x ^ n - (↑n - ↑1) * (1 - Complex.cos ↑x ^ 2) * Complex.cos ↑x ^ (n - 2)) *
-Complex.cos (2 * z * ↑x))
[PROOFSTEP]
rw [this]
[GOAL]
case h.e'_3.e_a
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
this : Complex.cos ↑x ^ n = Complex.cos ↑x ^ (n - 2) * Complex.cos ↑x ^ 2
⊢ ↑n * (Complex.cos (2 * z * ↑x) * (Complex.cos ↑x ^ (n - 2) * Complex.cos ↑x ^ 2)) -
(↑n - 1) * (Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (n - 2)) =
-((Complex.cos ↑x ^ (n - 2) * Complex.cos ↑x ^ 2 -
(↑n - ↑1) * (1 - Complex.cos ↑x ^ 2) * Complex.cos ↑x ^ (n - 2)) *
-Complex.cos (2 * z * ↑x))
[PROOFSTEP]
ring
[GOAL]
case convert_1
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ IntervalIntegrable (fun x => ↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)) volume 0 (π / 2)
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case convert_1.hu
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ Continuous fun x => ↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2)
[PROOFSTEP]
exact
((Complex.continuous_ofReal.comp continuous_cos).pow n).sub
((continuous_const.mul ((Complex.continuous_ofReal.comp continuous_sin).pow 2)).mul
((Complex.continuous_ofReal.comp continuous_cos).pow (n - 2)))
[GOAL]
case convert_2
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ IntervalIntegrable (fun x => Complex.sin (2 * z * ↑x)) volume 0 (π / 2)
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case convert_2.hu
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
der1 :
∀ (x : ℝ),
x ∈ uIcc 0 (π / 2) →
HasDerivAt (fun y => ↑(sin y) * ↑(cos y) ^ (n - 1)) (↑(cos x) ^ n - (↑n - ↑1) * ↑(sin x) ^ 2 * ↑(cos x) ^ (n - 2))
x
⊢ Continuous fun x => Complex.sin (2 * z * ↑x)
[PROOFSTEP]
exact Complex.continuous_sin.comp (continuous_const.mul Complex.continuous_ofReal)
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
⊢ (1 - 4 * z ^ 2 / ↑n ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
(↑n - 1) / ↑n * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)
[PROOFSTEP]
have nne : (n : ℂ) ≠ 0 := by contrapose! hn; rw [Nat.cast_eq_zero] at hn ; rw [hn]; exact zero_lt_two
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
⊢ ↑n ≠ 0
[PROOFSTEP]
contrapose! hn
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
hn : ↑n = 0
⊢ n < 2
[PROOFSTEP]
rw [Nat.cast_eq_zero] at hn
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
hn : n = 0
⊢ n < 2
[PROOFSTEP]
rw [hn]
[GOAL]
z : ℂ
n : ℕ
hz : z ≠ 0
hn : n = 0
⊢ 0 < 2
[PROOFSTEP]
exact zero_lt_two
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
nne : ↑n ≠ 0
⊢ (1 - 4 * z ^ 2 / ↑n ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
(↑n - 1) / ↑n * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)
[PROOFSTEP]
have := integral_cos_mul_cos_pow_aux hn hz
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
nne : ↑n ≠ 0
this :
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.sin (2 * z * ↑x) * ↑(sin x) * ↑(cos x) ^ (n - 1)
⊢ (1 - 4 * z ^ 2 / ↑n ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
(↑n - 1) / ↑n * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)
[PROOFSTEP]
rw [integral_sin_mul_sin_mul_cos_pow_eq hn hz, sub_eq_neg_add, mul_add, ← sub_eq_iff_eq_add] at this
[GOAL]
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
nne : ↑n ≠ 0
this :
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
↑n / (2 * z) * (↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) =
↑n / (2 * z) * -((↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))
⊢ (1 - 4 * z ^ 2 / ↑n ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
(↑n - 1) / ↑n * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2)
[PROOFSTEP]
convert congr_arg (fun u : ℂ => -u * (2 * z) ^ 2 / n ^ 2) this using 1
[GOAL]
case h.e'_2
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
nne : ↑n ≠ 0
this :
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
↑n / (2 * z) * (↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) =
↑n / (2 * z) * -((↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))
⊢ (1 - 4 * z ^ 2 / ↑n ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n =
-((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
↑n / (2 * z) * (↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n)) *
(2 * z) ^ 2 /
↑(n ^ 2)
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
nne : ↑n ≠ 0
this :
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
↑n / (2 * z) * (↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) =
↑n / (2 * z) * -((↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))
⊢ (↑n - 1) / ↑n * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2) =
-(↑n / (2 * z) * -((↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))) *
(2 * z) ^ 2 /
↑(n ^ 2)
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_2
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
nne : ↑n ≠ 0
this :
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
↑n / (2 * z) * (↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) =
↑n / (2 * z) * -((↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))
⊢ ((↑n ^ 2 - 4 * z ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ n) *
(2 * z * (2 * z) * ↑n ^ 2) =
(↑n * (↑n * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ n) -
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ n) * (2 * z * (2 * z))) *
(2 * z) ^ 2 *
↑n ^ 2
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
nne : ↑n ≠ 0
this :
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) -
↑n / (2 * z) * (↑n / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) =
↑n / (2 * z) * -((↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (n - 2))
⊢ ((↑n - 1) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (n - 2)) *
(2 * z * (2 * z) * ↑n ^ 2) =
↑n * ((↑n - 1) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (n - 2)) * (2 * z) ^ 2 * ↑n
[PROOFSTEP]
ring
[GOAL]
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ (1 - z ^ 2 / (↑n + 1) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n + 2) =
(2 * ↑n + 1) / (2 * ↑n + 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
[PROOFSTEP]
convert integral_cos_mul_cos_pow (by linarith : 2 ≤ 2 * n + 2) hz using 3
[GOAL]
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ 2 ≤ 2 * n + 2
[PROOFSTEP]
linarith
[GOAL]
case h.e'_2.h.e'_5.h.e'_6
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ z ^ 2 / (↑n + 1) ^ 2 = 4 * z ^ 2 / ↑(2 * n + 2) ^ 2
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_mul, Nat.cast_two]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ z ^ 2 / (↑n + 1) ^ 2 = 4 * z ^ 2 / (2 * ↑n + 2) ^ 2
[PROOFSTEP]
nth_rw 2 [← mul_one (2 : ℂ)]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ z ^ 2 / (↑n + 1) ^ 2 = 4 * z ^ 2 / (2 * ↑n + 2 * 1) ^ 2
[PROOFSTEP]
rw [← mul_add, mul_pow, ← div_div]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ z ^ 2 / (↑n + 1) ^ 2 = 4 * z ^ 2 / 2 ^ 2 / (↑n + 1) ^ 2
[PROOFSTEP]
ring
[GOAL]
case h.e'_3.h.e'_5.h.e'_5
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ 2 * ↑n + 1 = ↑(2 * n + 2) - 1
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_3.h.e'_5.h.e'_5
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ 2 * ↑n + 1 = 2 * ↑n + 2 - 1
[PROOFSTEP]
ring
[GOAL]
case h.e'_3.h.e'_5.h.e'_6
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ 2 * ↑n + 2 = ↑(2 * n + 2)
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_3.h.e'_5.h.e'_6
z : ℂ
n✝ n : ℕ
hz : z ≠ 0
⊢ 2 * ↑n + 2 = 2 * ↑n + 2
[PROOFSTEP]
ring
[GOAL]
z : ℂ
n✝ n : ℕ
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = 1 / 2 * ∫ (x : ℝ) in 0 ..π, sin x ^ n
[PROOFSTEP]
rw [mul_comm (1 / 2 : ℝ), ← div_eq_iff (one_div_ne_zero (two_ne_zero' ℝ)), ← div_mul, div_one, mul_two]
[GOAL]
z : ℂ
n✝ n : ℕ
⊢ (∫ (x : ℝ) in 0 ..π / 2, cos x ^ n) + ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in 0 ..π, sin x ^ n
[PROOFSTEP]
have L : IntervalIntegrable _ volume 0 (π / 2) := (continuous_sin.pow n).intervalIntegrable _ _
[GOAL]
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
⊢ (∫ (x : ℝ) in 0 ..π / 2, cos x ^ n) + ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in 0 ..π, sin x ^ n
[PROOFSTEP]
have R : IntervalIntegrable _ volume (π / 2) π := (continuous_sin.pow n).intervalIntegrable _ _
[GOAL]
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ (∫ (x : ℝ) in 0 ..π / 2, cos x ^ n) + ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in 0 ..π, sin x ^ n
[PROOFSTEP]
rw [← integral_add_adjacent_intervals L R]
-- Porting note: was `congr 1` but it timeouts
[GOAL]
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ (∫ (x : ℝ) in 0 ..π / 2, cos x ^ n) + ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n =
(∫ (x : ℝ) in 0 ..π / 2, sin x ^ n) + ∫ (x : ℝ) in π / 2 ..π, sin x ^ n
[PROOFSTEP]
refine congr_arg₂ _ ?_ ?_
[GOAL]
case refine_1
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in 0 ..π / 2, sin x ^ n
[PROOFSTEP]
nth_rw 1 [(by ring : 0 = π / 2 - π / 2)]
[GOAL]
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ 0 = π / 2 - π / 2
[PROOFSTEP]
ring
[GOAL]
case refine_1
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in π / 2 - π / 2 ..π / 2, cos x ^ n = ∫ (x : ℝ) in 0 ..π / 2, sin x ^ n
[PROOFSTEP]
nth_rw 3 [(by ring : π / 2 = π / 2 - 0)]
[GOAL]
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ π / 2 = π / 2 - 0
[PROOFSTEP]
ring
[GOAL]
case refine_1
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in π / 2 - π / 2 ..π / 2 - 0, cos x ^ n = ∫ (x : ℝ) in 0 ..π / 2, sin x ^ n
[PROOFSTEP]
rw [← integral_comp_sub_left]
[GOAL]
case refine_1
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos (π / 2 - x) ^ n = ∫ (x : ℝ) in 0 ..π / 2, sin x ^ n
[PROOFSTEP]
refine' integral_congr fun x _ => _
[GOAL]
case refine_1
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ cos (π / 2 - x) ^ n = sin x ^ n
[PROOFSTEP]
rw [cos_pi_div_two_sub]
[GOAL]
case refine_2
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in π / 2 ..π, sin x ^ n
[PROOFSTEP]
nth_rw 3 [(by ring : π = π / 2 + π / 2)]
[GOAL]
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ π = π / 2 + π / 2
[PROOFSTEP]
ring
[GOAL]
case refine_2
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in π / 2 ..π / 2 + π / 2, sin x ^ n
[PROOFSTEP]
nth_rw 2 [(by ring : π / 2 = 0 + π / 2)]
[GOAL]
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ π / 2 = 0 + π / 2
[PROOFSTEP]
ring
[GOAL]
case refine_2
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in 0 + π / 2 ..π / 2 + π / 2, sin x ^ n
[PROOFSTEP]
rw [← integral_comp_add_right]
[GOAL]
case refine_2
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos x ^ n = ∫ (x : ℝ) in 0 ..π / 2, sin (x + π / 2) ^ n
[PROOFSTEP]
refine' integral_congr fun x _ => _
[GOAL]
case refine_2
z : ℂ
n✝ n : ℕ
L : IntervalIntegrable (fun b => sin b ^ n) volume 0 (π / 2)
R : IntervalIntegrable (fun b => sin b ^ n) volume (π / 2) π
x : ℝ
x✝ : x ∈ uIcc 0 (π / 2)
⊢ cos x ^ n = sin (x + π / 2) ^ n
[PROOFSTEP]
rw [sin_add_pi_div_two]
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
n : ℕ
⊢ Complex.sin (↑π * z) =
((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
[PROOFSTEP]
rcases eq_or_ne z 0 with (rfl | hz)
[GOAL]
case inl
z : ℂ
n✝ n : ℕ
⊢ Complex.sin (↑π * 0) =
((↑π * 0 * ∏ j in Finset.range n, (1 - 0 ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * 0 * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
[PROOFSTEP]
simp
[GOAL]
case inr
z✝ : ℂ
n✝ : ℕ
z : ℂ
n : ℕ
hz : z ≠ 0
⊢ Complex.sin (↑π * z) =
((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
[PROOFSTEP]
induction' n with n hn
[GOAL]
case inr.zero
z✝ : ℂ
n : ℕ
z : ℂ
hz : z ≠ 0
⊢ Complex.sin (↑π * z) =
((↑π * z * ∏ j in Finset.range Nat.zero, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.zero)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.zero))
[PROOFSTEP]
simp_rw [Nat.zero_eq, mul_zero, pow_zero, mul_one, Finset.prod_range_zero, mul_one, integral_one, sub_zero]
[GOAL]
case inr.zero
z✝ : ℂ
n : ℕ
z : ℂ
hz : z ≠ 0
⊢ Complex.sin (↑π * z) = (↑π * z * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x)) / ↑(π / 2)
[PROOFSTEP]
rw [integral_cos_mul_complex (mul_ne_zero two_ne_zero hz), Complex.ofReal_zero, mul_zero, Complex.sin_zero, zero_div,
sub_zero, (by push_cast ; field_simp; ring : 2 * z * ↑(π / 2) = π * z)]
[GOAL]
z✝ : ℂ
n : ℕ
z : ℂ
hz : z ≠ 0
⊢ 2 * z * ↑(π / 2) = ↑π * z
[PROOFSTEP]
push_cast
[GOAL]
z✝ : ℂ
n : ℕ
z : ℂ
hz : z ≠ 0
⊢ 2 * z * (↑π / 2) = ↑π * z
[PROOFSTEP]
field_simp
[GOAL]
z✝ : ℂ
n : ℕ
z : ℂ
hz : z ≠ 0
⊢ 2 * z * ↑π = ↑π * z * 2
[PROOFSTEP]
ring
[GOAL]
case inr.zero
z✝ : ℂ
n : ℕ
z : ℂ
hz : z ≠ 0
⊢ Complex.sin (↑π * z) = ↑π * z * (Complex.sin (↑π * z) / (2 * z)) / ↑(π / 2)
[PROOFSTEP]
field_simp [Complex.ofReal_ne_zero.mpr pi_pos.ne']
[GOAL]
case inr.zero
z✝ : ℂ
n : ℕ
z : ℂ
hz : z ≠ 0
⊢ Complex.sin (↑π * z) * (2 * z * ↑π) = ↑π * z * Complex.sin (↑π * z) * 2
[PROOFSTEP]
ring
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
hn :
Complex.sin (↑π * z) =
((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
⊢ Complex.sin (↑π * z) =
((↑π * z * ∏ j in Finset.range (Nat.succ n), (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n))
[PROOFSTEP]
rw [hn, Finset.prod_range_succ]
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
hn :
Complex.sin (↑π * z) =
((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
⊢ ((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)) =
(↑π * z * ((∏ x in Finset.range n, (1 - z ^ 2 / (↑x + 1) ^ 2)) * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n))
[PROOFSTEP]
set A := ∏ j in Finset.range n, ((1 : ℂ) - z ^ 2 / ((j : ℂ) + 1) ^ 2)
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
hn :
Complex.sin (↑π * z) =
(↑π * z * A * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
⊢ (↑π * z * A * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)) =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n))
[PROOFSTEP]
set B := ∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (2 * n)
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
⊢ ↑π * z * A * B / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)) =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n))
[PROOFSTEP]
set C := ∫ x in (0 : ℝ)..π / 2, cos x ^ (2 * n)
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
⊢ ↑π * z * A * B / ↑C =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n))
[PROOFSTEP]
have aux' : 2 * n.succ = 2 * n + 2 := by rw [Nat.succ_eq_add_one, mul_add, mul_one]
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
⊢ 2 * Nat.succ n = 2 * n + 2
[PROOFSTEP]
rw [Nat.succ_eq_add_one, mul_add, mul_one]
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
⊢ ↑π * z * A * B / ↑C =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n))
[PROOFSTEP]
have : (∫ x in (0 : ℝ)..π / 2, cos x ^ (2 * n.succ)) = (2 * (n : ℝ) + 1) / (2 * n + 2) * C :=
by
rw [integral_cos_pow_eq]
dsimp only
rw [integral_cos_pow_eq, aux', integral_sin_pow, sin_zero, sin_pi, pow_succ, zero_mul, zero_mul, zero_mul, sub_zero,
zero_div, zero_add, ← mul_assoc, ← mul_assoc, mul_comm (1 / 2 : ℝ) _, Nat.cast_mul, Nat.cast_eq_ofNat]
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
⊢ ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
[PROOFSTEP]
rw [integral_cos_pow_eq]
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
⊢ 1 / 2 * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
[PROOFSTEP]
dsimp only
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
⊢ 1 / 2 * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
[PROOFSTEP]
rw [integral_cos_pow_eq, aux', integral_sin_pow, sin_zero, sin_pi, pow_succ, zero_mul, zero_mul, zero_mul, sub_zero,
zero_div, zero_add, ← mul_assoc, ← mul_assoc, mul_comm (1 / 2 : ℝ) _, Nat.cast_mul, Nat.cast_eq_ofNat]
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
⊢ ↑π * z * A * B / ↑C =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n))
[PROOFSTEP]
rw [this]
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
⊢ ↑π * z * A * B / ↑C =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑((2 * ↑n + 1) / (2 * ↑n + 2) * C)
[PROOFSTEP]
change
π * z * A * B / C =
(π * z * (A * ((1 : ℂ) - z ^ 2 / ((n : ℂ) + 1) ^ 2)) *
∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (2 * n.succ)) /
((2 * n + 1) / (2 * n + 2) * C : ℝ)
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
⊢ ↑π * z * A * B / ↑C =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑((2 * ↑n + 1) / (2 * ↑n + 2) * C)
[PROOFSTEP]
have :
(π * z * (A * ((1 : ℂ) - z ^ 2 / ((n : ℂ) + 1) ^ 2)) *
∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (2 * n.succ)) =
π * z * A *
(((1 : ℂ) - z ^ 2 / (n.succ : ℂ) ^ 2) *
∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (2 * n.succ)) :=
by
nth_rw 2 [Nat.succ_eq_add_one]
rw [Nat.cast_add_one]
ring
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
⊢ ↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
[PROOFSTEP]
nth_rw 2 [Nat.succ_eq_add_one]
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
⊢ ↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(n + 1) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
[PROOFSTEP]
rw [Nat.cast_add_one]
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
⊢ ↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / (↑n + 1) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
[PROOFSTEP]
ring
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
⊢ ↑π * z * A * B / ↑C =
(↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑((2 * ↑n + 1) / (2 * ↑n + 2) * C)
[PROOFSTEP]
rw [this]
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
⊢ ↑π * z * A * B / ↑C =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑((2 * ↑n + 1) / (2 * ↑n + 2) * C)
[PROOFSTEP]
suffices
(((1 : ℂ) - z ^ 2 / (n.succ : ℂ) ^ 2) * ∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (2 * n.succ)) =
(2 * n + 1) / (2 * n + 2) * B
by
rw [this, Complex.ofReal_mul, Complex.ofReal_div]
have : (C : ℂ) ≠ 0 := Complex.ofReal_ne_zero.mpr (integral_cos_pow_pos _).ne'
have : 2 * (n : ℂ) + 1 ≠ 0 :=
by
convert (Nat.cast_add_one_ne_zero (2 * n) : (↑(2 * n) + 1 : ℂ) ≠ 0)
simp
have : 2 * (n : ℂ) + 2 ≠ 0 :=
by
convert (Nat.cast_add_one_ne_zero (2 * n + 1) : (↑(2 * n + 1) + 1 : ℂ) ≠ 0) using 1
push_cast ; ring
field_simp; ring
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝¹ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝ :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
⊢ ↑π * z * A * B / ↑C =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n)) /
↑((2 * ↑n + 1) / (2 * ↑n + 2) * C)
[PROOFSTEP]
rw [this, Complex.ofReal_mul, Complex.ofReal_div]
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝¹ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝ :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
⊢ ↑π * z * A * B / ↑C = ↑π * z * A * ((2 * ↑n + 1) / (2 * ↑n + 2) * B) / (↑(2 * ↑n + 1) / ↑(2 * ↑n + 2) * ↑C)
[PROOFSTEP]
have : (C : ℂ) ≠ 0 := Complex.ofReal_ne_zero.mpr (integral_cos_pow_pos _).ne'
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝² : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝¹ :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝ :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this : ↑C ≠ 0
⊢ ↑π * z * A * B / ↑C = ↑π * z * A * ((2 * ↑n + 1) / (2 * ↑n + 2) * B) / (↑(2 * ↑n + 1) / ↑(2 * ↑n + 2) * ↑C)
[PROOFSTEP]
have : 2 * (n : ℂ) + 1 ≠ 0 :=
by
convert (Nat.cast_add_one_ne_zero (2 * n) : (↑(2 * n) + 1 : ℂ) ≠ 0)
simp
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝² : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝¹ :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝ :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this : ↑C ≠ 0
⊢ 2 * ↑n + 1 ≠ 0
[PROOFSTEP]
convert (Nat.cast_add_one_ne_zero (2 * n) : (↑(2 * n) + 1 : ℂ) ≠ 0)
[GOAL]
case h.e'_2.h.e'_5
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝² : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝¹ :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝ :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this : ↑C ≠ 0
⊢ 2 * ↑n = ↑(2 * n)
[PROOFSTEP]
simp
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝³ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝² :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝¹ :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this✝ : ↑C ≠ 0
this : 2 * ↑n + 1 ≠ 0
⊢ ↑π * z * A * B / ↑C = ↑π * z * A * ((2 * ↑n + 1) / (2 * ↑n + 2) * B) / (↑(2 * ↑n + 1) / ↑(2 * ↑n + 2) * ↑C)
[PROOFSTEP]
have : 2 * (n : ℂ) + 2 ≠ 0 :=
by
convert (Nat.cast_add_one_ne_zero (2 * n + 1) : (↑(2 * n + 1) + 1 : ℂ) ≠ 0) using 1
push_cast ; ring
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝³ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝² :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝¹ :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this✝ : ↑C ≠ 0
this : 2 * ↑n + 1 ≠ 0
⊢ 2 * ↑n + 2 ≠ 0
[PROOFSTEP]
convert (Nat.cast_add_one_ne_zero (2 * n + 1) : (↑(2 * n + 1) + 1 : ℂ) ≠ 0) using 1
[GOAL]
case h.e'_2
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝³ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝² :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝¹ :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this✝ : ↑C ≠ 0
this : 2 * ↑n + 1 ≠ 0
⊢ 2 * ↑n + 2 = ↑(2 * n + 1) + 1
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_2
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝³ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝² :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝¹ :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this✝ : ↑C ≠ 0
this : 2 * ↑n + 1 ≠ 0
⊢ 2 * ↑n + 2 = 2 * ↑n + 1 + 1
[PROOFSTEP]
ring
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝⁴ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝³ :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝² :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this✝¹ : ↑C ≠ 0
this✝ : 2 * ↑n + 1 ≠ 0
this : 2 * ↑n + 2 ≠ 0
⊢ ↑π * z * A * B / ↑C = ↑π * z * A * ((2 * ↑n + 1) / (2 * ↑n + 2) * B) / (↑(2 * ↑n + 1) / ↑(2 * ↑n + 2) * ↑C)
[PROOFSTEP]
field_simp
[GOAL]
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝⁴ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this✝³ :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
this✝² :
(1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
this✝¹ : ↑C ≠ 0
this✝ : 2 * ↑n + 1 ≠ 0
this : 2 * ↑n + 2 ≠ 0
⊢ ((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (2 * n)) *
((2 * ↑n + 1) * ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))) =
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((2 * ↑n + 1) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * Complex.cos ↑x ^ (2 * n)) *
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))
[PROOFSTEP]
ring
[GOAL]
case inr.succ
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
⊢ (1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
(2 * ↑n + 1) / (2 * ↑n + 2) * B
[PROOFSTEP]
convert integral_cos_mul_cos_pow_even n hz
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_6.h.e'_5
z✝ : ℂ
n✝ : ℕ
z : ℂ
hz : z ≠ 0
n : ℕ
A : ℂ := ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)
B : ℂ := ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)
C : ℝ := ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)
hn : Complex.sin (↑π * z) = ↑π * z * A * B / ↑C
aux' : 2 * Nat.succ n = 2 * n + 2
this✝ : ∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * Nat.succ n) = (2 * ↑n + 1) / (2 * ↑n + 2) * C
this :
↑π * z * (A * (1 - z ^ 2 / (↑n + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n) =
↑π * z * A *
((1 - z ^ 2 / ↑(Nat.succ n) ^ 2) * ∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * Nat.succ n))
⊢ ↑(Nat.succ n) = ↑n + 1
[PROOFSTEP]
rw [Nat.cast_succ]
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
⊢ Tendsto (fun n => (∫ (x : ℝ) in 0 ..π / 2, ↑(cos x) ^ n * f x) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n)) atTop (𝓝 (f 0))
[PROOFSTEP]
simp_rw [div_eq_inv_mul (α := ℂ), ← Complex.ofReal_inv, integral_of_le pi_div_two_pos.le, ←
MeasureTheory.integral_Icc_eq_integral_Ioc, ← Complex.ofReal_pow, ← Complex.real_smul]
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
⊢ Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x) atTop
(𝓝 (f 0))
[PROOFSTEP]
have c_lt : ∀ y : ℝ, y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0 := fun y hy hy' =>
cos_lt_cos_of_nonneg_of_le_pi_div_two (le_refl 0) hy.2 (lt_of_le_of_ne hy.1 hy'.symm)
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
⊢ Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x) atTop
(𝓝 (f 0))
[PROOFSTEP]
have c_nonneg : ∀ x : ℝ, x ∈ Icc 0 (π / 2) → 0 ≤ cos x := fun x hx =>
cos_nonneg_of_mem_Icc ((Icc_subset_Icc_left (neg_nonpos_of_nonneg pi_div_two_pos.le)) hx)
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
c_nonneg : ∀ (x : ℝ), x ∈ Icc 0 (π / 2) → 0 ≤ cos x
⊢ Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x) atTop
(𝓝 (f 0))
[PROOFSTEP]
have c_zero_pos : 0 < cos 0 := by rw [cos_zero]; exact zero_lt_one
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
c_nonneg : ∀ (x : ℝ), x ∈ Icc 0 (π / 2) → 0 ≤ cos x
⊢ 0 < cos 0
[PROOFSTEP]
rw [cos_zero]
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
c_nonneg : ∀ (x : ℝ), x ∈ Icc 0 (π / 2) → 0 ≤ cos x
⊢ 0 < 1
[PROOFSTEP]
exact zero_lt_one
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
c_nonneg : ∀ (x : ℝ), x ∈ Icc 0 (π / 2) → 0 ≤ cos x
c_zero_pos : 0 < cos 0
⊢ Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x) atTop
(𝓝 (f 0))
[PROOFSTEP]
have zero_mem : (0 : ℝ) ∈ closure (interior (Icc 0 (π / 2))) :=
by
rw [interior_Icc, closure_Ioo pi_div_two_pos.ne, left_mem_Icc]
exact pi_div_two_pos.le
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
c_nonneg : ∀ (x : ℝ), x ∈ Icc 0 (π / 2) → 0 ≤ cos x
c_zero_pos : 0 < cos 0
⊢ 0 ∈ closure (interior (Icc 0 (π / 2)))
[PROOFSTEP]
rw [interior_Icc, closure_Ioo pi_div_two_pos.ne, left_mem_Icc]
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
c_nonneg : ∀ (x : ℝ), x ∈ Icc 0 (π / 2) → 0 ≤ cos x
c_zero_pos : 0 < cos 0
⊢ 0 ≤ π / 2
[PROOFSTEP]
exact pi_div_two_pos.le
[GOAL]
f : ℝ → ℂ
hf : ContinuousOn f (Icc 0 (π / 2))
c_lt : ∀ (y : ℝ), y ∈ Icc 0 (π / 2) → y ≠ 0 → cos y < cos 0
c_nonneg : ∀ (x : ℝ), x ∈ Icc 0 (π / 2) → 0 ≤ cos x
c_zero_pos : 0 < cos 0
zero_mem : 0 ∈ closure (interior (Icc 0 (π / 2)))
⊢ Tendsto (fun n => (∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n)⁻¹ • ∫ (x : ℝ) in Icc 0 (π / 2), cos x ^ n • f x) atTop
(𝓝 (f 0))
[PROOFSTEP]
exact
tendsto_set_integral_pow_smul_of_unique_maximum_of_isCompact_of_continuousOn isCompact_Icc continuousOn_cos c_lt
c_nonneg c_zero_pos zero_mem hf
[GOAL]
z : ℂ
⊢ Tendsto (fun n => ↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) atTop (𝓝 (Complex.sin (↑π * z)))
[PROOFSTEP]
have A :
Tendsto
(fun n : ℕ =>
((π * z * ∏ j in Finset.range n, ((1 : ℂ) - z ^ 2 / ((j : ℂ) + 1) ^ 2)) *
∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (2 * n)) /
(∫ x in (0 : ℝ)..π / 2, cos x ^ (2 * n) : ℝ))
atTop (𝓝 <| _) :=
Tendsto.congr (fun n => sin_pi_mul_eq z n) tendsto_const_nhds
[GOAL]
z : ℂ
A :
Tendsto
(fun n =>
((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)))
atTop (𝓝 (Complex.sin (↑π * z)))
⊢ Tendsto (fun n => ↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) atTop (𝓝 (Complex.sin (↑π * z)))
[PROOFSTEP]
have : 𝓝 (Complex.sin (π * z)) = 𝓝 (Complex.sin (π * z) * 1) := by rw [mul_one]
[GOAL]
z : ℂ
A :
Tendsto
(fun n =>
((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)))
atTop (𝓝 (Complex.sin (↑π * z)))
⊢ 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
[PROOFSTEP]
rw [mul_one]
[GOAL]
z : ℂ
A :
Tendsto
(fun n =>
((↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)))
atTop (𝓝 (Complex.sin (↑π * z)))
this : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
⊢ Tendsto (fun n => ↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) atTop (𝓝 (Complex.sin (↑π * z)))
[PROOFSTEP]
simp_rw [this, mul_div_assoc] at A
[GOAL]
z : ℂ
this : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
⊢ Tendsto (fun n => ↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) atTop (𝓝 (Complex.sin (↑π * z)))
[PROOFSTEP]
convert (tendsto_mul_iff_of_ne_zero _ one_ne_zero).mp A
[GOAL]
z : ℂ
this : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
⊢ Tendsto
(fun n =>
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)))
atTop (𝓝 1)
[PROOFSTEP]
suffices :
Tendsto
(fun n : ℕ =>
(∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ n) / (∫ x in (0 : ℝ)..π / 2, cos x ^ n : ℝ))
atTop (𝓝 1)
[GOAL]
z : ℂ
this✝ : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
this :
Tendsto
(fun n => (∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n))
atTop (𝓝 1)
⊢ Tendsto
(fun n =>
(∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n)))
atTop (𝓝 1)
case this
z : ℂ
this : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
⊢ Tendsto
(fun n => (∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n))
atTop (𝓝 1)
[PROOFSTEP]
exact this.comp (tendsto_id.const_mul_atTop' zero_lt_two)
[GOAL]
case this
z : ℂ
this : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
⊢ Tendsto
(fun n => (∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n))
atTop (𝓝 1)
[PROOFSTEP]
have : ContinuousOn (fun x : ℝ => Complex.cos (2 * z * x)) (Icc 0 (π / 2)) :=
(Complex.continuous_cos.comp (continuous_const.mul Complex.continuous_ofReal)).continuousOn
[GOAL]
case this
z : ℂ
this✝ : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
this : ContinuousOn (fun x => Complex.cos (2 * z * ↑x)) (Icc 0 (π / 2))
⊢ Tendsto
(fun n => (∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n))
atTop (𝓝 1)
[PROOFSTEP]
convert tendsto_integral_cos_pow_mul_div this using 1
[GOAL]
case h.e'_3
z : ℂ
this✝ : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
this : ContinuousOn (fun x => Complex.cos (2 * z * ↑x)) (Icc 0 (π / 2))
⊢ (fun n => (∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n)) =
fun n => (∫ (x : ℝ) in 0 ..π / 2, ↑(cos x) ^ n * Complex.cos (2 * z * ↑x)) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n)
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
z : ℂ
this✝ : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
this : ContinuousOn (fun x => Complex.cos (2 * z * ↑x)) (Icc 0 (π / 2))
n : ℕ
⊢ (∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n) =
(∫ (x : ℝ) in 0 ..π / 2, ↑(cos x) ^ n * Complex.cos (2 * z * ↑x)) / ↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ n)
[PROOFSTEP]
congr 2 with x : 1
[GOAL]
case h.e'_3.h.e_a.e_f.h
z : ℂ
this✝ : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
this : ContinuousOn (fun x => Complex.cos (2 * z * ↑x)) (Icc 0 (π / 2))
n : ℕ
x : ℝ
⊢ Complex.cos (2 * z * ↑x) * ↑(cos x) ^ n = ↑(cos x) ^ n * Complex.cos (2 * z * ↑x)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h.e'_5
z : ℂ
this✝ : 𝓝 (Complex.sin (↑π * z)) = 𝓝 (Complex.sin (↑π * z) * 1)
A :
Tendsto
(fun n =>
(↑π * z * ∏ j in Finset.range n, (1 - z ^ 2 / (↑j + 1) ^ 2)) *
((∫ (x : ℝ) in 0 ..π / 2, Complex.cos (2 * z * ↑x) * ↑(cos x) ^ (2 * n)) /
↑(∫ (x : ℝ) in 0 ..π / 2, cos x ^ (2 * n))))
atTop (𝓝 (Complex.sin (↑π * z) * 1))
this : ContinuousOn (fun x => Complex.cos (2 * z * ↑x)) (Icc 0 (π / 2))
⊢ 𝓝 1 = 𝓝 (Complex.cos (2 * z * ↑0))
[PROOFSTEP]
rw [Complex.ofReal_zero, mul_zero, Complex.cos_zero]
[GOAL]
x : ℝ
⊢ Tendsto (fun n => π * x * ∏ j in Finset.range n, (1 - x ^ 2 / (↑j + 1) ^ 2)) atTop (𝓝 (sin (π * x)))
[PROOFSTEP]
convert (Complex.continuous_re.tendsto _).comp (Complex.tendsto_euler_sin_prod x) using 1
[GOAL]
case h.e'_3
x : ℝ
⊢ (fun n => π * x * ∏ j in Finset.range n, (1 - x ^ 2 / (↑j + 1) ^ 2)) =
Complex.re ∘ fun n => ↑π * ↑x * ∏ j in Finset.range n, (1 - ↑x ^ 2 / (↑j + 1) ^ 2)
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
x : ℝ
n : ℕ
⊢ π * x * ∏ j in Finset.range n, (1 - x ^ 2 / (↑j + 1) ^ 2) =
(Complex.re ∘ fun n => ↑π * ↑x * ∏ j in Finset.range n, (1 - ↑x ^ 2 / (↑j + 1) ^ 2)) n
[PROOFSTEP]
rw [Function.comp_apply, ← Complex.ofReal_mul, Complex.ofReal_mul_re]
[GOAL]
case h.e'_3.h
x : ℝ
n : ℕ
⊢ π * x * ∏ j in Finset.range n, (1 - x ^ 2 / (↑j + 1) ^ 2) =
π * x * (∏ j in Finset.range n, (1 - ↑x ^ 2 / (↑j + 1) ^ 2)).re
[PROOFSTEP]
suffices
(∏ j : ℕ in Finset.range n, ((1 : ℂ) - (x : ℂ) ^ 2 / ((j : ℂ) + 1) ^ 2)) =
(∏ j : ℕ in Finset.range n, ((1 : ℝ) - x ^ 2 / ((j : ℝ) + 1) ^ 2) : ℝ)
by rw [this, Complex.ofReal_re]
[GOAL]
x : ℝ
n : ℕ
this : ∏ j in Finset.range n, (1 - ↑x ^ 2 / (↑j + 1) ^ 2) = ↑(∏ j in Finset.range n, (1 - x ^ 2 / (↑j + 1) ^ 2))
⊢ π * x * ∏ j in Finset.range n, (1 - x ^ 2 / (↑j + 1) ^ 2) =
π * x * (∏ j in Finset.range n, (1 - ↑x ^ 2 / (↑j + 1) ^ 2)).re
[PROOFSTEP]
rw [this, Complex.ofReal_re]
[GOAL]
case h.e'_3.h
x : ℝ
n : ℕ
⊢ ∏ j in Finset.range n, (1 - ↑x ^ 2 / (↑j + 1) ^ 2) = ↑(∏ j in Finset.range n, (1 - x ^ 2 / (↑j + 1) ^ 2))
[PROOFSTEP]
rw [Complex.ofReal_prod]
[GOAL]
case h.e'_3.h
x : ℝ
n : ℕ
⊢ ∏ j in Finset.range n, (1 - ↑x ^ 2 / (↑j + 1) ^ 2) = ∏ i in Finset.range n, ↑(1 - x ^ 2 / (↑i + 1) ^ 2)
[PROOFSTEP]
refine' Finset.prod_congr (by rfl) fun n _ => _
[GOAL]
x : ℝ
n : ℕ
⊢ Finset.range n = Finset.range n
[PROOFSTEP]
rfl
[GOAL]
case h.e'_3.h
x : ℝ
n✝ n : ℕ
x✝ : n ∈ Finset.range n✝
⊢ 1 - ↑x ^ 2 / (↑n + 1) ^ 2 = ↑(1 - x ^ 2 / (↑n + 1) ^ 2)
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_5
x : ℝ
⊢ 𝓝 (sin (π * x)) = 𝓝 (Complex.sin (↑π * ↑x)).re
[PROOFSTEP]
rw [← Complex.ofReal_mul, ← Complex.ofReal_sin, Complex.ofReal_re]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd", "llama_tokens": 48905} |
[GOAL]
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
⊢ ConformalAt f x ↔ IsConformalMap (fderiv ℝ f x)
[PROOFSTEP]
constructor
[GOAL]
case mp
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
⊢ ConformalAt f x → IsConformalMap (fderiv ℝ f x)
[PROOFSTEP]
rintro ⟨f', hf, hf'⟩
[GOAL]
case mp.intro.intro
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
f' : X →L[ℝ] Y
hf : HasFDerivAt f f' x
hf' : IsConformalMap f'
⊢ IsConformalMap (fderiv ℝ f x)
[PROOFSTEP]
rwa [hf.fderiv]
[GOAL]
case mpr
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
⊢ IsConformalMap (fderiv ℝ f x) → ConformalAt f x
[PROOFSTEP]
intro H
[GOAL]
case mpr
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
H : IsConformalMap (fderiv ℝ f x)
⊢ ConformalAt f x
[PROOFSTEP]
by_cases h : DifferentiableAt ℝ f x
[GOAL]
case pos
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
H : IsConformalMap (fderiv ℝ f x)
h : DifferentiableAt ℝ f x
⊢ ConformalAt f x
[PROOFSTEP]
exact ⟨fderiv ℝ f x, h.hasFDerivAt, H⟩
[GOAL]
case neg
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
H : IsConformalMap (fderiv ℝ f x)
h : ¬DifferentiableAt ℝ f x
⊢ ConformalAt f x
[PROOFSTEP]
nontriviality X
[GOAL]
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
x : X
H : IsConformalMap (fderiv ℝ f x)
h : ¬DifferentiableAt ℝ f x
✝ : Nontrivial X
⊢ ConformalAt f x
[PROOFSTEP]
exact absurd (fderiv_zero_of_not_differentiableAt h) H.ne_zero
[GOAL]
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
g : Y → Z
x : X
hg : ConformalAt g (f x)
hf : ConformalAt f x
⊢ ConformalAt (g ∘ f) x
[PROOFSTEP]
rcases hf with ⟨f', hf₁, cf⟩
[GOAL]
case intro.intro
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
g : Y → Z
x : X
hg : ConformalAt g (f x)
f' : X →L[ℝ] Y
hf₁ : HasFDerivAt f f' x
cf : IsConformalMap f'
⊢ ConformalAt (g ∘ f) x
[PROOFSTEP]
rcases hg with ⟨g', hg₁, cg⟩
[GOAL]
case intro.intro.intro.intro
X : Type u_1
Y : Type u_2
Z : Type u_3
inst✝⁵ : NormedAddCommGroup X
inst✝⁴ : NormedAddCommGroup Y
inst✝³ : NormedAddCommGroup Z
inst✝² : NormedSpace ℝ X
inst✝¹ : NormedSpace ℝ Y
inst✝ : NormedSpace ℝ Z
f : X → Y
g : Y → Z
x : X
f' : X →L[ℝ] Y
hf₁ : HasFDerivAt f f' x
cf : IsConformalMap f'
g' : Y →L[ℝ] Z
hg₁ : HasFDerivAt g g' (f x)
cg : IsConformalMap g'
⊢ ConformalAt (g ∘ f) x
[PROOFSTEP]
exact ⟨g'.comp f', hg₁.comp x hf₁, cg.comp cf⟩
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Conformal.NormedSpace", "llama_tokens": 1994} |
[GOAL]
E : Type u_1
X : Type u_2
c : E
f : ContDiffBump c
⊢ 1 < f.rOut / f.rIn
[PROOFSTEP]
rw [one_lt_div f.rIn_pos]
[GOAL]
E : Type u_1
X : Type u_2
c : E
f : ContDiffBump c
⊢ f.rIn < f.rOut
[PROOFSTEP]
exact f.rIn_lt_rOut
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
x : E
⊢ ↑f (c - x) = ↑f (c + x)
[PROOFSTEP]
simp [f.apply, ContDiffBumpBase.symmetric]
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f✝ : ContDiffBump c
x✝ : E
n : ℕ∞
f : ContDiffBump 0
x : E
⊢ ↑f (-x) = ↑f x
[PROOFSTEP]
simp_rw [← zero_sub, f.sub, zero_add]
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
hx : x ∈ closedBall c f.rIn
⊢ ↑f x = 1
[PROOFSTEP]
apply ContDiffBumpBase.eq_one _ _ f.one_lt_rOut_div_rIn
[GOAL]
case a
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
hx : x ∈ closedBall c f.rIn
⊢ ‖(fun x => f.rIn⁻¹ • (x - c)) x‖ ≤ 1
[PROOFSTEP]
simpa only [norm_smul, Real.norm_eq_abs, abs_inv, abs_of_nonneg f.rIn_pos.le, ← div_eq_inv_mul,
div_le_one f.rIn_pos] using mem_closedBall_iff_norm.1 hx
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
⊢ support ↑f = ball c f.rOut
[PROOFSTEP]
simp only [toFun, support_comp_eq_preimage, ContDiffBumpBase.support _ _ f.one_lt_rOut_div_rIn]
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
⊢ (fun x => f.rIn⁻¹ • (x - c)) ⁻¹' ball 0 (f.rOut / f.rIn) = ball c f.rOut
[PROOFSTEP]
ext x
[GOAL]
case h
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
x : E
⊢ x ∈ (fun x => f.rIn⁻¹ • (x - c)) ⁻¹' ball 0 (f.rOut / f.rIn) ↔ x ∈ ball c f.rOut
[PROOFSTEP]
simp only [mem_ball_iff_norm, sub_zero, norm_smul, mem_preimage, Real.norm_eq_abs, abs_inv, abs_of_pos f.rIn_pos, ←
div_eq_inv_mul, div_lt_div_right f.rIn_pos]
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
⊢ tsupport ↑f = closedBall c f.rOut
[PROOFSTEP]
simp_rw [tsupport, f.support_eq, closure_ball _ f.rOut_pos.ne']
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
hx : x ∈ ball c f.rOut
⊢ ↑f x ≠ 0
[PROOFSTEP]
rwa [← support_eq, mem_support] at hx
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
hx : f.rOut ≤ dist x c
⊢ ↑f x = 0
[PROOFSTEP]
rwa [← nmem_support, support_eq, mem_ball, not_lt]
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup X
inst✝² : NormedSpace ℝ X
inst✝¹ : HasContDiffBump E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
inst✝ : FiniteDimensional ℝ E
⊢ HasCompactSupport ↑f
[PROOFSTEP]
simp_rw [HasCompactSupport, f.tsupport_eq, isCompact_closedBall]
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c✝ : E
f✝ : ContDiffBump c✝
x✝ : E
n : ℕ∞
c g : X → E
s : Set X
f : (x : X) → ContDiffBump (c x)
x : X
hc : ContDiffWithinAt ℝ n c s x
hr : ContDiffWithinAt ℝ n (fun x => (f x).rIn) s x
hR : ContDiffWithinAt ℝ n (fun x => (f x).rOut) s x
hg : ContDiffWithinAt ℝ n g s x
⊢ ContDiffWithinAt ℝ n (fun x => ↑(f x) (g x)) s x
[PROOFSTEP]
change
ContDiffWithinAt ℝ n
(uncurry (someContDiffBumpBase E).toFun ∘ fun x : X => ((f x).rOut / (f x).rIn, (f x).rIn⁻¹ • (g x - c x))) s x
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c✝ : E
f✝ : ContDiffBump c✝
x✝ : E
n : ℕ∞
c g : X → E
s : Set X
f : (x : X) → ContDiffBump (c x)
x : X
hc : ContDiffWithinAt ℝ n c s x
hr : ContDiffWithinAt ℝ n (fun x => (f x).rIn) s x
hR : ContDiffWithinAt ℝ n (fun x => (f x).rOut) s x
hg : ContDiffWithinAt ℝ n g s x
⊢ ContDiffWithinAt ℝ n
(uncurry (someContDiffBumpBase E).toFun ∘ fun x => ((f x).rOut / (f x).rIn, (f x).rIn⁻¹ • (g x - c x))) s x
[PROOFSTEP]
refine (((someContDiffBumpBase E).smooth.contDiffAt ?_).of_le le_top).comp_contDiffWithinAt x ?_
[GOAL]
case refine_1
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c✝ : E
f✝ : ContDiffBump c✝
x✝ : E
n : ℕ∞
c g : X → E
s : Set X
f : (x : X) → ContDiffBump (c x)
x : X
hc : ContDiffWithinAt ℝ n c s x
hr : ContDiffWithinAt ℝ n (fun x => (f x).rIn) s x
hR : ContDiffWithinAt ℝ n (fun x => (f x).rOut) s x
hg : ContDiffWithinAt ℝ n g s x
⊢ Ioi 1 ×ˢ univ ∈ 𝓝 ((f x).rOut / (f x).rIn, (f x).rIn⁻¹ • (g x - c x))
[PROOFSTEP]
exact prod_mem_nhds (Ioi_mem_nhds (f x).one_lt_rOut_div_rIn) univ_mem
[GOAL]
case refine_2
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c✝ : E
f✝ : ContDiffBump c✝
x✝ : E
n : ℕ∞
c g : X → E
s : Set X
f : (x : X) → ContDiffBump (c x)
x : X
hc : ContDiffWithinAt ℝ n c s x
hr : ContDiffWithinAt ℝ n (fun x => (f x).rIn) s x
hR : ContDiffWithinAt ℝ n (fun x => (f x).rOut) s x
hg : ContDiffWithinAt ℝ n g s x
⊢ ContDiffWithinAt ℝ n (fun x => ((f x).rOut / (f x).rIn, (f x).rIn⁻¹ • (g x - c x))) s x
[PROOFSTEP]
exact (hR.div hr (f x).rIn_pos.ne').prod ((hr.inv (f x).rIn_pos.ne').smul (hg.sub hc))
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c✝ : E
f✝ : ContDiffBump c✝
x : E
n : ℕ∞
c g : X → E
f : (x : X) → ContDiffBump (c x)
hc : ContDiff ℝ n c
hr : ContDiff ℝ n fun x => (f x).rIn
hR : ContDiff ℝ n fun x => (f x).rOut
hg : ContDiff ℝ n g
⊢ ContDiff ℝ n fun x => ↑(f x) (g x)
[PROOFSTEP]
rw [contDiff_iff_contDiffAt] at *
[GOAL]
E : Type u_1
X : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : HasContDiffBump E
c✝ : E
f✝ : ContDiffBump c✝
x : E
n : ℕ∞
c g : X → E
f : (x : X) → ContDiffBump (c x)
hc : ∀ (x : X), ContDiffAt ℝ n c x
hr : ∀ (x : X), ContDiffAt ℝ n (fun x => (f x).rIn) x
hR : ∀ (x : X), ContDiffAt ℝ n (fun x => (f x).rOut) x
hg : ∀ (x : X), ContDiffAt ℝ n g x
⊢ ∀ (x : X), ContDiffAt ℝ n (fun x => ↑(f x) (g x)) x
[PROOFSTEP]
exact fun x => (hc x).contDiffBump (hr x) (hR x) (hg x)
| {"mathlib_filename": "Mathlib.Analysis.Calculus.BumpFunction.Basic", "llama_tokens": 3895} |
[GOAL]
f f' : ℝ → ℝ
a b l : ℝ
hab : a < b
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 l)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 l)
⊢ ∃ c, c ∈ Ioo a b ∧ deriv f c = 0
[PROOFSTEP]
by_cases h : ∀ x ∈ Ioo a b, DifferentiableAt ℝ f x
[GOAL]
case pos
f f' : ℝ → ℝ
a b l : ℝ
hab : a < b
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 l)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 l)
h : ∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
⊢ ∃ c, c ∈ Ioo a b ∧ deriv f c = 0
[PROOFSTEP]
exact exists_hasDerivAt_eq_zero' hab hfa hfb fun x hx => (h x hx).hasDerivAt
[GOAL]
case neg
f f' : ℝ → ℝ
a b l : ℝ
hab : a < b
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 l)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 l)
h : ¬∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
⊢ ∃ c, c ∈ Ioo a b ∧ deriv f c = 0
[PROOFSTEP]
obtain ⟨c, hc, hcdiff⟩ : ∃ x ∈ Ioo a b, ¬DifferentiableAt ℝ f x
[GOAL]
f f' : ℝ → ℝ
a b l : ℝ
hab : a < b
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 l)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 l)
h : ¬∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
⊢ ∃ x, x ∈ Ioo a b ∧ ¬DifferentiableAt ℝ f x
[PROOFSTEP]
push_neg at h
[GOAL]
f f' : ℝ → ℝ
a b l : ℝ
hab : a < b
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 l)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 l)
h : ∃ x, x ∈ Ioo a b ∧ ¬DifferentiableAt ℝ f x
⊢ ∃ x, x ∈ Ioo a b ∧ ¬DifferentiableAt ℝ f x
[PROOFSTEP]
exact h
[GOAL]
case neg.intro.intro
f f' : ℝ → ℝ
a b l : ℝ
hab : a < b
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 l)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 l)
h : ¬∀ (x : ℝ), x ∈ Ioo a b → DifferentiableAt ℝ f x
c : ℝ
hc : c ∈ Ioo a b
hcdiff : ¬DifferentiableAt ℝ f c
⊢ ∃ c, c ∈ Ioo a b ∧ deriv f c = 0
[PROOFSTEP]
exact ⟨c, hc, deriv_zero_of_not_differentiableAt hcdiff⟩
| {"mathlib_filename": "Mathlib.Analysis.Calculus.LocalExtr.Rolle", "llama_tokens": 918} |
[GOAL]
G : Type uG
E' : Type uE'
inst✝⁶ : NormedAddCommGroup E'
g : G → E'
inst✝⁵ : MeasurableSpace G
μ : Measure G
inst✝⁴ : NormedSpace ℝ E'
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace ℝ G
inst✝¹ : HasContDiffBump G
inst✝ : CompleteSpace E'
φ : ContDiffBump 0
x₀✝ x₀ : G
hg : ∀ (x : G), x ∈ ball x₀ φ.rOut → g x = g x₀
⊢ ↑φ ⋆[lsmul ℝ ℝ, x₀] g = integral μ ↑φ • g x₀
[PROOFSTEP]
simp_rw [convolution_eq_right' _ φ.support_eq.subset hg, lsmul_apply, integral_smul_const]
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹⁰ : NormedAddCommGroup E'
g : G → E'
inst✝⁹ : MeasurableSpace G
μ : Measure G
inst✝⁸ : NormedSpace ℝ E'
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : NormedSpace ℝ G
inst✝⁵ : HasContDiffBump G
inst✝⁴ : CompleteSpace E'
φ : ContDiffBump 0
x₀✝ : G
inst✝³ : BorelSpace G
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : FiniteDimensional ℝ G
x₀ : G
hg : ∀ (x : G), x ∈ ball x₀ φ.rOut → g x = g x₀
⊢ ContDiffBump.normed φ μ ⋆[lsmul ℝ ℝ, x₀] g = g x₀
[PROOFSTEP]
rw [convolution_eq_right' _ φ.support_normed_eq.subset hg]
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹⁰ : NormedAddCommGroup E'
g : G → E'
inst✝⁹ : MeasurableSpace G
μ : Measure G
inst✝⁸ : NormedSpace ℝ E'
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : NormedSpace ℝ G
inst✝⁵ : HasContDiffBump G
inst✝⁴ : CompleteSpace E'
φ : ContDiffBump 0
x₀✝ : G
inst✝³ : BorelSpace G
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : FiniteDimensional ℝ G
x₀ : G
hg : ∀ (x : G), x ∈ ball x₀ φ.rOut → g x = g x₀
⊢ ∫ (t : G), ↑(↑(lsmul ℝ ℝ) (ContDiffBump.normed φ μ t)) (g x₀) ∂μ = g x₀
[PROOFSTEP]
exact integral_normed_smul φ μ (g x₀)
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
x₀ : G
ε : ℝ
hmg : AEStronglyMeasurable g μ
hg : ∀ (x : G), x ∈ ball x₀ φ.rOut → dist (g x) (g x₀) ≤ ε
⊢ 0 ≤ ε
[PROOFSTEP]
simp_rw [← dist_self (g x₀), hg x₀ (mem_ball_self φ.rOut_pos)]
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
⊢ ∀ᵐ (x₀ : G) ∂μ, Tendsto (fun i => ContDiffBump.normed (φ i) μ ⋆[lsmul ℝ ℝ, x₀] g) l (𝓝 (g x₀))
[PROOFSTEP]
have : IsAddHaarMeasure μ :=
⟨⟩
-- By Lebesgue differentiation theorem, the average of `g` on a small ball converges
-- almost everywhere to the value of `g` as the radius shrinks to zero.
-- We will see that this set of points satisfies the desired conclusion.
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this : IsAddHaarMeasure μ
⊢ ∀ᵐ (x₀ : G) ∂μ, Tendsto (fun i => ContDiffBump.normed (φ i) μ ⋆[lsmul ℝ ℝ, x₀] g) l (𝓝 (g x₀))
[PROOFSTEP]
filter_upwards [(Besicovitch.vitaliFamily μ).ae_tendsto_average_norm_sub hg] with x₀ h₀
[GOAL]
case h
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
⊢ Tendsto (fun i => ContDiffBump.normed (φ i) μ ⋆[lsmul ℝ ℝ, x₀] g) l (𝓝 (g x₀))
[PROOFSTEP]
simp only [convolution_eq_swap, lsmul_apply]
[GOAL]
case h
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
⊢ Tendsto (fun i => ∫ (t : G), ContDiffBump.normed (φ i) μ (x₀ - t) • g t ∂μ) l (𝓝 (g x₀))
[PROOFSTEP]
have hφ' : Tendsto (fun i ↦ (φ i).rOut) l (𝓝[>] 0) :=
tendsto_nhdsWithin_iff.2 ⟨hφ, eventually_of_forall (fun i ↦ (φ i).rOut_pos)⟩
[GOAL]
case h
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
⊢ Tendsto (fun i => ∫ (t : G), ContDiffBump.normed (φ i) μ (x₀ - t) • g t ∂μ) l (𝓝 (g x₀))
[PROOFSTEP]
have := (h₀.comp (Besicovitch.tendsto_filterAt μ x₀)).comp hφ'
[GOAL]
case h
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (((fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ∘ fun r => closedBall x₀ r) ∘ fun i => (φ i).rOut) l (𝓝 0)
⊢ Tendsto (fun i => ∫ (t : G), ContDiffBump.normed (φ i) μ (x₀ - t) • g t ∂μ) l (𝓝 (g x₀))
[PROOFSTEP]
simp only [Function.comp] at this
[GOAL]
case h
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
⊢ Tendsto (fun i => ∫ (t : G), ContDiffBump.normed (φ i) μ (x₀ - t) • g t ∂μ) l (𝓝 (g x₀))
[PROOFSTEP]
apply tendsto_integral_smul_of_tendsto_average_norm_sub (K ^ (FiniteDimensional.finrank ℝ G)) this
[GOAL]
case h.f_int
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
⊢ ∀ᶠ (i : ι) in l, IntegrableOn (fun y => g y) (closedBall x₀ (φ i).rOut)
[PROOFSTEP]
apply eventually_of_forall (fun i ↦ ?_)
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
⊢ IntegrableOn (fun y => g y) (closedBall x₀ (φ i).rOut)
[PROOFSTEP]
apply hg.integrableOn_isCompact
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
⊢ IsCompact (closedBall x₀ (φ i).rOut)
[PROOFSTEP]
exact isCompact_closedBall _ _
[GOAL]
case h.hg
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
⊢ Tendsto (fun i => ∫ (y : G), ContDiffBump.normed (φ i) μ (x₀ - y) ∂μ) l (𝓝 1)
[PROOFSTEP]
apply tendsto_const_nhds.congr (fun i ↦ ?_)
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
⊢ 1 = ∫ (y : G), ContDiffBump.normed (φ i) μ (x₀ - y) ∂μ
[PROOFSTEP]
rw [← integral_neg_eq_self]
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
⊢ 1 = ∫ (x : G), ContDiffBump.normed (φ i) μ (x₀ - -x) ∂μ
[PROOFSTEP]
simp only [sub_neg_eq_add, integral_add_left_eq_self, integral_normed]
[GOAL]
case h.g_supp
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
⊢ ∀ᶠ (i : ι) in l, (support fun y => ContDiffBump.normed (φ i) μ (x₀ - y)) ⊆ closedBall x₀ (φ i).rOut
[PROOFSTEP]
apply eventually_of_forall (fun i ↦ ?_)
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
⊢ (support fun y => ContDiffBump.normed (φ i) μ (x₀ - y)) ⊆ closedBall x₀ (φ i).rOut
[PROOFSTEP]
change support ((ContDiffBump.normed (φ i) μ) ∘ (fun y ↦ x₀ - y)) ⊆ closedBall x₀ (φ i).rOut
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
⊢ support (ContDiffBump.normed (φ i) μ ∘ fun y => x₀ - y) ⊆ closedBall x₀ (φ i).rOut
[PROOFSTEP]
simp only [support_comp_eq_preimage, support_normed_eq]
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
⊢ (fun y => x₀ - y) ⁻¹' ball 0 (φ i).rOut ⊆ closedBall x₀ (φ i).rOut
[PROOFSTEP]
intro x hx
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
x : G
hx : x ∈ (fun y => x₀ - y) ⁻¹' ball 0 (φ i).rOut
⊢ x ∈ closedBall x₀ (φ i).rOut
[PROOFSTEP]
simp only [mem_preimage, mem_ball, dist_zero_right] at hx
[GOAL]
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
x : G
hx : ‖x₀ - x‖ < (φ i).rOut
⊢ x ∈ closedBall x₀ (φ i).rOut
[PROOFSTEP]
simpa [dist_eq_norm_sub'] using hx.le
[GOAL]
case h.g_bound
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
⊢ ∀ᶠ (i : ι) in l,
∀ (x : G),
|ContDiffBump.normed (φ i) μ (x₀ - x)| ≤
K ^ FiniteDimensional.finrank ℝ G / ENNReal.toReal (↑↑μ (closedBall x₀ (φ i).rOut))
[PROOFSTEP]
filter_upwards [h'φ] with i hi x
[GOAL]
case h
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
hi : (φ i).rOut ≤ K * (φ i).rIn
x : G
⊢ |ContDiffBump.normed (φ i) μ (x₀ - x)| ≤
K ^ FiniteDimensional.finrank ℝ G / ENNReal.toReal (↑↑μ (closedBall x₀ (φ i).rOut))
[PROOFSTEP]
rw [abs_of_nonneg (nonneg_normed _ _), addHaar_closedBall_center]
[GOAL]
case h
G : Type uG
E' : Type uE'
inst✝¹¹ : NormedAddCommGroup E'
g : G → E'
inst✝¹⁰ : MeasurableSpace G
μ : Measure G
inst✝⁹ : NormedSpace ℝ E'
inst✝⁸ : NormedAddCommGroup G
inst✝⁷ : NormedSpace ℝ G
inst✝⁶ : HasContDiffBump G
inst✝⁵ : CompleteSpace E'
φ✝ : ContDiffBump 0
x₀✝ : G
inst✝⁴ : BorelSpace G
inst✝³ : IsLocallyFiniteMeasure μ
inst✝² : IsOpenPosMeasure μ
inst✝¹ : FiniteDimensional ℝ G
inst✝ : IsAddLeftInvariant μ
ι : Type u_1
φ : ι → ContDiffBump 0
l : Filter ι
K : ℝ
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn
hg : LocallyIntegrable g
this✝ : IsAddHaarMeasure μ
x₀ : G
h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) (VitaliFamily.filterAt (Besicovitch.vitaliFamily μ) x₀) (𝓝 0)
hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[Ioi 0] 0)
this : Tendsto (fun x => ⨍ (y : G) in closedBall x₀ (φ x).rOut, ‖g y - g x₀‖ ∂μ) l (𝓝 0)
i : ι
hi : (φ i).rOut ≤ K * (φ i).rIn
x : G
⊢ ContDiffBump.normed (φ i) μ (x₀ - x) ≤
K ^ FiniteDimensional.finrank ℝ G / ENNReal.toReal (↑↑μ (closedBall 0 (φ i).rOut))
[PROOFSTEP]
exact (φ i).normed_le_div_measure_closedBall_rOut _ _ hi _
| {"mathlib_filename": "Mathlib.Analysis.Calculus.BumpFunction.Convolution", "llama_tokens": 13078} |
[GOAL]
p : ℝ[X]
⊢ Finset.card (Multiset.toFinset (roots p)) ≤
Finset.card (Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)) + 1
[PROOFSTEP]
cases' eq_or_ne (derivative p) 0 with hp' hp'
[GOAL]
case inl
p : ℝ[X]
hp' : ↑derivative p = 0
⊢ Finset.card (Multiset.toFinset (roots p)) ≤
Finset.card (Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)) + 1
[PROOFSTEP]
rw [eq_C_of_derivative_eq_zero hp', roots_C, Multiset.toFinset_zero, Finset.card_empty]
[GOAL]
case inl
p : ℝ[X]
hp' : ↑derivative p = 0
⊢ 0 ≤ Finset.card (Multiset.toFinset (roots (↑derivative (↑C (coeff p 0)))) \ ∅) + 1
[PROOFSTEP]
exact zero_le _
[GOAL]
case inr
p : ℝ[X]
hp' : ↑derivative p ≠ 0
⊢ Finset.card (Multiset.toFinset (roots p)) ≤
Finset.card (Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)) + 1
[PROOFSTEP]
have hp : p ≠ 0 := ne_of_apply_ne derivative (by rwa [derivative_zero])
[GOAL]
p : ℝ[X]
hp' : ↑derivative p ≠ 0
⊢ ↑derivative p ≠ ↑derivative 0
[PROOFSTEP]
rwa [derivative_zero]
[GOAL]
case inr
p : ℝ[X]
hp' : ↑derivative p ≠ 0
hp : p ≠ 0
⊢ Finset.card (Multiset.toFinset (roots p)) ≤
Finset.card (Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)) + 1
[PROOFSTEP]
refine' Finset.card_le_diff_of_interleaved fun x hx y hy hxy hxy' => _
[GOAL]
case inr
p : ℝ[X]
hp' : ↑derivative p ≠ 0
hp : p ≠ 0
x : ℝ
hx : x ∈ Multiset.toFinset (roots p)
y : ℝ
hy : y ∈ Multiset.toFinset (roots p)
hxy : x < y
hxy' : ∀ (z : ℝ), z ∈ Multiset.toFinset (roots p) → ¬z ∈ Set.Ioo x y
⊢ ∃ z, z ∈ Multiset.toFinset (roots (↑derivative p)) ∧ x < z ∧ z < y
[PROOFSTEP]
rw [Multiset.mem_toFinset, mem_roots hp] at hx hy
[GOAL]
case inr
p : ℝ[X]
hp' : ↑derivative p ≠ 0
hp : p ≠ 0
x : ℝ
hx : IsRoot p x
y : ℝ
hy : IsRoot p y
hxy : x < y
hxy' : ∀ (z : ℝ), z ∈ Multiset.toFinset (roots p) → ¬z ∈ Set.Ioo x y
⊢ ∃ z, z ∈ Multiset.toFinset (roots (↑derivative p)) ∧ x < z ∧ z < y
[PROOFSTEP]
obtain ⟨z, hz1, hz2⟩ := exists_deriv_eq_zero hxy p.continuousOn (hx.trans hy.symm)
[GOAL]
case inr.intro.intro
p : ℝ[X]
hp' : ↑derivative p ≠ 0
hp : p ≠ 0
x : ℝ
hx : IsRoot p x
y : ℝ
hy : IsRoot p y
hxy : x < y
hxy' : ∀ (z : ℝ), z ∈ Multiset.toFinset (roots p) → ¬z ∈ Set.Ioo x y
z : ℝ
hz1 : z ∈ Set.Ioo x y
hz2 : deriv (fun x => eval x p) z = 0
⊢ ∃ z, z ∈ Multiset.toFinset (roots (↑derivative p)) ∧ x < z ∧ z < y
[PROOFSTEP]
refine' ⟨z, _, hz1⟩
[GOAL]
case inr.intro.intro
p : ℝ[X]
hp' : ↑derivative p ≠ 0
hp : p ≠ 0
x : ℝ
hx : IsRoot p x
y : ℝ
hy : IsRoot p y
hxy : x < y
hxy' : ∀ (z : ℝ), z ∈ Multiset.toFinset (roots p) → ¬z ∈ Set.Ioo x y
z : ℝ
hz1 : z ∈ Set.Ioo x y
hz2 : deriv (fun x => eval x p) z = 0
⊢ z ∈ Multiset.toFinset (roots (↑derivative p))
[PROOFSTEP]
rwa [Multiset.mem_toFinset, mem_roots hp', IsRoot, ← p.deriv]
[GOAL]
p : ℝ[X]
⊢ ∑ x in Multiset.toFinset (roots p), (Multiset.count x (roots p) - 1 + 1) =
∑ x in Multiset.toFinset (roots p), (rootMultiplicity x p - 1) + Finset.card (Multiset.toFinset (roots p))
[PROOFSTEP]
simp only [Finset.sum_add_distrib, Finset.card_eq_sum_ones, count_roots]
[GOAL]
p : ℝ[X]
⊢ ∑ x in Multiset.toFinset (roots p), rootMultiplicity x (↑derivative p) +
(Finset.card (Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)) + 1) ≤
∑ x in Multiset.toFinset (roots p), Multiset.count x (roots (↑derivative p)) +
(∑ x in Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p),
Multiset.count x (roots (↑derivative p)) +
1)
[PROOFSTEP]
simp only [← count_roots]
[GOAL]
p : ℝ[X]
⊢ ∑ x in Multiset.toFinset (roots p), Multiset.count x (roots (↑derivative p)) +
(Finset.card (Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)) + 1) ≤
∑ x in Multiset.toFinset (roots p), Multiset.count x (roots (↑derivative p)) +
(∑ x in Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p),
Multiset.count x (roots (↑derivative p)) +
1)
[PROOFSTEP]
refine' add_le_add_left (add_le_add_right ((Finset.card_eq_sum_ones _).trans_le _) _) _
[GOAL]
p : ℝ[X]
⊢ ∑ x in Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p), 1 ≤
∑ x in Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p),
Multiset.count x (roots (↑derivative p))
[PROOFSTEP]
refine' Finset.sum_le_sum fun x hx => Nat.succ_le_iff.2 <| _
[GOAL]
p : ℝ[X]
x : ℝ
hx : x ∈ Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)
⊢ 0 < Multiset.count x (roots (↑derivative p))
[PROOFSTEP]
rw [Multiset.count_pos, ← Multiset.mem_toFinset]
[GOAL]
p : ℝ[X]
x : ℝ
hx : x ∈ Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p)
⊢ x ∈ Multiset.toFinset (roots (↑derivative p))
[PROOFSTEP]
exact (Finset.mem_sdiff.1 hx).1
[GOAL]
p : ℝ[X]
⊢ ∑ x in Multiset.toFinset (roots p), Multiset.count x (roots (↑derivative p)) +
(∑ x in Multiset.toFinset (roots (↑derivative p)) \ Multiset.toFinset (roots p),
Multiset.count x (roots (↑derivative p)) +
1) =
↑Multiset.card (roots (↑derivative p)) + 1
[PROOFSTEP]
rw [← add_assoc, ← Finset.sum_union Finset.disjoint_sdiff, Finset.union_sdiff_self_eq_union, ←
Multiset.toFinset_sum_count_eq, ← Finset.sum_subset (Finset.subset_union_right _ _)]
[GOAL]
p : ℝ[X]
⊢ ∀ (x : ℝ),
x ∈ Multiset.toFinset (roots p) ∪ Multiset.toFinset (roots (↑derivative p)) →
¬x ∈ Multiset.toFinset (roots (↑derivative p)) → Multiset.count x (roots (↑derivative p)) = 0
[PROOFSTEP]
intro x _ hx₂
[GOAL]
p : ℝ[X]
x : ℝ
a✝ : x ∈ Multiset.toFinset (roots p) ∪ Multiset.toFinset (roots (↑derivative p))
hx₂ : ¬x ∈ Multiset.toFinset (roots (↑derivative p))
⊢ Multiset.count x (roots (↑derivative p)) = 0
[PROOFSTEP]
simpa only [Multiset.mem_toFinset, Multiset.count_eq_zero] using hx₂
[GOAL]
F : Type u_1
inst✝¹ : CommRing F
inst✝ : Algebra F ℝ
p : F[X]
⊢ Fintype.card ↑(rootSet p ℝ) ≤ Fintype.card ↑(rootSet (↑derivative p) ℝ) + 1
[PROOFSTEP]
simpa only [rootSet_def, Finset.coe_sort_coe, Fintype.card_coe, derivative_map] using
card_roots_toFinset_le_derivative (p.map (algebraMap F ℝ))
| {"mathlib_filename": "Mathlib.Analysis.Calculus.LocalExtr.Polynomial", "llama_tokens": 3008} |
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : HasContDiffBump E
inst✝ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
x : E
⊢ ContDiffBump.normed f μ (c - x) = ContDiffBump.normed f μ (c + x)
[PROOFSTEP]
simp_rw [f.normed_def, f.sub]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : HasContDiffBump E
inst✝ : MeasurableSpace E
c : E
f✝ : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
f : ContDiffBump 0
x : E
⊢ ContDiffBump.normed f μ (-x) = ContDiffBump.normed f μ x
[PROOFSTEP]
simp_rw [f.normed_def, f.neg]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ 0 < ∫ (x : E), ↑f x ∂μ
[PROOFSTEP]
refine' (integral_pos_iff_support_of_nonneg f.nonneg' f.integrable).mpr _
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ 0 < ↑↑μ (support fun i => ↑f i)
[PROOFSTEP]
rw [f.support_eq]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ 0 < ↑↑μ (ball c f.rOut)
[PROOFSTEP]
exact measure_ball_pos μ c f.rOut_pos
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ ∫ (x : E), ContDiffBump.normed f μ x ∂μ = 1
[PROOFSTEP]
simp_rw [ContDiffBump.normed, div_eq_mul_inv, mul_comm (f _), ← smul_eq_mul, integral_smul]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ (∫ (x : E), ↑f x ∂μ)⁻¹ • ∫ (x : E), ↑f x ∂μ = 1
[PROOFSTEP]
exact inv_mul_cancel f.integral_pos.ne'
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ support (ContDiffBump.normed f μ) = ball c f.rOut
[PROOFSTEP]
unfold ContDiffBump.normed
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ (support fun x => ↑f x / ∫ (x : E), ↑f x ∂μ) = ball c f.rOut
[PROOFSTEP]
rw [support_div, f.support_eq, support_const f.integral_pos.ne', inter_univ]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ tsupport (ContDiffBump.normed f μ) = closedBall c f.rOut
[PROOFSTEP]
rw [tsupport, f.support_normed_eq, closure_ball _ f.rOut_pos.ne']
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ HasCompactSupport (ContDiffBump.normed f μ)
[PROOFSTEP]
simp only [HasCompactSupport, f.tsupport_normed_eq (μ := μ), isCompact_closedBall]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
ι : Type u_2
φ : ι → ContDiffBump c
l : Filter ι
hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)
⊢ Tendsto (fun i => support fun x => ContDiffBump.normed (φ i) μ x) l (smallSets (𝓝 c))
[PROOFSTEP]
simp_rw [NormedAddCommGroup.tendsto_nhds_zero, Real.norm_eq_abs, abs_eq_self.mpr (φ _).rOut_pos.le] at hφ
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
ι : Type u_2
φ : ι → ContDiffBump c
l : Filter ι
hφ : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : ι) in l, (φ x).rOut < ε
⊢ Tendsto (fun i => support fun x => ContDiffBump.normed (φ i) μ x) l (smallSets (𝓝 c))
[PROOFSTEP]
rw [nhds_basis_ball.smallSets.tendsto_right_iff]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
ι : Type u_2
φ : ι → ContDiffBump c
l : Filter ι
hφ : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : ι) in l, (φ x).rOut < ε
⊢ ∀ (i : ℝ), 0 < i → ∀ᶠ (x : ι) in l, (support fun x_1 => ContDiffBump.normed (φ x) μ x_1) ∈ 𝒫 ball c i
[PROOFSTEP]
refine fun ε hε ↦ (hφ ε hε).mono fun i hi ↦ ?_
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
ι : Type u_2
φ : ι → ContDiffBump c
l : Filter ι
hφ : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : ι) in l, (φ x).rOut < ε
ε : ℝ
hε : 0 < ε
i : ι
hi : (φ i).rOut < ε
⊢ (support fun x => ContDiffBump.normed (φ i) μ x) ∈ 𝒫 ball c ε
[PROOFSTEP]
rw [(φ i).support_normed_eq]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
ι : Type u_2
φ : ι → ContDiffBump c
l : Filter ι
hφ : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : ι) in l, (φ x).rOut < ε
ε : ℝ
hε : 0 < ε
i : ι
hi : (φ i).rOut < ε
⊢ ball c (φ i).rOut ∈ 𝒫 ball c ε
[PROOFSTEP]
exact ball_subset_ball hi.le
[GOAL]
E : Type u_1
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace ℝ E
inst✝⁸ : HasContDiffBump E
inst✝⁷ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝⁶ : BorelSpace E
inst✝⁵ : FiniteDimensional ℝ E
inst✝⁴ : IsLocallyFiniteMeasure μ
inst✝³ : IsOpenPosMeasure μ
X : Type u_2
inst✝² : NormedAddCommGroup X
inst✝¹ : NormedSpace ℝ X
inst✝ : CompleteSpace X
z : X
⊢ ∫ (x : E), ContDiffBump.normed f μ x • z ∂μ = z
[PROOFSTEP]
simp_rw [integral_smul_const, f.integral_normed (μ := μ), one_smul]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ ENNReal.toReal (↑↑μ (closedBall c f.rIn)) ≤ ∫ (x : E), ↑f x ∂μ
[PROOFSTEP]
calc
(μ (closedBall c f.rIn)).toReal = ∫ x in closedBall c f.rIn, 1 ∂μ := by simp
_ = ∫ x in closedBall c f.rIn, f x ∂μ :=
(set_integral_congr (measurableSet_closedBall) (fun x hx ↦ (one_of_mem_closedBall f hx).symm))
_ ≤ ∫ x, f x ∂μ := set_integral_le_integral f.integrable (eventually_of_forall (fun x ↦ f.nonneg))
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ ENNReal.toReal (↑↑μ (closedBall c f.rIn)) = ∫ (x : E) in closedBall c f.rIn, 1 ∂μ
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
x : E
⊢ ContDiffBump.normed f μ x ≤ 1 / ENNReal.toReal (↑↑μ (closedBall c f.rIn))
[PROOFSTEP]
rw [normed_def]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
x : E
⊢ ↑f x / ∫ (x : E), ↑f x ∂μ ≤ 1 / ENNReal.toReal (↑↑μ (closedBall c f.rIn))
[PROOFSTEP]
gcongr
[GOAL]
case hd
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
x : E
⊢ 0 < ENNReal.toReal (↑↑μ (closedBall c f.rIn))
[PROOFSTEP]
exact ENNReal.toReal_pos (measure_closedBall_pos _ _ f.rIn_pos).ne' measure_closedBall_lt_top.ne
[GOAL]
case hac
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
x : E
⊢ ↑f x ≤ 1
[PROOFSTEP]
exact f.le_one
[GOAL]
case hbd
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
x : E
⊢ ENNReal.toReal (↑↑μ (closedBall c f.rIn)) ≤ ∫ (x : E), ↑f x ∂μ
[PROOFSTEP]
exact f.measure_closedBall_le_integral μ
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ ∫ (x : E), ↑f x ∂μ ≤ ENNReal.toReal (↑↑μ (closedBall c f.rOut))
[PROOFSTEP]
calc
∫ x, f x ∂μ = ∫ x in closedBall c f.rOut, f x ∂μ :=
by
apply (set_integral_eq_integral_of_forall_compl_eq_zero (fun x hx ↦ ?_)).symm
apply f.zero_of_le_dist (le_of_lt _)
simpa using hx
_ ≤ ∫ x in closedBall c f.rOut, 1 ∂μ :=
by
apply set_integral_mono f.integrable.integrableOn _ (fun x ↦ f.le_one)
simp [measure_closedBall_lt_top]
_ = (μ (closedBall c f.rOut)).toReal := by simp
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ ∫ (x : E), ↑f x ∂μ = ∫ (x : E) in closedBall c f.rOut, ↑f x ∂μ
[PROOFSTEP]
apply (set_integral_eq_integral_of_forall_compl_eq_zero (fun x hx ↦ ?_)).symm
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
x : E
hx : ¬x ∈ closedBall c f.rOut
⊢ ↑f x = 0
[PROOFSTEP]
apply f.zero_of_le_dist (le_of_lt _)
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
x : E
hx : ¬x ∈ closedBall c f.rOut
⊢ f.rOut < dist x c
[PROOFSTEP]
simpa using hx
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ ∫ (x : E) in closedBall c f.rOut, ↑f x ∂μ ≤ ∫ (x : E) in closedBall c f.rOut, 1 ∂μ
[PROOFSTEP]
apply set_integral_mono f.integrable.integrableOn _ (fun x ↦ f.le_one)
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ IntegrableOn (fun x => 1) (closedBall c f.rOut)
[PROOFSTEP]
simp [measure_closedBall_lt_top]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : HasContDiffBump E
inst✝⁴ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝³ : BorelSpace E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsOpenPosMeasure μ
⊢ ∫ (x : E) in closedBall c f.rOut, 1 ∂μ = ENNReal.toReal (↑↑μ (closedBall c f.rOut))
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
⊢ ENNReal.toReal (↑↑μ (closedBall c f.rOut)) / K ^ finrank ℝ E ≤ ∫ (x : E), ↑f x ∂μ
[PROOFSTEP]
have K_pos : 0 < K := by simpa [f.rIn_pos, not_lt.2 f.rIn_pos.le] using mul_pos_iff.1 (f.rOut_pos.trans_le h)
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
⊢ 0 < K
[PROOFSTEP]
simpa [f.rIn_pos, not_lt.2 f.rIn_pos.le] using mul_pos_iff.1 (f.rOut_pos.trans_le h)
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
K_pos : 0 < K
⊢ ENNReal.toReal (↑↑μ (closedBall c f.rOut)) / K ^ finrank ℝ E ≤ ∫ (x : E), ↑f x ∂μ
[PROOFSTEP]
apply le_trans _ (f.measure_closedBall_le_integral μ)
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
K_pos : 0 < K
⊢ ENNReal.toReal (↑↑μ (closedBall c f.rOut)) / K ^ finrank ℝ E ≤ ENNReal.toReal (↑↑μ (closedBall c f.rIn))
[PROOFSTEP]
rw [div_le_iff (pow_pos K_pos _), addHaar_closedBall' _ _ f.rIn_pos.le, addHaar_closedBall' _ _ f.rOut_pos.le,
ENNReal.toReal_mul, ENNReal.toReal_mul, ENNReal.toReal_ofReal (pow_nonneg f.rOut_pos.le _),
ENNReal.toReal_ofReal (pow_nonneg f.rIn_pos.le _), mul_assoc, mul_comm _ (K ^ _), ← mul_assoc, ← mul_pow,
mul_comm _ K]
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
K_pos : 0 < K
⊢ f.rOut ^ finrank ℝ E * ENNReal.toReal (↑↑μ (closedBall 0 1)) ≤
(K * f.rIn) ^ finrank ℝ E * ENNReal.toReal (↑↑μ (closedBall 0 1))
[PROOFSTEP]
gcongr
[GOAL]
case h.ha
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
K_pos : 0 < K
⊢ 0 ≤ f.rOut
[PROOFSTEP]
exact f.rOut_pos.le
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
⊢ ContDiffBump.normed f μ x ≤ K ^ finrank ℝ E / ENNReal.toReal (↑↑μ (closedBall c f.rOut))
[PROOFSTEP]
have K_pos : 0 < K := by simpa [f.rIn_pos, not_lt.2 f.rIn_pos.le] using mul_pos_iff.1 (f.rOut_pos.trans_le h)
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
⊢ 0 < K
[PROOFSTEP]
simpa [f.rIn_pos, not_lt.2 f.rIn_pos.le] using mul_pos_iff.1 (f.rOut_pos.trans_le h)
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
⊢ ContDiffBump.normed f μ x ≤ K ^ finrank ℝ E / ENNReal.toReal (↑↑μ (closedBall c f.rOut))
[PROOFSTEP]
have : f x / ∫ y, f y ∂μ ≤ 1 / ∫ y, f y ∂μ := by
gcongr
· exact f.integral_pos.le
· exact f.le_one
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
⊢ ↑f x / ∫ (y : E), ↑f y ∂μ ≤ 1 / ∫ (y : E), ↑f y ∂μ
[PROOFSTEP]
gcongr
[GOAL]
case hc
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
⊢ 0 ≤ ∫ (y : E), ↑f y ∂μ
[PROOFSTEP]
exact f.integral_pos.le
[GOAL]
case h
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
⊢ ↑f x ≤ 1
[PROOFSTEP]
exact f.le_one
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
this : ↑f x / ∫ (y : E), ↑f y ∂μ ≤ 1 / ∫ (y : E), ↑f y ∂μ
⊢ ContDiffBump.normed f μ x ≤ K ^ finrank ℝ E / ENNReal.toReal (↑↑μ (closedBall c f.rOut))
[PROOFSTEP]
apply this.trans
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
this : ↑f x / ∫ (y : E), ↑f y ∂μ ≤ 1 / ∫ (y : E), ↑f y ∂μ
⊢ 1 / ∫ (y : E), ↑f y ∂μ ≤ K ^ finrank ℝ E / ENNReal.toReal (↑↑μ (closedBall c f.rOut))
[PROOFSTEP]
rw [div_le_div_iff f.integral_pos, one_mul, ← div_le_iff' (pow_pos K_pos _)]
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
this : ↑f x / ∫ (y : E), ↑f y ∂μ ≤ 1 / ∫ (y : E), ↑f y ∂μ
⊢ ENNReal.toReal (↑↑μ (closedBall c f.rOut)) / K ^ finrank ℝ E ≤ ∫ (x : E), ↑f x ∂μ
[PROOFSTEP]
exact f.measure_closedBall_div_le_integral μ K h
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : HasContDiffBump E
inst✝⁵ : MeasurableSpace E
c : E
f : ContDiffBump c
x✝ : E
n : ℕ∞
μ : Measure E
inst✝⁴ : BorelSpace E
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsLocallyFiniteMeasure μ
inst✝¹ : IsOpenPosMeasure μ
inst✝ : IsAddHaarMeasure μ
K : ℝ
h : f.rOut ≤ K * f.rIn
x : E
K_pos : 0 < K
this : ↑f x / ∫ (y : E), ↑f y ∂μ ≤ 1 / ∫ (y : E), ↑f y ∂μ
⊢ 0 < ENNReal.toReal (↑↑μ (closedBall c f.rOut))
[PROOFSTEP]
exact ENNReal.toReal_pos (measure_closedBall_pos _ _ f.rOut_pos).ne' measure_closedBall_lt_top.ne
| {"mathlib_filename": "Mathlib.Analysis.Calculus.BumpFunction.Normed", "llama_tokens": 11540} |
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f' : 𝕜 →L[𝕜] F
⊢ HasFDerivAtFilter f f' x L ↔ HasDerivAtFilter f (↑f' 1) x L
[PROOFSTEP]
simp [HasDerivAtFilter]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f' : 𝕜 →L[𝕜] F
⊢ HasStrictFDerivAt f f' x ↔ HasStrictDerivAt f (↑f' 1) x
[PROOFSTEP]
simp [HasStrictDerivAt, HasStrictFDerivAt]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ derivWithin f s x = 0
[PROOFSTEP]
unfold derivWithin
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ ↑(fderivWithin 𝕜 f s x) 1 = 0
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt h]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ ↑0 1 = 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : ¬DifferentiableAt 𝕜 f x
⊢ deriv f x = 0
[PROOFSTEP]
unfold deriv
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : ¬DifferentiableAt 𝕜 f x
⊢ ↑(fderiv 𝕜 f x) 1 = 0
[PROOFSTEP]
rw [fderiv_zero_of_not_differentiableAt h]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : ¬DifferentiableAt 𝕜 f x
⊢ ↑0 1 = 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hf : HasDerivAtFilter f f' x✝ L
hf' : f' ≠ 0
x : 𝕜
⊢ ‖x‖ ≤ ↑‖f'‖₊⁻¹ * ‖↑(smulRight 1 f') x‖
[PROOFSTEP]
simp [norm_smul, ← div_eq_inv_mul, mul_div_cancel _ (mt norm_eq_zero.1 hf')]
[GOAL]
𝕜 : Type u
inst✝⁵ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
E : Type w
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
inst✝ : PartialOrder 𝕜
⊢ HasDerivWithinAt f f' (Ioi x) x ↔ HasDerivWithinAt f f' (Ici x) x
[PROOFSTEP]
rw [← Ici_diff_left, hasDerivWithinAt_diff_singleton]
[GOAL]
𝕜 : Type u
inst✝⁵ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
E : Type w
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
inst✝ : PartialOrder 𝕜
⊢ HasDerivWithinAt f f' (Iio x) x ↔ HasDerivWithinAt f f' (Iic x) x
[PROOFSTEP]
rw [← Iic_diff_right, hasDerivWithinAt_diff_singleton]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
⊢ smulRight 1 (derivWithin f s x) = fderivWithin 𝕜 f s x
[PROOFSTEP]
simp [derivWithin]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
⊢ smulRight 1 (deriv f x) = fderiv 𝕜 f x
[PROOFSTEP]
simp [deriv]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : DifferentiableAt 𝕜 f x
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ _root_.derivWithin f s x = deriv f x
[PROOFSTEP]
unfold derivWithin deriv
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : DifferentiableAt 𝕜 f x
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ ↑(fderivWithin 𝕜 f s x) 1 = ↑(fderiv 𝕜 f x) 1
[PROOFSTEP]
rw [h.fderivWithin hxs]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
y : 𝕜
h : s =ᶠ[𝓝[{y}ᶜ] x] t
⊢ derivWithin f s x = derivWithin f t x
[PROOFSTEP]
simp only [derivWithin, fderivWithin_congr_set' y h]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : s =ᶠ[𝓝 x] t
⊢ derivWithin f s x = derivWithin f t x
[PROOFSTEP]
simp only [derivWithin, fderivWithin_congr_set h]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
⊢ derivWithin f univ = deriv f
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
x✝ : 𝕜
⊢ derivWithin f univ x✝ = deriv f x✝
[PROOFSTEP]
unfold derivWithin deriv
[GOAL]
case h
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
x✝ : 𝕜
⊢ ↑(fderivWithin 𝕜 f univ x✝) 1 = ↑(fderiv 𝕜 f x✝) 1
[PROOFSTEP]
rw [fderivWithin_univ]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
ht : t ∈ 𝓝 x
⊢ derivWithin f (s ∩ t) x = derivWithin f s x
[PROOFSTEP]
unfold derivWithin
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
ht : t ∈ 𝓝 x
⊢ ↑(fderivWithin 𝕜 f (s ∩ t) x) 1 = ↑(fderivWithin 𝕜 f s x) 1
[PROOFSTEP]
rw [fderivWithin_inter ht]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : IsOpen s
hx : x ∈ s
⊢ derivWithin f s x = deriv f x
[PROOFSTEP]
unfold derivWithin
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : IsOpen s
hx : x ∈ s
⊢ ↑(fderivWithin 𝕜 f s x) 1 = deriv f x
[PROOFSTEP]
rw [fderivWithin_of_open hs hx]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : IsOpen s
hx : x ∈ s
⊢ ↑(fderiv 𝕜 f x) 1 = deriv f x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s✝ t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f : 𝕜 → F
s : Set F
x : 𝕜
⊢ deriv f x ∈ s ↔ DifferentiableAt 𝕜 f x ∧ deriv f x ∈ s ∨ ¬DifferentiableAt 𝕜 f x ∧ 0 ∈ s
[PROOFSTEP]
by_cases hx : DifferentiableAt 𝕜 f x
[GOAL]
case pos
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s✝ t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f : 𝕜 → F
s : Set F
x : 𝕜
hx : DifferentiableAt 𝕜 f x
⊢ deriv f x ∈ s ↔ DifferentiableAt 𝕜 f x ∧ deriv f x ∈ s ∨ ¬DifferentiableAt 𝕜 f x ∧ 0 ∈ s
[PROOFSTEP]
simp [deriv_zero_of_not_differentiableAt, *]
[GOAL]
case neg
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s✝ t : Set 𝕜
L L₁ L₂ : Filter 𝕜
f : 𝕜 → F
s : Set F
x : 𝕜
hx : ¬DifferentiableAt 𝕜 f x
⊢ deriv f x ∈ s ↔ DifferentiableAt 𝕜 f x ∧ deriv f x ∈ s ∨ ¬DifferentiableAt 𝕜 f x ∧ 0 ∈ s
[PROOFSTEP]
simp [deriv_zero_of_not_differentiableAt, *]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s✝ t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
f : 𝕜 → F
t : Set 𝕜
s : Set F
x : 𝕜
⊢ derivWithin f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ derivWithin f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
[PROOFSTEP]
by_cases hx : DifferentiableWithinAt 𝕜 f t x
[GOAL]
case pos
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s✝ t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
f : 𝕜 → F
t : Set 𝕜
s : Set F
x : 𝕜
hx : DifferentiableWithinAt 𝕜 f t x
⊢ derivWithin f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ derivWithin f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
[PROOFSTEP]
simp [derivWithin_zero_of_not_differentiableWithinAt, *]
[GOAL]
case neg
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s✝ t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
f : 𝕜 → F
t : Set 𝕜
s : Set F
x : 𝕜
hx : ¬DifferentiableWithinAt 𝕜 f t x
⊢ derivWithin f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ derivWithin f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
[PROOFSTEP]
simp [derivWithin_zero_of_not_differentiableWithinAt, *]
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E✝ : Type w
inst✝³ : NormedAddCommGroup E✝
inst✝² : NormedSpace 𝕜 E✝
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
⊢ derivWithin f (Ioi x) x = derivWithin f (Ici x) x
[PROOFSTEP]
by_cases H : DifferentiableWithinAt ℝ f (Ioi x) x
[GOAL]
case pos
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E✝ : Type w
inst✝³ : NormedAddCommGroup E✝
inst✝² : NormedSpace 𝕜 E✝
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
H : DifferentiableWithinAt ℝ f (Ioi x) x
⊢ derivWithin f (Ioi x) x = derivWithin f (Ici x) x
[PROOFSTEP]
have A := H.hasDerivWithinAt.Ici_of_Ioi
[GOAL]
case pos
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E✝ : Type w
inst✝³ : NormedAddCommGroup E✝
inst✝² : NormedSpace 𝕜 E✝
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
H : DifferentiableWithinAt ℝ f (Ioi x) x
A : HasDerivWithinAt f (derivWithin f (Ioi x) x) (Ici x) x
⊢ derivWithin f (Ioi x) x = derivWithin f (Ici x) x
[PROOFSTEP]
have B := (differentiableWithinAt_Ioi_iff_Ici.1 H).hasDerivWithinAt
[GOAL]
case pos
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E✝ : Type w
inst✝³ : NormedAddCommGroup E✝
inst✝² : NormedSpace 𝕜 E✝
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
H : DifferentiableWithinAt ℝ f (Ioi x) x
A : HasDerivWithinAt f (derivWithin f (Ioi x) x) (Ici x) x
B : HasDerivWithinAt f (derivWithin f (Ici x) x) (Ici x) x
⊢ derivWithin f (Ioi x) x = derivWithin f (Ici x) x
[PROOFSTEP]
simpa using (uniqueDiffOn_Ici x).eq left_mem_Ici A B
[GOAL]
case neg
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E✝ : Type w
inst✝³ : NormedAddCommGroup E✝
inst✝² : NormedSpace 𝕜 E✝
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
H : ¬DifferentiableWithinAt ℝ f (Ioi x) x
⊢ derivWithin f (Ioi x) x = derivWithin f (Ici x) x
[PROOFSTEP]
rw [derivWithin_zero_of_not_differentiableWithinAt H, derivWithin_zero_of_not_differentiableWithinAt]
[GOAL]
case neg
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E✝ : Type w
inst✝³ : NormedAddCommGroup E✝
inst✝² : NormedSpace 𝕜 E✝
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : ℝ → E
x : ℝ
H : ¬DifferentiableWithinAt ℝ f (Ioi x) x
⊢ ¬DifferentiableWithinAt ℝ f (Ici x) x
[PROOFSTEP]
rwa [differentiableWithinAt_Ioi_iff_Ici] at H
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h₀ : f₀ =ᶠ[L] f₁
hx : f₀ x = f₁ x
h₁ : f₀' = f₁'
⊢ ∀ (x : 𝕜), ↑(smulRight 1 f₀') x = ↑(smulRight 1 f₁') x
[PROOFSTEP]
simp [h₁]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
h : HasDerivAtFilter f f' x L
hL : f₁ =ᶠ[L] f
hx : f₁ x = f x
⊢ HasDerivAtFilter f₁ f' x L
[PROOFSTEP]
rwa [hL.hasDerivAtFilter_iff hx rfl]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : f₁ =ᶠ[𝓝[s] x] f
hx : f₁ x = f x
⊢ derivWithin f₁ s x = derivWithin f s x
[PROOFSTEP]
unfold derivWithin
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : f₁ =ᶠ[𝓝[s] x] f
hx : f₁ x = f x
⊢ ↑(fderivWithin 𝕜 f₁ s x) 1 = ↑(fderivWithin 𝕜 f s x) 1
[PROOFSTEP]
rw [hs.fderivWithin_eq hx]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : EqOn f₁ f s
hx : f₁ x = f x
⊢ derivWithin f₁ s x = derivWithin f s x
[PROOFSTEP]
unfold derivWithin
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hs : EqOn f₁ f s
hx : f₁ x = f x
⊢ ↑(fderivWithin 𝕜 f₁ s x) 1 = ↑(fderivWithin 𝕜 f s x) 1
[PROOFSTEP]
rw [fderivWithin_congr hs hx]
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hL : f₁ =ᶠ[𝓝 x] f
⊢ deriv f₁ x = deriv f x
[PROOFSTEP]
unfold deriv
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
hL : f₁ =ᶠ[𝓝 x] f
⊢ ↑(fderiv 𝕜 f₁ x) 1 = ↑(fderiv 𝕜 f x) 1
[PROOFSTEP]
rwa [Filter.EventuallyEq.fderiv_eq]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Basic", "llama_tokens": 9638} |
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
⊢ Monotone fun s => posTangentConeAt s a
[PROOFSTEP]
rintro s t hst y ⟨c, d, hd, hc, hcd⟩
[GOAL]
case intro.intro.intro.intro
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s t : Set E
hst : s ≤ t
y : E
c : ℕ → ℝ
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, a + d n ∈ s
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ y ∈ (fun s => posTangentConeAt s a) t
[PROOFSTEP]
exact ⟨c, d, mem_of_superset hd fun h hn => hst hn, hc, hcd⟩
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
⊢ y - x ∈ posTangentConeAt s x
[PROOFSTEP]
let c := fun n : ℕ => (2 : ℝ) ^ n
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
⊢ y - x ∈ posTangentConeAt s x
[PROOFSTEP]
let d := fun n : ℕ => (c n)⁻¹ • (y - x)
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
⊢ y - x ∈ posTangentConeAt s x
[PROOFSTEP]
refine' ⟨c, d, Filter.univ_mem' fun n => h _, tendsto_pow_atTop_atTop_of_one_lt one_lt_two, _⟩
[GOAL]
case refine'_1
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
n : ℕ
⊢ x + d n ∈ segment ℝ x y
case refine'_2
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
⊢ Tendsto (fun n => c n • d n) atTop (𝓝 (y - x))
[PROOFSTEP]
show x + d n ∈ segment ℝ x y
[GOAL]
case refine'_1
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
n : ℕ
⊢ x + d n ∈ segment ℝ x y
[PROOFSTEP]
rw [segment_eq_image']
[GOAL]
case refine'_1
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
n : ℕ
⊢ x + d n ∈ (fun θ => x + θ • (y - x)) '' Icc 0 1
[PROOFSTEP]
refine' ⟨(c n)⁻¹, ⟨_, _⟩, rfl⟩
[GOAL]
case refine'_1.refine'_1
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
n : ℕ
⊢ 0 ≤ (c n)⁻¹
case refine'_1.refine'_2
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
n : ℕ
⊢ (c n)⁻¹ ≤ 1
[PROOFSTEP]
exacts [inv_nonneg.2 (pow_nonneg zero_le_two _), inv_le_one (one_le_pow_of_one_le one_le_two _)]
[GOAL]
case refine'_2
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
⊢ Tendsto (fun n => c n • d n) atTop (𝓝 (y - x))
[PROOFSTEP]
show Tendsto (fun n => c n • d n) atTop (𝓝 (y - x))
[GOAL]
case refine'_2
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x y ⊆ s
c : ℕ → ℝ := fun n => 2 ^ n
d : ℕ → E := fun n => (c n)⁻¹ • (y - x)
⊢ Tendsto (fun n => c n • d n) atTop (𝓝 (y - x))
[PROOFSTEP]
exact tendsto_const_nhds.congr fun n ↦ (smul_inv_smul₀ (pow_ne_zero _ two_ne_zero) _).symm
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
x y : E
h : segment ℝ x (x + y) ⊆ s
⊢ y ∈ posTangentConeAt s x
[PROOFSTEP]
simpa only [add_sub_cancel'] using mem_posTangentConeAt_of_segment_subset h
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
hy : y ∈ posTangentConeAt s a
⊢ ↑f' y ≤ 0
[PROOFSTEP]
rcases hy with ⟨c, d, hd, hc, hcd⟩
[GOAL]
case intro.intro.intro.intro
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, a + d n ∈ s
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
⊢ ↑f' y ≤ 0
[PROOFSTEP]
have hc' : Tendsto (‖c ·‖) atTop atTop := tendsto_abs_atTop_atTop.comp hc
[GOAL]
case intro.intro.intro.intro
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, a + d n ∈ s
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
hc' : Tendsto (fun x => ‖c x‖) atTop atTop
⊢ ↑f' y ≤ 0
[PROOFSTEP]
suffices : ∀ᶠ n in atTop, c n • (f (a + d n) - f a) ≤ 0
[GOAL]
case intro.intro.intro.intro
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, a + d n ∈ s
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
hc' : Tendsto (fun x => ‖c x‖) atTop atTop
this : ∀ᶠ (n : ℕ) in atTop, c n • (f (a + d n) - f a) ≤ 0
⊢ ↑f' y ≤ 0
[PROOFSTEP]
exact le_of_tendsto (hf.lim atTop hd hc' hcd) this
[GOAL]
case this
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, a + d n ∈ s
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
hc' : Tendsto (fun x => ‖c x‖) atTop atTop
⊢ ∀ᶠ (n : ℕ) in atTop, c n • (f (a + d n) - f a) ≤ 0
[PROOFSTEP]
replace hd : Tendsto (fun n => a + d n) atTop (𝓝[s] (a + 0))
[GOAL]
case hd
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hd : ∀ᶠ (n : ℕ) in atTop, a + d n ∈ s
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
hc' : Tendsto (fun x => ‖c x‖) atTop atTop
⊢ Tendsto (fun n => a + d n) atTop (𝓝[s] (a + 0))
[PROOFSTEP]
exact tendsto_nhdsWithin_iff.2 ⟨tendsto_const_nhds.add (tangentConeAt.lim_zero _ hc' hcd), hd⟩
[GOAL]
case this
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
hc' : Tendsto (fun x => ‖c x‖) atTop atTop
hd : Tendsto (fun n => a + d n) atTop (𝓝[s] (a + 0))
⊢ ∀ᶠ (n : ℕ) in atTop, c n • (f (a + d n) - f a) ≤ 0
[PROOFSTEP]
rw [add_zero] at hd
[GOAL]
case this
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
hc' : Tendsto (fun x => ‖c x‖) atTop atTop
hd : Tendsto (fun n => a + d n) atTop (𝓝[s] a)
⊢ ∀ᶠ (n : ℕ) in atTop, c n • (f (a + d n) - f a) ≤ 0
[PROOFSTEP]
filter_upwards [hd.eventually h, hc.eventually_ge_atTop 0] with n hfn hcn
[GOAL]
case h
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
c : ℕ → ℝ
d : ℕ → E
hc : Tendsto c atTop atTop
hcd : Tendsto (fun n => c n • d n) atTop (𝓝 y)
hc' : Tendsto (fun x => ‖c x‖) atTop atTop
hd : Tendsto (fun n => a + d n) atTop (𝓝[s] a)
n : ℕ
hfn : f (a + d n) ≤ f a
hcn : 0 ≤ c n
⊢ c n • (f (a + d n) - f a) ≤ 0
[PROOFSTEP]
exact mul_nonpos_of_nonneg_of_nonpos hcn (sub_nonpos.2 hfn)
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ ↑(fderivWithin ℝ f s a) y ≤ 0
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt hf]
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ ↑0 y ≤ 0
[PROOFSTEP]
rfl
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
hy : y ∈ posTangentConeAt s a
hy' : -y ∈ posTangentConeAt s a
⊢ 0 ≤ ↑f' y
[PROOFSTEP]
simpa using h.hasFDerivWithinAt_nonpos hf hy'
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hy' : -y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ ↑(fderivWithin ℝ f s a) y = 0
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt hf]
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMaxOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hy' : -y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ ↑0 y = 0
[PROOFSTEP]
rfl
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMinOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
hy : y ∈ posTangentConeAt s a
⊢ 0 ≤ ↑f' y
[PROOFSTEP]
simpa using h.neg.hasFDerivWithinAt_nonpos hf.neg hy
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMinOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ 0 ≤ ↑(fderivWithin ℝ f s a) y
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt hf]
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMinOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ 0 ≤ ↑0 y
[PROOFSTEP]
rfl
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMinOn f s a
hf : HasFDerivWithinAt f f' s a
y : E
hy : y ∈ posTangentConeAt s a
hy' : -y ∈ posTangentConeAt s a
⊢ ↑f' y = 0
[PROOFSTEP]
simpa using h.neg.hasFDerivWithinAt_eq_zero hf.neg hy hy'
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMinOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hy' : -y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ ↑(fderivWithin ℝ f s a) y = 0
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt hf]
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
s : Set E
h : IsLocalMinOn f s a
y : E
hy : y ∈ posTangentConeAt s a
hy' : -y ∈ posTangentConeAt s a
hf : ¬DifferentiableWithinAt ℝ f s a
⊢ ↑0 y = 0
[PROOFSTEP]
rfl
[GOAL]
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
h : IsLocalMin f a
hf : HasFDerivAt f f' a
⊢ f' = 0
[PROOFSTEP]
ext y
[GOAL]
case h
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
h : IsLocalMin f a
hf : HasFDerivAt f f' a
y : E
⊢ ↑f' y = ↑0 y
[PROOFSTEP]
apply (h.on univ).hasFDerivWithinAt_eq_zero hf.hasFDerivWithinAt
[GOAL]
case h.hy
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
h : IsLocalMin f a
hf : HasFDerivAt f f' a
y : E
⊢ y ∈ posTangentConeAt univ a
[PROOFSTEP]
rw [posTangentConeAt_univ]
[GOAL]
case h.hy'
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
h : IsLocalMin f a
hf : HasFDerivAt f f' a
y : E
⊢ -y ∈ posTangentConeAt univ a
[PROOFSTEP]
rw [posTangentConeAt_univ]
[GOAL]
case h.hy
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
h : IsLocalMin f a
hf : HasFDerivAt f f' a
y : E
⊢ y ∈ univ
[PROOFSTEP]
apply mem_univ
[GOAL]
case h.hy'
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : E → ℝ
a : E
f' : E →L[ℝ] ℝ
h : IsLocalMin f a
hf : HasFDerivAt f f' a
y : E
⊢ -y ∈ univ
[PROOFSTEP]
apply mem_univ
[GOAL]
f : ℝ → ℝ
f' a b : ℝ
h : IsLocalMin f a
hf : HasDerivAt f f' a
⊢ f' = 0
[PROOFSTEP]
simpa using FunLike.congr_fun (h.hasFDerivAt_eq_zero (hasDerivAt_iff_hasFDerivAt.1 hf)) 1
| {"mathlib_filename": "Mathlib.Analysis.Calculus.LocalExtr.Basic", "llama_tokens": 7036} |
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hg : HasDerivAtFilter g₁ g₁' (h x) L'
hh : HasDerivAtFilter h h' x L
hL : Tendsto h L L'
⊢ HasDerivAtFilter (g₁ ∘ h) (h' • g₁') x L
[PROOFSTEP]
simpa using ((hg.restrictScalars 𝕜).comp x hh hL).hasDerivAtFilter
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hg : HasStrictDerivAt g₁ g₁' (h x)
hh : HasStrictDerivAt h h' x
⊢ HasStrictDerivAt (g₁ ∘ h) (h' • g₁') x
[PROOFSTEP]
simpa using ((hg.restrictScalars 𝕜).comp x hh).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : E → 𝕜'
f' : E →L[𝕜] 𝕜'
x : E
L'' : Filter E
hh₂ : HasDerivAtFilter h₂ h₂' (f x) L'
hf : HasFDerivAtFilter f f' x L''
hL : Tendsto f L'' L'
⊢ HasFDerivAtFilter (h₂ ∘ f) (h₂' • f') x L''
[PROOFSTEP]
convert (hh₂.restrictScalars 𝕜).comp x hf hL
[GOAL]
case h.e'_10.h.e
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : E → 𝕜'
f' : E →L[𝕜] 𝕜'
x : E
L'' : Filter E
hh₂ : HasDerivAtFilter h₂ h₂' (f x) L'
hf : HasFDerivAtFilter f f' x L''
hL : Tendsto f L'' L'
⊢ HSMul.hSMul h₂' = ContinuousLinearMap.comp (ContinuousLinearMap.restrictScalars 𝕜 (smulRight 1 h₂'))
[PROOFSTEP]
ext x
[GOAL]
case h.e'_10.h.e.h.h
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x✝² : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : E → 𝕜'
f' : E →L[𝕜] 𝕜'
x✝¹ : E
L'' : Filter E
hh₂ : HasDerivAtFilter h₂ h₂' (f x✝¹) L'
hf : HasFDerivAtFilter f f' x✝¹ L''
hL : Tendsto f L'' L'
x : E →L[𝕜] 𝕜'
x✝ : E
⊢ ↑(h₂' • x) x✝ = ↑(ContinuousLinearMap.comp (ContinuousLinearMap.restrictScalars 𝕜 (smulRight 1 h₂')) x) x✝
[PROOFSTEP]
simp [mul_comm]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : E → 𝕜'
f' : E →L[𝕜] 𝕜'
x : E
hh : HasStrictDerivAt h₂ h₂' (f x)
hf : HasStrictFDerivAt f f' x
⊢ HasStrictFDerivAt (h₂ ∘ f) (h₂' • f') x
[PROOFSTEP]
rw [HasStrictDerivAt] at hh
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : E → 𝕜'
f' : E →L[𝕜] 𝕜'
x : E
hh : HasStrictFDerivAt h₂ (smulRight 1 h₂') (f x)
hf : HasStrictFDerivAt f f' x
⊢ HasStrictFDerivAt (h₂ ∘ f) (h₂' • f') x
[PROOFSTEP]
convert (hh.restrictScalars 𝕜).comp x hf
[GOAL]
case h.e'_10.h.e
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x✝ : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : E → 𝕜'
f' : E →L[𝕜] 𝕜'
x : E
hh : HasStrictFDerivAt h₂ (smulRight 1 h₂') (f x)
hf : HasStrictFDerivAt f f' x
⊢ HSMul.hSMul h₂' = ContinuousLinearMap.comp (ContinuousLinearMap.restrictScalars 𝕜 (smulRight 1 h₂'))
[PROOFSTEP]
ext x
[GOAL]
case h.e'_10.h.e.h.h
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x✝² : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : E → 𝕜'
f' : E →L[𝕜] 𝕜'
x✝¹ : E
hh : HasStrictFDerivAt h₂ (smulRight 1 h₂') (f x✝¹)
hf : HasStrictFDerivAt f f' x✝¹
x : E →L[𝕜] 𝕜'
x✝ : E
⊢ ↑(h₂' • x) x✝ = ↑(ContinuousLinearMap.comp (ContinuousLinearMap.restrictScalars 𝕜 (smulRight 1 h₂')) x) x✝
[PROOFSTEP]
simp [mul_comm]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hh₂ : HasDerivAtFilter h₂ h₂' (h x) L'
hh : HasDerivAtFilter h h' x L
hL : Tendsto h L L'
⊢ HasDerivAtFilter (h₂ ∘ h) (h₂' * h') x L
[PROOFSTEP]
rw [mul_comm]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hh₂ : HasDerivAtFilter h₂ h₂' (h x) L'
hh : HasDerivAtFilter h h' x L
hL : Tendsto h L L'
⊢ HasDerivAtFilter (h₂ ∘ h) (h' * h₂') x L
[PROOFSTEP]
exact hh₂.scomp x hh hL
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hh₂ : HasDerivWithinAt h₂ h₂' s' (h x)
hh : HasDerivWithinAt h h' s x
hst : MapsTo h s s'
⊢ HasDerivWithinAt (h₂ ∘ h) (h₂' * h') s x
[PROOFSTEP]
rw [mul_comm]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hh₂ : HasDerivWithinAt h₂ h₂' s' (h x)
hh : HasDerivWithinAt h h' s x
hst : MapsTo h s s'
⊢ HasDerivWithinAt (h₂ ∘ h) (h' * h₂') s x
[PROOFSTEP]
exact hh₂.scomp x hh hst
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hh₂ : HasStrictDerivAt h₂ h₂' (h x)
hh : HasStrictDerivAt h h' x
⊢ HasStrictDerivAt (h₂ ∘ h) (h₂' * h') x
[PROOFSTEP]
rw [mul_comm]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
hh₂ : HasStrictDerivAt h₂ h₂' (h x)
hh : HasStrictDerivAt h h' x
⊢ HasStrictDerivAt (h₂ ∘ h) (h' * h₂') x
[PROOFSTEP]
exact hh₂.scomp x hh
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : 𝕜 → 𝕜
f' : 𝕜
hf : HasDerivAtFilter f f' x L
hL : Tendsto f L L
hx : f x = x
n : ℕ
⊢ HasDerivAtFilter f^[n] (f' ^ n) x L
[PROOFSTEP]
have := hf.iterate hL hx n
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : 𝕜 → 𝕜
f' : 𝕜
hf : HasDerivAtFilter f f' x L
hL : Tendsto f L L
hx : f x = x
n : ℕ
this : HasFDerivAtFilter f^[n] (smulRight 1 f' ^ n) x L
⊢ HasDerivAtFilter f^[n] (f' ^ n) x L
[PROOFSTEP]
rwa [ContinuousLinearMap.smulRight_one_pow] at this
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : 𝕜 → 𝕜
f' : 𝕜
hf : HasDerivAt f f' x
hx : f x = x
n : ℕ
this : Tendsto f (𝓝 x) (𝓝 (f x))
⊢ Tendsto f (𝓝 x) (𝓝 x)
[PROOFSTEP]
rwa [hx] at this
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : 𝕜 → 𝕜
f' : 𝕜
hf : HasDerivWithinAt f f' s x
hx : f x = x
hs : MapsTo f s s
n : ℕ
⊢ HasDerivWithinAt f^[n] (f' ^ n) s x
[PROOFSTEP]
have := HasFDerivWithinAt.iterate hf hx hs n
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : 𝕜 → 𝕜
f' : 𝕜
hf : HasDerivWithinAt f f' s x
hx : f x = x
hs : MapsTo f s s
n : ℕ
this : HasFDerivWithinAt f^[n] (smulRight 1 f' ^ n) s x
⊢ HasDerivWithinAt f^[n] (f' ^ n) s x
[PROOFSTEP]
rwa [ContinuousLinearMap.smulRight_one_pow] at this
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : 𝕜 → 𝕜
f' : 𝕜
hf : HasStrictDerivAt f f' x
hx : f x = x
n : ℕ
⊢ HasStrictDerivAt f^[n] (f' ^ n) x
[PROOFSTEP]
have := hf.iterate hx n
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f'✝ f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
s' t' : Set 𝕜'
h : 𝕜 → 𝕜'
h₁ : 𝕜 → 𝕜
h₂ : 𝕜' → 𝕜'
h' h₂' : 𝕜'
h₁' : 𝕜
g₁ : 𝕜' → F
g₁' : F
L' : Filter 𝕜'
f : 𝕜 → 𝕜
f' : 𝕜
hf : HasStrictDerivAt f f' x
hx : f x = x
n : ℕ
this : HasStrictFDerivAt f^[n] (smulRight 1 f' ^ n) x
⊢ HasStrictDerivAt f^[n] (f' ^ n) x
[PROOFSTEP]
rwa [ContinuousLinearMap.smulRight_one_pow] at this
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t✝ : Set 𝕜
L L₁ L₂ : Filter 𝕜
l : F → E
l' : F →L[𝕜] E
t : Set F
hl : HasFDerivWithinAt l l' t (f x)
hf : HasDerivWithinAt f f' s x
hst : MapsTo f s t
⊢ HasDerivWithinAt (l ∘ f) (↑l' f') s x
[PROOFSTEP]
simpa only [one_apply, one_smul, smulRight_apply, coe_comp', (· ∘ ·)] using
(hl.comp x hf.hasFDerivWithinAt hst).hasDerivWithinAt
[GOAL]
𝕜 : Type u
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type v
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type w
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
l : F → E
l' : F →L[𝕜] E
hl : HasStrictFDerivAt l l' (f x)
hf : HasStrictDerivAt f f' x
⊢ HasStrictDerivAt (l ∘ f) (↑l' f') x
[PROOFSTEP]
simpa only [one_apply, one_smul, smulRight_apply, coe_comp', (· ∘ ·)] using
(hl.comp x hf.hasStrictFDerivAt).hasStrictDerivAt
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Comp", "llama_tokens": 9388} |
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d r : ℝ
h : -1 < r
⊢ IntervalIntegrable (fun x => x ^ r) volume a b
[PROOFSTEP]
suffices ∀ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), IntervalIntegrable (fun x => x ^ r) volume 0 c
⊢ IntervalIntegrable (fun x => x ^ r) volume a b
[PROOFSTEP]
exact IntervalIntegrable.trans (this a).symm (this b)
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d r : ℝ
h : -1 < r
⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => x ^ r) volume 0 c
[PROOFSTEP]
have : ∀ c : ℝ, 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c :=
by
intro c hc
rw [intervalIntegrable_iff, uIoc_of_le hc]
have hderiv : ∀ x ∈ Ioo 0 c, HasDerivAt (fun x : ℝ => x ^ (r + 1) / (r + 1)) (x ^ r) x :=
by
intro x hx
convert (Real.hasDerivAt_rpow_const (p := r + 1) (Or.inl hx.1.ne')).div_const (r + 1) using 1
field_simp [(by linarith : r + 1 ≠ 0)]; ring
apply integrableOn_deriv_of_nonneg _ hderiv
· intro x hx; apply rpow_nonneg_of_nonneg hx.1.le
· refine' (continuousOn_id.rpow_const _).div_const _; intro x _; right; linarith
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d r : ℝ
h : -1 < r
⊢ ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
[PROOFSTEP]
intro c hc
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
⊢ IntervalIntegrable (fun x => x ^ r) volume 0 c
[PROOFSTEP]
rw [intervalIntegrable_iff, uIoc_of_le hc]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
⊢ IntegrableOn (fun x => x ^ r) (Set.Ioc 0 c)
[PROOFSTEP]
have hderiv : ∀ x ∈ Ioo 0 c, HasDerivAt (fun x : ℝ => x ^ (r + 1) / (r + 1)) (x ^ r) x :=
by
intro x hx
convert (Real.hasDerivAt_rpow_const (p := r + 1) (Or.inl hx.1.ne')).div_const (r + 1) using 1
field_simp [(by linarith : r + 1 ≠ 0)]; ring
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
⊢ ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
[PROOFSTEP]
intro x hx
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioo 0 c
⊢ HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
[PROOFSTEP]
convert (Real.hasDerivAt_rpow_const (p := r + 1) (Or.inl hx.1.ne')).div_const (r + 1) using 1
[GOAL]
case h.e'_7
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioo 0 c
⊢ x ^ r = (r + 1) * x ^ (r + 1 - 1) / (r + 1)
[PROOFSTEP]
field_simp [(by linarith : r + 1 ≠ 0)]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioo 0 c
⊢ r + 1 ≠ 0
[PROOFSTEP]
linarith
[GOAL]
case h.e'_7
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioo 0 c
⊢ x ^ r * (r + 1) = (r + 1) * x ^ r
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
hderiv : ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
⊢ IntegrableOn (fun x => x ^ r) (Set.Ioc 0 c)
[PROOFSTEP]
apply integrableOn_deriv_of_nonneg _ hderiv
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
hderiv : ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
⊢ ∀ (x : ℝ), x ∈ Set.Ioo 0 c → 0 ≤ x ^ r
[PROOFSTEP]
intro x hx
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
hderiv : ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
x : ℝ
hx : x ∈ Set.Ioo 0 c
⊢ 0 ≤ x ^ r
[PROOFSTEP]
apply rpow_nonneg_of_nonneg hx.1.le
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
hderiv : ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
⊢ ContinuousOn (fun x => x ^ (r + 1) / (r + 1)) (Set.Icc 0 c)
[PROOFSTEP]
refine' (continuousOn_id.rpow_const _).div_const _
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
hderiv : ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
⊢ ∀ (x : ℝ), x ∈ Set.Icc 0 c → id x ≠ 0 ∨ 0 ≤ r + 1
[PROOFSTEP]
intro x _
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
hderiv : ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
x : ℝ
a✝ : x ∈ Set.Icc 0 c
⊢ id x ≠ 0 ∨ 0 ≤ r + 1
[PROOFSTEP]
right
[GOAL]
case h
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
c : ℝ
hc : 0 ≤ c
hderiv : ∀ (x : ℝ), x ∈ Set.Ioo 0 c → HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
x : ℝ
a✝ : x ∈ Set.Icc 0 c
⊢ 0 ≤ r + 1
[PROOFSTEP]
linarith
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => x ^ r) volume 0 c
[PROOFSTEP]
intro c
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
⊢ IntervalIntegrable (fun x => x ^ r) volume 0 c
[PROOFSTEP]
rcases le_total 0 c with (hc | hc)
[GOAL]
case inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : 0 ≤ c
⊢ IntervalIntegrable (fun x => x ^ r) volume 0 c
[PROOFSTEP]
exact this c hc
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
⊢ IntervalIntegrable (fun x => x ^ r) volume 0 c
[PROOFSTEP]
rw [IntervalIntegrable.iff_comp_neg, neg_zero]
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
⊢ IntervalIntegrable (fun x => (-x) ^ r) volume 0 (-c)
[PROOFSTEP]
have m := (this (-c) (by linarith)).smul (cos (r * π))
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
⊢ 0 ≤ -c
[PROOFSTEP]
linarith
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntervalIntegrable (cos (r * π) • fun x => x ^ r) volume 0 (-c)
⊢ IntervalIntegrable (fun x => (-x) ^ r) volume 0 (-c)
[PROOFSTEP]
rw [intervalIntegrable_iff] at m ⊢
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (cos (r * π) • fun x => x ^ r) (Ι 0 (-c))
⊢ IntegrableOn (fun x => (-x) ^ r) (Ι 0 (-c))
[PROOFSTEP]
refine' m.congr_fun _ measurableSet_Ioc
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (cos (r * π) • fun x => x ^ r) (Ι 0 (-c))
⊢ EqOn (cos (r * π) • fun x => x ^ r) (fun x => (-x) ^ r) (Ι 0 (-c))
[PROOFSTEP]
intro x hx
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (cos (r * π) • fun x => x ^ r) (Ι 0 (-c))
x : ℝ
hx : x ∈ Ι 0 (-c)
⊢ (cos (r * π) • fun x => x ^ r) x = (fun x => (-x) ^ r) x
[PROOFSTEP]
rw [uIoc_of_le (by linarith : 0 ≤ -c)] at hx
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (cos (r * π) • fun x => x ^ r) (Ι 0 (-c))
x : ℝ
hx : x ∈ Ι 0 (-c)
⊢ 0 ≤ -c
[PROOFSTEP]
linarith
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (cos (r * π) • fun x => x ^ r) (Ι 0 (-c))
x : ℝ
hx : x ∈ Set.Ioc 0 (-c)
⊢ (cos (r * π) • fun x => x ^ r) x = (fun x => (-x) ^ r) x
[PROOFSTEP]
simp only [Pi.smul_apply, Algebra.id.smul_eq_mul, log_neg_eq_log, mul_comm, rpow_def_of_pos hx.1,
rpow_def_of_neg (by linarith [hx.1] : -x < 0)]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d r : ℝ
h : -1 < r
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (cos (r * π) • fun x => x ^ r) (Ι 0 (-c))
x : ℝ
hx : x ∈ Set.Ioc 0 (-c)
⊢ -x < 0
[PROOFSTEP]
linarith [hx.1]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]
⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b
[PROOFSTEP]
by_cases h2 : (0 : ℝ) ∉ [[a, b]]
[GOAL]
case pos
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]
h2 : ¬0 ∈ [[a, b]]
⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b
[PROOFSTEP]
refine' (ContinuousAt.continuousOn fun x hx => _).intervalIntegrable
[GOAL]
case pos
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]
h2 : ¬0 ∈ [[a, b]]
x : ℝ
hx : x ∈ [[a, b]]
⊢ ContinuousAt (fun x => ↑x ^ r) x
[PROOFSTEP]
exact Complex.continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_mem_of_not_mem hx h2)
[GOAL]
case neg
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]
h2 : ¬¬0 ∈ [[a, b]]
⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b
[PROOFSTEP]
rw [eq_false h2, or_false_iff] at h
[GOAL]
case neg
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b
[PROOFSTEP]
rcases lt_or_eq_of_le h with (h' | h')
[GOAL]
case neg.inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 < r.re
⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b
[PROOFSTEP]
exact
(Complex.continuous_ofReal_cpow_const h').intervalIntegrable _
_
-- Now the hard case: re r = 0 and 0 is in the interval.
[GOAL]
case neg.inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b
[PROOFSTEP]
refine' (IntervalIntegrable.intervalIntegrable_norm_iff _).mp _
[GOAL]
case neg.inr.refine'_1
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
⊢ AEStronglyMeasurable (fun x => ↑x ^ r) (Measure.restrict μ (Ι a b))
[PROOFSTEP]
refine' (measurable_of_continuousOn_compl_singleton (0 : ℝ) _).aestronglyMeasurable
[GOAL]
case neg.inr.refine'_1
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
⊢ ContinuousOn (fun x => ↑x ^ r) {0}ᶜ
[PROOFSTEP]
exact
ContinuousAt.continuousOn fun x hx =>
Complex.continuousAt_ofReal_cpow_const x r
(Or.inr hx)
-- reduce to case of integral over `[0, c]`
[GOAL]
case neg.inr.refine'_2
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
⊢ IntervalIntegrable (fun t => ‖↑t ^ r‖) μ a b
[PROOFSTEP]
suffices : ∀ c : ℝ, IntervalIntegrable (fun x : ℝ => ‖(x : ℂ) ^ r‖) μ 0 c
[GOAL]
case neg.inr.refine'_2
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
this : ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c
⊢ IntervalIntegrable (fun t => ‖↑t ^ r‖) μ a b
case this
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c
[PROOFSTEP]
exact (this a).symm.trans (this b)
[GOAL]
case this
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c
[PROOFSTEP]
intro c
[GOAL]
case this
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c
[PROOFSTEP]
rcases le_or_lt 0 c with (hc | hc)
[GOAL]
case this.inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : 0 ≤ c
⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c
[PROOFSTEP]
have : IntervalIntegrable (fun _ => 1 : ℝ → ℝ) μ 0 c := intervalIntegrable_const
[GOAL]
case this.inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : 0 ≤ c
this : IntervalIntegrable (fun x => 1) μ 0 c
⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c
[PROOFSTEP]
rw [intervalIntegrable_iff_integrable_Ioc_of_le hc] at this ⊢
[GOAL]
case this.inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : 0 ≤ c
this : IntegrableOn (fun x => 1) (Set.Ioc 0 c)
⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc 0 c)
[PROOFSTEP]
refine' IntegrableOn.congr_fun this (fun x hx => _) measurableSet_Ioc
[GOAL]
case this.inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : 0 ≤ c
this : IntegrableOn (fun x => 1) (Set.Ioc 0 c)
x : ℝ
hx : x ∈ Set.Ioc 0 c
⊢ 1 = ‖↑x ^ r‖
[PROOFSTEP]
dsimp only
[GOAL]
case this.inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : 0 ≤ c
this : IntegrableOn (fun x => 1) (Set.Ioc 0 c)
x : ℝ
hx : x ∈ Set.Ioc 0 c
⊢ 1 = ‖↑x ^ r‖
[PROOFSTEP]
rw [Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos hx.1, ← h', rpow_zero]
[GOAL]
case this.inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c
[PROOFSTEP]
apply IntervalIntegrable.symm
[GOAL]
case this.inr.h
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ c 0
[PROOFSTEP]
rw [intervalIntegrable_iff_integrable_Ioc_of_le hc.le]
[GOAL]
case this.inr.h
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc c 0)
[PROOFSTEP]
have : Ioc c 0 = Ioo c 0 ∪ {(0 : ℝ)} :=
by
rw [← Ioo_union_Icc_eq_Ioc hc (le_refl 0), ← Icc_def]
simp_rw [← le_antisymm_iff, setOf_eq_eq_singleton']
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
⊢ Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
[PROOFSTEP]
rw [← Ioo_union_Icc_eq_Ioc hc (le_refl 0), ← Icc_def]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
⊢ Set.Ioo c 0 ∪ {x | 0 ≤ x ∧ x ≤ 0} = Set.Ioo c 0 ∪ {0}
[PROOFSTEP]
simp_rw [← le_antisymm_iff, setOf_eq_eq_singleton']
[GOAL]
case this.inr.h
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc c 0)
[PROOFSTEP]
rw [this, integrableOn_union, and_comm]
[GOAL]
case this.inr.h
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
⊢ IntegrableOn (fun x => ‖↑x ^ r‖) {0} ∧ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)
[PROOFSTEP]
constructor
[GOAL]
case this.inr.h.left
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
⊢ IntegrableOn (fun x => ‖↑x ^ r‖) {0}
[PROOFSTEP]
refine' integrableOn_singleton_iff.mpr (Or.inr _)
[GOAL]
case this.inr.h.left
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
⊢ ↑↑μ {0} < ⊤
[PROOFSTEP]
exact isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure.lt_top_of_isCompact isCompact_singleton
[GOAL]
case this.inr.h.right
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)
[PROOFSTEP]
have : ∀ x : ℝ, x ∈ Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖(x : ℂ) ^ r‖ :=
by
intro x hx
rw [Complex.ofReal_cpow_of_nonpos hx.2.le, norm_mul, ← Complex.ofReal_neg, Complex.norm_eq_abs (_ ^ _),
Complex.abs_cpow_eq_rpow_re_of_pos (neg_pos.mpr hx.2), ← h', rpow_zero, one_mul]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
⊢ ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖
[PROOFSTEP]
intro x hx
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
x : ℝ
hx : x ∈ Set.Ioo c 0
⊢ ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖
[PROOFSTEP]
rw [Complex.ofReal_cpow_of_nonpos hx.2.le, norm_mul, ← Complex.ofReal_neg, Complex.norm_eq_abs (_ ^ _),
Complex.abs_cpow_eq_rpow_re_of_pos (neg_pos.mpr hx.2), ← h', rpow_zero, one_mul]
[GOAL]
case this.inr.h.right
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
this : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖
⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)
[PROOFSTEP]
refine' IntegrableOn.congr_fun _ this measurableSet_Ioo
[GOAL]
case this.inr.h.right
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
this : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖
⊢ IntegrableOn (fun x => ‖Complex.exp (↑π * Complex.I * r)‖) (Set.Ioo c 0)
[PROOFSTEP]
rw [integrableOn_const]
[GOAL]
case this.inr.h.right
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
this : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖
⊢ ‖Complex.exp (↑π * Complex.I * r)‖ = 0 ∨ ↑↑μ (Set.Ioo c 0) < ⊤
[PROOFSTEP]
refine' Or.inr ((measure_mono Set.Ioo_subset_Icc_self).trans_lt _)
[GOAL]
case this.inr.h.right
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : 0 ≤ r.re
h2 : ¬¬0 ∈ [[a, b]]
h' : 0 = r.re
c : ℝ
hc : c < 0
this✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}
this : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖
⊢ ↑↑μ (Set.Icc c 0) < ⊤
[PROOFSTEP]
exact isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure.lt_top_of_isCompact isCompact_Icc
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : -1 < r.re
⊢ IntervalIntegrable (fun x => ↑x ^ r) volume a b
[PROOFSTEP]
suffices ∀ c : ℝ, IntervalIntegrable (fun x => (x : ℂ) ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
⊢ IntervalIntegrable (fun x => ↑x ^ r) volume a b
[PROOFSTEP]
exact IntervalIntegrable.trans (this a).symm (this b)
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : -1 < r.re
⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
[PROOFSTEP]
have : ∀ c : ℝ, 0 ≤ c → IntervalIntegrable (fun x => (x : ℂ) ^ r) volume 0 c :=
by
intro c hc
rw [← IntervalIntegrable.intervalIntegrable_norm_iff]
· rw [intervalIntegrable_iff]
apply IntegrableOn.congr_fun
· rw [← intervalIntegrable_iff]; exact intervalIntegral.intervalIntegrable_rpow' h
· intro x hx
rw [uIoc_of_le hc] at hx
dsimp only
rw [Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos hx.1]
· exact measurableSet_uIoc
· refine' ContinuousOn.aestronglyMeasurable _ measurableSet_uIoc
refine' ContinuousAt.continuousOn fun x hx => _
rw [uIoc_of_le hc] at hx
refine' (continuousAt_cpow_const (Or.inl _)).comp Complex.continuous_ofReal.continuousAt
rw [Complex.ofReal_re]
exact hx.1
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : -1 < r.re
⊢ ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
[PROOFSTEP]
intro c hc
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
[PROOFSTEP]
rw [← IntervalIntegrable.intervalIntegrable_norm_iff]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ IntervalIntegrable (fun t => ‖↑t ^ r‖) volume 0 c
[PROOFSTEP]
rw [intervalIntegrable_iff]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ IntegrableOn (fun t => ‖↑t ^ r‖) (Ι 0 c)
[PROOFSTEP]
apply IntegrableOn.congr_fun
[GOAL]
case h
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ IntegrableOn ?f (Ι 0 c)
[PROOFSTEP]
rw [← intervalIntegrable_iff]
[GOAL]
case h
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ IntervalIntegrable ?m.22126 volume 0 c
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ ℝ → ℝ
[PROOFSTEP]
exact intervalIntegral.intervalIntegrable_rpow' h
[GOAL]
case hst
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ EqOn (fun x => x ^ r.re) (fun t => ‖↑t ^ r‖) (Ι 0 c)
[PROOFSTEP]
intro x hx
[GOAL]
case hst
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Ι 0 c
⊢ (fun x => x ^ r.re) x = (fun t => ‖↑t ^ r‖) x
[PROOFSTEP]
rw [uIoc_of_le hc] at hx
[GOAL]
case hst
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioc 0 c
⊢ (fun x => x ^ r.re) x = (fun t => ‖↑t ^ r‖) x
[PROOFSTEP]
dsimp only
[GOAL]
case hst
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioc 0 c
⊢ x ^ r.re = ‖↑x ^ r‖
[PROOFSTEP]
rw [Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos hx.1]
[GOAL]
case hs
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ MeasurableSet (Ι 0 c)
[PROOFSTEP]
exact measurableSet_uIoc
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ AEStronglyMeasurable (fun x => ↑x ^ r) (Measure.restrict volume (Ι 0 c))
[PROOFSTEP]
refine' ContinuousOn.aestronglyMeasurable _ measurableSet_uIoc
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
⊢ ContinuousOn (fun x => ↑x ^ r) (Ι 0 c)
[PROOFSTEP]
refine' ContinuousAt.continuousOn fun x hx => _
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Ι 0 c
⊢ ContinuousAt (fun x => ↑x ^ r) x
[PROOFSTEP]
rw [uIoc_of_le hc] at hx
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioc 0 c
⊢ ContinuousAt (fun x => ↑x ^ r) x
[PROOFSTEP]
refine' (continuousAt_cpow_const (Or.inl _)).comp Complex.continuous_ofReal.continuousAt
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioc 0 c
⊢ 0 < (↑x).re
[PROOFSTEP]
rw [Complex.ofReal_re]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
c : ℝ
hc : 0 ≤ c
x : ℝ
hx : x ∈ Set.Ioc 0 c
⊢ 0 < x
[PROOFSTEP]
exact hx.1
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
[PROOFSTEP]
intro c
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
[PROOFSTEP]
rcases le_total 0 c with (hc | hc)
[GOAL]
case inl
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : 0 ≤ c
⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
[PROOFSTEP]
exact this c hc
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
[PROOFSTEP]
rw [IntervalIntegrable.iff_comp_neg, neg_zero]
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
⊢ IntervalIntegrable (fun x => ↑(-x) ^ r) volume 0 (-c)
[PROOFSTEP]
have m := (this (-c) (by linarith)).const_mul (Complex.exp (π * Complex.I * r))
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
⊢ 0 ≤ -c
[PROOFSTEP]
linarith
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntervalIntegrable (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) volume 0 (-c)
⊢ IntervalIntegrable (fun x => ↑(-x) ^ r) volume 0 (-c)
[PROOFSTEP]
rw [intervalIntegrable_iff, uIoc_of_le (by linarith : 0 ≤ -c)] at m ⊢
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Ι 0 (-c))
⊢ 0 ≤ -c
[PROOFSTEP]
linarith
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Set.Ioc 0 (-c))
⊢ 0 ≤ -c
[PROOFSTEP]
linarith
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Set.Ioc 0 (-c))
⊢ IntegrableOn (fun x => ↑(-x) ^ r) (Set.Ioc 0 (-c))
[PROOFSTEP]
refine' m.congr_fun (fun x hx => _) measurableSet_Ioc
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Set.Ioc 0 (-c))
x : ℝ
hx : x ∈ Set.Ioc 0 (-c)
⊢ Complex.exp (↑π * Complex.I * r) * ↑x ^ r = ↑(-x) ^ r
[PROOFSTEP]
dsimp only
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Set.Ioc 0 (-c))
x : ℝ
hx : x ∈ Set.Ioc 0 (-c)
⊢ Complex.exp (↑π * Complex.I * r) * ↑x ^ r = ↑(-x) ^ r
[PROOFSTEP]
have : -x ≤ 0 := by linarith [hx.1]
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Set.Ioc 0 (-c))
x : ℝ
hx : x ∈ Set.Ioc 0 (-c)
⊢ -x ≤ 0
[PROOFSTEP]
linarith [hx.1]
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this✝ : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Set.Ioc 0 (-c))
x : ℝ
hx : x ∈ Set.Ioc 0 (-c)
this : -x ≤ 0
⊢ Complex.exp (↑π * Complex.I * r) * ↑x ^ r = ↑(-x) ^ r
[PROOFSTEP]
rw [Complex.ofReal_cpow_of_nonpos this, mul_comm]
[GOAL]
case inr
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c✝ d : ℝ
r : ℂ
h : -1 < r.re
this✝ : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
c : ℝ
hc : c ≤ 0
m : IntegrableOn (fun x => Complex.exp (↑π * Complex.I * r) * ↑x ^ r) (Set.Ioc 0 (-c))
x : ℝ
hx : x ∈ Set.Ioc 0 (-c)
this : -x ≤ 0
⊢ ↑x ^ r * Complex.exp (↑π * Complex.I * r) = (-↑(-x)) ^ r * Complex.exp (↑π * Complex.I * r)
[PROOFSTEP]
simp
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
h : ∀ (x : ℝ), x ∈ [[a, b]] → f x ≠ 0
hf : ContinuousOn f [[a, b]]
⊢ IntervalIntegrable (fun x => (f x)⁻¹) μ a b
[PROOFSTEP]
simpa only [one_div] using intervalIntegrable_one_div h hf
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
⊢ IntervalIntegrable (fun x => ↑1 / (1 + x ^ 2)) μ a b
[PROOFSTEP]
refine' (continuous_const.div _ fun x => _).intervalIntegrable a b
[GOAL]
case refine'_1
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
⊢ Continuous fun x => 1 + x ^ 2
[PROOFSTEP]
continuity
[GOAL]
case refine'_2
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d x : ℝ
⊢ 1 + x ^ 2 ≠ 0
[PROOFSTEP]
nlinarith
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
⊢ IntervalIntegrable (fun x => (1 + x ^ 2)⁻¹) μ a b
[PROOFSTEP]
field_simp
[GOAL]
a b : ℝ
n : ℕ
f : ℝ → ℝ
μ ν : Measure ℝ
inst✝ : IsLocallyFiniteMeasure μ
c d : ℝ
⊢ IntervalIntegrable (fun x => 1 / (1 + x ^ 2)) μ a b
[PROOFSTEP]
exact_mod_cast intervalIntegrable_one_div_one_add_sq
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, ↑x ^ r = (↑b ^ (r + 1) - ↑a ^ (r + 1)) / (r + 1)
[PROOFSTEP]
rw [sub_div]
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, ↑x ^ r = ↑b ^ (r + 1) / (r + 1) - ↑a ^ (r + 1) / (r + 1)
[PROOFSTEP]
have hr : r + 1 ≠ 0 := by
cases' h with h h
· apply_fun Complex.re
rw [Complex.add_re, Complex.one_re, Complex.zero_re, Ne.def, add_eq_zero_iff_eq_neg]
exact h.ne'
· rw [Ne.def, ← add_eq_zero_iff_eq_neg] at h ; exact h.1
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ r + 1 ≠ 0
[PROOFSTEP]
cases' h with h h
[GOAL]
case inl
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re
⊢ r + 1 ≠ 0
[PROOFSTEP]
apply_fun Complex.re
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re
⊢ (r + 1).re ≠ 0.re
[PROOFSTEP]
rw [Complex.add_re, Complex.one_re, Complex.zero_re, Ne.def, add_eq_zero_iff_eq_neg]
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re
⊢ ¬r.re = -1
[PROOFSTEP]
exact h.ne'
[GOAL]
case inr
a b : ℝ
n : ℕ
r : ℂ
h : r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ r + 1 ≠ 0
[PROOFSTEP]
rw [Ne.def, ← add_eq_zero_iff_eq_neg] at h
[GOAL]
case inr
a b : ℝ
n : ℕ
r : ℂ
h : ¬r + 1 = 0 ∧ ¬0 ∈ [[a, b]]
⊢ r + 1 ≠ 0
[PROOFSTEP]
exact h.1
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
hr : r + 1 ≠ 0
⊢ ∫ (x : ℝ) in a..b, ↑x ^ r = ↑b ^ (r + 1) / (r + 1) - ↑a ^ (r + 1) / (r + 1)
[PROOFSTEP]
by_cases hab : (0 : ℝ) ∉ [[a, b]]
[GOAL]
case pos
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
hr : r + 1 ≠ 0
hab : ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, ↑x ^ r = ↑b ^ (r + 1) / (r + 1) - ↑a ^ (r + 1) / (r + 1)
[PROOFSTEP]
apply integral_eq_sub_of_hasDerivAt (fun x hx => ?_) (intervalIntegrable_cpow (r := r) <| Or.inr hab)
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
hr : r + 1 ≠ 0
hab : ¬0 ∈ [[a, b]]
x : ℝ
hx : x ∈ [[a, b]]
⊢ HasDerivAt (fun {b} => ↑b ^ (r + 1) / (r + 1)) (↑x ^ r) x
[PROOFSTEP]
refine' hasDerivAt_ofReal_cpow (ne_of_mem_of_not_mem hx hab) _
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
hr : r + 1 ≠ 0
hab : ¬0 ∈ [[a, b]]
x : ℝ
hx : x ∈ [[a, b]]
⊢ r ≠ -1
[PROOFSTEP]
contrapose! hr
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
hab : ¬0 ∈ [[a, b]]
x : ℝ
hx : x ∈ [[a, b]]
hr : r = -1
⊢ r + 1 = 0
[PROOFSTEP]
rwa [add_eq_zero_iff_eq_neg]
[GOAL]
case neg
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, ↑x ^ r = ↑b ^ (r + 1) / (r + 1) - ↑a ^ (r + 1) / (r + 1)
[PROOFSTEP]
replace h : -1 < r.re
[GOAL]
case h
a b : ℝ
n : ℕ
r : ℂ
h : -1 < r.re ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
⊢ -1 < r.re
[PROOFSTEP]
tauto
[GOAL]
case neg
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
⊢ ∫ (x : ℝ) in a..b, ↑x ^ r = ↑b ^ (r + 1) / (r + 1) - ↑a ^ (r + 1) / (r + 1)
[PROOFSTEP]
suffices ∀ c : ℝ, (∫ x : ℝ in (0)..c, (x : ℂ) ^ r) = (c : ℂ) ^ (r + 1) / (r + 1) - (0 : ℂ) ^ (r + 1) / (r + 1)
by
rw [← integral_add_adjacent_intervals (@intervalIntegrable_cpow' a 0 r h) (@intervalIntegrable_cpow' 0 b r h),
integral_symm, this a, this b, Complex.zero_cpow hr]
ring
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, ↑x ^ r = ↑c ^ (r + 1) / (r + 1) - 0 ^ (r + 1) / (r + 1)
⊢ ∫ (x : ℝ) in a..b, ↑x ^ r = ↑b ^ (r + 1) / (r + 1) - ↑a ^ (r + 1) / (r + 1)
[PROOFSTEP]
rw [← integral_add_adjacent_intervals (@intervalIntegrable_cpow' a 0 r h) (@intervalIntegrable_cpow' 0 b r h),
integral_symm, this a, this b, Complex.zero_cpow hr]
[GOAL]
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, ↑x ^ r = ↑c ^ (r + 1) / (r + 1) - 0 ^ (r + 1) / (r + 1)
⊢ -(↑a ^ (r + 1) / (r + 1) - 0 / (r + 1)) + (↑b ^ (r + 1) / (r + 1) - 0 / (r + 1)) =
↑b ^ (r + 1) / (r + 1) - ↑a ^ (r + 1) / (r + 1)
[PROOFSTEP]
ring
[GOAL]
case neg
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
⊢ ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, ↑x ^ r = ↑c ^ (r + 1) / (r + 1) - 0 ^ (r + 1) / (r + 1)
[PROOFSTEP]
intro c
[GOAL]
case neg
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c : ℝ
⊢ ∫ (x : ℝ) in 0 ..c, ↑x ^ r = ↑c ^ (r + 1) / (r + 1) - 0 ^ (r + 1) / (r + 1)
[PROOFSTEP]
apply integral_eq_sub_of_hasDeriv_right
[GOAL]
case neg.hcont
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c : ℝ
⊢ ContinuousOn (fun c => ↑c ^ (r + 1) / (r + 1)) [[0, c]]
[PROOFSTEP]
refine' ((Complex.continuous_ofReal_cpow_const _).div_const _).continuousOn
[GOAL]
case neg.hcont
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c : ℝ
⊢ 0 < (r + 1).re
[PROOFSTEP]
rwa [Complex.add_re, Complex.one_re, ← neg_lt_iff_pos_add]
[GOAL]
case neg.hderiv
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c : ℝ
⊢ ∀ (x : ℝ), x ∈ Set.Ioo (min 0 c) (max 0 c) → HasDerivWithinAt (fun c => ↑c ^ (r + 1) / (r + 1)) (↑x ^ r) (Set.Ioi x) x
[PROOFSTEP]
refine' fun x hx => (hasDerivAt_ofReal_cpow _ _).hasDerivWithinAt
[GOAL]
case neg.hderiv.refine'_1
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo (min 0 c) (max 0 c)
⊢ x ≠ 0
[PROOFSTEP]
rcases le_total c 0 with (hc | hc)
[GOAL]
case neg.hderiv.refine'_1.inl
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo (min 0 c) (max 0 c)
hc : c ≤ 0
⊢ x ≠ 0
[PROOFSTEP]
rw [max_eq_left hc] at hx
[GOAL]
case neg.hderiv.refine'_1.inl
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo (min 0 c) 0
hc : c ≤ 0
⊢ x ≠ 0
[PROOFSTEP]
exact hx.2.ne
[GOAL]
case neg.hderiv.refine'_1.inr
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo (min 0 c) (max 0 c)
hc : 0 ≤ c
⊢ x ≠ 0
[PROOFSTEP]
rw [min_eq_left hc] at hx
[GOAL]
case neg.hderiv.refine'_1.inr
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo 0 (max 0 c)
hc : 0 ≤ c
⊢ x ≠ 0
[PROOFSTEP]
exact hx.1.ne'
[GOAL]
case neg.hderiv.refine'_2
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo (min 0 c) (max 0 c)
⊢ r ≠ -1
[PROOFSTEP]
contrapose! hr
[GOAL]
case neg.hderiv.refine'_2
a b : ℝ
n : ℕ
r : ℂ
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo (min 0 c) (max 0 c)
hr : r = -1
⊢ r + 1 = 0
[PROOFSTEP]
rw [hr]
[GOAL]
case neg.hderiv.refine'_2
a b : ℝ
n : ℕ
r : ℂ
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c x : ℝ
hx : x ∈ Set.Ioo (min 0 c) (max 0 c)
hr : r = -1
⊢ -1 + 1 = 0
[PROOFSTEP]
ring
[GOAL]
case neg.hint
a b : ℝ
n : ℕ
r : ℂ
hr : r + 1 ≠ 0
hab : ¬¬0 ∈ [[a, b]]
h : -1 < r.re
c : ℝ
⊢ IntervalIntegrable (fun y => ↑y ^ r) MeasureTheory.volume 0 c
[PROOFSTEP]
exact intervalIntegrable_cpow' h
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, x ^ r = (b ^ (r + 1) - a ^ (r + 1)) / (r + 1)
[PROOFSTEP]
have h' : -1 < (r : ℂ).re ∨ (r : ℂ) ≠ -1 ∧ (0 : ℝ) ∉ [[a, b]] :=
by
cases h
· left; rwa [Complex.ofReal_re]
· right; rwa [← Complex.ofReal_one, ← Complex.ofReal_neg, Ne.def, Complex.ofReal_inj]
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
[PROOFSTEP]
cases h
[GOAL]
case inl
a b : ℝ
n : ℕ
r : ℝ
h✝ : -1 < r
⊢ -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
[PROOFSTEP]
left
[GOAL]
case inl.h
a b : ℝ
n : ℕ
r : ℝ
h✝ : -1 < r
⊢ -1 < (↑r).re
[PROOFSTEP]
rwa [Complex.ofReal_re]
[GOAL]
case inr
a b : ℝ
n : ℕ
r : ℝ
h✝ : r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
[PROOFSTEP]
right
[GOAL]
case inr.h
a b : ℝ
n : ℕ
r : ℝ
h✝ : r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
[PROOFSTEP]
rwa [← Complex.ofReal_one, ← Complex.ofReal_neg, Ne.def, Complex.ofReal_inj]
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, x ^ r = (b ^ (r + 1) - a ^ (r + 1)) / (r + 1)
[PROOFSTEP]
have : (∫ x in a..b, (x : ℂ) ^ (r : ℂ)) = ((b : ℂ) ^ (r + 1 : ℂ) - (a : ℂ) ^ (r + 1 : ℂ)) / (r + 1) := integral_cpow h'
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : ∫ (x : ℝ) in a..b, ↑x ^ ↑r = (↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)
⊢ ∫ (x : ℝ) in a..b, x ^ r = (b ^ (r + 1) - a ^ (r + 1)) / (r + 1)
[PROOFSTEP]
apply_fun Complex.re at this
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ ∫ (x : ℝ) in a..b, x ^ r = (b ^ (r + 1) - a ^ (r + 1)) / (r + 1)
[PROOFSTEP]
convert this
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ ∫ (x : ℝ) in a..b, x ^ r = (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re
[PROOFSTEP]
simp_rw [intervalIntegral_eq_integral_uIoc, Complex.real_smul, Complex.ofReal_mul_re]
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ (if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, x ^ r = (if a ≤ b then 1 else -1) * (∫ (x : ℝ) in Ι a b, ↑x ^ ↑r).re
[PROOFSTEP]
have : Complex.re = IsROrC.re := by rfl
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ Complex.re = ↑IsROrC.re
[PROOFSTEP]
rfl
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this✝ : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
this : Complex.re = ↑IsROrC.re
⊢ (if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, x ^ r = (if a ≤ b then 1 else -1) * (∫ (x : ℝ) in Ι a b, ↑x ^ ↑r).re
[PROOFSTEP]
rw [this, ← integral_re]
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this✝ : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
this : Complex.re = ↑IsROrC.re
⊢ (if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, x ^ r =
(if a ≤ b then 1 else -1) * ∫ (a : ℝ) in Ι a b, ↑IsROrC.re (↑a ^ ↑r)
case h.e'_2
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this✝ : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
this : Complex.re = ↑IsROrC.re
⊢ MeasureTheory.Integrable fun x => ↑x ^ ↑r
[PROOFSTEP]
rfl
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this✝ : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
this : Complex.re = ↑IsROrC.re
⊢ MeasureTheory.Integrable fun x => ↑x ^ ↑r
[PROOFSTEP]
refine' intervalIntegrable_iff.mp _
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this✝ : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
this : Complex.re = ↑IsROrC.re
⊢ IntervalIntegrable (fun x => ↑x ^ ↑r) MeasureTheory.volume a b
[PROOFSTEP]
cases' h' with h' h'
[GOAL]
case h.e'_2.inl
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this✝ : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
this : Complex.re = ↑IsROrC.re
h' : -1 < (↑r).re
⊢ IntervalIntegrable (fun x => ↑x ^ ↑r) MeasureTheory.volume a b
[PROOFSTEP]
exact intervalIntegrable_cpow' h'
[GOAL]
case h.e'_2.inr
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this✝ : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
this : Complex.re = ↑IsROrC.re
h' : ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ IntervalIntegrable (fun x => ↑x ^ ↑r) MeasureTheory.volume a b
[PROOFSTEP]
exact intervalIntegrable_cpow (Or.inr h'.2)
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ (b ^ (r + 1) - a ^ (r + 1)) / (r + 1) = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
[PROOFSTEP]
rw [(by push_cast ; rfl : (r : ℂ) + 1 = ((r + 1 : ℝ) : ℂ))]
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ ↑r + 1 = ↑(r + 1)
[PROOFSTEP]
push_cast
[GOAL]
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ ↑r + 1 = ↑r + 1
[PROOFSTEP]
rfl
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ (b ^ (r + 1) - a ^ (r + 1)) / (r + 1) = ((↑b ^ ↑(r + 1) - ↑a ^ ↑(r + 1)) / ↑(r + 1)).re
[PROOFSTEP]
simp_rw [div_eq_inv_mul, ← Complex.ofReal_inv, Complex.ofReal_mul_re, Complex.sub_re]
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
r : ℝ
h : -1 < r ∨ r ≠ -1 ∧ ¬0 ∈ [[a, b]]
h' : -1 < (↑r).re ∨ ↑r ≠ -1 ∧ ¬0 ∈ [[a, b]]
this : (∫ (x : ℝ) in a..b, ↑x ^ ↑r).re = ((↑b ^ (↑r + 1) - ↑a ^ (↑r + 1)) / (↑r + 1)).re
⊢ (r + 1)⁻¹ * (b ^ (r + 1) - a ^ (r + 1)) = (r + 1)⁻¹ * ((↑b ^ ↑(r + 1)).re - (↑a ^ ↑(r + 1)).re)
[PROOFSTEP]
rfl
[GOAL]
a b : ℝ
n✝ : ℕ
n : ℤ
h : 0 ≤ n ∨ n ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, x ^ n = (b ^ (n + 1) - a ^ (n + 1)) / (↑n + 1)
[PROOFSTEP]
replace h : -1 < (n : ℝ) ∨ (n : ℝ) ≠ -1 ∧ (0 : ℝ) ∉ [[a, b]]
[GOAL]
case h
a b : ℝ
n✝ : ℕ
n : ℤ
h : 0 ≤ n ∨ n ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ -1 < ↑n ∨ ↑n ≠ -1 ∧ ¬0 ∈ [[a, b]]
[PROOFSTEP]
exact_mod_cast h
[GOAL]
a b : ℝ
n✝ : ℕ
n : ℤ
h : -1 < ↑n ∨ ↑n ≠ -1 ∧ ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, x ^ n = (b ^ (n + 1) - a ^ (n + 1)) / (↑n + 1)
[PROOFSTEP]
exact_mod_cast integral_rpow h
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, x ^ n = (b ^ (n + 1) - a ^ (n + 1)) / (↑n + 1)
[PROOFSTEP]
simpa only [← Int.ofNat_succ, zpow_ofNat] using integral_zpow (Or.inl (Int.coe_nat_nonneg n))
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in Ι a b, |x - a| ^ n = |b - a| ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
cases' le_or_lt a b with hab hab
[GOAL]
case inl
a b : ℝ
n : ℕ
hab : a ≤ b
⊢ ∫ (x : ℝ) in Ι a b, |x - a| ^ n = |b - a| ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
calc
∫ x in Ι a b, |x - a| ^ n = ∫ x in a..b, |x - a| ^ n := by rw [uIoc_of_le hab, ← integral_of_le hab]
_ = ∫ x in (0)..(b - a), x ^ n :=
by
simp only [integral_comp_sub_right fun x => |x| ^ n, sub_self]
refine' integral_congr fun x hx => congr_arg₂ Pow.pow (abs_of_nonneg <| _) rfl
rw [uIcc_of_le (sub_nonneg.2 hab)] at hx
exact hx.1
_ = |b - a| ^ (n + 1) / (n + 1) := by simp [abs_of_nonneg (sub_nonneg.2 hab)]
[GOAL]
a b : ℝ
n : ℕ
hab : a ≤ b
⊢ ∫ (x : ℝ) in Ι a b, |x - a| ^ n = ∫ (x : ℝ) in a..b, |x - a| ^ n
[PROOFSTEP]
rw [uIoc_of_le hab, ← integral_of_le hab]
[GOAL]
a b : ℝ
n : ℕ
hab : a ≤ b
⊢ ∫ (x : ℝ) in a..b, |x - a| ^ n = ∫ (x : ℝ) in 0 ..b - a, x ^ n
[PROOFSTEP]
simp only [integral_comp_sub_right fun x => |x| ^ n, sub_self]
[GOAL]
a b : ℝ
n : ℕ
hab : a ≤ b
⊢ ∫ (x : ℝ) in 0 ..b - a, |x| ^ n = ∫ (x : ℝ) in 0 ..b - a, x ^ n
[PROOFSTEP]
refine' integral_congr fun x hx => congr_arg₂ Pow.pow (abs_of_nonneg <| _) rfl
[GOAL]
a b : ℝ
n : ℕ
hab : a ≤ b
x : ℝ
hx : x ∈ [[0, b - a]]
⊢ 0 ≤ x
[PROOFSTEP]
rw [uIcc_of_le (sub_nonneg.2 hab)] at hx
[GOAL]
a b : ℝ
n : ℕ
hab : a ≤ b
x : ℝ
hx : x ∈ Set.Icc 0 (b - a)
⊢ 0 ≤ x
[PROOFSTEP]
exact hx.1
[GOAL]
a b : ℝ
n : ℕ
hab : a ≤ b
⊢ ∫ (x : ℝ) in 0 ..b - a, x ^ n = |b - a| ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
simp [abs_of_nonneg (sub_nonneg.2 hab)]
[GOAL]
case inr
a b : ℝ
n : ℕ
hab : b < a
⊢ ∫ (x : ℝ) in Ι a b, |x - a| ^ n = |b - a| ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
calc
∫ x in Ι a b, |x - a| ^ n = ∫ x in b..a, |x - a| ^ n := by rw [uIoc_of_lt hab, ← integral_of_le hab.le]
_ = ∫ x in b - a..0, (-x) ^ n :=
by
simp only [integral_comp_sub_right fun x => |x| ^ n, sub_self]
refine' integral_congr fun x hx => congr_arg₂ Pow.pow (abs_of_nonpos <| _) rfl
rw [uIcc_of_le (sub_nonpos.2 hab.le)] at hx
exact hx.2
_ = |b - a| ^ (n + 1) / (n + 1) := by simp [integral_comp_neg fun x => x ^ n, abs_of_neg (sub_neg.2 hab)]
[GOAL]
a b : ℝ
n : ℕ
hab : b < a
⊢ ∫ (x : ℝ) in Ι a b, |x - a| ^ n = ∫ (x : ℝ) in b..a, |x - a| ^ n
[PROOFSTEP]
rw [uIoc_of_lt hab, ← integral_of_le hab.le]
[GOAL]
a b : ℝ
n : ℕ
hab : b < a
⊢ ∫ (x : ℝ) in b..a, |x - a| ^ n = ∫ (x : ℝ) in b - a..0, (-x) ^ n
[PROOFSTEP]
simp only [integral_comp_sub_right fun x => |x| ^ n, sub_self]
[GOAL]
a b : ℝ
n : ℕ
hab : b < a
⊢ ∫ (x : ℝ) in b - a..0, |x| ^ n = ∫ (x : ℝ) in b - a..0, (-x) ^ n
[PROOFSTEP]
refine' integral_congr fun x hx => congr_arg₂ Pow.pow (abs_of_nonpos <| _) rfl
[GOAL]
a b : ℝ
n : ℕ
hab : b < a
x : ℝ
hx : x ∈ [[b - a, 0]]
⊢ x ≤ 0
[PROOFSTEP]
rw [uIcc_of_le (sub_nonpos.2 hab.le)] at hx
[GOAL]
a b : ℝ
n : ℕ
hab : b < a
x : ℝ
hx : x ∈ Set.Icc (b - a) 0
⊢ x ≤ 0
[PROOFSTEP]
exact hx.2
[GOAL]
a b : ℝ
n : ℕ
hab : b < a
⊢ ∫ (x : ℝ) in b - a..0, (-x) ^ n = |b - a| ^ (n + 1) / (↑n + 1)
[PROOFSTEP]
simp [integral_comp_neg fun x => x ^ n, abs_of_neg (sub_neg.2 hab)]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, x = (b ^ 2 - a ^ 2) / 2
[PROOFSTEP]
have := @integral_pow a b 1
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, x ^ 1 = (b ^ (1 + 1) - a ^ (1 + 1)) / (↑1 + 1)
⊢ ∫ (x : ℝ) in a..b, x = (b ^ 2 - a ^ 2) / 2
[PROOFSTEP]
norm_num at this
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, x = (b ^ 2 - a ^ 2) / 2
⊢ ∫ (x : ℝ) in a..b, x = (b ^ 2 - a ^ 2) / 2
[PROOFSTEP]
exact this
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, 1 = b - a
[PROOFSTEP]
simp only [mul_one, smul_eq_mul, integral_const]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..a + 1, b = b
[PROOFSTEP]
simp
[GOAL]
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, x⁻¹ = Real.log (b / a)
[PROOFSTEP]
have h' := fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h
[GOAL]
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
h' : ∀ (x : ℝ), x ∈ [[a, b]] → x ≠ 0
⊢ ∫ (x : ℝ) in a..b, x⁻¹ = Real.log (b / a)
[PROOFSTEP]
rw [integral_deriv_eq_sub' _ deriv_log' (fun x hx => differentiableAt_log (h' x hx))
(continuousOn_inv₀.mono <| subset_compl_singleton_iff.mpr h),
log_div (h' b right_mem_uIcc) (h' a left_mem_uIcc)]
[GOAL]
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, 1 / x = Real.log (b / a)
[PROOFSTEP]
simp only [one_div, integral_inv h]
[GOAL]
a b : ℝ
n : ℕ
ha : 0 < a
hb : 0 < b
⊢ ∫ (x : ℝ) in a..b, 1 / x = Real.log (b / a)
[PROOFSTEP]
simp only [one_div, integral_inv_of_pos ha hb]
[GOAL]
a b : ℝ
n : ℕ
ha : a < 0
hb : b < 0
⊢ ∫ (x : ℝ) in a..b, 1 / x = Real.log (b / a)
[PROOFSTEP]
simp only [one_div, integral_inv_of_neg ha hb]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, exp x = exp b - exp a
[PROOFSTEP]
rw [integral_deriv_eq_sub']
[GOAL]
case hderiv
a b : ℝ
n : ℕ
⊢ deriv exp = fun x => exp x
[PROOFSTEP]
norm_num
[GOAL]
case hdiff
a b : ℝ
n : ℕ
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → DifferentiableAt ℝ exp x
[PROOFSTEP]
exact fun _ _ => differentiableAt_exp
[GOAL]
case hcont
a b : ℝ
n : ℕ
⊢ ContinuousOn (fun x => exp x) [[a, b]]
[PROOFSTEP]
exact continuousOn_exp
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
⊢ ∫ (x : ℝ) in a..b, Complex.exp (c * ↑x) = (Complex.exp (c * ↑b) - Complex.exp (c * ↑a)) / c
[PROOFSTEP]
have D : ∀ x : ℝ, HasDerivAt (fun y : ℝ => Complex.exp (c * y) / c) (Complex.exp (c * x)) x :=
by
intro x
conv => congr
rw [← mul_div_cancel (Complex.exp (c * x)) hc]
apply ((Complex.hasDerivAt_exp _).comp x _).div_const c
simpa only [mul_one] using ((hasDerivAt_id (x : ℂ)).const_mul _).comp_ofReal
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
⊢ ∀ (x : ℝ), HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
[PROOFSTEP]
intro x
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
x : ℝ
⊢ HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
[PROOFSTEP]
conv => congr
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
x : ℝ
| HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
[PROOFSTEP]
congr
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
x : ℝ
| HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
[PROOFSTEP]
congr
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
x : ℝ
| HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
[PROOFSTEP]
congr
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
x : ℝ
⊢ HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
[PROOFSTEP]
rw [← mul_div_cancel (Complex.exp (c * x)) hc]
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
x : ℝ
⊢ HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x) * c / c) x
[PROOFSTEP]
apply ((Complex.hasDerivAt_exp _).comp x _).div_const c
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
x : ℝ
⊢ HasDerivAt (fun x => c * ↑x) c x
[PROOFSTEP]
simpa only [mul_one] using ((hasDerivAt_id (x : ℂ)).const_mul _).comp_ofReal
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
D : ∀ (x : ℝ), HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
⊢ ∫ (x : ℝ) in a..b, Complex.exp (c * ↑x) = (Complex.exp (c * ↑b) - Complex.exp (c * ↑a)) / c
[PROOFSTEP]
rw [integral_deriv_eq_sub' _ (funext fun x => (D x).deriv) fun x _ => (D x).differentiableAt]
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
D : ∀ (x : ℝ), HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
⊢ Complex.exp (c * ↑b) / c - Complex.exp (c * ↑a) / c = (Complex.exp (c * ↑b) - Complex.exp (c * ↑a)) / c
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
D : ∀ (x : ℝ), HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
⊢ ContinuousOn (fun x => Complex.exp (c * ↑x)) [[a, b]]
[PROOFSTEP]
apply Continuous.continuousOn
[GOAL]
case h
a b : ℝ
n : ℕ
c : ℂ
hc : c ≠ 0
D : ∀ (x : ℝ), HasDerivAt (fun y => Complex.exp (c * ↑y) / c) (Complex.exp (c * ↑x)) x
⊢ Continuous fun x => Complex.exp (c * ↑x)
[PROOFSTEP]
continuity
[GOAL]
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
⊢ ∫ (x : ℝ) in a..b, Real.log x = b * Real.log b - a * Real.log a - b + a
[PROOFSTEP]
have h' := fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h
[GOAL]
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
h' : ∀ (x : ℝ), x ∈ [[a, b]] → x ≠ 0
⊢ ∫ (x : ℝ) in a..b, Real.log x = b * Real.log b - a * Real.log a - b + a
[PROOFSTEP]
have heq := fun x hx => mul_inv_cancel (h' x hx)
[GOAL]
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
h' : ∀ (x : ℝ), x ∈ [[a, b]] → x ≠ 0
heq : ∀ (x : ℝ), x ∈ [[a, b]] → x * x⁻¹ = 1
⊢ ∫ (x : ℝ) in a..b, Real.log x = b * Real.log b - a * Real.log a - b + a
[PROOFSTEP]
convert
integral_mul_deriv_eq_deriv_mul (fun x hx => hasDerivAt_log (h' x hx)) (fun x _ => hasDerivAt_id x)
(continuousOn_inv₀.mono <| subset_compl_singleton_iff.mpr h).intervalIntegrable
continuousOn_const.intervalIntegrable using
1
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
h' : ∀ (x : ℝ), x ∈ [[a, b]] → x ≠ 0
heq : ∀ (x : ℝ), x ∈ [[a, b]] → x * x⁻¹ = 1
⊢ ∫ (x : ℝ) in a..b, Real.log x = ∫ (x : ℝ) in a..b, Real.log x * 1
[PROOFSTEP]
simp [integral_congr heq, mul_comm, ← sub_add]
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h : ¬0 ∈ [[a, b]]
h' : ∀ (x : ℝ), x ∈ [[a, b]] → x ≠ 0
heq : ∀ (x : ℝ), x ∈ [[a, b]] → x * x⁻¹ = 1
⊢ b * Real.log b - a * Real.log a - b + a = Real.log b * id b - Real.log a * id a - ∫ (x : ℝ) in a..b, x⁻¹ * id x
[PROOFSTEP]
simp [integral_congr heq, mul_comm, ← sub_add]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x = cos a - cos b
[PROOFSTEP]
rw [integral_deriv_eq_sub' fun x => -cos x]
[GOAL]
a b : ℝ
n : ℕ
⊢ -cos b - -cos a = cos a - cos b
[PROOFSTEP]
ring
[GOAL]
case hderiv
a b : ℝ
n : ℕ
⊢ (deriv fun x => -cos x) = fun x => sin x
[PROOFSTEP]
norm_num
[GOAL]
case hdiff
a b : ℝ
n : ℕ
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → DifferentiableAt ℝ (fun x => -cos x) x
[PROOFSTEP]
simp only [differentiableAt_neg_iff, differentiableAt_cos, implies_true]
[GOAL]
case hcont
a b : ℝ
n : ℕ
⊢ ContinuousOn (fun x => sin x) [[a, b]]
[PROOFSTEP]
exact continuousOn_sin
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, cos x = sin b - sin a
[PROOFSTEP]
rw [integral_deriv_eq_sub']
[GOAL]
case hderiv
a b : ℝ
n : ℕ
⊢ deriv sin = fun x => cos x
[PROOFSTEP]
norm_num
[GOAL]
case hdiff
a b : ℝ
n : ℕ
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → DifferentiableAt ℝ sin x
[PROOFSTEP]
simp only [differentiableAt_sin, implies_true]
[GOAL]
case hcont
a b : ℝ
n : ℕ
⊢ ContinuousOn (fun x => cos x) [[a, b]]
[PROOFSTEP]
exact continuousOn_cos
[GOAL]
a✝ b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a b : ℝ
⊢ ∫ (x : ℝ) in a..b, Complex.cos (z * ↑x) = Complex.sin (z * ↑b) / z - Complex.sin (z * ↑a) / z
[PROOFSTEP]
apply integral_eq_sub_of_hasDerivAt
[GOAL]
case hderiv
a✝ b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a b : ℝ
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
case hint
a✝ b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a b : ℝ
⊢ IntervalIntegrable (fun y => Complex.cos (z * ↑y)) MeasureTheory.volume a b
[PROOFSTEP]
swap
[GOAL]
case hint
a✝ b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a b : ℝ
⊢ IntervalIntegrable (fun y => Complex.cos (z * ↑y)) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case hint.hu
a✝ b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a b : ℝ
⊢ Continuous fun y => Complex.cos (z * ↑y)
[PROOFSTEP]
exact Complex.continuous_cos.comp (continuous_const.mul Complex.continuous_ofReal)
[GOAL]
case hderiv
a✝ b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a b : ℝ
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
[PROOFSTEP]
intro x _
[GOAL]
case hderiv
a✝¹ b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a b x : ℝ
a✝ : x ∈ [[a, b]]
⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
[PROOFSTEP]
have a := Complex.hasDerivAt_sin (↑x * z)
[GOAL]
case hderiv
a✝² b✝ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b x : ℝ
a✝ : x ∈ [[a✝¹, b]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
[PROOFSTEP]
have b : HasDerivAt (fun y => y * z : ℂ → ℂ) z ↑x := hasDerivAt_mul_const _
[GOAL]
case hderiv
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
[PROOFSTEP]
have c : HasDerivAt (fun y : ℂ => Complex.sin (y * z)) _ ↑x := HasDerivAt.comp (𝕜 := ℂ) x a b
[GOAL]
case hderiv
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
[PROOFSTEP]
have d := HasDerivAt.comp_ofReal (c.div_const z)
[GOAL]
case hderiv
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (↑y * z) / z) (Complex.cos (↑x * z) * z / z) x
⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
[PROOFSTEP]
simp only [mul_comm] at d
[GOAL]
case hderiv
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x
⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x
[PROOFSTEP]
convert d using 1
[GOAL]
case h.e'_7
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x
⊢ Complex.cos (z * ↑x) = z * Complex.cos (z * ↑x) / z
[PROOFSTEP]
conv_rhs => arg 1; rw [mul_comm]
[GOAL]
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x
| z * Complex.cos (z * ↑x) / z
[PROOFSTEP]
arg 1; rw [mul_comm]
[GOAL]
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x
| z * Complex.cos (z * ↑x) / z
[PROOFSTEP]
arg 1; rw [mul_comm]
[GOAL]
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x
| z * Complex.cos (z * ↑x) / z
[PROOFSTEP]
arg 1
[GOAL]
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x
| z * Complex.cos (z * ↑x)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h.e'_7
a✝² b✝¹ : ℝ
n : ℕ
z : ℂ
hz : z ≠ 0
a✝¹ b✝ x : ℝ
a✝ : x ∈ [[a✝¹, b✝]]
a : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)
b : HasDerivAt (fun y => y * z) z ↑x
c : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x
d : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x
⊢ Complex.cos (z * ↑x) = Complex.cos (z * ↑x) * z / z
[PROOFSTEP]
rw [mul_div_cancel _ hz]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, cos x ^ 2 - sin x ^ 2 = sin b * cos b - sin a * cos a
[PROOFSTEP]
simpa only [sq, sub_eq_add_neg, neg_mul_eq_mul_neg] using
integral_deriv_mul_eq_sub (fun x _ => hasDerivAt_sin x) (fun x _ => hasDerivAt_cos x)
continuousOn_cos.intervalIntegrable continuousOn_sin.neg.intervalIntegrable
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, (1 + x ^ 2)⁻¹ = arctan b - arctan a
[PROOFSTEP]
simp only [← one_div]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, 1 / (1 + x ^ 2) = arctan b - arctan a
[PROOFSTEP]
refine' integral_deriv_eq_sub' _ _ _ (continuous_const.div _ fun x => _).continuousOn
[GOAL]
case refine'_1
a b : ℝ
n : ℕ
⊢ deriv arctan = fun x => 1 / (1 + x ^ 2)
[PROOFSTEP]
norm_num
[GOAL]
case refine'_2
a b : ℝ
n : ℕ
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → DifferentiableAt ℝ arctan x
[PROOFSTEP]
exact fun _ _ => differentiableAt_arctan _
[GOAL]
case refine'_3
a b : ℝ
n : ℕ
⊢ Continuous fun x => 1 + x ^ 2
[PROOFSTEP]
continuity
[GOAL]
case refine'_4
a b : ℝ
n : ℕ
x : ℝ
⊢ 1 + x ^ 2 ≠ 0
[PROOFSTEP]
nlinarith
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, 1 / (1 + x ^ 2) = arctan b - arctan a
[PROOFSTEP]
simp only [one_div, integral_inv_one_add_sq]
[GOAL]
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
⊢ ∫ (x : ℝ) in a..b, ↑x * (1 + ↑x ^ 2) ^ t =
(1 + ↑b ^ 2) ^ (t + 1) / (↑2 * (t + 1)) - (1 + ↑a ^ 2) ^ (t + 1) / (2 * (t + 1))
[PROOFSTEP]
have : t + 1 ≠ 0 := by contrapose! ht; rwa [add_eq_zero_iff_eq_neg] at ht
[GOAL]
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
⊢ t + 1 ≠ 0
[PROOFSTEP]
contrapose! ht
[GOAL]
a b : ℝ
n : ℕ
t : ℂ
ht : t + 1 = 0
⊢ t = -1
[PROOFSTEP]
rwa [add_eq_zero_iff_eq_neg] at ht
[GOAL]
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ ∫ (x : ℝ) in a..b, ↑x * (1 + ↑x ^ 2) ^ t =
(1 + ↑b ^ 2) ^ (t + 1) / (↑2 * (t + 1)) - (1 + ↑a ^ 2) ^ (t + 1) / (2 * (t + 1))
[PROOFSTEP]
apply integral_eq_sub_of_hasDerivAt
[GOAL]
case hderiv
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun {b} => (1 + ↑b ^ 2) ^ (t + 1) / (↑2 * (t + 1))) (↑x * (1 + ↑x ^ 2) ^ t) x
[PROOFSTEP]
intro x _
[GOAL]
case hderiv
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
⊢ HasDerivAt (fun {b} => (1 + ↑b ^ 2) ^ (t + 1) / (↑2 * (t + 1))) (↑x * (1 + ↑x ^ 2) ^ t) x
[PROOFSTEP]
have f : HasDerivAt (fun y : ℂ => 1 + y ^ 2) (2 * x) x :=
by
convert (hasDerivAt_pow 2 (x : ℂ)).const_add 1
· norm_cast
· simp
[GOAL]
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
⊢ HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
[PROOFSTEP]
convert (hasDerivAt_pow 2 (x : ℂ)).const_add 1
[GOAL]
case h.e'_6.h.h.e'_5
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
x✝ : ℂ
⊢ ↑1 = 1
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_7.h.e'_6
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
⊢ ↑x = ↑x ^ (2 - 1)
[PROOFSTEP]
simp
[GOAL]
case hderiv
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
⊢ HasDerivAt (fun {b} => (1 + ↑b ^ 2) ^ (t + 1) / (↑2 * (t + 1))) (↑x * (1 + ↑x ^ 2) ^ t) x
[PROOFSTEP]
have g : ∀ {z : ℂ}, 0 < z.re → HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z :=
by
intro z hz
convert (HasDerivAt.cpow_const (c := t + 1) (hasDerivAt_id _) (Or.inl hz)).div_const (2 * (t + 1)) using 1
field_simp
ring
[GOAL]
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
⊢ ∀ {z : ℂ}, 0 < z.re → HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z
[PROOFSTEP]
intro z hz
[GOAL]
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
z : ℂ
hz : 0 < z.re
⊢ HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z
[PROOFSTEP]
convert (HasDerivAt.cpow_const (c := t + 1) (hasDerivAt_id _) (Or.inl hz)).div_const (2 * (t + 1)) using 1
[GOAL]
case h.e'_7
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
z : ℂ
hz : 0 < z.re
⊢ z ^ t / 2 = (t + 1) * id z ^ (t + 1 - 1) * 1 / (2 * (t + 1))
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_7
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
z : ℂ
hz : 0 < z.re
⊢ z ^ t * (2 * (t + 1)) = (t + 1) * z ^ t * 2
[PROOFSTEP]
ring
[GOAL]
case hderiv
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
g : ∀ {z : ℂ}, 0 < z.re → HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z
⊢ HasDerivAt (fun {b} => (1 + ↑b ^ 2) ^ (t + 1) / (↑2 * (t + 1))) (↑x * (1 + ↑x ^ 2) ^ t) x
[PROOFSTEP]
convert (HasDerivAt.comp (↑x) (g _) f).comp_ofReal using 1
[GOAL]
case h.e'_6
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
g : ∀ {z : ℂ}, 0 < z.re → HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z
⊢ (fun {b} => (1 + ↑b ^ 2) ^ (t + 1) / (↑2 * (t + 1))) = fun y =>
((fun z => z ^ (t + 1) / (2 * (t + 1))) ∘ fun y => ↑1 + y ^ 2) ↑y
[PROOFSTEP]
simp
[GOAL]
case h.e'_7
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
g : ∀ {z : ℂ}, 0 < z.re → HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z
⊢ ↑x * (1 + ↑x ^ 2) ^ t = (↑1 + ↑x ^ 2) ^ t / 2 * (2 * ↑x)
[PROOFSTEP]
field_simp
[GOAL]
case h.e'_7
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
g : ∀ {z : ℂ}, 0 < z.re → HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z
⊢ ↑x * (1 + ↑x ^ 2) ^ t * 2 = (1 + ↑x ^ 2) ^ t * (2 * ↑x)
[PROOFSTEP]
ring
[GOAL]
case hderiv
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
x : ℝ
a✝ : x ∈ [[a, b]]
f : HasDerivAt (fun y => ↑1 + y ^ 2) (2 * ↑x) ↑x
g : ∀ {z : ℂ}, 0 < z.re → HasDerivAt (fun z => z ^ (t + 1) / (2 * (t + 1))) (z ^ t / 2) z
⊢ 0 < (↑1 + ↑x ^ 2).re
[PROOFSTEP]
exact_mod_cast add_pos_of_pos_of_nonneg zero_lt_one (sq_nonneg x)
[GOAL]
case hint
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ IntervalIntegrable (fun y => ↑y * (1 + ↑y ^ 2) ^ t) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case hint.hu
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ Continuous fun y => ↑y * (1 + ↑y ^ 2) ^ t
[PROOFSTEP]
refine' continuous_ofReal.mul _
[GOAL]
case hint.hu
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ Continuous fun y => (1 + ↑y ^ 2) ^ t
[PROOFSTEP]
apply Continuous.cpow
[GOAL]
case hint.hu.hf
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ Continuous fun x => 1 + ↑x ^ 2
[PROOFSTEP]
exact continuous_const.add (continuous_ofReal.pow 2)
[GOAL]
case hint.hu.hg
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ Continuous fun x => t
[PROOFSTEP]
exact continuous_const
[GOAL]
case hint.hu.h0
a b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
⊢ ∀ (a : ℝ), 0 < (1 + ↑a ^ 2).re ∨ (1 + ↑a ^ 2).im ≠ 0
[PROOFSTEP]
intro a
[GOAL]
case hint.hu.h0
a✝ b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
a : ℝ
⊢ 0 < (1 + ↑a ^ 2).re ∨ (1 + ↑a ^ 2).im ≠ 0
[PROOFSTEP]
rw [add_re, one_re, ← ofReal_pow, ofReal_re]
[GOAL]
case hint.hu.h0
a✝ b : ℝ
n : ℕ
t : ℂ
ht : t ≠ -1
this : t + 1 ≠ 0
a : ℝ
⊢ 0 < 1 + a ^ 2 ∨ (1 + ↑(a ^ 2)).im ≠ 0
[PROOFSTEP]
exact Or.inl (add_pos_of_pos_of_nonneg zero_lt_one (sq_nonneg a))
[GOAL]
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
⊢ ∫ (x : ℝ) in a..b, x * (1 + x ^ 2) ^ t = (1 + b ^ 2) ^ (t + 1) / (2 * (t + 1)) - (1 + a ^ 2) ^ (t + 1) / (2 * (t + 1))
[PROOFSTEP]
have : ∀ x s : ℝ, (((↑1 + x ^ 2) ^ s : ℝ) : ℂ) = (1 + (x : ℂ) ^ 2) ^ (s : ℂ) :=
by
intro x s
norm_cast
rw [ofReal_cpow, ofReal_add, ofReal_pow, ofReal_one]
exact add_nonneg zero_le_one (sq_nonneg x)
[GOAL]
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
⊢ ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
[PROOFSTEP]
intro x s
[GOAL]
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
x s : ℝ
⊢ ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
[PROOFSTEP]
norm_cast
[GOAL]
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
x s : ℝ
⊢ ↑((1 + x ^ 2) ^ s) = ↑(1 + x ^ 2) ^ ↑s
[PROOFSTEP]
rw [ofReal_cpow, ofReal_add, ofReal_pow, ofReal_one]
[GOAL]
case hx
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
x s : ℝ
⊢ 0 ≤ 1 + x ^ 2
[PROOFSTEP]
exact add_nonneg zero_le_one (sq_nonneg x)
[GOAL]
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ∫ (x : ℝ) in a..b, x * (1 + x ^ 2) ^ t = (1 + b ^ 2) ^ (t + 1) / (2 * (t + 1)) - (1 + a ^ 2) ^ (t + 1) / (2 * (t + 1))
[PROOFSTEP]
rw [← ofReal_inj]
[GOAL]
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ↑(∫ (x : ℝ) in a..b, x * (1 + x ^ 2) ^ t) =
↑((1 + b ^ 2) ^ (t + 1) / (2 * (t + 1)) - (1 + a ^ 2) ^ (t + 1) / (2 * (t + 1)))
[PROOFSTEP]
convert integral_mul_cpow_one_add_sq (_ : (t : ℂ) ≠ -1)
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ↑(∫ (x : ℝ) in a..b, x * (1 + x ^ 2) ^ t) = ∫ (x : ℝ) in ?convert_1..?convert_2, ↑x * (1 + ↑x ^ 2) ^ ↑t
[PROOFSTEP]
rw [← intervalIntegral.integral_ofReal]
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ∫ (x : ℝ) in a..b, ↑(x * (1 + x ^ 2) ^ t) = ∫ (x : ℝ) in ?convert_1..?convert_2, ↑x * (1 + ↑x ^ 2) ^ ↑t
case convert_1
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ℝ
case convert_2 a b : ℝ n : ℕ t : ℝ ht : t ≠ -1 this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s ⊢ ℝ
[PROOFSTEP]
congr with x : 1
[GOAL]
case h.e'_2.e_f.h
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
x : ℝ
⊢ ↑(x * (1 + x ^ 2) ^ t) = ↑x * (1 + ↑x ^ 2) ^ ↑t
[PROOFSTEP]
rw [ofReal_mul, this x t]
[GOAL]
case h.e'_2.e_f.h
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
x : ℝ
⊢ ↑x * (↑1 + ↑x ^ 2) ^ ↑t = ↑x * (1 + ↑x ^ 2) ^ ↑t
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ↑((1 + b ^ 2) ^ (t + 1) / (2 * (t + 1)) - (1 + a ^ 2) ^ (t + 1) / (2 * (t + 1))) =
(1 + ↑b ^ 2) ^ (↑t + 1) / (↑2 * (↑t + 1)) - (1 + ↑a ^ 2) ^ (↑t + 1) / (2 * (↑t + 1))
[PROOFSTEP]
simp_rw [ofReal_sub, ofReal_div, this a (t + 1), this b (t + 1)]
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ (↑1 + ↑b ^ 2) ^ ↑(t + 1) / ↑(2 * (t + 1)) - (↑1 + ↑a ^ 2) ^ ↑(t + 1) / ↑(2 * (t + 1)) =
(1 + ↑b ^ 2) ^ (↑t + 1) / (↑2 * (↑t + 1)) - (1 + ↑a ^ 2) ^ (↑t + 1) / (2 * (↑t + 1))
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ (1 + ↑b ^ 2) ^ (↑t + 1) / (2 * (↑t + 1)) - (1 + ↑a ^ 2) ^ (↑t + 1) / (2 * (↑t + 1)) =
(1 + ↑b ^ 2) ^ (↑t + 1) / (2 * (↑t + 1)) - (1 + ↑a ^ 2) ^ (↑t + 1) / (2 * (↑t + 1))
[PROOFSTEP]
rfl
[GOAL]
case convert_3
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ↑t ≠ -1
[PROOFSTEP]
rw [← ofReal_one, ← ofReal_neg, Ne.def, ofReal_inj]
[GOAL]
case convert_3
a b : ℝ
n : ℕ
t : ℝ
ht : t ≠ -1
this : ∀ (x s : ℝ), ↑((1 + x ^ 2) ^ s) = (↑1 + ↑x ^ 2) ^ ↑s
⊢ ¬t = -1
[PROOFSTEP]
exact ht
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
have continuous_sin_pow : ∀ (k : ℕ), (Continuous fun x => sin x ^ k) := fun k => continuous_sin.pow k
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
let C := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
have h : ∀ α β γ : ℝ, β * α * γ * α = β * (α * α * γ) := fun α β γ => by ring
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
α β γ : ℝ
⊢ β * α * γ * α = β * (α * α * γ)
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
have hu : ∀ x ∈ [[a, b]], HasDerivAt (fun y => sin y ^ (n + 1)) ((n + 1 : ℕ) * cos x * sin x ^ n) x := fun x _ => by
simpa only [mul_right_comm] using (hasDerivAt_sin x).pow (n + 1)
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
x : ℝ
x✝ : x ∈ [[a, b]]
⊢ HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
[PROOFSTEP]
simpa only [mul_right_comm] using (hasDerivAt_sin x).pow (n + 1)
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
have hv : ∀ x ∈ [[a, b]], HasDerivAt (-cos) (sin x) x := fun x _ => by simpa only [neg_neg] using (hasDerivAt_cos x).neg
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
x : ℝ
x✝ : x ∈ [[a, b]]
⊢ HasDerivAt (-cos) (sin x) x
[PROOFSTEP]
simpa only [neg_neg] using (hasDerivAt_cos x).neg
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
have H := integral_mul_deriv_eq_deriv_mul hu hv ?_ ?_
[GOAL]
case refine_3
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
case refine_1
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ IntervalIntegrable (fun x => ↑(n + 1) * cos x * sin x ^ n) MeasureTheory.volume a b
case refine_2
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ IntervalIntegrable (fun x => sin x) MeasureTheory.volume a b
[PROOFSTEP]
calc
(∫ x in a..b, sin x ^ (n + 2)) = ∫ x in a..b, sin x ^ (n + 1) * sin x := by simp only [_root_.pow_succ']
_ = C + (↑n + 1) * ∫ x in a..b, cos x ^ 2 * sin x ^ n := by simp [H, h, sq]; ring
_ = C + (↑n + 1) * ∫ x in a..b, sin x ^ n - sin x ^ (n + 2) := by simp [cos_sq', sub_mul, ← pow_add, add_comm]
_ = (C + (↑n + 1) * ∫ x in a..b, sin x ^ n) - (↑n + 1) * ∫ x in a..b, sin x ^ (n + 2) :=
by
rw [integral_sub, mul_sub, add_sub_assoc] <;> apply Continuous.intervalIntegrable
· exact continuous_sin_pow n
· exact continuous_sin_pow (n + 2)
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) = ∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x
[PROOFSTEP]
simp only [_root_.pow_succ']
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x = C + (↑n + ↑1) * ∫ (x : ℝ) in a..b, cos x ^ 2 * sin x ^ n
[PROOFSTEP]
simp [H, h, sq]
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ -(sin b ^ (n + 1) * cos b) + sin a ^ (n + 1) * cos a = sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ C + (↑n + ↑1) * ∫ (x : ℝ) in a..b, cos x ^ 2 * sin x ^ n =
C + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n - sin x ^ (n + 2)
[PROOFSTEP]
simp [cos_sq', sub_mul, ← pow_add, add_comm]
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ C + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n - sin x ^ (n + 2) =
(C + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n) - (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
rw [integral_sub, mul_sub, add_sub_assoc]
[GOAL]
case hf
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ IntervalIntegrable (fun x => sin x ^ n) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case hg
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ IntervalIntegrable (fun x => sin x ^ (n + 2)) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case hf.hu
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ Continuous fun x => sin x ^ n
[PROOFSTEP]
exact continuous_sin_pow n
[GOAL]
case hg.hu
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
H :
∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x =
sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x
⊢ Continuous fun x => sin x ^ (n + 2)
[PROOFSTEP]
exact continuous_sin_pow (n + 2)
[GOAL]
case refine_1
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ IntervalIntegrable (fun x => ↑(n + 1) * cos x * sin x ^ n) MeasureTheory.volume a b
case refine_2
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ IntervalIntegrable (fun x => sin x) MeasureTheory.volume a b
[PROOFSTEP]
all_goals apply Continuous.intervalIntegrable
[GOAL]
case refine_1
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ IntervalIntegrable (fun x => ↑(n + 1) * cos x * sin x ^ n) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case refine_2
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ IntervalIntegrable (fun x => sin x) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case refine_1.hu
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ Continuous fun x => ↑(n + 1) * cos x * sin x ^ n
[PROOFSTEP]
have : Continuous fun x ↦ ↑(n + 1) * cos x := by continuity
[GOAL]
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ Continuous fun x => ↑(n + 1) * cos x
[PROOFSTEP]
continuity
[GOAL]
case refine_1.hu
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
this : Continuous fun x => ↑(n + 1) * cos x
⊢ Continuous fun x => ↑(n + 1) * cos x * sin x ^ n
[PROOFSTEP]
exact this.mul (continuous_sin_pow n)
[GOAL]
case refine_2.hu
a b : ℝ
n : ℕ
continuous_sin_pow : ∀ (k : ℕ), Continuous fun x => sin x ^ k
C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (-cos) (sin x) x
⊢ Continuous fun x => sin x
[PROOFSTEP]
exact continuous_sin
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b) / (↑n + 2) + (↑n + 1) / (↑n + 2) * ∫ (x : ℝ) in a..b, sin x ^ n
[PROOFSTEP]
have : n + 2 ≠ 0 := by linarith
[GOAL]
a b : ℝ
n : ℕ
⊢ n + 2 ≠ 0
[PROOFSTEP]
linarith
[GOAL]
a b : ℝ
n : ℕ
this : n + 2 ≠ 0
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b) / (↑n + 2) + (↑n + 1) / (↑n + 2) * ∫ (x : ℝ) in a..b, sin x ^ n
[PROOFSTEP]
have : (n : ℝ) + 2 ≠ 0 := by norm_cast
[GOAL]
a b : ℝ
n : ℕ
this : n + 2 ≠ 0
⊢ ↑n + 2 ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
a b : ℝ
n : ℕ
this✝ : n + 2 ≠ 0
this : ↑n + 2 ≠ 0
⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 2) =
(sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b) / (↑n + 2) + (↑n + 1) / (↑n + 2) * ∫ (x : ℝ) in a..b, sin x ^ n
[PROOFSTEP]
field_simp
[GOAL]
a b : ℝ
n : ℕ
this✝ : n + 2 ≠ 0
this : ↑n + 2 ≠ 0
⊢ (∫ (x : ℝ) in a..b, sin x ^ (n + 2)) * (↑n + 2) =
sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ n
[PROOFSTEP]
convert eq_sub_iff_add_eq.mp (integral_sin_pow_aux n) using 1
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
this✝ : n + 2 ≠ 0
this : ↑n + 2 ≠ 0
⊢ (∫ (x : ℝ) in a..b, sin x ^ (n + 2)) * (↑n + 2) =
(∫ (x : ℝ) in a..b, sin x ^ (n + 2)) + (↑n + 1) * ∫ (x : ℝ) in a..b, sin x ^ (n + 2)
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x ^ 2 = (sin a * cos a - sin b * cos b + b - a) / 2
[PROOFSTEP]
field_simp [integral_sin_pow, add_sub_assoc]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * n + 1) = 2 * ∏ i in Finset.range n, (2 * ↑i + 2) / (2 * ↑i + 3)
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * zero + 1) = 2 * ∏ i in Finset.range zero, (2 * ↑i + 2) / (2 * ↑i + 3)
[PROOFSTEP]
norm_num
[GOAL]
case succ
a b : ℝ
n k : ℕ
ih : ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1) = 2 * ∏ i in Finset.range k, (2 * ↑i + 2) / (2 * ↑i + 3)
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * succ k + 1) = 2 * ∏ i in Finset.range (succ k), (2 * ↑i + 2) / (2 * ↑i + 3)
[PROOFSTEP]
rw [prod_range_succ_comm, mul_left_comm, ← ih, mul_succ, integral_sin_pow]
[GOAL]
case succ
a b : ℝ
n k : ℕ
ih : ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1) = 2 * ∏ i in Finset.range k, (2 * ↑i + 2) / (2 * ↑i + 3)
⊢ (sin 0 ^ (2 * k + 1 + 1) * cos 0 - sin π ^ (2 * k + 1 + 1) * cos π) / (↑(2 * k + 1) + 2) +
(↑(2 * k + 1) + 1) / (↑(2 * k + 1) + 2) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1) =
(2 * ↑k + 2) / (2 * ↑k + 3) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1)
[PROOFSTEP]
norm_cast
[GOAL]
case succ
a b : ℝ
n k : ℕ
ih : ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1) = 2 * ∏ i in Finset.range k, (2 * ↑i + 2) / (2 * ↑i + 3)
⊢ (sin 0 ^ (2 * k + 1 + 1) * cos 0 - sin π ^ (2 * k + 1 + 1) * cos π) / ↑(2 * k + 1 + 2) +
↑(2 * k + 1 + 1) / ↑(2 * k + 1 + 2) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1) =
↑(2 * k + 2) / ↑(2 * k + 3) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1)
[PROOFSTEP]
simp [-cast_add, field_simps]
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * n) = π * ∏ i in Finset.range n, (2 * ↑i + 1) / (2 * ↑i + 2)
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * zero) = π * ∏ i in Finset.range zero, (2 * ↑i + 1) / (2 * ↑i + 2)
[PROOFSTEP]
simp
[GOAL]
case succ
a b : ℝ
n k : ℕ
ih : ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k) = π * ∏ i in Finset.range k, (2 * ↑i + 1) / (2 * ↑i + 2)
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * succ k) = π * ∏ i in Finset.range (succ k), (2 * ↑i + 1) / (2 * ↑i + 2)
[PROOFSTEP]
rw [prod_range_succ_comm, mul_left_comm, ← ih, mul_succ, integral_sin_pow]
[GOAL]
case succ
a b : ℝ
n k : ℕ
ih : ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k) = π * ∏ i in Finset.range k, (2 * ↑i + 1) / (2 * ↑i + 2)
⊢ (sin 0 ^ (2 * k + 1) * cos 0 - sin π ^ (2 * k + 1) * cos π) / (↑(2 * k) + 2) +
(↑(2 * k) + 1) / (↑(2 * k) + 2) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k) =
(2 * ↑k + 1) / (2 * ↑k + 2) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k)
[PROOFSTEP]
norm_cast
[GOAL]
case succ
a b : ℝ
n k : ℕ
ih : ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k) = π * ∏ i in Finset.range k, (2 * ↑i + 1) / (2 * ↑i + 2)
⊢ (sin 0 ^ (2 * k + 1) * cos 0 - sin π ^ (2 * k + 1) * cos π) / ↑(2 * k + 2) +
↑(2 * k + 1) / ↑(2 * k + 2) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k) =
↑(2 * k + 1) / ↑(2 * k + 2) * ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k)
[PROOFSTEP]
simp [-cast_add, field_simps]
[GOAL]
a b : ℝ
n : ℕ
⊢ 0 < ∫ (x : ℝ) in 0 ..π, sin x ^ n
[PROOFSTEP]
rcases even_or_odd' n with ⟨k, rfl | rfl⟩
[GOAL]
case intro.inl
a b : ℝ
k : ℕ
⊢ 0 < ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k)
[PROOFSTEP]
simp only [integral_sin_pow_even, integral_sin_pow_odd]
[GOAL]
case intro.inr
a b : ℝ
k : ℕ
⊢ 0 < ∫ (x : ℝ) in 0 ..π, sin x ^ (2 * k + 1)
[PROOFSTEP]
simp only [integral_sin_pow_even, integral_sin_pow_odd]
[GOAL]
case intro.inl
a b : ℝ
k : ℕ
⊢ 0 < π * ∏ i in Finset.range k, (2 * ↑i + 1) / (2 * ↑i + 2)
[PROOFSTEP]
refine' mul_pos (by norm_num <;> exact pi_pos) (prod_pos fun n _ => div_pos _ _)
[GOAL]
a b : ℝ
k : ℕ
⊢ 0 < π
[PROOFSTEP]
norm_num
[GOAL]
a b : ℝ
k : ℕ
⊢ 0 < π
[PROOFSTEP]
exact pi_pos
[GOAL]
case intro.inr
a b : ℝ
k : ℕ
⊢ 0 < 2 * ∏ i in Finset.range k, (2 * ↑i + 2) / (2 * ↑i + 3)
[PROOFSTEP]
refine' mul_pos (by norm_num <;> exact pi_pos) (prod_pos fun n _ => div_pos _ _)
[GOAL]
a b : ℝ
k : ℕ
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.inl.refine'_1
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * ↑n + 1
[PROOFSTEP]
norm_cast
[GOAL]
case intro.inl.refine'_2
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * ↑n + 2
[PROOFSTEP]
norm_cast
[GOAL]
case intro.inr.refine'_1
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * ↑n + 2
[PROOFSTEP]
norm_cast
[GOAL]
case intro.inr.refine'_2
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * ↑n + 3
[PROOFSTEP]
norm_cast
[GOAL]
case intro.inl.refine'_1
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * n + 1
[PROOFSTEP]
linarith
[GOAL]
case intro.inl.refine'_2
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * n + 2
[PROOFSTEP]
linarith
[GOAL]
case intro.inr.refine'_1
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * n + 2
[PROOFSTEP]
linarith
[GOAL]
case intro.inr.refine'_2
a b : ℝ
k n : ℕ
x✝ : n ∈ Finset.range k
⊢ 0 < 2 * n + 3
[PROOFSTEP]
linarith
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (n + 1) ≤ ∫ (x : ℝ) in 0 ..π, sin x ^ n
[PROOFSTEP]
let H x h := pow_le_pow_of_le_one (sin_nonneg_of_mem_Icc h) (sin_le_one x) (n.le_add_right 1)
[GOAL]
a b : ℝ
n : ℕ
H : ∀ (x : ℝ), x ∈ Set.Icc 0 π → sin x ^ (n + 1) ≤ sin x ^ n :=
fun x h => pow_le_pow_of_le_one (sin_nonneg_of_mem_Icc h) (sin_le_one x) (Nat.le_add_right n 1)
⊢ ∫ (x : ℝ) in 0 ..π, sin x ^ (n + 1) ≤ ∫ (x : ℝ) in 0 ..π, sin x ^ n
[PROOFSTEP]
refine' integral_mono_on pi_pos.le _ _ H
[GOAL]
case refine'_1
a b : ℝ
n : ℕ
H : ∀ (x : ℝ), x ∈ Set.Icc 0 π → sin x ^ (n + 1) ≤ sin x ^ n :=
fun x h => pow_le_pow_of_le_one (sin_nonneg_of_mem_Icc h) (sin_le_one x) (Nat.le_add_right n 1)
⊢ IntervalIntegrable (fun x => sin x ^ (n + 1)) MeasureTheory.volume 0 π
[PROOFSTEP]
exact (continuous_sin.pow _).intervalIntegrable 0 π
[GOAL]
case refine'_2
a b : ℝ
n : ℕ
H : ∀ (x : ℝ), x ∈ Set.Icc 0 π → sin x ^ (n + 1) ≤ sin x ^ n :=
fun x h => pow_le_pow_of_le_one (sin_nonneg_of_mem_Icc h) (sin_le_one x) (Nat.le_add_right n 1)
⊢ IntervalIntegrable (fun x => sin x ^ n) MeasureTheory.volume 0 π
[PROOFSTEP]
exact (continuous_sin.pow _).intervalIntegrable 0 π
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
have continuous_cos_pow : ∀ (k : ℕ), (Continuous fun x => cos x ^ k) := fun k => continuous_cos.pow k
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
let C := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
have h : ∀ α β γ : ℝ, β * α * γ * α = β * (α * α * γ) := fun α β γ => by ring
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
α β γ : ℝ
⊢ β * α * γ * α = β * (α * α * γ)
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
have hu : ∀ x ∈ [[a, b]], HasDerivAt (fun y => cos y ^ (n + 1)) (-(n + 1 : ℕ) * sin x * cos x ^ n) x := fun x _ => by
simpa only [mul_right_comm, neg_mul, mul_neg] using (hasDerivAt_cos x).pow (n + 1)
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
x : ℝ
x✝ : x ∈ [[a, b]]
⊢ HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
[PROOFSTEP]
simpa only [mul_right_comm, neg_mul, mul_neg] using (hasDerivAt_cos x).pow (n + 1)
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
have hv : ∀ x ∈ [[a, b]], HasDerivAt sin (cos x) x := fun x _ => hasDerivAt_sin x
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
have H := integral_mul_deriv_eq_deriv_mul hu hv ?_ ?_
[GOAL]
case refine_3
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) -
(↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
case refine_1
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ IntervalIntegrable (fun x => -↑(n + 1) * sin x * cos x ^ n) MeasureTheory.volume a b
case refine_2
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ IntervalIntegrable (fun x => cos x) MeasureTheory.volume a b
[PROOFSTEP]
calc
(∫ x in a..b, cos x ^ (n + 2)) = ∫ x in a..b, cos x ^ (n + 1) * cos x := by simp only [_root_.pow_succ']
_ = C + (n + 1) * ∫ x in a..b, sin x ^ 2 * cos x ^ n := by simp [H, h, sq, -neg_add_rev]
_ = C + (n + 1) * ∫ x in a..b, cos x ^ n - cos x ^ (n + 2) := by simp [sin_sq, sub_mul, ← pow_add, add_comm]
_ = (C + (n + 1) * ∫ x in a..b, cos x ^ n) - (n + 1) * ∫ x in a..b, cos x ^ (n + 2) :=
by
rw [integral_sub, mul_sub, add_sub_assoc] <;> apply Continuous.intervalIntegrable
· exact continuous_cos_pow n
· exact continuous_cos_pow (n + 2)
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) = ∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x
[PROOFSTEP]
simp only [_root_.pow_succ']
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x = C + (↑n + ↑1) * ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x ^ n
[PROOFSTEP]
simp [H, h, sq, -neg_add_rev]
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ C + (↑n + ↑1) * ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x ^ n =
C + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n - cos x ^ (n + 2)
[PROOFSTEP]
simp [sin_sq, sub_mul, ← pow_add, add_comm]
[GOAL]
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ C + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n - cos x ^ (n + 2) =
(C + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n) - (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
rw [integral_sub, mul_sub, add_sub_assoc]
[GOAL]
case hf
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ IntervalIntegrable (fun x => cos x ^ n) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case hg
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ IntervalIntegrable (fun x => cos x ^ (n + 2)) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case hf.hu
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ Continuous fun x => cos x ^ n
[PROOFSTEP]
exact continuous_cos_pow n
[GOAL]
case hg.hu
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
H :
∫ (x : ℝ) in a..b, cos x ^ (n + 1) * cos x =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a - ∫ (x : ℝ) in a..b, -↑(n + 1) * sin x * cos x ^ n * sin x
⊢ Continuous fun x => cos x ^ (n + 2)
[PROOFSTEP]
exact continuous_cos_pow (n + 2)
[GOAL]
case refine_1
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ IntervalIntegrable (fun x => -↑(n + 1) * sin x * cos x ^ n) MeasureTheory.volume a b
case refine_2
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ IntervalIntegrable (fun x => cos x) MeasureTheory.volume a b
[PROOFSTEP]
all_goals apply Continuous.intervalIntegrable; continuity
[GOAL]
case refine_1
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ IntervalIntegrable (fun x => -↑(n + 1) * sin x * cos x ^ n) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case refine_1.hu
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ Continuous fun x => -↑(n + 1) * sin x * cos x ^ n
[PROOFSTEP]
continuity
[GOAL]
case refine_2
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ IntervalIntegrable (fun x => cos x) MeasureTheory.volume a b
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case refine_2.hu
a b : ℝ
n : ℕ
continuous_cos_pow : ∀ (k : ℕ), Continuous fun x => cos x ^ k
C : ℝ := cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a
h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ)
hu : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun y => cos y ^ (n + 1)) (-↑(n + 1) * sin x * cos x ^ n) x
hv : ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt sin (cos x) x
⊢ Continuous fun x => cos x
[PROOFSTEP]
continuity
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a) / (↑n + 2) + (↑n + 1) / (↑n + 2) * ∫ (x : ℝ) in a..b, cos x ^ n
[PROOFSTEP]
have : n + 2 ≠ 0 := by linarith
[GOAL]
a b : ℝ
n : ℕ
⊢ n + 2 ≠ 0
[PROOFSTEP]
linarith
[GOAL]
a b : ℝ
n : ℕ
this : n + 2 ≠ 0
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a) / (↑n + 2) + (↑n + 1) / (↑n + 2) * ∫ (x : ℝ) in a..b, cos x ^ n
[PROOFSTEP]
have : (n : ℝ) + 2 ≠ 0 := by norm_cast
[GOAL]
a b : ℝ
n : ℕ
this : n + 2 ≠ 0
⊢ ↑n + 2 ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
a b : ℝ
n : ℕ
this✝ : n + 2 ≠ 0
this : ↑n + 2 ≠ 0
⊢ ∫ (x : ℝ) in a..b, cos x ^ (n + 2) =
(cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a) / (↑n + 2) + (↑n + 1) / (↑n + 2) * ∫ (x : ℝ) in a..b, cos x ^ n
[PROOFSTEP]
field_simp
[GOAL]
a b : ℝ
n : ℕ
this✝ : n + 2 ≠ 0
this : ↑n + 2 ≠ 0
⊢ (∫ (x : ℝ) in a..b, cos x ^ (n + 2)) * (↑n + 2) =
cos b ^ (n + 1) * sin b - cos a ^ (n + 1) * sin a + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ n
[PROOFSTEP]
convert eq_sub_iff_add_eq.mp (integral_cos_pow_aux n) using 1
[GOAL]
case h.e'_2
a b : ℝ
n : ℕ
this✝ : n + 2 ≠ 0
this : ↑n + 2 ≠ 0
⊢ (∫ (x : ℝ) in a..b, cos x ^ (n + 2)) * (↑n + 2) =
(∫ (x : ℝ) in a..b, cos x ^ (n + 2)) + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ (n + 2)
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, cos x ^ 2 = (cos b * sin b - cos a * sin a + b - a) / 2
[PROOFSTEP]
field_simp [integral_cos_pow, add_sub_assoc]
[GOAL]
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ m * (1 - u ^ 2) ^ n
⊢ ∫ (x : ℝ) in a..b, sin x ^ m * cos x ^ (2 * n + 1) = ∫ (x : ℝ) in a..b, sin x ^ m * (1 - sin x ^ 2) ^ n * cos x
[PROOFSTEP]
simp only [_root_.pow_zero, _root_.pow_succ', mul_assoc, pow_mul, one_mul]
[GOAL]
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ m * (1 - u ^ 2) ^ n
⊢ ∫ (x : ℝ) in a..b, sin x ^ m * ((cos x * cos x) ^ n * cos x) =
∫ (x : ℝ) in a..b, sin x ^ m * ((1 - sin x * sin x) ^ n * cos x)
[PROOFSTEP]
congr! 5
[GOAL]
case h.e'_4.h.h.e'_6.h.e'_5.h.e'_5
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ m * (1 - u ^ 2) ^ n
x✝ : ℝ
⊢ cos x✝ * cos x✝ = 1 - sin x✝ * sin x✝
[PROOFSTEP]
rw [← sq, ← sq, cos_sq']
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x * cos x = (sin b ^ 2 - sin a ^ 2) / 2
[PROOFSTEP]
simpa using integral_sin_pow_mul_cos_pow_odd 1 0
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x = (sin b ^ 3 - sin a ^ 3) / 3
[PROOFSTEP]
have := @integral_sin_pow_mul_cos_pow_odd a b 2 0
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x ^ (2 * 0 + 1) = ∫ (u : ℝ) in sin a..sin b, u ^ 2 * (1 - u ^ 2) ^ 0
⊢ ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x = (sin b ^ 3 - sin a ^ 3) / 3
[PROOFSTEP]
norm_num at this
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x = (sin b ^ 3 - sin a ^ 3) / 3
⊢ ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x = (sin b ^ 3 - sin a ^ 3) / 3
[PROOFSTEP]
exact this
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, cos x ^ 3 = sin b - sin a - (sin b ^ 3 - sin a ^ 3) / 3
[PROOFSTEP]
have := @integral_sin_pow_mul_cos_pow_odd a b 0 1
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, sin x ^ 0 * cos x ^ (2 * 1 + 1) = ∫ (u : ℝ) in sin a..sin b, u ^ 0 * (1 - u ^ 2) ^ 1
⊢ ∫ (x : ℝ) in a..b, cos x ^ 3 = sin b - sin a - (sin b ^ 3 - sin a ^ 3) / 3
[PROOFSTEP]
norm_num at this
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, cos x ^ 3 = sin b - sin a - (sin b ^ 3 - sin a ^ 3) / 3
⊢ ∫ (x : ℝ) in a..b, cos x ^ 3 = sin b - sin a - (sin b ^ 3 - sin a ^ 3) / 3
[PROOFSTEP]
exact this
[GOAL]
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ n * (1 - u ^ 2) ^ m
⊢ ∫ (x : ℝ) in a..b, sin x ^ (2 * m + 1) * cos x ^ n = -∫ (x : ℝ) in b..a, sin x ^ (2 * m + 1) * cos x ^ n
[PROOFSTEP]
rw [integral_symm]
[GOAL]
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ n * (1 - u ^ 2) ^ m
⊢ -∫ (x : ℝ) in b..a, sin x ^ (2 * m + 1) * cos x ^ n = ∫ (x : ℝ) in b..a, (1 - cos x ^ 2) ^ m * -sin x * cos x ^ n
[PROOFSTEP]
simp only [_root_.pow_succ', pow_mul, _root_.pow_zero, one_mul, mul_neg, neg_mul, integral_neg, neg_inj]
[GOAL]
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ n * (1 - u ^ 2) ^ m
⊢ ∫ (x : ℝ) in b..a, (sin x * sin x) ^ m * sin x * cos x ^ n =
∫ (x : ℝ) in b..a, (1 - cos x * cos x) ^ m * sin x * cos x ^ n
[PROOFSTEP]
congr! 5
[GOAL]
case h.e'_4.h.h.e'_5.h.e'_5.h.e'_5
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ n * (1 - u ^ 2) ^ m
x✝ : ℝ
⊢ sin x✝ * sin x✝ = 1 - cos x✝ * cos x✝
[PROOFSTEP]
rw [← sq, ← sq, sin_sq]
[GOAL]
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ n * (1 - u ^ 2) ^ m
⊢ ∫ (x : ℝ) in b..a, (1 - cos x ^ 2) ^ m * -sin x * cos x ^ n =
∫ (x : ℝ) in b..a, cos x ^ n * (1 - cos x ^ 2) ^ m * -sin x
[PROOFSTEP]
congr
[GOAL]
case e_f
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ n * (1 - u ^ 2) ^ m
⊢ (fun x => (1 - cos x ^ 2) ^ m * -sin x * cos x ^ n) = fun x => cos x ^ n * (1 - cos x ^ 2) ^ m * -sin x
[PROOFSTEP]
ext
[GOAL]
case e_f.h
a b : ℝ
n✝ m n : ℕ
hc : Continuous fun u => u ^ n * (1 - u ^ 2) ^ m
x✝ : ℝ
⊢ (1 - cos x✝ ^ 2) ^ m * -sin x✝ * cos x✝ ^ n = cos x✝ ^ n * (1 - cos x✝ ^ 2) ^ m * -sin x✝
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x * cos x = (cos a ^ 2 - cos b ^ 2) / 2
[PROOFSTEP]
simpa using integral_sin_pow_odd_mul_cos_pow 0 1
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x * cos x ^ 2 = (cos a ^ 3 - cos b ^ 3) / 3
[PROOFSTEP]
have := @integral_sin_pow_odd_mul_cos_pow a b 0 2
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, sin x ^ (2 * 0 + 1) * cos x ^ 2 = ∫ (u : ℝ) in cos b..cos a, u ^ 2 * (1 - u ^ 2) ^ 0
⊢ ∫ (x : ℝ) in a..b, sin x * cos x ^ 2 = (cos a ^ 3 - cos b ^ 3) / 3
[PROOFSTEP]
norm_num at this
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, sin x * cos x ^ 2 = (cos a ^ 3 - cos b ^ 3) / 3
⊢ ∫ (x : ℝ) in a..b, sin x * cos x ^ 2 = (cos a ^ 3 - cos b ^ 3) / 3
[PROOFSTEP]
exact this
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x ^ 3 = cos a - cos b - (cos a ^ 3 - cos b ^ 3) / 3
[PROOFSTEP]
have := @integral_sin_pow_odd_mul_cos_pow a b 1 0
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, sin x ^ (2 * 1 + 1) * cos x ^ 0 = ∫ (u : ℝ) in cos b..cos a, u ^ 0 * (1 - u ^ 2) ^ 1
⊢ ∫ (x : ℝ) in a..b, sin x ^ 3 = cos a - cos b - (cos a ^ 3 - cos b ^ 3) / 3
[PROOFSTEP]
norm_num at this
[GOAL]
a b : ℝ
n : ℕ
this : ∫ (x : ℝ) in a..b, sin x ^ 3 = cos a - cos b - (cos a ^ 3 - cos b ^ 3) / 3
⊢ ∫ (x : ℝ) in a..b, sin x ^ 3 = cos a - cos b - (cos a ^ 3 - cos b ^ 3) / 3
[PROOFSTEP]
exact this
[GOAL]
a b : ℝ
n✝ m n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x ^ (2 * m) * cos x ^ (2 * n) =
∫ (x : ℝ) in a..b, ((1 - cos (2 * x)) / 2) ^ m * ((1 + cos (2 * x)) / 2) ^ n
[PROOFSTEP]
field_simp [pow_mul, sin_sq, cos_sq, ← sub_sub, (by ring : (2 : ℝ) - 1 = 1)]
[GOAL]
a b : ℝ
n✝ m n : ℕ
⊢ 2 - 1 = 1
[PROOFSTEP]
ring
[GOAL]
a b : ℝ
n : ℕ
⊢ ∫ (x : ℝ) in a..b, sin x ^ 2 * cos x ^ 2 = (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32
[PROOFSTEP]
convert integral_sin_pow_even_mul_cos_pow_even 1 1 using 1
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 =
∫ (x : ℝ) in a..b, ((1 - cos (2 * x)) / 2) ^ 1 * ((1 + cos (2 * x)) / 2) ^ 1
[PROOFSTEP]
have h1 : ∀ c : ℝ, (↑1 - c) / ↑2 * ((↑1 + c) / ↑2) = (↑1 - c ^ 2) / 4 := fun c => by ring
[GOAL]
a b : ℝ
n : ℕ
c : ℝ
⊢ (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 =
∫ (x : ℝ) in a..b, ((1 - cos (2 * x)) / 2) ^ 1 * ((1 + cos (2 * x)) / 2) ^ 1
[PROOFSTEP]
have h2 : Continuous fun x => cos (2 * x) ^ 2 := by continuity
[GOAL]
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
⊢ Continuous fun x => cos (2 * x) ^ 2
[PROOFSTEP]
continuity
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 =
∫ (x : ℝ) in a..b, ((1 - cos (2 * x)) / 2) ^ 1 * ((1 + cos (2 * x)) / 2) ^ 1
[PROOFSTEP]
have h3 : ∀ x, cos x * sin x = sin (2 * x) / 2 := by intro; rw [sin_two_mul]; ring
[GOAL]
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
⊢ ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
[PROOFSTEP]
intro
[GOAL]
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
x✝ : ℝ
⊢ cos x✝ * sin x✝ = sin (2 * x✝) / 2
[PROOFSTEP]
rw [sin_two_mul]
[GOAL]
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
x✝ : ℝ
⊢ cos x✝ * sin x✝ = 2 * sin x✝ * cos x✝ / 2
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 =
∫ (x : ℝ) in a..b, ((1 - cos (2 * x)) / 2) ^ 1 * ((1 + cos (2 * x)) / 2) ^ 1
[PROOFSTEP]
have h4 : ∀ d : ℝ, 2 * (2 * d) = 4 * d := fun d => by
ring
-- Porting note: was
-- `simp [h1, h2.interval_integrable, integral_comp_mul_left fun x => cos x ^ 2, h3, h4]`
-- `ring`
[GOAL]
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
d : ℝ
⊢ 2 * (2 * d) = 4 * d
[PROOFSTEP]
ring
-- Porting note: was
-- `simp [h1, h2.interval_integrable, integral_comp_mul_left fun x => cos x ^ 2, h3, h4]`
-- `ring`
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
h4 : ∀ (d : ℝ), 2 * (2 * d) = 4 * d
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 =
∫ (x : ℝ) in a..b, ((1 - cos (2 * x)) / 2) ^ 1 * ((1 + cos (2 * x)) / 2) ^ 1
[PROOFSTEP]
simp only [pow_one, h1]
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
h4 : ∀ (d : ℝ), 2 * (2 * d) = 4 * d
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 = ∫ (x : ℝ) in a..b, (1 - cos (2 * x) ^ 2) / 4
[PROOFSTEP]
rw [integral_div, integral_sub, integral_one]
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
h4 : ∀ (d : ℝ), 2 * (2 * d) = 4 * d
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 = (b - a - ∫ (x : ℝ) in a..b, cos (2 * x) ^ 2) / 4
[PROOFSTEP]
simp [integral_comp_mul_left (fun x => cos x ^ 2), h3, h4]
[GOAL]
case h.e'_3
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
h4 : ∀ (d : ℝ), 2 * (2 * d) = 4 * d
⊢ (b - a) / 8 - (sin (4 * b) - sin (4 * a)) / 32 =
(b - a - 2⁻¹ * ((sin (4 * b) / 2 - sin (4 * a) / 2 + 2 * b - 2 * a) / 2)) / 4
[PROOFSTEP]
ring
[GOAL]
case h.e'_3.hf
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
h4 : ∀ (d : ℝ), 2 * (2 * d) = 4 * d
⊢ IntervalIntegrable (fun x => 1) MeasureTheory.volume a b
[PROOFSTEP]
exact intervalIntegrable_const
[GOAL]
case h.e'_3.hg
a b : ℝ
n : ℕ
h1 : ∀ (c : ℝ), (1 - c) / 2 * ((1 + c) / 2) = (1 - c ^ 2) / 4
h2 : Continuous fun x => cos (2 * x) ^ 2
h3 : ∀ (x : ℝ), cos x * sin x = sin (2 * x) / 2
h4 : ∀ (d : ℝ), 2 * (2 * d) = 4 * d
⊢ IntervalIntegrable (fun x => cos (2 * x) ^ 2) MeasureTheory.volume a b
[PROOFSTEP]
exact h2.intervalIntegrable a b
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Integrals", "llama_tokens": 71094} |
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
⊢ map (Prod.fst ∘ prodFun φ) (𝓝 φ.pt) = 𝓝 (prodFun φ φ.pt).fst
[PROOFSTEP]
rw [← map_map, φ.hasStrictFDerivAt.map_nhds_eq_of_equiv, map_fst_nhds]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
g'inv : G →L[𝕜] E
hg'inv : ContinuousLinearMap.comp φ.rightDeriv g'inv = ContinuousLinearMap.id 𝕜 G
hg'invf : ContinuousLinearMap.comp φ.leftDeriv g'inv = 0
⊢ HasStrictFDerivAt (implicitFunction φ (leftFun φ φ.pt)) g'inv (rightFun φ φ.pt)
[PROOFSTEP]
have := φ.hasStrictFDerivAt.to_localInverse
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
g'inv : G →L[𝕜] E
hg'inv : ContinuousLinearMap.comp φ.rightDeriv g'inv = ContinuousLinearMap.id 𝕜 G
hg'invf : ContinuousLinearMap.comp φ.leftDeriv g'inv = 0
this :
HasStrictFDerivAt
(HasStrictFDerivAt.localInverse (prodFun φ)
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))
φ.pt
(_ :
HasStrictFDerivAt (prodFun φ)
(↑(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
φ.pt))
(↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))))
(prodFun φ φ.pt)
⊢ HasStrictFDerivAt (implicitFunction φ (leftFun φ φ.pt)) g'inv (rightFun φ φ.pt)
[PROOFSTEP]
simp only [prodFun] at this
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
g'inv : G →L[𝕜] E
hg'inv : ContinuousLinearMap.comp φ.rightDeriv g'inv = ContinuousLinearMap.id 𝕜 G
hg'invf : ContinuousLinearMap.comp φ.leftDeriv g'inv = 0
this :
HasStrictFDerivAt
(HasStrictFDerivAt.localInverse (fun x => (leftFun φ x, rightFun φ x))
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))
φ.pt
(_ :
HasStrictFDerivAt (prodFun φ)
(↑(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
φ.pt))
↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
(leftFun φ φ.pt, rightFun φ φ.pt)
⊢ HasStrictFDerivAt (implicitFunction φ (leftFun φ φ.pt)) g'inv (rightFun φ φ.pt)
[PROOFSTEP]
convert
this.comp (φ.rightFun φ.pt)
((hasStrictFDerivAt_const _ _).prod (hasStrictFDerivAt_id _))
-- porting note: added parentheses to help `simp`
[GOAL]
case h.e'_10
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
g'inv : G →L[𝕜] E
hg'inv : ContinuousLinearMap.comp φ.rightDeriv g'inv = ContinuousLinearMap.id 𝕜 G
hg'invf : ContinuousLinearMap.comp φ.leftDeriv g'inv = 0
this :
HasStrictFDerivAt
(HasStrictFDerivAt.localInverse (fun x => (leftFun φ x, rightFun φ x))
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))
φ.pt
(_ :
HasStrictFDerivAt (prodFun φ)
(↑(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
φ.pt))
↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
(leftFun φ φ.pt, rightFun φ φ.pt)
⊢ g'inv =
ContinuousLinearMap.comp
(↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))))
(ContinuousLinearMap.prod 0 (ContinuousLinearMap.id 𝕜 G))
[PROOFSTEP]
simp only [ContinuousLinearMap.ext_iff, (ContinuousLinearMap.comp_apply)] at hg'inv hg'invf ⊢
-- porting note: was `simp [ContinuousLinearEquiv.eq_symm_apply]`;
-- both `simp` and `rw` fail here, `erw` works
[GOAL]
case h.e'_10
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
g'inv : G →L[𝕜] E
this :
HasStrictFDerivAt
(HasStrictFDerivAt.localInverse (fun x => (leftFun φ x, rightFun φ x))
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))
φ.pt
(_ :
HasStrictFDerivAt (prodFun φ)
(↑(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
φ.pt))
↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
(leftFun φ φ.pt, rightFun φ φ.pt)
hg'inv : ∀ (x : G), ↑φ.rightDeriv (↑g'inv x) = ↑(ContinuousLinearMap.id 𝕜 G) x
hg'invf : ∀ (x : G), ↑φ.leftDeriv (↑g'inv x) = ↑0 x
⊢ ∀ (x : G),
↑g'inv x =
↑↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
(↑(ContinuousLinearMap.prod 0 (ContinuousLinearMap.id 𝕜 G)) x)
[PROOFSTEP]
intro x
[GOAL]
case h.e'_10
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
g'inv : G →L[𝕜] E
this :
HasStrictFDerivAt
(HasStrictFDerivAt.localInverse (fun x => (leftFun φ x, rightFun φ x))
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))
φ.pt
(_ :
HasStrictFDerivAt (prodFun φ)
(↑(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
φ.pt))
↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
(leftFun φ φ.pt, rightFun φ φ.pt)
hg'inv : ∀ (x : G), ↑φ.rightDeriv (↑g'inv x) = ↑(ContinuousLinearMap.id 𝕜 G) x
hg'invf : ∀ (x : G), ↑φ.leftDeriv (↑g'inv x) = ↑0 x
x : G
⊢ ↑g'inv x =
↑↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
(↑(ContinuousLinearMap.prod 0 (ContinuousLinearMap.id 𝕜 G)) x)
[PROOFSTEP]
erw [ContinuousLinearEquiv.eq_symm_apply]
[GOAL]
case h.e'_10
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : CompleteSpace E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : CompleteSpace F
G : Type u_4
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace G
φ : ImplicitFunctionData 𝕜 E F G
g'inv : G →L[𝕜] E
this :
HasStrictFDerivAt
(HasStrictFDerivAt.localInverse (fun x => (leftFun φ x, rightFun φ x))
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))
φ.pt
(_ :
HasStrictFDerivAt (prodFun φ)
(↑(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
φ.pt))
↑(ContinuousLinearEquiv.symm
(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv))))
(leftFun φ φ.pt, rightFun φ φ.pt)
hg'inv : ∀ (x : G), ↑φ.rightDeriv (↑g'inv x) = ↑(ContinuousLinearMap.id 𝕜 G) x
hg'invf : ∀ (x : G), ↑φ.leftDeriv (↑g'inv x) = ↑0 x
x : G
⊢ ↑(ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl φ.leftDeriv φ.rightDeriv (_ : range φ.leftDeriv = ⊤)
(_ : range φ.rightDeriv = ⊤) (_ : IsCompl (ker φ.leftDeriv) (ker φ.rightDeriv)))
(↑g'inv x) =
↑(ContinuousLinearMap.prod 0 (ContinuousLinearMap.id 𝕜 G)) x
[PROOFSTEP]
simp [*]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
y : { x // x ∈ ker f' }
⊢ ↑(implicitToLocalHomeomorphOfComplemented f f' hf hf' hker) (↑y + a) = (f (↑y + a), y)
[PROOFSTEP]
simp only [implicitToLocalHomeomorphOfComplemented_apply, add_sub_cancel, Classical.choose_spec hker]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ ↑(implicitToLocalHomeomorphOfComplemented f f' hf hf' hker) a = (f a, 0)
[PROOFSTEP]
simp [hf.implicitToLocalHomeomorphOfComplemented_apply]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ (f a, 0) ∈ (implicitToLocalHomeomorphOfComplemented f f' hf hf' hker).toLocalEquiv.target
[PROOFSTEP]
simpa only [implicitToLocalHomeomorphOfComplemented_self] using
(hf.implicitToLocalHomeomorphOfComplemented f f' hf' hker).map_source <|
hf.mem_implicitToLocalHomeomorphOfComplemented_source hf' hker
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ implicitFunctionOfComplemented f f' hf hf' hker (f a) 0 = a
[PROOFSTEP]
simpa only [implicitToLocalHomeomorphOfComplemented_self] using
(hf.implicitToLocalHomeomorphOfComplemented f f' hf' hker).left_inv
(hf.mem_implicitToLocalHomeomorphOfComplemented_source hf' hker)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ HasStrictFDerivAt (implicitFunctionOfComplemented f f' hf hf' hker (f a)) (Submodule.subtypeL (ker f')) 0
[PROOFSTEP]
convert (implicitFunctionDataOfComplemented f f' hf hf' hker).implicitFunction_hasStrictFDerivAt (ker f').subtypeL _ _
[GOAL]
case h.e'_11
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ 0 =
ImplicitFunctionData.rightFun (implicitFunctionDataOfComplemented f f' hf hf' hker)
(implicitFunctionDataOfComplemented f f' hf hf' hker).pt
case convert_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ ContinuousLinearMap.comp (implicitFunctionDataOfComplemented f f' hf hf' hker).rightDeriv
(Submodule.subtypeL (ker f')) =
ContinuousLinearMap.id 𝕜 { x // x ∈ ker f' }
case convert_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ ContinuousLinearMap.comp (implicitFunctionDataOfComplemented f f' hf hf' hker).leftDeriv
(Submodule.subtypeL (ker f')) =
0
[PROOFSTEP]
swap
[GOAL]
case convert_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ ContinuousLinearMap.comp (implicitFunctionDataOfComplemented f f' hf hf' hker).rightDeriv
(Submodule.subtypeL (ker f')) =
ContinuousLinearMap.id 𝕜 { x // x ∈ ker f' }
[PROOFSTEP]
ext
-- Porting note: added parentheses to help `simp`
[GOAL]
case convert_1.h.a
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
x✝ : { x // x ∈ ker f' }
⊢ ↑(↑(ContinuousLinearMap.comp (implicitFunctionDataOfComplemented f f' hf hf' hker).rightDeriv
(Submodule.subtypeL (ker f')))
x✝) =
↑(↑(ContinuousLinearMap.id 𝕜 { x // x ∈ ker f' }) x✝)
[PROOFSTEP]
simp only [Classical.choose_spec hker, implicitFunctionDataOfComplemented, (ContinuousLinearMap.comp_apply),
Submodule.coe_subtypeL', Submodule.coeSubtype, (ContinuousLinearMap.id_apply)]
[GOAL]
case h.e'_11
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ 0 =
ImplicitFunctionData.rightFun (implicitFunctionDataOfComplemented f f' hf hf' hker)
(implicitFunctionDataOfComplemented f f' hf hf' hker).pt
case convert_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ ContinuousLinearMap.comp (implicitFunctionDataOfComplemented f f' hf hf' hker).leftDeriv
(Submodule.subtypeL (ker f')) =
0
[PROOFSTEP]
swap
[GOAL]
case convert_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ ContinuousLinearMap.comp (implicitFunctionDataOfComplemented f f' hf hf' hker).leftDeriv
(Submodule.subtypeL (ker f')) =
0
[PROOFSTEP]
ext
-- Porting note: added parentheses to help `simp`
[GOAL]
case convert_2.h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
x✝ : { x // x ∈ ker f' }
⊢ ↑(ContinuousLinearMap.comp (implicitFunctionDataOfComplemented f f' hf hf' hker).leftDeriv
(Submodule.subtypeL (ker f')))
x✝ =
↑0 x✝
[PROOFSTEP]
simp only [(ContinuousLinearMap.comp_apply), Submodule.coe_subtypeL', Submodule.coeSubtype, LinearMap.map_coe_ker,
(ContinuousLinearMap.zero_apply)]
[GOAL]
case h.e'_11
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
hker : Submodule.ClosedComplemented (ker f')
⊢ 0 =
ImplicitFunctionData.rightFun (implicitFunctionDataOfComplemented f f' hf hf' hker)
(implicitFunctionDataOfComplemented f f' hf hf' hker).pt
[PROOFSTEP]
simp only [implicitFunctionDataOfComplemented, map_sub, sub_self]
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : CompleteSpace 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : FiniteDimensional 𝕜 F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
α : Type u_4
l : Filter α
g₁ : α → F
g₂ : α → { x // x ∈ ker f' }
h₁ : Tendsto g₁ l (𝓝 (f a))
h₂ : Tendsto g₂ l (𝓝 0)
⊢ Tendsto (fun t => implicitFunction f f' hf hf' (g₁ t) (g₂ t)) l (𝓝 a)
[PROOFSTEP]
refine' ((hf.implicitToLocalHomeomorph f f' hf').tendsto_symm (hf.mem_implicitToLocalHomeomorph_source hf')).comp _
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : CompleteSpace 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : FiniteDimensional 𝕜 F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
α : Type u_4
l : Filter α
g₁ : α → F
g₂ : α → { x // x ∈ ker f' }
h₁ : Tendsto g₁ l (𝓝 (f a))
h₂ : Tendsto g₂ l (𝓝 0)
⊢ Tendsto (fun t => (g₁ t, g₂ t)) l (𝓝 (↑(implicitToLocalHomeomorph f f' hf hf') a))
[PROOFSTEP]
rw [implicitToLocalHomeomorph_self]
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : CompleteSpace 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : FiniteDimensional 𝕜 F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
α : Type u_4
l : Filter α
g₁ : α → F
g₂ : α → { x // x ∈ ker f' }
h₁ : Tendsto g₁ l (𝓝 (f a))
h₂ : Tendsto g₂ l (𝓝 0)
⊢ Tendsto (fun t => (g₁ t, g₂ t)) l (𝓝 (f a, 0))
[PROOFSTEP]
exact h₁.prod_mk_nhds h₂
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : CompleteSpace 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : FiniteDimensional 𝕜 F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
⊢ implicitFunction f f' hf hf' (f a) 0 = a
[PROOFSTEP]
haveI := FiniteDimensional.complete 𝕜 F
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : CompleteSpace 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
inst✝³ : CompleteSpace E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : FiniteDimensional 𝕜 F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
hf' : range f' = ⊤
this : CompleteSpace F
⊢ implicitFunction f f' hf hf' (f a) 0 = a
[PROOFSTEP]
apply implicitFunctionOfComplemented_apply_image
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Implicit", "llama_tokens": 10425} |
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
g' : E →L[𝕜] F
h : HasFDerivWithinAt f g' s x
H : restrictScalars 𝕜 f' = g'
⊢ HasFDerivWithinAt f f' s x
[PROOFSTEP]
rw [← H] at h
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
g' : E →L[𝕜] F
h : HasFDerivWithinAt f (restrictScalars 𝕜 f') s x
H : restrictScalars 𝕜 f' = g'
⊢ HasFDerivWithinAt f f' s x
[PROOFSTEP]
exact h
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
g' : E →L[𝕜] F
h : HasFDerivAt f g' x
H : restrictScalars 𝕜 f' = g'
⊢ HasFDerivAt f f' x
[PROOFSTEP]
rw [← H] at h
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
g' : E →L[𝕜] F
h : HasFDerivAt f (restrictScalars 𝕜 f') x
H : restrictScalars 𝕜 f' = g'
⊢ HasFDerivAt f f' x
[PROOFSTEP]
exact h
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
hf : DifferentiableWithinAt 𝕜 f s x
hs : UniqueDiffWithinAt 𝕜 s x
⊢ DifferentiableWithinAt 𝕜' f s x ↔ ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
hf : DifferentiableWithinAt 𝕜 f s x
hs : UniqueDiffWithinAt 𝕜 s x
⊢ DifferentiableWithinAt 𝕜' f s x → ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x
[PROOFSTEP]
rintro ⟨g', hg'⟩
[GOAL]
case mp.intro
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
hf : DifferentiableWithinAt 𝕜 f s x
hs : UniqueDiffWithinAt 𝕜 s x
g' : E →L[𝕜'] F
hg' : HasFDerivWithinAt f g' s x
⊢ ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x
[PROOFSTEP]
exact ⟨g', hs.eq (hg'.restrictScalars 𝕜) hf.hasFDerivWithinAt⟩
[GOAL]
case mpr
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
hf : DifferentiableWithinAt 𝕜 f s x
hs : UniqueDiffWithinAt 𝕜 s x
⊢ (∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x) → DifferentiableWithinAt 𝕜' f s x
[PROOFSTEP]
rintro ⟨f', hf'⟩
[GOAL]
case mpr.intro
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f'✝ : E →L[𝕜'] F
s : Set E
x : E
hf : DifferentiableWithinAt 𝕜 f s x
hs : UniqueDiffWithinAt 𝕜 s x
f' : E →L[𝕜'] F
hf' : restrictScalars 𝕜 f' = fderivWithin 𝕜 f s x
⊢ DifferentiableWithinAt 𝕜' f s x
[PROOFSTEP]
exact ⟨f', hasFDerivWithinAt_of_restrictScalars 𝕜 hf.hasFDerivWithinAt hf'⟩
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
hf : DifferentiableAt 𝕜 f x
⊢ DifferentiableAt 𝕜' f x ↔ ∃ g', restrictScalars 𝕜 g' = fderiv 𝕜 f x
[PROOFSTEP]
rw [← differentiableWithinAt_univ, ← fderivWithin_univ]
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
𝕜' : Type u_2
inst✝⁹ : NontriviallyNormedField 𝕜'
inst✝⁸ : NormedAlgebra 𝕜 𝕜'
E : Type u_3
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedSpace 𝕜' E
inst✝⁴ : IsScalarTower 𝕜 𝕜' E
F : Type u_4
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
f : E → F
f' : E →L[𝕜'] F
s : Set E
x : E
hf : DifferentiableAt 𝕜 f x
⊢ DifferentiableWithinAt 𝕜' f univ x ↔ ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f univ x
[PROOFSTEP]
exact differentiableWithinAt_iff_restrictScalars 𝕜 hf.differentiableWithinAt uniqueDiffWithinAt_univ
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.RestrictScalars", "llama_tokens": 3450} |
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g✝ : E → F
f' f₀' f₁' g'✝ e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
g : F → G
g' : F →L[𝕜] G
L' : Filter F
hg : HasFDerivAtFilter g g' (f x) L'
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L'
⊢ HasFDerivAtFilter (g ∘ f) (ContinuousLinearMap.comp g' f') x L
[PROOFSTEP]
let eq₁ := (g'.isBigO_comp _ _).trans_isLittleO hf
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g✝ : E → F
f' f₀' f₁' g'✝ e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
g : F → G
g' : F →L[𝕜] G
L' : Filter F
hg : HasFDerivAtFilter g g' (f x) L'
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L'
eq₁ : (fun x' => ↑g' (f x' - f x - ↑f' (x' - x))) =o[L] fun x' => x' - x :=
IsBigO.trans_isLittleO (isBigO_comp g' (fun x' => f x' - f x - ↑f' (x' - x)) L) hf
⊢ HasFDerivAtFilter (g ∘ f) (ContinuousLinearMap.comp g' f') x L
[PROOFSTEP]
let eq₂ := (hg.comp_tendsto hL).trans_isBigO hf.isBigO_sub
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g✝ : E → F
f' f₀' f₁' g'✝ e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
g : F → G
g' : F →L[𝕜] G
L' : Filter F
hg : HasFDerivAtFilter g g' (f x) L'
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L'
eq₁ : (fun x' => ↑g' (f x' - f x - ↑f' (x' - x))) =o[L] fun x' => x' - x :=
IsBigO.trans_isLittleO (isBigO_comp g' (fun x' => f x' - f x - ↑f' (x' - x)) L) hf
eq₂ : ((fun x' => g x' - g (f x) - ↑g' (x' - f x)) ∘ f) =o[L] fun x' => x' - x :=
IsLittleO.trans_isBigO (IsLittleO.comp_tendsto hg hL) (isBigO_sub hf)
⊢ HasFDerivAtFilter (g ∘ f) (ContinuousLinearMap.comp g' f') x L
[PROOFSTEP]
refine' eq₂.triangle (eq₁.congr_left fun x' => _)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g✝ : E → F
f' f₀' f₁' g'✝ e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
g : F → G
g' : F →L[𝕜] G
L' : Filter F
hg : HasFDerivAtFilter g g' (f x) L'
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L'
eq₁ : (fun x' => ↑g' (f x' - f x - ↑f' (x' - x))) =o[L] fun x' => x' - x :=
IsBigO.trans_isLittleO (isBigO_comp g' (fun x' => f x' - f x - ↑f' (x' - x)) L) hf
eq₂ : ((fun x' => g x' - g (f x) - ↑g' (x' - f x)) ∘ f) =o[L] fun x' => x' - x :=
IsLittleO.trans_isBigO (IsLittleO.comp_tendsto hg hL) (isBigO_sub hf)
x' : E
⊢ ↑g' (f x' - f x - ↑f' (x' - x)) = ↑g' (f x' - f x) - ↑(ContinuousLinearMap.comp g' f') (x' - x)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t✝ : Set E
L L₁ L₂ : Filter E
g : F → G
f : E → F
x : E
y : F
s : Set E
t : Set F
hg : DifferentiableWithinAt 𝕜 g t y
hf : DifferentiableWithinAt 𝕜 f s x
h : MapsTo f s t
hxs : UniqueDiffWithinAt 𝕜 s x
hy : f x = y
v : E
⊢ ↑(fderivWithin 𝕜 g t y) (↑(fderivWithin 𝕜 f s x) v) = ↑(fderivWithin 𝕜 (g ∘ f) s x) v
[PROOFSTEP]
subst y
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t✝ : Set E
L L₁ L₂ : Filter E
g : F → G
f : E → F
x : E
s : Set E
t : Set F
hf : DifferentiableWithinAt 𝕜 f s x
h : MapsTo f s t
hxs : UniqueDiffWithinAt 𝕜 s x
v : E
hg : DifferentiableWithinAt 𝕜 g t (f x)
⊢ ↑(fderivWithin 𝕜 g t (f x)) (↑(fderivWithin 𝕜 f s x) v) = ↑(fderivWithin 𝕜 (g ∘ f) s x) v
[PROOFSTEP]
rw [fderivWithin.comp x hg hf h hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t✝ : Set E
L L₁ L₂ : Filter E
g : F → G
f : E → F
x : E
s : Set E
t : Set F
hf : DifferentiableWithinAt 𝕜 f s x
h : MapsTo f s t
hxs : UniqueDiffWithinAt 𝕜 s x
v : E
hg : DifferentiableWithinAt 𝕜 g t (f x)
⊢ ↑(fderivWithin 𝕜 g t (f x)) (↑(fderivWithin 𝕜 f s x) v) = ↑(comp (fderivWithin 𝕜 g t (f x)) (fderivWithin 𝕜 f s x)) v
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g✝ : E → F
f' f₀' f₁' g'✝ e : E →L[𝕜] F
x : E
s t✝ : Set E
L L₁ L₂ : Filter E
g' : G → G'
g : F → G
t : Set F
u : Set G
y : F
y' : G
hg' : DifferentiableWithinAt 𝕜 g' u y'
hg : DifferentiableWithinAt 𝕜 g t y
hf : DifferentiableWithinAt 𝕜 f s x
h2g : MapsTo g t u
h2f : MapsTo f s t
h3g : g y = y'
h3f : f x = y
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderivWithin 𝕜 (g' ∘ g ∘ f) s x =
ContinuousLinearMap.comp (fderivWithin 𝕜 g' u y')
(ContinuousLinearMap.comp (fderivWithin 𝕜 g t y) (fderivWithin 𝕜 f s x))
[PROOFSTEP]
substs h3g h3f
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g✝ : E → F
f' f₀' f₁' g'✝ e : E →L[𝕜] F
x : E
s t✝ : Set E
L L₁ L₂ : Filter E
g' : G → G'
g : F → G
t : Set F
u : Set G
hf : DifferentiableWithinAt 𝕜 f s x
h2g : MapsTo g t u
h2f : MapsTo f s t
hxs : UniqueDiffWithinAt 𝕜 s x
hg : DifferentiableWithinAt 𝕜 g t (f x)
hg' : DifferentiableWithinAt 𝕜 g' u (g (f x))
⊢ fderivWithin 𝕜 (g' ∘ g ∘ f) s x =
ContinuousLinearMap.comp (fderivWithin 𝕜 g' u (g (f x)))
(ContinuousLinearMap.comp (fderivWithin 𝕜 g t (f x)) (fderivWithin 𝕜 f s x))
[PROOFSTEP]
exact
(hg'.hasFDerivWithinAt.comp x (hg.hasFDerivWithinAt.comp x hf.hasFDerivWithinAt h2f) <| h2g.comp h2f).fderivWithin hxs
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g✝ : E → F
f' f₀' f₁' g'✝ e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
g : F → G
g' : F →L[𝕜] G
hg : HasStrictFDerivAt g g' (f x)
hf : HasStrictFDerivAt f f' x
⊢ (fun x =>
↑g' (((fun p => (f p.fst, f p.snd)) x).fst - ((fun p => (f p.fst, f p.snd)) x).snd) -
↑(comp g' f') (x.fst - x.snd)) =o[𝓝 (x, x)]
fun p => p.fst - p.snd
[PROOFSTEP]
simpa only [g'.map_sub, f'.coe_comp'] using (g'.isBigO_comp _ _).trans_isLittleO hf
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L
hx : f x = x
n : ℕ
⊢ HasFDerivAtFilter f^[n] (f' ^ n) x L
[PROOFSTEP]
induction' n with n ihn
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L
hx : f x = x
⊢ HasFDerivAtFilter f^[Nat.zero] (f' ^ Nat.zero) x L
[PROOFSTEP]
exact hasFDerivAtFilter_id x L
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L
hx : f x = x
n : ℕ
ihn : HasFDerivAtFilter f^[n] (f' ^ n) x L
⊢ HasFDerivAtFilter f^[Nat.succ n] (f' ^ Nat.succ n) x L
[PROOFSTEP]
rw [Function.iterate_succ, pow_succ']
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L
hx : f x = x
n : ℕ
ihn : HasFDerivAtFilter f^[n] (f' ^ n) x L
⊢ HasFDerivAtFilter (f^[n] ∘ f) (f' ^ n * f') x L
[PROOFSTEP]
rw [← hx] at ihn
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAtFilter f f' x L
hL : Tendsto f L L
hx : f x = x
n : ℕ
ihn : HasFDerivAtFilter f^[n] (f' ^ n) (f x) L
⊢ HasFDerivAtFilter (f^[n] ∘ f) (f' ^ n * f') x L
[PROOFSTEP]
exact ihn.comp x hf hL
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAt f f' x
hx : f x = x
n : ℕ
⊢ HasFDerivAt f^[n] (f' ^ n) x
[PROOFSTEP]
refine' HasFDerivAtFilter.iterate hf _ hx n
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAt f f' x
hx : f x = x
n : ℕ
⊢ Tendsto f (𝓝 x) (𝓝 x)
[PROOFSTEP]
have := hf.continuousAt
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAt f f' x
hx : f x = x
n : ℕ
this : ContinuousAt f x
⊢ Tendsto f (𝓝 x) (𝓝 x)
[PROOFSTEP]
unfold ContinuousAt at this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAt f f' x
hx : f x = x
n : ℕ
this : Tendsto f (𝓝 x) (𝓝 (f x))
⊢ Tendsto f (𝓝 x) (𝓝 x)
[PROOFSTEP]
convert this
[GOAL]
case h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivAt f f' x
hx : f x = x
n : ℕ
this : Tendsto f (𝓝 x) (𝓝 (f x))
⊢ x = f x
[PROOFSTEP]
exact hx.symm
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivWithinAt f f' s x
hx : f x = x
hs : MapsTo f s s
n : ℕ
⊢ HasFDerivWithinAt f^[n] (f' ^ n) s x
[PROOFSTEP]
refine' HasFDerivAtFilter.iterate hf _ hx n
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivWithinAt f f' s x
hx : f x = x
hs : MapsTo f s s
n : ℕ
⊢ Tendsto f (𝓝[s] x) (𝓝[s] x)
[PROOFSTEP]
rw [_root_.nhdsWithin]
-- Porting note: Added `rw` to get rid of an error
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivWithinAt f f' s x
hx : f x = x
hs : MapsTo f s s
n : ℕ
⊢ Tendsto f (𝓝 x ⊓ 𝓟 s) (𝓝 x ⊓ 𝓟 s)
[PROOFSTEP]
convert tendsto_inf.2 ⟨hf.continuousWithinAt, _⟩
[GOAL]
case h.e'_5.h.e'_3.h.e'_3
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivWithinAt f f' s x
hx : f x = x
hs : MapsTo f s s
n : ℕ
⊢ x = f x
case convert_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasFDerivWithinAt f f' s x
hx : f x = x
hs : MapsTo f s s
n : ℕ
⊢ Tendsto f (𝓝[s] x) (𝓟 s)
[PROOFSTEP]
exacts [hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasStrictFDerivAt f f' x
hx : f x = x
n : ℕ
⊢ HasStrictFDerivAt f^[n] (f' ^ n) x
[PROOFSTEP]
induction' n with n ihn
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasStrictFDerivAt f f' x
hx : f x = x
⊢ HasStrictFDerivAt f^[Nat.zero] (f' ^ Nat.zero) x
[PROOFSTEP]
exact hasStrictFDerivAt_id x
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasStrictFDerivAt f f' x
hx : f x = x
n : ℕ
ihn : HasStrictFDerivAt f^[n] (f' ^ n) x
⊢ HasStrictFDerivAt f^[Nat.succ n] (f' ^ Nat.succ n) x
[PROOFSTEP]
rw [Function.iterate_succ, pow_succ']
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasStrictFDerivAt f f' x
hx : f x = x
n : ℕ
ihn : HasStrictFDerivAt f^[n] (f' ^ n) x
⊢ HasStrictFDerivAt (f^[n] ∘ f) (f' ^ n * f') x
[PROOFSTEP]
rw [← hx] at ihn
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → E
f' : E →L[𝕜] E
hf : HasStrictFDerivAt f f' x
hx : f x = x
n : ℕ
ihn : HasStrictFDerivAt f^[n] (f' ^ n) (f x)
⊢ HasStrictFDerivAt (f^[n] ∘ f) (f' ^ n * f') x
[PROOFSTEP]
exact ihn.comp x hf
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Comp", "llama_tokens": 10810} |
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁵ : CommRing 𝕜
inst✝¹⁴ : AddCommGroup E
inst✝¹³ : Module 𝕜 E
inst✝¹² : TopologicalSpace E
inst✝¹¹ : TopologicalAddGroup E
inst✝¹⁰ : ContinuousConstSMul 𝕜 E
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module 𝕜 F
inst✝⁷ : TopologicalSpace F
inst✝⁶ : TopologicalAddGroup F
inst✝⁵ : ContinuousConstSMul 𝕜 F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 G
inst✝² : TopologicalSpace G
inst✝¹ : TopologicalAddGroup G
inst✝ : ContinuousConstSMul 𝕜 G
p : FormalMultilinearSeries 𝕜 E F
n : ℕ
h : 0 < n
⊢ removeZero p n = p n
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos h]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁵ : CommRing 𝕜
inst✝¹⁴ : AddCommGroup E
inst✝¹³ : Module 𝕜 E
inst✝¹² : TopologicalSpace E
inst✝¹¹ : TopologicalAddGroup E
inst✝¹⁰ : ContinuousConstSMul 𝕜 E
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module 𝕜 F
inst✝⁷ : TopologicalSpace F
inst✝⁶ : TopologicalAddGroup F
inst✝⁵ : ContinuousConstSMul 𝕜 F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 G
inst✝² : TopologicalSpace G
inst✝¹ : TopologicalAddGroup G
inst✝ : ContinuousConstSMul 𝕜 G
p : FormalMultilinearSeries 𝕜 E F
n : ℕ
h : 0 < n
⊢ removeZero p (Nat.succ (Nat.pred n)) = p (Nat.succ (Nat.pred n))
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁵ : CommRing 𝕜
inst✝¹⁴ : AddCommGroup E
inst✝¹³ : Module 𝕜 E
inst✝¹² : TopologicalSpace E
inst✝¹¹ : TopologicalAddGroup E
inst✝¹⁰ : ContinuousConstSMul 𝕜 E
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module 𝕜 F
inst✝⁷ : TopologicalSpace F
inst✝⁶ : TopologicalAddGroup F
inst✝⁵ : ContinuousConstSMul 𝕜 F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 G
inst✝² : TopologicalSpace G
inst✝¹ : TopologicalAddGroup G
inst✝ : ContinuousConstSMul 𝕜 G
p : FormalMultilinearSeries 𝕜 E F
m n : ℕ
v : Fin m → E
w : Fin n → E
h1 : m = n
h2 : ∀ (i : ℕ) (him : i < m) (hin : i < n), v { val := i, isLt := him } = w { val := i, isLt := hin }
⊢ ↑(p m) v = ↑(p n) w
[PROOFSTEP]
subst n
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁵ : CommRing 𝕜
inst✝¹⁴ : AddCommGroup E
inst✝¹³ : Module 𝕜 E
inst✝¹² : TopologicalSpace E
inst✝¹¹ : TopologicalAddGroup E
inst✝¹⁰ : ContinuousConstSMul 𝕜 E
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module 𝕜 F
inst✝⁷ : TopologicalSpace F
inst✝⁶ : TopologicalAddGroup F
inst✝⁵ : ContinuousConstSMul 𝕜 F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 G
inst✝² : TopologicalSpace G
inst✝¹ : TopologicalAddGroup G
inst✝ : ContinuousConstSMul 𝕜 G
p : FormalMultilinearSeries 𝕜 E F
m : ℕ
v w : Fin m → E
h2 : ∀ (i : ℕ) (him hin : i < m), v { val := i, isLt := him } = w { val := i, isLt := hin }
⊢ ↑(p m) v = ↑(p m) w
[PROOFSTEP]
congr with ⟨i, hi⟩
[GOAL]
case h.e_6.h.h.mk
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁵ : CommRing 𝕜
inst✝¹⁴ : AddCommGroup E
inst✝¹³ : Module 𝕜 E
inst✝¹² : TopologicalSpace E
inst✝¹¹ : TopologicalAddGroup E
inst✝¹⁰ : ContinuousConstSMul 𝕜 E
inst✝⁹ : AddCommGroup F
inst✝⁸ : Module 𝕜 F
inst✝⁷ : TopologicalSpace F
inst✝⁶ : TopologicalAddGroup F
inst✝⁵ : ContinuousConstSMul 𝕜 F
inst✝⁴ : AddCommGroup G
inst✝³ : Module 𝕜 G
inst✝² : TopologicalSpace G
inst✝¹ : TopologicalAddGroup G
inst✝ : ContinuousConstSMul 𝕜 G
p : FormalMultilinearSeries 𝕜 E F
m : ℕ
v w : Fin m → E
h2 : ∀ (i : ℕ) (him hin : i < m), v { val := i, isLt := him } = w { val := i, isLt := hin }
i : ℕ
hi : i < m
⊢ v { val := i, isLt := hi } = w { val := i, isLt := hi }
[PROOFSTEP]
exact h2 i hi hi
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁰ : CommRing 𝕜
n : ℕ
inst✝⁹ : AddCommGroup E
inst✝⁸ : Module 𝕜 E
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalAddGroup E
inst✝⁵ : ContinuousConstSMul 𝕜 E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 F
inst✝² : TopologicalSpace F
inst✝¹ : TopologicalAddGroup F
inst✝ : ContinuousConstSMul 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
⊢ order 0 = 0
[PROOFSTEP]
simp [order]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁰ : CommRing 𝕜
n : ℕ
inst✝⁹ : AddCommGroup E
inst✝⁸ : Module 𝕜 E
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalAddGroup E
inst✝⁵ : ContinuousConstSMul 𝕜 E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 F
inst✝² : TopologicalSpace F
inst✝¹ : TopologicalAddGroup F
inst✝ : ContinuousConstSMul 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
hp : order p ≠ 0
h : p = 0
⊢ False
[PROOFSTEP]
simp [h] at hp
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹¹ : CommRing 𝕜
n : ℕ
inst✝¹⁰ : AddCommGroup E
inst✝⁹ : Module 𝕜 E
inst✝⁸ : TopologicalSpace E
inst✝⁷ : TopologicalAddGroup E
inst✝⁶ : ContinuousConstSMul 𝕜 E
inst✝⁵ : AddCommGroup F
inst✝⁴ : Module 𝕜 F
inst✝³ : TopologicalSpace F
inst✝² : TopologicalAddGroup F
inst✝¹ : ContinuousConstSMul 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
inst✝ : DecidablePred fun n => p n ≠ 0
hp : ∃ n, p n ≠ 0
⊢ order p = Nat.find hp
[PROOFSTEP]
convert Nat.sInf_def hp
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁰ : CommRing 𝕜
n : ℕ
inst✝⁹ : AddCommGroup E
inst✝⁸ : Module 𝕜 E
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalAddGroup E
inst✝⁵ : ContinuousConstSMul 𝕜 E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 F
inst✝² : TopologicalSpace F
inst✝¹ : TopologicalAddGroup F
inst✝ : ContinuousConstSMul 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
⊢ order p = 0 ↔ p = 0 ∨ p 0 ≠ 0
[PROOFSTEP]
simpa [order, Nat.sInf_eq_zero, FormalMultilinearSeries.ext_iff, eq_empty_iff_forall_not_mem] using or_comm
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝¹⁰ : CommRing 𝕜
n : ℕ
inst✝⁹ : AddCommGroup E
inst✝⁸ : Module 𝕜 E
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalAddGroup E
inst✝⁵ : ContinuousConstSMul 𝕜 E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 F
inst✝² : TopologicalSpace F
inst✝¹ : TopologicalAddGroup F
inst✝ : ContinuousConstSMul 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
hp : p ≠ 0
⊢ order p = 0 ↔ p 0 ≠ 0
[PROOFSTEP]
simp [order_eq_zero_iff', hp]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
n : ℕ
z z₀ : 𝕜
y : Fin n → 𝕜
⊢ ↑(p n) y = (∏ i : Fin n, y i) • coeff p n
[PROOFSTEP]
convert (p n).toMultilinearMap.map_smul_univ y 1
[GOAL]
case h.e'_2.h.e'_1.h
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
n : ℕ
z z₀ : 𝕜
y : Fin n → 𝕜
x✝ : Fin n
⊢ y x✝ = y x✝ • OfNat.ofNat 1 x✝
[PROOFSTEP]
funext
[GOAL]
case h.e'_2.h.e'_1.h
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
n : ℕ
z z₀ : 𝕜
y : Fin n → 𝕜
x✝ : Fin n
⊢ y x✝ = y x✝ • OfNat.ofNat 1 x✝
[PROOFSTEP]
simp only [Pi.one_apply, Algebra.id.smul_eq_mul, mul_one]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
n : ℕ
z z₀ : 𝕜
y : Fin n → 𝕜
⊢ coeff p n = 0 ↔ p n = 0
[PROOFSTEP]
rw [← mkPiField_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
n : ℕ
z z₀ : 𝕜
y : Fin n → 𝕜
⊢ (↑(p n) fun x => z) = z ^ n • coeff p n
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
n : ℕ
z z₀ : 𝕜
y : Fin n → 𝕜
⊢ ‖p n‖ = ‖coeff p n‖
[PROOFSTEP]
rw [← mkPiField_coeff_eq p, ContinuousMultilinearMap.norm_mkPiField]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
p : FormalMultilinearSeries 𝕜 𝕜 E
n : ℕ
⊢ coeff (fslope p) n = coeff p (n + 1)
[PROOFSTEP]
simp only [fslope, coeff, ContinuousMultilinearMap.curryLeft_apply]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
p : FormalMultilinearSeries 𝕜 𝕜 E
n : ℕ
⊢ ↑(p (n + 1)) (cons 1 1) = ↑(p (n + 1)) 1
[PROOFSTEP]
congr 1
[GOAL]
case h.e_6.h
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
p : FormalMultilinearSeries 𝕜 𝕜 E
n : ℕ
⊢ cons 1 1 = 1
[PROOFSTEP]
exact Fin.cons_self_tail 1
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
p : FormalMultilinearSeries 𝕜 𝕜 E
n✝ k n : ℕ
⊢ coeff (fslope^[k] p) n = coeff p (n + k)
[PROOFSTEP]
induction k generalizing p with
| zero => rfl
| succ k ih => simp [ih, add_assoc]
[GOAL]
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
p : FormalMultilinearSeries 𝕜 𝕜 E
n✝ k n : ℕ
⊢ coeff (fslope^[k] p) n = coeff p (n + k)
[PROOFSTEP]
induction k generalizing p with
| zero => rfl
| succ k ih => simp [ih, add_assoc]
[GOAL]
case zero
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ n : ℕ
p : FormalMultilinearSeries 𝕜 𝕜 E
⊢ coeff (fslope^[Nat.zero] p) n = coeff p (n + Nat.zero)
[PROOFSTEP]
| zero => rfl
[GOAL]
case zero
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ n : ℕ
p : FormalMultilinearSeries 𝕜 𝕜 E
⊢ coeff (fslope^[Nat.zero] p) n = coeff p (n + Nat.zero)
[PROOFSTEP]
rfl
[GOAL]
case succ
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ n k : ℕ
ih : ∀ {p : FormalMultilinearSeries 𝕜 𝕜 E}, coeff (fslope^[k] p) n = coeff p (n + k)
p : FormalMultilinearSeries 𝕜 𝕜 E
⊢ coeff (fslope^[Nat.succ k] p) n = coeff p (n + Nat.succ k)
[PROOFSTEP]
| succ k ih => simp [ih, add_assoc]
[GOAL]
case succ
𝕜 : Type u
𝕜' : Type u'
E : Type v
F : Type w
G : Type x
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
n✝ n k : ℕ
ih : ∀ {p : FormalMultilinearSeries 𝕜 𝕜 E}, coeff (fslope^[k] p) n = coeff p (n + k)
p : FormalMultilinearSeries 𝕜 𝕜 E
⊢ coeff (fslope^[Nat.succ k] p) n = coeff p (n + Nat.succ k)
[PROOFSTEP]
simp [ih, add_assoc]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FormalMultilinearSeries", "llama_tokens": 5280} |
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
c : ℝ≥0
⊢ ApproximatesLinearOn f f' ∅ c
[PROOFSTEP]
simp [ApproximatesLinearOn]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f✝ : E → F
f'✝ : E →L[𝕜] F
s✝ t : Set E
c✝ c' : ℝ≥0
f : E → F
f' : E →L[𝕜] F
s : Set E
c : ℝ≥0
⊢ ApproximatesLinearOn f f' s c ↔ LipschitzOnWith c (f - ↑f') s
[PROOFSTEP]
have : ∀ x y, f x - f y - f' (x - y) = (f - f') x - (f - f') y := fun x y ↦ by simp only [map_sub, Pi.sub_apply]; abel
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f✝ : E → F
f'✝ : E →L[𝕜] F
s✝ t : Set E
c✝ c' : ℝ≥0
f : E → F
f' : E →L[𝕜] F
s : Set E
c : ℝ≥0
x y : E
⊢ f x - f y - ↑f' (x - y) = (f - ↑f') x - (f - ↑f') y
[PROOFSTEP]
simp only [map_sub, Pi.sub_apply]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f✝ : E → F
f'✝ : E →L[𝕜] F
s✝ t : Set E
c✝ c' : ℝ≥0
f : E → F
f' : E →L[𝕜] F
s : Set E
c : ℝ≥0
x y : E
⊢ f x - f y - (↑f' x - ↑f' y) = f x - ↑f' x - (f y - ↑f' y)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f✝ : E → F
f'✝ : E →L[𝕜] F
s✝ t : Set E
c✝ c' : ℝ≥0
f : E → F
f' : E →L[𝕜] F
s : Set E
c : ℝ≥0
x y : E
⊢ f x - f y - (↑f' x - ↑f' y) = f x - ↑f' x - (f y - ↑f' y)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f✝ : E → F
f'✝ : E →L[𝕜] F
s✝ t : Set E
c✝ c' : ℝ≥0
f : E → F
f' : E →L[𝕜] F
s : Set E
c : ℝ≥0
this : ∀ (x y : E), f x - f y - ↑f' (x - y) = (f - ↑f') x - (f - ↑f') y
⊢ ApproximatesLinearOn f f' s c ↔ LipschitzOnWith c (f - ↑f') s
[PROOFSTEP]
simp only [this, lipschitzOnWith_iff_norm_sub_le, ApproximatesLinearOn]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E →L[𝕜] F
s t : Set E
c c' : ℝ≥0
hf : ApproximatesLinearOn f f' s c
⊢ LipschitzWith (‖f'‖₊ + c) (restrict s f)
[PROOFSTEP]
simpa only [restrict_apply, add_sub_cancel'_right] using (f'.lipschitz.restrict s).add hf.lipschitz_sub
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
⊢ SurjOn f (closedBall b ε) (closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε))
[PROOFSTEP]
intro y hy
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
cases' le_or_lt (f'symm.nnnorm : ℝ)⁻¹ c with hc hc
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : (↑f'symm.nnnorm)⁻¹ ≤ ↑c
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
refine' ⟨b, by simp [ε0], _⟩
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : (↑f'symm.nnnorm)⁻¹ ≤ ↑c
⊢ b ∈ closedBall b ε
[PROOFSTEP]
simp [ε0]
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : (↑f'symm.nnnorm)⁻¹ ≤ ↑c
⊢ f b = y
[PROOFSTEP]
have : dist y (f b) ≤ 0 := (mem_closedBall.1 hy).trans (mul_nonpos_of_nonpos_of_nonneg (by linarith) ε0)
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : (↑f'symm.nnnorm)⁻¹ ≤ ↑c
⊢ (↑f'symm.nnnorm)⁻¹ - ↑c ≤ 0
[PROOFSTEP]
linarith
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : (↑f'symm.nnnorm)⁻¹ ≤ ↑c
this : dist y (f b) ≤ 0
⊢ f b = y
[PROOFSTEP]
simp only [dist_le_zero] at this
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : (↑f'symm.nnnorm)⁻¹ ≤ ↑c
this : y = f b
⊢ f b = y
[PROOFSTEP]
rw [this]
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have If' : (0 : ℝ) < f'symm.nnnorm := by rw [← inv_pos]; exact (NNReal.coe_nonneg _).trans_lt hc
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
⊢ 0 < ↑f'symm.nnnorm
[PROOFSTEP]
rw [← inv_pos]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
⊢ 0 < (↑f'symm.nnnorm)⁻¹
[PROOFSTEP]
exact (NNReal.coe_nonneg _).trans_lt hc
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have Icf' : (c : ℝ) * f'symm.nnnorm < 1 := by rwa [inv_eq_one_div, lt_div_iff If'] at hc
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
⊢ ↑c * ↑f'symm.nnnorm < 1
[PROOFSTEP]
rwa [inv_eq_one_div, lt_div_iff If'] at hc
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have Jf' : (f'symm.nnnorm : ℝ) ≠ 0 := ne_of_gt If'
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have Jcf' : (1 : ℝ) - c * f'symm.nnnorm ≠ 0 := by apply ne_of_gt;
linarith
/- We have to show that `y` can be written as `f x` for some `x ∈ closed_ball b ε`.
The idea of the proof is to apply the Banach contraction principle to the map
`g : x ↦ x + f'symm (y - f x)`, as a fixed point of this map satisfies `f x = y`.
When `f'symm` is a genuine linear inverse, `g` is a contracting map. In our case, since `f'symm`
is nonlinear, this map is not contracting (it is not even continuous), but still the proof of
the contraction theorem holds: `uₙ = gⁿ b` is a Cauchy sequence, converging exponentially fast
to the desired point `x`. Instead of appealing to general results, we check this by hand.
The main point is that `f (u n)` becomes exponentially close to `y`, and therefore
`dist (u (n+1)) (u n)` becomes exponentally small, making it possible to get an inductive
bound on `dist (u n) b`, from which one checks that `u n` stays in the ball on which one has a
control. Therefore, the bound can be checked at the next step, and so on inductively.
-/
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
⊢ 1 - ↑c * ↑f'symm.nnnorm ≠ 0
[PROOFSTEP]
apply ne_of_gt
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
⊢ 0 < 1 - ↑c * ↑f'symm.nnnorm
[PROOFSTEP]
linarith
/- We have to show that `y` can be written as `f x` for some `x ∈ closed_ball b ε`.
The idea of the proof is to apply the Banach contraction principle to the map
`g : x ↦ x + f'symm (y - f x)`, as a fixed point of this map satisfies `f x = y`.
When `f'symm` is a genuine linear inverse, `g` is a contracting map. In our case, since `f'symm`
is nonlinear, this map is not contracting (it is not even continuous), but still the proof of
the contraction theorem holds: `uₙ = gⁿ b` is a Cauchy sequence, converging exponentially fast
to the desired point `x`. Instead of appealing to general results, we check this by hand.
The main point is that `f (u n)` becomes exponentially close to `y`, and therefore
`dist (u (n+1)) (u n)` becomes exponentally small, making it possible to get an inductive
bound on `dist (u n) b`, from which one checks that `u n` stays in the ball on which one has a
control. Therefore, the bound can be checked at the next step, and so on inductively.
-/
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
set g := fun x => x + f'symm (y - f x) with hg
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
set u := fun n : ℕ => g^[n] b with hu
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have usucc : ∀ n, u (n + 1) = g (u n) := by
simp [hu, ← iterate_succ_apply' g _ b]
-- First bound: if `f z` is close to `y`, then `g z` is close to `z` (i.e., almost a fixed point).
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
⊢ ∀ (n : ℕ), u (n + 1) = g (u n)
[PROOFSTEP]
simp [hu, ← iterate_succ_apply' g _ b]
-- First bound: if `f z` is close to `y`, then `g z` is close to `z` (i.e., almost a fixed point).
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have A : ∀ z, dist (g z) z ≤ f'symm.nnnorm * dist (f z) y :=
by
intro z
rw [dist_eq_norm, hg, add_sub_cancel', dist_eq_norm']
exact
f'symm.bound
_
-- Second bound: if `z` and `g z` are in the set with good control, then `f (g z)` becomes closer
-- to `y` than `f z` was (this uses the linear approximation property, and is the reason for the
-- choice of the formula for `g`).
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
⊢ ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
[PROOFSTEP]
intro z
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
z : E
⊢ dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
[PROOFSTEP]
rw [dist_eq_norm, hg, add_sub_cancel', dist_eq_norm']
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
z : E
⊢ ‖ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)‖ ≤ ↑f'symm.nnnorm * ‖y - f z‖
[PROOFSTEP]
exact
f'symm.bound
_
-- Second bound: if `z` and `g z` are in the set with good control, then `f (g z)` becomes closer
-- to `y` than `f z` was (this uses the linear approximation property, and is the reason for the
-- choice of the formula for `g`).
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have B : ∀ z ∈ closedBall b ε, g z ∈ closedBall b ε → dist (f (g z)) y ≤ c * f'symm.nnnorm * dist (f z) y :=
by
intro z hz hgz
set v := f'symm (y - f z)
calc
dist (f (g z)) y = ‖f (z + v) - y‖ := by rw [dist_eq_norm]
_ = ‖f (z + v) - f z - f' v + f' v - (y - f z)‖ := by congr 1; abel
_ = ‖f (z + v) - f z - f' (z + v - z)‖ := by
simp only [ContinuousLinearMap.NonlinearRightInverse.right_inv, add_sub_cancel', sub_add_cancel]
_ ≤ c * ‖z + v - z‖ := (hf _ (hε hgz) _ (hε hz))
_ ≤ c * (f'symm.nnnorm * dist (f z) y) := by
gcongr
simpa [dist_eq_norm'] using f'symm.bound (y - f z)
_ = c * f'symm.nnnorm * dist (f z) y := by
ring
-- Third bound: a complicated bound on `dist w b` (that will show up in the induction) is enough
-- to check that `w` is in the ball on which one has controls. Will be used to check that `u n`
-- belongs to this ball for all `n`.
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
⊢ ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
[PROOFSTEP]
intro z hz hgz
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
⊢ dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
[PROOFSTEP]
set v := f'symm (y - f z)
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
[PROOFSTEP]
calc
dist (f (g z)) y = ‖f (z + v) - y‖ := by rw [dist_eq_norm]
_ = ‖f (z + v) - f z - f' v + f' v - (y - f z)‖ := by congr 1; abel
_ = ‖f (z + v) - f z - f' (z + v - z)‖ := by
simp only [ContinuousLinearMap.NonlinearRightInverse.right_inv, add_sub_cancel', sub_add_cancel]
_ ≤ c * ‖z + v - z‖ := (hf _ (hε hgz) _ (hε hz))
_ ≤ c * (f'symm.nnnorm * dist (f z) y) := by
gcongr
simpa [dist_eq_norm'] using f'symm.bound (y - f z)
_ = c * f'symm.nnnorm * dist (f z) y := by
ring
-- Third bound: a complicated bound on `dist w b` (that will show up in the induction) is enough
-- to check that `w` is in the ball on which one has controls. Will be used to check that `u n`
-- belongs to this ball for all `n`.
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ dist (f (g z)) y = ‖f (z + v) - y‖
[PROOFSTEP]
rw [dist_eq_norm]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ ‖f (z + v) - y‖ = ‖f (z + v) - f z - ↑f' v + ↑f' v - (y - f z)‖
[PROOFSTEP]
congr 1
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ f (z + v) - y = f (z + v) - f z - ↑f' v + ↑f' v - (y - f z)
[PROOFSTEP]
abel
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ f (z + v) - y = f (z + v) - f z - ↑f' v + ↑f' v - (y - f z)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ ‖f (z + v) - f z - ↑f' v + ↑f' v - (y - f z)‖ = ‖f (z + v) - f z - ↑f' (z + v - z)‖
[PROOFSTEP]
simp only [ContinuousLinearMap.NonlinearRightInverse.right_inv, add_sub_cancel', sub_add_cancel]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ ↑c * ‖z + v - z‖ ≤ ↑c * (↑f'symm.nnnorm * dist (f z) y)
[PROOFSTEP]
gcongr
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ ‖z + v - z‖ ≤ ↑f'symm.nnnorm * dist (f z) y
[PROOFSTEP]
simpa [dist_eq_norm'] using f'symm.bound (y - f z)
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
z : E
hz : z ∈ closedBall b ε
hgz : g z ∈ closedBall b ε
v : E := ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f z)
⊢ ↑c * (↑f'symm.nnnorm * dist (f z) y) = ↑c * ↑f'symm.nnnorm * dist (f z) y
[PROOFSTEP]
ring
-- Third bound: a complicated bound on `dist w b` (that will show up in the induction) is enough
-- to check that `w` is in the ball on which one has controls. Will be used to check that `u n`
-- belongs to this ball for all `n`.
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have C :
∀ (n : ℕ) (w : E),
dist w b ≤ f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) / (1 - c * f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε :=
fun n w hw ↦ by
apply hw.trans
rw [div_mul_eq_mul_div, div_le_iff]; swap; · linarith
calc
(f'symm.nnnorm : ℝ) * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) * dist (f b) y =
f'symm.nnnorm * dist (f b) y * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) :=
by ring
_ ≤ f'symm.nnnorm * dist (f b) y * 1 := by
gcongr
rw [sub_le_self_iff]
positivity
_ ≤ f'symm.nnnorm * (((f'symm.nnnorm : ℝ)⁻¹ - c) * ε) :=
by
rw [mul_one]
gcongr
exact mem_closedBall'.1 hy
_ = ε * (1 - c * f'symm.nnnorm) := by field_simp;
ring
/- Main inductive control: `f (u n)` becomes exponentially close to `y`, and therefore
`dist (u (n+1)) (u n)` becomes exponentally small, making it possible to get an inductive
bound on `dist (u n) b`, from which one checks that `u n` remains in the ball on which we
have estimates. -/
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ w ∈ closedBall b ε
[PROOFSTEP]
apply hw.trans
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y ≤ ε
[PROOFSTEP]
rw [div_mul_eq_mul_div, div_le_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) * dist (f b) y ≤ ε * (1 - ↑c * ↑f'symm.nnnorm)
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ 0 < 1 - ↑c * ↑f'symm.nnnorm
[PROOFSTEP]
swap
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ 0 < 1 - ↑c * ↑f'symm.nnnorm
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) * dist (f b) y ≤ ε * (1 - ↑c * ↑f'symm.nnnorm)
[PROOFSTEP]
calc
(f'symm.nnnorm : ℝ) * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) * dist (f b) y =
f'symm.nnnorm * dist (f b) y * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) :=
by ring
_ ≤ f'symm.nnnorm * dist (f b) y * 1 := by
gcongr
rw [sub_le_self_iff]
positivity
_ ≤ f'symm.nnnorm * (((f'symm.nnnorm : ℝ)⁻¹ - c) * ε) :=
by
rw [mul_one]
gcongr
exact mem_closedBall'.1 hy
_ = ε * (1 - c * f'symm.nnnorm) := by field_simp;
ring
/- Main inductive control: `f (u n)` becomes exponentially close to `y`, and therefore
`dist (u (n+1)) (u n)` becomes exponentally small, making it possible to get an inductive
bound on `dist (u n) b`, from which one checks that `u n` remains in the ball on which we
have estimates. -/
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) * dist (f b) y =
↑f'symm.nnnorm * dist (f b) y * (1 - (↑c * ↑f'symm.nnnorm) ^ n)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * dist (f b) y * (1 - (↑c * ↑f'symm.nnnorm) ^ n) ≤ ↑f'symm.nnnorm * dist (f b) y * 1
[PROOFSTEP]
gcongr
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ 1 - (↑c * ↑f'symm.nnnorm) ^ n ≤ 1
[PROOFSTEP]
rw [sub_le_self_iff]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ 0 ≤ (↑c * ↑f'symm.nnnorm) ^ n
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * dist (f b) y * 1 ≤ ↑f'symm.nnnorm * (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
[PROOFSTEP]
rw [mul_one]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * dist (f b) y ≤ ↑f'symm.nnnorm * (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
[PROOFSTEP]
gcongr
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (f b) y ≤ ((↑f'symm.nnnorm)⁻¹ - ↑c) * ε
[PROOFSTEP]
exact mem_closedBall'.1 hy
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε) = ε * (1 - ↑c * ↑f'symm.nnnorm)
[PROOFSTEP]
field_simp
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
n : ℕ
w : E
hw : dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * ((1 - ↑f'symm.nnnorm * ↑c) * ε) = ε * (1 - ↑c * ↑f'symm.nnnorm) * ↑f'symm.nnnorm
[PROOFSTEP]
ring
/- Main inductive control: `f (u n)` becomes exponentially close to `y`, and therefore
`dist (u (n+1)) (u n)` becomes exponentally small, making it possible to get an inductive
bound on `dist (u n) b`, from which one checks that `u n` remains in the ball on which we
have estimates. -/
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have D :
∀ n : ℕ,
dist (f (u n)) y ≤ ((c : ℝ) * f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤
f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) / (1 - (c : ℝ) * f'symm.nnnorm) * dist (f b) y :=
fun n ↦ by
induction' n with n IH; · simp [hu, le_refl]
rw [usucc]
have Ign :
dist (g (u n)) b ≤
f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n.succ) / (1 - c * f'symm.nnnorm) * dist (f b) y :=
calc
dist (g (u n)) b ≤ dist (g (u n)) (u n) + dist (u n) b := dist_triangle _ _ _
_ ≤ f'symm.nnnorm * dist (f (u n)) y + dist (u n) b := (add_le_add (A _) le_rfl)
_ ≤
f'symm.nnnorm * (((c : ℝ) * f'symm.nnnorm) ^ n * dist (f b) y) +
f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) / (1 - c * f'symm.nnnorm) * dist (f b) y :=
by gcongr; exact IH.1; exact IH.2
_ = f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n.succ) / (1 - (c : ℝ) * f'symm.nnnorm) * dist (f b) y := by
field_simp [Jcf', pow_succ]; ring
refine' ⟨_, Ign⟩
calc
dist (f (g (u n))) y ≤ c * f'symm.nnnorm * dist (f (u n)) y := B _ (C n _ IH.2) (C n.succ _ Ign)
_ ≤ (c : ℝ) * f'symm.nnnorm * (((c : ℝ) * f'symm.nnnorm) ^ n * dist (f b) y) :=
by
gcongr
apply IH.1
_ = ((c : ℝ) * f'symm.nnnorm) ^ n.succ * dist (f b) y := by simp only [pow_succ'];
ring
-- Deduce from the inductive bound that `uₙ` is a Cauchy sequence, therefore converging.
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
⊢ dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
⊢ dist (f (u Nat.zero)) y ≤ (↑c * ↑f'symm.nnnorm) ^ Nat.zero * dist (f b) y ∧
dist (u Nat.zero) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.zero) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
simp [hu, le_refl]
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (f (u (Nat.succ n))) y ≤ (↑c * ↑f'symm.nnnorm) ^ Nat.succ n * dist (f b) y ∧
dist (u (Nat.succ n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
rw [usucc]
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (f (g (u n))) y ≤ (↑c * ↑f'symm.nnnorm) ^ Nat.succ n * dist (f b) y ∧
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
have Ign :
dist (g (u n)) b ≤
f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n.succ) / (1 - c * f'symm.nnnorm) * dist (f b) y :=
calc
dist (g (u n)) b ≤ dist (g (u n)) (u n) + dist (u n) b := dist_triangle _ _ _
_ ≤ f'symm.nnnorm * dist (f (u n)) y + dist (u n) b := (add_le_add (A _) le_rfl)
_ ≤
f'symm.nnnorm * (((c : ℝ) * f'symm.nnnorm) ^ n * dist (f b) y) +
f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n) / (1 - c * f'symm.nnnorm) * dist (f b) y :=
by gcongr; exact IH.1; exact IH.2
_ = f'symm.nnnorm * (1 - ((c : ℝ) * f'symm.nnnorm) ^ n.succ) / (1 - (c : ℝ) * f'symm.nnnorm) * dist (f b) y := by
field_simp [Jcf', pow_succ]; ring
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * dist (f (u n)) y + dist (u n) b ≤
↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y) +
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y
case h₂
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
exact IH.1
[GOAL]
case h₂
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
exact IH.2
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y) +
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y =
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
field_simp [Jcf', pow_succ]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y) * (1 - ↑c * ↑f'symm.nnnorm) +
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) * dist (f b) y =
↑f'symm.nnnorm * (1 - ↑c * ↑f'symm.nnnorm * (↑c * ↑f'symm.nnnorm) ^ n) * dist (f b) y
[PROOFSTEP]
ring
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
Ign :
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (f (g (u n))) y ≤ (↑c * ↑f'symm.nnnorm) ^ Nat.succ n * dist (f b) y ∧
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
refine' ⟨_, Ign⟩
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
Ign :
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (f (g (u n))) y ≤ (↑c * ↑f'symm.nnnorm) ^ Nat.succ n * dist (f b) y
[PROOFSTEP]
calc
dist (f (g (u n))) y ≤ c * f'symm.nnnorm * dist (f (u n)) y := B _ (C n _ IH.2) (C n.succ _ Ign)
_ ≤ (c : ℝ) * f'symm.nnnorm * (((c : ℝ) * f'symm.nnnorm) ^ n * dist (f b) y) :=
by
gcongr
apply IH.1
_ = ((c : ℝ) * f'symm.nnnorm) ^ n.succ * dist (f b) y := by simp only [pow_succ'];
ring
-- Deduce from the inductive bound that `uₙ` is a Cauchy sequence, therefore converging.
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
Ign :
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑c * ↑f'symm.nnnorm * dist (f (u n)) y ≤ ↑c * ↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y)
[PROOFSTEP]
gcongr
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
Ign :
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y
[PROOFSTEP]
apply IH.1
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
Ign :
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑c * ↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y) = (↑c * ↑f'symm.nnnorm) ^ Nat.succ n * dist (f b) y
[PROOFSTEP]
simp only [pow_succ']
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
n : ℕ
IH :
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
Ign :
dist (g (u n)) b ≤
↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ Nat.succ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ ↑c * ↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y) =
(↑c * ↑f'symm.nnnorm) ^ n * (↑c * ↑f'symm.nnnorm) * dist (f b) y
[PROOFSTEP]
ring
-- Deduce from the inductive bound that `uₙ` is a Cauchy sequence, therefore converging.
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have : CauchySeq u
[GOAL]
case this
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
⊢ CauchySeq u
[PROOFSTEP]
refine cauchySeq_of_le_geometric _ (↑f'symm.nnnorm * dist (f b) y) Icf' fun n ↦ ?_
[GOAL]
case this
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
n : ℕ
⊢ dist (u n) (u (n + 1)) ≤ ↑f'symm.nnnorm * dist (f b) y * (↑c * ↑f'symm.nnnorm) ^ n
[PROOFSTEP]
calc
dist (u n) (u (n + 1)) = dist (g (u n)) (u n) := by rw [usucc, dist_comm]
_ ≤ f'symm.nnnorm * dist (f (u n)) y := (A _)
_ ≤ f'symm.nnnorm * (((c : ℝ) * f'symm.nnnorm) ^ n * dist (f b) y) :=
by
gcongr
exact (D n).1
_ = f'symm.nnnorm * dist (f b) y * ((c : ℝ) * f'symm.nnnorm) ^ n := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
n : ℕ
⊢ dist (u n) (u (n + 1)) = dist (g (u n)) (u n)
[PROOFSTEP]
rw [usucc, dist_comm]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
n : ℕ
⊢ ↑f'symm.nnnorm * dist (f (u n)) y ≤ ↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y)
[PROOFSTEP]
gcongr
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
n : ℕ
⊢ dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y
[PROOFSTEP]
exact (D n).1
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
n : ℕ
⊢ ↑f'symm.nnnorm * ((↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y) =
↑f'symm.nnnorm * dist (f b) y * (↑c * ↑f'symm.nnnorm) ^ n
[PROOFSTEP]
ring
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
obtain ⟨x, hx⟩ : ∃ x, Tendsto u atTop (𝓝 x) := cauchySeq_tendsto_of_complete this
[GOAL]
case inr.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
have xmem : x ∈ closedBall b ε := isClosed_ball.mem_of_tendsto hx (eventually_of_forall fun n => C n _ (D n).2)
[GOAL]
case inr.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
⊢ y ∈ f '' closedBall b ε
[PROOFSTEP]
refine'
⟨x, xmem, _⟩
-- It remains to check that `f x = y`. This follows from continuity of `f` on `closed_ball b ε`
-- and from the fact that `f uₙ` is converging to `y` by construction.
[GOAL]
case inr.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
⊢ f x = y
[PROOFSTEP]
have hx' : Tendsto u atTop (𝓝[closedBall b ε] x) :=
by
simp only [nhdsWithin, tendsto_inf, hx, true_and_iff, ge_iff_le, tendsto_principal]
exact eventually_of_forall fun n => C n _ (D n).2
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
⊢ Tendsto u atTop (𝓝[closedBall b ε] x)
[PROOFSTEP]
simp only [nhdsWithin, tendsto_inf, hx, true_and_iff, ge_iff_le, tendsto_principal]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
⊢ ∀ᶠ (a : ℕ) in atTop,
(fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x))^[a] b ∈ closedBall b ε
[PROOFSTEP]
exact eventually_of_forall fun n => C n _ (D n).2
[GOAL]
case inr.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
hx' : Tendsto u atTop (𝓝[closedBall b ε] x)
⊢ f x = y
[PROOFSTEP]
have T1 : Tendsto (f ∘ u) atTop (𝓝 (f x)) := (hf.continuousOn.mono hε x xmem).tendsto.comp hx'
[GOAL]
case inr.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
hx' : Tendsto u atTop (𝓝[closedBall b ε] x)
T1 : Tendsto (f ∘ u) atTop (𝓝 (f x))
⊢ f x = y
[PROOFSTEP]
have T2 : Tendsto (f ∘ u) atTop (𝓝 y) := by
rw [tendsto_iff_dist_tendsto_zero]
refine' squeeze_zero (fun _ => dist_nonneg) (fun n => (D n).1) _
simpa using (tendsto_pow_atTop_nhds_0_of_lt_1 (by positivity) Icf').mul tendsto_const_nhds
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
hx' : Tendsto u atTop (𝓝[closedBall b ε] x)
T1 : Tendsto (f ∘ u) atTop (𝓝 (f x))
⊢ Tendsto (f ∘ u) atTop (𝓝 y)
[PROOFSTEP]
rw [tendsto_iff_dist_tendsto_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
hx' : Tendsto u atTop (𝓝[closedBall b ε] x)
T1 : Tendsto (f ∘ u) atTop (𝓝 (f x))
⊢ Tendsto (fun b => dist ((f ∘ u) b) y) atTop (𝓝 0)
[PROOFSTEP]
refine' squeeze_zero (fun _ => dist_nonneg) (fun n => (D n).1) _
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
hx' : Tendsto u atTop (𝓝[closedBall b ε] x)
T1 : Tendsto (f ∘ u) atTop (𝓝 (f x))
⊢ Tendsto (fun n => (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y) atTop (𝓝 0)
[PROOFSTEP]
simpa using (tendsto_pow_atTop_nhds_0_of_lt_1 (by positivity) Icf').mul tendsto_const_nhds
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
hx' : Tendsto u atTop (𝓝[closedBall b ε] x)
T1 : Tendsto (f ∘ u) atTop (𝓝 (f x))
⊢ 0 ≤ ↑c * ↑f'symm.nnnorm
[PROOFSTEP]
positivity
[GOAL]
case inr.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
ε : ℝ
b : E
ε0 : 0 ≤ ε
hε : closedBall b ε ⊆ s
y : F
hy : y ∈ closedBall (f b) (((↑f'symm.nnnorm)⁻¹ - ↑c) * ε)
hc : ↑c < (↑f'symm.nnnorm)⁻¹
If' : 0 < ↑f'symm.nnnorm
Icf' : ↑c * ↑f'symm.nnnorm < 1
Jf' : ↑f'symm.nnnorm ≠ 0
Jcf' : 1 - ↑c * ↑f'symm.nnnorm ≠ 0
g : E → E := fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
hg : g = fun x => x + ContinuousLinearMap.NonlinearRightInverse.toFun f'symm (y - f x)
u : ℕ → E := fun n => g^[n] b
hu : u = fun n => g^[n] b
usucc : ∀ (n : ℕ), u (n + 1) = g (u n)
A : ∀ (z : E), dist (g z) z ≤ ↑f'symm.nnnorm * dist (f z) y
B : ∀ (z : E), z ∈ closedBall b ε → g z ∈ closedBall b ε → dist (f (g z)) y ≤ ↑c * ↑f'symm.nnnorm * dist (f z) y
C :
∀ (n : ℕ) (w : E),
dist w b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y →
w ∈ closedBall b ε
D :
∀ (n : ℕ),
dist (f (u n)) y ≤ (↑c * ↑f'symm.nnnorm) ^ n * dist (f b) y ∧
dist (u n) b ≤ ↑f'symm.nnnorm * (1 - (↑c * ↑f'symm.nnnorm) ^ n) / (1 - ↑c * ↑f'symm.nnnorm) * dist (f b) y
this : CauchySeq u
x : E
hx : Tendsto u atTop (𝓝 x)
xmem : x ∈ closedBall b ε
hx' : Tendsto u atTop (𝓝[closedBall b ε] x)
T1 : Tendsto (f ∘ u) atTop (𝓝 (f x))
T2 : Tendsto (f ∘ u) atTop (𝓝 y)
⊢ f x = y
[PROOFSTEP]
exact tendsto_nhds_unique T1 T2
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hs : IsOpen s
hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹
⊢ IsOpen (f '' s)
[PROOFSTEP]
cases' hc with hE hc
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hs : IsOpen s
hE : Subsingleton F
⊢ IsOpen (f '' s)
[PROOFSTEP]
skip
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hs : IsOpen s
hE : Subsingleton F
⊢ IsOpen (f '' s)
[PROOFSTEP]
apply isOpen_discrete
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hs : IsOpen s
hc : c < f'symm.nnnorm⁻¹
⊢ IsOpen (f '' s)
[PROOFSTEP]
simp only [isOpen_iff_mem_nhds, nhds_basis_closedBall.mem_iff, ball_image_iff] at hs ⊢
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hc : c < f'symm.nnnorm⁻¹
hs : ∀ (a : E), a ∈ s → ∃ i, 0 < i ∧ closedBall a i ⊆ s
⊢ ∀ (x : E), x ∈ s → ∃ i, 0 < i ∧ closedBall (f x) i ⊆ f '' s
[PROOFSTEP]
intro x hx
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hc : c < f'symm.nnnorm⁻¹
hs : ∀ (a : E), a ∈ s → ∃ i, 0 < i ∧ closedBall a i ⊆ s
x : E
hx : x ∈ s
⊢ ∃ i, 0 < i ∧ closedBall (f x) i ⊆ f '' s
[PROOFSTEP]
rcases hs x hx with ⟨ε, ε0, hε⟩
[GOAL]
case inr.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hc : c < f'symm.nnnorm⁻¹
hs : ∀ (a : E), a ∈ s → ∃ i, 0 < i ∧ closedBall a i ⊆ s
x : E
hx : x ∈ s
ε : ℝ
ε0 : 0 < ε
hε : closedBall x ε ⊆ s
⊢ ∃ i, 0 < i ∧ closedBall (f x) i ⊆ f '' s
[PROOFSTEP]
refine' ⟨(f'symm.nnnorm⁻¹ - c) * ε, mul_pos (sub_pos.2 hc) ε0, _⟩
[GOAL]
case inr.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε✝ : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
hc : c < f'symm.nnnorm⁻¹
hs : ∀ (a : E), a ∈ s → ∃ i, 0 < i ∧ closedBall a i ⊆ s
x : E
hx : x ∈ s
ε : ℝ
ε0 : 0 < ε
hε : closedBall x ε ⊆ s
⊢ closedBall (f x) ((↑f'symm.nnnorm⁻¹ - ↑c) * ε) ⊆ f '' s
[PROOFSTEP]
exact (hf.surjOn_closedBall_of_nonlinearRightInverse f'symm (le_of_lt ε0) hε).mono hε Subset.rfl
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
x : E
hs : s ∈ 𝓝 x
hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹
⊢ f '' s ∈ 𝓝 (f x)
[PROOFSTEP]
obtain ⟨t, hts, ht, xt⟩ : ∃ t, t ⊆ s ∧ IsOpen t ∧ x ∈ t := _root_.mem_nhds_iff.1 hs
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
x : E
hs : s ∈ 𝓝 x
hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹
t : Set E
hts : t ⊆ s
ht : IsOpen t
xt : x ∈ t
⊢ f '' s ∈ 𝓝 (f x)
[PROOFSTEP]
have := IsOpen.mem_nhds ((hf.mono_set hts).open_image f'symm ht hc) (mem_image_of_mem _ xt)
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
x : E
hs : s ∈ 𝓝 x
hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹
t : Set E
hts : t ⊆ s
ht : IsOpen t
xt : x ∈ t
this : f '' t ∈ 𝓝 (f x)
⊢ f '' s ∈ 𝓝 (f x)
[PROOFSTEP]
exact mem_of_superset this (image_subset _ hts)
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
x : E
hs : s ∈ 𝓝 x
hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹
⊢ map f (𝓝 x) = 𝓝 (f x)
[PROOFSTEP]
refine' le_antisymm ((hf.continuousOn x (mem_of_mem_nhds hs)).continuousAt hs) (le_map fun t ht => _)
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
x : E
hs : s ∈ 𝓝 x
hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹
t : Set E
ht : t ∈ 𝓝 x
⊢ f '' t ∈ 𝓝 (f x)
[PROOFSTEP]
have : f '' (s ∩ t) ∈ 𝓝 (f x) := (hf.mono_set (inter_subset_left s t)).image_mem_nhds f'symm (inter_mem hs ht) hc
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
s : Set E
c : ℝ≥0
f' : E →L[𝕜] F
hf : ApproximatesLinearOn f f' s c
f'symm : ContinuousLinearMap.NonlinearRightInverse f'
x : E
hs : s ∈ 𝓝 x
hc : Subsingleton F ∨ c < f'symm.nnnorm⁻¹
t : Set E
ht : t ∈ 𝓝 x
this : f '' (s ∩ t) ∈ 𝓝 (f x)
⊢ f '' t ∈ 𝓝 (f x)
[PROOFSTEP]
exact mem_of_superset this (image_subset _ (inter_subset_right _ _))
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ AntilipschitzWith (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ (restrict s f)
[PROOFSTEP]
cases' hc with hE hc
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hE : Subsingleton E
⊢ AntilipschitzWith (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ (restrict s f)
[PROOFSTEP]
haveI : Subsingleton s := ⟨fun x y => Subtype.eq <| @Subsingleton.elim _ hE _ _⟩
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hE : Subsingleton E
this : Subsingleton ↑s
⊢ AntilipschitzWith (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ (restrict s f)
[PROOFSTEP]
exact AntilipschitzWith.of_subsingleton
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ AntilipschitzWith (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ (restrict s f)
[PROOFSTEP]
convert (f'.antilipschitz.restrict s).add_lipschitzWith hf.lipschitz_sub hc
[GOAL]
case h.e'_6.h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
x✝ : ↑s
⊢ restrict s f x✝ = restrict s (↑f') x✝ + (f ↑x✝ - ↑↑f' ↑x✝)
[PROOFSTEP]
simp [restrict]
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ Surjective f
[PROOFSTEP]
cases' hc with hE hc
[GOAL]
case inl
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hE : Subsingleton E
⊢ Surjective f
[PROOFSTEP]
haveI : Subsingleton F := (Equiv.subsingleton_congr f'.toEquiv).1 hE
[GOAL]
case inl
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hE : Subsingleton E
this : Subsingleton F
⊢ Surjective f
[PROOFSTEP]
exact surjective_to_subsingleton _
[GOAL]
case inr
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ Surjective f
[PROOFSTEP]
apply forall_of_forall_mem_closedBall (fun y : F => ∃ a, f a = y) (f 0) _
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ ∃ᶠ (R : ℝ) in atTop, ∀ (y : F), y ∈ closedBall (f 0) R → (fun y => ∃ a, f a = y) y
[PROOFSTEP]
have hc' : (0 : ℝ) < N⁻¹ - c := by rw [sub_pos]; exact hc
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
[PROOFSTEP]
rw [sub_pos]
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ ↑c < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
[PROOFSTEP]
exact hc
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
⊢ ∃ᶠ (R : ℝ) in atTop, ∀ (y : F), y ∈ closedBall (f 0) R → (fun y => ∃ a, f a = y) y
[PROOFSTEP]
let p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ Set.range f
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ range f
⊢ ∃ᶠ (R : ℝ) in atTop, ∀ (y : F), y ∈ closedBall (f 0) R → (fun y => ∃ a, f a = y) y
[PROOFSTEP]
have hp : ∀ᶠ r : ℝ in atTop, p ((N⁻¹ - c) * r) :=
by
have hr : ∀ᶠ r : ℝ in atTop, 0 ≤ r := eventually_ge_atTop 0
refine' hr.mono fun r hr => Subset.trans _ (image_subset_range f (closedBall 0 r))
refine' hf.surjOn_closedBall_of_nonlinearRightInverse f'.toNonlinearRightInverse hr _
exact subset_univ _
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ range f
⊢ ∀ᶠ (r : ℝ) in atTop, p ((↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c) * r)
[PROOFSTEP]
have hr : ∀ᶠ r : ℝ in atTop, 0 ≤ r := eventually_ge_atTop 0
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ range f
hr : ∀ᶠ (r : ℝ) in atTop, 0 ≤ r
⊢ ∀ᶠ (r : ℝ) in atTop, p ((↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c) * r)
[PROOFSTEP]
refine' hr.mono fun r hr => Subset.trans _ (image_subset_range f (closedBall 0 r))
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ range f
hr✝ : ∀ᶠ (r : ℝ) in atTop, 0 ≤ r
r : ℝ
hr : 0 ≤ r
⊢ closedBall (f 0) ((↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c) * r) ⊆ f '' closedBall 0 r
[PROOFSTEP]
refine' hf.surjOn_closedBall_of_nonlinearRightInverse f'.toNonlinearRightInverse hr _
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ range f
hr✝ : ∀ᶠ (r : ℝ) in atTop, 0 ≤ r
r : ℝ
hr : 0 ≤ r
⊢ closedBall 0 r ⊆ univ
[PROOFSTEP]
exact subset_univ _
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ range f
hp : ∀ᶠ (r : ℝ) in atTop, p ((↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c) * r)
⊢ ∃ᶠ (R : ℝ) in atTop, ∀ (y : F), y ∈ closedBall (f 0) R → (fun y => ∃ a, f a = y) y
[PROOFSTEP]
refine' ((tendsto_id.const_mul_atTop hc').frequently hp.frequently).mono _
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
inst✝ : CompleteSpace E
hf : ApproximatesLinearOn f (↑f') univ c
hc : c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hc' : 0 < ↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c
p : ℝ → Prop := fun R => closedBall (f 0) R ⊆ range f
hp : ∀ᶠ (r : ℝ) in atTop, p ((↑‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - ↑c) * r)
⊢ ∀ (x : ℝ), p x → ∀ (y : F), y ∈ closedBall (f 0) x → (fun y => ∃ a, f a = y) y
[PROOFSTEP]
exact fun R h y hy => h hy
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ ContinuousOn (↑(LocalEquiv.symm (toLocalEquiv hf hc))) (f '' s)
[PROOFSTEP]
apply continuousOn_iff_continuous_restrict.2
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ Continuous (restrict (f '' s) ↑(LocalEquiv.symm (toLocalEquiv hf hc)))
[PROOFSTEP]
refine' ((hf.antilipschitz hc).to_rightInvOn' _ (hf.toLocalEquiv hc).right_inv').continuous
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ MapsTo (fun x => LocalEquiv.invFun (toLocalEquiv hf hc) x) (toLocalEquiv hf hc).target s
[PROOFSTEP]
exact fun x hx => (hf.toLocalEquiv hc).map_target hx
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
x : F
hx : x ∈ f '' s
y : F
hy : y ∈ f '' s
⊢ ‖↑(LocalEquiv.symm (toLocalEquiv hf hc)) x - ↑(LocalEquiv.symm (toLocalEquiv hf hc)) y -
↑↑(ContinuousLinearEquiv.symm f') (x - y)‖ ≤
↑(‖↑(ContinuousLinearEquiv.symm f')‖₊ * (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * c) * ‖x - y‖
[PROOFSTEP]
set A := hf.toLocalEquiv hc
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
x : F
hx : x ∈ f '' s
y : F
hy : y ∈ f '' s
A : LocalEquiv E F := toLocalEquiv hf hc
⊢ ‖↑(LocalEquiv.symm A) x - ↑(LocalEquiv.symm A) y - ↑↑(ContinuousLinearEquiv.symm f') (x - y)‖ ≤
↑(‖↑(ContinuousLinearEquiv.symm f')‖₊ * (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * c) * ‖x - y‖
[PROOFSTEP]
have Af : ∀ z, A z = f z := fun z => rfl
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
x : F
hx : x ∈ f '' s
y : F
hy : y ∈ f '' s
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
⊢ ‖↑(LocalEquiv.symm A) x - ↑(LocalEquiv.symm A) y - ↑↑(ContinuousLinearEquiv.symm f') (x - y)‖ ≤
↑(‖↑(ContinuousLinearEquiv.symm f')‖₊ * (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * c) * ‖x - y‖
[PROOFSTEP]
rcases(mem_image _ _ _).1 hx with ⟨x', x's, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
y : F
hy : y ∈ f '' s
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
⊢ ‖↑(LocalEquiv.symm A) (f x') - ↑(LocalEquiv.symm A) y - ↑↑(ContinuousLinearEquiv.symm f') (f x' - y)‖ ≤
↑(‖↑(ContinuousLinearEquiv.symm f')‖₊ * (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * c) * ‖f x' - y‖
[PROOFSTEP]
rcases(mem_image _ _ _).1 hy with ⟨y', y's, rfl⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ‖↑(LocalEquiv.symm A) (f x') - ↑(LocalEquiv.symm A) (f y') - ↑↑(ContinuousLinearEquiv.symm f') (f x' - f y')‖ ≤
↑(‖↑(ContinuousLinearEquiv.symm f')‖₊ * (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * c) * ‖f x' - f y'‖
[PROOFSTEP]
rw [← Af x', ← Af y', A.left_inv x's, A.left_inv y's]
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ‖x' - y' - ↑↑(ContinuousLinearEquiv.symm f') (↑A x' - ↑A y')‖ ≤
↑(‖↑(ContinuousLinearEquiv.symm f')‖₊ * (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * c) * ‖↑A x' - ↑A y'‖
[PROOFSTEP]
calc
‖x' - y' - f'.symm (A x' - A y')‖ ≤ N * ‖f' (x' - y' - f'.symm (A x' - A y'))‖ :=
(f' : E →L[𝕜] F).bound_of_antilipschitz f'.antilipschitz _
_ = N * ‖A y' - A x' - f' (y' - x')‖ := by
congr 2
simp only [ContinuousLinearEquiv.apply_symm_apply, ContinuousLinearEquiv.map_sub]
abel
_ ≤ N * (c * ‖y' - x'‖) := (mul_le_mul_of_nonneg_left (hf _ y's _ x's) (NNReal.coe_nonneg _))
_ ≤ N * (c * (((N⁻¹ - c)⁻¹ : ℝ≥0) * ‖A y' - A x'‖)) := by
gcongr
rw [← dist_eq_norm, ← dist_eq_norm]
exact (hf.antilipschitz hc).le_mul_dist ⟨y', y's⟩ ⟨x', x's⟩
_ = (N * (N⁻¹ - c)⁻¹ * c : ℝ≥0) * ‖A x' - A y'‖ := by simp only [norm_sub_rev, NNReal.coe_mul]; ring
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ↑‖↑(ContinuousLinearEquiv.symm f')‖₊ * ‖↑f' (x' - y' - ↑(ContinuousLinearEquiv.symm f') (↑A x' - ↑A y'))‖ =
↑‖↑(ContinuousLinearEquiv.symm f')‖₊ * ‖↑A y' - ↑A x' - ↑f' (y' - x')‖
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ↑f' (x' - y' - ↑(ContinuousLinearEquiv.symm f') (↑A x' - ↑A y')) = ↑A y' - ↑A x' - ↑f' (y' - x')
[PROOFSTEP]
simp only [ContinuousLinearEquiv.apply_symm_apply, ContinuousLinearEquiv.map_sub]
[GOAL]
case e_a.e_a
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ↑f' x' - ↑f' y' - (↑(toLocalEquiv hf hc) x' - ↑(toLocalEquiv hf hc) y') =
↑(toLocalEquiv hf hc) y' - ↑(toLocalEquiv hf hc) x' - (↑f' y' - ↑f' x')
[PROOFSTEP]
abel
[GOAL]
case e_a.e_a
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ↑f' x' - ↑f' y' - (↑(toLocalEquiv hf hc) x' - ↑(toLocalEquiv hf hc) y') =
↑(toLocalEquiv hf hc) y' - ↑(toLocalEquiv hf hc) x' - (↑f' y' - ↑f' x')
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ↑‖↑(ContinuousLinearEquiv.symm f')‖₊ * (↑c * ‖y' - x'‖) ≤
↑‖↑(ContinuousLinearEquiv.symm f')‖₊ * (↑c * (↑(‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * ‖↑A y' - ↑A x'‖))
[PROOFSTEP]
gcongr
[GOAL]
case h.h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ‖y' - x'‖ ≤ ↑(‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * ‖↑A y' - ↑A x'‖
[PROOFSTEP]
rw [← dist_eq_norm, ← dist_eq_norm]
[GOAL]
case h.h
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ dist y' x' ≤ ↑(‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * dist (↑A y') (↑A x')
[PROOFSTEP]
exact (hf.antilipschitz hc).le_mul_dist ⟨y', y's⟩ ⟨x', x's⟩
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ↑‖↑(ContinuousLinearEquiv.symm f')‖₊ * (↑c * (↑(‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * ‖↑A y' - ↑A x'‖)) =
↑(‖↑(ContinuousLinearEquiv.symm f')‖₊ * (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * c) * ‖↑A x' - ↑A y'‖
[PROOFSTEP]
simp only [norm_sub_rev, NNReal.coe_mul]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
A : LocalEquiv E F := toLocalEquiv hf hc
Af : ∀ (z : E), ↑A z = f z
x' : E
x's : x' ∈ s
hx : f x' ∈ f '' s
y' : E
y's : y' ∈ s
hy : f y' ∈ f '' s
⊢ ↑‖↑(ContinuousLinearEquiv.symm f')‖₊ *
(↑c * (↑(‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * ‖↑(toLocalEquiv hf hc) x' - ↑(toLocalEquiv hf hc) y'‖)) =
↑‖↑(ContinuousLinearEquiv.symm f')‖₊ * ↑(‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ - c)⁻¹ * ↑c *
‖↑(toLocalEquiv hf hc) x' - ↑(toLocalEquiv hf hc) y'‖
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
hs : IsOpen s
⊢ Subsingleton F ∨ c < (ContinuousLinearEquiv.toNonlinearRightInverse f').nnnorm⁻¹
[PROOFSTEP]
rwa [f'.toEquiv.subsingleton_congr] at hc
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') univ c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ E ≃ₜ F
[PROOFSTEP]
refine' (hf.toLocalHomeomorph _ _ hc isOpen_univ).toHomeomorphOfSourceEqUnivTargetEqUniv rfl _
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') univ c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ (toLocalHomeomorph f univ hf hc (_ : IsOpen univ)).toLocalEquiv.target = univ
[PROOFSTEP]
change f '' univ = univ
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') univ c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ f '' univ = univ
[PROOFSTEP]
rw [image_univ, range_iff_surjective]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
s : Set E
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') univ c
hc : Subsingleton E ∨ c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ Surjective f
[PROOFSTEP]
exact hf.surjective hc
[GOAL]
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
⊢ ∃ g, EqOn f (↑g) s
[PROOFSTEP]
obtain ⟨u, hu, uf⟩ : ∃ u : E → F, LipschitzWith (lipschitzExtensionConstant F * c) u ∧ EqOn (f - ⇑f') u s :=
hf.lipschitzOnWith.extend_finite_dimension
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
⊢ ∃ g, EqOn f (↑g) s
[PROOFSTEP]
let g : E → F := fun x => f' x + u x
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
⊢ ∃ g, EqOn f (↑g) s
[PROOFSTEP]
have fg : EqOn f g s := fun x hx => by simp_rw [← uf hx, Pi.sub_apply, add_sub_cancel'_right]
[GOAL]
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
x : E
hx : x ∈ s
⊢ f x = g x
[PROOFSTEP]
simp_rw [← uf hx, Pi.sub_apply, add_sub_cancel'_right]
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
⊢ ∃ g, EqOn f (↑g) s
[PROOFSTEP]
have hg : ApproximatesLinearOn g (f' : E →L[ℝ] F) univ (lipschitzExtensionConstant F * c) :=
by
apply LipschitzOnWith.approximatesLinearOn
rw [lipschitz_on_univ]
convert hu
ext x
simp only [add_sub_cancel', ContinuousLinearEquiv.coe_coe, Pi.sub_apply]
[GOAL]
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
⊢ ApproximatesLinearOn g (↑f') univ (lipschitzExtensionConstant F * c)
[PROOFSTEP]
apply LipschitzOnWith.approximatesLinearOn
[GOAL]
case a
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
⊢ LipschitzOnWith (lipschitzExtensionConstant F * c) (g - ↑↑f') univ
[PROOFSTEP]
rw [lipschitz_on_univ]
[GOAL]
case a
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
⊢ LipschitzWith (lipschitzExtensionConstant F * c) (g - ↑↑f')
[PROOFSTEP]
convert hu
[GOAL]
case h.e'_6
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
⊢ g - ↑↑f' = u
[PROOFSTEP]
ext x
[GOAL]
case h.e'_6.h
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
x : E
⊢ (g - ↑↑f') x = u x
[PROOFSTEP]
simp only [add_sub_cancel', ContinuousLinearEquiv.coe_coe, Pi.sub_apply]
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
hg : ApproximatesLinearOn g (↑f') univ (lipschitzExtensionConstant F * c)
⊢ ∃ g, EqOn f (↑g) s
[PROOFSTEP]
haveI : FiniteDimensional ℝ E := f'.symm.finiteDimensional
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E✝ : Type u_2
inst✝¹³ : NormedAddCommGroup E✝
inst✝¹² : NormedSpace 𝕜 E✝
F✝ : Type u_3
inst✝¹¹ : NormedAddCommGroup F✝
inst✝¹⁰ : NormedSpace 𝕜 F✝
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
inst✝⁵ : CompleteSpace E✝
f✝ : E✝ → F✝
f'✝ : E✝ ≃L[𝕜] F✝
s✝ : Set E✝
c✝ : ℝ≥0
E : Type u_6
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
F : Type u_7
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
inst✝ : FiniteDimensional ℝ F
s : Set E
f : E → F
f' : E ≃L[ℝ] F
c : ℝ≥0
hf : ApproximatesLinearOn f (↑f') s c
hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹
u : E → F
hu : LipschitzWith (lipschitzExtensionConstant F * c) u
uf : EqOn (f - ↑f') u s
g : E → F := fun x => ↑f' x + u x
fg : EqOn f g s
hg : ApproximatesLinearOn g (↑f') univ (lipschitzExtensionConstant F * c)
this : FiniteDimensional ℝ E
⊢ ∃ g, EqOn f (↑g) s
[PROOFSTEP]
exact ⟨hg.toHomeomorph g hc, fg⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
c : ℝ≥0
hc : Subsingleton E ∨ 0 < c
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f f' s c
[PROOFSTEP]
cases' hc with hE hc
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
c : ℝ≥0
hE : Subsingleton E
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f f' s c
[PROOFSTEP]
refine' ⟨univ, IsOpen.mem_nhds isOpen_univ trivial, fun x _ y _ => _⟩
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
c : ℝ≥0
hE : Subsingleton E
x : E
x✝¹ : x ∈ univ
y : E
x✝ : y ∈ univ
⊢ ‖f x - f y - ↑f' (x - y)‖ ≤ ↑c * ‖x - y‖
[PROOFSTEP]
simp [@Subsingleton.elim E hE x y]
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
c : ℝ≥0
hc : 0 < c
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f f' s c
[PROOFSTEP]
have := hf.def hc
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
c : ℝ≥0
hc : 0 < c
this : ∀ᶠ (x : E × E) in 𝓝 (a, a), ‖f x.fst - f x.snd - ↑f' (x.fst - x.snd)‖ ≤ (fun a => ↑a) c * ‖x.fst - x.snd‖
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f f' s c
[PROOFSTEP]
rw [nhds_prod_eq, Filter.Eventually, mem_prod_same_iff] at this
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
c : ℝ≥0
hc : 0 < c
this : ∃ t, t ∈ 𝓝 a ∧ t ×ˢ t ⊆ {x | ‖f x.fst - f x.snd - ↑f' (x.fst - x.snd)‖ ≤ (fun a => ↑a) c * ‖x.fst - x.snd‖}
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f f' s c
[PROOFSTEP]
rcases this with ⟨s, has, hs⟩
[GOAL]
case inr.intro.intro
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
ε : ℝ
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
c : ℝ≥0
hc : 0 < c
s : Set E
has : s ∈ 𝓝 a
hs : s ×ˢ s ⊆ {x | ‖f x.fst - f x.snd - ↑f' (x.fst - x.snd)‖ ≤ (fun a => ↑a) c * ‖x.fst - x.snd‖}
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f f' s c
[PROOFSTEP]
exact ⟨s, has, fun x hx y hy => hs (mk_mem_prod hx hy)⟩
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
⊢ map f (𝓝 a) = 𝓝 (f a)
[PROOFSTEP]
let f'symm := f'.nonlinearRightInverseOfSurjective h
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
f'symm : ContinuousLinearMap.NonlinearRightInverse f' := ContinuousLinearMap.nonlinearRightInverseOfSurjective f' h
⊢ map f (𝓝 a) = 𝓝 (f a)
[PROOFSTEP]
set c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2 with hc
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
f'symm : ContinuousLinearMap.NonlinearRightInverse f' := ContinuousLinearMap.nonlinearRightInverseOfSurjective f' h
c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2
hc : c = f'symm.nnnorm⁻¹ / 2
⊢ map f (𝓝 a) = 𝓝 (f a)
[PROOFSTEP]
have f'symm_pos : 0 < f'symm.nnnorm := f'.nonlinearRightInverseOfSurjective_nnnorm_pos h
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
f'symm : ContinuousLinearMap.NonlinearRightInverse f' := ContinuousLinearMap.nonlinearRightInverseOfSurjective f' h
c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2
hc : c = f'symm.nnnorm⁻¹ / 2
f'symm_pos : 0 < f'symm.nnnorm
⊢ map f (𝓝 a) = 𝓝 (f a)
[PROOFSTEP]
have cpos : 0 < c := by simp [hc, half_pos, inv_pos, f'symm_pos]
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
f'symm : ContinuousLinearMap.NonlinearRightInverse f' := ContinuousLinearMap.nonlinearRightInverseOfSurjective f' h
c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2
hc : c = f'symm.nnnorm⁻¹ / 2
f'symm_pos : 0 < f'symm.nnnorm
⊢ 0 < c
[PROOFSTEP]
simp [hc, half_pos, inv_pos, f'symm_pos]
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
f'symm : ContinuousLinearMap.NonlinearRightInverse f' := ContinuousLinearMap.nonlinearRightInverseOfSurjective f' h
c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2
hc : c = f'symm.nnnorm⁻¹ / 2
f'symm_pos : 0 < f'symm.nnnorm
cpos : 0 < c
⊢ map f (𝓝 a) = 𝓝 (f a)
[PROOFSTEP]
obtain ⟨s, s_nhds, hs⟩ : ∃ s ∈ 𝓝 a, ApproximatesLinearOn f f' s c := hf.approximates_deriv_on_nhds (Or.inr cpos)
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
f'symm : ContinuousLinearMap.NonlinearRightInverse f' := ContinuousLinearMap.nonlinearRightInverseOfSurjective f' h
c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2
hc : c = f'symm.nnnorm⁻¹ / 2
f'symm_pos : 0 < f'symm.nnnorm
cpos : 0 < c
s : Set E
s_nhds : s ∈ 𝓝 a
hs : ApproximatesLinearOn f f' s c
⊢ map f (𝓝 a) = 𝓝 (f a)
[PROOFSTEP]
apply hs.map_nhds_eq f'symm s_nhds (Or.inr (NNReal.half_lt_self _))
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : NormedSpace 𝕜 G
G' : Type u_5
inst✝³ : NormedAddCommGroup G'
inst✝² : NormedSpace 𝕜 G'
ε : ℝ
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
f : E → F
f' : E →L[𝕜] F
a : E
hf : HasStrictFDerivAt f f' a
h : LinearMap.range f' = ⊤
f'symm : ContinuousLinearMap.NonlinearRightInverse f' := ContinuousLinearMap.nonlinearRightInverseOfSurjective f' h
c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2
hc : c = f'symm.nnnorm⁻¹ / 2
f'symm_pos : 0 < f'symm.nnnorm
cpos : 0 < c
s : Set E
s_nhds : s ∈ 𝓝 a
hs : ApproximatesLinearOn f f' s c
⊢ f'symm.nnnorm⁻¹ ≠ 0
[PROOFSTEP]
simp [ne_of_gt f'symm_pos]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
a : E
hf : HasStrictFDerivAt f (↑f') a
⊢ ∃ s, a ∈ s ∧ IsOpen s ∧ ApproximatesLinearOn f (↑f') s (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ / 2)
[PROOFSTEP]
simp only [← and_assoc]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
a : E
hf : HasStrictFDerivAt f (↑f') a
⊢ ∃ s, (a ∈ s ∧ IsOpen s) ∧ ApproximatesLinearOn f (↑f') s (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ / 2)
[PROOFSTEP]
refine' ((nhds_basis_opens a).exists_iff _).1 _
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
a : E
hf : HasStrictFDerivAt f (↑f') a
⊢ ∀ ⦃s t : Set E⦄,
s ⊆ t →
ApproximatesLinearOn f (↑f') t (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ / 2) →
ApproximatesLinearOn f (↑f') s (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ / 2)
case refine'_2
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
a : E
hf : HasStrictFDerivAt f (↑f') a
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f (↑f') s (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ / 2)
[PROOFSTEP]
exact fun s t => ApproximatesLinearOn.mono_set
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
a : E
hf : HasStrictFDerivAt f (↑f') a
⊢ ∃ s, s ∈ 𝓝 a ∧ ApproximatesLinearOn f (↑f') s (‖↑(ContinuousLinearEquiv.symm f')‖₊⁻¹ / 2)
[PROOFSTEP]
exact hf.approximates_deriv_on_nhds <| f'.subsingleton_or_nnnorm_symm_pos.imp id fun hf' => half_pos <| inv_pos.2 hf'
[GOAL]
𝕜 : Type u_1
inst✝⁹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
G' : Type u_5
inst✝² : NormedAddCommGroup G'
inst✝¹ : NormedSpace 𝕜 G'
ε : ℝ
inst✝ : CompleteSpace E
f : E → F
f' : E ≃L[𝕜] F
a : E
hf : HasStrictFDerivAt f (↑f') a
⊢ HasStrictFDerivAt (↑(toLocalHomeomorph f hf)) (↑f') (↑(LocalHomeomorph.symm (toLocalHomeomorph f hf)) (f a))
[PROOFSTEP]
simpa [← localInverse_def] using hf
[GOAL]
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹¹ : NormedAddCommGroup F
inst✝¹⁰ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
𝕂 : Type u_6
inst✝⁵ : IsROrC 𝕂
E' : Type u_7
inst✝⁴ : NormedAddCommGroup E'
inst✝³ : NormedSpace 𝕂 E'
F' : Type u_8
inst✝² : NormedAddCommGroup F'
inst✝¹ : NormedSpace 𝕂 F'
inst✝ : CompleteSpace E'
f : E' → F'
f' : E' ≃L[𝕂] F'
a : E'
n : ℕ∞
hf : ContDiffAt 𝕂 n f a
hf' : HasFDerivAt f (↑f') a
hn : 1 ≤ n
⊢ ContDiffAt 𝕂 n (localInverse hf hf' hn) (f a)
[PROOFSTEP]
have := hf.localInverse_apply_image hf' hn
[GOAL]
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹¹ : NormedAddCommGroup F
inst✝¹⁰ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
𝕂 : Type u_6
inst✝⁵ : IsROrC 𝕂
E' : Type u_7
inst✝⁴ : NormedAddCommGroup E'
inst✝³ : NormedSpace 𝕂 E'
F' : Type u_8
inst✝² : NormedAddCommGroup F'
inst✝¹ : NormedSpace 𝕂 F'
inst✝ : CompleteSpace E'
f : E' → F'
f' : E' ≃L[𝕂] F'
a : E'
n : ℕ∞
hf : ContDiffAt 𝕂 n f a
hf' : HasFDerivAt f (↑f') a
hn : 1 ≤ n
this : localInverse hf hf' hn (f a) = a
⊢ ContDiffAt 𝕂 n (localInverse hf hf' hn) (f a)
[PROOFSTEP]
apply (hf.toLocalHomeomorph f hf' hn).contDiffAt_symm (image_mem_toLocalHomeomorph_target hf hf' hn)
[GOAL]
case hf₀'
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹¹ : NormedAddCommGroup F
inst✝¹⁰ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
𝕂 : Type u_6
inst✝⁵ : IsROrC 𝕂
E' : Type u_7
inst✝⁴ : NormedAddCommGroup E'
inst✝³ : NormedSpace 𝕂 E'
F' : Type u_8
inst✝² : NormedAddCommGroup F'
inst✝¹ : NormedSpace 𝕂 F'
inst✝ : CompleteSpace E'
f : E' → F'
f' : E' ≃L[𝕂] F'
a : E'
n : ℕ∞
hf : ContDiffAt 𝕂 n f a
hf' : HasFDerivAt f (↑f') a
hn : 1 ≤ n
this : localInverse hf hf' hn (f a) = a
⊢ HasFDerivAt (↑(toLocalHomeomorph f hf hf' hn)) (↑?m.805032)
(↑(LocalHomeomorph.symm (toLocalHomeomorph f hf hf' hn)) (f a))
[PROOFSTEP]
convert hf'
[GOAL]
case hf
𝕜 : Type u_1
inst✝¹⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹¹ : NormedAddCommGroup F
inst✝¹⁰ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁹ : NormedAddCommGroup G
inst✝⁸ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁷ : NormedAddCommGroup G'
inst✝⁶ : NormedSpace 𝕜 G'
ε : ℝ
𝕂 : Type u_6
inst✝⁵ : IsROrC 𝕂
E' : Type u_7
inst✝⁴ : NormedAddCommGroup E'
inst✝³ : NormedSpace 𝕂 E'
F' : Type u_8
inst✝² : NormedAddCommGroup F'
inst✝¹ : NormedSpace 𝕂 F'
inst✝ : CompleteSpace E'
f : E' → F'
f' : E' ≃L[𝕂] F'
a : E'
n : ℕ∞
hf : ContDiffAt 𝕂 n f a
hf' : HasFDerivAt f (↑f') a
hn : 1 ≤ n
this : localInverse hf hf' hn (f a) = a
⊢ ContDiffAt 𝕂 n (↑(toLocalHomeomorph f hf hf' hn)) (↑(LocalHomeomorph.symm (toLocalHomeomorph f hf hf' hn)) (f a))
[PROOFSTEP]
convert hf
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Inverse", "llama_tokens": 109865} |
{"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Star", "llama_tokens": 0} |
|
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
⊢ ∀ ⦃x : ℝ⦄, x ∈ Icc a b → f x ≤ B x
[PROOFSTEP]
change Icc a b ⊆ {x | f x ≤ B x}
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
⊢ Icc a b ⊆ {x | f x ≤ B x}
[PROOFSTEP]
set s := {x | f x ≤ B x} ∩ Icc a b
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
⊢ Icc a b ⊆ {x | f x ≤ B x}
[PROOFSTEP]
have A : ContinuousOn (fun x => (f x, B x)) (Icc a b) := hf.prod hB
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
⊢ Icc a b ⊆ {x | f x ≤ B x}
[PROOFSTEP]
have : IsClosed s := by
simp only [inter_comm]
exact A.preimage_closed_of_closed isClosed_Icc OrderClosedTopology.isClosed_le'
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
⊢ IsClosed s
[PROOFSTEP]
simp only [inter_comm]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
⊢ IsClosed (Icc a b ∩ {x | f x ≤ B x})
[PROOFSTEP]
exact A.preimage_closed_of_closed isClosed_Icc OrderClosedTopology.isClosed_le'
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
⊢ Icc a b ⊆ {x | f x ≤ B x}
[PROOFSTEP]
apply this.Icc_subset_of_forall_exists_gt ha
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
⊢ ∀ (x : ℝ), x ∈ {x | f x ≤ B x} ∩ Ico a b → ∀ (y : ℝ), y ∈ Ioi x → Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
rintro x ⟨hxB : f x ≤ B x, xab⟩ y hy
[GOAL]
case intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
cases' hxB.lt_or_eq with hxB hxB
[GOAL]
case intro.inl
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x < B x
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
refine' nonempty_of_mem (inter_mem _ (Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, hy⟩))
[GOAL]
case intro.inl
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x < B x
⊢ {x | f x ≤ B x} ∈ 𝓝[Ioi x] x
[PROOFSTEP]
have : ∀ᶠ x in 𝓝[Icc a b] x, f x < B x :=
A x (Ico_subset_Icc_self xab) (IsOpen.mem_nhds (isOpen_lt continuous_fst continuous_snd) hxB)
[GOAL]
case intro.inl
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this✝ : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x < B x
this : ∀ᶠ (x : ℝ) in 𝓝[Icc a b] x, f x < B x
⊢ {x | f x ≤ B x} ∈ 𝓝[Ioi x] x
[PROOFSTEP]
have : ∀ᶠ x in 𝓝[>] x, f x < B x := nhdsWithin_le_of_mem (Icc_mem_nhdsWithin_Ioi xab) this
[GOAL]
case intro.inl
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this✝¹ : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x < B x
this✝ : ∀ᶠ (x : ℝ) in 𝓝[Icc a b] x, f x < B x
this : ∀ᶠ (x : ℝ) in 𝓝[Ioi x] x, f x < B x
⊢ {x | f x ≤ B x} ∈ 𝓝[Ioi x] x
[PROOFSTEP]
exact this.mono fun y => le_of_lt
[GOAL]
case intro.inr
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
rcases exists_between (bound x xab hxB) with ⟨r, hfr, hrB⟩
[GOAL]
case intro.inr.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), f' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
specialize hf' x xab r hfr
[GOAL]
case intro.inr.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
hf' : ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
have HB : ∀ᶠ z in 𝓝[>] x, r < slope B x z :=
(hasDerivWithinAt_iff_tendsto_slope' <| lt_irrefl x).1 (hB' x xab).Ioi_of_Ici (Ioi_mem_nhds hrB)
[GOAL]
case intro.inr.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
hf' : ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
HB : ∀ᶠ (z : ℝ) in 𝓝[Ioi x] x, r < slope B x z
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
obtain ⟨z, hfz, hzB, hz⟩ : ∃ z, slope f x z < r ∧ r < slope B x z ∧ z ∈ Ioc x y
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
hf' : ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
HB : ∀ᶠ (z : ℝ) in 𝓝[Ioi x] x, r < slope B x z
⊢ ∃ z, slope f x z < r ∧ r < slope B x z ∧ z ∈ Ioc x y
case intro.inr.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
hf' : ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
HB : ∀ᶠ (z : ℝ) in 𝓝[Ioi x] x, r < slope B x z
z : ℝ
hfz : slope f x z < r
hzB : r < slope B x z
hz : z ∈ Ioc x y
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
exact (hf'.and_eventually (HB.and (Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, hy⟩))).exists
[GOAL]
case intro.inr.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
hf' : ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
HB : ∀ᶠ (z : ℝ) in 𝓝[Ioi x] x, r < slope B x z
z : ℝ
hfz : slope f x z < r
hzB : r < slope B x z
hz : z ∈ Ioc x y
⊢ Set.Nonempty ({x | f x ≤ B x} ∩ Ioc x y)
[PROOFSTEP]
refine' ⟨z, _, hz⟩
[GOAL]
case intro.inr.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
hf' : ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
HB : ∀ᶠ (z : ℝ) in 𝓝[Ioi x] x, r < slope B x z
z : ℝ
hfz : slope f x z < r
hzB : r < slope B x z
hz : z ∈ Ioc x y
⊢ z ∈ {x | f x ≤ B x}
[PROOFSTEP]
have := (hfz.trans hzB).le
[GOAL]
case intro.inr.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → f x = B x → f' x < B' x
s : Set ℝ := {x | f x ≤ B x} ∩ Icc a b
A : ContinuousOn (fun x => (f x, B x)) (Icc a b)
this✝ : IsClosed s
x : ℝ
hxB✝ : f x ≤ B x
xab : x ∈ Ico a b
y : ℝ
hy : y ∈ Ioi x
hxB : f x = B x
r : ℝ
hfr : f' x < r
hrB : r < B' x
hf' : ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
HB : ∀ᶠ (z : ℝ) in 𝓝[Ioi x] x, r < slope B x z
z : ℝ
hfz : slope f x z < r
hzB : r < slope B x z
hz : z ∈ Ioc x y
this : slope f x z ≤ slope B x z
⊢ z ∈ {x | f x ≤ B x}
[PROOFSTEP]
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB, sub_le_sub_iff_right] at this
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
⊢ ∀ ⦃x : ℝ⦄, x ∈ Icc a b → f x ≤ B x
[PROOFSTEP]
have Hr : ∀ x ∈ Icc a b, ∀ r > 0, f x ≤ B x + r * (x - a) := fun x hx r hr =>
by
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
· rwa [sub_self, mul_zero, add_zero]
· exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
· intro x hx
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
· intro x _ _
rw [mul_one]
exact (lt_add_iff_pos_right _).2 hr
exact hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x : ℝ
hx : x ∈ Icc a b
r : ℝ
hr : r > 0
⊢ f x ≤ B x + r * (x - a)
[PROOFSTEP]
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound
[GOAL]
case ha
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x : ℝ
hx : x ∈ Icc a b
r : ℝ
hr : r > 0
⊢ f a ≤ B a + r * (a - a)
[PROOFSTEP]
rwa [sub_self, mul_zero, add_zero]
[GOAL]
case hB
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x : ℝ
hx : x ∈ Icc a b
r : ℝ
hr : r > 0
⊢ ContinuousOn (fun x => B x + r * (x - a)) (Icc a b)
[PROOFSTEP]
exact hB.add (continuousOn_const.mul (continuousOn_id.sub continuousOn_const))
[GOAL]
case hB'
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x : ℝ
hx : x ∈ Icc a b
r : ℝ
hr : r > 0
⊢ ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt (fun x => B x + r * (x - a)) (?m.12328 x) (Ici x) x
[PROOFSTEP]
intro x hx
[GOAL]
case hB'
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x✝ : ℝ
hx✝ : x✝ ∈ Icc a b
r : ℝ
hr : r > 0
x : ℝ
hx : x ∈ Ico a b
⊢ HasDerivWithinAt (fun x => B x + r * (x - a)) (?m.12328 x) (Ici x) x
[PROOFSTEP]
exact (hB' x hx).add (((hasDerivWithinAt_id x (Ici x)).sub_const a).const_mul r)
[GOAL]
case bound
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x : ℝ
hx : x ∈ Icc a b
r : ℝ
hr : r > 0
⊢ ∀ (x : ℝ), x ∈ Ico a b → f x = B x + r * (x - a) → B' x < B' x + r * 1
[PROOFSTEP]
intro x _ _
[GOAL]
case bound
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x✝ : ℝ
hx : x✝ ∈ Icc a b
r : ℝ
hr : r > 0
x : ℝ
a✝¹ : x ∈ Ico a b
a✝ : f x = B x + r * (x - a)
⊢ B' x < B' x + r * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
case bound
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x✝ : ℝ
hx : x✝ ∈ Icc a b
r : ℝ
hr : r > 0
x : ℝ
a✝¹ : x ∈ Ico a b
a✝ : f x = B x + r * (x - a)
⊢ B' x < B' x + r
[PROOFSTEP]
exact (lt_add_iff_pos_right _).2 hr
[GOAL]
case a
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
x : ℝ
hx : x ∈ Icc a b
r : ℝ
hr : r > 0
⊢ x ∈ Icc a b
[PROOFSTEP]
exact hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
Hr : ∀ (x : ℝ), x ∈ Icc a b → ∀ (r : ℝ), r > 0 → f x ≤ B x + r * (x - a)
⊢ ∀ ⦃x : ℝ⦄, x ∈ Icc a b → f x ≤ B x
[PROOFSTEP]
intro x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
Hr : ∀ (x : ℝ), x ∈ Icc a b → ∀ (r : ℝ), r > 0 → f x ≤ B x + r * (x - a)
x : ℝ
hx : x ∈ Icc a b
⊢ f x ≤ B x
[PROOFSTEP]
have : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0 :=
continuousWithinAt_const.add (continuousWithinAt_id.mul continuousWithinAt_const)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
Hr : ∀ (x : ℝ), x ∈ Icc a b → ∀ (r : ℝ), r > 0 → f x ≤ B x + r * (x - a)
x : ℝ
hx : x ∈ Icc a b
this : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0
⊢ f x ≤ B x
[PROOFSTEP]
convert continuousWithinAt_const.closure_le _ this (Hr x hx) using 1
[GOAL]
case h.e'_4
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
Hr : ∀ (x : ℝ), x ∈ Icc a b → ∀ (r : ℝ), r > 0 → f x ≤ B x + r * (x - a)
x : ℝ
hx : x ∈ Icc a b
this : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0
⊢ B x = B x + 0 * (x - a)
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → ℝ
a b : ℝ
hf : ContinuousOn f (Icc a b)
B B' : ℝ → ℝ
ha : f a ≤ B a
hB : ContinuousOn B (Icc a b)
hB' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt B (B' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ∀ (r : ℝ), B' x < r → ∃ᶠ (z : ℝ) in 𝓝[Ioi x] x, slope f x z < r
Hr : ∀ (x : ℝ), x ∈ Icc a b → ∀ (r : ℝ), r > 0 → f x ≤ B x + r * (x - a)
x : ℝ
hx : x ∈ Icc a b
this : ContinuousWithinAt (fun r => B x + r * (x - a)) (Ioi 0) 0
⊢ 0 ∈ closure (Ioi 0)
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
let g x := f x - f a
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
have hg : ContinuousOn g (Icc a b) := hf.sub continuousOn_const
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
have hg' : ∀ x ∈ Ico a b, HasDerivWithinAt g (f' x) (Ici x) x :=
by
intro x hx
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
⊢ ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
[PROOFSTEP]
intro x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
x : ℝ
hx : x ∈ Ico a b
⊢ HasDerivWithinAt g (f' x) (Ici x) x
[PROOFSTEP]
simpa using (hf' x hx).sub (hasDerivWithinAt_const _ _ _)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
let B x := C * (x - a)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
B : ℝ → ℝ := fun x => C * (x - a)
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
have hB : ∀ x, HasDerivAt B C x := by
intro x
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
B : ℝ → ℝ := fun x => C * (x - a)
⊢ ∀ (x : ℝ), HasDerivAt B C x
[PROOFSTEP]
intro x
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
B : ℝ → ℝ := fun x => C * (x - a)
x : ℝ
⊢ HasDerivAt B C x
[PROOFSTEP]
simpa using (hasDerivAt_const x C).mul ((hasDerivAt_id x).sub (hasDerivAt_const x a))
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
B : ℝ → ℝ := fun x => C * (x - a)
hB : ∀ (x : ℝ), HasDerivAt B C x
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
B : ℝ → ℝ := fun x => C * (x - a)
hB : ∀ (x : ℝ), HasDerivAt B C x
⊢ ‖g a‖ ≤ B a
[PROOFSTEP]
simp only
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ContinuousOn f (Icc a b)
hf' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
g : ℝ → E := fun x => f x - f a
hg : ContinuousOn g (Icc a b)
hg' : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
B : ℝ → ℝ := fun x => C * (x - a)
hB : ∀ (x : ℝ), HasDerivAt B C x
⊢ ‖f a - f a‖ ≤ C * (a - a)
[PROOFSTEP]
rw [sub_self, norm_zero, sub_self, mul_zero]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
refine'
norm_image_sub_le_of_norm_deriv_right_le_segment (fun x hx => (hf x hx).continuousWithinAt) (fun x hx => _) bound
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt f (f' x) (Icc a b) x
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖f' x‖ ≤ C
x : ℝ
hx : x ∈ Ico a b
⊢ HasDerivWithinAt (fun x => f x) (f' x) (Ici x) x
[PROOFSTEP]
exact (hf x <| Ico_subset_Icc_self hx).nhdsWithin (Icc_mem_nhdsWithin_Ici hx)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b C : ℝ
hf : DifferentiableOn ℝ f (Icc a b)
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖derivWithin f (Icc a b) x‖ ≤ C
⊢ ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ C * (x - a)
[PROOFSTEP]
refine' norm_image_sub_le_of_norm_deriv_le_segment' _ bound
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b C : ℝ
hf : DifferentiableOn ℝ f (Icc a b)
bound : ∀ (x : ℝ), x ∈ Ico a b → ‖derivWithin f (Icc a b) x‖ ≤ C
⊢ ∀ (x : ℝ), x ∈ Icc a b → HasDerivWithinAt (fun x => f x) (derivWithin f (Icc a b) x) (Icc a b) x
[PROOFSTEP]
exact fun x hx => (hf x hx).hasDerivWithinAt
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' : ℝ → E
C : ℝ
hf : ∀ (x : ℝ), x ∈ Icc 0 1 → HasDerivWithinAt f (f' x) (Icc 0 1) x
bound : ∀ (x : ℝ), x ∈ Ico 0 1 → ‖f' x‖ ≤ C
⊢ ‖f 1 - f 0‖ ≤ C
[PROOFSTEP]
simpa only [sub_zero, mul_one] using
norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b C : ℝ
hf : DifferentiableOn ℝ f (Icc 0 1)
bound : ∀ (x : ℝ), x ∈ Ico 0 1 → ‖derivWithin f (Icc 0 1) x‖ ≤ C
⊢ ‖f 1 - f 0‖ ≤ C
[PROOFSTEP]
simpa only [sub_zero, mul_one] using norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
hcont : ContinuousOn f (Icc a b)
hderiv : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f 0 (Ici x) x
⊢ ∀ (x : ℝ), x ∈ Icc a b → f x = f a
[PROOFSTEP]
have : ∀ x ∈ Icc a b, ‖f x - f a‖ ≤ 0 * (x - a) := fun x hx =>
norm_image_sub_le_of_norm_deriv_right_le_segment hcont hderiv (fun _ _ => norm_zero.le) x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
hcont : ContinuousOn f (Icc a b)
hderiv : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f 0 (Ici x) x
this : ∀ (x : ℝ), x ∈ Icc a b → ‖f x - f a‖ ≤ 0 * (x - a)
⊢ ∀ (x : ℝ), x ∈ Icc a b → f x = f a
[PROOFSTEP]
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using this
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
hdiff : DifferentiableOn ℝ f (Icc a b)
hderiv : ∀ (x : ℝ), x ∈ Ico a b → derivWithin f (Icc a b) x = 0
⊢ ∀ (x : ℝ), x ∈ Icc a b → f x = f a
[PROOFSTEP]
have H : ∀ x ∈ Ico a b, ‖derivWithin f (Icc a b) x‖ ≤ 0 := by
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
hdiff : DifferentiableOn ℝ f (Icc a b)
hderiv : ∀ (x : ℝ), x ∈ Ico a b → derivWithin f (Icc a b) x = 0
⊢ ∀ (x : ℝ), x ∈ Ico a b → ‖derivWithin f (Icc a b) x‖ ≤ 0
[PROOFSTEP]
simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
hdiff : DifferentiableOn ℝ f (Icc a b)
hderiv : ∀ (x : ℝ), x ∈ Ico a b → derivWithin f (Icc a b) x = 0
H : ∀ (x : ℝ), x ∈ Ico a b → ‖derivWithin f (Icc a b) x‖ ≤ 0
⊢ ∀ (x : ℝ), x ∈ Icc a b → f x = f a
[PROOFSTEP]
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>
norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' g : ℝ → E
derivf : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
derivg : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
fcont : ContinuousOn f (Icc a b)
gcont : ContinuousOn g (Icc a b)
hi : f a = g a
⊢ ∀ (y : ℝ), y ∈ Icc a b → f y = g y
[PROOFSTEP]
simp only [← @sub_eq_zero _ _ (f _)] at hi ⊢
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' g : ℝ → E
derivf : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
derivg : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
fcont : ContinuousOn f (Icc a b)
gcont : ContinuousOn g (Icc a b)
hi : f a - g a = 0
⊢ ∀ (y : ℝ), y ∈ Icc a b → f y - g y = 0
[PROOFSTEP]
exact
hi ▸
constant_of_has_deriv_right_zero (fcont.sub gcont) fun y hy => by
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' g : ℝ → E
derivf : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt f (f' x) (Ici x) x
derivg : ∀ (x : ℝ), x ∈ Ico a b → HasDerivWithinAt g (f' x) (Ici x) x
fcont : ContinuousOn f (Icc a b)
gcont : ContinuousOn g (Icc a b)
hi : f a - g a = 0
y : ℝ
hy : y ∈ Ico a b
⊢ HasDerivWithinAt (fun y => f y - g y) 0 (Ici y) y
[PROOFSTEP]
simpa only [sub_self] using (derivf y hy).sub (derivg y hy)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' g : ℝ → E
fdiff : DifferentiableOn ℝ f (Icc a b)
gdiff : DifferentiableOn ℝ g (Icc a b)
hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)
hi : f a = g a
⊢ ∀ (y : ℝ), y ∈ Icc a b → f y = g y
[PROOFSTEP]
have A : ∀ y ∈ Ico a b, HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y := fun y hy =>
(fdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.nhdsWithin (Icc_mem_nhdsWithin_Ici hy)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' g : ℝ → E
fdiff : DifferentiableOn ℝ f (Icc a b)
gdiff : DifferentiableOn ℝ g (Icc a b)
hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)
hi : f a = g a
A : ∀ (y : ℝ), y ∈ Ico a b → HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y
⊢ ∀ (y : ℝ), y ∈ Icc a b → f y = g y
[PROOFSTEP]
have B : ∀ y ∈ Ico a b, HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y := fun y hy =>
(gdiff y (mem_Icc_of_Ico hy)).hasDerivWithinAt.nhdsWithin (Icc_mem_nhdsWithin_Ici hy)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → E
a b : ℝ
f' g : ℝ → E
fdiff : DifferentiableOn ℝ f (Icc a b)
gdiff : DifferentiableOn ℝ g (Icc a b)
hderiv : EqOn (derivWithin f (Icc a b)) (derivWithin g (Icc a b)) (Ico a b)
hi : f a = g a
A : ∀ (y : ℝ), y ∈ Ico a b → HasDerivWithinAt f (derivWithin f (Icc a b) y) (Ici y) y
B : ∀ (y : ℝ), y ∈ Ico a b → HasDerivWithinAt g (derivWithin g (Icc a b) y) (Ici y) y
⊢ ∀ (y : ℝ), y ∈ Icc a b → f y = g y
[PROOFSTEP]
exact eq_of_has_deriv_right_eq A (fun y hy => (hderiv hy).symm ▸ B y hy) fdiff.continuousOn gdiff.continuousOn hi
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
⊢ ‖f y - f x‖ ≤ C * ‖y - x‖
[PROOFSTEP]
letI : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
⊢ ‖f y - f x‖ ≤ C * ‖y - x‖
[PROOFSTEP]
set g := (AffineMap.lineMap x y : ℝ → E)
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
g : (a : ℝ) → (fun a => E) a := ↑(AffineMap.lineMap x y)
⊢ ‖f y - f x‖ ≤ C * ‖y - x‖
[PROOFSTEP]
have segm : MapsTo g (Icc 0 1 : Set ℝ) s := hs.mapsTo_lineMap xs ys
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
g : (a : ℝ) → (fun a => E) a := ↑(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
⊢ ‖f y - f x‖ ≤ C * ‖y - x‖
[PROOFSTEP]
have hD : ∀ t ∈ Icc (0 : ℝ) 1, HasDerivWithinAt (f ∘ g) (f' (g t) (y - x)) (Icc 0 1) t := fun t ht => by
simpa using ((hf (g t) (segm ht)).restrictScalars ℝ).comp_hasDerivWithinAt _ AffineMap.hasDerivWithinAt_lineMap segm
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
g : (a : ℝ) → (fun a => E) a := ↑(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) (Icc 0 1) t
[PROOFSTEP]
simpa using ((hf (g t) (segm ht)).restrictScalars ℝ).comp_hasDerivWithinAt _ AffineMap.hasDerivWithinAt_lineMap segm
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
g : (a : ℝ) → (fun a => E) a := ↑(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
hD : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) (Icc 0 1) t
⊢ ‖f y - f x‖ ≤ C * ‖y - x‖
[PROOFSTEP]
have bound : ∀ t ∈ Ico (0 : ℝ) 1, ‖f' (g t) (y - x)‖ ≤ C * ‖y - x‖ := fun t ht =>
le_of_op_norm_le _ (bound _ <| segm <| Ico_subset_Icc_self ht) _
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound✝ : ∀ (x : E), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
g : (a : ℝ) → (fun a => E) a := ↑(AffineMap.lineMap x y)
segm : MapsTo g (Icc 0 1) s
hD : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) (Icc 0 1) t
bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖↑(f' (g t)) (y - x)‖ ≤ C * ‖y - x‖
⊢ ‖f y - f x‖ ≤ C * ‖y - x‖
[PROOFSTEP]
simpa using norm_image_sub_le_of_norm_deriv_le_segment_01' hD bound
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C✝ : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
C : ℝ≥0
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖₊ ≤ C
hs : Convex ℝ s
⊢ LipschitzOnWith C f s
[PROOFSTEP]
rw [lipschitzOnWith_iff_norm_sub_le]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C✝ : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
C : ℝ≥0
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖₊ ≤ C
hs : Convex ℝ s
⊢ ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ‖f x - f y‖ ≤ ↑C * ‖x - y‖
[PROOFSTEP]
intro x x_in y y_in
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C✝ : ℝ
s : Set E
x✝ y✝ : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
C : ℝ≥0
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x‖₊ ≤ C
hs : Convex ℝ s
x : E
x_in : x ∈ s
y : E
y_in : y ∈ s
⊢ ‖f x - f y‖ ≤ ↑C * ‖x - y‖
[PROOFSTEP]
exact hs.norm_image_sub_le_of_norm_hasFDerivWithin_le hf bound y_in x_in
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f✝ g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
f : E → G
hder : ∀ᶠ (y : E) in 𝓝[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ℝ≥0
hK : ‖f' x‖₊ < K
⊢ ∃ t, t ∈ 𝓝[s] x ∧ LipschitzOnWith K f t
[PROOFSTEP]
obtain ⟨ε, ε0, hε⟩ : ∃ ε > 0, ball x ε ∩ s ⊆ {y | HasFDerivWithinAt f (f' y) s y ∧ ‖f' y‖₊ < K}
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f✝ g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
f : E → G
hder : ∀ᶠ (y : E) in 𝓝[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ℝ≥0
hK : ‖f' x‖₊ < K
⊢ ∃ ε, ε > 0 ∧ ball x ε ∩ s ⊆ {y | HasFDerivWithinAt f (f' y) s y ∧ ‖f' y‖₊ < K}
case intro.intro
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f✝ g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
f : E → G
hder : ∀ᶠ (y : E) in 𝓝[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ℝ≥0
hK : ‖f' x‖₊ < K
ε : ℝ
ε0 : ε > 0
hε : ball x ε ∩ s ⊆ {y | HasFDerivWithinAt f (f' y) s y ∧ ‖f' y‖₊ < K}
⊢ ∃ t, t ∈ 𝓝[s] x ∧ LipschitzOnWith K f t
[PROOFSTEP]
exact mem_nhdsWithin_iff.1 (hder.and <| hcont.nnnorm.eventually (gt_mem_nhds hK))
[GOAL]
case intro.intro
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f✝ g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
f : E → G
hder : ∀ᶠ (y : E) in 𝓝[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ℝ≥0
hK : ‖f' x‖₊ < K
ε : ℝ
ε0 : ε > 0
hε : ball x ε ∩ s ⊆ {y | HasFDerivWithinAt f (f' y) s y ∧ ‖f' y‖₊ < K}
⊢ ∃ t, t ∈ 𝓝[s] x ∧ LipschitzOnWith K f t
[PROOFSTEP]
rw [inter_comm] at hε
[GOAL]
case intro.intro
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f✝ g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
f : E → G
hder : ∀ᶠ (y : E) in 𝓝[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ℝ≥0
hK : ‖f' x‖₊ < K
ε : ℝ
ε0 : ε > 0
hε : s ∩ ball x ε ⊆ {y | HasFDerivWithinAt f (f' y) s y ∧ ‖f' y‖₊ < K}
⊢ ∃ t, t ∈ 𝓝[s] x ∧ LipschitzOnWith K f t
[PROOFSTEP]
refine' ⟨s ∩ ball x ε, inter_mem_nhdsWithin _ (ball_mem_nhds _ ε0), _⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f✝ g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
f : E → G
hder : ∀ᶠ (y : E) in 𝓝[s] x, HasFDerivWithinAt f (f' y) s y
hcont : ContinuousWithinAt f' s x
K : ℝ≥0
hK : ‖f' x‖₊ < K
ε : ℝ
ε0 : ε > 0
hε : s ∩ ball x ε ⊆ {y | HasFDerivWithinAt f (f' y) s y ∧ ‖f' y‖₊ < K}
⊢ LipschitzOnWith K f (s ∩ ball x ε)
[PROOFSTEP]
exact
(hs.inter (convex_ball _ _)).lipschitzOnWith_of_nnnorm_hasFDerivWithin_le
(fun y hy => (hε hy).1.mono (inter_subset_left _ _)) fun y hy => (hε hy).2.le
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
⊢ ‖f y - f x - ↑φ (y - x)‖ ≤ C * ‖y - x‖
[PROOFSTEP]
let g y := f y - φ y
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : E → G := fun y => f y - ↑φ y
⊢ ‖f y - f x - ↑φ (y - x)‖ ≤ C * ‖y - x‖
[PROOFSTEP]
have hg : ∀ x ∈ s, HasFDerivWithinAt g (f' x - φ) s x := fun x xs => (hf x xs).sub φ.hasFDerivWithinAt
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : E → G := fun y => f y - ↑φ y
hg : ∀ (x : E), x ∈ s → HasFDerivWithinAt g (f' x - φ) s x
⊢ ‖f y - f x - ↑φ (y - x)‖ ≤ C * ‖y - x‖
[PROOFSTEP]
calc
‖f y - f x - φ (y - x)‖ = ‖f y - f x - (φ y - φ x)‖ := by simp
_ = ‖f y - φ y - (f x - φ x)‖ := by congr 1; abel
_ = ‖g y - g x‖ := by simp
_ ≤ C * ‖y - x‖ := Convex.norm_image_sub_le_of_norm_hasFDerivWithin_le hg bound hs xs ys
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : E → G := fun y => f y - ↑φ y
hg : ∀ (x : E), x ∈ s → HasFDerivWithinAt g (f' x - φ) s x
⊢ ‖f y - f x - ↑φ (y - x)‖ = ‖f y - f x - (↑φ y - ↑φ x)‖
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : E → G := fun y => f y - ↑φ y
hg : ∀ (x : E), x ∈ s → HasFDerivWithinAt g (f' x - φ) s x
⊢ ‖f y - f x - (↑φ y - ↑φ x)‖ = ‖f y - ↑φ y - (f x - ↑φ x)‖
[PROOFSTEP]
congr 1
[GOAL]
case e_a
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : E → G := fun y => f y - ↑φ y
hg : ∀ (x : E), x ∈ s → HasFDerivWithinAt g (f' x - φ) s x
⊢ f y - f x - (↑φ y - ↑φ x) = f y - ↑φ y - (f x - ↑φ x)
[PROOFSTEP]
abel
[GOAL]
case e_a
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : E → G := fun y => f y - ↑φ y
hg : ∀ (x : E), x ∈ s → HasFDerivWithinAt g (f' x - φ) s x
⊢ f y - f x - (↑φ y - ↑φ x) = f y - ↑φ y - (f x - ↑φ x)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g✝ : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
bound : ∀ (x : E), x ∈ s → ‖f' x - φ‖ ≤ C
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : E → G := fun y => f y - ↑φ y
hg : ∀ (x : E), x ∈ s → HasFDerivWithinAt g (f' x - φ) s x
⊢ ‖f y - ↑φ y - (f x - ↑φ x)‖ = ‖g y - g x‖
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = 0
hx : x ∈ s
hy : y ∈ s
⊢ f x = f y
[PROOFSTEP]
have bound : ∀ x ∈ s, ‖fderivWithin 𝕜 f s x‖ ≤ 0 := fun x hx => by simp only [hf' x hx, norm_zero, le_rfl]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x✝ y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = 0
hx✝ : x✝ ∈ s
hy : y ∈ s
x : E
hx : x ∈ s
⊢ ‖fderivWithin 𝕜 f s x‖ ≤ 0
[PROOFSTEP]
simp only [hf' x hx, norm_zero, le_rfl]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = 0
hx : x ∈ s
hy : y ∈ s
bound : ∀ (x : E), x ∈ s → ‖fderivWithin 𝕜 f s x‖ ≤ 0
⊢ f x = f y
[PROOFSTEP]
simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using
hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x✝² y✝ : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : Differentiable 𝕜 f
hf' : ∀ (x : E), fderiv 𝕜 f x = 0
x✝¹ y x : E
x✝ : x ∈ univ
⊢ fderivWithin 𝕜 f univ x = 0
[PROOFSTEP]
rw [fderivWithin_univ]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x✝² y✝ : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : Differentiable 𝕜 f
hf' : ∀ (x : E), fderiv 𝕜 f x = 0
x✝¹ y x : E
x✝ : x ∈ univ
⊢ fderiv 𝕜 f x = 0
[PROOFSTEP]
exact hf' x
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y✝ : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hg : DifferentiableOn 𝕜 g s
hs' : UniqueDiffOn 𝕜 s
hf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = fderivWithin 𝕜 g s x
hx : x ∈ s
hfgx : f x = g x
y : E
hy : y ∈ s
⊢ f y = g y
[PROOFSTEP]
suffices f x - g x = f y - g y by rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y✝ : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hg : DifferentiableOn 𝕜 g s
hs' : UniqueDiffOn 𝕜 s
hf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = fderivWithin 𝕜 g s x
hx : x ∈ s
hfgx : f x = g x
y : E
hy : y ∈ s
this : f x - g x = f y - g y
⊢ f y = g y
[PROOFSTEP]
rwa [hfgx, sub_self, eq_comm, sub_eq_zero] at this
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y✝ : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hg : DifferentiableOn 𝕜 g s
hs' : UniqueDiffOn 𝕜 s
hf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = fderivWithin 𝕜 g s x
hx : x ∈ s
hfgx : f x = g x
y : E
hy : y ∈ s
⊢ f x - g x = f y - g y
[PROOFSTEP]
refine' hs.is_const_of_fderivWithin_eq_zero (hf.sub hg) (fun z hz => _) hx hy
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x y✝ : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hg : DifferentiableOn 𝕜 g s
hs' : UniqueDiffOn 𝕜 s
hf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = fderivWithin 𝕜 g s x
hx : x ∈ s
hfgx : f x = g x
y : E
hy : y ∈ s
z : E
hz : z ∈ s
⊢ fderivWithin 𝕜 (fun y => f y - g y) s z = 0
[PROOFSTEP]
rw [fderivWithin_sub (hs' _ hz) (hf _ hz) (hg _ hz), sub_eq_zero, hf' _ hz]
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f g : E → G
C : ℝ
s : Set E
x✝² y : E
f' g' : E → E →L[𝕜] G
φ : E →L[𝕜] G
hf : Differentiable 𝕜 f
hg : Differentiable 𝕜 g
hf' : ∀ (x : E), fderiv 𝕜 f x = fderiv 𝕜 g x
x✝¹ : E
hfgx : f x✝¹ = g x✝¹
x : E
x✝ : x ∈ univ
⊢ fderivWithin 𝕜 f univ x = fderivWithin 𝕜 g univ x
[PROOFSTEP]
simpa using hf' _
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f f' : 𝕜 → G
s : Set 𝕜
x✝ y : 𝕜
C : ℝ
hf : ∀ (x : 𝕜), x ∈ s → HasDerivWithinAt f (f' x) s x
bound : ∀ (x : 𝕜), x ∈ s → ‖f' x‖ ≤ C
hs : Convex ℝ s
xs : x✝ ∈ s
ys : y ∈ s
x : 𝕜
hx : x ∈ s
⊢ ‖smulRight 1 (f' x)‖ ≤ ‖f' x‖
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f f' : 𝕜 → G
s : Set 𝕜
x✝ y : 𝕜
C : ℝ≥0
hs : Convex ℝ s
hf : ∀ (x : 𝕜), x ∈ s → HasDerivWithinAt f (f' x) s x
bound : ∀ (x : 𝕜), x ∈ s → ‖f' x‖₊ ≤ C
x : 𝕜
hx : x ∈ s
⊢ ‖smulRight 1 (f' x)‖₊ ≤ ‖f' x‖₊
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f f' : 𝕜 → G
s : Set 𝕜
x✝ y✝ : 𝕜
hf : Differentiable 𝕜 f
hf' : ∀ (x : 𝕜), deriv f x = 0
x y z : 𝕜
⊢ fderiv 𝕜 f z = 0
[PROOFSTEP]
ext
[GOAL]
case h
E : Type u_1
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
F : Type u_2
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace ℝ F
𝕜 : Type u_3
G : Type u_4
inst✝³ : IsROrC 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f f' : 𝕜 → G
s : Set 𝕜
x✝ y✝ : 𝕜
hf : Differentiable 𝕜 f
hf' : ∀ (x : 𝕜), deriv f x = 0
x y z : 𝕜
⊢ ↑(fderiv 𝕜 f z) 1 = ↑0 1
[PROOFSTEP]
simp [← deriv_fderiv, hf']
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
⊢ ∃ c, c ∈ Ioo a b ∧ (g b - g a) * f' c = (f b - f a) * g' c
[PROOFSTEP]
let h x := (g b - g a) * f x - (f b - f a) * g x
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
⊢ ∃ c, c ∈ Ioo a b ∧ (g b - g a) * f' c = (f b - f a) * g' c
[PROOFSTEP]
have hI : h a = h b := by simp only; ring
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
⊢ h a = h b
[PROOFSTEP]
simp only
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
⊢ (g b - g a) * f a - (f b - f a) * g a = (g b - g a) * f b - (f b - f a) * g b
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
⊢ ∃ c, c ∈ Ioo a b ∧ (g b - g a) * f' c = (f b - f a) * g' c
[PROOFSTEP]
let h' x := (g b - g a) * f' x - (f b - f a) * g' x
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : ℝ → ℝ := fun x => (g b - g a) * f' x - (f b - f a) * g' x
⊢ ∃ c, c ∈ Ioo a b ∧ (g b - g a) * f' c = (f b - f a) * g' c
[PROOFSTEP]
have hhh' : ∀ x ∈ Ioo a b, HasDerivAt h (h' x) x := fun x hx =>
((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a))
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : ℝ → ℝ := fun x => (g b - g a) * f' x - (f b - f a) * g' x
hhh' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt h (h' x) x
⊢ ∃ c, c ∈ Ioo a b ∧ (g b - g a) * f' c = (f b - f a) * g' c
[PROOFSTEP]
have hhc : ContinuousOn h (Icc a b) := (continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : ℝ → ℝ := fun x => (g b - g a) * f' x - (f b - f a) * g' x
hhh' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt h (h' x) x
hhc : ContinuousOn h (Icc a b)
⊢ ∃ c, c ∈ Ioo a b ∧ (g b - g a) * f' c = (f b - f a) * g' c
[PROOFSTEP]
rcases exists_hasDerivAt_eq_zero hab hhc hI hhh' with ⟨c, cmem, hc⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
h : ℝ → ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x
hI : h a = h b
h' : ℝ → ℝ := fun x => (g b - g a) * f' x - (f b - f a) * g' x
hhh' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt h (h' x) x
hhc : ContinuousOn h (Icc a b)
c : ℝ
cmem : c ∈ Ioo a b
hc : h' c = 0
⊢ ∃ c, c ∈ Ioo a b ∧ (g b - g a) * f' c = (f b - f a) * g' c
[PROOFSTEP]
exact ⟨c, cmem, sub_eq_zero.1 hc⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
⊢ ∃ c, c ∈ Ioo a b ∧ (lgb - lga) * f' c = (lfb - lfa) * g' c
[PROOFSTEP]
let h x := (lgb - lga) * f x - (lfb - lfa) * g x
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
⊢ ∃ c, c ∈ Ioo a b ∧ (lgb - lga) * f' c = (lfb - lfa) * g' c
[PROOFSTEP]
have hha : Tendsto h (𝓝[>] a) (𝓝 <| lgb * lfa - lfb * lga) :=
by
have : Tendsto h (𝓝[>] a) (𝓝 <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
convert this using 2
ring
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
⊢ Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
[PROOFSTEP]
have : Tendsto h (𝓝[>] a) (𝓝 <| (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
this : Tendsto h (𝓝[Ioi a] a) (𝓝 ((lgb - lga) * lfa - (lfb - lfa) * lga))
⊢ Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
[PROOFSTEP]
convert this using 2
[GOAL]
case h.e'_5.h.e'_3
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
this : Tendsto h (𝓝[Ioi a] a) (𝓝 ((lgb - lga) * lfa - (lfb - lfa) * lga))
⊢ lgb * lfa - lfb * lga = (lgb - lga) * lfa - (lfb - lfa) * lga
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
⊢ ∃ c, c ∈ Ioo a b ∧ (lgb - lga) * f' c = (lfb - lfa) * g' c
[PROOFSTEP]
have hhb : Tendsto h (𝓝[<] b) (𝓝 <| lgb * lfa - lfb * lga) :=
by
have : Tendsto h (𝓝[<] b) (𝓝 <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
convert this using 2
ring
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
⊢ Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
[PROOFSTEP]
have : Tendsto h (𝓝[<] b) (𝓝 <| (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
this : Tendsto h (𝓝[Iio b] b) (𝓝 ((lgb - lga) * lfb - (lfb - lfa) * lgb))
⊢ Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
[PROOFSTEP]
convert this using 2
[GOAL]
case h.e'_5.h.e'_3
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
this : Tendsto h (𝓝[Iio b] b) (𝓝 ((lgb - lga) * lfb - (lfb - lfa) * lgb))
⊢ lgb * lfa - lfb * lga = (lgb - lga) * lfb - (lfb - lfa) * lgb
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
hhb : Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
⊢ ∃ c, c ∈ Ioo a b ∧ (lgb - lga) * f' c = (lfb - lfa) * g' c
[PROOFSTEP]
let h' x := (lgb - lga) * f' x - (lfb - lfa) * g' x
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
hhb : Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
h' : ℝ → ℝ := fun x => (lgb - lga) * f' x - (lfb - lfa) * g' x
⊢ ∃ c, c ∈ Ioo a b ∧ (lgb - lga) * f' c = (lfb - lfa) * g' c
[PROOFSTEP]
have hhh' : ∀ x ∈ Ioo a b, HasDerivAt h (h' x) x := by
intro x hx
exact ((hff' x hx).const_mul _).sub ((hgg' x hx).const_mul _)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
hhb : Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
h' : ℝ → ℝ := fun x => (lgb - lga) * f' x - (lfb - lfa) * g' x
⊢ ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt h (h' x) x
[PROOFSTEP]
intro x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
hhb : Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
h' : ℝ → ℝ := fun x => (lgb - lga) * f' x - (lfb - lfa) * g' x
x : ℝ
hx : x ∈ Ioo a b
⊢ HasDerivAt h (h' x) x
[PROOFSTEP]
exact ((hff' x hx).const_mul _).sub ((hgg' x hx).const_mul _)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
hhb : Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
h' : ℝ → ℝ := fun x => (lgb - lga) * f' x - (lfb - lfa) * g' x
hhh' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt h (h' x) x
⊢ ∃ c, c ∈ Ioo a b ∧ (lgb - lga) * f' c = (lfb - lfa) * g' c
[PROOFSTEP]
rcases exists_hasDerivAt_eq_zero' hab hha hhb hhh' with ⟨c, cmem, hc⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg'✝ : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
lfa lga lfb lgb : ℝ
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hfa : Tendsto f (𝓝[Ioi a] a) (𝓝 lfa)
hga : Tendsto g (𝓝[Ioi a] a) (𝓝 lga)
hfb : Tendsto f (𝓝[Iio b] b) (𝓝 lfb)
hgb : Tendsto g (𝓝[Iio b] b) (𝓝 lgb)
h : ℝ → ℝ := fun x => (lgb - lga) * f x - (lfb - lfa) * g x
hha : Tendsto h (𝓝[Ioi a] a) (𝓝 (lgb * lfa - lfb * lga))
hhb : Tendsto h (𝓝[Iio b] b) (𝓝 (lgb * lfa - lfb * lga))
h' : ℝ → ℝ := fun x => (lgb - lga) * f' x - (lfb - lfa) * g' x
hhh' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt h (h' x) x
c : ℝ
cmem : c ∈ Ioo a b
hc : h' c = 0
⊢ ∃ c, c ∈ Ioo a b ∧ (lgb - lga) * f' c = (lfb - lfa) * g' c
[PROOFSTEP]
exact ⟨c, cmem, sub_eq_zero.1 hc⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
⊢ ∃ c, c ∈ Ioo a b ∧ f' c = (f b - f a) / (b - a)
[PROOFSTEP]
obtain ⟨c, cmem, hc⟩ : ∃ c ∈ Ioo a b, (b - a) * f' c = (f b - f a) * 1 :=
exists_ratio_hasDerivAt_eq_ratio_slope f f' hab hfc hff' id 1 continuousOn_id fun x _ => hasDerivAt_id x
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
c : ℝ
cmem : c ∈ Ioo a b
hc : (b - a) * f' c = (f b - f a) * 1
⊢ ∃ c, c ∈ Ioo a b ∧ f' c = (f b - f a) / (b - a)
[PROOFSTEP]
use c, cmem
[GOAL]
case right
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f f' : ℝ → ℝ
a b : ℝ
hab : a < b
hfc : ContinuousOn f (Icc a b)
hff' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt f (f' x) x
hfd : DifferentiableOn ℝ f (Ioo a b)
g g' : ℝ → ℝ
hgc : ContinuousOn g (Icc a b)
hgg' : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivAt g (g' x) x
hgd : DifferentiableOn ℝ g (Ioo a b)
c : ℝ
cmem : c ∈ Ioo a b
hc : (b - a) * f' c = (f b - f a) * 1
⊢ f' c = (f b - f a) / (b - a)
[PROOFSTEP]
rwa [mul_one, mul_comm, ← eq_div_iff (sub_ne_zero.2 hab.ne')] at hc
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_gt : ∀ (x : ℝ), x ∈ interior D → C < deriv f x
⊢ ∀ (x : ℝ), x ∈ D → ∀ (y : ℝ), y ∈ D → x < y → C * (y - x) < f y - f x
[PROOFSTEP]
intro x hx y hy hxy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_gt : ∀ (x : ℝ), x ∈ interior D → C < deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x < y
⊢ C * (y - x) < f y - f x
[PROOFSTEP]
have hxyD : Icc x y ⊆ D := hD.ordConnected.out hx hy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_gt : ∀ (x : ℝ), x ∈ interior D → C < deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x < y
hxyD : Icc x y ⊆ D
⊢ C * (y - x) < f y - f x
[PROOFSTEP]
have hxyD' : Ioo x y ⊆ interior D := subset_sUnion_of_mem ⟨isOpen_Ioo, Ioo_subset_Icc_self.trans hxyD⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_gt : ∀ (x : ℝ), x ∈ interior D → C < deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
⊢ C * (y - x) < f y - f x
[PROOFSTEP]
obtain ⟨a, a_mem, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x) :=
exists_deriv_eq_slope f hxy (hf.mono hxyD) (hf'.mono hxyD')
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_gt : ∀ (x : ℝ), x ∈ interior D → C < deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
a : ℝ
a_mem : a ∈ Ioo x y
ha : deriv f a = (f y - f x) / (y - x)
⊢ C * (y - x) < f y - f x
[PROOFSTEP]
have : C < (f y - f x) / (y - x) := ha ▸ hf'_gt _ (hxyD' a_mem)
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_gt : ∀ (x : ℝ), x ∈ interior D → C < deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
a : ℝ
a_mem : a ∈ Ioo x y
ha : deriv f a = (f y - f x) / (y - x)
this : C < (f y - f x) / (y - x)
⊢ C * (y - x) < f y - f x
[PROOFSTEP]
exact (lt_div_iff (sub_pos.2 hxy)).1 this
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
⊢ ∀ (x : ℝ), x ∈ D → ∀ (y : ℝ), y ∈ D → x ≤ y → C * (y - x) ≤ f y - f x
[PROOFSTEP]
intro x hx y hy hxy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
cases' eq_or_lt_of_le hxy with hxy' hxy'
[GOAL]
case inl
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x = y
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
rw [hxy', sub_self, sub_self, mul_zero]
[GOAL]
case inr
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x < y
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
have hxyD : Icc x y ⊆ D := hD.ordConnected.out hx hy
[GOAL]
case inr
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x < y
hxyD : Icc x y ⊆ D
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
have hxyD' : Ioo x y ⊆ interior D := subset_sUnion_of_mem ⟨isOpen_Ioo, Ioo_subset_Icc_self.trans hxyD⟩
[GOAL]
case inr
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
obtain ⟨a, a_mem, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a = (f y - f x) / (y - x)
case inr.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
a : ℝ
a_mem : a ∈ Ioo x y
ha : deriv f a = (f y - f x) / (y - x)
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
exact exists_deriv_eq_slope f hxy' (hf.mono hxyD) (hf'.mono hxyD')
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
a : ℝ
a_mem : a ∈ Ioo x y
ha : deriv f a = (f y - f x) / (y - x)
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
have : C ≤ (f y - f x) / (y - x) := ha ▸ hf'_ge _ (hxyD' a_mem)
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
hf'_ge : ∀ (x : ℝ), x ∈ interior D → C ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hxy' : x < y
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
a : ℝ
a_mem : a ∈ Ioo x y
ha : deriv f a = (f y - f x) / (y - x)
this : C ≤ (f y - f x) / (y - x)
⊢ C * (y - x) ≤ f y - f x
[PROOFSTEP]
exact (le_div_iff (sub_pos.2 hxy')).1 this
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
lt_hf' : ∀ (x : ℝ), x ∈ interior D → deriv f x < C
x✝ : ℝ
hx✝ : x✝ ∈ D
y : ℝ
hy : y ∈ D
hxy : x✝ < y
x : ℝ
hx : x ∈ interior D
⊢ -C < deriv (fun y => -f y) x
[PROOFSTEP]
rw [deriv.neg, neg_lt_neg_iff]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
lt_hf' : ∀ (x : ℝ), x ∈ interior D → deriv f x < C
x✝ : ℝ
hx✝ : x✝ ∈ D
y : ℝ
hy : y ∈ D
hxy : x✝ < y
x : ℝ
hx : x ∈ interior D
⊢ deriv (fun y => f y) x < C
[PROOFSTEP]
exact lt_hf' x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
lt_hf' : ∀ (x : ℝ), x ∈ interior D → deriv f x < C
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x < y
hf'_gt : ∀ (x : ℝ), x ∈ interior D → -C < deriv (fun y => -f y) x
⊢ f y - f x < C * (y - x)
[PROOFSTEP]
linarith [hD.mul_sub_lt_image_sub_of_lt_deriv hf.neg hf'.neg hf'_gt x hx y hy hxy]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
le_hf' : ∀ (x : ℝ), x ∈ interior D → deriv f x ≤ C
x✝ : ℝ
hx✝ : x✝ ∈ D
y : ℝ
hy : y ∈ D
hxy : x✝ ≤ y
x : ℝ
hx : x ∈ interior D
⊢ -C ≤ deriv (fun y => -f y) x
[PROOFSTEP]
rw [deriv.neg, neg_le_neg_iff]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
le_hf' : ∀ (x : ℝ), x ∈ interior D → deriv f x ≤ C
x✝ : ℝ
hx✝ : x✝ ∈ D
y : ℝ
hy : y ∈ D
hxy : x✝ ≤ y
x : ℝ
hx : x ∈ interior D
⊢ deriv (fun y => f y) x ≤ C
[PROOFSTEP]
exact le_hf' x hx
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
C : (fun x => ℝ) 1
le_hf' : ∀ (x : ℝ), x ∈ interior D → deriv f x ≤ C
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
hf'_ge : ∀ (x : ℝ), x ∈ interior D → -C ≤ deriv (fun y => -f y) x
⊢ f y - f x ≤ C * (y - x)
[PROOFSTEP]
linarith [hD.mul_sub_le_image_sub_of_le_deriv hf.neg hf'.neg hf'_ge x hx y hy hxy]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : ∀ (x : ℝ), x ∈ interior D → 0 < deriv f x
⊢ StrictMonoOn f D
[PROOFSTEP]
intro x hx y hy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : ∀ (x : ℝ), x ∈ interior D → 0 < deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
⊢ x < y → f x < f y
[PROOFSTEP]
have : DifferentiableOn ℝ f (interior D) := fun z hz =>
(differentiableAt_of_deriv_ne_zero (hf' z hz).ne').differentiableWithinAt
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : ∀ (x : ℝ), x ∈ interior D → 0 < deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
this : DifferentiableOn ℝ f (interior D)
⊢ x < y → f x < f y
[PROOFSTEP]
simpa only [zero_mul, sub_pos] using hD.mul_sub_lt_image_sub_of_lt_deriv hf this hf' x hx y hy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_nonneg : ∀ (x : ℝ), x ∈ interior D → 0 ≤ deriv f x
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
⊢ f x ≤ f y
[PROOFSTEP]
simpa only [zero_mul, sub_nonneg] using hD.mul_sub_le_image_sub_of_le_deriv hf hf' hf'_nonneg x hx y hy hxy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : ∀ (x : ℝ), x ∈ interior D → deriv f x < 0
x : ℝ
hx : x ∈ D
y : ℝ
⊢ y ∈ D → x < y → f y < f x
[PROOFSTEP]
simpa only [zero_mul, sub_lt_zero] using
hD.image_sub_lt_mul_sub_of_deriv_lt hf
(fun z hz => (differentiableAt_of_deriv_ne_zero (hf' z hz).ne).differentiableWithinAt) hf' x hx y
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_nonpos : ∀ (x : ℝ), x ∈ interior D → deriv f x ≤ 0
x : ℝ
hx : x ∈ D
y : ℝ
hy : y ∈ D
hxy : x ≤ y
⊢ f y ≤ f x
[PROOFSTEP]
simpa only [zero_mul, sub_nonpos] using hD.image_sub_le_mul_sub_of_deriv_le hf hf' hf'_nonpos x hx y hy hxy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
⊢ ∀ {x y z : ℝ}, x ∈ D → z ∈ D → x < y → y < z → (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
intro x y z hx hz hxy hyz
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hxzD : Icc x z ⊆ D := hD.ordConnected.out hx hz
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hxyD : Icc x y ⊆ D := (Icc_subset_Icc_right hyz.le).trans hxzD
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hxyD' : Ioo x y ⊆ interior D := subset_sUnion_of_mem ⟨isOpen_Ioo, Ioo_subset_Icc_self.trans hxyD⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hyzD : Icc y z ⊆ D := (Icc_subset_Icc_left hxy.le).trans hxzD
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
have hyzD' : Ioo y z ⊆ interior D :=
subset_sUnion_of_mem
⟨isOpen_Ioo, Ioo_subset_Icc_self.trans hyzD⟩
-- Then we apply MVT to both `[x, y]` and `[y, z]`
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a = (f y - f x) / (y - x)
case intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
exact exists_deriv_eq_slope f hxy (hf.mono hxyD) (hf'.mono hxyD')
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
obtain ⟨b, ⟨hyb, hbz⟩, hb⟩ : ∃ b ∈ Ioo y z, deriv f b = (f z - f y) / (z - y)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
⊢ ∃ b, b ∈ Ioo y z ∧ deriv f b = (f z - f y) / (z - y)
case intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hb : deriv f b = (f z - f y) / (z - y)
hyb : y < b
hbz : b < z
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
exact exists_deriv_eq_slope f hyz (hf.mono hyzD) (hf'.mono hyzD')
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hb : deriv f b = (f z - f y) / (z - y)
hyb : y < b
hbz : b < z
⊢ (f y - f x) / (y - x) ≤ (f z - f y) / (z - y)
[PROOFSTEP]
rw [← ha, ← hb]
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'_mono : MonotoneOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hb : deriv f b = (f z - f y) / (z - y)
hyb : y < b
hbz : b < z
⊢ deriv f a ≤ deriv f b
[PROOFSTEP]
exact hf'_mono (hxyD' ⟨hxa, hay⟩) (hyzD' ⟨hyb, hbz⟩) (hay.trans hyb).le
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
h_anti : AntitoneOn (deriv f) (interior D)
⊢ MonotoneOn (deriv (-f)) (interior D)
[PROOFSTEP]
simpa only [← deriv.neg] using h_anti.neg
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
have A : DifferentiableOn ℝ f (Ioo x y) := fun w wmem =>
(differentiableAt_of_deriv_ne_zero (h w wmem)).differentiableWithinAt
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a = (f y - f x) / (y - x)
case intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
exact exists_deriv_eq_slope f hxy hf A
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
rcases nonempty_Ioo.2 hay with ⟨b, ⟨hab, hby⟩⟩
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hab : a < b
hby : b < y
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
refine' ⟨b, ⟨hxa.trans hab, hby⟩, _⟩
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hab : a < b
hby : b < y
⊢ (f y - f x) / (y - x) < deriv f b
[PROOFSTEP]
rw [← ha]
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hab : a < b
hby : b < y
⊢ deriv f a < deriv f b
[PROOFSTEP]
exact hf'_mono ⟨hxa, hay⟩ ⟨hxa.trans hab, hby⟩ hab
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
by_cases h : ∀ w ∈ Ioo x y, deriv f w ≠ 0
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
apply StrictMonoOn.exists_slope_lt_deriv_aux hf hxy hf'_mono h
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ¬∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∃ w, w ∈ Ioo x y ∧ deriv f w = 0
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
rcases h with ⟨w, ⟨hxw, hwy⟩, hw⟩
[GOAL]
case neg.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
obtain ⟨a, ⟨hxa, haw⟩, ha⟩ : ∃ a ∈ Ioo x w, (f w - f x) / (w - x) < deriv f a :=
by
apply StrictMonoOn.exists_slope_lt_deriv_aux _ hxw _ _
· exact hf.mono (Icc_subset_Icc le_rfl hwy.le)
· exact hf'_mono.mono (Ioo_subset_Ioo le_rfl hwy.le)
· intro z hz
rw [← hw]
apply ne_of_lt
exact hf'_mono ⟨hz.1, hz.2.trans hwy⟩ ⟨hxw, hwy⟩ hz.2
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ∃ a, a ∈ Ioo x w ∧ (f w - f x) / (w - x) < deriv f a
[PROOFSTEP]
apply StrictMonoOn.exists_slope_lt_deriv_aux _ hxw _ _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ContinuousOn (fun w => f w) (Icc x w)
[PROOFSTEP]
exact hf.mono (Icc_subset_Icc le_rfl hwy.le)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ StrictMonoOn (deriv fun w => f w) (Ioo x w)
[PROOFSTEP]
exact hf'_mono.mono (Ioo_subset_Ioo le_rfl hwy.le)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ∀ (w_1 : ℝ), w_1 ∈ Ioo x w → deriv (fun w => f w) w_1 ≠ 0
[PROOFSTEP]
intro z hz
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
z : ℝ
hz : z ∈ Ioo x w
⊢ deriv (fun w => f w) z ≠ 0
[PROOFSTEP]
rw [← hw]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
z : ℝ
hz : z ∈ Ioo x w
⊢ deriv (fun w => f w) z ≠ deriv f w
[PROOFSTEP]
apply ne_of_lt
[GOAL]
case h
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
z : ℝ
hz : z ∈ Ioo x w
⊢ deriv (fun w => f w) z < deriv f w
[PROOFSTEP]
exact hf'_mono ⟨hz.1, hz.2.trans hwy⟩ ⟨hxw, hwy⟩ hz.2
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
obtain ⟨b, ⟨hwb, hby⟩, hb⟩ : ∃ b ∈ Ioo w y, (f y - f w) / (y - w) < deriv f b :=
by
apply StrictMonoOn.exists_slope_lt_deriv_aux _ hwy _ _
· refine' hf.mono (Icc_subset_Icc hxw.le le_rfl)
· exact hf'_mono.mono (Ioo_subset_Ioo hxw.le le_rfl)
· intro z hz
rw [← hw]
apply ne_of_gt
exact hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hz.1, hz.2⟩ hz.1
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
⊢ ∃ b, b ∈ Ioo w y ∧ (f y - f w) / (y - w) < deriv f b
[PROOFSTEP]
apply StrictMonoOn.exists_slope_lt_deriv_aux _ hwy _ _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
⊢ ContinuousOn (fun {y} => f y) (Icc w y)
[PROOFSTEP]
refine' hf.mono (Icc_subset_Icc hxw.le le_rfl)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
⊢ StrictMonoOn (deriv fun {y} => f y) (Ioo w y)
[PROOFSTEP]
exact hf'_mono.mono (Ioo_subset_Ioo hxw.le le_rfl)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
⊢ ∀ (w_1 : ℝ), w_1 ∈ Ioo w y → deriv (fun {y} => f y) w_1 ≠ 0
[PROOFSTEP]
intro z hz
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
z : ℝ
hz : z ∈ Ioo w y
⊢ deriv (fun {y} => f y) z ≠ 0
[PROOFSTEP]
rw [← hw]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
z : ℝ
hz : z ∈ Ioo w y
⊢ deriv (fun {y} => f y) z ≠ deriv f w
[PROOFSTEP]
apply ne_of_gt
[GOAL]
case h
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
z : ℝ
hz : z ∈ Ioo w y
⊢ deriv f w < deriv (fun {y} => f y) z
[PROOFSTEP]
exact hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hz.1, hz.2⟩ hz.1
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
b : ℝ
hb : (f y - f w) / (y - w) < deriv f b
hwb : w < b
hby : b < y
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
refine' ⟨b, ⟨hxw.trans hwb, hby⟩, _⟩
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : (f w - f x) / (w - x) < deriv f a
hxa : x < a
haw : a < w
b : ℝ
hb : (f y - f w) / (y - w) < deriv f b
hwb : w < b
hby : b < y
⊢ (f y - f x) / (y - x) < deriv f b
[PROOFSTEP]
simp only [div_lt_iff, hxy, hxw, hwy, sub_pos] at ha hb ⊢
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : f w - f x < deriv f a * (w - x)
hb : f y - f w < deriv f b * (y - w)
⊢ f y - f x < deriv f b * (y - x)
[PROOFSTEP]
have : deriv f a * (w - x) < deriv f b * (w - x) :=
by
apply mul_lt_mul _ le_rfl (sub_pos.2 hxw) _
· exact hf'_mono ⟨hxa, haw.trans hwy⟩ ⟨hxw.trans hwb, hby⟩ (haw.trans hwb)
· rw [← hw]
exact (hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hwb, hby⟩ hwb).le
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : f w - f x < deriv f a * (w - x)
hb : f y - f w < deriv f b * (y - w)
⊢ deriv f a * (w - x) < deriv f b * (w - x)
[PROOFSTEP]
apply mul_lt_mul _ le_rfl (sub_pos.2 hxw) _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : f w - f x < deriv f a * (w - x)
hb : f y - f w < deriv f b * (y - w)
⊢ deriv f a < deriv f b
[PROOFSTEP]
exact hf'_mono ⟨hxa, haw.trans hwy⟩ ⟨hxw.trans hwb, hby⟩ (haw.trans hwb)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : f w - f x < deriv f a * (w - x)
hb : f y - f w < deriv f b * (y - w)
⊢ 0 ≤ deriv f b
[PROOFSTEP]
rw [← hw]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : f w - f x < deriv f a * (w - x)
hb : f y - f w < deriv f b * (y - w)
⊢ deriv f w ≤ deriv f b
[PROOFSTEP]
exact (hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hwb, hby⟩ hwb).le
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : f w - f x < deriv f a * (w - x)
hb : f y - f w < deriv f b * (y - w)
this : deriv f a * (w - x) < deriv f b * (w - x)
⊢ f y - f x < deriv f b * (y - x)
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
have A : DifferentiableOn ℝ f (Ioo x y) := fun w wmem =>
(differentiableAt_of_deriv_ne_zero (h w wmem)).differentiableWithinAt
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : ∃ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a = (f y - f x) / (y - x)
case intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
exact exists_deriv_eq_slope f hxy hf A
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
rcases nonempty_Ioo.2 hxa with ⟨b, ⟨hxb, hba⟩⟩
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hxb : x < b
hba : b < a
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
refine' ⟨b, ⟨hxb, hba.trans hay⟩, _⟩
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hxb : x < b
hba : b < a
⊢ deriv f b < (f y - f x) / (y - x)
[PROOFSTEP]
rw [← ha]
[GOAL]
case intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
A : DifferentiableOn ℝ f (Ioo x y)
a : ℝ
ha : deriv f a = (f y - f x) / (y - x)
hxa : x < a
hay : a < y
b : ℝ
hxb : x < b
hba : b < a
⊢ deriv f b < deriv f a
[PROOFSTEP]
exact hf'_mono ⟨hxb, hba.trans hay⟩ ⟨hxa, hay⟩ hba
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
by_cases h : ∀ w ∈ Ioo x y, deriv f w ≠ 0
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
apply StrictMonoOn.exists_deriv_lt_slope_aux hf hxy hf'_mono h
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ¬∀ (w : ℝ), w ∈ Ioo x y → deriv f w ≠ 0
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
h : ∃ w, w ∈ Ioo x y ∧ deriv f w = 0
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
rcases h with ⟨w, ⟨hxw, hwy⟩, hw⟩
[GOAL]
case neg.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
obtain ⟨a, ⟨hxa, haw⟩, ha⟩ : ∃ a ∈ Ioo x w, deriv f a < (f w - f x) / (w - x) :=
by
apply StrictMonoOn.exists_deriv_lt_slope_aux _ hxw _ _
· exact hf.mono (Icc_subset_Icc le_rfl hwy.le)
· exact hf'_mono.mono (Ioo_subset_Ioo le_rfl hwy.le)
· intro z hz
rw [← hw]
apply ne_of_lt
exact hf'_mono ⟨hz.1, hz.2.trans hwy⟩ ⟨hxw, hwy⟩ hz.2
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ∃ a, a ∈ Ioo x w ∧ deriv f a < (f w - f x) / (w - x)
[PROOFSTEP]
apply StrictMonoOn.exists_deriv_lt_slope_aux _ hxw _ _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ContinuousOn f (Icc x w)
[PROOFSTEP]
exact hf.mono (Icc_subset_Icc le_rfl hwy.le)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ StrictMonoOn (deriv f) (Ioo x w)
[PROOFSTEP]
exact hf'_mono.mono (Ioo_subset_Ioo le_rfl hwy.le)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
⊢ ∀ (w_1 : ℝ), w_1 ∈ Ioo x w → deriv f w_1 ≠ 0
[PROOFSTEP]
intro z hz
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
z : ℝ
hz : z ∈ Ioo x w
⊢ deriv f z ≠ 0
[PROOFSTEP]
rw [← hw]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
z : ℝ
hz : z ∈ Ioo x w
⊢ deriv f z ≠ deriv f w
[PROOFSTEP]
apply ne_of_lt
[GOAL]
case h
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
z : ℝ
hz : z ∈ Ioo x w
⊢ deriv f z < deriv f w
[PROOFSTEP]
exact hf'_mono ⟨hz.1, hz.2.trans hwy⟩ ⟨hxw, hwy⟩ hz.2
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
obtain ⟨b, ⟨hwb, hby⟩, hb⟩ : ∃ b ∈ Ioo w y, deriv f b < (f y - f w) / (y - w) :=
by
apply StrictMonoOn.exists_deriv_lt_slope_aux _ hwy _ _
· refine' hf.mono (Icc_subset_Icc hxw.le le_rfl)
· exact hf'_mono.mono (Ioo_subset_Ioo hxw.le le_rfl)
· intro z hz
rw [← hw]
apply ne_of_gt
exact hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hz.1, hz.2⟩ hz.1
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
⊢ ∃ b, b ∈ Ioo w y ∧ deriv f b < (f y - f w) / (y - w)
[PROOFSTEP]
apply StrictMonoOn.exists_deriv_lt_slope_aux _ hwy _ _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
⊢ ContinuousOn f (Icc w y)
[PROOFSTEP]
refine' hf.mono (Icc_subset_Icc hxw.le le_rfl)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
⊢ StrictMonoOn (deriv f) (Ioo w y)
[PROOFSTEP]
exact hf'_mono.mono (Ioo_subset_Ioo hxw.le le_rfl)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
⊢ ∀ (w_1 : ℝ), w_1 ∈ Ioo w y → deriv f w_1 ≠ 0
[PROOFSTEP]
intro z hz
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
z : ℝ
hz : z ∈ Ioo w y
⊢ deriv f z ≠ 0
[PROOFSTEP]
rw [← hw]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
z : ℝ
hz : z ∈ Ioo w y
⊢ deriv f z ≠ deriv f w
[PROOFSTEP]
apply ne_of_gt
[GOAL]
case h
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
z : ℝ
hz : z ∈ Ioo w y
⊢ deriv f w < deriv f z
[PROOFSTEP]
exact hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hz.1, hz.2⟩ hz.1
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
b : ℝ
hb : deriv f b < (f y - f w) / (y - w)
hwb : w < b
hby : b < y
⊢ ∃ a, a ∈ Ioo x y ∧ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
refine' ⟨a, ⟨hxa, haw.trans hwy⟩, _⟩
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
ha : deriv f a < (f w - f x) / (w - x)
hxa : x < a
haw : a < w
b : ℝ
hb : deriv f b < (f y - f w) / (y - w)
hwb : w < b
hby : b < y
⊢ deriv f a < (f y - f x) / (y - x)
[PROOFSTEP]
simp only [lt_div_iff, hxy, hxw, hwy, sub_pos] at ha hb ⊢
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : deriv f a * (w - x) < f w - f x
hb : deriv f b * (y - w) < f y - f w
⊢ deriv f a * (y - x) < f y - f x
[PROOFSTEP]
have : deriv f a * (y - w) < deriv f b * (y - w) :=
by
apply mul_lt_mul _ le_rfl (sub_pos.2 hwy) _
· exact hf'_mono ⟨hxa, haw.trans hwy⟩ ⟨hxw.trans hwb, hby⟩ (haw.trans hwb)
· rw [← hw]
exact (hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hwb, hby⟩ hwb).le
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : deriv f a * (w - x) < f w - f x
hb : deriv f b * (y - w) < f y - f w
⊢ deriv f a * (y - w) < deriv f b * (y - w)
[PROOFSTEP]
apply mul_lt_mul _ le_rfl (sub_pos.2 hwy) _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : deriv f a * (w - x) < f w - f x
hb : deriv f b * (y - w) < f y - f w
⊢ deriv f a < deriv f b
[PROOFSTEP]
exact hf'_mono ⟨hxa, haw.trans hwy⟩ ⟨hxw.trans hwb, hby⟩ (haw.trans hwb)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : deriv f a * (w - x) < f w - f x
hb : deriv f b * (y - w) < f y - f w
⊢ 0 ≤ deriv f b
[PROOFSTEP]
rw [← hw]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : deriv f a * (w - x) < f w - f x
hb : deriv f b * (y - w) < f y - f w
⊢ deriv f w ≤ deriv f b
[PROOFSTEP]
exact (hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hwb, hby⟩ hwb).le
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : ℝ
f : ℝ → ℝ
hf : ContinuousOn f (Icc x y)
hxy : x < y
hf'_mono : StrictMonoOn (deriv f) (Ioo x y)
w : ℝ
hw : deriv f w = 0
hxw : x < w
hwy : w < y
a : ℝ
hxa : x < a
haw : a < w
b : ℝ
hwb : w < b
hby : b < y
ha : deriv f a * (w - x) < f w - f x
hb : deriv f b * (y - w) < f y - f w
this : deriv f a * (y - w) < deriv f b * (y - w)
⊢ deriv f a * (y - x) < f y - f x
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hxzD : Icc x z ⊆ D := hD.ordConnected.out hx hz
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hxyD : Icc x y ⊆ D := (Icc_subset_Icc_right hyz.le).trans hxzD
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hxyD' : Ioo x y ⊆ interior D := subset_sUnion_of_mem ⟨isOpen_Ioo, Ioo_subset_Icc_self.trans hxyD⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hyzD : Icc y z ⊆ D := (Icc_subset_Icc_left hxy.le).trans hxzD
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
have hyzD' : Ioo y z ⊆ interior D :=
subset_sUnion_of_mem
⟨isOpen_Ioo, Ioo_subset_Icc_self.trans hyzD⟩
-- Then we get points `a` and `b` in each interval `[x, y]` and `[y, z]` where the derivatives
-- can be compared to the slopes between `x, y` and `y, z` respectively.
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : ∃ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
⊢ ∃ a, a ∈ Ioo x y ∧ (f y - f x) / (y - x) < deriv f a
[PROOFSTEP]
exact StrictMonoOn.exists_slope_lt_deriv (hf.mono hxyD) hxy (hf'.mono hxyD')
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : (f y - f x) / (y - x) < deriv f a
hxa : x < a
hay : a < y
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
obtain ⟨b, ⟨hyb, hbz⟩, hb⟩ : ∃ b ∈ Ioo y z, deriv f b < (f z - f y) / (z - y)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : (f y - f x) / (y - x) < deriv f a
hxa : x < a
hay : a < y
⊢ ∃ b, b ∈ Ioo y z ∧ deriv f b < (f z - f y) / (z - y)
[PROOFSTEP]
exact StrictMonoOn.exists_deriv_lt_slope (hf.mono hyzD) hyz (hf'.mono hyzD')
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : (f y - f x) / (y - x) < deriv f a
hxa : x < a
hay : a < y
b : ℝ
hb : deriv f b < (f z - f y) / (z - y)
hyb : y < b
hbz : b < z
⊢ (f y - f x) / (y - x) < (f z - f y) / (z - y)
[PROOFSTEP]
apply ha.trans (lt_trans _ hb)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : StrictMonoOn (deriv f) (interior D)
x y z : ℝ
hx : x ∈ D
hz : z ∈ D
hxy : x < y
hyz : y < z
hxzD : Icc x z ⊆ D
hxyD : Icc x y ⊆ D
hxyD' : Ioo x y ⊆ interior D
hyzD : Icc y z ⊆ D
hyzD' : Ioo y z ⊆ interior D
a : ℝ
ha : (f y - f x) / (y - x) < deriv f a
hxa : x < a
hay : a < y
b : ℝ
hb : deriv f b < (f z - f y) / (z - y)
hyb : y < b
hbz : b < z
⊢ deriv f a < deriv f b
[PROOFSTEP]
exact hf' (hxyD' ⟨hxa, hay⟩) (hyzD' ⟨hyb, hbz⟩) (hay.trans hyb)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
h_anti : StrictAntiOn (deriv f) (interior D)
⊢ StrictMonoOn (deriv (-f)) (interior D)
[PROOFSTEP]
simpa only [← deriv.neg] using h_anti.neg
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'' : DifferentiableOn ℝ (deriv f) (interior D)
hf''_nonneg : ∀ (x : ℝ), x ∈ interior D → 0 ≤ deriv^[2] f x
⊢ DifferentiableOn ℝ (deriv f) (interior (interior D))
[PROOFSTEP]
rwa [interior_interior]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'' : DifferentiableOn ℝ (deriv f) (interior D)
hf''_nonneg : ∀ (x : ℝ), x ∈ interior D → 0 ≤ deriv^[2] f x
⊢ ∀ (x : ℝ), x ∈ interior (interior D) → 0 ≤ deriv (deriv f) x
[PROOFSTEP]
rwa [interior_interior]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'' : DifferentiableOn ℝ (deriv f) (interior D)
hf''_nonpos : ∀ (x : ℝ), x ∈ interior D → deriv^[2] f x ≤ 0
⊢ DifferentiableOn ℝ (deriv f) (interior (interior D))
[PROOFSTEP]
rwa [interior_interior]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf' : DifferentiableOn ℝ f (interior D)
hf'' : DifferentiableOn ℝ (deriv f) (interior D)
hf''_nonpos : ∀ (x : ℝ), x ∈ interior D → deriv^[2] f x ≤ 0
⊢ ∀ (x : ℝ), x ∈ interior (interior D) → deriv (deriv f) x ≤ 0
[PROOFSTEP]
rwa [interior_interior]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf'' : ∀ (x : ℝ), x ∈ interior D → 0 < deriv^[2] f x
⊢ ∀ (x : ℝ), x ∈ interior (interior D) → 0 < deriv (deriv f) x
[PROOFSTEP]
rwa [interior_interior]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
D : Set ℝ
hD : Convex ℝ D
f : ℝ → ℝ
hf : ContinuousOn f D
hf'' : ∀ (x : ℝ), x ∈ interior D → deriv^[2] f x < 0
⊢ ∀ (x : ℝ), x ∈ interior (interior D) → deriv (deriv f) x < 0
[PROOFSTEP]
rwa [interior_interior]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
set g : ℝ → E := fun t => AffineMap.lineMap x y t
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
set I := Icc (0 : ℝ) 1
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
have hsub : Ioo (0 : ℝ) 1 ⊆ I := Ioo_subset_Icc_self
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
have hmaps : MapsTo g I s := hs.mapsTo_lineMap xs ys
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
have hfg : ∀ t ∈ I, HasDerivWithinAt (f ∘ g) (f' (g t) (y - x)) I t := fun t ht =>
(hf _ (hmaps ht)).comp_hasDerivWithinAt t AffineMap.hasDerivWithinAt_lineMap hmaps
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
have hMVT : ∃ t ∈ Ioo (0 : ℝ) 1, f' (g t) (y - x) = (f (g 1) - f (g 0)) / (1 - 0) :=
by
refine' exists_hasDerivAt_eq_slope (f ∘ g) _ (by norm_num) _ _
· exact fun t Ht => (hfg t Ht).continuousWithinAt
·
exact fun t Ht =>
(hfg t <| hsub Ht).hasDerivAt
(Icc_mem_nhds Ht.1 Ht.2)
-- reinterpret on domain
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
⊢ ∃ t, t ∈ Ioo 0 1 ∧ ↑(f' (g t)) (y - x) = (f (g 1) - f (g 0)) / (1 - 0)
[PROOFSTEP]
refine' exists_hasDerivAt_eq_slope (f ∘ g) _ (by norm_num) _ _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
⊢ 0 < 1
[PROOFSTEP]
norm_num
[GOAL]
case refine'_1
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
⊢ ContinuousOn (f ∘ g) (Icc 0 1)
[PROOFSTEP]
exact fun t Ht => (hfg t Ht).continuousWithinAt
[GOAL]
case refine'_2
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
⊢ ∀ (x_1 : ℝ), x_1 ∈ Ioo 0 1 → HasDerivAt (f ∘ g) (↑(f' (g x_1)) (y - x)) x_1
[PROOFSTEP]
exact fun t Ht =>
(hfg t <| hsub Ht).hasDerivAt
(Icc_mem_nhds Ht.1 Ht.2)
-- reinterpret on domain
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
hMVT : ∃ t, t ∈ Ioo 0 1 ∧ ↑(f' (g t)) (y - x) = (f (g 1) - f (g 0)) / (1 - 0)
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
rcases hMVT with ⟨t, Ht, hMVT'⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
t : ℝ
Ht : t ∈ Ioo 0 1
hMVT' : ↑(f' (g t)) (y - x) = (f (g 1) - f (g 0)) / (1 - 0)
⊢ ∃ z, z ∈ segment ℝ x y ∧ f y - f x = ↑(f' z) (y - x)
[PROOFSTEP]
rw [segment_eq_image_lineMap, bex_image_iff]
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
t : ℝ
Ht : t ∈ Ioo 0 1
hMVT' : ↑(f' (g t)) (y - x) = (f (g 1) - f (g 0)) / (1 - 0)
⊢ ∃ x_1, x_1 ∈ Icc 0 1 ∧ f y - f x = ↑(f' (↑(AffineMap.lineMap x y) x_1)) (y - x)
[PROOFSTEP]
refine ⟨t, hsub Ht, ?_⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → ℝ
s : Set E
x y : E
f' : E → E →L[ℝ] ℝ
hf : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x
hs : Convex ℝ s
xs : x ∈ s
ys : y ∈ s
g : ℝ → E := fun t => ↑(AffineMap.lineMap x y) t
I : Set ℝ := Icc 0 1
hsub : Ioo 0 1 ⊆ I
hmaps : MapsTo g I s
hfg : ∀ (t : ℝ), t ∈ I → HasDerivWithinAt (f ∘ g) (↑(f' (g t)) (y - x)) I t
t : ℝ
Ht : t ∈ Ioo 0 1
hMVT' : ↑(f' (g t)) (y - x) = (f (g 1) - f (g 0)) / (1 - 0)
⊢ f y - f x = ↑(f' (↑(AffineMap.lineMap x y) t)) (y - x)
[PROOFSTEP]
simpa using hMVT'.symm
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
⊢ HasStrictFDerivAt f (f' x) x
[PROOFSTEP]
refine'
isLittleO_iff.mpr fun c hc =>
Metric.eventually_nhds_iff_ball.mpr
_
-- the correct ε is the modulus of continuity of f'
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
⊢ ∃ ε, ε > 0 ∧ ∀ (y : G × G), y ∈ ball (x, x) ε → ‖f y.fst - f y.snd - ↑(f' x) (y.fst - y.snd)‖ ≤ c * ‖y.fst - y.snd‖
[PROOFSTEP]
rcases Metric.mem_nhds_iff.mp (inter_mem hder (hcont <| ball_mem_nhds _ hc)) with ⟨ε, ε0, hε⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
⊢ ∃ ε, ε > 0 ∧ ∀ (y : G × G), y ∈ ball (x, x) ε → ‖f y.fst - f y.snd - ↑(f' x) (y.fst - y.snd)‖ ≤ c * ‖y.fst - y.snd‖
[PROOFSTEP]
refine'
⟨ε, ε0, _⟩
-- simplify formulas involving the product E × E
[GOAL]
case intro.intro
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
⊢ ∀ (y : G × G), y ∈ ball (x, x) ε → ‖f y.fst - f y.snd - ↑(f' x) (y.fst - y.snd)‖ ≤ c * ‖y.fst - y.snd‖
[PROOFSTEP]
rintro ⟨a, b⟩ h
[GOAL]
case intro.intro.mk
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
a b : G
h : (a, b) ∈ ball (x, x) ε
⊢ ‖f (a, b).fst - f (a, b).snd - ↑(f' x) ((a, b).fst - (a, b).snd)‖ ≤ c * ‖(a, b).fst - (a, b).snd‖
[PROOFSTEP]
rw [← ball_prod_same, prod_mk_mem_set_prod_eq] at h
[GOAL]
case intro.intro.mk
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
a b : G
h : a ∈ ball x ε ∧ b ∈ ball x ε
⊢ ‖f (a, b).fst - f (a, b).snd - ↑(f' x) ((a, b).fst - (a, b).snd)‖ ≤ c * ‖(a, b).fst - (a, b).snd‖
[PROOFSTEP]
have hf' : ∀ x' ∈ ball x ε, ‖f' x' - f' x‖ ≤ c := fun x' H' =>
by
rw [← dist_eq_norm]
exact
le_of_lt
(hε H').2
-- apply mean value theorem
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
a b : G
h : a ∈ ball x ε ∧ b ∈ ball x ε
x' : G
H' : x' ∈ ball x ε
⊢ ‖f' x' - f' x‖ ≤ c
[PROOFSTEP]
rw [← dist_eq_norm]
[GOAL]
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
a b : G
h : a ∈ ball x ε ∧ b ∈ ball x ε
x' : G
H' : x' ∈ ball x ε
⊢ dist (f' x') (f' x) ≤ c
[PROOFSTEP]
exact
le_of_lt
(hε H').2
-- apply mean value theorem
[GOAL]
case intro.intro.mk
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
a b : G
h : a ∈ ball x ε ∧ b ∈ ball x ε
hf' : ∀ (x' : G), x' ∈ ball x ε → ‖f' x' - f' x‖ ≤ c
⊢ ‖f (a, b).fst - f (a, b).snd - ↑(f' x) ((a, b).fst - (a, b).snd)‖ ≤ c * ‖(a, b).fst - (a, b).snd‖
[PROOFSTEP]
letI : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
[GOAL]
case intro.intro.mk
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
a b : G
h : a ∈ ball x ε ∧ b ∈ ball x ε
hf' : ∀ (x' : G), x' ∈ ball x ε → ‖f' x' - f' x‖ ≤ c
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
⊢ ‖f (a, b).fst - f (a, b).snd - ↑(f' x) ((a, b).fst - (a, b).snd)‖ ≤ c * ‖(a, b).fst - (a, b).snd‖
[PROOFSTEP]
refine' (convex_ball _ _).norm_image_sub_le_of_norm_hasFDerivWithin_le' _ hf' h.2 h.1
[GOAL]
case intro.intro.mk
E : Type u_1
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
F : Type u_2
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace ℝ F
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
H : Type u_5
inst✝¹ : NormedAddCommGroup H
inst✝ : NormedSpace 𝕜 H
f : G → H
f' : G → G →L[𝕜] H
x : G
hder : ∀ᶠ (y : G) in 𝓝 x, HasFDerivAt f (f' y) y
hcont : ContinuousAt f' x
c : ℝ
hc : 0 < c
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x} ∩ f' ⁻¹' ball (f' x) c
a b : G
h : a ∈ ball x ε ∧ b ∈ ball x ε
hf' : ∀ (x' : G), x' ∈ ball x ε → ‖f' x' - f' x‖ ≤ c
this : NormedSpace ℝ G := RestrictScalars.normedSpace ℝ 𝕜 G
⊢ ∀ (x_1 : G), x_1 ∈ ball x ε → HasFDerivWithinAt f (f' x_1) (ball x ε) x_1
[PROOFSTEP]
exact fun y hy => (hε hy).1.hasFDerivWithinAt
| {"mathlib_filename": "Mathlib.Analysis.Calculus.MeanValue", "llama_tokens": 94477} |
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
s : Set β
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
⊢ TendstoUniformlyOn (fun t x => ∑ n in t, f n x) (fun x => ∑' (n : α), f n x) atTop s
[PROOFSTEP]
refine' tendstoUniformlyOn_iff.2 fun ε εpos => _
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
s : Set β
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
ε : ℝ
εpos : ε > 0
⊢ ∀ᶠ (n : Finset α) in atTop, ∀ (x : β), x ∈ s → dist (∑' (n : α), f n x) (∑ n in n, f n x) < ε
[PROOFSTEP]
filter_upwards [(tendsto_order.1 (tendsto_tsum_compl_atTop_zero u)).2 _ εpos] with t ht x hx
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
s : Set β
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
ε : ℝ
εpos : ε > 0
t : Finset α
ht : ∑' (b : { x // ¬x ∈ t }), u ↑b < ε
x : β
hx : x ∈ s
⊢ dist (∑' (n : α), f n x) (∑ n in t, f n x) < ε
[PROOFSTEP]
have A : Summable fun n => ‖f n x‖ := summable_of_nonneg_of_le (fun n => norm_nonneg _) (fun n => hfu n x hx) hu
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
s : Set β
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
ε : ℝ
εpos : ε > 0
t : Finset α
ht : ∑' (b : { x // ¬x ∈ t }), u ↑b < ε
x : β
hx : x ∈ s
A : Summable fun n => ‖f n x‖
⊢ dist (∑' (n : α), f n x) (∑ n in t, f n x) < ε
[PROOFSTEP]
rw [dist_eq_norm, ← sum_add_tsum_subtype_compl (summable_of_summable_norm A) t, add_sub_cancel']
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
s : Set β
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
ε : ℝ
εpos : ε > 0
t : Finset α
ht : ∑' (b : { x // ¬x ∈ t }), u ↑b < ε
x : β
hx : x ∈ s
A : Summable fun n => ‖f n x‖
⊢ ‖∑' (x_1 : { x // ¬x ∈ t }), f (↑x_1) x‖ < ε
[PROOFSTEP]
apply lt_of_le_of_lt _ ht
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
s : Set β
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
ε : ℝ
εpos : ε > 0
t : Finset α
ht : ∑' (b : { x // ¬x ∈ t }), u ↑b < ε
x : β
hx : x ∈ s
A : Summable fun n => ‖f n x‖
⊢ ‖∑' (x_1 : { x // ¬x ∈ t }), f (↑x_1) x‖ ≤ ∑' (b : { x // ¬x ∈ t }), u ↑b
[PROOFSTEP]
apply (norm_tsum_le_tsum_norm (A.subtype _)).trans
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
s : Set β
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
ε : ℝ
εpos : ε > 0
t : Finset α
ht : ∑' (b : { x // ¬x ∈ t }), u ↑b < ε
x : β
hx : x ∈ s
A : Summable fun n => ‖f n x‖
⊢ ∑' (i : ↑fun x => x ∈ t → False), ‖f (↑i) x‖ ≤ ∑' (b : { x // ¬x ∈ t }), u ↑b
[PROOFSTEP]
exact tsum_le_tsum (fun n => hfu _ _ hx) (A.subtype _) (hu.subtype _)
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
hfu : ∀ (n : α) (x : β), ‖f n x‖ ≤ u n
⊢ TendstoUniformly (fun t x => ∑ n in t, f n x) (fun x => ∑' (n : α), f n x) atTop
[PROOFSTEP]
rw [← tendstoUniformlyOn_univ]
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : CompleteSpace F
u : α → ℝ
f : α → β → F
hu : Summable u
hfu : ∀ (n : α) (x : β), ‖f n x‖ ≤ u n
⊢ TendstoUniformlyOn (fun t x => ∑ n in t, f n x) (fun x => ∑' (n : α), f n x) atTop univ
[PROOFSTEP]
exact tendstoUniformlyOn_tsum hu fun n x _ => hfu n x
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : TopologicalSpace β
f : α → β → F
s : Set β
hf : ∀ (i : α), ContinuousOn (f i) s
hu : Summable u
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
⊢ ContinuousOn (fun x => ∑' (n : α), f n x) s
[PROOFSTEP]
classical
refine' (tendstoUniformlyOn_tsum hu hfu).continuousOn (eventually_of_forall _)
intro t
exact continuousOn_finset_sum _ fun i _ => hf i
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : TopologicalSpace β
f : α → β → F
s : Set β
hf : ∀ (i : α), ContinuousOn (f i) s
hu : Summable u
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
⊢ ContinuousOn (fun x => ∑' (n : α), f n x) s
[PROOFSTEP]
refine' (tendstoUniformlyOn_tsum hu hfu).continuousOn (eventually_of_forall _)
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : TopologicalSpace β
f : α → β → F
s : Set β
hf : ∀ (i : α), ContinuousOn (f i) s
hu : Summable u
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
⊢ ∀ (x : Finset α), ContinuousOn (fun x_1 => ∑ n in x, f n x_1) s
[PROOFSTEP]
intro t
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : TopologicalSpace β
f : α → β → F
s : Set β
hf : ∀ (i : α), ContinuousOn (f i) s
hu : Summable u
hfu : ∀ (n : α) (x : β), x ∈ s → ‖f n x‖ ≤ u n
t : Finset α
⊢ ContinuousOn (fun x => ∑ n in t, f n x) s
[PROOFSTEP]
exact continuousOn_finset_sum _ fun i _ => hf i
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : TopologicalSpace β
f : α → β → F
hf : ∀ (i : α), Continuous (f i)
hu : Summable u
hfu : ∀ (n : α) (x : β), ‖f n x‖ ≤ u n
⊢ Continuous fun x => ∑' (n : α), f n x
[PROOFSTEP]
simp_rw [continuous_iff_continuousOn_univ] at hf ⊢
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : TopologicalSpace β
f : α → β → F
hu : Summable u
hfu : ∀ (n : α) (x : β), ‖f n x‖ ≤ u n
hf : ∀ (i : α), ContinuousOn (f i) univ
⊢ ContinuousOn (fun x => ∑' (n : α), f n x) univ
[PROOFSTEP]
exact continuousOn_tsum hf hu fun n x _ => hfu n x
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun x => f x x₀
x : E
hx : x ∈ s
⊢ Summable fun n => f n x
[PROOFSTEP]
rw [summable_iff_cauchySeq_finset] at hf0 ⊢
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : CauchySeq fun s => ∑ b in s, f b x₀
x : E
hx : x ∈ s
⊢ CauchySeq fun s => ∑ b in s, f b x
[PROOFSTEP]
have A : UniformCauchySeqOn (fun t : Finset α => fun x => ∑ i in t, f' i x) atTop s :=
(tendstoUniformlyOn_tsum hu hf').uniformCauchySeqOn
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : CauchySeq fun s => ∑ b in s, f b x₀
x : E
hx : x ∈ s
A : UniformCauchySeqOn (fun t x => ∑ i in t, f' i x) atTop s
⊢ CauchySeq fun s => ∑ b in s, f b x
[PROOFSTEP]
refine cauchy_map_of_uniformCauchySeqOn_fderiv (f := fun t x ↦ ∑ i in t, f i x) hs h's A (fun t y hy => ?_) hx₀ hx hf0
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : CauchySeq fun s => ∑ b in s, f b x₀
x : E
hx : x ∈ s
A : UniformCauchySeqOn (fun t x => ∑ i in t, f' i x) atTop s
t : Finset α
y : E
hy : y ∈ s
⊢ HasFDerivAt ((fun t x => ∑ i in t, f i x) t) (∑ i in t, f' i y) y
[PROOFSTEP]
exact HasFDerivAt.sum fun i _ => hf i y hy
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun n => f n x₀
hx : x ∈ s
⊢ HasFDerivAt (fun y => ∑' (n : α), f n y) (∑' (n : α), f' n x) x
[PROOFSTEP]
classical
have A : ∀ x : E, x ∈ s → Tendsto (fun t : Finset α => ∑ n in t, f n x) atTop (𝓝 (∑' n, f n x)) :=
by
intro y hy
apply Summable.hasSum
exact summable_of_summable_hasFDerivAt_of_isPreconnected hu hs h's hf hf' hx₀ hf0 hy
refine hasFDerivAt_of_tendstoUniformlyOn hs (tendstoUniformlyOn_tsum hu hf') (fun t y hy => ?_) A _ hx
exact HasFDerivAt.sum fun n _ => hf n y hy
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun n => f n x₀
hx : x ∈ s
⊢ HasFDerivAt (fun y => ∑' (n : α), f n y) (∑' (n : α), f' n x) x
[PROOFSTEP]
have A : ∀ x : E, x ∈ s → Tendsto (fun t : Finset α => ∑ n in t, f n x) atTop (𝓝 (∑' n, f n x)) :=
by
intro y hy
apply Summable.hasSum
exact summable_of_summable_hasFDerivAt_of_isPreconnected hu hs h's hf hf' hx₀ hf0 hy
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun n => f n x₀
hx : x ∈ s
⊢ ∀ (x : E), x ∈ s → Tendsto (fun t => ∑ n in t, f n x) atTop (𝓝 (∑' (n : α), f n x))
[PROOFSTEP]
intro y hy
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun n => f n x₀
hx : x ∈ s
y : E
hy : y ∈ s
⊢ Tendsto (fun t => ∑ n in t, f n y) atTop (𝓝 (∑' (n : α), f n y))
[PROOFSTEP]
apply Summable.hasSum
[GOAL]
case ha
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun n => f n x₀
hx : x ∈ s
y : E
hy : y ∈ s
⊢ Summable fun b => f b y
[PROOFSTEP]
exact summable_of_summable_hasFDerivAt_of_isPreconnected hu hs h's hf hf' hx₀ hf0 hy
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun n => f n x₀
hx : x ∈ s
A : ∀ (x : E), x ∈ s → Tendsto (fun t => ∑ n in t, f n x) atTop (𝓝 (∑' (n : α), f n x))
⊢ HasFDerivAt (fun y => ∑' (n : α), f n y) (∑' (n : α), f' n x) x
[PROOFSTEP]
refine hasFDerivAt_of_tendstoUniformlyOn hs (tendstoUniformlyOn_tsum hu hf') (fun t y hy => ?_) A _ hx
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hs : IsOpen s
h's : IsPreconnected s
hf : ∀ (n : α) (x : E), x ∈ s → HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), x ∈ s → ‖f' n x‖ ≤ u n
hx₀ : x₀ ∈ s
hf0 : Summable fun n => f n x₀
hx : x ∈ s
A : ∀ (x : E), x ∈ s → Tendsto (fun t => ∑ n in t, f n x) atTop (𝓝 (∑' (n : α), f n x))
t : Finset α
y : E
hy : y ∈ s
⊢ HasFDerivAt (fun x => ∑ n in t, f n x) (∑ n in t, f' n y) y
[PROOFSTEP]
exact HasFDerivAt.sum fun n _ => hf n y hy
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
hf0 : Summable fun n => f n x₀
x : E
⊢ Summable fun n => f n x
[PROOFSTEP]
let _ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 _
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝¹ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
hf0 : Summable fun n => f n x₀
x : E
x✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ Summable fun n => f n x
[PROOFSTEP]
exact
summable_of_summable_hasFDerivAt_of_isPreconnected hu isOpen_univ isPreconnected_univ (fun n x _ => hf n x)
(fun n x _ => hf' n x) (mem_univ _) hf0 (mem_univ _)
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
hf0 : Summable fun n => f n x₀
x : E
⊢ HasFDerivAt (fun y => ∑' (n : α), f n y) (∑' (n : α), f' n x) x
[PROOFSTEP]
let : NormedSpace ℝ E
[GOAL]
case this
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
hf0 : Summable fun n => f n x₀
x : E
⊢ NormedSpace ℝ E
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
hf0 : Summable fun n => f n x₀
x : E
this : NormedSpace ℝ E := ?this
⊢ HasFDerivAt (fun y => ∑' (n : α), f n y) (∑' (n : α), f' n x) x
[PROOFSTEP]
exact NormedSpace.restrictScalars ℝ 𝕜 _
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
hf0 : Summable fun n => f n x₀
x : E
this : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
⊢ HasFDerivAt (fun y => ∑' (n : α), f n y) (∑' (n : α), f' n x) x
[PROOFSTEP]
exact
hasFDerivAt_tsum_of_isPreconnected hu isOpen_univ isPreconnected_univ (fun n x _ => hf n x) (fun n x _ => hf' n x)
(mem_univ _) hf0 (mem_univ _)
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
⊢ Differentiable 𝕜 fun y => ∑' (n : α), f n y
[PROOFSTEP]
by_cases h : ∃ x₀, Summable fun n => f n x₀
[GOAL]
case pos
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
h : ∃ x₀, Summable fun n => f n x₀
⊢ Differentiable 𝕜 fun y => ∑' (n : α), f n y
[PROOFSTEP]
rcases h with ⟨x₀, hf0⟩
[GOAL]
case pos.intro
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀✝ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
x₀ : E
hf0 : Summable fun n => f n x₀
⊢ Differentiable 𝕜 fun y => ∑' (n : α), f n y
[PROOFSTEP]
intro x
[GOAL]
case pos.intro
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀✝ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
x₀ : E
hf0 : Summable fun n => f n x₀
x : E
⊢ DifferentiableAt 𝕜 (fun y => ∑' (n : α), f n y) x
[PROOFSTEP]
exact (hasFDerivAt_tsum hu hf hf' hf0 x).differentiableAt
[GOAL]
case neg
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
h : ¬∃ x₀, Summable fun n => f n x₀
⊢ Differentiable 𝕜 fun y => ∑' (n : α), f n y
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
h : ∀ (x₀ : E), ¬Summable fun n => f n x₀
⊢ Differentiable 𝕜 fun y => ∑' (n : α), f n y
[PROOFSTEP]
have : (fun x => ∑' n, f n x) = 0 := by ext1 x; exact tsum_eq_zero_of_not_summable (h x)
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
h : ∀ (x₀ : E), ¬Summable fun n => f n x₀
⊢ (fun x => ∑' (n : α), f n x) = 0
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
h : ∀ (x₀ : E), ¬Summable fun n => f n x₀
x : E
⊢ ∑' (n : α), f n x = OfNat.ofNat 0 x
[PROOFSTEP]
exact tsum_eq_zero_of_not_summable (h x)
[GOAL]
case neg
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
h : ∀ (x₀ : E), ¬Summable fun n => f n x₀
this : (fun x => ∑' (n : α), f n x) = 0
⊢ Differentiable 𝕜 fun y => ∑' (n : α), f n y
[PROOFSTEP]
rw [this]
[GOAL]
case neg
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α) (x : E), HasFDerivAt (f n) (f' n x) x
hf' : ∀ (n : α) (x : E), ‖f' n x‖ ≤ u n
h : ∀ (x₀ : E), ¬Summable fun n => f n x₀
this : (fun x => ∑' (n : α), f n x) = 0
⊢ Differentiable 𝕜 0
[PROOFSTEP]
exact differentiable_const 0
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀✝ x : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α), Differentiable 𝕜 (f n)
hf' : ∀ (n : α) (x : E), ‖fderiv 𝕜 (f n) x‖ ≤ u n
x₀ : E
hf0 : Summable fun n => f n x₀
⊢ (fderiv 𝕜 fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), fderiv 𝕜 (f n) x
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀✝ x✝ : E
N : ℕ∞
hu : Summable u
hf : ∀ (n : α), Differentiable 𝕜 (f n)
hf' : ∀ (n : α) (x : E), ‖fderiv 𝕜 (f n) x‖ ≤ u n
x₀ : E
hf0 : Summable fun n => f n x₀
x : E
⊢ fderiv 𝕜 (fun y => ∑' (n : α), f n y) x = ∑' (n : α), fderiv 𝕜 (f n) x
[PROOFSTEP]
exact fderiv_tsum_apply hu hf hf' hf0 x
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k : ℕ
hk : ↑k ≤ N
⊢ (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
[PROOFSTEP]
induction' k with k IH
[GOAL]
case zero
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k : ℕ
hk✝ : ↑k ≤ N
hk : ↑Nat.zero ≤ N
⊢ (iteratedFDeriv 𝕜 Nat.zero fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 Nat.zero (f n) x
[PROOFSTEP]
ext1 x
[GOAL]
case zero.h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k : ℕ
hk✝ : ↑k ≤ N
hk : ↑Nat.zero ≤ N
x : E
⊢ iteratedFDeriv 𝕜 Nat.zero (fun y => ∑' (n : α), f n y) x = ∑' (n : α), iteratedFDeriv 𝕜 Nat.zero (f n) x
[PROOFSTEP]
simp_rw [iteratedFDeriv_zero_eq_comp]
[GOAL]
case zero.h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k : ℕ
hk✝ : ↑k ≤ N
hk : ↑Nat.zero ≤ N
x : E
⊢ (↑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 𝕜 E F)) ∘ fun y => ∑' (n : α), f n y) x =
∑' (n : α), (↑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 𝕜 E F)) ∘ f n) x
[PROOFSTEP]
exact (continuousMultilinearCurryFin0 𝕜 E F).symm.toContinuousLinearEquiv.map_tsum
[GOAL]
case succ
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
⊢ (iteratedFDeriv 𝕜 (Nat.succ k) fun y => ∑' (n : α), f n y) = fun x =>
∑' (n : α), iteratedFDeriv 𝕜 (Nat.succ k) (f n) x
[PROOFSTEP]
have h'k : (k : ℕ∞) < N := lt_of_lt_of_le (WithTop.coe_lt_coe.2 (Nat.lt_succ_self _)) hk
[GOAL]
case succ
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
h'k : ↑k < N
⊢ (iteratedFDeriv 𝕜 (Nat.succ k) fun y => ∑' (n : α), f n y) = fun x =>
∑' (n : α), iteratedFDeriv 𝕜 (Nat.succ k) (f n) x
[PROOFSTEP]
have A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0 :=
summable_of_norm_bounded (v k) (hv k h'k.le) fun n => h'f k n 0 h'k.le
[GOAL]
case succ
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
h'k : ↑k < N
A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0
⊢ (iteratedFDeriv 𝕜 (Nat.succ k) fun y => ∑' (n : α), f n y) = fun x =>
∑' (n : α), iteratedFDeriv 𝕜 (Nat.succ k) (f n) x
[PROOFSTEP]
simp_rw [iteratedFDeriv_succ_eq_comp_left, IH h'k.le]
[GOAL]
case succ
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
h'k : ↑k < N
A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0
⊢ (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x) =
fun x =>
∑' (n : α), (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (iteratedFDeriv 𝕜 k (f n))) x
[PROOFSTEP]
rw [fderiv_tsum (hv _ hk) (fun n => (hf n).differentiable_iteratedFDeriv h'k) _ A]
[GOAL]
case succ
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
h'k : ↑k < N
A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0
⊢ (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fun x =>
∑' (n : α), fderiv 𝕜 (fun x => iteratedFDeriv 𝕜 k (f n) x) x) =
fun x =>
∑' (n : α), (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (iteratedFDeriv 𝕜 k (f n))) x
[PROOFSTEP]
ext1 x
[GOAL]
case succ.h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
h'k : ↑k < N
A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0
x : E
⊢ (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fun x =>
∑' (n : α), fderiv 𝕜 (fun x => iteratedFDeriv 𝕜 k (f n) x) x)
x =
∑' (n : α), (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (iteratedFDeriv 𝕜 k (f n))) x
[PROOFSTEP]
exact (continuousMultilinearCurryLeftEquiv 𝕜 (fun _ : Fin (k + 1) => E) F).toContinuousLinearEquiv.map_tsum
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
h'k : ↑k < N
A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0
⊢ ∀ (n : α) (x : E), ‖fderiv 𝕜 (fun x => iteratedFDeriv 𝕜 k (f n) x) x‖ ≤ v (Nat.succ k) n
[PROOFSTEP]
intro n x
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k✝ : ℕ
hk✝ : ↑k✝ ≤ N
k : ℕ
IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
hk : ↑(Nat.succ k) ≤ N
h'k : ↑k < N
A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0
n : α
x : E
⊢ ‖fderiv 𝕜 (fun x => iteratedFDeriv 𝕜 k (f n) x) x‖ ≤ v (Nat.succ k) n
[PROOFSTEP]
simpa only [iteratedFDeriv_succ_eq_comp_left, LinearIsometryEquiv.norm_map, comp_apply] using h'f k.succ n x hk
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
k : ℕ
hk : ↑k ≤ N
x : E
⊢ iteratedFDeriv 𝕜 k (fun y => ∑' (n : α), f n y) x = ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x
[PROOFSTEP]
rw [iteratedFDeriv_tsum hf hv h'f hk]
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
⊢ ContDiff 𝕜 N fun x => ∑' (i : α), f i x
[PROOFSTEP]
rw [contDiff_iff_continuous_differentiable]
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
⊢ (∀ (m : ℕ), ↑m ≤ N → Continuous fun x => iteratedFDeriv 𝕜 m (fun x => ∑' (i : α), f i x) x) ∧
∀ (m : ℕ), ↑m < N → Differentiable 𝕜 fun x => iteratedFDeriv 𝕜 m (fun x => ∑' (i : α), f i x) x
[PROOFSTEP]
constructor
[GOAL]
case left
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
⊢ ∀ (m : ℕ), ↑m ≤ N → Continuous fun x => iteratedFDeriv 𝕜 m (fun x => ∑' (i : α), f i x) x
[PROOFSTEP]
intro m hm
[GOAL]
case left
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
⊢ Continuous fun x => iteratedFDeriv 𝕜 m (fun x => ∑' (i : α), f i x) x
[PROOFSTEP]
rw [iteratedFDeriv_tsum hf hv h'f hm]
[GOAL]
case left
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
⊢ Continuous fun x => (fun x => ∑' (n : α), iteratedFDeriv 𝕜 m (f n) x) x
[PROOFSTEP]
refine' continuous_tsum _ (hv m hm) _
[GOAL]
case left.refine'_1
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
⊢ ∀ (i : α), Continuous fun x => iteratedFDeriv 𝕜 m (f i) x
[PROOFSTEP]
intro i
[GOAL]
case left.refine'_1
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
i : α
⊢ Continuous fun x => iteratedFDeriv 𝕜 m (f i) x
[PROOFSTEP]
exact ContDiff.continuous_iteratedFDeriv hm (hf i)
[GOAL]
case left.refine'_2
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
⊢ ∀ (n : α) (x : E), ‖iteratedFDeriv 𝕜 m (f n) x‖ ≤ v m n
[PROOFSTEP]
intro n x
[GOAL]
case left.refine'_2
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
n : α
x : E
⊢ ‖iteratedFDeriv 𝕜 m (f n) x‖ ≤ v m n
[PROOFSTEP]
exact h'f _ _ _ hm
[GOAL]
case right
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
⊢ ∀ (m : ℕ), ↑m < N → Differentiable 𝕜 fun x => iteratedFDeriv 𝕜 m (fun x => ∑' (i : α), f i x) x
[PROOFSTEP]
intro m hm
[GOAL]
case right
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m < N
⊢ Differentiable 𝕜 fun x => iteratedFDeriv 𝕜 m (fun x => ∑' (i : α), f i x) x
[PROOFSTEP]
have h'm : ((m + 1 : ℕ) : ℕ∞) ≤ N := by
simpa only [ENat.coe_add, Nat.cast_withBot, ENat.coe_one] using ENat.add_one_le_of_lt hm
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m < N
⊢ ↑(m + 1) ≤ N
[PROOFSTEP]
simpa only [ENat.coe_add, Nat.cast_withBot, ENat.coe_one] using ENat.add_one_le_of_lt hm
[GOAL]
case right
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m < N
h'm : ↑(m + 1) ≤ N
⊢ Differentiable 𝕜 fun x => iteratedFDeriv 𝕜 m (fun x => ∑' (i : α), f i x) x
[PROOFSTEP]
rw [iteratedFDeriv_tsum hf hv h'f hm.le]
[GOAL]
case right
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m < N
h'm : ↑(m + 1) ≤ N
⊢ Differentiable 𝕜 fun x => (fun x => ∑' (n : α), iteratedFDeriv 𝕜 m (f n) x) x
[PROOFSTEP]
have A : ∀ n x, HasFDerivAt (iteratedFDeriv 𝕜 m (f n)) (fderiv 𝕜 (iteratedFDeriv 𝕜 m (f n)) x) x := fun n x =>
(ContDiff.differentiable_iteratedFDeriv hm (hf n)).differentiableAt.hasFDerivAt
[GOAL]
case right
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m < N
h'm : ↑(m + 1) ≤ N
A : ∀ (n : α) (x : E), HasFDerivAt (iteratedFDeriv 𝕜 m (f n)) (fderiv 𝕜 (iteratedFDeriv 𝕜 m (f n)) x) x
⊢ Differentiable 𝕜 fun x => (fun x => ∑' (n : α), iteratedFDeriv 𝕜 m (f n) x) x
[PROOFSTEP]
refine differentiable_tsum (hv _ h'm) A fun n x => ?_
[GOAL]
case right
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m < N
h'm : ↑(m + 1) ≤ N
A : ∀ (n : α) (x : E), HasFDerivAt (iteratedFDeriv 𝕜 m (f n)) (fderiv 𝕜 (iteratedFDeriv 𝕜 m (f n)) x) x
n : α
x : E
⊢ ‖fderiv 𝕜 (iteratedFDeriv 𝕜 m (f n)) x‖ ≤ v (m + 1) n
[PROOFSTEP]
rw [fderiv_iteratedFDeriv, comp_apply, LinearIsometryEquiv.norm_map]
[GOAL]
case right
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m < N
h'm : ↑(m + 1) ≤ N
A : ∀ (n : α) (x : E), HasFDerivAt (iteratedFDeriv 𝕜 m (f n)) (fderiv 𝕜 (iteratedFDeriv 𝕜 m (f n)) x) x
n : α
x : E
⊢ ‖iteratedFDeriv 𝕜 (m + 1) (f n) x‖ ≤ v (m + 1) n
[PROOFSTEP]
exact h'f _ _ _ h'm
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
⊢ ContDiff 𝕜 N fun x => ∑' (i : α), f i x
[PROOFSTEP]
classical
refine contDiff_iff_forall_nat_le.2 fun m hm => ?_
let t : Set α := {i : α | ¬∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
have ht : Set.Finite t :=
haveI A :
∀ᶠ i in (Filter.cofinite : Filter α),
∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x : E, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i :=
by
rw [eventually_all_finset]
intro i hi
apply h'f
simp only [Finset.mem_range_succ_iff] at hi
exact (WithTop.coe_le_coe.2 hi).trans hm
eventually_cofinite.2 A
let T : Finset α := ht.toFinset
have : (fun x => ∑' i, f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' i : { i // i ∉ T }, f i x :=
by
ext1 x
refine' (sum_add_tsum_subtype_compl _ T).symm
refine' summable_of_norm_bounded_eventually _ (hv 0 (zero_le _)) _
filter_upwards [h'f 0 (zero_le _)] with i hi
simpa only [norm_iteratedFDeriv_zero] using hi x
rw [this]
apply (ContDiff.sum fun i _ => (hf i).of_le hm).add
have h'u : ∀ k : ℕ, (k : ℕ∞) ≤ m → Summable (v k ∘ ((↑) : { i // i ∉ T } → α)) := fun k hk =>
(hv k (hk.trans hm)).subtype _
refine' contDiff_tsum (fun i => (hf i).of_le hm) h'u _
rintro k ⟨i, hi⟩ x hk
dsimp
simp only [Finite.mem_toFinset, mem_setOf_eq, Finset.mem_range, not_forall, not_le, exists_prop, not_exists, not_and,
not_lt] at hi
exact hi k (Nat.lt_succ_iff.2 (WithTop.coe_le_coe.1 hk)) x
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
⊢ ContDiff 𝕜 N fun x => ∑' (i : α), f i x
[PROOFSTEP]
refine contDiff_iff_forall_nat_le.2 fun m hm => ?_
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x
[PROOFSTEP]
let t : Set α := {i : α | ¬∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x
[PROOFSTEP]
have ht : Set.Finite t :=
haveI A :
∀ᶠ i in (Filter.cofinite : Filter α),
∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x : E, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i :=
by
rw [eventually_all_finset]
intro i hi
apply h'f
simp only [Finset.mem_range_succ_iff] at hi
exact (WithTop.coe_le_coe.2 hi).trans hm
eventually_cofinite.2 A
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
⊢ ∀ᶠ (i : α) in cofinite, ∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
[PROOFSTEP]
rw [eventually_all_finset]
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
⊢ ∀ (i : ℕ), i ∈ Finset.range (m + 1) → ∀ᶠ (x : α) in cofinite, ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 i (f x) x_1‖ ≤ v i x
[PROOFSTEP]
intro i hi
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
i : ℕ
hi : i ∈ Finset.range (m + 1)
⊢ ∀ᶠ (x : α) in cofinite, ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 i (f x) x_1‖ ≤ v i x
[PROOFSTEP]
apply h'f
[GOAL]
case a
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
i : ℕ
hi : i ∈ Finset.range (m + 1)
⊢ ↑i ≤ N
[PROOFSTEP]
simp only [Finset.mem_range_succ_iff] at hi
[GOAL]
case a
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
i : ℕ
hi : i ≤ m
⊢ ↑i ≤ N
[PROOFSTEP]
exact (WithTop.coe_le_coe.2 hi).trans hm
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x
[PROOFSTEP]
let T : Finset α := ht.toFinset
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x
[PROOFSTEP]
have : (fun x => ∑' i, f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' i : { i // i ∉ T }, f i x :=
by
ext1 x
refine' (sum_add_tsum_subtype_compl _ T).symm
refine' summable_of_norm_bounded_eventually _ (hv 0 (zero_le _)) _
filter_upwards [h'f 0 (zero_le _)] with i hi
simpa only [norm_iteratedFDeriv_zero] using hi x
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
⊢ (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
x : E
⊢ ∑' (i : α), f i x = ((fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x
[PROOFSTEP]
refine' (sum_add_tsum_subtype_compl _ T).symm
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
x : E
⊢ Summable fun i => f i x
[PROOFSTEP]
refine' summable_of_norm_bounded_eventually _ (hv 0 (zero_le _)) _
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
x : E
⊢ ∀ᶠ (i : α) in cofinite, ‖f i x‖ ≤ v 0 i
[PROOFSTEP]
filter_upwards [h'f 0 (zero_le _)] with i hi
[GOAL]
case h
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
x : E
i : α
hi : ∀ (x : E), ‖iteratedFDeriv 𝕜 0 (f i) x‖ ≤ v 0 i
⊢ ‖f i x‖ ≤ v 0 i
[PROOFSTEP]
simpa only [norm_iteratedFDeriv_zero] using hi x
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
⊢ ContDiff 𝕜 (↑m) ((fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x)
[PROOFSTEP]
apply (ContDiff.sum fun i _ => (hf i).of_le hm).add
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
⊢ ContDiff 𝕜 ↑m fun x => (fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x
[PROOFSTEP]
have h'u : ∀ k : ℕ, (k : ℕ∞) ≤ m → Summable (v k ∘ ((↑) : { i // i ∉ T } → α)) := fun k hk =>
(hv k (hk.trans hm)).subtype _
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
h'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)
⊢ ContDiff 𝕜 ↑m fun x => (fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x
[PROOFSTEP]
refine' contDiff_tsum (fun i => (hf i).of_le hm) h'u _
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
h'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)
⊢ ∀ (k : ℕ) (i : { i // ¬i ∈ T }) (x : E), ↑k ≤ ↑m → ‖iteratedFDeriv 𝕜 k (fun x => f (↑i) x) x‖ ≤ (v k ∘ Subtype.val) i
[PROOFSTEP]
rintro k ⟨i, hi⟩ x hk
[GOAL]
case mk
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
h'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)
k : ℕ
i : α
hi : ¬i ∈ T
x : E
hk : ↑k ≤ ↑m
⊢ ‖iteratedFDeriv 𝕜 k (fun x => f (↑{ val := i, property := hi }) x) x‖ ≤
(v k ∘ Subtype.val) { val := i, property := hi }
[PROOFSTEP]
dsimp
[GOAL]
case mk
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
h'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)
k : ℕ
i : α
hi : ¬i ∈ T
x : E
hk : ↑k ≤ ↑m
⊢ ‖iteratedFDeriv 𝕜 k (fun x => f i x) x‖ ≤ v k i
[PROOFSTEP]
simp only [Finite.mem_toFinset, mem_setOf_eq, Finset.mem_range, not_forall, not_le, exists_prop, not_exists, not_and,
not_lt] at hi
[GOAL]
case mk
α : Type u_1
β : Type u_2
𝕜 : Type u_3
E : Type u_4
F : Type u_5
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : CompleteSpace F
u : α → ℝ
inst✝ : NormedSpace 𝕜 F
f : α → E → F
f' : α → E → E →L[𝕜] F
v : ℕ → α → ℝ
s : Set E
x₀ x✝ : E
N : ℕ∞
hf : ∀ (i : α), ContDiff 𝕜 N (f i)
hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)
h'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i
m : ℕ
hm : ↑m ≤ N
t : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}
ht : Set.Finite t
T : Finset α := Finite.toFinset ht
this : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x
h'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)
k : ℕ
i : α
x : E
hk : ↑k ≤ ↑m
hi : ∀ (x : ℕ), x < m + 1 → ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 x (f i) x_1‖ ≤ v x i
⊢ ‖iteratedFDeriv 𝕜 k (fun x => f i x) x‖ ≤ v k i
[PROOFSTEP]
exact hi k (Nat.lt_succ_iff.2 (WithTop.coe_le_coe.1 hk)) x
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Series", "llama_tokens": 38688} |
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
⊢ radius p = liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
[PROOFSTEP]
have : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → ((r : ℝ≥0∞) ≤ 1 / ↑(‖p n‖₊ ^ (1 / (n : ℝ))) ↔ ‖p n‖₊ * r ^ n ≤ 1) :=
by
intro r n hn
have : 0 < (n : ℝ) := Nat.cast_pos.2 hn
conv_lhs =>
rw [one_div, ENNReal.le_inv_iff_mul_le, ← ENNReal.coe_mul, ENNReal.coe_le_one_iff, one_div, ← NNReal.rpow_one r, ←
mul_inv_cancel this.ne', NNReal.rpow_mul, ← NNReal.mul_rpow, ← NNReal.one_rpow n⁻¹,
NNReal.rpow_le_rpow_iff (inv_pos.2 this), mul_comm, NNReal.rpow_nat_cast]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
⊢ ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
[PROOFSTEP]
intro r n hn
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0
n : ℕ
hn : 0 < n
⊢ ↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1
[PROOFSTEP]
have : 0 < (n : ℝ) := Nat.cast_pos.2 hn
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0
n : ℕ
hn : 0 < n
this : 0 < ↑n
⊢ ↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1
[PROOFSTEP]
conv_lhs =>
rw [one_div, ENNReal.le_inv_iff_mul_le, ← ENNReal.coe_mul, ENNReal.coe_le_one_iff, one_div, ← NNReal.rpow_one r, ←
mul_inv_cancel this.ne', NNReal.rpow_mul, ← NNReal.mul_rpow, ← NNReal.one_rpow n⁻¹,
NNReal.rpow_le_rpow_iff (inv_pos.2 this), mul_comm, NNReal.rpow_nat_cast]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0
n : ℕ
hn : 0 < n
this : 0 < ↑n
| ↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n))
[PROOFSTEP]
rw [one_div, ENNReal.le_inv_iff_mul_le, ← ENNReal.coe_mul, ENNReal.coe_le_one_iff, one_div, ← NNReal.rpow_one r, ←
mul_inv_cancel this.ne', NNReal.rpow_mul, ← NNReal.mul_rpow, ← NNReal.one_rpow n⁻¹,
NNReal.rpow_le_rpow_iff (inv_pos.2 this), mul_comm, NNReal.rpow_nat_cast]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0
n : ℕ
hn : 0 < n
this : 0 < ↑n
| ↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n))
[PROOFSTEP]
rw [one_div, ENNReal.le_inv_iff_mul_le, ← ENNReal.coe_mul, ENNReal.coe_le_one_iff, one_div, ← NNReal.rpow_one r, ←
mul_inv_cancel this.ne', NNReal.rpow_mul, ← NNReal.mul_rpow, ← NNReal.one_rpow n⁻¹,
NNReal.rpow_le_rpow_iff (inv_pos.2 this), mul_comm, NNReal.rpow_nat_cast]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0
n : ℕ
hn : 0 < n
this : 0 < ↑n
| ↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n))
[PROOFSTEP]
rw [one_div, ENNReal.le_inv_iff_mul_le, ← ENNReal.coe_mul, ENNReal.coe_le_one_iff, one_div, ← NNReal.rpow_one r, ←
mul_inv_cancel this.ne', NNReal.rpow_mul, ← NNReal.mul_rpow, ← NNReal.one_rpow n⁻¹,
NNReal.rpow_le_rpow_iff (inv_pos.2 this), mul_comm, NNReal.rpow_nat_cast]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
⊢ radius p = liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
⊢ radius p ≤ liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
[PROOFSTEP]
refine' ENNReal.le_of_forall_nnreal_lt fun r hr => _
[GOAL]
case a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
⊢ liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop ≤ radius p
[PROOFSTEP]
refine' ENNReal.le_of_forall_nnreal_lt fun r hr => _
[GOAL]
case a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
⊢ ↑r ≤ liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
[PROOFSTEP]
have := ((TFAE_exists_lt_isLittleO_pow (fun n => ‖p n‖ * r ^ n) 1).out 1 7).1 (p.isLittleO_of_lt_radius hr)
[GOAL]
case a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this✝ : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
this : ∃ a, a ∈ Set.Ioo 0 1 ∧ ∀ᶠ (n : ℕ) in atTop, |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
⊢ ↑r ≤ liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
[PROOFSTEP]
obtain ⟨a, ha, H⟩ := this
[GOAL]
case a.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
a : ℝ
ha : a ∈ Set.Ioo 0 1
H : ∀ᶠ (n : ℕ) in atTop, |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
⊢ ↑r ≤ liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
[PROOFSTEP]
apply le_liminf_of_le
[GOAL]
case a.intro.intro.hf
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
a : ℝ
ha : a ∈ Set.Ioo 0 1
H : ∀ᶠ (n : ℕ) in atTop, |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
⊢ autoParam (IsCoboundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) _auto✝
[PROOFSTEP]
infer_param
[GOAL]
case a.intro.intro.h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
a : ℝ
ha : a ∈ Set.Ioo 0 1
H : ∀ᶠ (n : ℕ) in atTop, |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
⊢ ∀ᶠ (n : ℕ) in atTop, ↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n))
[PROOFSTEP]
rw [← eventually_map]
[GOAL]
case a.intro.intro.h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
a : ℝ
ha : a ∈ Set.Ioo 0 1
H : ∀ᶠ (n : ℕ) in atTop, |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
⊢ ∀ᶠ (b : ℝ≥0∞) in map (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop, ↑r ≤ b
[PROOFSTEP]
refine' H.mp ((eventually_gt_atTop 0).mono fun n hn₀ hn => (this _ hn₀).2 (NNReal.coe_le_coe.1 _))
[GOAL]
case a.intro.intro.h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
a : ℝ
ha : a ∈ Set.Ioo 0 1
H : ∀ᶠ (n : ℕ) in atTop, |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
n : ℕ
hn₀ : 0 < n
hn : |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
⊢ ↑(‖p n‖₊ * r ^ n) ≤ ↑1
[PROOFSTEP]
push_cast
[GOAL]
case a.intro.intro.h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < radius p
a : ℝ
ha : a ∈ Set.Ioo 0 1
H : ∀ᶠ (n : ℕ) in atTop, |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
n : ℕ
hn₀ : 0 < n
hn : |‖p n‖ * ↑(r ^ n)| ≤ a ^ n
⊢ ‖p n‖ * ↑r ^ n ≤ 1
[PROOFSTEP]
exact (le_abs_self _).trans (hn.trans (pow_le_one _ ha.1.le ha.2.le))
[GOAL]
case a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
⊢ ↑r ≤ radius p
[PROOFSTEP]
refine' p.le_radius_of_isBigO (IsBigO.of_bound 1 _)
[GOAL]
case a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
⊢ ∀ᶠ (x : ℕ) in atTop, ‖‖p x‖ * ↑r ^ x‖ ≤ 1 * ‖1‖
[PROOFSTEP]
refine' (eventually_lt_of_lt_liminf hr).mp ((eventually_gt_atTop 0).mono fun n hn₀ hn => _)
[GOAL]
case a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
this : ∀ (r : ℝ≥0) {n : ℕ}, 0 < n → (↑r ≤ 1 / ↑(‖p n‖₊ ^ (1 / ↑n)) ↔ ‖p n‖₊ * r ^ n ≤ 1)
r : ℝ≥0
hr : ↑r < liminf (fun n => 1 / ↑(‖p n‖₊ ^ (1 / ↑n))) atTop
n : ℕ
hn₀ : 0 < n
hn : ↑r < 1 / ↑(‖p n‖₊ ^ (1 / ↑n))
⊢ ‖‖p n‖ * ↑r ^ n‖ ≤ 1 * ‖1‖
[PROOFSTEP]
simpa using NNReal.coe_le_coe.2 ((this _ hn₀).1 hn.le)
| {"mathlib_filename": "Mathlib.Analysis.Analytic.RadiusLiminf", "llama_tokens": 6308} |
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝¹ : E
s t : Set E
L L₁ L₂ : Filter E
x✝ : E
x : E × E
⊢ 0 = ↑e x.fst - ↑e x.snd - ↑e (x.fst - x.snd)
[PROOFSTEP]
simp only [e.map_sub, sub_self]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
x : E
⊢ 0 = ↑e x - ↑e x✝ - ↑e (x - x✝)
[PROOFSTEP]
simp only [e.map_sub, sub_self]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderivWithin 𝕜 (↑e) s x = e
[PROOFSTEP]
rw [DifferentiableAt.fderivWithin e.differentiableAt hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderiv 𝕜 (↑e) x = e
[PROOFSTEP]
exact e.fderiv
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : IsBoundedLinearMap 𝕜 f
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ _root_.fderivWithin 𝕜 f s x = toContinuousLinearMap h
[PROOFSTEP]
rw [DifferentiableAt.fderivWithin h.differentiableAt hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : IsBoundedLinearMap 𝕜 f
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ _root_.fderiv 𝕜 f x = toContinuousLinearMap h
[PROOFSTEP]
exact h.fderiv
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Linear", "llama_tokens": 1652} |
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
⊢ EqOn f 0 U
[PROOFSTEP]
let u := {x | f =ᶠ[𝓝 x] 0}
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
⊢ EqOn f 0 U
[PROOFSTEP]
suffices main : closure u ∩ U ⊆ u
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
main : closure u ∩ U ⊆ u
⊢ EqOn f 0 U
[PROOFSTEP]
have Uu : U ⊆ u := hU.subset_of_closure_inter_subset isOpen_setOf_eventually_nhds ⟨z₀, h₀, hfz₀⟩ main
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
main : closure u ∩ U ⊆ u
Uu : U ⊆ u
⊢ EqOn f 0 U
[PROOFSTEP]
intro z hz
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
main : closure u ∩ U ⊆ u
Uu : U ⊆ u
z : E
hz : z ∈ U
⊢ f z = OfNat.ofNat 0 z
[PROOFSTEP]
simpa using
mem_of_mem_nhds
(Uu hz)
/- Take a limit point `x`, then a ball `B (x, r)` on which it has a power series expansion, and
then `y ∈ B (x, r/2) ∩ u`. Then `f` has a power series expansion on `B (y, r/2)` as it is
contained in `B (x, r)`. All the coefficients in this series expansion vanish, as `f` is zero
on a neighborhood of `y`. Therefore, `f` is zero on `B (y, r/2)`. As this ball contains `x`,
it follows that `f` vanishes on a neighborhood of `x`, proving the claim. -/
[GOAL]
case main
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
⊢ closure u ∩ U ⊆ u
[PROOFSTEP]
rintro x ⟨xu, xU⟩
[GOAL]
case main.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
⊢ x ∈ u
[PROOFSTEP]
rcases hf x xU with ⟨p, r, hp⟩
[GOAL]
case main.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
⊢ x ∈ u
[PROOFSTEP]
obtain ⟨y, yu, hxy⟩ : ∃ y ∈ u, edist x y < r / 2
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
⊢ ∃ y, y ∈ u ∧ edist x y < r / 2
case main.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
⊢ x ∈ u
[PROOFSTEP]
exact EMetric.mem_closure_iff.1 xu (r / 2) (ENNReal.half_pos hp.r_pos.ne')
[GOAL]
case main.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
⊢ x ∈ u
[PROOFSTEP]
let q := p.changeOrigin (y - x)
[GOAL]
case main.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
⊢ x ∈ u
[PROOFSTEP]
have has_series : HasFPowerSeriesOnBall f q y (r / 2) :=
by
have A : (‖y - x‖₊ : ℝ≥0∞) < r / 2 := by rwa [edist_comm, edist_eq_coe_nnnorm_sub] at hxy
have := hp.changeOrigin (A.trans_le ENNReal.half_le_self)
simp only [add_sub_cancel'_right] at this
apply this.mono (ENNReal.half_pos hp.r_pos.ne')
apply ENNReal.le_sub_of_add_le_left ENNReal.coe_ne_top
apply (add_le_add A.le (le_refl (r / 2))).trans (le_of_eq _)
exact ENNReal.add_halves _
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
⊢ HasFPowerSeriesOnBall f q y (r / 2)
[PROOFSTEP]
have A : (‖y - x‖₊ : ℝ≥0∞) < r / 2 := by rwa [edist_comm, edist_eq_coe_nnnorm_sub] at hxy
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
⊢ ↑‖y - x‖₊ < r / 2
[PROOFSTEP]
rwa [edist_comm, edist_eq_coe_nnnorm_sub] at hxy
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
A : ↑‖y - x‖₊ < r / 2
⊢ HasFPowerSeriesOnBall f q y (r / 2)
[PROOFSTEP]
have := hp.changeOrigin (A.trans_le ENNReal.half_le_self)
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
A : ↑‖y - x‖₊ < r / 2
this : HasFPowerSeriesOnBall f (FormalMultilinearSeries.changeOrigin p (y - x)) (x + (y - x)) (r - ↑‖y - x‖₊)
⊢ HasFPowerSeriesOnBall f q y (r / 2)
[PROOFSTEP]
simp only [add_sub_cancel'_right] at this
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
A : ↑‖y - x‖₊ < r / 2
this : HasFPowerSeriesOnBall f (FormalMultilinearSeries.changeOrigin p (y - x)) y (r - ↑‖y - x‖₊)
⊢ HasFPowerSeriesOnBall f q y (r / 2)
[PROOFSTEP]
apply this.mono (ENNReal.half_pos hp.r_pos.ne')
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
A : ↑‖y - x‖₊ < r / 2
this : HasFPowerSeriesOnBall f (FormalMultilinearSeries.changeOrigin p (y - x)) y (r - ↑‖y - x‖₊)
⊢ r / 2 ≤ r - ↑‖y - x‖₊
[PROOFSTEP]
apply ENNReal.le_sub_of_add_le_left ENNReal.coe_ne_top
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
A : ↑‖y - x‖₊ < r / 2
this : HasFPowerSeriesOnBall f (FormalMultilinearSeries.changeOrigin p (y - x)) y (r - ↑‖y - x‖₊)
⊢ ↑‖y - x‖₊ + r / 2 ≤ r
[PROOFSTEP]
apply (add_le_add A.le (le_refl (r / 2))).trans (le_of_eq _)
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
A : ↑‖y - x‖₊ < r / 2
this : HasFPowerSeriesOnBall f (FormalMultilinearSeries.changeOrigin p (y - x)) y (r - ↑‖y - x‖₊)
⊢ r / 2 + r / 2 = r
[PROOFSTEP]
exact ENNReal.add_halves _
[GOAL]
case main.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
⊢ x ∈ u
[PROOFSTEP]
have M : EMetric.ball y (r / 2) ∈ 𝓝 x := EMetric.isOpen_ball.mem_nhds hxy
[GOAL]
case main.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
⊢ x ∈ u
[PROOFSTEP]
filter_upwards [M] with z hz
[GOAL]
case h
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
z : E
hz : z ∈ EMetric.ball y (r / 2)
⊢ f z = OfNat.ofNat 0 z
[PROOFSTEP]
have A : HasSum (fun n : ℕ => q n fun _ : Fin n => z - y) (f z) := has_series.hasSum_sub hz
[GOAL]
case h
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
z : E
hz : z ∈ EMetric.ball y (r / 2)
A : HasSum (fun n => ↑(q n) fun x => z - y) (f z)
⊢ f z = OfNat.ofNat 0 z
[PROOFSTEP]
have B : HasSum (fun n : ℕ => q n fun _ : Fin n => z - y) 0 :=
by
have : HasFPowerSeriesAt 0 q y := has_series.hasFPowerSeriesAt.congr yu
convert hasSum_zero (α := F) using 2
ext n
exact this.apply_eq_zero n _
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
z : E
hz : z ∈ EMetric.ball y (r / 2)
A : HasSum (fun n => ↑(q n) fun x => z - y) (f z)
⊢ HasSum (fun n => ↑(q n) fun x => z - y) 0
[PROOFSTEP]
have : HasFPowerSeriesAt 0 q y := has_series.hasFPowerSeriesAt.congr yu
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
z : E
hz : z ∈ EMetric.ball y (r / 2)
A : HasSum (fun n => ↑(q n) fun x => z - y) (f z)
this : HasFPowerSeriesAt 0 q y
⊢ HasSum (fun n => ↑(q n) fun x => z - y) 0
[PROOFSTEP]
convert hasSum_zero (α := F) using 2
[GOAL]
case h.e.h.e'_5
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
z : E
hz : z ∈ EMetric.ball y (r / 2)
A : HasSum (fun n => ↑(q n) fun x => z - y) (f z)
this : HasFPowerSeriesAt 0 q y
⊢ (fun n => ↑(q n) fun x => z - y) = fun x => 0
[PROOFSTEP]
ext n
[GOAL]
case h.e.h.e'_5.h
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
z : E
hz : z ∈ EMetric.ball y (r / 2)
A : HasSum (fun n => ↑(q n) fun x => z - y) (f z)
this : HasFPowerSeriesAt 0 q y
n : ℕ
⊢ (↑(q n) fun x => z - y) = 0
[PROOFSTEP]
exact this.apply_eq_zero n _
[GOAL]
case h
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
inst✝ : CompleteSpace F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
u : Set E := {x | f =ᶠ[𝓝 x] 0}
x : E
xu : x ∈ closure u
xU : x ∈ U
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p x r
y : E
yu : y ∈ u
hxy : edist x y < r / 2
q : FormalMultilinearSeries 𝕜 E F := FormalMultilinearSeries.changeOrigin p (y - x)
has_series : HasFPowerSeriesOnBall f q y (r / 2)
M : EMetric.ball y (r / 2) ∈ 𝓝 x
z : E
hz : z ∈ EMetric.ball y (r / 2)
A : HasSum (fun n => ↑(q n) fun x => z - y) (f z)
B : HasSum (fun n => ↑(q n) fun x => z - y) 0
⊢ f z = OfNat.ofNat 0 z
[PROOFSTEP]
exact HasSum.unique A B
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
⊢ EqOn f 0 U
[PROOFSTEP]
let F' := UniformSpace.Completion F
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
⊢ EqOn f 0 U
[PROOFSTEP]
set e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
⊢ EqOn f 0 U
[PROOFSTEP]
have : AnalyticOn 𝕜 (e ∘ f) U := fun x hx => (e.analyticAt _).comp (hf x hx)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOn 𝕜 (↑e ∘ f) U
⊢ EqOn f 0 U
[PROOFSTEP]
have A : EqOn (e ∘ f) 0 U :=
by
apply eqOn_zero_of_preconnected_of_eventuallyEq_zero_aux this hU h₀
filter_upwards [hfz₀] with x hx
simp only [hx, Function.comp_apply, Pi.zero_apply, map_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOn 𝕜 (↑e ∘ f) U
⊢ EqOn (↑e ∘ f) 0 U
[PROOFSTEP]
apply eqOn_zero_of_preconnected_of_eventuallyEq_zero_aux this hU h₀
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOn 𝕜 (↑e ∘ f) U
⊢ ↑e ∘ f =ᶠ[𝓝 z₀] 0
[PROOFSTEP]
filter_upwards [hfz₀] with x hx
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOn 𝕜 (↑e ∘ f) U
x : E
hx : f x = OfNat.ofNat 0 x
⊢ (↑UniformSpace.Completion.toComplL ∘ f) x = OfNat.ofNat 0 x
[PROOFSTEP]
simp only [hx, Function.comp_apply, Pi.zero_apply, map_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOn 𝕜 (↑e ∘ f) U
A : EqOn (↑e ∘ f) 0 U
⊢ EqOn f 0 U
[PROOFSTEP]
intro z hz
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOn 𝕜 (↑e ∘ f) U
A : EqOn (↑e ∘ f) 0 U
z : E
hz : z ∈ U
⊢ f z = OfNat.ofNat 0 z
[PROOFSTEP]
have : e (f z) = e 0 := by simpa only using A hz
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOn 𝕜 (↑e ∘ f) U
A : EqOn (↑e ∘ f) 0 U
z : E
hz : z ∈ U
⊢ ↑e (f z) = ↑e 0
[PROOFSTEP]
simpa only using A hz
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this✝ : AnalyticOn 𝕜 (↑e ∘ f) U
A : EqOn (↑e ∘ f) 0 U
z : E
hz : z ∈ U
this : ↑e (f z) = ↑e 0
⊢ f z = OfNat.ofNat 0 z
[PROOFSTEP]
exact UniformSpace.Completion.coe_injective F this
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f g : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hg : AnalyticOn 𝕜 g U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfg : f =ᶠ[𝓝 z₀] g
⊢ EqOn f g U
[PROOFSTEP]
have hfg' : f - g =ᶠ[𝓝 z₀] 0 := hfg.mono fun z h => by simp [h]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f g : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hg : AnalyticOn 𝕜 g U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfg : f =ᶠ[𝓝 z₀] g
z : E
h : f z = g z
⊢ (f - g) z = OfNat.ofNat 0 z
[PROOFSTEP]
simp [h]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f g : E → F
U : Set E
hf : AnalyticOn 𝕜 f U
hg : AnalyticOn 𝕜 g U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfg : f =ᶠ[𝓝 z₀] g
hfg' : f - g =ᶠ[𝓝 z₀] 0
⊢ EqOn f g U
[PROOFSTEP]
simpa [sub_eq_zero] using fun z hz => (hf.sub hg).eqOn_zero_of_preconnected_of_eventuallyEq_zero hU h₀ hfg' hz
| {"mathlib_filename": "Mathlib.Analysis.Analytic.Uniqueness", "llama_tokens": 14160} |
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
⊢ HasFDerivWithinAt f f' (closure s) x
[PROOFSTEP]
classical
-- one can assume without loss of generality that `x` belongs to the closure of `s`, as the
-- statement is empty otherwise
by_cases hx : x ∉ closure s
· rw [← closure_closure] at hx ; exact hasFDerivWithinAt_of_not_mem_closure hx
push_neg at hx
rw [HasFDerivWithinAt, HasFDerivAtFilter, Asymptotics.isLittleO_iff]
/- One needs to show that `‖f y - f x - f' (y - x)‖ ≤ ε ‖y - x‖` for `y` close to `x` in
`closure s`, where `ε` is an arbitrary positive constant. By continuity of the functions, it
suffices to prove this for nearby points inside `s`. In a neighborhood of `x`, the derivative
of `f` is arbitrarily close to `f'` by assumption. The mean value inequality completes the
proof. -/
intro ε ε_pos
obtain ⟨δ, δ_pos, hδ⟩ : ∃ δ > 0, ∀ y ∈ s, dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε := by
simpa [dist_zero_right] using tendsto_nhdsWithin_nhds.1 h ε ε_pos
set B := ball x δ
suffices : ∀ y ∈ B ∩ closure s, ‖f y - f x - (f' y - f' x)‖ ≤ ε * ‖y - x‖
exact mem_nhdsWithin_iff.2 ⟨δ, δ_pos, fun y hy => by simpa using this y hy⟩
suffices ∀ p : E × E, p ∈ closure ((B ∩ s) ×ˢ (B ∩ s)) → ‖f p.2 - f p.1 - (f' p.2 - f' p.1)‖ ≤ ε * ‖p.2 - p.1‖
by
rw [closure_prod_eq] at this
intro y y_in
apply this ⟨x, y⟩
have : B ∩ closure s ⊆ closure (B ∩ s) := isOpen_ball.inter_closure
exact ⟨this ⟨mem_ball_self δ_pos, hx⟩, this y_in⟩
have key : ∀ p : E × E, p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.2 - f p.1 - (f' p.2 - f' p.1)‖ ≤ ε * ‖p.2 - p.1‖ :=
by
rintro ⟨u, v⟩ ⟨u_in, v_in⟩
have conv : Convex ℝ (B ∩ s) := (convex_ball _ _).inter s_conv
have diff : DifferentiableOn ℝ f (B ∩ s) := f_diff.mono (inter_subset_right _ _)
have bound : ∀ z ∈ B ∩ s, ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε :=
by
intro z z_in
have h := hδ z
have : fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z :=
by
have op : IsOpen (B ∩ s) := isOpen_ball.inter s_open
rw [DifferentiableAt.fderivWithin _ (op.uniqueDiffOn z z_in)]
exact (diff z z_in).differentiableAt (IsOpen.mem_nhds op z_in)
rw [← this] at h
exact (le_of_lt (h z_in.2 z_in.1))
simpa using conv.norm_image_sub_le_of_norm_fderivWithin_le' diff bound u_in v_in
rintro ⟨u, v⟩ uv_in
refine' ContinuousWithinAt.closure_le uv_in _ _ key
have f_cont' : ∀ y ∈ closure s, ContinuousWithinAt (f - ⇑f') s y :=
by
intro y y_in
exact Tendsto.sub (f_cont y y_in) f'.cont.continuousWithinAt
all_goals
-- common start for both continuity proofs
have : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s := by mono <;> exact inter_subset_right _ _
obtain ⟨u_in, v_in⟩ : u ∈ closure s ∧ v ∈ closure s := by simpa [closure_prod_eq] using closure_mono this uv_in
apply ContinuousWithinAt.mono _ this
simp only [ContinuousWithinAt]
rw [nhdsWithin_prod_eq]
· have : ∀ u v, f v - f u - (f' v - f' u) = f v - f' v - (f u - f' u) := by intros; abel
simp only [this]
exact
Tendsto.comp continuous_norm.continuousAt
((Tendsto.comp (f_cont' v v_in) tendsto_snd).sub <| Tendsto.comp (f_cont' u u_in) tendsto_fst)
· apply tendsto_nhdsWithin_of_tendsto_nhds
rw [nhds_prod_eq]
exact tendsto_const_nhds.mul (Tendsto.comp continuous_norm.continuousAt <| tendsto_snd.sub tendsto_fst)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
⊢ HasFDerivWithinAt f f' (closure s) x
[PROOFSTEP]
by_cases hx : x ∉ closure s
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : ¬x ∈ closure s
⊢ HasFDerivWithinAt f f' (closure s) x
[PROOFSTEP]
rw [← closure_closure] at hx
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : ¬x ∈ closure (closure s)
⊢ HasFDerivWithinAt f f' (closure s) x
[PROOFSTEP]
exact hasFDerivWithinAt_of_not_mem_closure hx
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : ¬¬x ∈ closure s
⊢ HasFDerivWithinAt f f' (closure s) x
[PROOFSTEP]
push_neg at hx
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
⊢ HasFDerivWithinAt f f' (closure s) x
[PROOFSTEP]
rw [HasFDerivWithinAt, HasFDerivAtFilter, Asymptotics.isLittleO_iff]
/- One needs to show that `‖f y - f x - f' (y - x)‖ ≤ ε ‖y - x‖` for `y` close to `x` in
`closure s`, where `ε` is an arbitrary positive constant. By continuity of the functions, it
suffices to prove this for nearby points inside `s`. In a neighborhood of `x`, the derivative
of `f` is arbitrarily close to `f'` by assumption. The mean value inequality completes the
proof. -/
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
⊢ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[closure s] x, ‖f x_1 - f x - ↑f' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
[PROOFSTEP]
intro ε ε_pos
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
⊢ ∀ᶠ (x_1 : E) in 𝓝[closure s] x, ‖f x_1 - f x - ↑f' (x_1 - x)‖ ≤ ε * ‖x_1 - x‖
[PROOFSTEP]
obtain ⟨δ, δ_pos, hδ⟩ : ∃ δ > 0, ∀ y ∈ s, dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε := by
simpa [dist_zero_right] using tendsto_nhdsWithin_nhds.1 h ε ε_pos
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
⊢ ∃ δ, δ > 0 ∧ ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
[PROOFSTEP]
simpa [dist_zero_right] using tendsto_nhdsWithin_nhds.1 h ε ε_pos
[GOAL]
case neg.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
⊢ ∀ᶠ (x_1 : E) in 𝓝[closure s] x, ‖f x_1 - f x - ↑f' (x_1 - x)‖ ≤ ε * ‖x_1 - x‖
[PROOFSTEP]
set B := ball x δ
[GOAL]
case neg.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
⊢ ∀ᶠ (x_1 : E) in 𝓝[closure s] x, ‖f x_1 - f x - ↑f' (x_1 - x)‖ ≤ ε * ‖x_1 - x‖
[PROOFSTEP]
suffices : ∀ y ∈ B ∩ closure s, ‖f y - f x - (f' y - f' x)‖ ≤ ε * ‖y - x‖
[GOAL]
case neg.intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
this : ∀ (y : E), y ∈ B ∩ closure s → ‖f y - f x - (↑f' y - ↑f' x)‖ ≤ ε * ‖y - x‖
⊢ ∀ᶠ (x_1 : E) in 𝓝[closure s] x, ‖f x_1 - f x - ↑f' (x_1 - x)‖ ≤ ε * ‖x_1 - x‖
case this
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
⊢ ∀ (y : E), y ∈ B ∩ closure s → ‖f y - f x - (↑f' y - ↑f' x)‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
exact mem_nhdsWithin_iff.2 ⟨δ, δ_pos, fun y hy => by simpa using this y hy⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
this : ∀ (y : E), y ∈ B ∩ closure s → ‖f y - f x - (↑f' y - ↑f' x)‖ ≤ ε * ‖y - x‖
y : E
hy : y ∈ ball x δ ∩ closure s
⊢ y ∈ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑f' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
[PROOFSTEP]
simpa using this y hy
[GOAL]
case this
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
⊢ ∀ (y : E), y ∈ B ∩ closure s → ‖f y - f x - (↑f' y - ↑f' x)‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
suffices ∀ p : E × E, p ∈ closure ((B ∩ s) ×ˢ (B ∩ s)) → ‖f p.2 - f p.1 - (f' p.2 - f' p.1)‖ ≤ ε * ‖p.2 - p.1‖
by
rw [closure_prod_eq] at this
intro y y_in
apply this ⟨x, y⟩
have : B ∩ closure s ⊆ closure (B ∩ s) := isOpen_ball.inter_closure
exact ⟨this ⟨mem_ball_self δ_pos, hx⟩, this y_in⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
this :
∀ (p : E × E), p ∈ closure ((B ∩ s) ×ˢ (B ∩ s)) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
⊢ ∀ (y : E), y ∈ B ∩ closure s → ‖f y - f x - (↑f' y - ↑f' x)‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
rw [closure_prod_eq] at this
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
this :
∀ (p : E × E),
p ∈ closure (B ∩ s) ×ˢ closure (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
⊢ ∀ (y : E), y ∈ B ∩ closure s → ‖f y - f x - (↑f' y - ↑f' x)‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
intro y y_in
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
this :
∀ (p : E × E),
p ∈ closure (B ∩ s) ×ˢ closure (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
y : E
y_in : y ∈ B ∩ closure s
⊢ ‖f y - f x - (↑f' y - ↑f' x)‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
apply this ⟨x, y⟩
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
this :
∀ (p : E × E),
p ∈ closure (B ∩ s) ×ˢ closure (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
y : E
y_in : y ∈ B ∩ closure s
⊢ (x, y) ∈ closure (B ∩ s) ×ˢ closure (B ∩ s)
[PROOFSTEP]
have : B ∩ closure s ⊆ closure (B ∩ s) := isOpen_ball.inter_closure
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
this✝ :
∀ (p : E × E),
p ∈ closure (B ∩ s) ×ˢ closure (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
y : E
y_in : y ∈ B ∩ closure s
this : B ∩ closure s ⊆ closure (B ∩ s)
⊢ (x, y) ∈ closure (B ∩ s) ×ˢ closure (B ∩ s)
[PROOFSTEP]
exact ⟨this ⟨mem_ball_self δ_pos, hx⟩, this y_in⟩
[GOAL]
case this
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
⊢ ∀ (p : E × E), p ∈ closure ((B ∩ s) ×ˢ (B ∩ s)) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
[PROOFSTEP]
have key : ∀ p : E × E, p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.2 - f p.1 - (f' p.2 - f' p.1)‖ ≤ ε * ‖p.2 - p.1‖ :=
by
rintro ⟨u, v⟩ ⟨u_in, v_in⟩
have conv : Convex ℝ (B ∩ s) := (convex_ball _ _).inter s_conv
have diff : DifferentiableOn ℝ f (B ∩ s) := f_diff.mono (inter_subset_right _ _)
have bound : ∀ z ∈ B ∩ s, ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε :=
by
intro z z_in
have h := hδ z
have : fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z :=
by
have op : IsOpen (B ∩ s) := isOpen_ball.inter s_open
rw [DifferentiableAt.fderivWithin _ (op.uniqueDiffOn z z_in)]
exact (diff z z_in).differentiableAt (IsOpen.mem_nhds op z_in)
rw [← this] at h
exact (le_of_lt (h z_in.2 z_in.1))
simpa using conv.norm_image_sub_le_of_norm_fderivWithin_le' diff bound u_in v_in
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
⊢ ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
[PROOFSTEP]
rintro ⟨u, v⟩ ⟨u_in, v_in⟩
[GOAL]
case mk.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
⊢ ‖f (u, v).snd - f (u, v).fst - (↑f' (u, v).snd - ↑f' (u, v).fst)‖ ≤ ε * ‖(u, v).snd - (u, v).fst‖
[PROOFSTEP]
have conv : Convex ℝ (B ∩ s) := (convex_ball _ _).inter s_conv
[GOAL]
case mk.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
⊢ ‖f (u, v).snd - f (u, v).fst - (↑f' (u, v).snd - ↑f' (u, v).fst)‖ ≤ ε * ‖(u, v).snd - (u, v).fst‖
[PROOFSTEP]
have diff : DifferentiableOn ℝ f (B ∩ s) := f_diff.mono (inter_subset_right _ _)
[GOAL]
case mk.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
⊢ ‖f (u, v).snd - f (u, v).fst - (↑f' (u, v).snd - ↑f' (u, v).fst)‖ ≤ ε * ‖(u, v).snd - (u, v).fst‖
[PROOFSTEP]
have bound : ∀ z ∈ B ∩ s, ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε :=
by
intro z z_in
have h := hδ z
have : fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z :=
by
have op : IsOpen (B ∩ s) := isOpen_ball.inter s_open
rw [DifferentiableAt.fderivWithin _ (op.uniqueDiffOn z z_in)]
exact (diff z z_in).differentiableAt (IsOpen.mem_nhds op z_in)
rw [← this] at h
exact (le_of_lt (h z_in.2 z_in.1))
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
⊢ ∀ (z : E), z ∈ B ∩ s → ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε
[PROOFSTEP]
intro z z_in
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
z : E
z_in : z ∈ B ∩ s
⊢ ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε
[PROOFSTEP]
have h := hδ z
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h✝ : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
z : E
z_in : z ∈ B ∩ s
h : z ∈ s → dist z x < δ → ‖fderiv ℝ f z - f'‖ < ε
⊢ ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε
[PROOFSTEP]
have : fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z :=
by
have op : IsOpen (B ∩ s) := isOpen_ball.inter s_open
rw [DifferentiableAt.fderivWithin _ (op.uniqueDiffOn z z_in)]
exact (diff z z_in).differentiableAt (IsOpen.mem_nhds op z_in)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h✝ : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
z : E
z_in : z ∈ B ∩ s
h : z ∈ s → dist z x < δ → ‖fderiv ℝ f z - f'‖ < ε
⊢ fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z
[PROOFSTEP]
have op : IsOpen (B ∩ s) := isOpen_ball.inter s_open
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h✝ : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
z : E
z_in : z ∈ B ∩ s
h : z ∈ s → dist z x < δ → ‖fderiv ℝ f z - f'‖ < ε
op : IsOpen (B ∩ s)
⊢ fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z
[PROOFSTEP]
rw [DifferentiableAt.fderivWithin _ (op.uniqueDiffOn z z_in)]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h✝ : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
z : E
z_in : z ∈ B ∩ s
h : z ∈ s → dist z x < δ → ‖fderiv ℝ f z - f'‖ < ε
op : IsOpen (B ∩ s)
⊢ DifferentiableAt ℝ f z
[PROOFSTEP]
exact (diff z z_in).differentiableAt (IsOpen.mem_nhds op z_in)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h✝ : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
z : E
z_in : z ∈ B ∩ s
h : z ∈ s → dist z x < δ → ‖fderiv ℝ f z - f'‖ < ε
this : fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z
⊢ ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε
[PROOFSTEP]
rw [← this] at h
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h✝ : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
z : E
z_in : z ∈ B ∩ s
h : z ∈ s → dist z x < δ → ‖fderivWithin ℝ f (B ∩ s) z - f'‖ < ε
this : fderivWithin ℝ f (B ∩ s) z = fderiv ℝ f z
⊢ ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε
[PROOFSTEP]
exact (le_of_lt (h z_in.2 z_in.1))
[GOAL]
case mk.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
u v : E
u_in : (u, v).fst ∈ B ∩ s
v_in : (u, v).snd ∈ B ∩ s
conv : Convex ℝ (B ∩ s)
diff : DifferentiableOn ℝ f (B ∩ s)
bound : ∀ (z : E), z ∈ B ∩ s → ‖fderivWithin ℝ f (B ∩ s) z - f'‖ ≤ ε
⊢ ‖f (u, v).snd - f (u, v).fst - (↑f' (u, v).snd - ↑f' (u, v).fst)‖ ≤ ε * ‖(u, v).snd - (u, v).fst‖
[PROOFSTEP]
simpa using conv.norm_image_sub_le_of_norm_fderivWithin_le' diff bound u_in v_in
[GOAL]
case this
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
⊢ ∀ (p : E × E), p ∈ closure ((B ∩ s) ×ˢ (B ∩ s)) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
[PROOFSTEP]
rintro ⟨u, v⟩ uv_in
[GOAL]
case this.mk
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ ‖f (u, v).snd - f (u, v).fst - (↑f' (u, v).snd - ↑f' (u, v).fst)‖ ≤ ε * ‖(u, v).snd - (u, v).fst‖
[PROOFSTEP]
refine' ContinuousWithinAt.closure_le uv_in _ _ key
[GOAL]
case this.mk.refine'_1
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ ContinuousWithinAt (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
case this.mk.refine'_2
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ ContinuousWithinAt (fun y => ε * ‖y.snd - y.fst‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
have f_cont' : ∀ y ∈ closure s, ContinuousWithinAt (f - ⇑f') s y :=
by
intro y y_in
exact Tendsto.sub (f_cont y y_in) f'.cont.continuousWithinAt
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
[PROOFSTEP]
intro y y_in
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
y : E
y_in : y ∈ closure s
⊢ ContinuousWithinAt (f - ↑f') s y
[PROOFSTEP]
exact Tendsto.sub (f_cont y y_in) f'.cont.continuousWithinAt
[GOAL]
case this.mk.refine'_1
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
⊢ ContinuousWithinAt (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
case this.mk.refine'_2
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ ContinuousWithinAt (fun y => ε * ‖y.snd - y.fst‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
all_goals
-- common start for both continuity proofs
have : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s := by mono <;> exact inter_subset_right _ _
obtain ⟨u_in, v_in⟩ : u ∈ closure s ∧ v ∈ closure s := by simpa [closure_prod_eq] using closure_mono this uv_in
apply ContinuousWithinAt.mono _ this
simp only [ContinuousWithinAt]
[GOAL]
case this.mk.refine'_1
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
⊢ ContinuousWithinAt (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
have : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s := by mono <;> exact inter_subset_right _ _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
⊢ (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
[PROOFSTEP]
mono
[GOAL]
case hs
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
⊢ B ∩ s ⊆ s
[PROOFSTEP]
exact inter_subset_right _ _
[GOAL]
case ht
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
⊢ B ∩ s ⊆ s
[PROOFSTEP]
exact inter_subset_right _ _
[GOAL]
case this.mk.refine'_1
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
⊢ ContinuousWithinAt (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
obtain ⟨u_in, v_in⟩ : u ∈ closure s ∧ v ∈ closure s := by simpa [closure_prod_eq] using closure_mono this uv_in
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
⊢ u ∈ closure s ∧ v ∈ closure s
[PROOFSTEP]
simpa [closure_prod_eq] using closure_mono this uv_in
[GOAL]
case this.mk.refine'_1.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ ContinuousWithinAt (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
apply ContinuousWithinAt.mono _ this
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ ContinuousWithinAt (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) (s ×ˢ s) (u, v)
[PROOFSTEP]
simp only [ContinuousWithinAt]
[GOAL]
case this.mk.refine'_2
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ ContinuousWithinAt (fun y => ε * ‖y.snd - y.fst‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
have : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s := by mono <;> exact inter_subset_right _ _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
[PROOFSTEP]
mono
[GOAL]
case hs
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ B ∩ s ⊆ s
[PROOFSTEP]
exact inter_subset_right _ _
[GOAL]
case ht
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
⊢ B ∩ s ⊆ s
[PROOFSTEP]
exact inter_subset_right _ _
[GOAL]
case this.mk.refine'_2
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
⊢ ContinuousWithinAt (fun y => ε * ‖y.snd - y.fst‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
obtain ⟨u_in, v_in⟩ : u ∈ closure s ∧ v ∈ closure s := by simpa [closure_prod_eq] using closure_mono this uv_in
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
⊢ u ∈ closure s ∧ v ∈ closure s
[PROOFSTEP]
simpa [closure_prod_eq] using closure_mono this uv_in
[GOAL]
case this.mk.refine'_2.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ ContinuousWithinAt (fun y => ε * ‖y.snd - y.fst‖) ((B ∩ s) ×ˢ (B ∩ s)) (u, v)
[PROOFSTEP]
apply ContinuousWithinAt.mono _ this
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ ContinuousWithinAt (fun y => ε * ‖y.snd - y.fst‖) (s ×ˢ s) (u, v)
[PROOFSTEP]
simp only [ContinuousWithinAt]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ Tendsto (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) (𝓝[s ×ˢ s] (u, v)) (𝓝 ‖f v - f u - (↑f' v - ↑f' u)‖)
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ Tendsto (fun y => ε * ‖y.snd - y.fst‖) (𝓝[s ×ˢ s] (u, v)) (𝓝 (ε * ‖v - u‖))
[PROOFSTEP]
rw [nhdsWithin_prod_eq]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ Tendsto (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) (𝓝[s] u ×ˢ 𝓝[s] v) (𝓝 ‖f v - f u - (↑f' v - ↑f' u)‖)
[PROOFSTEP]
have : ∀ u v, f v - f u - (f' v - f' u) = f v - f' v - (f u - f' u) := by intros; abel
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ ∀ (u v : E), f v - f u - (↑f' v - ↑f' u) = f v - ↑f' v - (f u - ↑f' u)
[PROOFSTEP]
intros
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
u✝ v✝ : E
⊢ f v✝ - f u✝ - (↑f' v✝ - ↑f' u✝) = f v✝ - ↑f' v✝ - (f u✝ - ↑f' u✝)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
u✝ v✝ : E
⊢ f v✝ - f u✝ - (↑f' v✝ - ↑f' u✝) = f v✝ - ↑f' v✝ - (f u✝ - ↑f' u✝)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this✝ : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
this : ∀ (u v : E), f v - f u - (↑f' v - ↑f' u) = f v - ↑f' v - (f u - ↑f' u)
⊢ Tendsto (fun y => ‖f y.snd - f y.fst - (↑f' y.snd - ↑f' y.fst)‖) (𝓝[s] u ×ˢ 𝓝[s] v) (𝓝 ‖f v - f u - (↑f' v - ↑f' u)‖)
[PROOFSTEP]
simp only [this]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
f_cont' : ∀ (y : E), y ∈ closure s → ContinuousWithinAt (f - ↑f') s y
this✝ : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
this : ∀ (u v : E), f v - f u - (↑f' v - ↑f' u) = f v - ↑f' v - (f u - ↑f' u)
⊢ Tendsto (fun y => ‖f y.snd - ↑f' y.snd - (f y.fst - ↑f' y.fst)‖) (𝓝[s] u ×ˢ 𝓝[s] v) (𝓝 ‖f v - ↑f' v - (f u - ↑f' u)‖)
[PROOFSTEP]
exact
Tendsto.comp continuous_norm.continuousAt
((Tendsto.comp (f_cont' v v_in) tendsto_snd).sub <| Tendsto.comp (f_cont' u u_in) tendsto_fst)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ Tendsto (fun y => ε * ‖y.snd - y.fst‖) (𝓝[s ×ˢ s] (u, v)) (𝓝 (ε * ‖v - u‖))
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds
[GOAL]
case h
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ Tendsto (fun y => ε * ‖y.snd - y.fst‖) (𝓝 (u, v)) (𝓝 (ε * ‖v - u‖))
[PROOFSTEP]
rw [nhds_prod_eq]
[GOAL]
case h
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
s : Set E
x : E
f' : E →L[ℝ] F
f_diff : DifferentiableOn ℝ f s
s_conv : Convex ℝ s
s_open : IsOpen s
f_cont : ∀ (y : E), y ∈ closure s → ContinuousWithinAt f s y
h : Tendsto (fun y => fderiv ℝ f y) (𝓝[s] x) (𝓝 f')
hx : x ∈ closure s
ε : ℝ
ε_pos : 0 < ε
δ : ℝ
δ_pos : δ > 0
hδ : ∀ (y : E), y ∈ s → dist y x < δ → ‖fderiv ℝ f y - f'‖ < ε
B : Set E := ball x δ
key : ∀ (p : E × E), p ∈ (B ∩ s) ×ˢ (B ∩ s) → ‖f p.snd - f p.fst - (↑f' p.snd - ↑f' p.fst)‖ ≤ ε * ‖p.snd - p.fst‖
u v : E
uv_in : (u, v) ∈ closure ((B ∩ s) ×ˢ (B ∩ s))
this : (B ∩ s) ×ˢ (B ∩ s) ⊆ s ×ˢ s
u_in : u ∈ closure s
v_in : v ∈ closure s
⊢ Tendsto (fun y => ε * ‖y.snd - y.fst‖) (𝓝 u ×ˢ 𝓝 v) (𝓝 (ε * ‖v - u‖))
[PROOFSTEP]
exact tendsto_const_nhds.mul (Tendsto.comp continuous_norm.continuousAt <| tendsto_snd.sub tendsto_fst)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
obtain ⟨b, ab : a < b, sab : Ioc a b ⊆ s⟩ := mem_nhdsWithin_Ioi_iff_exists_Ioc_subset.1 hs
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
let t := Ioo a b
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have ts : t ⊆ s := Subset.trans Ioo_subset_Ioc_self sab
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have t_diff : DifferentiableOn ℝ f t := f_diff.mono ts
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have t_conv : Convex ℝ t := convex_Ioo a b
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have t_open : IsOpen t := isOpen_Ioo
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have t_closure : closure t = Icc a b := closure_Ioo ab.ne
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have t_cont : ∀ y ∈ closure t, ContinuousWithinAt f t y :=
by
rw [t_closure]
intro y hy
by_cases h : y = a
· rw [h]; exact f_lim.mono ts
· have : y ∈ s := sab ⟨lt_of_le_of_ne hy.1 (Ne.symm h), hy.2⟩
exact (f_diff.continuousOn y this).mono ts
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
⊢ ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
[PROOFSTEP]
rw [t_closure]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
⊢ ∀ (y : ℝ), y ∈ Icc a b → ContinuousWithinAt f t y
[PROOFSTEP]
intro y hy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
y : ℝ
hy : y ∈ Icc a b
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
by_cases h : y = a
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
y : ℝ
hy : y ∈ Icc a b
h : y = a
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
rw [h]
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
y : ℝ
hy : y ∈ Icc a b
h : y = a
⊢ ContinuousWithinAt f t a
[PROOFSTEP]
exact f_lim.mono ts
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
y : ℝ
hy : y ∈ Icc a b
h : ¬y = a
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
have : y ∈ s := sab ⟨lt_of_le_of_ne hy.1 (Ne.symm h), hy.2⟩
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
y : ℝ
hy : y ∈ Icc a b
h : ¬y = a
this : y ∈ s
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
exact (f_diff.continuousOn y this).mono ts
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e)) :=
by
simp only [deriv_fderiv.symm]
exact
Tendsto.comp (isBoundedBilinearMap_smulRight : IsBoundedBilinearMap ℝ _).continuous_right.continuousAt
(tendsto_nhdsWithin_mono_left Ioo_subset_Ioi_self f_lim')
-- now we can apply `has_fderiv_at_boundary_of_differentiable`
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
⊢ Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
[PROOFSTEP]
simp only [deriv_fderiv.symm]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
⊢ Tendsto (fun x => smulRight 1 (deriv f x)) (𝓝[Ioo a b] a) (𝓝 (smulRight 1 e))
[PROOFSTEP]
exact
Tendsto.comp (isBoundedBilinearMap_smulRight : IsBoundedBilinearMap ℝ _).continuous_right.continuousAt
(tendsto_nhdsWithin_mono_left Ioo_subset_Ioi_self f_lim')
-- now we can apply `has_fderiv_at_boundary_of_differentiable`
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
have : HasDerivWithinAt f e (Icc a b) a :=
by
rw [hasDerivWithinAt_iff_hasFDerivWithinAt, ← t_closure]
exact has_fderiv_at_boundary_of_tendsto_fderiv t_diff t_conv t_open t_cont t_diff'
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
⊢ HasDerivWithinAt f e (Icc a b) a
[PROOFSTEP]
rw [hasDerivWithinAt_iff_hasFDerivWithinAt, ← t_closure]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
⊢ HasFDerivWithinAt f (smulRight 1 e) (closure t) a
[PROOFSTEP]
exact has_fderiv_at_boundary_of_tendsto_fderiv t_diff t_conv t_open t_cont t_diff'
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Ioi a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Ioi a] a) (𝓝 e)
b : ℝ
ab : a < b
sab : Ioc a b ⊆ s
t : Set ℝ := Ioo a b
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc a b
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
this : HasDerivWithinAt f e (Icc a b) a
⊢ HasDerivWithinAt f e (Ici a) a
[PROOFSTEP]
exact this.nhdsWithin (Icc_mem_nhdsWithin_Ici <| left_mem_Ico.2 ab)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
obtain ⟨b, ba, sab⟩ : ∃ b ∈ Iio a, Ico b a ⊆ s := mem_nhdsWithin_Iio_iff_exists_Ico_subset.1 hs
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
let t := Ioo b a
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have ts : t ⊆ s := Subset.trans Ioo_subset_Ico_self sab
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have t_diff : DifferentiableOn ℝ f t := f_diff.mono ts
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have t_conv : Convex ℝ t := convex_Ioo b a
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have t_open : IsOpen t := isOpen_Ioo
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have t_closure : closure t = Icc b a := closure_Ioo (ne_of_lt ba)
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have t_cont : ∀ y ∈ closure t, ContinuousWithinAt f t y :=
by
rw [t_closure]
intro y hy
by_cases h : y = a
· rw [h]; exact f_lim.mono ts
· have : y ∈ s := sab ⟨hy.1, lt_of_le_of_ne hy.2 h⟩
exact (f_diff.continuousOn y this).mono ts
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
⊢ ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
[PROOFSTEP]
rw [t_closure]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
⊢ ∀ (y : ℝ), y ∈ Icc b a → ContinuousWithinAt f t y
[PROOFSTEP]
intro y hy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
y : ℝ
hy : y ∈ Icc b a
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
by_cases h : y = a
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
y : ℝ
hy : y ∈ Icc b a
h : y = a
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
rw [h]
[GOAL]
case pos
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
y : ℝ
hy : y ∈ Icc b a
h : y = a
⊢ ContinuousWithinAt f t a
[PROOFSTEP]
exact f_lim.mono ts
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
y : ℝ
hy : y ∈ Icc b a
h : ¬y = a
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
have : y ∈ s := sab ⟨hy.1, lt_of_le_of_ne hy.2 h⟩
[GOAL]
case neg
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
y : ℝ
hy : y ∈ Icc b a
h : ¬y = a
this : y ∈ s
⊢ ContinuousWithinAt f t y
[PROOFSTEP]
exact (f_diff.continuousOn y this).mono ts
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e)) :=
by
simp only [deriv_fderiv.symm]
exact
Tendsto.comp (isBoundedBilinearMap_smulRight : IsBoundedBilinearMap ℝ _).continuous_right.continuousAt
(tendsto_nhdsWithin_mono_left Ioo_subset_Iio_self f_lim')
-- now we can apply `has_fderiv_at_boundary_of_differentiable`
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
⊢ Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
[PROOFSTEP]
simp only [deriv_fderiv.symm]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
⊢ Tendsto (fun x => smulRight 1 (deriv f x)) (𝓝[Ioo b a] a) (𝓝 (smulRight 1 e))
[PROOFSTEP]
exact
Tendsto.comp (isBoundedBilinearMap_smulRight : IsBoundedBilinearMap ℝ _).continuous_right.continuousAt
(tendsto_nhdsWithin_mono_left Ioo_subset_Iio_self f_lim')
-- now we can apply `has_fderiv_at_boundary_of_differentiable`
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
have : HasDerivWithinAt f e (Icc b a) a :=
by
rw [hasDerivWithinAt_iff_hasFDerivWithinAt, ← t_closure]
exact has_fderiv_at_boundary_of_tendsto_fderiv t_diff t_conv t_open t_cont t_diff'
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
⊢ HasDerivWithinAt f e (Icc b a) a
[PROOFSTEP]
rw [hasDerivWithinAt_iff_hasFDerivWithinAt, ← t_closure]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
⊢ HasFDerivWithinAt f (smulRight 1 e) (closure t) a
[PROOFSTEP]
exact has_fderiv_at_boundary_of_tendsto_fderiv t_diff t_conv t_open t_cont t_diff'
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set ℝ
e : E
a : ℝ
f : ℝ → E
f_diff : DifferentiableOn ℝ f s
f_lim : ContinuousWithinAt f s a
hs : s ∈ 𝓝[Iio a] a
f_lim' : Tendsto (fun x => deriv f x) (𝓝[Iio a] a) (𝓝 e)
b : ℝ
ba : b ∈ Iio a
sab : Ico b a ⊆ s
t : Set ℝ := Ioo b a
ts : t ⊆ s
t_diff : DifferentiableOn ℝ f t
t_conv : Convex ℝ t
t_open : IsOpen t
t_closure : closure t = Icc b a
t_cont : ∀ (y : ℝ), y ∈ closure t → ContinuousWithinAt f t y
t_diff' : Tendsto (fun x => fderiv ℝ f x) (𝓝[t] a) (𝓝 (smulRight 1 e))
this : HasDerivWithinAt f e (Icc b a) a
⊢ HasDerivWithinAt f e (Iic a) a
[PROOFSTEP]
exact this.nhdsWithin (Icc_mem_nhdsWithin_Iic <| right_mem_Ioc.2 ba)
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
⊢ HasDerivAt f (g x) x
[PROOFSTEP]
have A : HasDerivWithinAt f (g x) (Ici x) x :=
by
have diff : DifferentiableOn ℝ f (Ioi x) := fun y hy =>
(f_diff y (ne_of_gt hy)).differentiableAt.differentiableWithinAt
apply has_deriv_at_interval_left_endpoint_of_tendsto_deriv diff hf.continuousWithinAt self_mem_nhdsWithin
have : Tendsto g (𝓝[>] x) (𝓝 (g x)) := tendsto_inf_left hg
apply this.congr' _
apply mem_of_superset self_mem_nhdsWithin fun y hy => _
intros y hy
exact (f_diff y (ne_of_gt hy)).deriv.symm
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
⊢ HasDerivWithinAt f (g x) (Ici x) x
[PROOFSTEP]
have diff : DifferentiableOn ℝ f (Ioi x) := fun y hy => (f_diff y (ne_of_gt hy)).differentiableAt.differentiableWithinAt
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
diff : DifferentiableOn ℝ f (Ioi x)
⊢ HasDerivWithinAt f (g x) (Ici x) x
[PROOFSTEP]
apply has_deriv_at_interval_left_endpoint_of_tendsto_deriv diff hf.continuousWithinAt self_mem_nhdsWithin
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
diff : DifferentiableOn ℝ f (Ioi x)
⊢ Tendsto (fun x => deriv f x) (𝓝[Ioi x] x) (𝓝 (g x))
[PROOFSTEP]
have : Tendsto g (𝓝[>] x) (𝓝 (g x)) := tendsto_inf_left hg
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
diff : DifferentiableOn ℝ f (Ioi x)
this : Tendsto g (𝓝[Ioi x] x) (𝓝 (g x))
⊢ Tendsto (fun x => deriv f x) (𝓝[Ioi x] x) (𝓝 (g x))
[PROOFSTEP]
apply this.congr' _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
diff : DifferentiableOn ℝ f (Ioi x)
this : Tendsto g (𝓝[Ioi x] x) (𝓝 (g x))
⊢ g =ᶠ[𝓝[Ioi x] x] fun x => deriv f x
[PROOFSTEP]
apply mem_of_superset self_mem_nhdsWithin fun y hy => _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
diff : DifferentiableOn ℝ f (Ioi x)
this : Tendsto g (𝓝[Ioi x] x) (𝓝 (g x))
⊢ ∀ (y : ℝ), y ∈ Ioi x → y ∈ {x | (fun x => g x = (fun x => deriv f x) x) x}
[PROOFSTEP]
intros y hy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
diff : DifferentiableOn ℝ f (Ioi x)
this : Tendsto g (𝓝[Ioi x] x) (𝓝 (g x))
y : ℝ
hy : y ∈ Ioi x
⊢ y ∈ {x | (fun x => g x = (fun x => deriv f x) x) x}
[PROOFSTEP]
exact (f_diff y (ne_of_gt hy)).deriv.symm
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
⊢ HasDerivAt f (g x) x
[PROOFSTEP]
have B : HasDerivWithinAt f (g x) (Iic x) x :=
by
have diff : DifferentiableOn ℝ f (Iio x) := fun y hy =>
(f_diff y (ne_of_lt hy)).differentiableAt.differentiableWithinAt
apply has_deriv_at_interval_right_endpoint_of_tendsto_deriv diff hf.continuousWithinAt self_mem_nhdsWithin
have : Tendsto g (𝓝[<] x) (𝓝 (g x)) := tendsto_inf_left hg
apply this.congr' _
apply mem_of_superset self_mem_nhdsWithin fun y hy => _
intros y hy
exact (f_diff y (ne_of_lt hy)).deriv.symm
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
⊢ HasDerivWithinAt f (g x) (Iic x) x
[PROOFSTEP]
have diff : DifferentiableOn ℝ f (Iio x) := fun y hy => (f_diff y (ne_of_lt hy)).differentiableAt.differentiableWithinAt
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
diff : DifferentiableOn ℝ f (Iio x)
⊢ HasDerivWithinAt f (g x) (Iic x) x
[PROOFSTEP]
apply has_deriv_at_interval_right_endpoint_of_tendsto_deriv diff hf.continuousWithinAt self_mem_nhdsWithin
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
diff : DifferentiableOn ℝ f (Iio x)
⊢ Tendsto (fun x => deriv f x) (𝓝[Iio x] x) (𝓝 (g x))
[PROOFSTEP]
have : Tendsto g (𝓝[<] x) (𝓝 (g x)) := tendsto_inf_left hg
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
diff : DifferentiableOn ℝ f (Iio x)
this : Tendsto g (𝓝[Iio x] x) (𝓝 (g x))
⊢ Tendsto (fun x => deriv f x) (𝓝[Iio x] x) (𝓝 (g x))
[PROOFSTEP]
apply this.congr' _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
diff : DifferentiableOn ℝ f (Iio x)
this : Tendsto g (𝓝[Iio x] x) (𝓝 (g x))
⊢ g =ᶠ[𝓝[Iio x] x] fun x => deriv f x
[PROOFSTEP]
apply mem_of_superset self_mem_nhdsWithin fun y hy => _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
diff : DifferentiableOn ℝ f (Iio x)
this : Tendsto g (𝓝[Iio x] x) (𝓝 (g x))
⊢ ∀ (y : ℝ), y ∈ Iio x → y ∈ {x | (fun x => g x = (fun x => deriv f x) x) x}
[PROOFSTEP]
intros y hy
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
diff : DifferentiableOn ℝ f (Iio x)
this : Tendsto g (𝓝[Iio x] x) (𝓝 (g x))
y : ℝ
hy : y ∈ Iio x
⊢ y ∈ {x | (fun x => g x = (fun x => deriv f x) x) x}
[PROOFSTEP]
exact (f_diff y (ne_of_lt hy)).deriv.symm
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
A : HasDerivWithinAt f (g x) (Ici x) x
B : HasDerivWithinAt f (g x) (Iic x) x
⊢ HasDerivAt f (g x) x
[PROOFSTEP]
simpa using B.union A
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
y : ℝ
⊢ HasDerivAt f (g y) y
[PROOFSTEP]
rcases eq_or_ne y x with (rfl | hne)
[GOAL]
case inl
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
y : ℝ
f_diff : ∀ (y_1 : ℝ), y_1 ≠ y → HasDerivAt f (g y_1) y_1
hf : ContinuousAt f y
hg : ContinuousAt g y
⊢ HasDerivAt f (g y) y
[PROOFSTEP]
exact hasDerivAt_of_hasDerivAt_of_ne f_diff hf hg
[GOAL]
case inr
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f g : ℝ → E
x : ℝ
f_diff : ∀ (y : ℝ), y ≠ x → HasDerivAt f (g y) y
hf : ContinuousAt f x
hg : ContinuousAt g x
y : ℝ
hne : y ≠ x
⊢ HasDerivAt f (g y) y
[PROOFSTEP]
exact f_diff y hne
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Extend", "llama_tokens": 51779} |
[GOAL]
𝕜 : Type u_1
inst✝ : IsROrC 𝕜
⊢ Tendsto (fun n => (↑n)⁻¹) atTop (nhds 0)
[PROOFSTEP]
convert tendsto_algebraMap_inverse_atTop_nhds_0_nat 𝕜
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
inst✝ : IsROrC 𝕜
x✝ : ℕ
⊢ (↑x✝)⁻¹ = (↑(algebraMap ℝ 𝕜) ∘ fun n => (↑n)⁻¹) x✝
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.SpecificLimits.IsROrC", "llama_tokens": 167} |
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
⊢ HasStrictFDerivAt b (deriv h p) p
[PROOFSTEP]
simp only [HasStrictFDerivAt]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
⊢ (fun p_1 => b p_1.fst - b p_1.snd - ↑(deriv h p) (p_1.fst - p_1.snd)) =o[𝓝 (p, p)] fun p => p.fst - p.snd
[PROOFSTEP]
simp only [← map_add_left_nhds_zero (p, p), isLittleO_map]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
⊢ ((fun p_1 => b p_1.fst - b p_1.snd - ↑(deriv h p) (p_1.fst - p_1.snd)) ∘ fun x => (p, p) + x) =o[𝓝 0]
((fun p => p.fst - p.snd) ∘ fun x => (p, p) + x)
[PROOFSTEP]
set T := (E × F) × E × F
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ ((fun p_1 => b p_1.fst - b p_1.snd - ↑(deriv h p) (p_1.fst - p_1.snd)) ∘ fun x => (p, p) + x) =o[𝓝 0]
((fun p => p.fst - p.snd) ∘ fun x => (p, p) + x)
[PROOFSTEP]
calc
_ = fun x ↦ h.deriv (x.1 - x.2) (x.2.1, x.1.2) :=
by
ext ⟨⟨x₁, y₁⟩, ⟨x₂, y₂⟩⟩
rcases p with ⟨x, y⟩
simp [h.add_left, h.add_right, h.deriv_apply, h.map_sub_left, h.map_sub_right]
abel
-- _ =O[𝓝 (0 : T)] fun x ↦ ‖x.1 - x.2‖ * ‖(x.2.1, x.1.2)‖ :=
-- h.toContinuousLinearMap.deriv₂.isBoundedBilinearMap.isBigO_comp
-- _ = o[𝓝 0] fun x ↦ ‖x.1 - x.2‖ * 1 := _
_ =o[𝓝 (0 : T)] fun x ↦ x.1 - x.2 := by
-- TODO : add 2 `calc` steps instead of the next 3 lines
refine h.toContinuousLinearMap.deriv₂.isBoundedBilinearMap.isBigO_comp.trans_isLittleO ?_
suffices : (fun x : T ↦ ‖x.1 - x.2‖ * ‖(x.2.1, x.1.2)‖) =o[𝓝 0] fun x ↦ ‖x.1 - x.2‖ * 1
· simpa only [mul_one, isLittleO_norm_right] using this
refine
(isBigO_refl _ _).mul_isLittleO
((isLittleO_one_iff _).2 ?_)
-- TODO: `continuity` fails
exact (continuous_snd.fst.prod_mk continuous_fst.snd).norm.tendsto' _ _ (by simp)
_ = _ := by simp [(· ∘ ·)]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ ((fun p_1 => b p_1.fst - b p_1.snd - ↑(deriv h p) (p_1.fst - p_1.snd)) ∘ fun x => (p, p) + x) = fun x =>
↑(deriv h (x.fst - x.snd)) (x.snd.fst, x.fst.snd)
[PROOFSTEP]
ext ⟨⟨x₁, y₁⟩, ⟨x₂, y₂⟩⟩
[GOAL]
case h.mk.mk.mk
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
x₁ : E
y₁ : F
x₂ : E
y₂ : F
⊢ ((fun p_1 => b p_1.fst - b p_1.snd - ↑(deriv h p) (p_1.fst - p_1.snd)) ∘ fun x => (p, p) + x) ((x₁, y₁), x₂, y₂) =
↑(deriv h (((x₁, y₁), x₂, y₂).fst - ((x₁, y₁), x₂, y₂).snd))
(((x₁, y₁), x₂, y₂).snd.fst, ((x₁, y₁), x₂, y₂).fst.snd)
[PROOFSTEP]
rcases p with ⟨x, y⟩
[GOAL]
case h.mk.mk.mk.mk
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
T : Type (max u_3 u_2) := (E × F) × E × F
x₁ : E
y₁ : F
x₂ : E
y₂ : F
x : E
y : F
⊢ ((fun p => b p.fst - b p.snd - ↑(deriv h (x, y)) (p.fst - p.snd)) ∘ fun x_1 => ((x, y), x, y) + x_1)
((x₁, y₁), x₂, y₂) =
↑(deriv h (((x₁, y₁), x₂, y₂).fst - ((x₁, y₁), x₂, y₂).snd))
(((x₁, y₁), x₂, y₂).snd.fst, ((x₁, y₁), x₂, y₂).fst.snd)
[PROOFSTEP]
simp [h.add_left, h.add_right, h.deriv_apply, h.map_sub_left, h.map_sub_right]
[GOAL]
case h.mk.mk.mk.mk
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
T : Type (max u_3 u_2) := (E × F) × E × F
x₁ : E
y₁ : F
x₂ : E
y₂ : F
x : E
y : F
⊢ b (x, y) + b (x₁, y) + (b (x, y₁) + b (x₁, y₁)) - (b (x, y) + b (x₂, y) + (b (x, y₂) + b (x₂, y₂))) -
(b (x, y) + b (x, y₁) + (b (x, y) + b (x₁, y)) - (b (x, y) + b (x, y₂) + (b (x, y) + b (x₂, y)))) =
b (x₁, y₁) - b (x₂, y₂)
[PROOFSTEP]
abel
-- _ =O[𝓝 (0 : T)] fun x ↦ ‖x.1 - x.2‖ * ‖(x.2.1, x.1.2)‖ :=
-- h.toContinuousLinearMap.deriv₂.isBoundedBilinearMap.isBigO_comp
-- _ = o[𝓝 0] fun x ↦ ‖x.1 - x.2‖ * 1 := _
[GOAL]
case h.mk.mk.mk.mk
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
T : Type (max u_3 u_2) := (E × F) × E × F
x₁ : E
y₁ : F
x₂ : E
y₂ : F
x : E
y : F
⊢ b (x, y) + b (x₁, y) + (b (x, y₁) + b (x₁, y₁)) - (b (x, y) + b (x₂, y) + (b (x, y₂) + b (x₂, y₂))) -
(b (x, y) + b (x, y₁) + (b (x, y) + b (x₁, y)) - (b (x, y) + b (x, y₂) + (b (x, y) + b (x₂, y)))) =
b (x₁, y₁) - b (x₂, y₂)
[PROOFSTEP]
abel
-- _ =O[𝓝 (0 : T)] fun x ↦ ‖x.1 - x.2‖ * ‖(x.2.1, x.1.2)‖ :=
-- h.toContinuousLinearMap.deriv₂.isBoundedBilinearMap.isBigO_comp
-- _ = o[𝓝 0] fun x ↦ ‖x.1 - x.2‖ * 1 := _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ (fun x => ↑(deriv h (x.fst - x.snd)) (x.snd.fst, x.fst.snd)) =o[𝓝 0] fun x => x.fst - x.snd
[PROOFSTEP]
refine h.toContinuousLinearMap.deriv₂.isBoundedBilinearMap.isBigO_comp.trans_isLittleO ?_
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ (fun x => ‖x.fst - x.snd‖ * ‖(x.snd.fst, x.fst.snd)‖) =o[𝓝 0] fun x => x.fst - x.snd
[PROOFSTEP]
suffices : (fun x : T ↦ ‖x.1 - x.2‖ * ‖(x.2.1, x.1.2)‖) =o[𝓝 0] fun x ↦ ‖x.1 - x.2‖ * 1
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
this : (fun x => ‖x.fst - x.snd‖ * ‖(x.snd.fst, x.fst.snd)‖) =o[𝓝 0] fun x => ‖x.fst - x.snd‖ * 1
⊢ (fun x => ‖x.fst - x.snd‖ * ‖(x.snd.fst, x.fst.snd)‖) =o[𝓝 0] fun x => x.fst - x.snd
[PROOFSTEP]
simpa only [mul_one, isLittleO_norm_right] using this
[GOAL]
case this
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ (fun x => ‖x.fst - x.snd‖ * ‖(x.snd.fst, x.fst.snd)‖) =o[𝓝 0] fun x => ‖x.fst - x.snd‖ * 1
[PROOFSTEP]
refine
(isBigO_refl _ _).mul_isLittleO
((isLittleO_one_iff _).2 ?_)
-- TODO: `continuity` fails
[GOAL]
case this
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ Tendsto (fun x => ‖(x.snd.fst, x.fst.snd)‖) (𝓝 0) (𝓝 0)
[PROOFSTEP]
exact (continuous_snd.fst.prod_mk continuous_fst.snd).norm.tendsto' _ _ (by simp)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ ‖(0.snd.fst, 0.fst.snd)‖ = 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
T : Type (max u_3 u_2) := (E × F) × E × F
⊢ (fun x => x.fst - x.snd) = (fun p => p.fst - p.snd) ∘ fun x => (p, p) + x
[PROOFSTEP]
simp [(· ∘ ·)]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
hxs : UniqueDiffWithinAt 𝕜 u p
⊢ fderivWithin 𝕜 b u p = deriv h p
[PROOFSTEP]
rw [DifferentiableAt.fderivWithin (h.differentiableAt p) hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
b : E × F → G
u : Set (E × F)
h : IsBoundedBilinearMap 𝕜 b
p : E × F
hxs : UniqueDiffWithinAt 𝕜 u p
⊢ fderiv 𝕜 b p = deriv h p
[PROOFSTEP]
exact h.fderiv p
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Bilinear", "llama_tokens": 7645} |
[GOAL]
p : ℂ × ℂ
hp : 0 < p.fst.re ∨ p.fst.im ≠ 0
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℂ ℂ ℂ +
(p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℂ ℂ ℂ)
p
[PROOFSTEP]
have A : p.1 ≠ 0 := by intro h; simp [h, lt_irrefl] at hp
[GOAL]
p : ℂ × ℂ
hp : 0 < p.fst.re ∨ p.fst.im ≠ 0
⊢ p.fst ≠ 0
[PROOFSTEP]
intro h
[GOAL]
p : ℂ × ℂ
hp : 0 < p.fst.re ∨ p.fst.im ≠ 0
h : p.fst = 0
⊢ False
[PROOFSTEP]
simp [h, lt_irrefl] at hp
[GOAL]
p : ℂ × ℂ
hp : 0 < p.fst.re ∨ p.fst.im ≠ 0
A : p.fst ≠ 0
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℂ ℂ ℂ +
(p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℂ ℂ ℂ)
p
[PROOFSTEP]
have : (fun x : ℂ × ℂ => x.1 ^ x.2) =ᶠ[𝓝 p] fun x => exp (log x.1 * x.2) :=
((isOpen_ne.preimage continuous_fst).eventually_mem A).mono fun p hp => cpow_def_of_ne_zero hp _
[GOAL]
p : ℂ × ℂ
hp : 0 < p.fst.re ∨ p.fst.im ≠ 0
A : p.fst ≠ 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℂ ℂ ℂ +
(p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℂ ℂ ℂ)
p
[PROOFSTEP]
rw [cpow_sub _ _ A, cpow_one, mul_div_left_comm, mul_smul, mul_smul]
[GOAL]
p : ℂ × ℂ
hp : 0 < p.fst.re ∨ p.fst.im ≠ 0
A : p.fst ≠ 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
(p.fst ^ p.snd • (p.snd / p.fst) • ContinuousLinearMap.fst ℂ ℂ ℂ +
p.fst ^ p.snd • log p.fst • ContinuousLinearMap.snd ℂ ℂ ℂ)
p
[PROOFSTEP]
refine' HasStrictFDerivAt.congr_of_eventuallyEq _ this.symm
[GOAL]
p : ℂ × ℂ
hp : 0 < p.fst.re ∨ p.fst.im ≠ 0
A : p.fst ≠ 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
⊢ HasStrictFDerivAt (fun x => exp (log x.fst * x.snd))
(p.fst ^ p.snd • (p.snd / p.fst) • ContinuousLinearMap.fst ℂ ℂ ℂ +
p.fst ^ p.snd • log p.fst • ContinuousLinearMap.snd ℂ ℂ ℂ)
p
[PROOFSTEP]
simpa only [cpow_def_of_ne_zero A, div_eq_mul_inv, mul_smul, add_comm, smul_add] using
((hasStrictFDerivAt_fst.clog hp).mul hasStrictFDerivAt_snd).cexp
[GOAL]
x y : ℂ
h : x ≠ 0 ∨ y ≠ 0
⊢ HasStrictDerivAt (fun y => x ^ y) (x ^ y * log x) y
[PROOFSTEP]
rcases em (x = 0) with (rfl | hx)
[GOAL]
case inl
y : ℂ
h : 0 ≠ 0 ∨ y ≠ 0
⊢ HasStrictDerivAt (fun y => 0 ^ y) (0 ^ y * log 0) y
[PROOFSTEP]
replace h := h.neg_resolve_left rfl
[GOAL]
case inl
y : ℂ
h : y ≠ 0
⊢ HasStrictDerivAt (fun y => 0 ^ y) (0 ^ y * log 0) y
[PROOFSTEP]
rw [log_zero, mul_zero]
[GOAL]
case inl
y : ℂ
h : y ≠ 0
⊢ HasStrictDerivAt (fun y => 0 ^ y) 0 y
[PROOFSTEP]
refine' (hasStrictDerivAt_const _ 0).congr_of_eventuallyEq _
[GOAL]
case inl
y : ℂ
h : y ≠ 0
⊢ (fun x => 0) =ᶠ[𝓝 y] fun y => 0 ^ y
[PROOFSTEP]
exact (isOpen_ne.eventually_mem h).mono fun y hy => (zero_cpow hy).symm
[GOAL]
case inr
x y : ℂ
h : x ≠ 0 ∨ y ≠ 0
hx : ¬x = 0
⊢ HasStrictDerivAt (fun y => x ^ y) (x ^ y * log x) y
[PROOFSTEP]
simpa only [cpow_def_of_ne_zero hx, mul_one] using ((hasStrictDerivAt_id y).const_mul (log x)).cexp
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f g : E → ℂ
f' g' : E →L[ℂ] ℂ
x : E
s : Set E
c : ℂ
hf : HasStrictFDerivAt f f' x
hg : HasStrictFDerivAt g g' x
h0 : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasStrictFDerivAt (fun x => f x ^ g x) ((g x * f x ^ (g x - 1)) • f' + (f x ^ g x * Complex.log (f x)) • g') x
[PROOFSTEP]
convert (@hasStrictFDerivAt_cpow ((fun x => (f x, g x)) x) h0).comp x (hf.prod hg)
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f g : E → ℂ
f' g' : E →L[ℂ] ℂ
x : E
s : Set E
c : ℂ
hf : HasFDerivAt f f' x
hg : HasFDerivAt g g' x
h0 : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasFDerivAt (fun x => f x ^ g x) ((g x * f x ^ (g x - 1)) • f' + (f x ^ g x * Complex.log (f x)) • g') x
[PROOFSTEP]
convert (@Complex.hasFDerivAt_cpow ((fun x => (f x, g x)) x) h0).comp x (hf.prod hg)
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f g : E → ℂ
f' g' : E →L[ℂ] ℂ
x : E
s : Set E
c : ℂ
hf : HasFDerivWithinAt f f' s x
hg : HasFDerivWithinAt g g' s x
h0 : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasFDerivWithinAt (fun x => f x ^ g x) ((g x * f x ^ (g x - 1)) • f' + (f x ^ g x * Complex.log (f x)) • g') s x
[PROOFSTEP]
convert (@Complex.hasFDerivAt_cpow ((fun x => (f x, g x)) x) h0).comp_hasFDerivWithinAt x (hf.prod hg)
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x c : ℂ
⊢ ↑((g x * f x ^ (g x - 1)) • ContinuousLinearMap.smulRight 1 f' +
(f x ^ g x * log (f x)) • ContinuousLinearMap.smulRight 1 g')
1 =
g x * f x ^ (g x - 1) * f' + f x ^ g x * log (f x) * g'
[PROOFSTEP]
simp only [Algebra.id.smul_eq_mul, one_mul, ContinuousLinearMap.one_apply, ContinuousLinearMap.smulRight_apply,
ContinuousLinearMap.add_apply, Pi.smul_apply, ContinuousLinearMap.coe_smul']
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x c : ℂ
hf : HasStrictDerivAt f f' x
hg : HasStrictDerivAt g g' x
h0 : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasStrictDerivAt (fun x => f x ^ g x) (g x * f x ^ (g x - 1) * f' + f x ^ g x * Complex.log (f x) * g') x
[PROOFSTEP]
simpa using (hf.cpow hg h0).hasStrictDerivAt
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x c : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ HasStrictDerivAt (fun z => z ^ c) (c * x ^ (c - 1)) x
[PROOFSTEP]
simpa only [mul_zero, add_zero, mul_one] using (hasStrictDerivAt_id x).cpow (hasStrictDerivAt_const x c) h
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x c : ℂ
hf : HasDerivAt f f' x
hg : HasDerivAt g g' x
h0 : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivAt (fun x => f x ^ g x) (g x * f x ^ (g x - 1) * f' + f x ^ g x * Complex.log (f x) * g') x
[PROOFSTEP]
simpa only [aux] using (hf.hasFDerivAt.cpow hg h0).hasDerivAt
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x c : ℂ
hf : HasDerivWithinAt f f' s x
hg : HasDerivWithinAt g g' s x
h0 : 0 < (f x).re ∨ (f x).im ≠ 0
⊢ HasDerivWithinAt (fun x => f x ^ g x) (g x * f x ^ (g x - 1) * f' + f x ^ g x * Complex.log (f x) * g') s x
[PROOFSTEP]
simpa only [aux] using (hf.hasFDerivWithinAt.cpow hg h0).hasDerivWithinAt
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx : x ≠ 0
r : ℂ
hr : r ≠ -1
⊢ HasDerivAt (fun y => ↑y ^ (r + 1) / (r + 1)) (↑x ^ r) x
[PROOFSTEP]
rw [Ne.def, ← add_eq_zero_iff_eq_neg, ← Ne.def] at hr
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
⊢ HasDerivAt (fun y => ↑y ^ (r + 1) / (r + 1)) (↑x ^ r) x
[PROOFSTEP]
rcases lt_or_gt_of_ne hx.symm with (hx | hx)
[GOAL]
case inl
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ HasDerivAt (fun y => ↑y ^ (r + 1) / (r + 1)) (↑x ^ r) x
[PROOFSTEP]
apply HasDerivAt.comp_ofReal (e := fun y => (y : ℂ) ^ (r + 1) / (r + 1))
[GOAL]
case inl
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ HasDerivAt (fun y => y ^ (r + 1) / (r + 1)) (↑x ^ r) ↑x
[PROOFSTEP]
convert HasDerivAt.div_const (𝕜 := ℂ) ?_ (r + 1) using 1
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ ↑x ^ r = ?inl.convert_3 / (r + 1)
[PROOFSTEP]
exact (mul_div_cancel _ hr).symm
[GOAL]
case inl.convert_4
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ HasDerivAt (fun y => y ^ (r + 1)) (↑x ^ r * (r + 1)) ↑x
[PROOFSTEP]
convert HasDerivAt.cpow_const ?_ ?_ using 1
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ ↑x ^ r * (r + 1) = (r + 1) * ↑x ^ (r + 1 - 1) * ?inl.convert_4.convert_2
[PROOFSTEP]
rw [add_sub_cancel, mul_comm]
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ (r + 1) * ↑x ^ r = (r + 1) * ↑x ^ r * ?inl.convert_4.convert_2
case inl.convert_4.convert_2
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ ℂ
case inl.convert_4.convert_2 f g : ℂ → ℂ s : Set ℂ f' g' x✝ c : ℂ x : ℝ hx✝ : x ≠ 0 r : ℂ hr : r + 1 ≠ 0 hx : 0 < x ⊢ ℂ
[PROOFSTEP]
exact (mul_one _).symm
[GOAL]
case inl.convert_4.convert_5
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ HasDerivAt (fun y => y) 1 ↑x
[PROOFSTEP]
exact hasDerivAt_id (x : ℂ)
[GOAL]
case inl.convert_4.convert_6
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 < x
⊢ 0 < (↑x).re ∨ (↑x).im ≠ 0
[PROOFSTEP]
simp [hx]
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
⊢ HasDerivAt (fun y => ↑y ^ (r + 1) / (r + 1)) (↑x ^ r) x
[PROOFSTEP]
have : ∀ᶠ y : ℝ in nhds x, (y : ℂ) ^ (r + 1) / (r + 1) = (-y : ℂ) ^ (r + 1) * exp (π * I * (r + 1)) / (r + 1) :=
by
refine' Filter.eventually_of_mem (Iio_mem_nhds hx) fun y hy => _
rw [ofReal_cpow_of_nonpos (le_of_lt hy)]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
⊢ ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
[PROOFSTEP]
refine' Filter.eventually_of_mem (Iio_mem_nhds hx) fun y hy => _
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
y : ℝ
hy : y ∈ Set.Iio 0
⊢ ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
[PROOFSTEP]
rw [ofReal_cpow_of_nonpos (le_of_lt hy)]
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => ↑y ^ (r + 1) / (r + 1)) (↑x ^ r) x
[PROOFSTEP]
refine' HasDerivAt.congr_of_eventuallyEq _ this
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun x => (-↑x) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)) (↑x ^ r) x
[PROOFSTEP]
rw [ofReal_cpow_of_nonpos (le_of_lt hx)]
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun x => (-↑x) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)) ((-↑x) ^ r * exp (↑π * I * r)) x
[PROOFSTEP]
suffices HasDerivAt (fun y : ℝ => (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
by
convert this.div_const (r + 1) using 1
conv_rhs => rw [mul_assoc, mul_comm, mul_div_cancel _ hr]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
⊢ HasDerivAt (fun x => (-↑x) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)) ((-↑x) ^ r * exp (↑π * I * r)) x
[PROOFSTEP]
convert this.div_const (r + 1) using 1
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
⊢ (-↑x) ^ r * exp (↑π * I * r) = (r + 1) * (-↑x) ^ r * exp (↑π * I * r) / (r + 1)
[PROOFSTEP]
conv_rhs => rw [mul_assoc, mul_comm, mul_div_cancel _ hr]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
| (r + 1) * (-↑x) ^ r * exp (↑π * I * r) / (r + 1)
[PROOFSTEP]
rw [mul_assoc, mul_comm, mul_div_cancel _ hr]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
| (r + 1) * (-↑x) ^ r * exp (↑π * I * r) / (r + 1)
[PROOFSTEP]
rw [mul_assoc, mul_comm, mul_div_cancel _ hr]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
| (r + 1) * (-↑x) ^ r * exp (↑π * I * r) / (r + 1)
[PROOFSTEP]
rw [mul_assoc, mul_comm, mul_div_cancel _ hr]
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
[PROOFSTEP]
rw [mul_add ((π : ℂ) * _), mul_one, exp_add, exp_pi_mul_I, mul_comm (_ : ℂ) (-1 : ℂ), neg_one_mul]
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => (-↑y) ^ (r + 1) * -exp (↑π * I * r)) ((r + 1) * (-↑x) ^ r * exp (↑π * I * r)) x
[PROOFSTEP]
simp_rw [mul_neg, ← neg_mul, ← ofReal_neg]
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => -↑(-y) ^ (r + 1) * exp (↑π * I * r)) ((r + 1) * ↑(-x) ^ r * exp (↑π * I * r)) x
[PROOFSTEP]
suffices HasDerivAt (fun y : ℝ => ↑(-y) ^ (r + 1)) (-(r + 1) * ↑(-x) ^ r) x by convert this.neg.mul_const _ using 1;
ring
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => ↑(-y) ^ (r + 1)) (-(r + 1) * ↑(-x) ^ r) x
⊢ HasDerivAt (fun y => -↑(-y) ^ (r + 1) * exp (↑π * I * r)) ((r + 1) * ↑(-x) ^ r * exp (↑π * I * r)) x
[PROOFSTEP]
convert this.neg.mul_const _ using 1
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => ↑(-y) ^ (r + 1)) (-(r + 1) * ↑(-x) ^ r) x
⊢ (r + 1) * ↑(-x) ^ r * exp (↑π * I * r) = -(-(r + 1) * ↑(-x) ^ r) * exp (↑π * I * r)
[PROOFSTEP]
ring
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => ↑(-y) ^ (r + 1)) (-(r + 1) * ↑(-x) ^ r) x
[PROOFSTEP]
suffices HasDerivAt (fun y : ℝ => ↑y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) (-x)
by
convert @HasDerivAt.scomp ℝ _ ℂ _ _ x ℝ _ _ _ _ _ _ _ _ this (hasDerivAt_neg x) using 1
rw [real_smul, ofReal_neg 1, ofReal_one]; ring
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => ↑y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) (-x)
⊢ HasDerivAt (fun y => ↑(-y) ^ (r + 1)) (-(r + 1) * ↑(-x) ^ r) x
[PROOFSTEP]
convert @HasDerivAt.scomp ℝ _ ℂ _ _ x ℝ _ _ _ _ _ _ _ _ this (hasDerivAt_neg x) using 1
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => ↑y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) (-x)
⊢ -(r + 1) * ↑(-x) ^ r = -1 • ((r + 1) * ↑(-x) ^ r)
[PROOFSTEP]
rw [real_smul, ofReal_neg 1, ofReal_one]
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => ↑y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) (-x)
⊢ -(r + 1) * ↑(-x) ^ r = -1 * ((r + 1) * ↑(-x) ^ r)
[PROOFSTEP]
ring
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => ↑y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) (-x)
[PROOFSTEP]
suffices HasDerivAt (fun y : ℂ => y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) ↑(-x) by exact this.comp_ofReal
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this✝ : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
this : HasDerivAt (fun y => y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) ↑(-x)
⊢ HasDerivAt (fun y => ↑y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) (-x)
[PROOFSTEP]
exact this.comp_ofReal
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => y ^ (r + 1)) ((r + 1) * ↑(-x) ^ r) ↑(-x)
[PROOFSTEP]
conv in ↑_ ^ _ => rw [(by ring : r = r + 1 - 1)]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
y : ℂ
| y ^ (r + 1)
[PROOFSTEP]
rw [(by ring : r = r + 1 - 1)]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
y : ℂ
| y ^ (r + 1)
[PROOFSTEP]
rw [(by ring : r = r + 1 - 1)]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
y : ℂ
| y ^ (r + 1)
[PROOFSTEP]
rw [(by ring : r = r + 1 - 1)]
[GOAL]
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
y : ℂ
⊢ r = r + 1 - 1
[PROOFSTEP]
ring
[GOAL]
case inr
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => y ^ (r + 1 - 1 + 1)) ((r + 1) * ↑(-x) ^ r) ↑(-x)
[PROOFSTEP]
convert HasDerivAt.cpow_const ?_ ?_ using 1
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ (r + 1) * ↑(-x) ^ r = (r + 1 - 1 + 1) * ↑(-x) ^ (r + 1 - 1 + 1 - 1) * ?inr.convert_2
[PROOFSTEP]
rw [add_sub_cancel, add_sub_cancel]
[GOAL]
case h.e'_7
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ (r + 1) * ↑(-x) ^ r = (r + 1) * ↑(-x) ^ r * ?inr.convert_2
case inr.convert_2
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ ℂ
case inr.convert_2
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ ℂ
[PROOFSTEP]
exact (mul_one _).symm
[GOAL]
case inr.convert_5
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ HasDerivAt (fun y => y) 1 ↑(-x)
[PROOFSTEP]
exact hasDerivAt_id ((-x : ℝ) : ℂ)
[GOAL]
case inr.convert_6
f g : ℂ → ℂ
s : Set ℂ
f' g' x✝ c : ℂ
x : ℝ
hx✝ : x ≠ 0
r : ℂ
hr : r + 1 ≠ 0
hx : 0 > x
this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * exp (↑π * I * (r + 1)) / (r + 1)
⊢ 0 < (↑(-x)).re ∨ (↑(-x)).im ≠ 0
[PROOFSTEP]
simp [hx]
[GOAL]
x y z : ℝ
p : ℝ × ℝ
hp : 0 < p.fst
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℝ ℝ ℝ)
p
[PROOFSTEP]
have : (fun x : ℝ × ℝ => x.1 ^ x.2) =ᶠ[𝓝 p] fun x => exp (log x.1 * x.2) :=
(continuousAt_fst.eventually (lt_mem_nhds hp)).mono fun p hp => rpow_def_of_pos hp _
[GOAL]
x y z : ℝ
p : ℝ × ℝ
hp : 0 < p.fst
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℝ ℝ ℝ)
p
[PROOFSTEP]
refine' HasStrictFDerivAt.congr_of_eventuallyEq _ this.symm
[GOAL]
x y z : ℝ
p : ℝ × ℝ
hp : 0 < p.fst
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
⊢ HasStrictFDerivAt (fun x => exp (log x.fst * x.snd))
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℝ ℝ ℝ)
p
[PROOFSTEP]
convert ((hasStrictFDerivAt_fst.log hp.ne').mul hasStrictFDerivAt_snd).exp using 1
[GOAL]
case h.e'_10
x y z : ℝ
p : ℝ × ℝ
hp : 0 < p.fst
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd)
⊢ (p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℝ ℝ ℝ =
exp (log p.fst * p.snd) •
(log p.fst • ContinuousLinearMap.snd ℝ ℝ ℝ + p.snd • p.fst⁻¹ • ContinuousLinearMap.fst ℝ ℝ ℝ)
[PROOFSTEP]
rw [rpow_sub_one hp.ne', ← rpow_def_of_pos hp, smul_add, smul_smul, mul_div_left_comm, div_eq_mul_inv, smul_smul,
smul_smul, mul_assoc, add_comm]
[GOAL]
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst - exp (log p.fst * p.snd) * sin (p.snd * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ)
p
[PROOFSTEP]
have : (fun x : ℝ × ℝ => x.1 ^ x.2) =ᶠ[𝓝 p] fun x => exp (log x.1 * x.2) * cos (x.2 * π) :=
(continuousAt_fst.eventually (gt_mem_nhds hp)).mono fun p hp => rpow_def_of_neg hp _
[GOAL]
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
⊢ HasStrictFDerivAt (fun x => x.fst ^ x.snd)
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst - exp (log p.fst * p.snd) * sin (p.snd * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ)
p
[PROOFSTEP]
refine' HasStrictFDerivAt.congr_of_eventuallyEq _ this.symm
[GOAL]
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
⊢ HasStrictFDerivAt (fun x => exp (log x.fst * x.snd) * cos (x.snd * π))
((p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst - exp (log p.fst * p.snd) * sin (p.snd * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ)
p
[PROOFSTEP]
convert
((hasStrictFDerivAt_fst.log hp.ne).mul hasStrictFDerivAt_snd).exp.mul (hasStrictFDerivAt_snd.mul_const π).cos using 1
[GOAL]
case h.e'_10.h.h
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup
he✝ : NormedField.toNormedSpace = NormedAlgebra.toNormedSpace'
⊢ (p.snd * p.fst ^ (p.snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst - exp (log p.fst * p.snd) * sin (p.snd * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ =
exp (log p.fst * p.snd) • -sin (p.snd * π) • π • ContinuousLinearMap.snd ℝ ℝ ℝ +
cos (p.snd * π) •
exp (log p.fst * p.snd) •
(log p.fst • ContinuousLinearMap.snd ℝ ℝ ℝ + p.snd • p.fst⁻¹ • ContinuousLinearMap.fst ℝ ℝ ℝ)
[PROOFSTEP]
simp_rw [rpow_sub_one hp.ne, smul_add, ← add_assoc, smul_smul, ← add_smul, ← mul_assoc, mul_comm (cos _), ←
rpow_def_of_neg hp]
[GOAL]
case h.e'_10.h.h
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup
he✝ : NormedField.toNormedSpace = NormedAlgebra.toNormedSpace'
⊢ (p.snd * (p.fst ^ p.snd / p.fst)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
(p.fst ^ p.snd * log p.fst - exp (log p.fst * p.snd) * sin (p.snd * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ =
(exp (log p.fst * p.snd) * -sin (p.snd * π) * π + p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℝ ℝ ℝ +
(p.fst ^ p.snd * p.snd * p.fst⁻¹) • ContinuousLinearMap.fst ℝ ℝ ℝ
[PROOFSTEP]
rw [div_eq_mul_inv, add_comm]
[GOAL]
case h.e'_10.h.h
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup
he✝ : NormedField.toNormedSpace = NormedAlgebra.toNormedSpace'
⊢ (p.fst ^ p.snd * log p.fst - exp (log p.fst * p.snd) * sin (p.snd * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ +
(p.snd * (p.fst ^ p.snd * p.fst⁻¹)) • ContinuousLinearMap.fst ℝ ℝ ℝ =
(exp (log p.fst * p.snd) * -sin (p.snd * π) * π + p.fst ^ p.snd * log p.fst) • ContinuousLinearMap.snd ℝ ℝ ℝ +
(p.fst ^ p.snd * p.snd * p.fst⁻¹) • ContinuousLinearMap.fst ℝ ℝ ℝ
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_10.h.h.e_a.e_a
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup
he✝ : NormedField.toNormedSpace = NormedAlgebra.toNormedSpace'
⊢ p.fst ^ p.snd * log p.fst - exp (log p.fst * p.snd) * sin (p.snd * π) * π =
exp (log p.fst * p.snd) * -sin (p.snd * π) * π + p.fst ^ p.snd * log p.fst
[PROOFSTEP]
ring
[GOAL]
case h.e'_10.h.h.e_a.e_a
x y z : ℝ
p : ℝ × ℝ
hp : p.fst < 0
this : (fun x => x.fst ^ x.snd) =ᶠ[𝓝 p] fun x => exp (log x.fst * x.snd) * cos (x.snd * π)
e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup
he✝ : NormedField.toNormedSpace = NormedAlgebra.toNormedSpace'
⊢ p.snd * (p.fst ^ p.snd * p.fst⁻¹) = p.fst ^ p.snd * p.snd * p.fst⁻¹
[PROOFSTEP]
ring
[GOAL]
x y z : ℝ
p : ℝ × ℝ
hp : p.fst ≠ 0
n : ℕ∞
⊢ ContDiffAt ℝ n (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
cases' hp.lt_or_lt with hneg hpos
[GOAL]
case inl
x y z : ℝ
p : ℝ × ℝ
hp : p.fst ≠ 0
n : ℕ∞
hneg : p.fst < 0
⊢ ContDiffAt ℝ n (fun p => p.fst ^ p.snd) p
case inr x y z : ℝ p : ℝ × ℝ hp : p.fst ≠ 0 n : ℕ∞ hpos : 0 < p.fst ⊢ ContDiffAt ℝ n (fun p => p.fst ^ p.snd) p
[PROOFSTEP]
exacts
[(((contDiffAt_fst.log hneg.ne).mul contDiffAt_snd).exp.mul
(contDiffAt_snd.mul contDiffAt_const).cos).congr_of_eventuallyEq
((continuousAt_fst.eventually (gt_mem_nhds hneg)).mono fun p hp => rpow_def_of_neg hp _),
((contDiffAt_fst.log hpos.ne').mul contDiffAt_snd).exp.congr_of_eventuallyEq
((continuousAt_fst.eventually (lt_mem_nhds hpos)).mono fun p hp => rpow_def_of_pos hp _)]
[GOAL]
x y z : ℝ
f g : ℝ → ℝ
f' g' : ℝ
hf : HasStrictDerivAt f f' x
hg : HasStrictDerivAt g g' x
h : 0 < f x
⊢ HasStrictDerivAt (fun x => f x ^ g x) (f' * g x * f x ^ (g x - 1) + g' * f x ^ g x * log (f x)) x
[PROOFSTEP]
convert (hasStrictFDerivAt_rpow_of_pos ((fun x => (f x, g x)) x) h).comp_hasStrictDerivAt x (hf.prod hg) using 1
[GOAL]
case h.e'_7
x y z : ℝ
f g : ℝ → ℝ
f' g' : ℝ
hf : HasStrictDerivAt f f' x
hg : HasStrictDerivAt g g' x
h : 0 < f x
⊢ f' * g x * f x ^ (g x - 1) + g' * f x ^ g x * log (f x) =
↑((((fun x => (f x, g x)) x).snd * ((fun x => (f x, g x)) x).fst ^ (((fun x => (f x, g x)) x).snd - 1)) •
ContinuousLinearMap.fst ℝ ℝ ℝ +
(((fun x => (f x, g x)) x).fst ^ ((fun x => (f x, g x)) x).snd * log ((fun x => (f x, g x)) x).fst) •
ContinuousLinearMap.snd ℝ ℝ ℝ)
(f', g')
[PROOFSTEP]
simp [mul_assoc, mul_comm, mul_left_comm]
[GOAL]
x✝ y z x : ℝ
hx : x ≠ 0
p : ℝ
⊢ HasStrictDerivAt (fun x => x ^ p) (p * x ^ (p - 1)) x
[PROOFSTEP]
cases' hx.lt_or_lt with hx hx
[GOAL]
case inl
x✝ y z x : ℝ
hx✝ : x ≠ 0
p : ℝ
hx : x < 0
⊢ HasStrictDerivAt (fun x => x ^ p) (p * x ^ (p - 1)) x
[PROOFSTEP]
have :=
(hasStrictFDerivAt_rpow_of_neg (x, p) hx).comp_hasStrictDerivAt x
((hasStrictDerivAt_id x).prod (hasStrictDerivAt_const _ _))
[GOAL]
case inl
x✝ y z x : ℝ
hx✝ : x ≠ 0
p : ℝ
hx : x < 0
this :
HasStrictDerivAt ((fun x => x.fst ^ x.snd) ∘ fun x => (id x, p))
(↑(((x, p).snd * (x, p).fst ^ ((x, p).snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
((x, p).fst ^ (x, p).snd * log (x, p).fst - exp (log (x, p).fst * (x, p).snd) * sin ((x, p).snd * π) * π) •
ContinuousLinearMap.snd ℝ ℝ ℝ)
(1, 0))
x
⊢ HasStrictDerivAt (fun x => x ^ p) (p * x ^ (p - 1)) x
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_7
x✝ y z x : ℝ
hx✝ : x ≠ 0
p : ℝ
hx : x < 0
this :
HasStrictDerivAt ((fun x => x.fst ^ x.snd) ∘ fun x => (id x, p))
(↑(((x, p).snd * (x, p).fst ^ ((x, p).snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
((x, p).fst ^ (x, p).snd * log (x, p).fst - exp (log (x, p).fst * (x, p).snd) * sin ((x, p).snd * π) * π) •
ContinuousLinearMap.snd ℝ ℝ ℝ)
(1, 0))
x
⊢ p * x ^ (p - 1) =
↑(((x, p).snd * (x, p).fst ^ ((x, p).snd - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ +
((x, p).fst ^ (x, p).snd * log (x, p).fst - exp (log (x, p).fst * (x, p).snd) * sin ((x, p).snd * π) * π) •
ContinuousLinearMap.snd ℝ ℝ ℝ)
(1, 0)
[PROOFSTEP]
simp
[GOAL]
case inr
x✝ y z x : ℝ
hx✝ : x ≠ 0
p : ℝ
hx : 0 < x
⊢ HasStrictDerivAt (fun x => x ^ p) (p * x ^ (p - 1)) x
[PROOFSTEP]
simpa using (hasStrictDerivAt_id x).rpow (hasStrictDerivAt_const x p) hx
[GOAL]
x✝ y z a : ℝ
ha : 0 < a
x : ℝ
⊢ HasStrictDerivAt (fun x => a ^ x) (a ^ x * log a) x
[PROOFSTEP]
simpa using (hasStrictDerivAt_const _ _).rpow (hasStrictDerivAt_id x) ha
[GOAL]
x✝ y z a x : ℝ
ha : a < 0
⊢ HasStrictDerivAt (fun x => a ^ x) (a ^ x * log a - exp (log a * x) * sin (x * π) * π) x
[PROOFSTEP]
simpa using
(hasStrictFDerivAt_rpow_of_neg (a, x) ha).comp_hasStrictDerivAt x
((hasStrictDerivAt_const _ _).prod (hasStrictDerivAt_id _))
[GOAL]
z x✝ y x p : ℝ
h : x ≠ 0 ∨ 1 ≤ p
⊢ HasDerivAt (fun x => x ^ p) (p * x ^ (p - 1)) x
[PROOFSTEP]
rcases ne_or_eq x 0 with (hx | rfl)
[GOAL]
case inl
z x✝ y x p : ℝ
h : x ≠ 0 ∨ 1 ≤ p
hx : x ≠ 0
⊢ HasDerivAt (fun x => x ^ p) (p * x ^ (p - 1)) x
[PROOFSTEP]
exact (hasStrictDerivAt_rpow_const_of_ne hx _).hasDerivAt
[GOAL]
case inr
z x y p : ℝ
h : 0 ≠ 0 ∨ 1 ≤ p
⊢ HasDerivAt (fun x => x ^ p) (p * 0 ^ (p - 1)) 0
[PROOFSTEP]
replace h : 1 ≤ p := h.neg_resolve_left rfl
[GOAL]
case inr
z x y p : ℝ
h : 1 ≤ p
⊢ HasDerivAt (fun x => x ^ p) (p * 0 ^ (p - 1)) 0
[PROOFSTEP]
apply hasDerivAt_of_hasDerivAt_of_ne fun x hx => (hasStrictDerivAt_rpow_const_of_ne hx p).hasDerivAt
[GOAL]
case inr.hf
z x y p : ℝ
h : 1 ≤ p
⊢ ContinuousAt (fun x => x ^ p) 0
case inr.hg z x y p : ℝ h : 1 ≤ p ⊢ ContinuousAt (fun x => p * x ^ (p - 1)) 0
[PROOFSTEP]
exacts [continuousAt_id.rpow_const (Or.inr (zero_le_one.trans h)),
continuousAt_const.mul (continuousAt_id.rpow_const (Or.inr (sub_nonneg.2 h)))]
[GOAL]
z x y p : ℝ
n : ℕ
h : ↑n ≤ p
⊢ ContDiff ℝ ↑n fun x => x ^ p
[PROOFSTEP]
induction' n with n ihn generalizing p
[GOAL]
case zero
z x y p✝ : ℝ
n : ℕ
h✝ : ↑n ≤ p✝
p : ℝ
h : ↑Nat.zero ≤ p
⊢ ContDiff ℝ ↑Nat.zero fun x => x ^ p
[PROOFSTEP]
exact contDiff_zero.2 (continuous_id.rpow_const fun x => Or.inr <| by simpa using h)
[GOAL]
z x✝ y p✝ : ℝ
n : ℕ
h✝ : ↑n ≤ p✝
p : ℝ
h : ↑Nat.zero ≤ p
x : ℝ
⊢ 0 ≤ p
[PROOFSTEP]
simpa using h
[GOAL]
case succ
z x y p✝ : ℝ
n✝ : ℕ
h✝ : ↑n✝ ≤ p✝
n : ℕ
ihn : ∀ {p : ℝ}, ↑n ≤ p → ContDiff ℝ ↑n fun x => x ^ p
p : ℝ
h : ↑(Nat.succ n) ≤ p
⊢ ContDiff ℝ ↑(Nat.succ n) fun x => x ^ p
[PROOFSTEP]
have h1 : 1 ≤ p := le_trans (by simp) h
[GOAL]
z x y p✝ : ℝ
n✝ : ℕ
h✝ : ↑n✝ ≤ p✝
n : ℕ
ihn : ∀ {p : ℝ}, ↑n ≤ p → ContDiff ℝ ↑n fun x => x ^ p
p : ℝ
h : ↑(Nat.succ n) ≤ p
⊢ 1 ≤ ↑(Nat.succ n)
[PROOFSTEP]
simp
[GOAL]
case succ
z x y p✝ : ℝ
n✝ : ℕ
h✝ : ↑n✝ ≤ p✝
n : ℕ
ihn : ∀ {p : ℝ}, ↑n ≤ p → ContDiff ℝ ↑n fun x => x ^ p
p : ℝ
h : ↑(Nat.succ n) ≤ p
h1 : 1 ≤ p
⊢ ContDiff ℝ ↑(Nat.succ n) fun x => x ^ p
[PROOFSTEP]
rw [Nat.cast_succ, ← le_sub_iff_add_le] at h
[GOAL]
case succ
z x y p✝ : ℝ
n✝ : ℕ
h✝ : ↑n✝ ≤ p✝
n : ℕ
ihn : ∀ {p : ℝ}, ↑n ≤ p → ContDiff ℝ ↑n fun x => x ^ p
p : ℝ
h : ↑n ≤ p - 1
h1 : 1 ≤ p
⊢ ContDiff ℝ ↑(Nat.succ n) fun x => x ^ p
[PROOFSTEP]
rw [contDiff_succ_iff_deriv, deriv_rpow_const' h1]
[GOAL]
case succ
z x y p✝ : ℝ
n✝ : ℕ
h✝ : ↑n✝ ≤ p✝
n : ℕ
ihn : ∀ {p : ℝ}, ↑n ≤ p → ContDiff ℝ ↑n fun x => x ^ p
p : ℝ
h : ↑n ≤ p - 1
h1 : 1 ≤ p
⊢ (Differentiable ℝ fun x => x ^ p) ∧ ContDiff ℝ ↑n fun x => p * x ^ (p - 1)
[PROOFSTEP]
refine' ⟨differentiable_rpow_const h1, contDiff_const.mul (ihn h)⟩
[GOAL]
z x✝ y x p : ℝ
hx : x ≠ 0 ∨ 1 ≤ p
⊢ x ≠ 0 ∨ ↑One.one ≤ p
[PROOFSTEP]
rwa [← Nat.cast_one] at hx
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g : E → ℝ
f' g' : E →L[ℝ] ℝ
x : E
s : Set E
c p : ℝ
n : ℕ∞
m : ℕ
hf : ContDiffAt ℝ (↑m) f x
h : ↑m ≤ p
⊢ ContDiffAt ℝ (↑m) (fun x => f x ^ p) x
[PROOFSTEP]
rw [← contDiffWithinAt_univ] at *
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f g : E → ℝ
f' g' : E →L[ℝ] ℝ
x : E
s : Set E
c p : ℝ
n : ℕ∞
m : ℕ
hf : ContDiffWithinAt ℝ (↑m) f Set.univ x
h : ↑m ≤ p
⊢ ContDiffWithinAt ℝ (↑m) (fun x => f x ^ p) Set.univ x
[PROOFSTEP]
exact hf.rpow_const_of_le h
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' s x
hg : HasDerivWithinAt g g' s x
h : 0 < f x
⊢ HasDerivWithinAt (fun x => f x ^ g x) (f' * g x * f x ^ (g x - 1) + g' * f x ^ g x * Real.log (f x)) s x
[PROOFSTEP]
convert (hf.hasFDerivWithinAt.rpow hg.hasFDerivWithinAt h).hasDerivWithinAt using 1
[GOAL]
case h.e'_7
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' s x
hg : HasDerivWithinAt g g' s x
h : 0 < f x
⊢ f' * g x * f x ^ (g x - 1) + g' * f x ^ g x * Real.log (f x) =
↑((g x * f x ^ (g x - 1)) • ContinuousLinearMap.smulRight 1 f' +
(f x ^ g x * Real.log (f x)) • ContinuousLinearMap.smulRight 1 g')
1
[PROOFSTEP]
dsimp
[GOAL]
case h.e'_7
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' s x
hg : HasDerivWithinAt g g' s x
h : 0 < f x
⊢ f' * g x * f x ^ (g x - 1) + g' * f x ^ g x * Real.log (f x) =
g x * f x ^ (g x - 1) * (1 * f') + f x ^ g x * Real.log (f x) * (1 * g')
[PROOFSTEP]
ring
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivAt f f' x
hg : HasDerivAt g g' x
h : 0 < f x
⊢ HasDerivAt (fun x => f x ^ g x) (f' * g x * f x ^ (g x - 1) + g' * f x ^ g x * Real.log (f x)) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' Set.univ x
hg : HasDerivWithinAt g g' Set.univ x
h : 0 < f x
⊢ HasDerivWithinAt (fun x => f x ^ g x) (f' * g x * f x ^ (g x - 1) + g' * f x ^ g x * Real.log (f x)) Set.univ x
[PROOFSTEP]
exact hf.rpow hg h
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' s x
hx : f x ≠ 0 ∨ 1 ≤ p
⊢ HasDerivWithinAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) s x
[PROOFSTEP]
convert (hasDerivAt_rpow_const hx).comp_hasDerivWithinAt x hf using 1
[GOAL]
case h.e'_7
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' s x
hx : f x ≠ 0 ∨ 1 ≤ p
⊢ f' * p * f x ^ (p - 1) = p * f x ^ (p - 1) * f'
[PROOFSTEP]
ring
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivAt f f' x
hx : f x ≠ 0 ∨ 1 ≤ p
⊢ HasDerivAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
hf : HasDerivWithinAt f f' Set.univ x
hx : f x ≠ 0 ∨ 1 ≤ p
⊢ HasDerivWithinAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) Set.univ x
[PROOFSTEP]
exact hf.rpow_const hx
[GOAL]
f g : ℝ → ℝ
f' g' x y p✝ : ℝ
s : Set ℝ
p : ℝ
hp : p ≠ 0
⊢ (deriv fun x => x ^ p) =Θ[atTop] fun x => x ^ (p - 1)
[PROOFSTEP]
calc
deriv (fun (x : ℝ) => x ^ p) =ᶠ[atTop] fun x => p * x ^ (p - 1) :=
by
filter_upwards [eventually_ne_atTop 0] with x hx
rw [Real.deriv_rpow_const (Or.inl hx)]
_ =Θ[atTop] fun x => x ^ (p - 1) := Asymptotics.IsTheta.const_mul_left hp Asymptotics.isTheta_rfl
[GOAL]
f g : ℝ → ℝ
f' g' x y p✝ : ℝ
s : Set ℝ
p : ℝ
hp : p ≠ 0
⊢ (deriv fun x => x ^ p) =ᶠ[atTop] fun x => p * x ^ (p - 1)
[PROOFSTEP]
filter_upwards [eventually_ne_atTop 0] with x hx
[GOAL]
case h
f g : ℝ → ℝ
f' g' x✝ y p✝ : ℝ
s : Set ℝ
p : ℝ
hp : p ≠ 0
x : ℝ
hx : x ≠ 0
⊢ deriv (fun x => x ^ p) x = p * x ^ (p - 1)
[PROOFSTEP]
rw [Real.deriv_rpow_const (Or.inl hx)]
[GOAL]
f g : ℝ → ℝ
f' g' x y p✝ : ℝ
s : Set ℝ
p : ℝ
⊢ (deriv fun x => x ^ p) =O[atTop] fun x => x ^ (p - 1)
[PROOFSTEP]
rcases eq_or_ne p 0 with rfl | hp
[GOAL]
case inl
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
⊢ (deriv fun x => x ^ 0) =O[atTop] fun x => x ^ (0 - 1)
case inr f g : ℝ → ℝ f' g' x y p✝ : ℝ s : Set ℝ p : ℝ hp : p ≠ 0 ⊢ (deriv fun x => x ^ p) =O[atTop] fun x => x ^ (p - 1)
[PROOFSTEP]
case inl => simp [zero_sub, Real.rpow_neg_one, Real.rpow_zero, deriv_const', Asymptotics.isBigO_zero]
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
⊢ (deriv fun x => x ^ 0) =O[atTop] fun x => x ^ (0 - 1)
[PROOFSTEP]
case inl => simp [zero_sub, Real.rpow_neg_one, Real.rpow_zero, deriv_const', Asymptotics.isBigO_zero]
[GOAL]
f g : ℝ → ℝ
f' g' x y p : ℝ
s : Set ℝ
⊢ (deriv fun x => x ^ 0) =O[atTop] fun x => x ^ (0 - 1)
[PROOFSTEP]
simp [zero_sub, Real.rpow_neg_one, Real.rpow_zero, deriv_const', Asymptotics.isBigO_zero]
[GOAL]
case inr
f g : ℝ → ℝ
f' g' x y p✝ : ℝ
s : Set ℝ
p : ℝ
hp : p ≠ 0
⊢ (deriv fun x => x ^ p) =O[atTop] fun x => x ^ (p - 1)
[PROOFSTEP]
case inr => exact (isTheta_deriv_rpow_const_atTop hp).1
[GOAL]
f g : ℝ → ℝ
f' g' x y p✝ : ℝ
s : Set ℝ
p : ℝ
hp : p ≠ 0
⊢ (deriv fun x => x ^ p) =O[atTop] fun x => x ^ (p - 1)
[PROOFSTEP]
case inr => exact (isTheta_deriv_rpow_const_atTop hp).1
[GOAL]
f g : ℝ → ℝ
f' g' x y p✝ : ℝ
s : Set ℝ
p : ℝ
hp : p ≠ 0
⊢ (deriv fun x => x ^ p) =O[atTop] fun x => x ^ (p - 1)
[PROOFSTEP]
exact (isTheta_deriv_rpow_const_atTop hp).1
[GOAL]
t : ℝ
⊢ Tendsto (fun x => (1 + t / x) ^ x) atTop (𝓝 (exp t))
[PROOFSTEP]
apply ((Real.continuous_exp.tendsto _).comp (tendsto_mul_log_one_plus_div_atTop t)).congr' _
[GOAL]
t : ℝ
⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x
[PROOFSTEP]
have h₁ : (1 : ℝ) / 2 < 1 := by linarith
[GOAL]
t : ℝ
⊢ 1 / 2 < 1
[PROOFSTEP]
linarith
[GOAL]
t : ℝ
h₁ : 1 / 2 < 1
⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x
[PROOFSTEP]
have h₂ : Tendsto (fun x : ℝ => 1 + t / x) atTop (𝓝 1) := by
simpa using (tendsto_inv_atTop_zero.const_mul t).const_add 1
[GOAL]
t : ℝ
h₁ : 1 / 2 < 1
⊢ Tendsto (fun x => 1 + t / x) atTop (𝓝 1)
[PROOFSTEP]
simpa using (tendsto_inv_atTop_zero.const_mul t).const_add 1
[GOAL]
t : ℝ
h₁ : 1 / 2 < 1
h₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)
⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x
[PROOFSTEP]
refine' (eventually_ge_of_tendsto_gt h₁ h₂).mono fun x hx => _
[GOAL]
t : ℝ
h₁ : 1 / 2 < 1
h₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)
x : ℝ
hx : 1 / 2 ≤ 1 + t / x
⊢ (exp ∘ fun x => x * log (1 + t / x)) x = (fun x => (1 + t / x) ^ x) x
[PROOFSTEP]
have hx' : 0 < 1 + t / x := by linarith
[GOAL]
t : ℝ
h₁ : 1 / 2 < 1
h₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)
x : ℝ
hx : 1 / 2 ≤ 1 + t / x
⊢ 0 < 1 + t / x
[PROOFSTEP]
linarith
[GOAL]
t : ℝ
h₁ : 1 / 2 < 1
h₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)
x : ℝ
hx : 1 / 2 ≤ 1 + t / x
hx' : 0 < 1 + t / x
⊢ (exp ∘ fun x => x * log (1 + t / x)) x = (fun x => (1 + t / x) ^ x) x
[PROOFSTEP]
simp [mul_comm x, exp_mul, exp_log hx']
[GOAL]
t : ℝ
⊢ ∀ (x : ℕ), ((fun x => (1 + t / x) ^ x) ∘ Nat.cast) x = (1 + t / ↑x) ^ ↑x
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Pow.Deriv", "llama_tokens": 23571} |
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a✝ a : ℕ → E
⊢ HasSum (fun n => 0 ^ n • a n) (a 0)
[PROOFSTEP]
convert hasSum_single (α := E) 0 fun b h => _
[GOAL]
case h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a✝ a : ℕ → E
⊢ a 0 = 0 ^ 0 • a 0
[PROOFSTEP]
first
| simp [Nat.pos_of_ne_zero h]
| simp
[GOAL]
case h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a✝ a : ℕ → E
⊢ a 0 = 0 ^ 0 • a 0
[PROOFSTEP]
simp [Nat.pos_of_ne_zero h]
[GOAL]
case h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a✝ a : ℕ → E
⊢ a 0 = 0 ^ 0 • a 0
[PROOFSTEP]
simp
[GOAL]
case convert_2
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a✝ a : ℕ → E
b : ℕ
h : b ≠ 0
⊢ 0 ^ b • a b = 0
[PROOFSTEP]
first
| simp [Nat.pos_of_ne_zero h]
| simp
[GOAL]
case convert_2
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a✝ a : ℕ → E
b : ℕ
h : b ≠ 0
⊢ 0 ^ b • a b = 0
[PROOFSTEP]
simp [Nat.pos_of_ne_zero h]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
⊢ ∃ t, z ^ n • t = s ∧ HasSum (fun m => z ^ m • a (m + n)) t
[PROOFSTEP]
obtain rfl | hn := n.eq_zero_or_pos
[GOAL]
case inl
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < 0 → a k = 0
⊢ ∃ t, z ^ 0 • t = s ∧ HasSum (fun m => z ^ m • a (m + 0)) t
[PROOFSTEP]
simpa
[GOAL]
case inr
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
⊢ ∃ t, z ^ n • t = s ∧ HasSum (fun m => z ^ m • a (m + n)) t
[PROOFSTEP]
by_cases h : z = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : z = 0
⊢ ∃ t, z ^ n • t = s ∧ HasSum (fun m => z ^ m • a (m + n)) t
[PROOFSTEP]
have : s = 0 := hs.unique (by simpa [ha 0 hn, h] using hasSum_at_zero a)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : z = 0
⊢ HasSum (fun m => z ^ m • a m) 0
[PROOFSTEP]
simpa [ha 0 hn, h] using hasSum_at_zero a
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : z = 0
this : s = 0
⊢ ∃ t, z ^ n • t = s ∧ HasSum (fun m => z ^ m • a (m + n)) t
[PROOFSTEP]
exact ⟨a n, by simp [h, hn, this], by simpa [h] using hasSum_at_zero fun m => a (m + n)⟩
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : z = 0
this : s = 0
⊢ z ^ n • a n = s
[PROOFSTEP]
simp [h, hn, this]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : z = 0
this : s = 0
⊢ HasSum (fun m => z ^ m • a (m + n)) (a n)
[PROOFSTEP]
simpa [h] using hasSum_at_zero fun m => a (m + n)
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
⊢ ∃ t, z ^ n • t = s ∧ HasSum (fun m => z ^ m • a (m + n)) t
[PROOFSTEP]
refine ⟨(z ^ n)⁻¹ • s, by field_simp [smul_smul], ?_⟩
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
⊢ z ^ n • (z ^ n)⁻¹ • s = s
[PROOFSTEP]
field_simp [smul_smul]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
⊢ HasSum (fun m => z ^ m • a (m + n)) ((z ^ n)⁻¹ • s)
[PROOFSTEP]
have h1 : ∑ i in Finset.range n, z ^ i • a i = 0 :=
Finset.sum_eq_zero fun k hk => by simp [ha k (Finset.mem_range.mp hk)]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
k : ℕ
hk : k ∈ Finset.range n
⊢ z ^ k • a k = 0
[PROOFSTEP]
simp [ha k (Finset.mem_range.mp hk)]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
h1 : ∑ i in Finset.range n, z ^ i • a i = 0
⊢ HasSum (fun m => z ^ m • a (m + n)) ((z ^ n)⁻¹ • s)
[PROOFSTEP]
have h2 : HasSum (fun m => z ^ (m + n) • a (m + n)) s := by simpa [h1] using (hasSum_nat_add_iff' n).mpr hs
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
h1 : ∑ i in Finset.range n, z ^ i • a i = 0
⊢ HasSum (fun m => z ^ (m + n) • a (m + n)) s
[PROOFSTEP]
simpa [h1] using (hasSum_nat_add_iff' n).mpr hs
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
h1 : ∑ i in Finset.range n, z ^ i • a i = 0
h2 : HasSum (fun m => z ^ (m + n) • a (m + n)) s
⊢ HasSum (fun m => z ^ m • a (m + n)) ((z ^ n)⁻¹ • s)
[PROOFSTEP]
convert h2.const_smul (z⁻¹ ^ n) using 1
[GOAL]
case h.e'_5
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
h1 : ∑ i in Finset.range n, z ^ i • a i = 0
h2 : HasSum (fun m => z ^ (m + n) • a (m + n)) s
⊢ (fun m => z ^ m • a (m + n)) = fun i => z⁻¹ ^ n • z ^ (i + n) • a (i + n)
[PROOFSTEP]
field_simp [pow_add, smul_smul]
[GOAL]
case h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
a : ℕ → E
hs : HasSum (fun m => z ^ m • a m) s
ha : ∀ (k : ℕ), k < n → a k = 0
hn : n > 0
h : ¬z = 0
h1 : ∑ i in Finset.range n, z ^ i • a i = 0
h2 : HasSum (fun m => z ^ (m + n) • a (m + n)) s
⊢ (z ^ n)⁻¹ • s = z⁻¹ ^ n • s
[PROOFSTEP]
simp only [inv_pow]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
⊢ HasFPowerSeriesAt (dslope f z₀) (fslope p) z₀
[PROOFSTEP]
have hpd : deriv f z₀ = p.coeff 1 := hp.deriv
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hpd : deriv f z₀ = coeff p 1
⊢ HasFPowerSeriesAt (dslope f z₀) (fslope p) z₀
[PROOFSTEP]
have hp0 : p.coeff 0 = f z₀ := hp.coeff_zero 1
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
⊢ HasFPowerSeriesAt (dslope f z₀) (fslope p) z₀
[PROOFSTEP]
simp only [hasFPowerSeriesAt_iff, apply_eq_pow_smul_coeff, coeff_fslope] at hp ⊢
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
⊢ ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p (n + 1)) (dslope f z₀ (z₀ + z))
[PROOFSTEP]
refine hp.mono fun x hx => ?_
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
⊢ HasSum (fun n => x ^ n • coeff p (n + 1)) (dslope f z₀ (z₀ + x))
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : x = 0
⊢ HasSum (fun n => x ^ n • coeff p (n + 1)) (dslope f z₀ (z₀ + x))
[PROOFSTEP]
convert hasSum_single (α := E) 0 _
[GOAL]
case h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : x = 0
⊢ dslope f z₀ (z₀ + x) = x ^ 0 • coeff p (0 + 1)
[PROOFSTEP]
intros
[GOAL]
case pos.convert_2
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : x = 0
⊢ ∀ (b' : ℕ), b' ≠ 0 → x ^ b' • coeff p (b' + 1) = 0
[PROOFSTEP]
intros
[GOAL]
case h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : x = 0
⊢ dslope f z₀ (z₀ + x) = x ^ 0 • coeff p (0 + 1)
[PROOFSTEP]
simp [*]
[GOAL]
case pos.convert_2
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : x = 0
b'✝ : ℕ
x✝ : b'✝ ≠ 0
⊢ x ^ b'✝ • coeff p (b'✝ + 1) = 0
[PROOFSTEP]
simp [*]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : ¬x = 0
⊢ HasSum (fun n => x ^ n • coeff p (n + 1)) (dslope f z₀ (z₀ + x))
[PROOFSTEP]
have hxx : ∀ n : ℕ, x⁻¹ * x ^ (n + 1) = x ^ n := fun n => by field_simp [h, _root_.pow_succ']
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n✝ : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : ¬x = 0
n : ℕ
⊢ x⁻¹ * x ^ (n + 1) = x ^ n
[PROOFSTEP]
field_simp [h, _root_.pow_succ']
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : ¬x = 0
hxx : ∀ (n : ℕ), x⁻¹ * x ^ (n + 1) = x ^ n
⊢ HasSum (fun n => x ^ n • coeff p (n + 1)) (dslope f z₀ (z₀ + x))
[PROOFSTEP]
suffices HasSum (fun n => x⁻¹ • x ^ (n + 1) • p.coeff (n + 1)) (x⁻¹ • (f (z₀ + x) - f z₀)) by
simpa [dslope, slope, h, smul_smul, hxx] using this
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : ¬x = 0
hxx : ∀ (n : ℕ), x⁻¹ * x ^ (n + 1) = x ^ n
this : HasSum (fun n => x⁻¹ • x ^ (n + 1) • coeff p (n + 1)) (x⁻¹ • (f (z₀ + x) - f z₀))
⊢ HasSum (fun n => x ^ n • coeff p (n + 1)) (dslope f z₀ (z₀ + x))
[PROOFSTEP]
simpa [dslope, slope, h, smul_smul, hxx] using this
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hpd : deriv f z₀ = coeff p 1
hp0 : coeff p 0 = f z₀
hp : ∀ᶠ (z : 𝕜) in 𝓝 0, HasSum (fun n => z ^ n • coeff p n) (f (z₀ + z))
x : 𝕜
hx : HasSum (fun n => x ^ n • coeff p n) (f (z₀ + x))
h : ¬x = 0
hxx : ∀ (n : ℕ), x⁻¹ * x ^ (n + 1) = x ^ n
⊢ HasSum (fun n => x⁻¹ • x ^ (n + 1) • coeff p (n + 1)) (x⁻¹ • (f (z₀ + x) - f z₀))
[PROOFSTEP]
simpa [hp0] using ((hasSum_nat_add_iff' 1).mpr hx).const_smul x⁻¹
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n✝ : ℕ
z z₀ : 𝕜
n : ℕ
hp : HasFPowerSeriesAt f p z₀
⊢ HasFPowerSeriesAt ((swap dslope z₀)^[n] f) (fslope^[n] p) z₀
[PROOFSTEP]
induction' n with n ih generalizing f p
[GOAL]
case zero
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p✝ q : FormalMultilinearSeries 𝕜 𝕜 E
f✝ g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp✝ : HasFPowerSeriesAt f✝ p✝ z₀
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
hp : HasFPowerSeriesAt f p z₀
⊢ HasFPowerSeriesAt ((swap dslope z₀)^[zero] f) (fslope^[zero] p) z₀
[PROOFSTEP]
exact hp
[GOAL]
case succ
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p✝ q : FormalMultilinearSeries 𝕜 𝕜 E
f✝ g : 𝕜 → E
n✝ : ℕ
z z₀ : 𝕜
hp✝ : HasFPowerSeriesAt f✝ p✝ z₀
n : ℕ
ih :
∀ {p : FormalMultilinearSeries 𝕜 𝕜 E} {f : 𝕜 → E},
HasFPowerSeriesAt f p z₀ → HasFPowerSeriesAt ((swap dslope z₀)^[n] f) (fslope^[n] p) z₀
p : FormalMultilinearSeries 𝕜 𝕜 E
f : 𝕜 → E
hp : HasFPowerSeriesAt f p z₀
⊢ HasFPowerSeriesAt ((swap dslope z₀)^[succ n] f) (fslope^[succ n] p) z₀
[PROOFSTEP]
simpa using ih (has_fpower_series_dslope_fslope hp)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p ≠ 0
⊢ (swap dslope z₀)^[order p] f z₀ ≠ 0
[PROOFSTEP]
rw [← coeff_zero (has_fpower_series_iterate_dslope_fslope p.order hp) 1]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p ≠ 0
⊢ ↑(fslope^[order p] p 0) 1 ≠ 0
[PROOFSTEP]
simpa [coeff_eq_zero] using apply_order_ne_zero h
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
⊢ ∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = (z - z₀) ^ order p • (swap dslope z₀)^[order p] f z
[PROOFSTEP]
have hq := hasFPowerSeriesAt_iff'.mp (has_fpower_series_iterate_dslope_fslope p.order hp)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f z)
⊢ ∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = (z - z₀) ^ order p • (swap dslope z₀)^[order p] f z
[PROOFSTEP]
filter_upwards [hq, hasFPowerSeriesAt_iff'.mp hp] with x hx1 hx2
[GOAL]
case h
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f z)
x : 𝕜
hx1 : HasSum (fun n => (x - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f x)
hx2 : HasSum (fun n => (x - z₀) ^ n • coeff p n) (f x)
⊢ f x = (x - z₀) ^ order p • (swap dslope z₀)^[order p] f x
[PROOFSTEP]
have : ∀ k < p.order, p.coeff k = 0 := fun k hk => by simpa [coeff_eq_zero] using apply_eq_zero_of_lt_order hk
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f z)
x : 𝕜
hx1 : HasSum (fun n => (x - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f x)
hx2 : HasSum (fun n => (x - z₀) ^ n • coeff p n) (f x)
k : ℕ
hk : k < order p
⊢ coeff p k = 0
[PROOFSTEP]
simpa [coeff_eq_zero] using apply_eq_zero_of_lt_order hk
[GOAL]
case h
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f z)
x : 𝕜
hx1 : HasSum (fun n => (x - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f x)
hx2 : HasSum (fun n => (x - z₀) ^ n • coeff p n) (f x)
this : ∀ (k : ℕ), k < order p → coeff p k = 0
⊢ f x = (x - z₀) ^ order p • (swap dslope z₀)^[order p] f x
[PROOFSTEP]
obtain ⟨s, hs1, hs2⟩ := HasSum.exists_hasSum_smul_of_apply_eq_zero hx2 this
[GOAL]
case h.intro.intro
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s✝ : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f z)
x : 𝕜
hx1 : HasSum (fun n => (x - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f x)
hx2 : HasSum (fun n => (x - z₀) ^ n • coeff p n) (f x)
this : ∀ (k : ℕ), k < order p → coeff p k = 0
s : E
hs1 : (x - z₀) ^ order p • s = f x
hs2 : HasSum (fun m => (x - z₀) ^ m • coeff p (m + order p)) s
⊢ f x = (x - z₀) ^ order p • (swap dslope z₀)^[order p] f x
[PROOFSTEP]
convert hs1.symm
[GOAL]
case h.e'_3.h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s✝ : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f z)
x : 𝕜
hx1 : HasSum (fun n => (x - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f x)
hx2 : HasSum (fun n => (x - z₀) ^ n • coeff p n) (f x)
this : ∀ (k : ℕ), k < order p → coeff p k = 0
s : E
hs1 : (x - z₀) ^ order p • s = f x
hs2 : HasSum (fun m => (x - z₀) ^ m • coeff p (m + order p)) s
⊢ (swap dslope z₀)^[order p] f x = s
[PROOFSTEP]
simp only [coeff_iterate_fslope] at hx1
[GOAL]
case h.e'_3.h.e'_6
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s✝ : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
hq : ∀ᶠ (z : 𝕜) in 𝓝 z₀, HasSum (fun n => (z - z₀) ^ n • coeff (fslope^[order p] p) n) ((swap dslope z₀)^[order p] f z)
x : 𝕜
hx2 : HasSum (fun n => (x - z₀) ^ n • coeff p n) (f x)
this : ∀ (k : ℕ), k < order p → coeff p k = 0
s : E
hs1 : (x - z₀) ^ order p • s = f x
hs2 : HasSum (fun m => (x - z₀) ^ m • coeff p (m + order p)) s
hx1 : HasSum (fun n => (x - z₀) ^ n • coeff p (n + order p)) ((swap dslope z₀)^[order p] f x)
⊢ (swap dslope z₀)^[order p] f x = s
[PROOFSTEP]
exact hx1.unique hs2
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p ≠ 0
⊢ ∀ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z ≠ 0
[PROOFSTEP]
rw [eventually_nhdsWithin_iff]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p ≠ 0
⊢ ∀ᶠ (x : 𝕜) in 𝓝 z₀, x ∈ {z₀}ᶜ → f x ≠ 0
[PROOFSTEP]
have h2 := (has_fpower_series_iterate_dslope_fslope p.order hp).continuousAt
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p ≠ 0
h2 : ContinuousAt ((swap dslope z₀)^[order p] f) z₀
⊢ ∀ᶠ (x : 𝕜) in 𝓝 z₀, x ∈ {z₀}ᶜ → f x ≠ 0
[PROOFSTEP]
have h3 := h2.eventually_ne (iterate_dslope_fslope_ne_zero hp h)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p ≠ 0
h2 : ContinuousAt ((swap dslope z₀)^[order p] f) z₀
h3 : ∀ᶠ (z : 𝕜) in 𝓝 z₀, (swap dslope z₀)^[order p] f z ≠ 0
⊢ ∀ᶠ (x : 𝕜) in 𝓝 z₀, x ∈ {z₀}ᶜ → f x ≠ 0
[PROOFSTEP]
filter_upwards [eq_pow_order_mul_iterate_dslope hp, h3] with z e1 e2 e3
[GOAL]
case h
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z✝ z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p ≠ 0
h2 : ContinuousAt ((swap dslope z₀)^[order p] f) z₀
h3 : ∀ᶠ (z : 𝕜) in 𝓝 z₀, (swap dslope z₀)^[order p] f z ≠ 0
z : 𝕜
e1 : f z = (z - z₀) ^ order p • (swap dslope z₀)^[order p] f z
e2 : (swap dslope z₀)^[order p] f z ≠ 0
e3 : z ∈ {z₀}ᶜ
⊢ f z ≠ 0
[PROOFSTEP]
simpa [e1, e2, e3] using pow_ne_zero p.order (sub_ne_zero.mpr e3)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hp : HasFPowerSeriesAt f p z₀
h : p = 0
⊢ HasFPowerSeriesAt (fun z => f z) 0 z₀
[PROOFSTEP]
rwa [h] at hp
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hf : AnalyticAt 𝕜 f z₀
⊢ (∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = 0) ∨ ∀ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z ≠ 0
[PROOFSTEP]
rcases hf with ⟨p, hp⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p✝ q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
p : FormalMultilinearSeries 𝕜 𝕜 E
hp : HasFPowerSeriesAt f p z₀
⊢ (∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = 0) ∨ ∀ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z ≠ 0
[PROOFSTEP]
by_cases h : p = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p✝ q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
p : FormalMultilinearSeries 𝕜 𝕜 E
hp : HasFPowerSeriesAt f p z₀
h : p = 0
⊢ (∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = 0) ∨ ∀ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z ≠ 0
[PROOFSTEP]
exact Or.inl (HasFPowerSeriesAt.eventually_eq_zero (by rwa [h] at hp ))
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p✝ q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
p : FormalMultilinearSeries 𝕜 𝕜 E
hp : HasFPowerSeriesAt f p z₀
h : p = 0
⊢ HasFPowerSeriesAt (fun z => f z) 0 z₀
[PROOFSTEP]
rwa [h] at hp
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p✝ q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
p : FormalMultilinearSeries 𝕜 𝕜 E
hp : HasFPowerSeriesAt f p z₀
h : ¬p = 0
⊢ (∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = 0) ∨ ∀ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z ≠ 0
[PROOFSTEP]
exact Or.inr (hp.locally_ne_zero h)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hf : AnalyticAt 𝕜 f z₀
hg : AnalyticAt 𝕜 g z₀
⊢ (∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = g z) ∨ ∀ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z ≠ g z
[PROOFSTEP]
simpa [sub_eq_zero] using (hf.sub hg).eventually_eq_zero_or_eventually_ne_zero
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
hf : AnalyticAt 𝕜 f z₀
hg : AnalyticAt 𝕜 g z₀
⊢ (∃ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z = g z) ↔ ∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = g z
[PROOFSTEP]
simpa [sub_eq_zero] using frequently_zero_iff_eventually_zero (hf.sub hg)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
U : Set 𝕜
hf : AnalyticOn 𝕜 f U
hg : AnalyticOn 𝕜 g U
hU : IsPreconnected U
h₀ : z₀ ∈ U
hfg : ∃ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z = g z
⊢ EqOn f g U
[PROOFSTEP]
have hfg' : ∃ᶠ z in 𝓝[≠] z₀, (f - g) z = 0 := hfg.mono fun z h => by rw [Pi.sub_apply, h, sub_self]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z✝ z₀ : 𝕜
U : Set 𝕜
hf : AnalyticOn 𝕜 f U
hg : AnalyticOn 𝕜 g U
hU : IsPreconnected U
h₀ : z₀ ∈ U
hfg : ∃ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z = g z
z : 𝕜
h : f z = g z
⊢ (f - g) z = 0
[PROOFSTEP]
rw [Pi.sub_apply, h, sub_self]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : E
p q : FormalMultilinearSeries 𝕜 𝕜 E
f g : 𝕜 → E
n : ℕ
z z₀ : 𝕜
U : Set 𝕜
hf : AnalyticOn 𝕜 f U
hg : AnalyticOn 𝕜 g U
hU : IsPreconnected U
h₀ : z₀ ∈ U
hfg : ∃ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, f z = g z
hfg' : ∃ᶠ (z : 𝕜) in 𝓝[{z₀}ᶜ] z₀, (f - g) z = 0
⊢ EqOn f g U
[PROOFSTEP]
simpa [sub_eq_zero] using fun z hz => (hf.sub hg).eqOn_zero_of_preconnected_of_frequently_eq_zero hU h₀ hfg' hz
| {"mathlib_filename": "Mathlib.Analysis.Analytic.IsolatedZeros", "llama_tokens": 16117} |
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasDerivWithinAt c c' s x
hf : HasDerivWithinAt f f' s x
⊢ HasDerivWithinAt (fun y => c y • f y) (c x • f' + c' • f x) s x
[PROOFSTEP]
simpa using (HasFDerivWithinAt.smul hc hf).hasDerivWithinAt
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasDerivAt c c' x
hf : HasDerivAt f f' x
⊢ HasDerivAt (fun y => c y • f y) (c x • f' + c' • f x) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasDerivWithinAt c c' univ x
hf : HasDerivWithinAt f f' univ x
⊢ HasDerivWithinAt (fun y => c y • f y) (c x • f' + c' • f x) univ x
[PROOFSTEP]
exact hc.smul hf
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasStrictDerivAt c c' x
hf : HasStrictDerivAt f f' x
⊢ HasStrictDerivAt (fun y => c y • f y) (c x • f' + c' • f x) x
[PROOFSTEP]
simpa using (hc.smul hf).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasStrictDerivAt c c' x
f : F
⊢ HasStrictDerivAt (fun y => c y • f) (c' • f) x
[PROOFSTEP]
have := hc.smul (hasStrictDerivAt_const x f)
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasStrictDerivAt c c' x
f : F
this : HasStrictDerivAt (fun y => c y • f) (c x • 0 + c' • f) x
⊢ HasStrictDerivAt (fun y => c y • f) (c' • f) x
[PROOFSTEP]
rwa [smul_zero, zero_add] at this
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasDerivWithinAt c c' s x
f : F
⊢ HasDerivWithinAt (fun y => c y • f) (c' • f) s x
[PROOFSTEP]
have := hc.smul (hasDerivWithinAt_const x s f)
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasDerivWithinAt c c' s x
f : F
this : HasDerivWithinAt (fun y => c y • f) (c x • 0 + c' • f) s x
⊢ HasDerivWithinAt (fun y => c y • f) (c' • f) s x
[PROOFSTEP]
rwa [smul_zero, zero_add] at this
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasDerivAt c c' x
f : F
⊢ HasDerivAt (fun y => c y • f) (c' • f) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f✝ f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝³ : NontriviallyNormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
inst✝¹ : NormedSpace 𝕜' F
inst✝ : IsScalarTower 𝕜 𝕜' F
c : 𝕜 → 𝕜'
c' : 𝕜'
hc : HasDerivWithinAt c c' univ x
f : F
⊢ HasDerivWithinAt (fun y => c y • f) (c' • f) univ x
[PROOFSTEP]
exact hc.smul_const f
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝³ : Semiring R
inst✝² : Module R F
inst✝¹ : SMulCommClass 𝕜 R F
inst✝ : ContinuousConstSMul R F
c : R
hf : HasStrictDerivAt f f' x
⊢ HasStrictDerivAt (fun y => c • f y) (c • f') x
[PROOFSTEP]
simpa using (hf.const_smul c).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
R : Type u_1
inst✝³ : Semiring R
inst✝² : Module R F
inst✝¹ : SMulCommClass 𝕜 R F
inst✝ : ContinuousConstSMul R F
c : R
hf : HasDerivAtFilter f f' x L
⊢ HasDerivAtFilter (fun y => c • f y) (c • f') x L
[PROOFSTEP]
simpa using (hf.const_smul c).hasDerivAtFilter
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
⊢ HasDerivWithinAt (fun y => c y * d y) (c' * d x + c x * d') s x
[PROOFSTEP]
have := (HasFDerivWithinAt.mul' hc hd).hasDerivWithinAt
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
this : HasDerivWithinAt (fun y => c y * d y) (↑(c x • smulRight 1 d' + smulRight (smulRight 1 c') (d x)) 1) s x
⊢ HasDerivWithinAt (fun y => c y * d y) (c' * d x + c x * d') s x
[PROOFSTEP]
rwa [ContinuousLinearMap.add_apply, ContinuousLinearMap.smul_apply, ContinuousLinearMap.smulRight_apply,
ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, one_smul,
one_smul, add_comm] at this
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivAt c c' x
hd : HasDerivAt d d' x
⊢ HasDerivAt (fun y => c y * d y) (c' * d x + c x * d') x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivWithinAt c c' univ x
hd : HasDerivWithinAt d d' univ x
⊢ HasDerivWithinAt (fun y => c y * d y) (c' * d x + c x * d') univ x
[PROOFSTEP]
exact hc.mul hd
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
⊢ HasStrictDerivAt (fun y => c y * d y) (c' * d x + c x * d') x
[PROOFSTEP]
have := (HasStrictFDerivAt.mul' hc hd).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
this : HasStrictDerivAt (fun y => c y * d y) (↑(c x • smulRight 1 d' + smulRight (smulRight 1 c') (d x)) 1) x
⊢ HasStrictDerivAt (fun y => c y * d y) (c' * d x + c x * d') x
[PROOFSTEP]
rwa [ContinuousLinearMap.add_apply, ContinuousLinearMap.smul_apply, ContinuousLinearMap.smulRight_apply,
ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, one_smul,
one_smul, add_comm] at this
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d✝ : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivWithinAt c c' s x
d : 𝔸
⊢ HasDerivWithinAt (fun y => c y * d) (c' * d) s x
[PROOFSTEP]
convert hc.mul (hasDerivWithinAt_const x s d) using 1
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d✝ : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivWithinAt c c' s x
d : 𝔸
⊢ c' * d = c' * d + c x * 0
[PROOFSTEP]
rw [mul_zero, add_zero]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d✝ : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivAt c c' x
d : 𝔸
⊢ HasDerivAt (fun y => c y * d) (c' * d) x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d✝ : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasDerivWithinAt c c' univ x
d : 𝔸
⊢ HasDerivWithinAt (fun y => c y * d) (c' * d) univ x
[PROOFSTEP]
exact hc.mul_const d
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c✝ d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
c : 𝕜
⊢ HasDerivAt (fun x => x * c) c x
[PROOFSTEP]
simpa only [one_mul] using (hasDerivAt_id' x).mul_const c
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d✝ : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasStrictDerivAt c c' x
d : 𝔸
⊢ HasStrictDerivAt (fun y => c y * d) (c' * d) x
[PROOFSTEP]
convert hc.mul (hasStrictDerivAt_const x d) using 1
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d✝ : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hc : HasStrictDerivAt c c' x
d : 𝔸
⊢ c' * d = c' * d + c x * 0
[PROOFSTEP]
rw [mul_zero, add_zero]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v✝ : 𝕜 → 𝕜'
v : 𝕜'
⊢ deriv (fun y => u y * v) x = deriv u x * v
[PROOFSTEP]
by_cases hu : DifferentiableAt 𝕜 u x
[GOAL]
case pos
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v✝ : 𝕜 → 𝕜'
v : 𝕜'
hu : DifferentiableAt 𝕜 u x
⊢ deriv (fun y => u y * v) x = deriv u x * v
[PROOFSTEP]
exact deriv_mul_const hu v
[GOAL]
case neg
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v✝ : 𝕜 → 𝕜'
v : 𝕜'
hu : ¬DifferentiableAt 𝕜 u x
⊢ deriv (fun y => u y * v) x = deriv u x * v
[PROOFSTEP]
rw [deriv_zero_of_not_differentiableAt hu, zero_mul]
[GOAL]
case neg
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v✝ : 𝕜 → 𝕜'
v : 𝕜'
hu : ¬DifferentiableAt 𝕜 u x
⊢ deriv (fun y => u y * v) x = 0
[PROOFSTEP]
rcases eq_or_ne v 0 with (rfl | hd)
[GOAL]
case neg.inl
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
hu : ¬DifferentiableAt 𝕜 u x
⊢ deriv (fun y => u y * 0) x = 0
[PROOFSTEP]
simp only [mul_zero, deriv_const]
[GOAL]
case neg.inr
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v✝ : 𝕜 → 𝕜'
v : 𝕜'
hu : ¬DifferentiableAt 𝕜 u x
hd : v ≠ 0
⊢ deriv (fun y => u y * v) x = 0
[PROOFSTEP]
refine' deriv_zero_of_not_differentiableAt (mt (fun H => _) hu)
[GOAL]
case neg.inr
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u v✝ : 𝕜 → 𝕜'
v : 𝕜'
hu : ¬DifferentiableAt 𝕜 u x
hd : v ≠ 0
H : DifferentiableAt 𝕜 (fun y => u y * v) x
⊢ DifferentiableAt 𝕜 u x
[PROOFSTEP]
simpa only [mul_inv_cancel_right₀ hd] using H.mul_const v⁻¹
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c✝ d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
c : 𝔸
hd : HasDerivWithinAt d d' s x
⊢ HasDerivWithinAt (fun y => c * d y) (c * d') s x
[PROOFSTEP]
convert (hasDerivWithinAt_const x s c).mul hd using 1
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c✝ d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
c : 𝔸
hd : HasDerivWithinAt d d' s x
⊢ c * d' = 0 * d x + c * d'
[PROOFSTEP]
rw [zero_mul, zero_add]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c✝ d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
c : 𝔸
hd : HasDerivAt d d' x
⊢ HasDerivAt (fun y => c * d y) (c * d') x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c✝ d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
c : 𝔸
hd : HasDerivWithinAt d d' univ x
⊢ HasDerivWithinAt (fun y => c * d y) (c * d') univ x
[PROOFSTEP]
exact hd.const_mul c
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c✝ d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
c : 𝔸
hd : HasStrictDerivAt d d' x
⊢ HasStrictDerivAt (fun y => c * d y) (c * d') x
[PROOFSTEP]
convert (hasStrictDerivAt_const _ _).mul hd using 1
[GOAL]
case h.e'_7
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c✝ d : 𝕜 → 𝔸
c' d' : 𝔸
u v : 𝕜 → 𝕜'
c : 𝔸
hd : HasStrictDerivAt d d' x
⊢ c * d' = 0 * d x + c * d'
[PROOFSTEP]
rw [zero_mul, zero_add]
[GOAL]
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
E : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
𝔸 : Type u_2
inst✝³ : NormedField 𝕜'
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormedAlgebra 𝕜 𝔸
c d : 𝕜 → 𝔸
c' d' : 𝔸
u✝ v : 𝕜 → 𝕜'
u : 𝕜'
⊢ deriv (fun y => u * v y) x = u * deriv v x
[PROOFSTEP]
simp only [mul_comm u, deriv_mul_const_field]
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d✝ : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivAt c c' x
d : 𝕜'
⊢ HasDerivAt (fun x => c x / d) (c' / d) x
[PROOFSTEP]
simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d✝ : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasDerivWithinAt c c' s x
d : 𝕜'
⊢ HasDerivWithinAt (fun x => c x / d) (c' / d) s x
[PROOFSTEP]
simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d✝ : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : HasStrictDerivAt c c' x
d : 𝕜'
⊢ HasStrictDerivAt (fun x => c x / d) (c' / d) x
[PROOFSTEP]
simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d✝ : 𝕜 → 𝕜'
c' d' : 𝕜'
hc : DifferentiableWithinAt 𝕜 c s x
d : 𝕜'
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ derivWithin (fun x => c x / d) s x = derivWithin c s x / d
[PROOFSTEP]
simp [div_eq_inv_mul, derivWithin_const_mul, hc, hxs]
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
𝕜' : Type u_1
inst✝¹ : NontriviallyNormedField 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
c d✝ : 𝕜 → 𝕜'
c' d' d : 𝕜'
⊢ deriv (fun x => c x / d) x = deriv c x / d
[PROOFSTEP]
simp only [div_eq_mul_inv, deriv_mul_const_field]
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
⊢ HasStrictDerivAt (fun y => comp (c y) (d y)) (comp c' (d x) + comp (c x) d') x
[PROOFSTEP]
have := (hc.hasStrictFDerivAt.clm_comp hd.hasStrictFDerivAt).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasStrictDerivAt c c' x
hd : HasStrictDerivAt d d' x
this :
HasStrictDerivAt (fun y => comp (c y) (d y))
(↑(comp (↑(compL 𝕜 E F G) (c x)) (smulRight 1 d') +
comp (↑(ContinuousLinearMap.flip (compL 𝕜 E F G)) (d x)) (smulRight 1 c'))
1)
x
⊢ HasStrictDerivAt (fun y => comp (c y) (d y)) (comp c' (d x) + comp (c x) d') x
[PROOFSTEP]
rwa [add_apply, comp_apply, comp_apply, smulRight_apply, smulRight_apply, one_apply, one_smul, one_smul, add_comm] at
this
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
⊢ HasDerivWithinAt (fun y => comp (c y) (d y)) (comp c' (d x) + comp (c x) d') s x
[PROOFSTEP]
have := (hc.hasFDerivWithinAt.clm_comp hd.hasFDerivWithinAt).hasDerivWithinAt
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivWithinAt c c' s x
hd : HasDerivWithinAt d d' s x
this :
HasDerivWithinAt (fun y => comp (c y) (d y))
(↑(comp (↑(compL 𝕜 E F G) (c x)) (smulRight 1 d') +
comp (↑(ContinuousLinearMap.flip (compL 𝕜 E F G)) (d x)) (smulRight 1 c'))
1)
s x
⊢ HasDerivWithinAt (fun y => comp (c y) (d y)) (comp c' (d x) + comp (c x) d') s x
[PROOFSTEP]
rwa [add_apply, comp_apply, comp_apply, smulRight_apply, smulRight_apply, one_apply, one_smul, one_smul, add_comm] at
this
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivAt c c' x
hd : HasDerivAt d d' x
⊢ HasDerivAt (fun y => comp (c y) (d y)) (comp c' (d x) + comp (c x) d') x
[PROOFSTEP]
rw [← hasDerivWithinAt_univ] at *
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivWithinAt c c' univ x
hd : HasDerivWithinAt d d' univ x
⊢ HasDerivWithinAt (fun y => comp (c y) (d y)) (comp c' (d x) + comp (c x) d') univ x
[PROOFSTEP]
exact hc.clm_comp hd
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasStrictDerivAt c c' x
hu : HasStrictDerivAt u u' x
⊢ HasStrictDerivAt (fun y => ↑(c y) (u y)) (↑c' (u x) + ↑(c x) u') x
[PROOFSTEP]
have := (hc.hasStrictFDerivAt.clm_apply hu.hasStrictFDerivAt).hasStrictDerivAt
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasStrictDerivAt c c' x
hu : HasStrictDerivAt u u' x
this :
HasStrictDerivAt (fun y => ↑(c y) (u y))
(↑(comp (c x) (smulRight 1 u') + ↑(ContinuousLinearMap.flip (smulRight 1 c')) (u x)) 1) x
⊢ HasStrictDerivAt (fun y => ↑(c y) (u y)) (↑c' (u x) + ↑(c x) u') x
[PROOFSTEP]
rwa [add_apply, comp_apply, flip_apply, smulRight_apply, smulRight_apply, one_apply, one_smul, one_smul, add_comm] at
this
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivWithinAt c c' s x
hu : HasDerivWithinAt u u' s x
⊢ HasDerivWithinAt (fun y => ↑(c y) (u y)) (↑c' (u x) + ↑(c x) u') s x
[PROOFSTEP]
have := (hc.hasFDerivWithinAt.clm_apply hu.hasFDerivWithinAt).hasDerivWithinAt
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivWithinAt c c' s x
hu : HasDerivWithinAt u u' s x
this :
HasDerivWithinAt (fun y => ↑(c y) (u y))
(↑(comp (c x) (smulRight 1 u') + ↑(ContinuousLinearMap.flip (smulRight 1 c')) (u x)) 1) s x
⊢ HasDerivWithinAt (fun y => ↑(c y) (u y)) (↑c' (u x) + ↑(c x) u') s x
[PROOFSTEP]
rwa [add_apply, comp_apply, flip_apply, smulRight_apply, smulRight_apply, one_apply, one_smul, one_smul, add_comm] at
this
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivAt c c' x
hu : HasDerivAt u u' x
⊢ HasDerivAt (fun y => ↑(c y) (u y)) (↑c' (u x) + ↑(c x) u') x
[PROOFSTEP]
have := (hc.hasFDerivAt.clm_apply hu.hasFDerivAt).hasDerivAt
[GOAL]
𝕜 : Type u
inst✝⁶ : NontriviallyNormedField 𝕜
F : Type v
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
E : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
f f₀ f₁ g : 𝕜 → F
f' f₀' f₁' g' : F
x : 𝕜
s t : Set 𝕜
L L₁ L₂ : Filter 𝕜
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
c : 𝕜 → F →L[𝕜] G
c' : F →L[𝕜] G
d : 𝕜 → E →L[𝕜] F
d' : E →L[𝕜] F
u : 𝕜 → F
u' : F
hc : HasDerivAt c c' x
hu : HasDerivAt u u' x
this :
HasDerivAt (fun y => ↑(c y) (u y))
(↑(comp (c x) (smulRight 1 u') + ↑(ContinuousLinearMap.flip (smulRight 1 c')) (u x)) 1) x
⊢ HasDerivAt (fun y => ↑(c y) (u y)) (↑c' (u x) + ↑(c x) u') x
[PROOFSTEP]
rwa [add_apply, comp_apply, flip_apply, smulRight_apply, smulRight_apply, one_apply, one_smul, one_smul, add_comm] at
this
| {"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Mul", "llama_tokens": 18352} |
[GOAL]
α : Type ?u.597
V : Type ?u.600
P : Type ?u.603
W : Type u_2
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
s : AffineSubspace 𝕜 Q
⊢ IsClosed ↑(direction s) ↔ IsClosed ↑s
[PROOFSTEP]
rcases s.eq_bot_or_nonempty with (rfl | ⟨x, hx⟩)
[GOAL]
case inl
α : Type ?u.597
V : Type ?u.600
P : Type ?u.603
W : Type u_2
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
⊢ IsClosed ↑(direction ⊥) ↔ IsClosed ↑⊥
[PROOFSTEP]
simp [isClosed_singleton]
[GOAL]
case inr.intro
α : Type ?u.597
V : Type ?u.600
P : Type ?u.603
W : Type u_2
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
s : AffineSubspace 𝕜 Q
x : Q
hx : x ∈ ↑s
⊢ IsClosed ↑(direction s) ↔ IsClosed ↑s
[PROOFSTEP]
rw [← (IsometryEquiv.vaddConst x).toHomeomorph.symm.isClosed_image, AffineSubspace.coe_direction_eq_vsub_set_right hx]
[GOAL]
case inr.intro
α : Type ?u.597
V : Type ?u.600
P : Type ?u.603
W : Type u_2
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
s : AffineSubspace 𝕜 Q
x : Q
hx : x ∈ ↑s
⊢ IsClosed ((fun x_1 => x_1 -ᵥ x) '' ↑s) ↔
IsClosed (↑(Homeomorph.symm (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst x))) '' ↑s)
[PROOFSTEP]
rfl
[GOAL]
α : Type ?u.5475
V : Type u_2
P : Type u_1
W : Type ?u.5484
Q : Type ?u.5487
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c : 𝕜
⊢ dist p₁ (↑(homothety p₁ c) p₂) = ‖c‖ * dist p₁ p₂
[PROOFSTEP]
rw [homothety_def, dist_eq_norm_vsub V]
[GOAL]
α : Type ?u.5475
V : Type u_2
P : Type u_1
W : Type ?u.5484
Q : Type ?u.5487
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c : 𝕜
⊢ ‖p₁ -ᵥ ↑(c • (AffineMap.id 𝕜 P -ᵥ const 𝕜 P p₁) +ᵥ const 𝕜 P p₁) p₂‖ = ‖c‖ * dist p₁ p₂
[PROOFSTEP]
simp [norm_smul, ← dist_eq_norm_vsub V, dist_comm]
[GOAL]
α : Type ?u.14492
V : Type u_2
P : Type u_1
W : Type ?u.14501
Q : Type ?u.14504
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c : 𝕜
⊢ dist (↑(homothety p₁ c) p₂) p₁ = ‖c‖ * dist p₁ p₂
[PROOFSTEP]
rw [dist_comm, dist_center_homothety]
[GOAL]
α : Type ?u.16780
V : Type u_3
P : Type u_1
W : Type ?u.16789
Q : Type ?u.16792
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c₁ c₂ : 𝕜
⊢ dist (↑(lineMap p₁ p₂) c₁) (↑(lineMap p₁ p₂) c₂) = dist c₁ c₂ * dist p₁ p₂
[PROOFSTEP]
rw [dist_comm p₁ p₂]
-- Porting note: was `simp only [lineMap_apply, dist_eq_norm_vsub, vadd_vsub_vadd_cancel_right,`
-- `← sub_smul, norm_smul, vsub_eq_sub]`
[GOAL]
α : Type ?u.16780
V : Type u_3
P : Type u_1
W : Type ?u.16789
Q : Type ?u.16792
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c₁ c₂ : 𝕜
⊢ dist (↑(lineMap p₁ p₂) c₁) (↑(lineMap p₁ p₂) c₂) = dist c₁ c₂ * dist p₂ p₁
[PROOFSTEP]
rw [lineMap_apply, lineMap_apply, dist_eq_norm_vsub V, vadd_vsub_vadd_cancel_right, ← sub_smul, norm_smul, ←
vsub_eq_sub, ← dist_eq_norm_vsub V, ← dist_eq_norm_vsub 𝕜]
[GOAL]
α : Type ?u.28725
V : Type u_3
P : Type u_1
W : Type ?u.28734
Q : Type ?u.28737
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c : 𝕜
⊢ dist (↑(lineMap p₁ p₂) c) p₁ = ‖c‖ * dist p₁ p₂
[PROOFSTEP]
rw [← dist_zero_right, ← dist_lineMap_lineMap, lineMap_apply_zero]
[GOAL]
α : Type ?u.37626
V : Type u_3
P : Type u_1
W : Type ?u.37635
Q : Type ?u.37638
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c : 𝕜
⊢ dist (↑(lineMap p₁ p₂) c) p₂ = ‖1 - c‖ * dist p₁ p₂
[PROOFSTEP]
rw [← dist_eq_norm', ← dist_lineMap_lineMap, lineMap_apply_one]
[GOAL]
α : Type ?u.47659
V : Type u_2
P : Type u_1
W : Type ?u.47668
Q : Type ?u.47671
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c : 𝕜
⊢ dist (↑(homothety p₁ c) p₂) p₂ = ‖1 - c‖ * dist p₁ p₂
[PROOFSTEP]
rw [homothety_eq_lineMap, dist_lineMap_right]
[GOAL]
α : Type ?u.51220
V : Type u_2
P : Type u_1
W : Type ?u.51229
Q : Type ?u.51232
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : P
c : 𝕜
⊢ dist p₂ (↑(homothety p₁ c) p₂) = ‖1 - c‖ * dist p₁ p₂
[PROOFSTEP]
rw [dist_comm, dist_homothety_self]
[GOAL]
α : Type ?u.54860
V : Type u_2
P : Type u_1
W : Type ?u.54869
Q : Type ?u.54872
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ : P
⊢ dist p₁ (midpoint 𝕜 p₁ p₂) = ‖2‖⁻¹ * dist p₁ p₂
[PROOFSTEP]
rw [midpoint, dist_comm, dist_lineMap_left, invOf_eq_inv, ← norm_inv]
[GOAL]
α : Type ?u.59357
V : Type u_2
P : Type u_1
W : Type ?u.59366
Q : Type ?u.59369
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ : P
⊢ dist (midpoint 𝕜 p₁ p₂) p₁ = ‖2‖⁻¹ * dist p₁ p₂
[PROOFSTEP]
rw [dist_comm, dist_left_midpoint]
[GOAL]
α : Type ?u.63410
V : Type u_2
P : Type u_1
W : Type ?u.63419
Q : Type ?u.63422
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ : P
⊢ dist (midpoint 𝕜 p₁ p₂) p₂ = ‖2‖⁻¹ * dist p₁ p₂
[PROOFSTEP]
rw [midpoint_comm, dist_midpoint_left, dist_comm]
[GOAL]
α : Type ?u.68130
V : Type u_2
P : Type u_1
W : Type ?u.68139
Q : Type ?u.68142
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ : P
⊢ dist p₂ (midpoint 𝕜 p₁ p₂) = ‖2‖⁻¹ * dist p₁ p₂
[PROOFSTEP]
rw [dist_comm, dist_midpoint_right]
[GOAL]
α : Type ?u.72183
V : Type u_2
P : Type u_1
W : Type ?u.72192
Q : Type ?u.72195
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ p₃ p₄ : P
⊢ dist (midpoint 𝕜 p₁ p₂) (midpoint 𝕜 p₃ p₄) ≤ (dist p₁ p₃ + dist p₂ p₄) / ‖2‖
[PROOFSTEP]
rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, dist_eq_norm_vsub V, midpoint_vsub_midpoint]
[GOAL]
α : Type ?u.72183
V : Type u_2
P : Type u_1
W : Type ?u.72192
Q : Type ?u.72195
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ p₃ p₄ : P
⊢ ‖midpoint 𝕜 (p₁ -ᵥ p₃) (p₂ -ᵥ p₄)‖ ≤ (‖p₁ -ᵥ p₃‖ + ‖p₂ -ᵥ p₄‖) / ‖2‖
[PROOFSTEP]
try infer_instance
[GOAL]
α : Type ?u.72183
V : Type u_2
P : Type u_1
W : Type ?u.72192
Q : Type ?u.72195
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ p₃ p₄ : P
⊢ ‖midpoint 𝕜 (p₁ -ᵥ p₃) (p₂ -ᵥ p₄)‖ ≤ (‖p₁ -ᵥ p₃‖ + ‖p₂ -ᵥ p₄‖) / ‖2‖
[PROOFSTEP]
infer_instance
[GOAL]
α : Type ?u.72183
V : Type u_2
P : Type u_1
W : Type ?u.72192
Q : Type ?u.72195
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ p₃ p₄ : P
⊢ ‖midpoint 𝕜 (p₁ -ᵥ p₃) (p₂ -ᵥ p₄)‖ ≤ (‖p₁ -ᵥ p₃‖ + ‖p₂ -ᵥ p₄‖) / ‖2‖
[PROOFSTEP]
rw [midpoint_eq_smul_add, norm_smul, invOf_eq_inv, norm_inv, ← div_eq_inv_mul]
[GOAL]
α : Type ?u.72183
V : Type u_2
P : Type u_1
W : Type ?u.72192
Q : Type ?u.72195
inst✝⁹ : SeminormedAddCommGroup V
inst✝⁸ : PseudoMetricSpace P
inst✝⁷ : NormedAddTorsor V P
inst✝⁶ : NormedAddCommGroup W
inst✝⁵ : MetricSpace Q
inst✝⁴ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : Invertible 2
p₁ p₂ p₃ p₄ : P
⊢ ‖p₁ -ᵥ p₃ + (p₂ -ᵥ p₄)‖ / ‖2‖ ≤ (‖p₁ -ᵥ p₃‖ + ‖p₂ -ᵥ p₄‖) / ‖2‖
[PROOFSTEP]
exact div_le_div_of_le_of_nonneg (norm_add_le _ _) (norm_nonneg _)
[GOAL]
α : Type ?u.79698
V : Type u_2
P : Type u_1
W : Type ?u.79707
Q : Type ?u.79710
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type ?u.79957
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p q : P
⊢ dist (↑(Equiv.pointReflection p) q) p = dist p q
[PROOFSTEP]
simp [dist_eq_norm_vsub V, Equiv.pointReflection_vsub_left (G := V)]
[GOAL]
α : Type ?u.82730
V : Type u_2
P : Type u_1
W : Type ?u.82739
Q : Type ?u.82742
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_3
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p q : P
⊢ dist (↑(Equiv.pointReflection p) q) q = ‖2‖ * dist p q
[PROOFSTEP]
simp [dist_eq_norm_vsub V, Equiv.pointReflection_vsub_right (G := V), nsmul_eq_smul_cast 𝕜, norm_smul]
[GOAL]
α : Type ?u.88928
V : Type ?u.88931
P : Type ?u.88934
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
p₁ p₂ : Q
h : p₁ ≠ p₂
c₁ c₂ : 𝕜
⊢ dist c₁ c₂ ≤ ↑(nndist p₁ p₂)⁻¹ * dist (↑(lineMap p₁ p₂) c₁) (↑(lineMap p₁ p₂) c₂)
[PROOFSTEP]
rw [dist_lineMap_lineMap, NNReal.coe_inv, ← dist_nndist, mul_left_comm, inv_mul_cancel (dist_ne_zero.2 h), mul_one]
[GOAL]
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
⊢ ∀ᶠ (δ : 𝕜) in 𝓝 1, ↑(homothety x δ) y ∈ s
[PROOFSTEP]
rw [(NormedAddCommGroup.nhds_basis_norm_lt (1 : 𝕜)).eventually_iff]
[GOAL]
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
⊢ ∃ i, 0 < i ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < i} → ↑(homothety x x_1) y ∈ s
[PROOFSTEP]
cases' eq_or_ne y x with h h
[GOAL]
case inl
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y = x
⊢ ∃ i, 0 < i ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < i} → ↑(homothety x x_1) y ∈ s
[PROOFSTEP]
use 1
[GOAL]
case h
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y = x
⊢ 0 < 1 ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < 1} → ↑(homothety x x_1) y ∈ s
[PROOFSTEP]
simp [h.symm, interior_subset hy]
[GOAL]
case inr
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y ≠ x
⊢ ∃ i, 0 < i ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < i} → ↑(homothety x x_1) y ∈ s
[PROOFSTEP]
have hxy : 0 < ‖y -ᵥ x‖ := by rwa [norm_pos_iff, vsub_ne_zero]
[GOAL]
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y ≠ x
⊢ 0 < ‖y -ᵥ x‖
[PROOFSTEP]
rwa [norm_pos_iff, vsub_ne_zero]
[GOAL]
case inr
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y ≠ x
hxy : 0 < ‖y -ᵥ x‖
⊢ ∃ i, 0 < i ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < i} → ↑(homothety x x_1) y ∈ s
[PROOFSTEP]
obtain ⟨u, hu₁, hu₂, hu₃⟩ := mem_interior.mp hy
[GOAL]
case inr.intro.intro.intro
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y ≠ x
hxy : 0 < ‖y -ᵥ x‖
u : Set Q
hu₁ : u ⊆ s
hu₂ : IsOpen u
hu₃ : y ∈ u
⊢ ∃ i, 0 < i ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < i} → ↑(homothety x x_1) y ∈ s
[PROOFSTEP]
obtain ⟨ε, hε, hyε⟩ := Metric.isOpen_iff.mp hu₂ y hu₃
[GOAL]
case inr.intro.intro.intro.intro.intro
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y ≠ x
hxy : 0 < ‖y -ᵥ x‖
u : Set Q
hu₁ : u ⊆ s
hu₂ : IsOpen u
hu₃ : y ∈ u
ε : ℝ
hε : ε > 0
hyε : Metric.ball y ε ⊆ u
⊢ ∃ i, 0 < i ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < i} → ↑(homothety x x_1) y ∈ s
[PROOFSTEP]
refine' ⟨ε / ‖y -ᵥ x‖, div_pos hε hxy, fun δ (hδ : ‖δ - 1‖ < ε / ‖y -ᵥ x‖) => hu₁ (hyε _)⟩
[GOAL]
case inr.intro.intro.intro.intro.intro
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y ≠ x
hxy : 0 < ‖y -ᵥ x‖
u : Set Q
hu₁ : u ⊆ s
hu₂ : IsOpen u
hu₃ : y ∈ u
ε : ℝ
hε : ε > 0
hyε : Metric.ball y ε ⊆ u
δ : 𝕜
hδ : ‖δ - 1‖ < ε / ‖y -ᵥ x‖
⊢ ↑(homothety x δ) y ∈ Metric.ball y ε
[PROOFSTEP]
rw [lt_div_iff hxy, ← norm_smul, sub_smul, one_smul] at hδ
[GOAL]
case inr.intro.intro.intro.intro.intro
α : Type ?u.92785
V : Type ?u.92788
P : Type ?u.92791
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s : Set Q
y : Q
hy : y ∈ interior s
h : y ≠ x
hxy : 0 < ‖y -ᵥ x‖
u : Set Q
hu₁ : u ⊆ s
hu₂ : IsOpen u
hu₃ : y ∈ u
ε : ℝ
hε : ε > 0
hyε : Metric.ball y ε ⊆ u
δ : 𝕜
hδ✝ : ‖δ - 1‖ * ‖y -ᵥ x‖ < ε
hδ : ‖δ • (y -ᵥ x) - (y -ᵥ x)‖ < ε
⊢ ↑(homothety x δ) y ∈ Metric.ball y ε
[PROOFSTEP]
rwa [homothety_apply, Metric.mem_ball, dist_eq_norm_vsub W, vadd_vsub_eq_sub_vsub]
[GOAL]
α : Type ?u.102650
V : Type ?u.102653
P : Type ?u.102656
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s t : Set Q
ht : Set.Finite t
h : t ⊆ interior s
⊢ ∀ᶠ (δ : 𝕜) in 𝓝 1, ↑(homothety x δ) '' t ⊆ s
[PROOFSTEP]
suffices ∀ y ∈ t, ∀ᶠ δ in 𝓝 (1 : 𝕜), homothety x δ y ∈ s
by
simp_rw [Set.image_subset_iff]
exact (Filter.eventually_all_finite ht).mpr this
[GOAL]
α : Type ?u.102650
V : Type ?u.102653
P : Type ?u.102656
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s t : Set Q
ht : Set.Finite t
h : t ⊆ interior s
this : ∀ (y : Q), y ∈ t → ∀ᶠ (δ : 𝕜) in 𝓝 1, ↑(homothety x δ) y ∈ s
⊢ ∀ᶠ (δ : 𝕜) in 𝓝 1, ↑(homothety x δ) '' t ⊆ s
[PROOFSTEP]
simp_rw [Set.image_subset_iff]
[GOAL]
α : Type ?u.102650
V : Type ?u.102653
P : Type ?u.102656
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s t : Set Q
ht : Set.Finite t
h : t ⊆ interior s
this : ∀ (y : Q), y ∈ t → ∀ᶠ (δ : 𝕜) in 𝓝 1, ↑(homothety x δ) y ∈ s
⊢ ∀ᶠ (δ : 𝕜) in 𝓝 1, t ⊆ (fun a => ↑(homothety x δ) a) ⁻¹' s
[PROOFSTEP]
exact (Filter.eventually_all_finite ht).mpr this
[GOAL]
α : Type ?u.102650
V : Type ?u.102653
P : Type ?u.102656
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s t : Set Q
ht : Set.Finite t
h : t ⊆ interior s
⊢ ∀ (y : Q), y ∈ t → ∀ᶠ (δ : 𝕜) in 𝓝 1, ↑(homothety x δ) y ∈ s
[PROOFSTEP]
intro y hy
[GOAL]
α : Type ?u.102650
V : Type ?u.102653
P : Type ?u.102656
W : Type u_3
Q : Type u_1
inst✝⁸ : SeminormedAddCommGroup V
inst✝⁷ : PseudoMetricSpace P
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : MetricSpace Q
inst✝³ : NormedAddTorsor W Q
𝕜 : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedSpace 𝕜 V
inst✝ : NormedSpace 𝕜 W
x : Q
s t : Set Q
ht : Set.Finite t
h : t ⊆ interior s
y : Q
hy : y ∈ t
⊢ ∀ᶠ (δ : 𝕜) in 𝓝 1, ↑(homothety x δ) y ∈ s
[PROOFSTEP]
exact eventually_homothety_mem_of_mem_interior 𝕜 x (h hy)
[GOAL]
α : Type ?u.107060
V : Type u_1
P : Type ?u.107066
W : Type ?u.107069
Q : Type ?u.107072
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
p₁ p₂ p₃ p₄ : V
⊢ dist (midpoint ℝ p₁ p₂) (midpoint ℝ p₃ p₄) ≤ (dist p₁ p₃ + dist p₂ p₄) / 2
[PROOFSTEP]
have := dist_midpoint_midpoint_le' (𝕜 := ℝ) p₁ p₂ p₃ p₄
[GOAL]
α : Type ?u.107060
V : Type u_1
P : Type ?u.107066
W : Type ?u.107069
Q : Type ?u.107072
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
p₁ p₂ p₃ p₄ : V
this : dist (midpoint ℝ p₁ p₂) (midpoint ℝ p₃ p₄) ≤ (dist p₁ p₃ + dist p₂ p₄) / ‖2‖
⊢ dist (midpoint ℝ p₁ p₂) (midpoint ℝ p₃ p₄) ≤ (dist p₁ p₃ + dist p₂ p₄) / 2
[PROOFSTEP]
rw [Real.norm_eq_abs, abs_two] at this
[GOAL]
α : Type ?u.107060
V : Type u_1
P : Type ?u.107066
W : Type ?u.107069
Q : Type ?u.107072
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
p₁ p₂ p₃ p₄ : V
this : dist (midpoint ℝ p₁ p₂) (midpoint ℝ p₃ p₄) ≤ (dist p₁ p₃ + dist p₂ p₄) / 2
⊢ dist (midpoint ℝ p₁ p₂) (midpoint ℝ p₃ p₄) ≤ (dist p₁ p₃ + dist p₂ p₄) / 2
[PROOFSTEP]
exact this
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
⊢ (↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) 0 = 0
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
x y : V
⊢ (↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) (midpoint ℝ x y) =
midpoint ℝ ((↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) x)
((↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) y)
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
x y : V
⊢ f (midpoint ℝ x y +ᵥ Classical.arbitrary P) -ᵥ f (Classical.arbitrary P) =
midpoint ℝ (f (x +ᵥ Classical.arbitrary P) -ᵥ f (Classical.arbitrary P))
(f (y +ᵥ Classical.arbitrary P) -ᵥ f (Classical.arbitrary P))
[PROOFSTEP]
conv_lhs => rw [(midpoint_self ℝ (Classical.arbitrary P)).symm, midpoint_vadd_midpoint, h, h, midpoint_vsub_midpoint]
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
x y : V
| f (midpoint ℝ x y +ᵥ Classical.arbitrary P) -ᵥ f (Classical.arbitrary P)
[PROOFSTEP]
rw [(midpoint_self ℝ (Classical.arbitrary P)).symm, midpoint_vadd_midpoint, h, h, midpoint_vsub_midpoint]
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
x y : V
| f (midpoint ℝ x y +ᵥ Classical.arbitrary P) -ᵥ f (Classical.arbitrary P)
[PROOFSTEP]
rw [(midpoint_self ℝ (Classical.arbitrary P)).symm, midpoint_vadd_midpoint, h, h, midpoint_vsub_midpoint]
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
x y : V
| f (midpoint ℝ x y +ᵥ Classical.arbitrary P) -ᵥ f (Classical.arbitrary P)
[PROOFSTEP]
rw [(midpoint_self ℝ (Classical.arbitrary P)).symm, midpoint_vadd_midpoint, h, h, midpoint_vsub_midpoint]
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
⊢ Continuous
↑(AddMonoidHom.ofMapMidpoint ℝ ℝ
(↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c))
(_ :
↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f (Classical.arbitrary P)))) (f (0 +ᵥ Classical.arbitrary P)) =
0)
(_ :
∀ (x y : V),
(↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) (midpoint ℝ x y) =
midpoint ℝ ((↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) x)
((↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) y)))
[PROOFSTEP]
apply_rules [Continuous.vadd, Continuous.vsub, continuous_const, hfc.comp, continuous_id]
[GOAL]
α : Type ?u.111434
V : Type ?u.111437
P : Type ?u.111440
W : Type ?u.111443
Q : Type ?u.111446
inst✝⁷ : SeminormedAddCommGroup V
inst✝⁶ : PseudoMetricSpace P
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddCommGroup W
inst✝³ : MetricSpace Q
inst✝² : NormedAddTorsor W Q
inst✝¹ : NormedSpace ℝ V
inst✝ : NormedSpace ℝ W
f : P → Q
h : ∀ (x y : P), f (midpoint ℝ x y) = midpoint ℝ (f x) (f y)
hfc : Continuous f
c : P := Classical.arbitrary P
p : P
⊢ f p =
↑↑(AddMonoidHom.toRealLinearMap
(AddMonoidHom.ofMapMidpoint ℝ ℝ
(↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c))
(_ :
↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f (Classical.arbitrary P))))
(f (0 +ᵥ Classical.arbitrary P)) =
0)
(_ :
∀ (x y : V),
(↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c))
(midpoint ℝ x y) =
midpoint ℝ
((↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) x)
((↑(AffineEquiv.symm (AffineEquiv.vaddConst ℝ (f c))) ∘ f ∘ ↑(AffineEquiv.vaddConst ℝ c)) y)))
(_ : Continuous ((fun i => (f ∘ ↑(AffineEquiv.vaddConst ℝ c)) i) -ᵥ fun i => f c)))
(p -ᵥ c) +ᵥ
f c
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.AddTorsor", "llama_tokens": 15993} |
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
r : ℝ
hr : r < 1
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
classical
obtain ⟨x, hx⟩ : ∃ x : E, x ∉ F := hF
let d := Metric.infDist x F
have hFn : (F : Set E).Nonempty := ⟨_, F.zero_mem⟩
have hdp : 0 < d := lt_of_le_of_ne Metric.infDist_nonneg fun heq => hx ((hFc.mem_iff_infDist_zero hFn).2 heq.symm)
let r' := max r 2⁻¹
have hr' : r' < 1 := by
simp [hr]
norm_num
have hlt : 0 < r' := lt_of_lt_of_le (by norm_num) (le_max_right r 2⁻¹)
have hdlt : d < d / r' := (lt_div_iff hlt).mpr ((mul_lt_iff_lt_one_right hdp).2 hr')
obtain ⟨y₀, hy₀F, hxy₀⟩ : ∃ y ∈ F, dist x y < d / r' := (Metric.infDist_lt_iff hFn).mp hdlt
have x_ne_y₀ : x - y₀ ∉ F := by
by_contra h
have : x - y₀ + y₀ ∈ F := F.add_mem h hy₀F
simp only [neg_add_cancel_right, sub_eq_add_neg] at this
exact hx this
refine' ⟨x - y₀, x_ne_y₀, fun y hy => le_of_lt _⟩
have hy₀y : y₀ + y ∈ F := F.add_mem hy₀F hy
calc
r * ‖x - y₀‖ ≤ r' * ‖x - y₀‖ := by gcongr; apply le_max_left
_ < d := by
rw [← dist_eq_norm]
exact (lt_div_iff' hlt).1 hxy₀
_ ≤ dist x (y₀ + y) := (Metric.infDist_le_dist_of_mem hy₀y)
_ = ‖x - y₀ - y‖ := by rw [sub_sub, dist_eq_norm]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
r : ℝ
hr : r < 1
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
obtain ⟨x, hx⟩ : ∃ x : E, x ∉ F := hF
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
let d := Metric.infDist x F
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
have hFn : (F : Set E).Nonempty := ⟨_, F.zero_mem⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
have hdp : 0 < d := lt_of_le_of_ne Metric.infDist_nonneg fun heq => hx ((hFc.mem_iff_infDist_zero hFn).2 heq.symm)
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
let r' := max r 2⁻¹
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
have hr' : r' < 1 := by
simp [hr]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
⊢ r' < 1
[PROOFSTEP]
simp [hr]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
⊢ 2⁻¹ < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
have hlt : 0 < r' := lt_of_lt_of_le (by norm_num) (le_max_right r 2⁻¹)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
⊢ 0 < 2⁻¹
[PROOFSTEP]
norm_num
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
have hdlt : d < d / r' := (lt_div_iff hlt).mpr ((mul_lt_iff_lt_one_right hdp).2 hr')
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
obtain ⟨y₀, hy₀F, hxy₀⟩ : ∃ y ∈ F, dist x y < d / r' := (Metric.infDist_lt_iff hFn).mp hdlt
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
have x_ne_y₀ : x - y₀ ∉ F := by
by_contra h
have : x - y₀ + y₀ ∈ F := F.add_mem h hy₀F
simp only [neg_add_cancel_right, sub_eq_add_neg] at this
exact hx this
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
⊢ ¬x - y₀ ∈ F
[PROOFSTEP]
by_contra h
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
h : x - y₀ ∈ F
⊢ False
[PROOFSTEP]
have : x - y₀ + y₀ ∈ F := F.add_mem h hy₀F
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
h : x - y₀ ∈ F
this : x - y₀ + y₀ ∈ F
⊢ False
[PROOFSTEP]
simp only [neg_add_cancel_right, sub_eq_add_neg] at this
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
h : x - y₀ ∈ F
this : x ∈ F
⊢ False
[PROOFSTEP]
exact hx this
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
⊢ ∃ x₀, ¬x₀ ∈ F ∧ ∀ (y : E), y ∈ F → r * ‖x₀‖ ≤ ‖x₀ - y‖
[PROOFSTEP]
refine' ⟨x - y₀, x_ne_y₀, fun y hy => le_of_lt _⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
y : E
hy : y ∈ F
⊢ r * ‖x - y₀‖ < ‖x - y₀ - y‖
[PROOFSTEP]
have hy₀y : y₀ + y ∈ F := F.add_mem hy₀F hy
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
y : E
hy : y ∈ F
hy₀y : y₀ + y ∈ F
⊢ r * ‖x - y₀‖ < ‖x - y₀ - y‖
[PROOFSTEP]
calc
r * ‖x - y₀‖ ≤ r' * ‖x - y₀‖ := by gcongr; apply le_max_left
_ < d := by
rw [← dist_eq_norm]
exact (lt_div_iff' hlt).1 hxy₀
_ ≤ dist x (y₀ + y) := (Metric.infDist_le_dist_of_mem hy₀y)
_ = ‖x - y₀ - y‖ := by rw [sub_sub, dist_eq_norm]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
y : E
hy : y ∈ F
hy₀y : y₀ + y ∈ F
⊢ r * ‖x - y₀‖ ≤ r' * ‖x - y₀‖
[PROOFSTEP]
gcongr
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
y : E
hy : y ∈ F
hy₀y : y₀ + y ∈ F
⊢ r ≤ r'
[PROOFSTEP]
apply le_max_left
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
y : E
hy : y ∈ F
hy₀y : y₀ + y ∈ F
⊢ r' * ‖x - y₀‖ < d
[PROOFSTEP]
rw [← dist_eq_norm]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
y : E
hy : y ∈ F
hy₀y : y₀ + y ∈ F
⊢ r' * dist x y₀ < d
[PROOFSTEP]
exact (lt_div_iff' hlt).1 hxy₀
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
F : Subspace 𝕜 E
hFc : IsClosed ↑F
r : ℝ
hr : r < 1
x : E
hx : ¬x ∈ F
d : ℝ := infDist x ↑F
hFn : Set.Nonempty ↑F
hdp : 0 < d
r' : ℝ := max r 2⁻¹
hr' : r' < 1
hlt : 0 < r'
hdlt : d < d / r'
y₀ : E
hy₀F : y₀ ∈ F
hxy₀ : dist x y₀ < d / r'
x_ne_y₀ : ¬x - y₀ ∈ F
y : E
hy : y ∈ F
hy₀y : y₀ + y ∈ F
⊢ dist x (y₀ + y) = ‖x - y₀ - y‖
[PROOFSTEP]
rw [sub_sub, dist_eq_norm]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
⊢ ∃ x₀, ‖x₀‖ ≤ R ∧ ∀ (y : E), y ∈ F → 1 ≤ ‖x₀ - y‖
[PROOFSTEP]
have Rpos : 0 < R := (norm_nonneg _).trans_lt hR
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
⊢ ∃ x₀, ‖x₀‖ ≤ R ∧ ∀ (y : E), y ∈ F → 1 ≤ ‖x₀ - y‖
[PROOFSTEP]
have : ‖c‖ / R < 1 := by
rw [div_lt_iff Rpos]
simpa using hR
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
⊢ ‖c‖ / R < 1
[PROOFSTEP]
rw [div_lt_iff Rpos]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
⊢ ‖c‖ < 1 * R
[PROOFSTEP]
simpa using hR
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
⊢ ∃ x₀, ‖x₀‖ ≤ R ∧ ∀ (y : E), y ∈ F → 1 ≤ ‖x₀ - y‖
[PROOFSTEP]
rcases riesz_lemma hFc hF this with ⟨x, xF, hx⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
⊢ ∃ x₀, ‖x₀‖ ≤ R ∧ ∀ (y : E), y ∈ F → 1 ≤ ‖x₀ - y‖
[PROOFSTEP]
have x0 : x ≠ 0 := fun H => by simp [H] at xF
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
H : x = 0
⊢ False
[PROOFSTEP]
simp [H] at xF
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
⊢ ∃ x₀, ‖x₀‖ ≤ R ∧ ∀ (y : E), y ∈ F → 1 ≤ ‖x₀ - y‖
[PROOFSTEP]
obtain ⟨d, d0, dxlt, ledx, -⟩ : ∃ d : 𝕜, d ≠ 0 ∧ ‖d • x‖ < R ∧ R / ‖c‖ ≤ ‖d • x‖ ∧ ‖d‖⁻¹ ≤ R⁻¹ * ‖c‖ * ‖x‖ :=
rescale_to_shell hc Rpos x0
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
⊢ ∃ x₀, ‖x₀‖ ≤ R ∧ ∀ (y : E), y ∈ F → 1 ≤ ‖x₀ - y‖
[PROOFSTEP]
refine' ⟨d • x, dxlt.le, fun y hy => _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
⊢ 1 ≤ ‖d • x - y‖
[PROOFSTEP]
set y' := d⁻¹ • y
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
⊢ 1 ≤ ‖d • x - y‖
[PROOFSTEP]
have yy' : y = d • y' := by simp [smul_smul, mul_inv_cancel d0]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
⊢ y = d • y'
[PROOFSTEP]
simp [smul_smul, mul_inv_cancel d0]
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ 1 ≤ ‖d • x - y‖
[PROOFSTEP]
calc
1 = ‖c‖ / R * (R / ‖c‖) := by field_simp [Rpos.ne', (zero_lt_one.trans hc).ne']
_ ≤ ‖c‖ / R * ‖d • x‖ := by gcongr
_ = ‖d‖ * (‖c‖ / R * ‖x‖) := by
simp [norm_smul]
ring
_ ≤ ‖d‖ * ‖x - y'‖ := by gcongr; exact hx y' (by simp [Submodule.smul_mem _ _ hy])
_ = ‖d • x - y‖ := by rw [yy', ← smul_sub, norm_smul]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ 1 = ‖c‖ / R * (R / ‖c‖)
[PROOFSTEP]
field_simp [Rpos.ne', (zero_lt_one.trans hc).ne']
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ ‖c‖ / R * (R / ‖c‖) ≤ ‖c‖ / R * ‖d • x‖
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ ‖c‖ / R * ‖d • x‖ = ‖d‖ * (‖c‖ / R * ‖x‖)
[PROOFSTEP]
simp [norm_smul]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ ‖c‖ / R * (‖d‖ * ‖x‖) = ‖d‖ * (‖c‖ / R * ‖x‖)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ ‖d‖ * (‖c‖ / R * ‖x‖) ≤ ‖d‖ * ‖x - y'‖
[PROOFSTEP]
gcongr
[GOAL]
case h
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ ‖c‖ / R * ‖x‖ ≤ ‖x - y'‖
[PROOFSTEP]
exact hx y' (by simp [Submodule.smul_mem _ _ hy])
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ y' ∈ F
[PROOFSTEP]
simp [Submodule.smul_mem _ _ hy]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F✝ : Type u_3
inst✝¹ : SeminormedAddCommGroup F✝
inst✝ : NormedSpace ℝ F✝
c : 𝕜
hc : 1 < ‖c‖
R : ℝ
hR : ‖c‖ < R
F : Subspace 𝕜 E
hFc : IsClosed ↑F
hF : ∃ x, ¬x ∈ F
Rpos : 0 < R
this : ‖c‖ / R < 1
x : E
xF : ¬x ∈ F
hx : ∀ (y : E), y ∈ F → ‖c‖ / R * ‖x‖ ≤ ‖x - y‖
x0 : x ≠ 0
d : 𝕜
d0 : d ≠ 0
dxlt : ‖d • x‖ < R
ledx : R / ‖c‖ ≤ ‖d • x‖
y : E
hy : y ∈ F
y' : E := d⁻¹ • y
yy' : y = d • y'
⊢ ‖d‖ * ‖x - y'‖ = ‖d • x - y‖
[PROOFSTEP]
rw [yy', ← smul_sub, norm_smul]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
s : Set F
hx : x ∈ s
⊢ closedBall x (infDist x sᶜ) ⊆ closure s
[PROOFSTEP]
cases' eq_or_ne (infDist x sᶜ) 0 with h₀ h₀
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
s : Set F
hx : x ∈ s
h₀ : infDist x sᶜ = 0
⊢ closedBall x (infDist x sᶜ) ⊆ closure s
[PROOFSTEP]
rw [h₀, closedBall_zero']
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
s : Set F
hx : x ∈ s
h₀ : infDist x sᶜ = 0
⊢ closure {x} ⊆ closure s
[PROOFSTEP]
exact closure_mono (singleton_subset_iff.2 hx)
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
s : Set F
hx : x ∈ s
h₀ : infDist x sᶜ ≠ 0
⊢ closedBall x (infDist x sᶜ) ⊆ closure s
[PROOFSTEP]
rw [← closure_ball x h₀]
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁴ : NormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
s : Set F
hx : x ∈ s
h₀ : infDist x sᶜ ≠ 0
⊢ closure (ball x (infDist x sᶜ)) ⊆ closure s
[PROOFSTEP]
exact closure_mono ball_infDist_compl_subset
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.RieszLemma", "llama_tokens": 15761} |
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
hg : HasStrictFDerivAt g g' x
y : E × E
⊢ f y.fst - f y.snd - ↑f' (y.fst - y.snd) + (g y.fst - g y.snd - ↑g' (y.fst - y.snd)) =
(fun y => f y + g y) y.fst - (fun y => f y + g y) y.snd - ↑(f' + g') (y.fst - y.snd)
[PROOFSTEP]
simp only [LinearMap.sub_apply, LinearMap.add_apply, map_sub, map_add, add_apply]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
hg : HasStrictFDerivAt g g' x
y : E × E
⊢ f y.fst - f y.snd - (↑f' y.fst - ↑f' y.snd) + (g y.fst - g y.snd - (↑g' y.fst - ↑g' y.snd)) =
f y.fst + g y.fst - (f y.snd + g y.snd) - (↑f' y.fst + ↑g' y.fst - (↑f' y.snd + ↑g' y.snd))
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
hg : HasStrictFDerivAt g g' x
y : E × E
⊢ f y.fst - f y.snd - (↑f' y.fst - ↑f' y.snd) + (g y.fst - g y.snd - (↑g' y.fst - ↑g' y.snd)) =
f y.fst + g y.fst - (f y.snd + g y.snd) - (↑f' y.fst + ↑g' y.fst - (↑f' y.snd + ↑g' y.snd))
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAtFilter f f' x L
hg : HasFDerivAtFilter g g' x L
x✝ : E
⊢ f x✝ - f x - ↑f' (x✝ - x) + (g x✝ - g x - ↑g' (x✝ - x)) =
(fun y => f y + g y) x✝ - (fun y => f y + g y) x - ↑(f' + g') (x✝ - x)
[PROOFSTEP]
simp only [LinearMap.sub_apply, LinearMap.add_apply, map_sub, map_add, add_apply]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAtFilter f f' x L
hg : HasFDerivAtFilter g g' x L
x✝ : E
⊢ f x✝ - f x - (↑f' x✝ - ↑f' x) + (g x✝ - g x - (↑g' x✝ - ↑g' x)) =
f x✝ + g x✝ - (f x + g x) - (↑f' x✝ + ↑g' x✝ - (↑f' x + ↑g' x))
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAtFilter f f' x L
hg : HasFDerivAtFilter g g' x L
x✝ : E
⊢ f x✝ - f x - (↑f' x✝ - ↑f' x) + (g x✝ - g x - (↑g' x✝ - ↑g' x)) =
f x✝ + g x✝ - (f x + g x) - (↑f' x✝ + ↑g' x✝ - (↑f' x + ↑g' x))
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : DifferentiableWithinAt 𝕜 (fun y => f y + c) s x
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simpa using h.add_const (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : DifferentiableAt 𝕜 (fun y => f y + c) x
⊢ DifferentiableAt 𝕜 f x
[PROOFSTEP]
simpa using h.add_const (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : DifferentiableOn 𝕜 (fun y => f y + c) s
⊢ DifferentiableOn 𝕜 f s
[PROOFSTEP]
simpa using h.add_const (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : Differentiable 𝕜 fun y => f y + c
⊢ Differentiable 𝕜 f
[PROOFSTEP]
simpa using h.add_const (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
hf : ¬DifferentiableWithinAt 𝕜 f s x
⊢ fderivWithin 𝕜 (fun y => f y + c) s x = fderivWithin 𝕜 f s x
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt hf, fderivWithin_zero_of_not_differentiableWithinAt]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
hf : ¬DifferentiableWithinAt 𝕜 f s x
⊢ ¬DifferentiableWithinAt 𝕜 (fun y => f y + c) s x
[PROOFSTEP]
simpa
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ fderiv 𝕜 (fun y => f y + c) x = fderiv 𝕜 f x
[PROOFSTEP]
simp only [← fderivWithin_univ, fderivWithin_add_const uniqueDiffWithinAt_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : DifferentiableWithinAt 𝕜 (fun y => c + f y) s x
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simpa using h.const_add (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : DifferentiableAt 𝕜 (fun y => c + f y) x
⊢ DifferentiableAt 𝕜 f x
[PROOFSTEP]
simpa using h.const_add (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : DifferentiableOn 𝕜 (fun y => c + f y) s
⊢ DifferentiableOn 𝕜 f s
[PROOFSTEP]
simpa using h.const_add (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
h : Differentiable 𝕜 fun y => c + f y
⊢ Differentiable 𝕜 f
[PROOFSTEP]
simpa using h.const_add (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
⊢ fderivWithin 𝕜 (fun y => c + f y) s x = fderivWithin 𝕜 f s x
[PROOFSTEP]
simpa only [add_comm] using fderivWithin_add_const hxs c
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ fderiv 𝕜 (fun y => c + f y) x = fderiv 𝕜 f x
[PROOFSTEP]
simp only [add_comm c, fderiv_add_const]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
u : Finset ι
A : ι → E → F
A' : ι → E →L[𝕜] F
h : ∀ (i : ι), i ∈ u → HasStrictFDerivAt (A i) (A' i) x
⊢ HasStrictFDerivAt (fun y => ∑ i in u, A i y) (∑ i in u, A' i) x
[PROOFSTEP]
dsimp [HasStrictFDerivAt] at *
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
u : Finset ι
A : ι → E → F
A' : ι → E →L[𝕜] F
h : ∀ (i : ι), i ∈ u → (fun p => A i p.fst - A i p.snd - ↑(A' i) (p.fst - p.snd)) =o[𝓝 (x, x)] fun p => p.fst - p.snd
⊢ (fun p => ∑ i in u, A i p.fst - ∑ i in u, A i p.snd - ↑(∑ i in u, A' i) (p.fst - p.snd)) =o[𝓝 (x, x)] fun p =>
p.fst - p.snd
[PROOFSTEP]
convert IsLittleO.sum h
[GOAL]
case h.e'_7.h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
u : Finset ι
A : ι → E → F
A' : ι → E →L[𝕜] F
h : ∀ (i : ι), i ∈ u → (fun p => A i p.fst - A i p.snd - ↑(A' i) (p.fst - p.snd)) =o[𝓝 (x, x)] fun p => p.fst - p.snd
x✝ : E × E
⊢ ∑ i in u, A i x✝.fst - ∑ i in u, A i x✝.snd - ↑(∑ i in u, A' i) (x✝.fst - x✝.snd) =
∑ i in u, (A i x✝.fst - A i x✝.snd - ↑(A' i) (x✝.fst - x✝.snd))
[PROOFSTEP]
simp [Finset.sum_sub_distrib, ContinuousLinearMap.sum_apply]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
u : Finset ι
A : ι → E → F
A' : ι → E →L[𝕜] F
h : ∀ (i : ι), i ∈ u → HasFDerivAtFilter (A i) (A' i) x L
⊢ HasFDerivAtFilter (fun y => ∑ i in u, A i y) (∑ i in u, A' i) x L
[PROOFSTEP]
dsimp [HasFDerivAtFilter] at *
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
u : Finset ι
A : ι → E → F
A' : ι → E →L[𝕜] F
h : ∀ (i : ι), i ∈ u → (fun x' => A i x' - A i x - ↑(A' i) (x' - x)) =o[L] fun x' => x' - x
⊢ (fun x' => ∑ i in u, A i x' - ∑ i in u, A i x - ↑(∑ i in u, A' i) (x' - x)) =o[L] fun x' => x' - x
[PROOFSTEP]
convert IsLittleO.sum h
[GOAL]
case h.e'_7.h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
u : Finset ι
A : ι → E → F
A' : ι → E →L[𝕜] F
h : ∀ (i : ι), i ∈ u → (fun x' => A i x' - A i x - ↑(A' i) (x' - x)) =o[L] fun x' => x' - x
x✝ : E
⊢ ∑ i in u, A i x✝ - ∑ i in u, A i x - ↑(∑ i in u, A' i) (x✝ - x) = ∑ i in u, (A i x✝ - A i x - ↑(A' i) (x✝ - x))
[PROOFSTEP]
simp [ContinuousLinearMap.sum_apply]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableWithinAt 𝕜 (fun y => -f y) s x
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simpa only [neg_neg] using h.neg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableAt 𝕜 (fun y => -f y) x
⊢ DifferentiableAt 𝕜 f x
[PROOFSTEP]
simpa only [neg_neg] using h.neg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableOn 𝕜 (fun y => -f y) s
⊢ DifferentiableOn 𝕜 f s
[PROOFSTEP]
simpa only [neg_neg] using h.neg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : Differentiable 𝕜 fun y => -f y
⊢ Differentiable 𝕜 f
[PROOFSTEP]
simpa only [neg_neg] using h.neg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ fderivWithin 𝕜 (fun y => -f y) s x = -fderivWithin 𝕜 f s x
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt h, fderivWithin_zero_of_not_differentiableWithinAt, neg_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ ¬DifferentiableWithinAt 𝕜 (fun y => -f y) s x
[PROOFSTEP]
simpa
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ fderiv 𝕜 (fun y => -f y) x = -fderiv 𝕜 f x
[PROOFSTEP]
simp only [← fderivWithin_univ, fderivWithin_neg uniqueDiffWithinAt_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
hg : HasStrictFDerivAt g g' x
⊢ HasStrictFDerivAt (fun x => f x - g x) (f' - g') x
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAtFilter f f' x L
hg : HasFDerivAtFilter g g' x L
⊢ HasFDerivAtFilter (fun x => f x - g x) (f' - g') x L
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
c : F
⊢ HasStrictFDerivAt (fun x => f x - c) f' x
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add_const (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAtFilter f f' x L
c : F
⊢ HasFDerivAtFilter (fun x => f x - c) f' x L
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add_const (-c)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ DifferentiableWithinAt 𝕜 (fun y => f y - c) s x ↔ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simp only [sub_eq_add_neg, differentiableWithinAt_add_const_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ DifferentiableAt 𝕜 (fun y => f y - c) x ↔ DifferentiableAt 𝕜 f x
[PROOFSTEP]
simp only [sub_eq_add_neg, differentiableAt_add_const_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ DifferentiableOn 𝕜 (fun y => f y - c) s ↔ DifferentiableOn 𝕜 f s
[PROOFSTEP]
simp only [sub_eq_add_neg, differentiableOn_add_const_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ (Differentiable 𝕜 fun y => f y - c) ↔ Differentiable 𝕜 f
[PROOFSTEP]
simp only [sub_eq_add_neg, differentiable_add_const_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
⊢ fderivWithin 𝕜 (fun y => f y - c) s x = fderivWithin 𝕜 f s x
[PROOFSTEP]
simp only [sub_eq_add_neg, fderivWithin_add_const hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ fderiv 𝕜 (fun y => f y - c) x = fderiv 𝕜 f x
[PROOFSTEP]
simp only [sub_eq_add_neg, fderiv_add_const]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
c : F
⊢ HasStrictFDerivAt (fun x => c - f x) (-f') x
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.neg.const_add c
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAtFilter f f' x L
c : F
⊢ HasFDerivAtFilter (fun x => c - f x) (-f') x L
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.neg.const_add c
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ DifferentiableWithinAt 𝕜 (fun y => c - f y) s x ↔ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ DifferentiableAt 𝕜 (fun y => c - f y) x ↔ DifferentiableAt 𝕜 f x
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ DifferentiableOn 𝕜 (fun y => c - f y) s ↔ DifferentiableOn 𝕜 f s
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ (Differentiable 𝕜 fun y => c - f y) ↔ Differentiable 𝕜 f
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
c : F
⊢ fderivWithin 𝕜 (fun y => c - f y) s x = -fderivWithin 𝕜 f s x
[PROOFSTEP]
simp only [sub_eq_add_neg, fderivWithin_const_add, fderivWithin_neg, hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ fderiv 𝕜 (fun y => c - f y) x = -fderiv 𝕜 f x
[PROOFSTEP]
simp only [← fderivWithin_univ, fderivWithin_const_sub uniqueDiffWithinAt_univ]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Add", "llama_tokens": 15227} |
{"mathlib_filename": "Mathlib.Analysis.NormedSpace.WithLp", "llama_tokens": 0} |
|
[GOAL]
𝕜 : Type u_1
R : Type u_2
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedCommRing R
inst✝³ : NormedAlgebra 𝕜 R
inst✝² : TopologicalRing R
inst✝¹ : CompleteSpace R
inst✝ : T2Space R
r : R
⊢ exp 𝕜 (r • ε) = ↑1 + r • ε
[PROOFSTEP]
rw [eps, ← inr_smul, exp_inr, Nat.cast_one]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.DualNumber", "llama_tokens": 146} |
[GOAL]
b : ℝ
hb : 0 < b
⊢ (fun x => rexp (-b * x ^ 2)) =o[atTop] fun x => rexp (-x)
[PROOFSTEP]
have A : (fun x : ℝ => -x - -b * x ^ 2) = fun x => x * (b * x + -1) := by ext x; ring
[GOAL]
b : ℝ
hb : 0 < b
⊢ (fun x => -x - -b * x ^ 2) = fun x => x * (b * x + -1)
[PROOFSTEP]
ext x
[GOAL]
case h
b : ℝ
hb : 0 < b
x : ℝ
⊢ -x - -b * x ^ 2 = x * (b * x + -1)
[PROOFSTEP]
ring
[GOAL]
b : ℝ
hb : 0 < b
A : (fun x => -x - -b * x ^ 2) = fun x => x * (b * x + -1)
⊢ (fun x => rexp (-b * x ^ 2)) =o[atTop] fun x => rexp (-x)
[PROOFSTEP]
rw [isLittleO_exp_comp_exp_comp, A]
[GOAL]
b : ℝ
hb : 0 < b
A : (fun x => -x - -b * x ^ 2) = fun x => x * (b * x + -1)
⊢ Tendsto (fun x => x * (b * x + -1)) atTop atTop
[PROOFSTEP]
apply Tendsto.atTop_mul_atTop tendsto_id
[GOAL]
b : ℝ
hb : 0 < b
A : (fun x => -x - -b * x ^ 2) = fun x => x * (b * x + -1)
⊢ Tendsto (fun x => b * x + -1) atTop atTop
[PROOFSTEP]
exact tendsto_atTop_add_const_right atTop (-1 : ℝ) (Tendsto.const_mul_atTop hb tendsto_id)
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
⊢ (fun x => x ^ s * rexp (-b * x ^ 2)) =o[atTop] fun x => rexp (-(1 / 2) * x)
[PROOFSTEP]
apply ((isBigO_refl (fun x : ℝ => x ^ s) atTop).mul_isLittleO (exp_neg_mul_sq_isLittleO_exp_neg hb)).trans
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
⊢ (fun x => x ^ s * rexp (-x)) =o[atTop] fun x => rexp (-(1 / 2) * x)
[PROOFSTEP]
simpa only [mul_comm] using Gamma_integrand_isLittleO s
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ioi 0)
[PROOFSTEP]
rw [← Ioc_union_Ioi_eq_Ioi (zero_le_one : (0 : ℝ) ≤ 1), integrableOn_union]
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ioc 0 1) ∧
IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ioi 1)
[PROOFSTEP]
constructor
[GOAL]
case left
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ioc 0 1)
[PROOFSTEP]
rw [← integrableOn_Icc_iff_integrableOn_Ioc]
[GOAL]
case left
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Icc 0 1)
[PROOFSTEP]
refine' IntegrableOn.mul_continuousOn _ _ isCompact_Icc
[GOAL]
case left.refine'_1
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s) (Icc 0 1)
[PROOFSTEP]
refine' (intervalIntegrable_iff_integrable_Icc_of_le zero_le_one).mp _
[GOAL]
case left.refine'_1
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntervalIntegrable (fun x => x ^ s) volume 0 1
[PROOFSTEP]
exact intervalIntegral.intervalIntegrable_rpow' hs
[GOAL]
case left.refine'_2
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ ContinuousOn (fun x => rexp (-b * x ^ 2)) (Icc 0 1)
[PROOFSTEP]
exact (continuous_exp.comp (continuous_const.mul (continuous_pow 2))).continuousOn
[GOAL]
case right
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ioi 1)
[PROOFSTEP]
have B : (0 : ℝ) < 1 / 2 := by norm_num
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case right
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
B : 0 < 1 / 2
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ioi 1)
[PROOFSTEP]
apply integrable_of_isBigO_exp_neg B _ (IsLittleO.isBigO (rpow_mul_exp_neg_mul_sq_isLittleO_exp_neg hb _))
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
B : 0 < 1 / 2
⊢ ContinuousOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ici 1)
[PROOFSTEP]
intro x hx
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
B : 0 < 1 / 2
x : ℝ
hx : x ∈ Ici 1
⊢ ContinuousWithinAt (fun x => x ^ s * rexp (-b * x ^ 2)) (Ici 1) x
[PROOFSTEP]
have N : x ≠ 0 := by refine' (zero_lt_one.trans_le _).ne'; exact hx
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
B : 0 < 1 / 2
x : ℝ
hx : x ∈ Ici 1
⊢ x ≠ 0
[PROOFSTEP]
refine' (zero_lt_one.trans_le _).ne'
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
B : 0 < 1 / 2
x : ℝ
hx : x ∈ Ici 1
⊢ 1 ≤ x
[PROOFSTEP]
exact hx
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
B : 0 < 1 / 2
x : ℝ
hx : x ∈ Ici 1
N : x ≠ 0
⊢ ContinuousWithinAt (fun x => x ^ s * rexp (-b * x ^ 2)) (Ici 1) x
[PROOFSTEP]
apply ((continuousAt_rpow_const _ _ (Or.inl N)).mul _).continuousWithinAt
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
B : 0 < 1 / 2
x : ℝ
hx : x ∈ Ici 1
N : x ≠ 0
⊢ ContinuousAt (fun x => rexp (-b * x ^ 2)) x
[PROOFSTEP]
exact (continuous_exp.comp (continuous_const.mul (continuous_pow 2))).continuousAt
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ Integrable fun x => x ^ s * rexp (-b * x ^ 2)
[PROOFSTEP]
rw [← integrableOn_univ, ← @Iio_union_Ici _ _ (0 : ℝ), integrableOn_union, integrableOn_Ici_iff_integrableOn_Ioi]
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Iio 0) ∧ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Ioi 0)
[PROOFSTEP]
refine' ⟨_, integrableOn_rpow_mul_exp_neg_mul_sq hb hs⟩
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => x ^ s * rexp (-b * x ^ 2)) (Iio 0)
[PROOFSTEP]
rw [←
(Measure.measurePreserving_neg (volume : Measure ℝ)).integrableOn_comp_preimage
(Homeomorph.neg ℝ).toMeasurableEquiv.measurableEmbedding]
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn ((fun x => x ^ s * rexp (-b * x ^ 2)) ∘ Neg.neg) (Neg.neg ⁻¹' Iio 0)
[PROOFSTEP]
simp only [Function.comp, neg_sq, neg_preimage, preimage_neg_Iio, neg_neg, neg_zero]
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ IntegrableOn (fun x => (-x) ^ s * rexp (-b * x ^ 2)) (Ioi 0)
[PROOFSTEP]
apply Integrable.mono' (integrableOn_rpow_mul_exp_neg_mul_sq hb hs)
[GOAL]
case hf
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ AEStronglyMeasurable (fun x => (-x) ^ s * rexp (-b * x ^ 2)) (Measure.restrict volume (Ioi 0))
[PROOFSTEP]
apply Measurable.aestronglyMeasurable
[GOAL]
case hf.hf
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ Measurable fun x => (-x) ^ s * rexp (-b * x ^ 2)
[PROOFSTEP]
exact (measurable_id'.neg.pow measurable_const).mul ((measurable_id'.pow measurable_const).const_mul (-b)).exp
[GOAL]
case h
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioi 0), ‖(-a) ^ s * rexp (-b * a ^ 2)‖ ≤ a ^ s * rexp (-b * a ^ 2)
[PROOFSTEP]
have : MeasurableSet (Ioi (0 : ℝ)) := measurableSet_Ioi
[GOAL]
case h
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
this : MeasurableSet (Ioi 0)
⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ioi 0), ‖(-a) ^ s * rexp (-b * a ^ 2)‖ ≤ a ^ s * rexp (-b * a ^ 2)
[PROOFSTEP]
filter_upwards [ae_restrict_mem this] with x hx
[GOAL]
case h
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
this : MeasurableSet (Ioi 0)
x : ℝ
hx : x ∈ Ioi 0
⊢ ‖(-x) ^ s * rexp (-b * x ^ 2)‖ ≤ x ^ s * rexp (-b * x ^ 2)
[PROOFSTEP]
have h'x : 0 ≤ x := le_of_lt hx
[GOAL]
case h
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
this : MeasurableSet (Ioi 0)
x : ℝ
hx : x ∈ Ioi 0
h'x : 0 ≤ x
⊢ ‖(-x) ^ s * rexp (-b * x ^ 2)‖ ≤ x ^ s * rexp (-b * x ^ 2)
[PROOFSTEP]
rw [Real.norm_eq_abs, abs_mul, abs_of_nonneg (exp_pos _).le]
[GOAL]
case h
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
this : MeasurableSet (Ioi 0)
x : ℝ
hx : x ∈ Ioi 0
h'x : 0 ≤ x
⊢ |(-x) ^ s| * rexp (-b * x ^ 2) ≤ x ^ s * rexp (-b * x ^ 2)
[PROOFSTEP]
apply mul_le_mul_of_nonneg_right _ (exp_pos _).le
[GOAL]
b : ℝ
hb : 0 < b
s : ℝ
hs : -1 < s
this : MeasurableSet (Ioi 0)
x : ℝ
hx : x ∈ Ioi 0
h'x : 0 ≤ x
⊢ |(-x) ^ s| ≤ x ^ s
[PROOFSTEP]
simpa [abs_of_nonneg h'x] using abs_rpow_le_abs_rpow (-x) s
[GOAL]
b : ℝ
hb : 0 < b
⊢ Integrable fun x => rexp (-b * x ^ 2)
[PROOFSTEP]
simpa using integrable_rpow_mul_exp_neg_mul_sq hb (by norm_num : (-1 : ℝ) < 0)
[GOAL]
b : ℝ
hb : 0 < b
⊢ -1 < 0
[PROOFSTEP]
norm_num
[GOAL]
b : ℝ
⊢ IntegrableOn (fun x => rexp (-b * x ^ 2)) (Ioi 0) ↔ 0 < b
[PROOFSTEP]
refine' ⟨fun h => _, fun h => (integrable_exp_neg_mul_sq h).integrableOn⟩
[GOAL]
b : ℝ
h : IntegrableOn (fun x => rexp (-b * x ^ 2)) (Ioi 0)
⊢ 0 < b
[PROOFSTEP]
by_contra' hb
[GOAL]
b : ℝ
h : IntegrableOn (fun x => rexp (-b * x ^ 2)) (Ioi 0)
hb : b ≤ 0
⊢ False
[PROOFSTEP]
have : ∫⁻ _ : ℝ in Ioi 0, 1 ≤ ∫⁻ x : ℝ in Ioi 0, ‖exp (-b * x ^ 2)‖₊ :=
by
apply lintegral_mono (fun x ↦ _)
simp only [neg_mul, ENNReal.one_le_coe_iff, ← toNNReal_one, toNNReal_le_iff_le_coe,
Real.norm_of_nonneg (exp_pos _).le, coe_nnnorm, one_le_exp_iff, Right.nonneg_neg_iff]
exact fun x ↦ mul_nonpos_of_nonpos_of_nonneg hb (sq_nonneg x)
[GOAL]
b : ℝ
h : IntegrableOn (fun x => rexp (-b * x ^ 2)) (Ioi 0)
hb : b ≤ 0
⊢ ∫⁻ (x : ℝ) in Ioi 0, 1 ≤ ∫⁻ (x : ℝ) in Ioi 0, ↑‖rexp (-b * x ^ 2)‖₊
[PROOFSTEP]
apply lintegral_mono (fun x ↦ _)
[GOAL]
b : ℝ
h : IntegrableOn (fun x => rexp (-b * x ^ 2)) (Ioi 0)
hb : b ≤ 0
⊢ ∀ (x : ℝ), 1 ≤ ↑‖rexp (-b * x ^ 2)‖₊
[PROOFSTEP]
simp only [neg_mul, ENNReal.one_le_coe_iff, ← toNNReal_one, toNNReal_le_iff_le_coe, Real.norm_of_nonneg (exp_pos _).le,
coe_nnnorm, one_le_exp_iff, Right.nonneg_neg_iff]
[GOAL]
b : ℝ
h : IntegrableOn (fun x => rexp (-b * x ^ 2)) (Ioi 0)
hb : b ≤ 0
⊢ ∀ (x : ℝ), b * x ^ 2 ≤ 0
[PROOFSTEP]
exact fun x ↦ mul_nonpos_of_nonpos_of_nonneg hb (sq_nonneg x)
[GOAL]
b : ℝ
h : IntegrableOn (fun x => rexp (-b * x ^ 2)) (Ioi 0)
hb : b ≤ 0
this : ∫⁻ (x : ℝ) in Ioi 0, 1 ≤ ∫⁻ (x : ℝ) in Ioi 0, ↑‖rexp (-b * x ^ 2)‖₊
⊢ False
[PROOFSTEP]
simpa using this.trans_lt h.2
[GOAL]
b : ℝ
hb : 0 < b
⊢ Integrable fun x => x * rexp (-b * x ^ 2)
[PROOFSTEP]
simpa using integrable_rpow_mul_exp_neg_mul_sq hb (by norm_num : (-1 : ℝ) < 1)
[GOAL]
b : ℝ
hb : 0 < b
⊢ -1 < 1
[PROOFSTEP]
norm_num
[GOAL]
b : ℂ
x : ℝ
⊢ ‖cexp (-b * ↑x ^ 2)‖ = rexp (-b.re * x ^ 2)
[PROOFSTEP]
rw [Complex.norm_eq_abs, Complex.abs_exp, ← ofReal_pow, mul_comm (-b) _, ofReal_mul_re, neg_re, mul_comm]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ Integrable fun x => cexp (-b * ↑x ^ 2)
[PROOFSTEP]
refine' ⟨(Complex.continuous_exp.comp (continuous_const.mul (continuous_ofReal.pow 2))).aestronglyMeasurable, _⟩
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ HasFiniteIntegral fun x => cexp (-b * ↑x ^ 2)
[PROOFSTEP]
rw [← hasFiniteIntegral_norm_iff]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ HasFiniteIntegral fun a => ‖cexp (-b * ↑a ^ 2)‖
[PROOFSTEP]
simp_rw [norm_cexp_neg_mul_sq]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ HasFiniteIntegral fun a => rexp (-b.re * a ^ 2)
[PROOFSTEP]
exact (integrable_exp_neg_mul_sq hb).2
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ Integrable fun x => ↑x * cexp (-b * ↑x ^ 2)
[PROOFSTEP]
refine' ⟨(continuous_ofReal.mul (Complex.continuous_exp.comp _)).aestronglyMeasurable, _⟩
[GOAL]
case refine'_1
b : ℂ
hb : 0 < b.re
⊢ Continuous fun x => -b * ↑x ^ 2
[PROOFSTEP]
exact continuous_const.mul (continuous_ofReal.pow 2)
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
⊢ HasFiniteIntegral fun x => ↑x * cexp (-b * ↑x ^ 2)
[PROOFSTEP]
have := (integrable_mul_exp_neg_mul_sq hb).hasFiniteIntegral
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
this : HasFiniteIntegral fun x => x * rexp (-b.re * x ^ 2)
⊢ HasFiniteIntegral fun x => ↑x * cexp (-b * ↑x ^ 2)
[PROOFSTEP]
rw [← hasFiniteIntegral_norm_iff] at this ⊢
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
this : HasFiniteIntegral fun a => ‖a * rexp (-b.re * a ^ 2)‖
⊢ HasFiniteIntegral fun a => ‖↑a * cexp (-b * ↑a ^ 2)‖
[PROOFSTEP]
convert this
[GOAL]
case h.e'_5.h
b : ℂ
hb : 0 < b.re
this : HasFiniteIntegral fun a => ‖a * rexp (-b.re * a ^ 2)‖
x✝ : ℝ
⊢ ‖↑x✝ * cexp (-b * ↑x✝ ^ 2)‖ = ‖x✝ * rexp (-b.re * x✝ ^ 2)‖
[PROOFSTEP]
rw [norm_mul, norm_mul, norm_cexp_neg_mul_sq b, Complex.norm_eq_abs, abs_ofReal, Real.norm_eq_abs,
norm_of_nonneg (exp_pos _).le]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2) = (2 * b)⁻¹
[PROOFSTEP]
have hb' : b ≠ 0 := by contrapose! hb; rw [hb, zero_re]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ b ≠ 0
[PROOFSTEP]
contrapose! hb
[GOAL]
b : ℂ
hb : b = 0
⊢ b.re ≤ 0
[PROOFSTEP]
rw [hb, zero_re]
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
⊢ ∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2) = (2 * b)⁻¹
[PROOFSTEP]
have A : ∀ x : ℂ, HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x :=
by
intro x
convert ((hasDerivAt_pow 2 x).const_mul (-b)).cexp.const_mul (-(2 * b)⁻¹) using 1
field_simp [hb']
ring
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
⊢ ∀ (x : ℂ), HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
[PROOFSTEP]
intro x
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
x : ℂ
⊢ HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
[PROOFSTEP]
convert ((hasDerivAt_pow 2 x).const_mul (-b)).cexp.const_mul (-(2 * b)⁻¹) using 1
[GOAL]
case h.e'_7
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
x : ℂ
⊢ x * cexp (-b * x ^ 2) = -(2 * b)⁻¹ * (cexp (-b * x ^ 2) * (-b * (↑2 * x ^ (2 - 1))))
[PROOFSTEP]
field_simp [hb']
[GOAL]
case h.e'_7
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
x : ℂ
⊢ x * cexp (-(b * x ^ 2)) * (2 * b) = cexp (-(b * x ^ 2)) * (b * (2 * x))
[PROOFSTEP]
ring
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
A : ∀ (x : ℂ), HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
⊢ ∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2) = (2 * b)⁻¹
[PROOFSTEP]
have B : Tendsto (fun y : ℝ ↦ -(2 * b)⁻¹ * cexp (-b * (y : ℂ) ^ 2)) atTop (𝓝 (-(2 * b)⁻¹ * 0)) :=
by
refine' Tendsto.const_mul _ (tendsto_zero_iff_norm_tendsto_zero.mpr _)
simp_rw [norm_cexp_neg_mul_sq b]
exact tendsto_exp_atBot.comp (Tendsto.neg_const_mul_atTop (neg_lt_zero.2 hb) (tendsto_pow_atTop two_ne_zero))
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
A : ∀ (x : ℂ), HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
⊢ Tendsto (fun y => -(2 * b)⁻¹ * cexp (-b * ↑y ^ 2)) atTop (𝓝 (-(2 * b)⁻¹ * 0))
[PROOFSTEP]
refine' Tendsto.const_mul _ (tendsto_zero_iff_norm_tendsto_zero.mpr _)
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
A : ∀ (x : ℂ), HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
⊢ Tendsto (fun e => ‖cexp (-b * ↑e ^ 2)‖) atTop (𝓝 0)
[PROOFSTEP]
simp_rw [norm_cexp_neg_mul_sq b]
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
A : ∀ (x : ℂ), HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
⊢ Tendsto (fun e => rexp (-b.re * e ^ 2)) atTop (𝓝 0)
[PROOFSTEP]
exact tendsto_exp_atBot.comp (Tendsto.neg_const_mul_atTop (neg_lt_zero.2 hb) (tendsto_pow_atTop two_ne_zero))
[GOAL]
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
A : ∀ (x : ℂ), HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
B : Tendsto (fun y => -(2 * b)⁻¹ * cexp (-b * ↑y ^ 2)) atTop (𝓝 (-(2 * b)⁻¹ * 0))
⊢ ∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2) = (2 * b)⁻¹
[PROOFSTEP]
convert
integral_Ioi_of_hasDerivAt_of_tendsto' (fun x _ => (A ↑x).comp_ofReal)
(integrable_mul_cexp_neg_mul_sq hb).integrableOn B using
1
[GOAL]
case h.e'_3
b : ℂ
hb : 0 < b.re
hb' : b ≠ 0
A : ∀ (x : ℂ), HasDerivAt (fun x => -(2 * b)⁻¹ * cexp (-b * x ^ 2)) (x * cexp (-b * x ^ 2)) x
B : Tendsto (fun y => -(2 * b)⁻¹ * cexp (-b * ↑y ^ 2)) atTop (𝓝 (-(2 * b)⁻¹ * 0))
⊢ (2 * b)⁻¹ = -(2 * b)⁻¹ * 0 - -(2 * b)⁻¹ * cexp (-b * ↑0 ^ 2)
[PROOFSTEP]
simp only [mul_zero, ofReal_zero, zero_pow', Ne.def, bit0_eq_zero, Nat.one_ne_zero, not_false_iff, Complex.exp_zero,
mul_one, sub_neg_eq_add, zero_add]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ (∫ (x : ℝ), cexp (-b * ↑x ^ 2)) ^ 2 = ↑π / b
[PROOFSTEP]
calc
(∫ x : ℝ, cexp (-b * (x : ℂ) ^ 2)) ^ 2 = ∫ p : ℝ × ℝ, cexp (-b * (p.1 : ℂ) ^ 2) * cexp (-b * (p.2 : ℂ) ^ 2) := by
rw [pow_two, ← integral_prod_mul]; rfl
_ = ∫ p : ℝ × ℝ, cexp (-b * ((p.1 : ℂ) ^ 2 + (p.2 : ℂ) ^ 2)) :=
by
congr
ext1 p
rw [← Complex.exp_add, mul_add]
_ = ∫ p in polarCoord.target, p.1 • cexp (-b * ((p.1 * Complex.cos p.2) ^ 2 + (p.1 * Complex.sin p.2) ^ 2)) :=
by
rw [← integral_comp_polarCoord_symm]
simp only [polarCoord_symm_apply, ofReal_mul, ofReal_cos, ofReal_sin]
_ = (∫ r in Ioi (0 : ℝ), r * cexp (-b * (r : ℂ) ^ 2)) * ∫ θ in Ioo (-π) π, 1 :=
by
rw [← set_integral_prod_mul]
congr with p : 1
rw [mul_one]
congr
conv_rhs => rw [← one_mul ((p.1 : ℂ) ^ 2), ← sin_sq_add_cos_sq (p.2 : ℂ)]
ring
_ = ↑π / b := by
have : 0 ≤ π + π := by linarith [Real.pi_pos]
simp only [integral_const, Measure.restrict_apply', measurableSet_Ioo, univ_inter, volume_Ioo, sub_neg_eq_add,
ENNReal.toReal_ofReal, this]
rw [← two_mul, real_smul, mul_one, ofReal_mul, ofReal_ofNat, integral_mul_cexp_neg_mul_sq hb]
field_simp [(by contrapose! hb; rw [hb, zero_re] : b ≠ 0)]
ring
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ (∫ (x : ℝ), cexp (-b * ↑x ^ 2)) ^ 2 = ∫ (p : ℝ × ℝ), cexp (-b * ↑p.fst ^ 2) * cexp (-b * ↑p.snd ^ 2)
[PROOFSTEP]
rw [pow_two, ← integral_prod_mul]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (z : ℝ × ℝ), cexp (-b * ↑z.fst ^ 2) * cexp (-b * ↑z.snd ^ 2) ∂Measure.prod volume volume =
∫ (p : ℝ × ℝ), cexp (-b * ↑p.fst ^ 2) * cexp (-b * ↑p.snd ^ 2)
[PROOFSTEP]
rfl
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (p : ℝ × ℝ), cexp (-b * ↑p.fst ^ 2) * cexp (-b * ↑p.snd ^ 2) = ∫ (p : ℝ × ℝ), cexp (-b * (↑p.fst ^ 2 + ↑p.snd ^ 2))
[PROOFSTEP]
congr
[GOAL]
case e_f
b : ℂ
hb : 0 < b.re
⊢ (fun p => cexp (-b * ↑p.fst ^ 2) * cexp (-b * ↑p.snd ^ 2)) = fun p => cexp (-b * (↑p.fst ^ 2 + ↑p.snd ^ 2))
[PROOFSTEP]
ext1 p
[GOAL]
case e_f.h
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
⊢ cexp (-b * ↑p.fst ^ 2) * cexp (-b * ↑p.snd ^ 2) = cexp (-b * (↑p.fst ^ 2 + ↑p.snd ^ 2))
[PROOFSTEP]
rw [← Complex.exp_add, mul_add]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (p : ℝ × ℝ), cexp (-b * (↑p.fst ^ 2 + ↑p.snd ^ 2)) =
∫ (p : ℝ × ℝ) in polarCoord.target,
p.fst • cexp (-b * ((↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2))
[PROOFSTEP]
rw [← integral_comp_polarCoord_symm]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target,
p.fst •
cexp
(-b * (↑(↑(LocalHomeomorph.symm polarCoord) p).fst ^ 2 + ↑(↑(LocalHomeomorph.symm polarCoord) p).snd ^ 2)) =
∫ (p : ℝ × ℝ) in polarCoord.target,
p.fst • cexp (-b * ((↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2))
[PROOFSTEP]
simp only [polarCoord_symm_apply, ofReal_mul, ofReal_cos, ofReal_sin]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target,
p.fst • cexp (-b * ((↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2)) =
(∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2)) * ∫ (θ : ℝ) in Ioo (-π) π, 1
[PROOFSTEP]
rw [← set_integral_prod_mul]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (p : ℝ × ℝ) in polarCoord.target,
p.fst • cexp (-b * ((↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2)) =
∫ (z : ℝ × ℝ) in Ioi 0 ×ˢ Ioo (-π) π, ↑z.fst * cexp (-b * ↑z.fst ^ 2) * 1 ∂Measure.prod volume volume
[PROOFSTEP]
congr with p : 1
[GOAL]
case e_f.h
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
⊢ p.fst • cexp (-b * ((↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2)) =
↑p.fst * cexp (-b * ↑p.fst ^ 2) * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
case e_f.h
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
⊢ p.fst • cexp (-b * ((↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2)) =
↑p.fst * cexp (-b * ↑p.fst ^ 2)
[PROOFSTEP]
congr
[GOAL]
case e_f.h.e_a.e_z.e_a
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
⊢ (↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2 = ↑p.fst ^ 2
[PROOFSTEP]
conv_rhs => rw [← one_mul ((p.1 : ℂ) ^ 2), ← sin_sq_add_cos_sq (p.2 : ℂ)]
[GOAL]
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
| ↑p.fst ^ 2
[PROOFSTEP]
rw [← one_mul ((p.1 : ℂ) ^ 2), ← sin_sq_add_cos_sq (p.2 : ℂ)]
[GOAL]
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
| ↑p.fst ^ 2
[PROOFSTEP]
rw [← one_mul ((p.1 : ℂ) ^ 2), ← sin_sq_add_cos_sq (p.2 : ℂ)]
[GOAL]
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
| ↑p.fst ^ 2
[PROOFSTEP]
rw [← one_mul ((p.1 : ℂ) ^ 2), ← sin_sq_add_cos_sq (p.2 : ℂ)]
[GOAL]
case e_f.h.e_a.e_z.e_a
b : ℂ
hb : 0 < b.re
p : ℝ × ℝ
⊢ (↑p.fst * Complex.cos ↑p.snd) ^ 2 + (↑p.fst * Complex.sin ↑p.snd) ^ 2 =
(Complex.sin ↑p.snd ^ 2 + Complex.cos ↑p.snd ^ 2) * ↑p.fst ^ 2
[PROOFSTEP]
ring
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ (∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2)) * ∫ (θ : ℝ) in Ioo (-π) π, 1 = ↑π / b
[PROOFSTEP]
have : 0 ≤ π + π := by linarith [Real.pi_pos]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ 0 ≤ π + π
[PROOFSTEP]
linarith [Real.pi_pos]
[GOAL]
b : ℂ
hb : 0 < b.re
this : 0 ≤ π + π
⊢ (∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2)) * ∫ (θ : ℝ) in Ioo (-π) π, 1 = ↑π / b
[PROOFSTEP]
simp only [integral_const, Measure.restrict_apply', measurableSet_Ioo, univ_inter, volume_Ioo, sub_neg_eq_add,
ENNReal.toReal_ofReal, this]
[GOAL]
b : ℂ
hb : 0 < b.re
this : 0 ≤ π + π
⊢ (∫ (r : ℝ) in Ioi 0, ↑r * cexp (-b * ↑r ^ 2)) * (π + π) • 1 = ↑π / b
[PROOFSTEP]
rw [← two_mul, real_smul, mul_one, ofReal_mul, ofReal_ofNat, integral_mul_cexp_neg_mul_sq hb]
[GOAL]
b : ℂ
hb : 0 < b.re
this : 0 ≤ π + π
⊢ (2 * b)⁻¹ * (2 * ↑π) = ↑π / b
[PROOFSTEP]
field_simp [(by contrapose! hb; rw [hb, zero_re] : b ≠ 0)]
[GOAL]
b : ℂ
hb : 0 < b.re
this : 0 ≤ π + π
⊢ b ≠ 0
[PROOFSTEP]
contrapose! hb
[GOAL]
b : ℂ
this : 0 ≤ π + π
hb : b = 0
⊢ b.re ≤ 0
[PROOFSTEP]
rw [hb, zero_re]
[GOAL]
b : ℂ
hb : 0 < b.re
this : 0 ≤ π + π
⊢ 2 * ↑π * b = ↑π * (2 * b)
[PROOFSTEP]
ring
[GOAL]
b : ℝ
⊢ ∫ (x : ℝ), rexp (-b * x ^ 2) = sqrt (π / b)
[PROOFSTEP]
rcases le_or_lt b 0 with (hb | hb)
[GOAL]
case inl
b : ℝ
hb : b ≤ 0
⊢ ∫ (x : ℝ), rexp (-b * x ^ 2) = sqrt (π / b)
[PROOFSTEP]
rw [integral_undef, sqrt_eq_zero_of_nonpos]
[GOAL]
case inl
b : ℝ
hb : b ≤ 0
⊢ π / b ≤ 0
[PROOFSTEP]
exact div_nonpos_of_nonneg_of_nonpos pi_pos.le hb
[GOAL]
case inl
b : ℝ
hb : b ≤ 0
⊢ ¬Integrable fun x => rexp (-b * x ^ 2)
[PROOFSTEP]
simpa only [not_lt, integrable_exp_neg_mul_sq_iff] using hb
[GOAL]
case inr
b : ℝ
hb : 0 < b
⊢ ∫ (x : ℝ), rexp (-b * x ^ 2) = sqrt (π / b)
[PROOFSTEP]
refine' (sq_eq_sq _ (sqrt_nonneg _)).1 _
[GOAL]
case inr.refine'_1
b : ℝ
hb : 0 < b
⊢ 0 ≤ ∫ (x : ℝ), rexp (-b * x ^ 2)
[PROOFSTEP]
exact integral_nonneg fun x => (exp_pos _).le
[GOAL]
case inr.refine'_2
b : ℝ
hb : 0 < b
⊢ (∫ (x : ℝ), rexp (-b * x ^ 2)) ^ 2 = sqrt (π / b) ^ 2
[PROOFSTEP]
rw [← ofReal_inj, ofReal_pow, ← coe_algebraMap, IsROrC.algebraMap_eq_ofReal, ← integral_ofReal,
sq_sqrt (div_pos pi_pos hb).le, ← IsROrC.algebraMap_eq_ofReal, coe_algebraMap, ofReal_div]
[GOAL]
case inr.refine'_2
b : ℝ
hb : 0 < b
⊢ (∫ (a : ℝ), ↑(rexp (-b * a ^ 2))) ^ 2 = ↑π / ↑b
[PROOFSTEP]
convert integral_gaussian_sq_complex (by rwa [ofReal_re] : 0 < (b : ℂ).re) with _ x
[GOAL]
b : ℝ
hb : 0 < b
⊢ 0 < (↑b).re
[PROOFSTEP]
rwa [ofReal_re]
[GOAL]
case h.e'_2.h.e'_5.h.e'_7.h
b : ℝ
hb : 0 < b
x : ℝ
⊢ ↑(rexp (-b * x ^ 2)) = cexp (-↑b * ↑x ^ 2)
[PROOFSTEP]
rw [ofReal_exp, ofReal_mul, ofReal_pow, ofReal_neg]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ContinuousAt (fun c => ∫ (x : ℝ), cexp (-c * ↑x ^ 2)) b
[PROOFSTEP]
let f : ℂ → ℝ → ℂ := fun (c : ℂ) (x : ℝ) => cexp (-c * (x : ℂ) ^ 2)
[GOAL]
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
⊢ ContinuousAt (fun c => ∫ (x : ℝ), cexp (-c * ↑x ^ 2)) b
[PROOFSTEP]
obtain ⟨d, hd, hd'⟩ := exists_between hb
[GOAL]
case intro.intro
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
⊢ ContinuousAt (fun c => ∫ (x : ℝ), cexp (-c * ↑x ^ 2)) b
[PROOFSTEP]
have f_meas : ∀ c : ℂ, AEStronglyMeasurable (f c) volume := fun c =>
by
apply Continuous.aestronglyMeasurable
exact Complex.continuous_exp.comp (continuous_const.mul (continuous_ofReal.pow 2))
[GOAL]
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
c : ℂ
⊢ AEStronglyMeasurable (f c) volume
[PROOFSTEP]
apply Continuous.aestronglyMeasurable
[GOAL]
case hf
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
c : ℂ
⊢ Continuous (f c)
[PROOFSTEP]
exact Complex.continuous_exp.comp (continuous_const.mul (continuous_ofReal.pow 2))
[GOAL]
case intro.intro
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume
⊢ ContinuousAt (fun c => ∫ (x : ℝ), cexp (-c * ↑x ^ 2)) b
[PROOFSTEP]
have f_cts : ∀ x : ℝ, ContinuousAt (fun c => f c x) b := fun x =>
(Complex.continuous_exp.comp (continuous_id'.neg.mul continuous_const)).continuousAt
[GOAL]
case intro.intro
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume
f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b
⊢ ContinuousAt (fun c => ∫ (x : ℝ), cexp (-c * ↑x ^ 2)) b
[PROOFSTEP]
have f_le_bd : ∀ᶠ c : ℂ in 𝓝 b, ∀ᵐ x : ℝ, ‖f c x‖ ≤ exp (-d * x ^ 2) :=
by
refine' eventually_of_mem ((continuous_re.isOpen_preimage _ isOpen_Ioi).mem_nhds hd') _
refine' fun c hc => ae_of_all _ fun x => _
rw [norm_cexp_neg_mul_sq, exp_le_exp]
exact mul_le_mul_of_nonneg_right (neg_le_neg (le_of_lt hc)) (sq_nonneg _)
[GOAL]
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume
f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b
⊢ ∀ᶠ (c : ℂ) in 𝓝 b, ∀ᵐ (x : ℝ), ‖f c x‖ ≤ rexp (-d * x ^ 2)
[PROOFSTEP]
refine' eventually_of_mem ((continuous_re.isOpen_preimage _ isOpen_Ioi).mem_nhds hd') _
[GOAL]
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume
f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b
⊢ ∀ (x : ℂ), x ∈ re ⁻¹' Ioi d → ∀ᵐ (x_1 : ℝ), ‖f x x_1‖ ≤ rexp (-d * x_1 ^ 2)
[PROOFSTEP]
refine' fun c hc => ae_of_all _ fun x => _
[GOAL]
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume
f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b
c : ℂ
hc : c ∈ re ⁻¹' Ioi d
x : ℝ
⊢ ‖f c x‖ ≤ rexp (-d * x ^ 2)
[PROOFSTEP]
rw [norm_cexp_neg_mul_sq, exp_le_exp]
[GOAL]
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume
f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b
c : ℂ
hc : c ∈ re ⁻¹' Ioi d
x : ℝ
⊢ -c.re * x ^ 2 ≤ -d * x ^ 2
[PROOFSTEP]
exact mul_le_mul_of_nonneg_right (neg_le_neg (le_of_lt hc)) (sq_nonneg _)
[GOAL]
case intro.intro
b : ℂ
hb : 0 < b.re
f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2)
d : ℝ
hd : 0 < d
hd' : d < b.re
f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume
f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b
f_le_bd : ∀ᶠ (c : ℂ) in 𝓝 b, ∀ᵐ (x : ℝ), ‖f c x‖ ≤ rexp (-d * x ^ 2)
⊢ ContinuousAt (fun c => ∫ (x : ℝ), cexp (-c * ↑x ^ 2)) b
[PROOFSTEP]
exact continuousAt_of_dominated (eventually_of_forall f_meas) f_le_bd (integrable_exp_neg_mul_sq hd) (ae_of_all _ f_cts)
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (x : ℝ), cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
[PROOFSTEP]
have nv : ∀ {b : ℂ}, 0 < re b → b ≠ 0 := by intro b hb; contrapose! hb; rw [hb]; simp
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∀ {b : ℂ}, 0 < b.re → b ≠ 0
[PROOFSTEP]
intro b hb
[GOAL]
b✝ : ℂ
hb✝ : 0 < b✝.re
b : ℂ
hb : 0 < b.re
⊢ b ≠ 0
[PROOFSTEP]
contrapose! hb
[GOAL]
b✝ : ℂ
hb✝ : 0 < b✝.re
b : ℂ
hb : b = 0
⊢ b.re ≤ 0
[PROOFSTEP]
rw [hb]
[GOAL]
b✝ : ℂ
hb✝ : 0 < b✝.re
b : ℂ
hb : b = 0
⊢ 0.re ≤ 0
[PROOFSTEP]
simp
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
⊢ ∫ (x : ℝ), cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
[PROOFSTEP]
apply
(convex_halfspace_re_gt 0).isPreconnected.eq_of_sq_eq ?_ ?_ (fun c hc => ?_) (fun {c} hc => ?_)
(by simp : 0 < re (1 : ℂ)) ?_ hb
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
⊢ 0 < 1.re
[PROOFSTEP]
simp
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
⊢ ContinuousOn (fun {b} => ∫ (x : ℝ), cexp (-b * ↑x ^ 2)) {c | 0 < c.re}
[PROOFSTEP]
exact ContinuousAt.continuousOn continuousAt_gaussian_integral
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
⊢ ContinuousOn (fun {b} => (↑π / b) ^ (1 / 2)) {c | 0 < c.re}
[PROOFSTEP]
refine'
ContinuousAt.continuousOn fun b hb =>
(continuousAt_cpow_const (Or.inl _)).comp (continuousAt_const.div continuousAt_id (nv hb))
[GOAL]
b✝ : ℂ
hb✝ : 0 < b✝.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
b : ℂ
hb : b ∈ {c | 0 < c.re}
⊢ 0 < (↑π / b).re
[PROOFSTEP]
rw [div_re, ofReal_im, ofReal_re, zero_mul, zero_div, add_zero]
[GOAL]
b✝ : ℂ
hb✝ : 0 < b✝.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
b : ℂ
hb : b ∈ {c | 0 < c.re}
⊢ 0 < π * b.re / ↑normSq b
[PROOFSTEP]
exact div_pos (mul_pos pi_pos hb) (normSq_pos.mpr (nv hb))
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
⊢ ∫ (x : ℝ), cexp (-1 * ↑x ^ 2) = (↑π / 1) ^ (1 / 2)
[PROOFSTEP]
have : ∀ x : ℝ, cexp (-(1 : ℂ) * (x : ℂ) ^ 2) = exp (-(1 : ℝ) * x ^ 2) :=
by
intro x
simp only [ofReal_exp, neg_mul, one_mul, ofReal_neg, ofReal_pow]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
⊢ ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
[PROOFSTEP]
intro x
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
x : ℝ
⊢ cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
[PROOFSTEP]
simp only [ofReal_exp, neg_mul, one_mul, ofReal_neg, ofReal_pow]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ ∫ (x : ℝ), cexp (-1 * ↑x ^ 2) = (↑π / 1) ^ (1 / 2)
[PROOFSTEP]
simp_rw [this, ← coe_algebraMap, IsROrC.algebraMap_eq_ofReal, integral_ofReal, ← IsROrC.algebraMap_eq_ofReal,
coe_algebraMap]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ ↑(∫ (a : ℝ), rexp (-1 * a ^ 2)) = (↑π / 1) ^ (1 / 2)
[PROOFSTEP]
conv_rhs =>
congr
·rw [← ofReal_one, ← ofReal_div]
·rw [← ofReal_one, ← ofReal_ofNat, ← ofReal_div]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| (↑π / 1) ^ (1 / 2)
[PROOFSTEP]
congr
·rw [← ofReal_one, ← ofReal_div]
·rw [← ofReal_one, ← ofReal_ofNat, ← ofReal_div]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| (↑π / 1) ^ (1 / 2)
[PROOFSTEP]
congr
·rw [← ofReal_one, ← ofReal_div]
·rw [← ofReal_one, ← ofReal_ofNat, ← ofReal_div]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| (↑π / 1) ^ (1 / 2)
[PROOFSTEP]
congr
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| ↑π / 1
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| 1 / 2
[PROOFSTEP]
·rw [← ofReal_one, ← ofReal_div]
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| ↑π / 1
[PROOFSTEP]
rw [← ofReal_one, ← ofReal_div]
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| ↑π / 1
[PROOFSTEP]
rw [← ofReal_one, ← ofReal_div]
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| ↑π / 1
[PROOFSTEP]
rw [← ofReal_one, ← ofReal_div]
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| 1 / 2
[PROOFSTEP]
·rw [← ofReal_one, ← ofReal_ofNat, ← ofReal_div]
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| 1 / 2
[PROOFSTEP]
rw [← ofReal_one, ← ofReal_ofNat, ← ofReal_div]
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| 1 / 2
[PROOFSTEP]
rw [← ofReal_one, ← ofReal_ofNat, ← ofReal_div]
[GOAL]
case a
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
| 1 / 2
[PROOFSTEP]
rw [← ofReal_one, ← ofReal_ofNat, ← ofReal_div]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ ↑(∫ (a : ℝ), rexp (-1 * a ^ 2)) = ↑(π / 1) ^ ↑(1 / 2)
[PROOFSTEP]
rw [← ofReal_cpow, ofReal_inj]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ ∫ (a : ℝ), rexp (-1 * a ^ 2) = (π / 1) ^ (1 / 2)
case hx
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ 0 ≤ π / 1
[PROOFSTEP]
convert integral_gaussian (1 : ℝ) using 1
[GOAL]
case h.e'_3
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ (π / 1) ^ (1 / 2) = sqrt (π / 1)
[PROOFSTEP]
rw [sqrt_eq_rpow]
[GOAL]
case hx
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ 0 ≤ π / 1
[PROOFSTEP]
rw [div_one]
[GOAL]
case hx
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
this : ∀ (x : ℝ), cexp (-1 * ↑x ^ 2) = ↑(rexp (-1 * x ^ 2))
⊢ 0 ≤ π
[PROOFSTEP]
exact pi_pos.le
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
⊢ ((fun {b} => ∫ (x : ℝ), cexp (-b * ↑x ^ 2)) ^ 2) c = ((fun {b} => (↑π / b) ^ (1 / 2)) ^ 2) c
[PROOFSTEP]
dsimp only [Pi.pow_apply]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
⊢ (∫ (x : ℝ), cexp (-c * ↑x ^ 2)) ^ 2 = ((↑π / c) ^ (1 / 2)) ^ 2
[PROOFSTEP]
rw [integral_gaussian_sq_complex hc, sq]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
⊢ ↑π / c = (↑π / c) ^ (1 / 2) * (↑π / c) ^ (1 / 2)
[PROOFSTEP]
conv_lhs => rw [← cpow_one (↑π / c)]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
| ↑π / c
[PROOFSTEP]
rw [← cpow_one (↑π / c)]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
| ↑π / c
[PROOFSTEP]
rw [← cpow_one (↑π / c)]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
| ↑π / c
[PROOFSTEP]
rw [← cpow_one (↑π / c)]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
⊢ (↑π / c) ^ 1 = (↑π / c) ^ (1 / 2) * (↑π / c) ^ (1 / 2)
[PROOFSTEP]
rw [← cpow_add _ _ (div_ne_zero (ofReal_ne_zero.mpr pi_ne_zero) (nv hc))]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
⊢ (↑π / c) ^ 1 = (↑π / c) ^ (1 / 2 + 1 / 2)
[PROOFSTEP]
norm_num
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
⊢ (↑π / c) ^ (1 / 2) ≠ 0
[PROOFSTEP]
rw [Ne.def, cpow_eq_zero_iff, not_and_or]
[GOAL]
b : ℂ
hb : 0 < b.re
nv : ∀ {b : ℂ}, 0 < b.re → b ≠ 0
c : ℂ
hc : c ∈ {c | 0 < c.re}
⊢ ¬↑π / c = 0 ∨ ¬1 / 2 ≠ 0
[PROOFSTEP]
exact Or.inl (div_ne_zero (ofReal_ne_zero.mpr pi_ne_zero) (nv hc))
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2) / 2
[PROOFSTEP]
have full_integral := integral_gaussian_complex hb
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : ∫ (x : ℝ), cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
⊢ ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2) / 2
[PROOFSTEP]
have : MeasurableSet (Ioi (0 : ℝ)) := measurableSet_Ioi
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : ∫ (x : ℝ), cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this : MeasurableSet (Ioi 0)
⊢ ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2) / 2
[PROOFSTEP]
rw [← integral_add_compl this (integrable_cexp_neg_mul_sq hb), compl_Ioi] at full_integral
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this : MeasurableSet (Ioi 0)
⊢ ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2) / 2
[PROOFSTEP]
suffices ∫ x : ℝ in Iic 0, cexp (-b * (x : ℂ) ^ 2) = ∫ x : ℝ in Ioi 0, cexp (-b * (x : ℂ) ^ 2)
by
rw [this, ← mul_two] at full_integral
rwa [eq_div_iff]; exact two_ne_zero
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
⊢ ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2) / 2
[PROOFSTEP]
rw [this, ← mul_two] at full_integral
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) * 2 = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
⊢ ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2) / 2
[PROOFSTEP]
rwa [eq_div_iff]
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) * 2 = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
⊢ 2 ≠ 0
[PROOFSTEP]
exact two_ne_zero
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this : MeasurableSet (Ioi 0)
⊢ ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
[PROOFSTEP]
have : ∀ c : ℝ, ∫ x in (0 : ℝ)..c, cexp (-b * (x : ℂ) ^ 2) = ∫ x in -c..0, cexp (-b * (x : ℂ) ^ 2) :=
by
intro c
have := intervalIntegral.integral_comp_sub_left (a := 0) (b := c) (fun x => cexp (-b * (x : ℂ) ^ 2)) 0
simpa [zero_sub, neg_sq, neg_zero] using this
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this : MeasurableSet (Ioi 0)
⊢ ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
[PROOFSTEP]
intro c
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this : MeasurableSet (Ioi 0)
c : ℝ
⊢ ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
[PROOFSTEP]
have := intervalIntegral.integral_comp_sub_left (a := 0) (b := c) (fun x => cexp (-b * (x : ℂ) ^ 2)) 0
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
c : ℝ
this : ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑(0 - x) ^ 2) = ∫ (x : ℝ) in 0 - c..0 - 0, cexp (-b * ↑x ^ 2)
⊢ ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
[PROOFSTEP]
simpa [zero_sub, neg_sq, neg_zero] using this
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
⊢ ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
[PROOFSTEP]
have t1 := intervalIntegral_tendsto_integral_Ioi 0 (integrable_cexp_neg_mul_sq hb).integrableOn tendsto_id
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
t1 : Tendsto (fun i => ∫ (x : ℝ) in 0 ..id i, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)))
⊢ ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
[PROOFSTEP]
have t2 :
Tendsto (fun c : ℝ => ∫ x : ℝ in (0 : ℝ)..c, cexp (-b * (x : ℂ) ^ 2)) atTop
(𝓝 (∫ x : ℝ in Iic 0, cexp (-b * (x : ℂ) ^ 2))) :=
by
simp_rw [this]
refine' intervalIntegral_tendsto_integral_Iic _ _ tendsto_neg_atTop_atBot
apply (integrable_cexp_neg_mul_sq hb).integrableOn
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
t1 : Tendsto (fun i => ∫ (x : ℝ) in 0 ..id i, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)))
⊢ Tendsto (fun c => ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2)))
[PROOFSTEP]
simp_rw [this]
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
t1 : Tendsto (fun i => ∫ (x : ℝ) in 0 ..id i, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)))
⊢ Tendsto (fun c => ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2)))
[PROOFSTEP]
refine' intervalIntegral_tendsto_integral_Iic _ _ tendsto_neg_atTop_atBot
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
t1 : Tendsto (fun i => ∫ (x : ℝ) in 0 ..id i, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)))
⊢ IntegrableOn (fun x => cexp (-b * ↑x ^ 2)) (Iic 0)
[PROOFSTEP]
apply (integrable_cexp_neg_mul_sq hb).integrableOn
[GOAL]
b : ℂ
hb : 0 < b.re
full_integral : (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)) + ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = (↑π / b) ^ (1 / 2)
this✝ : MeasurableSet (Ioi 0)
this : ∀ (c : ℝ), ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in -c..0, cexp (-b * ↑x ^ 2)
t1 : Tendsto (fun i => ∫ (x : ℝ) in 0 ..id i, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)))
t2 : Tendsto (fun c => ∫ (x : ℝ) in 0 ..c, cexp (-b * ↑x ^ 2)) atTop (𝓝 (∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2)))
⊢ ∫ (x : ℝ) in Iic 0, cexp (-b * ↑x ^ 2) = ∫ (x : ℝ) in Ioi 0, cexp (-b * ↑x ^ 2)
[PROOFSTEP]
exact tendsto_nhds_unique t2 t1
[GOAL]
b : ℝ
⊢ ∫ (x : ℝ) in Ioi 0, rexp (-b * x ^ 2) = sqrt (π / b) / 2
[PROOFSTEP]
rcases le_or_lt b 0 with (hb | hb)
[GOAL]
case inl
b : ℝ
hb : b ≤ 0
⊢ ∫ (x : ℝ) in Ioi 0, rexp (-b * x ^ 2) = sqrt (π / b) / 2
[PROOFSTEP]
rw [integral_undef, sqrt_eq_zero_of_nonpos, zero_div]
[GOAL]
case inl
b : ℝ
hb : b ≤ 0
⊢ π / b ≤ 0
case inl b : ℝ hb : b ≤ 0 ⊢ ¬Integrable fun x => rexp (-b * x ^ 2)
[PROOFSTEP]
exact div_nonpos_of_nonneg_of_nonpos pi_pos.le hb
[GOAL]
case inl
b : ℝ
hb : b ≤ 0
⊢ ¬Integrable fun x => rexp (-b * x ^ 2)
[PROOFSTEP]
rwa [← IntegrableOn, integrableOn_Ioi_exp_neg_mul_sq_iff, not_lt]
[GOAL]
case inr
b : ℝ
hb : 0 < b
⊢ ∫ (x : ℝ) in Ioi 0, rexp (-b * x ^ 2) = sqrt (π / b) / 2
[PROOFSTEP]
rw [← IsROrC.ofReal_inj (K := ℂ), ← integral_ofReal, ← IsROrC.algebraMap_eq_ofReal, coe_algebraMap]
[GOAL]
case inr
b : ℝ
hb : 0 < b
⊢ ∫ (a : ℝ) in Ioi 0, ↑(rexp (-b * a ^ 2)) = ↑(sqrt (π / b) / 2)
[PROOFSTEP]
convert integral_gaussian_complex_Ioi (by rwa [ofReal_re] : 0 < (b : ℂ).re)
[GOAL]
b : ℝ
hb : 0 < b
⊢ 0 < (↑b).re
[PROOFSTEP]
rwa [ofReal_re]
[GOAL]
case h.e'_2.h.e'_7.h
b : ℝ
hb : 0 < b
x✝ : ℝ
⊢ ↑(rexp (-b * x✝ ^ 2)) = cexp (-↑b * ↑x✝ ^ 2)
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
b : ℝ
hb : 0 < b
⊢ ↑(sqrt (π / b) / 2) = (↑π / ↑b) ^ (1 / 2) / 2
[PROOFSTEP]
rw [sqrt_eq_rpow, ← ofReal_div, ofReal_div, ofReal_cpow]
[GOAL]
case h.e'_3
b : ℝ
hb : 0 < b
⊢ ↑(π / b) ^ ↑(1 / 2) / ↑2 = ↑(π / b) ^ (1 / 2) / 2
case h.e'_3.hx b : ℝ hb : 0 < b ⊢ 0 ≤ π / b
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_3.hx
b : ℝ
hb : 0 < b
⊢ 0 ≤ π / b
[PROOFSTEP]
exact (div_pos pi_pos hb).le
[GOAL]
⊢ Gamma (1 / 2) = sqrt π
[PROOFSTEP]
rw [Gamma_eq_integral one_half_pos, ← integral_comp_rpow_Ioi_of_pos zero_lt_two]
[GOAL]
⊢ ∫ (x : ℝ) in Ioi 0, (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) = sqrt π
[PROOFSTEP]
convert congr_arg (fun x : ℝ => 2 * x) (integral_gaussian_Ioi 1) using 1
[GOAL]
case h.e'_2
⊢ ∫ (x : ℝ) in Ioi 0, (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) =
2 * ∫ (x : ℝ) in Ioi 0, rexp (-1 * x ^ 2)
[PROOFSTEP]
rw [← integral_mul_left]
[GOAL]
case h.e'_2
⊢ ∫ (x : ℝ) in Ioi 0, (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) =
∫ (a : ℝ) in Ioi 0, 2 * rexp (-1 * a ^ 2)
[PROOFSTEP]
refine' set_integral_congr measurableSet_Ioi fun x hx => _
[GOAL]
case h.e'_2
x : ℝ
hx : x ∈ Ioi 0
⊢ (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) = 2 * rexp (-1 * x ^ 2)
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_2
x : ℝ
hx : x ∈ Ioi 0
⊢ (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) = 2 * rexp (-1 * x ^ 2)
[PROOFSTEP]
have : (x ^ (2 : ℝ)) ^ (1 / (2 : ℝ) - 1) = x⁻¹ :=
by
rw [← rpow_mul (le_of_lt hx)]
norm_num
rw [rpow_neg (le_of_lt hx), rpow_one]
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
⊢ (x ^ 2) ^ (1 / 2 - 1) = x⁻¹
[PROOFSTEP]
rw [← rpow_mul (le_of_lt hx)]
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
⊢ x ^ (2 * (1 / 2 - 1)) = x⁻¹
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
hx : x ∈ Ioi 0
⊢ x ^ (-1) = x⁻¹
[PROOFSTEP]
rw [rpow_neg (le_of_lt hx), rpow_one]
[GOAL]
case h.e'_2
x : ℝ
hx : x ∈ Ioi 0
this : (x ^ 2) ^ (1 / 2 - 1) = x⁻¹
⊢ (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) = 2 * rexp (-1 * x ^ 2)
[PROOFSTEP]
rw [smul_eq_mul, this]
[GOAL]
case h.e'_2
x : ℝ
hx : x ∈ Ioi 0
this : (x ^ 2) ^ (1 / 2 - 1) = x⁻¹
⊢ 2 * x ^ (2 - 1) * (rexp (-x ^ 2) * x⁻¹) = 2 * rexp (-1 * x ^ 2)
[PROOFSTEP]
field_simp [(ne_of_lt (show 0 < x from hx)).symm]
[GOAL]
case h.e'_2
x : ℝ
hx : x ∈ Ioi 0
this : (x ^ 2) ^ (1 / 2 - 1) = x⁻¹
⊢ 2 * x ^ (2 - 1) * rexp (-x ^ 2) = 2 * rexp (-x ^ 2) * x
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_2
x : ℝ
hx : x ∈ Ioi 0
this : (x ^ 2) ^ (1 / 2 - 1) = x⁻¹
⊢ 2 * x * rexp (-x ^ 2) = 2 * rexp (-x ^ 2) * x
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
⊢ sqrt π = 2 * (sqrt (π / 1) / 2)
[PROOFSTEP]
rw [div_one, ← mul_div_assoc, mul_comm, mul_div_cancel _ (two_ne_zero' ℝ)]
[GOAL]
⊢ Gamma (1 / 2) = ↑π ^ (1 / 2)
[PROOFSTEP]
convert congr_arg ((↑) : ℝ → ℂ) Real.Gamma_one_half_eq
[GOAL]
case h.e'_2
⊢ Gamma (1 / 2) = ↑(Real.Gamma (1 / 2))
[PROOFSTEP]
simpa only [one_div, ofReal_inv, ofReal_ofNat] using Gamma_ofReal (1 / 2)
[GOAL]
case h.e'_3
⊢ ↑π ^ (1 / 2) = ↑(sqrt π)
[PROOFSTEP]
rw [sqrt_eq_rpow, ofReal_cpow pi_pos.le, ofReal_div, ofReal_ofNat, ofReal_one]
[GOAL]
b✝ b : ℂ
c T : ℝ
⊢ ‖cexp (-b * (↑T + ↑c * I) ^ 2)‖ = rexp (-(b.re * T ^ 2 - ↑2 * b.im * c * T - b.re * c ^ 2))
[PROOFSTEP]
rw [Complex.norm_eq_abs, Complex.abs_exp, neg_mul, neg_re, ← re_add_im b]
[GOAL]
b✝ b : ℂ
c T : ℝ
⊢ rexp (-((↑b.re + ↑b.im * I) * (↑T + ↑c * I) ^ 2).re) =
rexp (-((↑b.re + ↑b.im * I).re * T ^ 2 - ↑2 * (↑b.re + ↑b.im * I).im * c * T - (↑b.re + ↑b.im * I).re * c ^ 2))
[PROOFSTEP]
simp only [sq, re_add_im, mul_re, mul_im, add_re, add_im, ofReal_re, ofReal_im, I_re, I_im]
[GOAL]
b✝ b : ℂ
c T : ℝ
⊢ rexp
(-(b.re * ((T + (c * 0 - 0 * 1)) * (T + (c * 0 - 0 * 1)) - (0 + (c * 1 + 0 * 0)) * (0 + (c * 1 + 0 * 0))) -
b.im * ((T + (c * 0 - 0 * 1)) * (0 + (c * 1 + 0 * 0)) + (0 + (c * 1 + 0 * 0)) * (T + (c * 0 - 0 * 1))))) =
rexp (-(b.re * (T * T) - ↑2 * b.im * c * T - b.re * (c * c)))
[PROOFSTEP]
ring_nf
[GOAL]
b : ℂ
hb : b.re ≠ 0
c T : ℝ
⊢ ‖cexp (-b * (↑T + ↑c * I) ^ 2)‖ = rexp (-(b.re * (T - b.im * c / b.re) ^ 2 - c ^ 2 * (b.im ^ 2 / b.re + b.re)))
[PROOFSTEP]
have :
b.re * T ^ 2 - 2 * b.im * c * T - b.re * c ^ 2 =
b.re * (T - b.im * c / b.re) ^ 2 - c ^ 2 * (b.im ^ 2 / b.re + b.re) :=
by field_simp; ring
[GOAL]
b : ℂ
hb : b.re ≠ 0
c T : ℝ
⊢ b.re * T ^ 2 - ↑2 * b.im * c * T - b.re * c ^ 2 = b.re * (T - b.im * c / b.re) ^ 2 - c ^ 2 * (b.im ^ 2 / b.re + b.re)
[PROOFSTEP]
field_simp
[GOAL]
b : ℂ
hb : b.re ≠ 0
c T : ℝ
⊢ (b.re * T ^ 2 - 2 * b.im * c * T - b.re * c ^ 2) * (b.re ^ 2 * b.re) =
b.re * (T * b.re - b.im * c) ^ 2 * b.re - b.re ^ 2 * (c ^ 2 * (b.im ^ 2 + b.re * b.re))
[PROOFSTEP]
ring
[GOAL]
b : ℂ
hb : b.re ≠ 0
c T : ℝ
this :
b.re * T ^ 2 - ↑2 * b.im * c * T - b.re * c ^ 2 = b.re * (T - b.im * c / b.re) ^ 2 - c ^ 2 * (b.im ^ 2 / b.re + b.re)
⊢ ‖cexp (-b * (↑T + ↑c * I) ^ 2)‖ = rexp (-(b.re * (T - b.im * c / b.re) ^ 2 - c ^ 2 * (b.im ^ 2 / b.re + b.re)))
[PROOFSTEP]
rw [norm_cexp_neg_mul_sq_add_mul_I, this]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
⊢ ‖verticalIntegral b c T‖ ≤ 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
have vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (T + y * I) ^ 2)‖ ≤ exp (-(b.re * T ^ 2 - (2 : ℝ) * |b.im| * |c| * T - b.re * c ^ 2)) :=
by
intro T hT c y hy
rw [norm_cexp_neg_mul_sq_add_mul_I b, exp_le_exp, neg_le_neg_iff]
refine' sub_le_sub (sub_le_sub (le_refl _) (mul_le_mul_of_nonneg_right _ hT)) _
· (conv_lhs => rw [mul_assoc]); (conv_rhs => rw [mul_assoc])
refine' mul_le_mul_of_nonneg_left ((le_abs_self _).trans _) zero_le_two
rw [abs_mul]
exact mul_le_mul_of_nonneg_left hy (abs_nonneg _)
· refine' mul_le_mul_of_nonneg_left _ hb.le
rwa [sq_le_sq]
-- now main proof
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
⊢ ∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
intro T hT c y hy
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
rw [norm_cexp_neg_mul_sq_add_mul_I b, exp_le_exp, neg_le_neg_iff]
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2 ≤ b.re * T ^ 2 - ↑2 * b.im * y * T - b.re * y ^ 2
[PROOFSTEP]
refine' sub_le_sub (sub_le_sub (le_refl _) (mul_le_mul_of_nonneg_right _ hT)) _
[GOAL]
case refine'_1
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ ↑2 * b.im * y ≤ 2 * |b.im| * |c|
[PROOFSTEP]
conv_lhs => rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
| ↑2 * b.im * y
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
| ↑2 * b.im * y
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
| ↑2 * b.im * y
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case refine'_1
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ ↑2 * (b.im * y) ≤ 2 * |b.im| * |c|
[PROOFSTEP]
conv_rhs => rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
| 2 * |b.im| * |c|
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
| 2 * |b.im| * |c|
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
| 2 * |b.im| * |c|
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case refine'_1
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ ↑2 * (b.im * y) ≤ 2 * (|b.im| * |c|)
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left ((le_abs_self _).trans _) zero_le_two
[GOAL]
case refine'_1
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ |b.im * y| ≤ |b.im| * |c|
[PROOFSTEP]
rw [abs_mul]
[GOAL]
case refine'_1
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ |b.im| * |y| ≤ |b.im| * |c|
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left hy (abs_nonneg _)
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ b.re * y ^ 2 ≤ b.re * c ^ 2
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ hb.le
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c✝ T✝ : ℝ
hT✝ : 0 ≤ T✝
T : ℝ
hT : 0 ≤ T
c y : ℝ
hy : |y| ≤ |c|
⊢ y ^ 2 ≤ c ^ 2
[PROOFSTEP]
rwa [sq_le_sq]
-- now main proof
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ‖verticalIntegral b c T‖ ≤ 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
refine' (intervalIntegral.norm_integral_le_of_norm_le_const _).trans _
[GOAL]
case refine'_1
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ℝ
case refine'_2
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ∀ (x : ℝ), x ∈ Ι 0 c → ‖I * (cexp (-b * (↑T + ↑x * I) ^ 2) - cexp (-b * (↑T - ↑x * I) ^ 2))‖ ≤ ?refine'_1
case refine'_3
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ?refine'_1 * |c - 0| ≤ 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
pick_goal 3
[GOAL]
case refine'_3
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ?refine'_1 * |c - 0| ≤ 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
rw [sub_zero]
[GOAL]
case refine'_3
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ?refine'_1 * |c| ≤ 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
case refine'_1
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ℝ
[PROOFSTEP]
conv_lhs => simp only [mul_comm _ |c|]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| ?refine'_1 * |c|
[PROOFSTEP]
simp only [mul_comm _ |c|]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| ?refine'_1 * |c|
[PROOFSTEP]
simp only [mul_comm _ |c|]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| ?refine'_1 * |c|
[PROOFSTEP]
simp only [mul_comm _ |c|]
[GOAL]
case refine'_3
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ |c| * ?refine'_1 ≤ 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
case refine'_1
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ℝ
[PROOFSTEP]
conv_rhs =>
conv =>
congr
rw [mul_comm]
rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
conv =>
congr
rw [mul_comm]
rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
conv =>
congr
rw [mul_comm]
rw [mul_assoc]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
conv =>
congr
rw [mul_comm]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
congr
rw [mul_comm]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
congr
[GOAL]
case a
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| 2 * |c|
case a
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
rw [mul_comm]
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
| |c| * 2 * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
⊢ ∀ (x : ℝ),
x ∈ Ι 0 c →
‖I * (cexp (-b * (↑T + ↑x * I) ^ 2) - cexp (-b * (↑T - ↑x * I) ^ 2))‖ ≤
2 * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
intro y hy
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
⊢ ‖I * (cexp (-b * (↑T + ↑y * I) ^ 2) - cexp (-b * (↑T - ↑y * I) ^ 2))‖ ≤
2 * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
have absy : |y| ≤ |c| := by
rcases le_or_lt 0 c with (h | h)
· rw [uIoc_of_le h] at hy
rw [abs_of_nonneg h, abs_of_pos hy.1]
exact hy.2
· rw [uIoc_of_lt h] at hy
rw [abs_of_neg h, abs_of_nonpos hy.2, neg_le_neg_iff]
exact hy.1.le
[GOAL]
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
⊢ |y| ≤ |c|
[PROOFSTEP]
rcases le_or_lt 0 c with (h | h)
[GOAL]
case inl
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
h : 0 ≤ c
⊢ |y| ≤ |c|
[PROOFSTEP]
rw [uIoc_of_le h] at hy
[GOAL]
case inl
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ioc 0 c
h : 0 ≤ c
⊢ |y| ≤ |c|
[PROOFSTEP]
rw [abs_of_nonneg h, abs_of_pos hy.1]
[GOAL]
case inl
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ioc 0 c
h : 0 ≤ c
⊢ y ≤ c
[PROOFSTEP]
exact hy.2
[GOAL]
case inr
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
h : c < 0
⊢ |y| ≤ |c|
[PROOFSTEP]
rw [uIoc_of_lt h] at hy
[GOAL]
case inr
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ioc c 0
h : c < 0
⊢ |y| ≤ |c|
[PROOFSTEP]
rw [abs_of_neg h, abs_of_nonpos hy.2, neg_le_neg_iff]
[GOAL]
case inr
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ioc c 0
h : c < 0
⊢ c ≤ y
[PROOFSTEP]
exact hy.1.le
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
absy : |y| ≤ |c|
⊢ ‖I * (cexp (-b * (↑T + ↑y * I) ^ 2) - cexp (-b * (↑T - ↑y * I) ^ 2))‖ ≤
2 * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
rw [norm_mul, Complex.norm_eq_abs, abs_I, one_mul, two_mul]
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
absy : |y| ≤ |c|
⊢ ‖cexp (-b * (↑T + ↑y * I) ^ 2) - cexp (-b * (↑T - ↑y * I) ^ 2)‖ ≤
rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2)) +
rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
refine' (norm_sub_le _ _).trans (add_le_add (vert_norm_bound hT absy) _)
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
absy : |y| ≤ |c|
⊢ ‖cexp (-b * (↑T - ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
rw [← abs_neg y] at absy
[GOAL]
case refine'_2
b : ℂ
hb : 0 < b.re
c T : ℝ
hT : 0 ≤ T
vert_norm_bound :
∀ {T : ℝ},
0 ≤ T →
∀ {c y : ℝ},
|y| ≤ |c| → ‖cexp (-b * (↑T + ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
y : ℝ
hy : y ∈ Ι 0 c
absy : |(-y)| ≤ |c|
⊢ ‖cexp (-b * (↑T - ↑y * I) ^ 2)‖ ≤ rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))
[PROOFSTEP]
simpa only [neg_mul, ofReal_neg] using vert_norm_bound hT absy
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (verticalIntegral b c) atTop (𝓝 0)
[PROOFSTEP]
rw [tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun e => ‖verticalIntegral b c e‖) atTop (𝓝 0)
[PROOFSTEP]
refine'
tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds _ (eventually_of_forall fun _ => norm_nonneg _)
((eventually_ge_atTop (0 : ℝ)).mp (eventually_of_forall fun T hT => verticalIntegral_norm_le hb c hT))
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun T => 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))) atTop (𝓝 0)
[PROOFSTEP]
rw [(by ring : 0 = 2 * |c| * 0)]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ 0 = 2 * |c| * 0
[PROOFSTEP]
ring
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun T => 2 * |c| * rexp (-(b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2))) atTop (𝓝 (2 * |c| * 0))
[PROOFSTEP]
refine' (tendsto_exp_atBot.comp (tendsto_neg_atTop_atBot.comp _)).const_mul _
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun T => b.re * T ^ 2 - 2 * |b.im| * |c| * T - b.re * c ^ 2) atTop atTop
[PROOFSTEP]
apply tendsto_atTop_add_const_right
[GOAL]
case hf
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun x => b.re * x ^ 2 - 2 * |b.im| * |c| * x) atTop atTop
[PROOFSTEP]
simp_rw [sq, ← mul_assoc, ← sub_mul]
[GOAL]
case hf
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun x => (b.re * x - 2 * |b.im| * |c|) * x) atTop atTop
[PROOFSTEP]
refine' Tendsto.atTop_mul_atTop (tendsto_atTop_add_const_right _ _ _) tendsto_id
[GOAL]
case hf
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun x => b.re * x) atTop atTop
[PROOFSTEP]
exact (tendsto_const_mul_atTop_of_pos hb).mpr tendsto_id
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Integrable fun x => cexp (-b * (↑x + ↑c * I) ^ 2)
[PROOFSTEP]
refine'
⟨(Complex.continuous_exp.comp
(continuous_const.mul ((continuous_ofReal.add continuous_const).pow 2))).aestronglyMeasurable,
_⟩
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ HasFiniteIntegral fun x => cexp (-b * (↑x + ↑c * I) ^ 2)
[PROOFSTEP]
rw [← hasFiniteIntegral_norm_iff]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ HasFiniteIntegral fun a => ‖cexp (-b * (↑a + ↑c * I) ^ 2)‖
[PROOFSTEP]
simp_rw [norm_cexp_neg_mul_sq_add_mul_I' hb.ne', neg_sub _ (c ^ 2 * _), sub_eq_add_neg _ (b.re * _), Real.exp_add]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ HasFiniteIntegral fun a => rexp (c ^ 2 * (b.im ^ 2 / b.re + b.re)) * rexp (-(b.re * (a - b.im * c / b.re) ^ 2))
[PROOFSTEP]
suffices Integrable fun x : ℝ => exp (-(b.re * x ^ 2)) by
exact (Integrable.comp_sub_right this (b.im * c / b.re)).hasFiniteIntegral.const_mul _
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
this : Integrable fun x => rexp (-(b.re * x ^ 2))
⊢ HasFiniteIntegral fun a => rexp (c ^ 2 * (b.im ^ 2 / b.re + b.re)) * rexp (-(b.re * (a - b.im * c / b.re) ^ 2))
[PROOFSTEP]
exact (Integrable.comp_sub_right this (b.im * c / b.re)).hasFiniteIntegral.const_mul _
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Integrable fun x => rexp (-(b.re * x ^ 2))
[PROOFSTEP]
simp_rw [← neg_mul]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Integrable fun x => rexp (-b.re * x ^ 2)
[PROOFSTEP]
apply integrable_exp_neg_mul_sq hb
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ ∫ (x : ℝ), cexp (-b * (↑x + ↑c * I) ^ 2) = (↑π / b) ^ (1 / 2)
[PROOFSTEP]
refine'
tendsto_nhds_unique
(intervalIntegral_tendsto_integral (integrable_cexp_neg_mul_sq_add_real_mul_I hb c) tendsto_neg_atTop_atBot
tendsto_id)
_
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
⊢ Tendsto (fun i => ∫ (x : ℝ) in -i..id i, cexp (-b * (↑x + ↑c * I) ^ 2)) atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
set I₁ := fun T => ∫ x : ℝ in -T..T, cexp (-b * (x + c * I) ^ 2) with HI₁
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
⊢ Tendsto (fun i => ∫ (x : ℝ) in -i..id i, cexp (-b * (↑x + ↑c * I) ^ 2)) atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
let I₂ := fun T : ℝ => ∫ x : ℝ in -T..T, cexp (-b * (x : ℂ) ^ 2)
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
⊢ Tendsto (fun i => ∫ (x : ℝ) in -i..id i, cexp (-b * (↑x + ↑c * I) ^ 2)) atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
let I₄ := fun T : ℝ => ∫ y : ℝ in (0 : ℝ)..c, cexp (-b * (T + y * I) ^ 2)
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
⊢ Tendsto (fun i => ∫ (x : ℝ) in -i..id i, cexp (-b * (↑x + ↑c * I) ^ 2)) atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
let I₅ := fun T : ℝ => ∫ y : ℝ in (0 : ℝ)..c, cexp (-b * (-T + y * I) ^ 2)
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
⊢ Tendsto (fun i => ∫ (x : ℝ) in -i..id i, cexp (-b * (↑x + ↑c * I) ^ 2)) atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
have C : ∀ T : ℝ, I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0 :=
by
intro T
have :=
integral_boundary_rect_eq_zero_of_differentiableOn (fun z => cexp (-b * z ^ 2)) (-T) (T + c * I)
(by
refine' Differentiable.differentiableOn (Differentiable.const_mul _ _).cexp
exact differentiable_pow 2)
simpa only [neg_im, ofReal_im, neg_zero, ofReal_zero, zero_mul, add_zero, neg_re, ofReal_re, add_re, mul_re, I_re,
mul_zero, I_im, tsub_zero, add_im, mul_im, mul_one, zero_add, Algebra.id.smul_eq_mul, ofReal_neg] using this
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
⊢ ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
[PROOFSTEP]
intro T
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
⊢ I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
[PROOFSTEP]
have :=
integral_boundary_rect_eq_zero_of_differentiableOn (fun z => cexp (-b * z ^ 2)) (-T) (T + c * I)
(by
refine' Differentiable.differentiableOn (Differentiable.const_mul _ _).cexp
exact differentiable_pow 2)
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
⊢ DifferentiableOn ℂ (fun z => cexp (-b * z ^ 2)) (uIcc (-↑T).re (↑T + ↑c * I).re ×ℂ uIcc (-↑T).im (↑T + ↑c * I).im)
[PROOFSTEP]
refine' Differentiable.differentiableOn (Differentiable.const_mul _ _).cexp
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
⊢ Differentiable ℂ fun z => z ^ 2
[PROOFSTEP]
exact differentiable_pow 2
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
this :
(((∫ (x : ℝ) in (-↑T).re..(↑T + ↑c * I).re, (fun z => cexp (-b * z ^ 2)) (↑x + ↑(-↑T).im * I)) -
∫ (x : ℝ) in (-↑T).re..(↑T + ↑c * I).re, (fun z => cexp (-b * z ^ 2)) (↑x + ↑(↑T + ↑c * I).im * I)) +
I • ∫ (y : ℝ) in (-↑T).im..(↑T + ↑c * I).im, (fun z => cexp (-b * z ^ 2)) (↑(↑T + ↑c * I).re + ↑y * I)) -
I • ∫ (y : ℝ) in (-↑T).im..(↑T + ↑c * I).im, (fun z => cexp (-b * z ^ 2)) (↑(-↑T).re + ↑y * I) =
0
⊢ I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
[PROOFSTEP]
simpa only [neg_im, ofReal_im, neg_zero, ofReal_zero, zero_mul, add_zero, neg_re, ofReal_re, add_re, mul_re, I_re,
mul_zero, I_im, tsub_zero, add_im, mul_im, mul_one, zero_add, Algebra.id.smul_eq_mul, ofReal_neg] using this
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
C : ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
⊢ Tendsto (fun i => ∫ (x : ℝ) in -i..id i, cexp (-b * (↑x + ↑c * I) ^ 2)) atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
simp_rw [id.def, ← HI₁]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
C : ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
⊢ Tendsto I₁ atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
have : I₁ = fun T : ℝ => I₂ T + verticalIntegral b c T :=
by
ext1 T
specialize C T
rw [sub_eq_zero] at C
unfold verticalIntegral
rw [integral_const_mul, intervalIntegral.integral_sub]
· simp_rw [(fun a b => by rw [sq]; ring_nf : ∀ a b : ℂ, (a - b * I) ^ 2 = (-a + b * I) ^ 2)]
change I₁ T = I₂ T + I * (I₄ T - I₅ T)
rw [mul_sub, ← C]
abel
all_goals apply Continuous.intervalIntegrable; continuity
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
C : ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
⊢ I₁ = fun T => I₂ T + verticalIntegral b c T
[PROOFSTEP]
ext1 T
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
C : ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
T : ℝ
⊢ I₁ T = I₂ T + verticalIntegral b c T
[PROOFSTEP]
specialize C T
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
⊢ I₁ T = I₂ T + verticalIntegral b c T
[PROOFSTEP]
rw [sub_eq_zero] at C
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ I₁ T = I₂ T + verticalIntegral b c T
[PROOFSTEP]
unfold verticalIntegral
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ I₁ T = I₂ T + ∫ (y : ℝ) in 0 ..c, I * (cexp (-b * (↑T + ↑y * I) ^ 2) - cexp (-b * (↑T - ↑y * I) ^ 2))
[PROOFSTEP]
rw [integral_const_mul, intervalIntegral.integral_sub]
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ I₁ T =
I₂ T + I * ((∫ (x : ℝ) in 0 ..c, cexp (-b * (↑T + ↑x * I) ^ 2)) - ∫ (x : ℝ) in 0 ..c, cexp (-b * (↑T - ↑x * I) ^ 2))
[PROOFSTEP]
simp_rw [(fun a b => by rw [sq]; ring_nf : ∀ a b : ℂ, (a - b * I) ^ 2 = (-a + b * I) ^ 2)]
[GOAL]
b✝ : ℂ
hb : 0 < b✝.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b✝ * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b✝ * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b✝ * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b✝ * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b✝ * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
a b : ℂ
⊢ (a - b * I) ^ 2 = (-a + b * I) ^ 2
[PROOFSTEP]
rw [sq]
[GOAL]
b✝ : ℂ
hb : 0 < b✝.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b✝ * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b✝ * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b✝ * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b✝ * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b✝ * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
a b : ℂ
⊢ (a - b * I) * (a - b * I) = (-a + b * I) ^ 2
[PROOFSTEP]
ring_nf
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2) =
(∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)) +
I * ((∫ (x : ℝ) in 0 ..c, cexp (-b * (↑T + ↑x * I) ^ 2)) - ∫ (x : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑x * I) ^ 2))
[PROOFSTEP]
change I₁ T = I₂ T + I * (I₄ T - I₅ T)
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ I₁ T = I₂ T + I * (I₄ T - I₅ T)
[PROOFSTEP]
rw [mul_sub, ← C]
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ I₁ T = I₂ T + (I * I₄ T - (I₂ T - I₁ T + I * I₄ T))
[PROOFSTEP]
abel
[GOAL]
case h
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ I₁ T = I₂ T + (I * I₄ T - (I₂ T - I₁ T + I * I₄ T))
[PROOFSTEP]
abel
[GOAL]
case h.hf
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ IntervalIntegrable (fun x => cexp (-b * (↑T + ↑x * I) ^ 2)) volume 0 c
case h.hg
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ IntervalIntegrable (fun x => cexp (-b * (↑T - ↑x * I) ^ 2)) volume 0 c
[PROOFSTEP]
all_goals apply Continuous.intervalIntegrable; continuity
[GOAL]
case h.hf
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ IntervalIntegrable (fun x => cexp (-b * (↑T + ↑x * I) ^ 2)) volume 0 c
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case h.hf.hu
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ Continuous fun x => cexp (-b * (↑T + ↑x * I) ^ 2)
[PROOFSTEP]
continuity
[GOAL]
case h.hg
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ IntervalIntegrable (fun x => cexp (-b * (↑T - ↑x * I) ^ 2)) volume 0 c
[PROOFSTEP]
apply Continuous.intervalIntegrable
[GOAL]
case h.hg.hu
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
T : ℝ
C : I₂ T - I₁ T + I * I₄ T = I * I₅ T
⊢ Continuous fun x => cexp (-b * (↑T - ↑x * I) ^ 2)
[PROOFSTEP]
continuity
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
C : ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
this : I₁ = fun T => I₂ T + verticalIntegral b c T
⊢ Tendsto I₁ atTop (𝓝 ((↑π / b) ^ (1 / 2)))
[PROOFSTEP]
rw [this, ← add_zero ((π / b : ℂ) ^ (1 / 2 : ℂ)), ← integral_gaussian_complex hb]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
C : ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
this : I₁ = fun T => I₂ T + verticalIntegral b c T
⊢ Tendsto (fun T => I₂ T + verticalIntegral b c T) atTop (𝓝 ((∫ (x : ℝ), cexp (-b * ↑x ^ 2)) + 0))
[PROOFSTEP]
refine' Tendsto.add _ (tendsto_verticalIntegral hb c)
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℝ
I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2)
I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2)
I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2)
I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2)
C : ∀ (T : ℝ), I₂ T - I₁ T + I * I₄ T - I * I₅ T = 0
this : I₁ = fun T => I₂ T + verticalIntegral b c T
⊢ Tendsto (fun T => I₂ T) atTop (𝓝 (∫ (x : ℝ), cexp (-b * ↑x ^ 2)))
[PROOFSTEP]
exact intervalIntegral_tendsto_integral (integrable_cexp_neg_mul_sq hb) tendsto_neg_atTop_atBot tendsto_id
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℂ
⊢ ∫ (x : ℝ), cexp (-b * (↑x + c) ^ 2) = (↑π / b) ^ (1 / 2)
[PROOFSTEP]
rw [← re_add_im c]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℂ
⊢ ∫ (x : ℝ), cexp (-b * (↑x + (↑c.re + ↑c.im * I)) ^ 2) = (↑π / b) ^ (1 / 2)
[PROOFSTEP]
simp_rw [← add_assoc, ← ofReal_add]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℂ
⊢ ∫ (x : ℝ), cexp (-b * (↑(x + c.re) + ↑c.im * I) ^ 2) = (↑π / b) ^ (1 / 2)
[PROOFSTEP]
rw [integral_add_right_eq_self fun x : ℝ => cexp (-b * (↑x + ↑c.im * I) ^ 2)]
[GOAL]
b : ℂ
hb : 0 < b.re
c : ℂ
⊢ ∫ (x : ℝ), cexp (-b * (↑x + ↑c.im * I) ^ 2) = (↑π / b) ^ (1 / 2)
[PROOFSTEP]
apply integral_cexp_neg_mul_sq_add_real_mul_I hb
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
⊢ ∫ (x : ℝ), cexp (I * t * ↑x) * cexp (-b * ↑x ^ 2) = cexp (-t ^ 2 / (4 * b)) * (↑π / b) ^ (1 / 2)
[PROOFSTEP]
have : b ≠ 0 := by contrapose! hb; rw [hb, zero_re]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
⊢ b ≠ 0
[PROOFSTEP]
contrapose! hb
[GOAL]
b t : ℂ
hb : b = 0
⊢ b.re ≤ 0
[PROOFSTEP]
rw [hb, zero_re]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this : b ≠ 0
⊢ ∫ (x : ℝ), cexp (I * t * ↑x) * cexp (-b * ↑x ^ 2) = cexp (-t ^ 2 / (4 * b)) * (↑π / b) ^ (1 / 2)
[PROOFSTEP]
simp_rw [← Complex.exp_add]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this : b ≠ 0
⊢ ∫ (x : ℝ), cexp (I * t * ↑x + -b * ↑x ^ 2) = cexp (-t ^ 2 / (4 * b)) * (↑π / b) ^ (1 / 2)
[PROOFSTEP]
have : ∀ x : ℂ, I * t * x + -b * x ^ 2 = -t ^ 2 / ((4 : ℂ) * b) + -b * (x + -I * t / 2 / b) ^ 2 :=
by
intro x
ring_nf
rw [I_sq]
field_simp; ring
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this : b ≠ 0
⊢ ∀ (x : ℂ), I * t * x + -b * x ^ 2 = -t ^ 2 / (4 * b) + -b * (x + -I * t / 2 / b) ^ 2
[PROOFSTEP]
intro x
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this : b ≠ 0
x : ℂ
⊢ I * t * x + -b * x ^ 2 = -t ^ 2 / (4 * b) + -b * (x + -I * t / 2 / b) ^ 2
[PROOFSTEP]
ring_nf
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this : b ≠ 0
x : ℂ
⊢ I * t * x - x ^ 2 * b =
I * t * x * b * b⁻¹ + I ^ 2 * t ^ 2 * b * b⁻¹ ^ 2 * ↑(Int.negOfNat 1) * (↑(Int.ofNat 1) / ↑4) +
(t ^ 2 * b⁻¹ * ↑(Int.negOfNat 1) * (↑(Int.ofNat 1) / ↑4) - x ^ 2 * b)
[PROOFSTEP]
rw [I_sq]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this : b ≠ 0
x : ℂ
⊢ I * t * x - x ^ 2 * b =
I * t * x * b * b⁻¹ + -1 * t ^ 2 * b * b⁻¹ ^ 2 * ↑(Int.negOfNat 1) * (↑(Int.ofNat 1) / ↑4) +
(t ^ 2 * b⁻¹ * ↑(Int.negOfNat 1) * (↑(Int.ofNat 1) / ↑4) - x ^ 2 * b)
[PROOFSTEP]
field_simp
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this : b ≠ 0
x : ℂ
⊢ (I * t * x - x ^ 2 * b) * (b ^ 2 * 4 * (b * 4)) =
(I * t * x * (b ^ 2 * 4) + t ^ 2 * b) * (b * 4) + (-t ^ 2 - b * 4 * (x ^ 2 * b)) * (b ^ 2 * 4)
[PROOFSTEP]
ring
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℂ
this✝ : b ≠ 0
this : ∀ (x : ℂ), I * t * x + -b * x ^ 2 = -t ^ 2 / (4 * b) + -b * (x + -I * t / 2 / b) ^ 2
⊢ ∫ (x : ℝ), cexp (I * t * ↑x + -b * ↑x ^ 2) = cexp (-t ^ 2 / (4 * b)) * (↑π / b) ^ (1 / 2)
[PROOFSTEP]
simp_rw [this, Complex.exp_add, integral_mul_left, integral_cexp_neg_mul_sq_add_const hb]
[GOAL]
b : ℂ
hb : 0 < b.re
⊢ (𝓕 fun x => cexp (-↑π * b * ↑x ^ 2)) = fun t => 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
ext1 t
[GOAL]
case h
b : ℂ
hb : 0 < b.re
t : ℝ
⊢ 𝓕 (fun x => cexp (-↑π * b * ↑x ^ 2)) t = 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
simp_rw [fourierIntegral_eq_integral_exp_smul, smul_eq_mul]
[GOAL]
case h
b : ℂ
hb : 0 < b.re
t : ℝ
⊢ ∫ (v : ℝ), cexp (↑(-2 * π * v * t) * I) * cexp (-↑π * b * ↑v ^ 2) = 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
have h1 : 0 < re (π * b) := by rw [ofReal_mul_re]; exact mul_pos pi_pos hb
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℝ
⊢ 0 < (↑π * b).re
[PROOFSTEP]
rw [ofReal_mul_re]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℝ
⊢ 0 < π * b.re
[PROOFSTEP]
exact mul_pos pi_pos hb
[GOAL]
case h
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
⊢ ∫ (v : ℝ), cexp (↑(-2 * π * v * t) * I) * cexp (-↑π * b * ↑v ^ 2) = 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
have h2 : b ≠ 0 := by contrapose! hb; rw [hb, zero_re]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
⊢ b ≠ 0
[PROOFSTEP]
contrapose! hb
[GOAL]
b : ℂ
t : ℝ
h1 : 0 < (↑π * b).re
hb : b = 0
⊢ b.re ≤ 0
[PROOFSTEP]
rw [hb, zero_re]
[GOAL]
case h
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ ∫ (v : ℝ), cexp (↑(-2 * π * v * t) * I) * cexp (-↑π * b * ↑v ^ 2) = 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
convert _root_.fourier_transform_gaussian h1 (-2 * π * t) using 1
[GOAL]
case h.e'_2
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ ∫ (v : ℝ), cexp (↑(-2 * π * v * t) * I) * cexp (-↑π * b * ↑v ^ 2) =
∫ (x : ℝ), cexp (I * (-2 * ↑π * ↑t) * ↑x) * cexp (-(↑π * b) * ↑x ^ 2)
[PROOFSTEP]
congr 1 with x : 1
[GOAL]
case h.e'_2.e_f.h
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
x : ℝ
⊢ cexp (↑(-2 * π * x * t) * I) * cexp (-↑π * b * ↑x ^ 2) = cexp (I * (-2 * ↑π * ↑t) * ↑x) * cexp (-(↑π * b) * ↑x ^ 2)
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_2.e_f.h.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
x : ℝ
⊢ ↑(-2 * π * x * t) * I = I * (-2 * ↑π * ↑t) * ↑x
case h.e'_2.e_f.h.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
x : ℝ
⊢ -↑π * b * ↑x ^ 2 = -(↑π * b) * ↑x ^ 2
[PROOFSTEP]
any_goals push_cast ; ring
[GOAL]
case h.e'_2.e_f.h.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
x : ℝ
⊢ ↑(-2 * π * x * t) * I = I * (-2 * ↑π * ↑t) * ↑x
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_2.e_f.h.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
x : ℝ
⊢ -2 * ↑π * ↑x * ↑t * I = I * (-2 * ↑π * ↑t) * ↑x
[PROOFSTEP]
ring
[GOAL]
case h.e'_2.e_f.h.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
x : ℝ
⊢ -↑π * b * ↑x ^ 2 = -(↑π * b) * ↑x ^ 2
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_2.e_f.h.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
x : ℝ
⊢ -↑π * b * ↑x ^ 2 = -(↑π * b) * ↑x ^ 2
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2) = cexp (-(-2 * ↑π * ↑t) ^ 2 / (4 * (↑π * b))) * (↑π / (↑π * b)) ^ (1 / 2)
[PROOFSTEP]
conv_lhs => rw [mul_comm]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
| 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
| 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
| 1 / b ^ (1 / 2) * cexp (-↑π / b * ↑t ^ 2)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h.e'_3
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ cexp (-↑π / b * ↑t ^ 2) * (1 / b ^ (1 / 2)) = cexp (-(-2 * ↑π * ↑t) ^ 2 / (4 * (↑π * b))) * (↑π / (↑π * b)) ^ (1 / 2)
[PROOFSTEP]
congr 2
[GOAL]
case h.e'_3.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ -↑π / b * ↑t ^ 2 = -(-2 * ↑π * ↑t) ^ 2 / (4 * (↑π * b))
[PROOFSTEP]
field_simp [ofReal_ne_zero.mpr pi_ne_zero]
[GOAL]
case h.e'_3.e_a.e_z
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ ↑π * ↑t ^ 2 * (4 * (↑π * b)) = (2 * ↑π * ↑t) ^ 2 * b
[PROOFSTEP]
ring
[GOAL]
case h.e'_3.e_a
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ 1 / b ^ (1 / 2) = (↑π / (↑π * b)) ^ (1 / 2)
[PROOFSTEP]
rw [← div_div, div_self (ofReal_ne_zero.mpr pi_ne_zero), one_div, one_div b, inv_cpow]
[GOAL]
case h.e'_3.e_a.hx
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ arg b ≠ π
[PROOFSTEP]
rw [Ne.def, arg_eq_pi_iff, not_and_or, not_lt]
[GOAL]
case h.e'_3.e_a.hx
b : ℂ
hb : 0 < b.re
t : ℝ
h1 : 0 < (↑π * b).re
h2 : b ≠ 0
⊢ 0 ≤ b.re ∨ ¬b.im = 0
[PROOFSTEP]
exact Or.inl hb.le
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
s : ℝ
⊢ Tendsto (fun x => |x| ^ s * rexp (-a * x ^ 2)) (cocompact ℝ) (𝓝 0)
[PROOFSTEP]
conv in rexp _ => rw [← sq_abs]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
s x : ℝ
| rexp (-a * x ^ 2)
[PROOFSTEP]
rw [← sq_abs]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
s x : ℝ
| rexp (-a * x ^ 2)
[PROOFSTEP]
rw [← sq_abs]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
s x : ℝ
| rexp (-a * x ^ 2)
[PROOFSTEP]
rw [← sq_abs]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
s : ℝ
⊢ Tendsto (fun x => |x| ^ s * rexp (-a * |x| ^ 2)) (cocompact ℝ) (𝓝 0)
[PROOFSTEP]
erw [cocompact_eq, ← comap_abs_atTop,
@tendsto_comap'_iff _ _ _ (fun y => y ^ s * rexp (-a * y ^ 2)) _ _ _
(mem_atTop_sets.mpr ⟨0, fun b hb => ⟨b, abs_of_nonneg hb⟩⟩)]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
s : ℝ
⊢ Tendsto (fun y => y ^ s * rexp (-a * y ^ 2)) atTop (𝓝 0)
[PROOFSTEP]
exact
(rpow_mul_exp_neg_mul_sq_isLittleO_exp_neg ha s).tendsto_zero_of_tendsto
(tendsto_exp_atBot.comp <| tendsto_id.neg_const_mul_atTop (neg_lt_zero.mpr one_half_pos))
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s : ℝ
⊢ (fun x => cexp (-a * ↑x ^ 2)) =o[cocompact ℝ] fun x => |x| ^ s
[PROOFSTEP]
rw [← isLittleO_norm_left]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s : ℝ
⊢ (fun x => ‖cexp (-a * ↑x ^ 2)‖) =o[cocompact ℝ] fun x => |x| ^ s
[PROOFSTEP]
simp_rw [norm_cexp_neg_mul_sq]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s : ℝ
⊢ (fun x => rexp (-a.re * x ^ 2)) =o[cocompact ℝ] fun x => |x| ^ s
[PROOFSTEP]
apply isLittleO_of_tendsto'
[GOAL]
case hgf
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s : ℝ
⊢ ∀ᶠ (x : ℝ) in cocompact ℝ, |x| ^ s = 0 → rexp (-a.re * x ^ 2) = 0
[PROOFSTEP]
refine' Eventually.filter_mono cocompact_le_cofinite _
[GOAL]
case hgf
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s : ℝ
⊢ ∀ᶠ (x : ℝ) in cofinite, |x| ^ s = 0 → rexp (-a.re * x ^ 2) = 0
[PROOFSTEP]
refine' (eventually_cofinite_ne 0).mp (eventually_of_forall fun x hx h => _)
[GOAL]
case hgf
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s x : ℝ
hx : x ≠ 0
h : |x| ^ s = 0
⊢ rexp (-a.re * x ^ 2) = 0
[PROOFSTEP]
exact ((rpow_pos_of_pos (abs_pos.mpr hx) _).ne' h).elim
[GOAL]
case a
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s : ℝ
⊢ Tendsto (fun x => rexp (-a.re * x ^ 2) / |x| ^ s) (cocompact ℝ) (𝓝 0)
[PROOFSTEP]
refine'
Tendsto.congr' (Eventually.filter_mono cocompact_le_cofinite _)
(tendsto_zero_iff_norm_tendsto_zero.mp <| tendsto_rpow_abs_mul_exp_neg_mul_sq_cocompact ha (-s))
[GOAL]
case a
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s : ℝ
⊢ ∀ᶠ (x : ℝ) in cofinite, ‖|x| ^ (-s) * rexp (-a.re * x ^ 2)‖ = (fun x => rexp (-a.re * x ^ 2) / |x| ^ s) x
[PROOFSTEP]
refine' (eventually_cofinite_ne 0).mp (eventually_of_forall fun x _ => _)
[GOAL]
case a
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s x : ℝ
x✝ : x ≠ 0
⊢ ‖|x| ^ (-s) * rexp (-a.re * x ^ 2)‖ = (fun x => rexp (-a.re * x ^ 2) / |x| ^ s) x
[PROOFSTEP]
dsimp only
[GOAL]
case a
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
s x : ℝ
x✝ : x ≠ 0
⊢ ‖|x| ^ (-s) * rexp (-a.re * x ^ 2)‖ = rexp (-a.re * x ^ 2) / |x| ^ s
[PROOFSTEP]
rw [norm_mul, norm_of_nonneg (rpow_nonneg_of_nonneg (abs_nonneg _) _), mul_comm, rpow_neg (abs_nonneg x),
div_eq_mul_inv, norm_of_nonneg (exp_pos _).le]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
⊢ ∑' (n : ℤ), cexp (-↑π * a * ↑n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), cexp (-↑π / a * ↑n ^ 2)
[PROOFSTEP]
let f := fun x : ℝ => cexp (-π * a * (x : ℂ) ^ 2)
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
⊢ ∑' (n : ℤ), cexp (-↑π * a * ↑n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), cexp (-↑π / a * ↑n ^ 2)
[PROOFSTEP]
have h1 : 0 < (↑π * a).re := by
rw [ofReal_mul_re]
exact mul_pos pi_pos ha
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
⊢ 0 < (↑π * a).re
[PROOFSTEP]
rw [ofReal_mul_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
⊢ 0 < π * a.re
[PROOFSTEP]
exact mul_pos pi_pos ha
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
⊢ ∑' (n : ℤ), cexp (-↑π * a * ↑n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), cexp (-↑π / a * ↑n ^ 2)
[PROOFSTEP]
have h2 : 0 < (↑π / a).re := by
rw [div_eq_mul_inv, ofReal_mul_re, inv_re]
refine' mul_pos pi_pos (div_pos ha <| normSq_pos.mpr _)
contrapose! ha
rw [ha, zero_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
⊢ 0 < (↑π / a).re
[PROOFSTEP]
rw [div_eq_mul_inv, ofReal_mul_re, inv_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
⊢ 0 < π * (a.re / ↑normSq a)
[PROOFSTEP]
refine' mul_pos pi_pos (div_pos ha <| normSq_pos.mpr _)
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
⊢ a ≠ 0
[PROOFSTEP]
contrapose! ha
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
ha : a = 0
⊢ a.re ≤ 0
[PROOFSTEP]
rw [ha, zero_re]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
⊢ ∑' (n : ℤ), cexp (-↑π * a * ↑n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), cexp (-↑π / a * ↑n ^ 2)
[PROOFSTEP]
have f_bd : f =O[cocompact ℝ] fun x => |x| ^ (-2 : ℝ) :=
by
convert (isLittleO_exp_neg_mul_sq_cocompact h1 (-2)).isBigO using 2
dsimp only
congr 1
ring
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
⊢ f =O[cocompact ℝ] fun x => |x| ^ (-2)
[PROOFSTEP]
convert (isLittleO_exp_neg_mul_sq_cocompact h1 (-2)).isBigO using 2
[GOAL]
case h.e'_7.h
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
x✝ : ℝ
⊢ f x✝ = cexp (-(↑π * a) * ↑x✝ ^ 2)
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_7.h
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
x✝ : ℝ
⊢ cexp (-↑π * a * ↑x✝ ^ 2) = cexp (-(↑π * a) * ↑x✝ ^ 2)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_7.h.e_z
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
x✝ : ℝ
⊢ -↑π * a * ↑x✝ ^ 2 = -(↑π * a) * ↑x✝ ^ 2
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
f_bd : f =O[cocompact ℝ] fun x => |x| ^ (-2)
⊢ ∑' (n : ℤ), cexp (-↑π * a * ↑n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), cexp (-↑π / a * ↑n ^ 2)
[PROOFSTEP]
have Ff_bd : 𝓕 f =O[cocompact ℝ] fun x => |x| ^ (-2 : ℝ) :=
by
rw [fourier_transform_gaussian_pi ha]
convert (isLittleO_exp_neg_mul_sq_cocompact h2 (-2)).isBigO.const_mul_left ((1 : ℂ) / a ^ (1 / 2 : ℂ)) using 2
congr 1
ring_nf
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
f_bd : f =O[cocompact ℝ] fun x => |x| ^ (-2)
⊢ 𝓕 f =O[cocompact ℝ] fun x => |x| ^ (-2)
[PROOFSTEP]
rw [fourier_transform_gaussian_pi ha]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
f_bd : f =O[cocompact ℝ] fun x => |x| ^ (-2)
⊢ (fun t => 1 / a ^ (1 / 2) * cexp (-↑π / a * ↑t ^ 2)) =O[cocompact ℝ] fun x => |x| ^ (-2)
[PROOFSTEP]
convert (isLittleO_exp_neg_mul_sq_cocompact h2 (-2)).isBigO.const_mul_left ((1 : ℂ) / a ^ (1 / 2 : ℂ)) using 2
[GOAL]
case h.e'_7.h
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
f_bd : f =O[cocompact ℝ] fun x => |x| ^ (-2)
x✝ : ℝ
⊢ 1 / a ^ (1 / 2) * cexp (-↑π / a * ↑x✝ ^ 2) = 1 / a ^ (1 / 2) * cexp (-(↑π / a) * ↑x✝ ^ 2)
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_7.h.e_a
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
f_bd : f =O[cocompact ℝ] fun x => |x| ^ (-2)
x✝ : ℝ
⊢ cexp (-↑π / a * ↑x✝ ^ 2) = cexp (-(↑π / a) * ↑x✝ ^ 2)
[PROOFSTEP]
ring_nf
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℂ
ha : 0 < a.re
f : ℝ → ℂ := fun x => cexp (-↑π * a * ↑x ^ 2)
h1 : 0 < (↑π * a).re
h2 : 0 < (↑π / a).re
f_bd : f =O[cocompact ℝ] fun x => |x| ^ (-2)
Ff_bd : 𝓕 f =O[cocompact ℝ] fun x => |x| ^ (-2)
⊢ ∑' (n : ℤ), cexp (-↑π * a * ↑n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), cexp (-↑π / a * ↑n ^ 2)
[PROOFSTEP]
simpa only [fourier_transform_gaussian_pi ha, tsum_mul_left, Function.comp] using
Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay
(Complex.continuous_exp.comp (continuous_const.mul (continuous_ofReal.pow 2)) : Continuous f) one_lt_two f_bd Ff_bd
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
⊢ ∑' (n : ℤ), rexp (-π * a * ↑n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), rexp (-π / a * ↑n ^ 2)
[PROOFSTEP]
simpa only [← ofReal_inj, ofReal_mul, ofReal_tsum, ofReal_exp, ofReal_div, ofReal_pow, ofReal_int_cast, ofReal_neg,
ofReal_cpow ha.le, ofReal_ofNat, ofReal_one] using
Complex.tsum_exp_neg_mul_int_sq (by rwa [ofReal_re] : 0 < (a : ℂ).re)
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
a : ℝ
ha : 0 < a
⊢ 0 < (↑a).re
[PROOFSTEP]
rwa [ofReal_re]
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Gaussian", "llama_tokens": 61061} |
[GOAL]
e : ℤˣ
⊢ ‖↑e‖₊ = 1
[PROOFSTEP]
obtain rfl | rfl := units_eq_one_or e
[GOAL]
case inl
⊢ ‖↑1‖₊ = 1
[PROOFSTEP]
simp only [Units.coe_neg_one, Units.val_one, nnnorm_neg, nnnorm_one]
[GOAL]
case inr
⊢ ‖↑(-1)‖₊ = 1
[PROOFSTEP]
simp only [Units.coe_neg_one, Units.val_one, nnnorm_neg, nnnorm_one]
[GOAL]
e : ℤˣ
⊢ ‖↑e‖ = 1
[PROOFSTEP]
rw [← coe_nnnorm, nnnorm_coe_units, NNReal.coe_one]
[GOAL]
n : ℤ
⊢ ↑(toNat n) + ↑(toNat (-n)) = ‖n‖₊
[PROOFSTEP]
rw [← Nat.cast_add, toNat_add_toNat_neg_eq_natAbs, NNReal.coe_natAbs]
[GOAL]
n : ℤ
⊢ ↑(toNat n) + ↑(toNat (-n)) = ‖n‖
[PROOFSTEP]
simpa only [NNReal.coe_nat_cast, NNReal.coe_add] using congrArg NNReal.toReal (toNat_add_toNat_neg_eq_nnnorm n)
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Int", "llama_tokens": 410} |
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
⊢ DifferentiableWithinAt 𝕜 (↑iso ∘ f) s x ↔ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
refine' ⟨fun H => _, fun H => iso.differentiable.differentiableAt.comp_differentiableWithinAt x H⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
H : DifferentiableWithinAt 𝕜 (↑iso ∘ f) s x
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
have : DifferentiableWithinAt 𝕜 (iso.symm ∘ iso ∘ f) s x :=
iso.symm.differentiable.differentiableAt.comp_differentiableWithinAt x H
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
H : DifferentiableWithinAt 𝕜 (↑iso ∘ f) s x
this : DifferentiableWithinAt 𝕜 (↑(ContinuousLinearEquiv.symm iso) ∘ ↑iso ∘ f) s x
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
rwa [← Function.comp.assoc iso.symm iso f, iso.symm_comp_self] at this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
⊢ DifferentiableAt 𝕜 (↑iso ∘ f) x ↔ DifferentiableAt 𝕜 f x
[PROOFSTEP]
rw [← differentiableWithinAt_univ, ← differentiableWithinAt_univ, iso.comp_differentiableWithinAt_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
⊢ DifferentiableOn 𝕜 (↑iso ∘ f) s ↔ DifferentiableOn 𝕜 f s
[PROOFSTEP]
rw [DifferentiableOn, DifferentiableOn]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
⊢ (∀ (x : G), x ∈ s → DifferentiableWithinAt 𝕜 (↑iso ∘ f) s x) ↔ ∀ (x : G), x ∈ s → DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simp only [iso.comp_differentiableWithinAt_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
⊢ Differentiable 𝕜 (↑iso ∘ f) ↔ Differentiable 𝕜 f
[PROOFSTEP]
rw [← differentiableOn_univ, ← differentiableOn_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
⊢ DifferentiableOn 𝕜 (↑iso ∘ f) univ ↔ DifferentiableOn 𝕜 f univ
[PROOFSTEP]
exact iso.comp_differentiableOn_iff
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
⊢ HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x ↔ HasFDerivWithinAt f f' s x
[PROOFSTEP]
refine' ⟨fun H => _, fun H => iso.hasFDerivAt.comp_hasFDerivWithinAt x H⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
H : HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x
⊢ HasFDerivWithinAt f f' s x
[PROOFSTEP]
have A : f = iso.symm ∘ iso ∘ f := by
rw [← Function.comp.assoc, iso.symm_comp_self]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
H : HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x
⊢ f = ↑(ContinuousLinearEquiv.symm iso) ∘ ↑iso ∘ f
[PROOFSTEP]
rw [← Function.comp.assoc, iso.symm_comp_self]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
H : HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x
⊢ f = _root_.id ∘ f
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
H : HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x
A : f = ↑(ContinuousLinearEquiv.symm iso) ∘ ↑iso ∘ f
⊢ HasFDerivWithinAt f f' s x
[PROOFSTEP]
have B : f' = (iso.symm : F →L[𝕜] E).comp ((iso : E →L[𝕜] F).comp f') := by
rw [← ContinuousLinearMap.comp_assoc, iso.coe_symm_comp_coe, ContinuousLinearMap.id_comp]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
H : HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x
A : f = ↑(ContinuousLinearEquiv.symm iso) ∘ ↑iso ∘ f
⊢ f' = comp (↑(ContinuousLinearEquiv.symm iso)) (comp (↑iso) f')
[PROOFSTEP]
rw [← ContinuousLinearMap.comp_assoc, iso.coe_symm_comp_coe, ContinuousLinearMap.id_comp]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
H : HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x
A : f = ↑(ContinuousLinearEquiv.symm iso) ∘ ↑iso ∘ f
B : f' = comp (↑(ContinuousLinearEquiv.symm iso)) (comp (↑iso) f')
⊢ HasFDerivWithinAt f f' s x
[PROOFSTEP]
rw [A, B]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] E
H : HasFDerivWithinAt (↑iso ∘ f) (comp (↑iso) f') s x
A : f = ↑(ContinuousLinearEquiv.symm iso) ∘ ↑iso ∘ f
B : f' = comp (↑(ContinuousLinearEquiv.symm iso)) (comp (↑iso) f')
⊢ HasFDerivWithinAt (↑(ContinuousLinearEquiv.symm iso) ∘ ↑iso ∘ f)
(comp (↑(ContinuousLinearEquiv.symm iso)) (comp (↑iso) f')) s x
[PROOFSTEP]
exact iso.symm.hasFDerivAt.comp_hasFDerivWithinAt x H
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] E
⊢ HasStrictFDerivAt (↑iso ∘ f) (comp (↑iso) f') x ↔ HasStrictFDerivAt f f' x
[PROOFSTEP]
refine' ⟨fun H => _, fun H => iso.hasStrictFDerivAt.comp x H⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] E
H : HasStrictFDerivAt (↑iso ∘ f) (comp (↑iso) f') x
⊢ HasStrictFDerivAt f f' x
[PROOFSTEP]
convert iso.symm.hasStrictFDerivAt.comp x H using 1
[GOAL]
case h.e'_9
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] E
H : HasStrictFDerivAt (↑iso ∘ f) (comp (↑iso) f') x
⊢ f = fun x => ↑(ContinuousLinearEquiv.symm iso) ((↑iso ∘ f) x)
[PROOFSTEP]
ext z
[GOAL]
case h.e'_10
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] E
H : HasStrictFDerivAt (↑iso ∘ f) (comp (↑iso) f') x
⊢ f' = comp (↑(ContinuousLinearEquiv.symm iso)) (comp (↑iso) f')
[PROOFSTEP]
ext z
[GOAL]
case h.e'_9.h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] E
H : HasStrictFDerivAt (↑iso ∘ f) (comp (↑iso) f') x
z : G
⊢ f z = ↑(ContinuousLinearEquiv.symm iso) ((↑iso ∘ f) z)
[PROOFSTEP]
apply (iso.symm_apply_apply _).symm
[GOAL]
case h.e'_10.h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] E
H : HasStrictFDerivAt (↑iso ∘ f) (comp (↑iso) f') x
z : G
⊢ ↑f' z = ↑(comp (↑(ContinuousLinearEquiv.symm iso)) (comp (↑iso) f')) z
[PROOFSTEP]
apply (iso.symm_apply_apply _).symm
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] E
⊢ HasFDerivAt (↑iso ∘ f) (comp (↑iso) f') x ↔ HasFDerivAt f f' x
[PROOFSTEP]
simp_rw [← hasFDerivWithinAt_univ, iso.comp_hasFDerivWithinAt_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
f' : G →L[𝕜] F
⊢ HasFDerivWithinAt (↑iso ∘ f) f' s x ↔ HasFDerivWithinAt f (comp (↑(ContinuousLinearEquiv.symm iso)) f') s x
[PROOFSTEP]
rw [← iso.comp_hasFDerivWithinAt_iff, ← ContinuousLinearMap.comp_assoc, iso.coe_comp_coe_symm,
ContinuousLinearMap.id_comp]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
f' : G →L[𝕜] F
⊢ HasFDerivAt (↑iso ∘ f) f' x ↔ HasFDerivAt f (comp (↑(ContinuousLinearEquiv.symm iso)) f') x
[PROOFSTEP]
simp_rw [← hasFDerivWithinAt_univ, iso.comp_hasFDerivWithinAt_iff']
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderivWithin 𝕜 (↑iso ∘ f) s x = comp (↑iso) (fderivWithin 𝕜 f s x)
[PROOFSTEP]
by_cases h : DifferentiableWithinAt 𝕜 f s x
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
hxs : UniqueDiffWithinAt 𝕜 s x
h : DifferentiableWithinAt 𝕜 f s x
⊢ fderivWithin 𝕜 (↑iso ∘ f) s x = comp (↑iso) (fderivWithin 𝕜 f s x)
[PROOFSTEP]
rw [fderiv.comp_fderivWithin x iso.differentiableAt h hxs, iso.fderiv]
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
hxs : UniqueDiffWithinAt 𝕜 s x
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ fderivWithin 𝕜 (↑iso ∘ f) s x = comp (↑iso) (fderivWithin 𝕜 f s x)
[PROOFSTEP]
have : ¬DifferentiableWithinAt 𝕜 (iso ∘ f) s x := mt iso.comp_differentiableWithinAt_iff.1 h
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
s : Set G
x : G
hxs : UniqueDiffWithinAt 𝕜 s x
h : ¬DifferentiableWithinAt 𝕜 f s x
this : ¬DifferentiableWithinAt 𝕜 (↑iso ∘ f) s x
⊢ fderivWithin 𝕜 (↑iso ∘ f) s x = comp (↑iso) (fderivWithin 𝕜 f s x)
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt h, fderivWithin_zero_of_not_differentiableWithinAt this,
ContinuousLinearMap.comp_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
⊢ fderiv 𝕜 (↑iso ∘ f) x = comp (↑iso) (fderiv 𝕜 f x)
[PROOFSTEP]
rw [← fderivWithin_univ, ← fderivWithin_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : G → E
x : G
⊢ fderivWithin 𝕜 (↑iso ∘ f) univ x = comp (↑iso) (fderivWithin 𝕜 f univ x)
[PROOFSTEP]
exact iso.comp_fderivWithin uniqueDiffWithinAt_univ
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
⊢ DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x ↔ DifferentiableWithinAt 𝕜 f s (↑iso x)
[PROOFSTEP]
refine' ⟨fun H => _, fun H => H.comp x iso.differentiableWithinAt (mapsTo_preimage _ s)⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
H : DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x
⊢ DifferentiableWithinAt 𝕜 f s (↑iso x)
[PROOFSTEP]
have : DifferentiableWithinAt 𝕜 ((f ∘ iso) ∘ iso.symm) s (iso x) :=
by
rw [← iso.symm_apply_apply x] at H
apply H.comp (iso x) iso.symm.differentiableWithinAt
intro y hy
simpa only [mem_preimage, apply_symm_apply] using hy
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
H : DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x
⊢ DifferentiableWithinAt 𝕜 ((f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)) s (↑iso x)
[PROOFSTEP]
rw [← iso.symm_apply_apply x] at H
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
H : DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
⊢ DifferentiableWithinAt 𝕜 ((f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)) s (↑iso x)
[PROOFSTEP]
apply H.comp (iso x) iso.symm.differentiableWithinAt
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
H : DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
⊢ MapsTo (↑(ContinuousLinearEquiv.symm iso)) s (↑iso ⁻¹' s)
[PROOFSTEP]
intro y hy
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
H : DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
y : F
hy : y ∈ s
⊢ ↑(ContinuousLinearEquiv.symm iso) y ∈ ↑iso ⁻¹' s
[PROOFSTEP]
simpa only [mem_preimage, apply_symm_apply] using hy
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
H : DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x
this : DifferentiableWithinAt 𝕜 ((f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)) s (↑iso x)
⊢ DifferentiableWithinAt 𝕜 f s (↑iso x)
[PROOFSTEP]
rwa [Function.comp.assoc, iso.self_comp_symm] at this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
x : E
⊢ DifferentiableAt 𝕜 (f ∘ ↑iso) x ↔ DifferentiableAt 𝕜 f (↑iso x)
[PROOFSTEP]
simp only [← differentiableWithinAt_univ, ← iso.comp_right_differentiableWithinAt_iff, preimage_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
⊢ DifferentiableOn 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) ↔ DifferentiableOn 𝕜 f s
[PROOFSTEP]
refine' ⟨fun H y hy => _, fun H y hy => iso.comp_right_differentiableWithinAt_iff.2 (H _ hy)⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
H : DifferentiableOn 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s)
y : F
hy : y ∈ s
⊢ DifferentiableWithinAt 𝕜 f s y
[PROOFSTEP]
rw [← iso.apply_symm_apply y, ← comp_right_differentiableWithinAt_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
H : DifferentiableOn 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s)
y : F
hy : y ∈ s
⊢ DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) y)
[PROOFSTEP]
apply H
[GOAL]
case a
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
H : DifferentiableOn 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s)
y : F
hy : y ∈ s
⊢ ↑(ContinuousLinearEquiv.symm iso) y ∈ ↑iso ⁻¹' s
[PROOFSTEP]
simpa only [mem_preimage, apply_symm_apply] using hy
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
⊢ Differentiable 𝕜 (f ∘ ↑iso) ↔ Differentiable 𝕜 f
[PROOFSTEP]
simp only [← differentiableOn_univ, ← iso.comp_right_differentiableOn_iff, preimage_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
⊢ HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) x ↔ HasFDerivWithinAt f f' s (↑iso x)
[PROOFSTEP]
refine' ⟨fun H => _, fun H => H.comp x iso.hasFDerivWithinAt (mapsTo_preimage _ s)⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) x
⊢ HasFDerivWithinAt f f' s (↑iso x)
[PROOFSTEP]
rw [← iso.symm_apply_apply x] at H
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
⊢ HasFDerivWithinAt f f' s (↑iso x)
[PROOFSTEP]
have A : f = (f ∘ iso) ∘ iso.symm := by
rw [Function.comp.assoc, iso.self_comp_symm]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
⊢ f = (f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)
[PROOFSTEP]
rw [Function.comp.assoc, iso.self_comp_symm]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
⊢ f = f ∘ _root_.id
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
A : f = (f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)
⊢ HasFDerivWithinAt f f' s (↑iso x)
[PROOFSTEP]
have B : f' = (f'.comp (iso : E →L[𝕜] F)).comp (iso.symm : F →L[𝕜] E) := by
rw [ContinuousLinearMap.comp_assoc, iso.coe_comp_coe_symm, ContinuousLinearMap.comp_id]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
A : f = (f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)
⊢ f' = comp (comp f' ↑iso) ↑(ContinuousLinearEquiv.symm iso)
[PROOFSTEP]
rw [ContinuousLinearMap.comp_assoc, iso.coe_comp_coe_symm, ContinuousLinearMap.comp_id]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
A : f = (f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)
B : f' = comp (comp f' ↑iso) ↑(ContinuousLinearEquiv.symm iso)
⊢ HasFDerivWithinAt f f' s (↑iso x)
[PROOFSTEP]
rw [A, B]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
A : f = (f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)
B : f' = comp (comp f' ↑iso) ↑(ContinuousLinearEquiv.symm iso)
⊢ HasFDerivWithinAt ((f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso))
(comp (comp f' ↑iso) ↑(ContinuousLinearEquiv.symm iso)) s (↑iso x)
[PROOFSTEP]
apply H.comp (iso x) iso.symm.hasFDerivWithinAt
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
A : f = (f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)
B : f' = comp (comp f' ↑iso) ↑(ContinuousLinearEquiv.symm iso)
⊢ MapsTo (↑(ContinuousLinearEquiv.symm iso)) s (↑iso ⁻¹' s)
[PROOFSTEP]
intro y hy
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : F →L[𝕜] G
H : HasFDerivWithinAt (f ∘ ↑iso) (comp f' ↑iso) (↑iso ⁻¹' s) (↑(ContinuousLinearEquiv.symm iso) (↑iso x))
A : f = (f ∘ ↑iso) ∘ ↑(ContinuousLinearEquiv.symm iso)
B : f' = comp (comp f' ↑iso) ↑(ContinuousLinearEquiv.symm iso)
y : F
hy : y ∈ s
⊢ ↑(ContinuousLinearEquiv.symm iso) y ∈ ↑iso ⁻¹' s
[PROOFSTEP]
simpa only [mem_preimage, apply_symm_apply] using hy
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
x : E
f' : F →L[𝕜] G
⊢ HasFDerivAt (f ∘ ↑iso) (comp f' ↑iso) x ↔ HasFDerivAt f f' (↑iso x)
[PROOFSTEP]
simp only [← hasFDerivWithinAt_univ, ← comp_right_hasFDerivWithinAt_iff, preimage_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
f' : E →L[𝕜] G
⊢ HasFDerivWithinAt (f ∘ ↑iso) f' (↑iso ⁻¹' s) x ↔
HasFDerivWithinAt f (comp f' ↑(ContinuousLinearEquiv.symm iso)) s (↑iso x)
[PROOFSTEP]
rw [← iso.comp_right_hasFDerivWithinAt_iff, ContinuousLinearMap.comp_assoc, iso.coe_symm_comp_coe,
ContinuousLinearMap.comp_id]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
x : E
f' : E →L[𝕜] G
⊢ HasFDerivAt (f ∘ ↑iso) f' x ↔ HasFDerivAt f (comp f' ↑(ContinuousLinearEquiv.symm iso)) (↑iso x)
[PROOFSTEP]
simp only [← hasFDerivWithinAt_univ, ← iso.comp_right_hasFDerivWithinAt_iff', preimage_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
hxs : UniqueDiffWithinAt 𝕜 (↑iso ⁻¹' s) x
⊢ fderivWithin 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x = comp (fderivWithin 𝕜 f s (↑iso x)) ↑iso
[PROOFSTEP]
by_cases h : DifferentiableWithinAt 𝕜 f s (iso x)
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
hxs : UniqueDiffWithinAt 𝕜 (↑iso ⁻¹' s) x
h : DifferentiableWithinAt 𝕜 f s (↑iso x)
⊢ fderivWithin 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x = comp (fderivWithin 𝕜 f s (↑iso x)) ↑iso
[PROOFSTEP]
exact (iso.comp_right_hasFDerivWithinAt_iff.2 h.hasFDerivWithinAt).fderivWithin hxs
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
hxs : UniqueDiffWithinAt 𝕜 (↑iso ⁻¹' s) x
h : ¬DifferentiableWithinAt 𝕜 f s (↑iso x)
⊢ fderivWithin 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x = comp (fderivWithin 𝕜 f s (↑iso x)) ↑iso
[PROOFSTEP]
have : ¬DifferentiableWithinAt 𝕜 (f ∘ iso) (iso ⁻¹' s) x :=
by
intro h'
exact h (iso.comp_right_differentiableWithinAt_iff.1 h')
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
hxs : UniqueDiffWithinAt 𝕜 (↑iso ⁻¹' s) x
h : ¬DifferentiableWithinAt 𝕜 f s (↑iso x)
⊢ ¬DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x
[PROOFSTEP]
intro h'
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
hxs : UniqueDiffWithinAt 𝕜 (↑iso ⁻¹' s) x
h : ¬DifferentiableWithinAt 𝕜 f s (↑iso x)
h' : DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x
⊢ False
[PROOFSTEP]
exact h (iso.comp_right_differentiableWithinAt_iff.1 h')
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
s : Set F
x : E
hxs : UniqueDiffWithinAt 𝕜 (↑iso ⁻¹' s) x
h : ¬DifferentiableWithinAt 𝕜 f s (↑iso x)
this : ¬DifferentiableWithinAt 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x
⊢ fderivWithin 𝕜 (f ∘ ↑iso) (↑iso ⁻¹' s) x = comp (fderivWithin 𝕜 f s (↑iso x)) ↑iso
[PROOFSTEP]
rw [fderivWithin_zero_of_not_differentiableWithinAt h, fderivWithin_zero_of_not_differentiableWithinAt this,
ContinuousLinearMap.zero_comp]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
x : E
⊢ fderiv 𝕜 (f ∘ ↑iso) x = comp (fderiv 𝕜 f (↑iso x)) ↑iso
[PROOFSTEP]
rw [← fderivWithin_univ, ← fderivWithin_univ, ← iso.comp_right_fderivWithin, preimage_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
iso : E ≃L[𝕜] F
f : F → G
x : E
⊢ UniqueDiffWithinAt 𝕜 (↑iso ⁻¹' univ) x
[PROOFSTEP]
exact uniqueDiffWithinAt_univ
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasStrictFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
⊢ HasStrictFDerivAt g (↑(ContinuousLinearEquiv.symm f')) a
[PROOFSTEP]
replace hg := hg.prod_map' hg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
⊢ HasStrictFDerivAt g (↑(ContinuousLinearEquiv.symm f')) a
[PROOFSTEP]
replace hfg := hfg.prod_mk_nhds hfg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
⊢ HasStrictFDerivAt g (↑(ContinuousLinearEquiv.symm f')) a
[PROOFSTEP]
have :
(fun p : F × F => g p.1 - g p.2 - f'.symm (p.1 - p.2)) =O[𝓝 (a, a)] fun p : F × F =>
f' (g p.1 - g p.2) - (p.1 - p.2) :=
by
refine' ((f'.symm : F →L[𝕜] E).isBigO_comp _ _).congr (fun x => _) fun _ => rfl
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
⊢ (fun p => g p.fst - g p.snd - ↑(ContinuousLinearEquiv.symm f') (p.fst - p.snd)) =O[𝓝 (a, a)] fun p =>
↑f' (g p.fst - g p.snd) - (p.fst - p.snd)
[PROOFSTEP]
refine' ((f'.symm : F →L[𝕜] E).isBigO_comp _ _).congr (fun x => _) fun _ => rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
x : F × F
⊢ ↑↑(ContinuousLinearEquiv.symm f') (↑f' (g x.fst - g x.snd) - (x.fst - x.snd)) =
g x.fst - g x.snd - ↑(ContinuousLinearEquiv.symm f') (x.fst - x.snd)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
this :
(fun p => g p.fst - g p.snd - ↑(ContinuousLinearEquiv.symm f') (p.fst - p.snd)) =O[𝓝 (a, a)] fun p =>
↑f' (g p.fst - g p.snd) - (p.fst - p.snd)
⊢ HasStrictFDerivAt g (↑(ContinuousLinearEquiv.symm f')) a
[PROOFSTEP]
refine' this.trans_isLittleO _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
this :
(fun p => g p.fst - g p.snd - ↑(ContinuousLinearEquiv.symm f') (p.fst - p.snd)) =O[𝓝 (a, a)] fun p =>
↑f' (g p.fst - g p.snd) - (p.fst - p.snd)
⊢ (fun p => ↑f' (g p.fst - g p.snd) - (p.fst - p.snd)) =o[𝓝 (a, a)] fun p => p.fst - p.snd
[PROOFSTEP]
clear this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
⊢ (fun p => ↑f' (g p.fst - g p.snd) - (p.fst - p.snd)) =o[𝓝 (a, a)] fun p => p.fst - p.snd
[PROOFSTEP]
refine' ((hf.comp_tendsto hg).symm.congr' (hfg.mono _) (eventually_of_forall fun _ => rfl)).trans_isBigO _
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
⊢ ∀ (x : F × F),
f (g x.fst) = x.fst ∧ f (g x.snd) = x.snd →
(fun x =>
↑↑f' (((fun p => (g p.fst, g p.snd)) x).fst - ((fun p => (g p.fst, g p.snd)) x).snd) -
(f ((fun p => (g p.fst, g p.snd)) x).fst - f ((fun p => (g p.fst, g p.snd)) x).snd))
x =
↑f' (g x.fst - g x.snd) - (x.fst - x.snd)
[PROOFSTEP]
rintro p ⟨hp1, hp2⟩
[GOAL]
case refine'_1.intro
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
p : F × F
hp1 : f (g p.fst) = p.fst
hp2 : f (g p.snd) = p.snd
⊢ (fun x =>
↑↑f' (((fun p => (g p.fst, g p.snd)) x).fst - ((fun p => (g p.fst, g p.snd)) x).snd) -
(f ((fun p => (g p.fst, g p.snd)) x).fst - f ((fun p => (g p.fst, g p.snd)) x).snd))
p =
↑f' (g p.fst - g p.snd) - (p.fst - p.snd)
[PROOFSTEP]
simp [hp1, hp2]
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
⊢ (fun x => ((fun p => p.fst - p.snd) ∘ fun p => (g p.fst, g p.snd)) x) =O[𝓝 (a, a)] fun p => p.fst - p.snd
[PROOFSTEP]
refine (hf.isBigO_sub_rev.comp_tendsto hg).congr' (eventually_of_forall fun _ => rfl) (hfg.mono ?_)
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
⊢ ∀ (x : F × F),
f (g x.fst) = x.fst ∧ f (g x.snd) = x.snd →
((fun p => f p.fst - f p.snd) ∘ fun p => (g p.fst, g p.snd)) x = (fun p => p.fst - p.snd) x
[PROOFSTEP]
rintro p ⟨hp1, hp2⟩
[GOAL]
case refine'_2.intro
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hf : HasStrictFDerivAt f (↑f') (g a)
hg : ContinuousAt (fun p => (g p.fst, g p.snd)) (a, a)
hfg : ∀ᶠ (p : F × F) in 𝓝 (a, a), f (g p.fst) = p.fst ∧ f (g p.snd) = p.snd
p : F × F
hp1 : f (g p.fst) = p.fst
hp2 : f (g p.snd) = p.snd
⊢ ((fun p => f p.fst - f p.snd) ∘ fun p => (g p.fst, g p.snd)) p = (fun p => p.fst - p.snd) p
[PROOFSTEP]
simp only [(· ∘ ·), hp1, hp2]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
⊢ HasFDerivAt g (↑(ContinuousLinearEquiv.symm f')) a
[PROOFSTEP]
have : (fun x : F => g x - g a - f'.symm (x - a)) =O[𝓝 a] fun x : F => f' (g x - g a) - (x - a) :=
by
refine' ((f'.symm : F →L[𝕜] E).isBigO_comp _ _).congr (fun x => _) fun _ => rfl
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
⊢ (fun x => g x - g a - ↑(ContinuousLinearEquiv.symm f') (x - a)) =O[𝓝 a] fun x => ↑f' (g x - g a) - (x - a)
[PROOFSTEP]
refine' ((f'.symm : F →L[𝕜] E).isBigO_comp _ _).congr (fun x => _) fun _ => rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
x : F
⊢ ↑↑(ContinuousLinearEquiv.symm f') (↑f' (g x - g a) - (x - a)) = g x - g a - ↑(ContinuousLinearEquiv.symm f') (x - a)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
this : (fun x => g x - g a - ↑(ContinuousLinearEquiv.symm f') (x - a)) =O[𝓝 a] fun x => ↑f' (g x - g a) - (x - a)
⊢ HasFDerivAt g (↑(ContinuousLinearEquiv.symm f')) a
[PROOFSTEP]
refine' this.trans_isLittleO _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
this : (fun x => g x - g a - ↑(ContinuousLinearEquiv.symm f') (x - a)) =O[𝓝 a] fun x => ↑f' (g x - g a) - (x - a)
⊢ (fun x => ↑f' (g x - g a) - (x - a)) =o[𝓝 a] fun x' => x' - a
[PROOFSTEP]
clear this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
⊢ (fun x => ↑f' (g x - g a) - (x - a)) =o[𝓝 a] fun x' => x' - a
[PROOFSTEP]
refine' ((hf.comp_tendsto hg).symm.congr' (hfg.mono _) (eventually_of_forall fun _ => rfl)).trans_isBigO _
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
⊢ ∀ (x : F), f (g x) = x → (fun x => ↑↑f' (g x - g a) - (f (g x) - f (g a))) x = ↑f' (g x - g a) - (x - a)
[PROOFSTEP]
rintro p hp
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
p : F
hp : f (g p) = p
⊢ (fun x => ↑↑f' (g x - g a) - (f (g x) - f (g a))) p = ↑f' (g p - g a) - (p - a)
[PROOFSTEP]
simp [hp, hfg.self_of_nhds]
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
⊢ (fun x => ((fun x' => x' - g a) ∘ g) x) =O[𝓝 a] fun x' => x' - a
[PROOFSTEP]
refine' ((hf.isBigO_sub_rev f'.antilipschitz).comp_tendsto hg).congr' (eventually_of_forall fun _ => rfl) (hfg.mono _)
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
⊢ ∀ (x : F), f (g x) = x → ((fun x' => f x' - f (g a)) ∘ g) x = (fun x' => x' - a) x
[PROOFSTEP]
rintro p hp
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g✝ : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E ≃L[𝕜] F
g : F → E
a : F
hg : ContinuousAt g a
hf : HasFDerivAt f (↑f') (g a)
hfg : ∀ᶠ (y : F) in 𝓝 a, f (g y) = y
p : F
hp : f (g p) = p
⊢ ((fun x' => f x' - f (g a)) ∘ g) p = (fun x' => x' - a) p
[PROOFSTEP]
simp only [(· ∘ ·), hp, hfg.self_of_nhds]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
hf' : ∃ C, ∀ (z : E), ‖z‖ ≤ C * ‖↑f' z‖
⊢ ∀ᶠ (z : E) in 𝓝[s \ {x}] x, f z ≠ f x
[PROOFSTEP]
rw [nhdsWithin, diff_eq, ← inf_principal, ← inf_assoc, eventually_inf_principal]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
hf' : ∃ C, ∀ (z : E), ‖z‖ ≤ C * ‖↑f' z‖
⊢ ∀ᶠ (x_1 : E) in 𝓝 x ⊓ 𝓟 s, x_1 ∈ {x}ᶜ → f x_1 ≠ f x
[PROOFSTEP]
have A : (fun z => z - x) =O[𝓝[s] x] fun z => f' (z - x) :=
isBigO_iff.2 <| hf'.imp fun C hC => eventually_of_forall fun z => hC _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
hf' : ∃ C, ∀ (z : E), ‖z‖ ≤ C * ‖↑f' z‖
A : (fun z => z - x) =O[𝓝[s] x] fun z => ↑f' (z - x)
⊢ ∀ᶠ (x_1 : E) in 𝓝 x ⊓ 𝓟 s, x_1 ∈ {x}ᶜ → f x_1 ≠ f x
[PROOFSTEP]
have : (fun z => f z - f x) ~[𝓝[s] x] fun z => f' (z - x) := h.trans_isBigO A
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
hf' : ∃ C, ∀ (z : E), ‖z‖ ≤ C * ‖↑f' z‖
A : (fun z => z - x) =O[𝓝[s] x] fun z => ↑f' (z - x)
this : (fun z => f z - f x) ~[𝓝[s] x] fun z => ↑f' (z - x)
⊢ ∀ᶠ (x_1 : E) in 𝓝 x ⊓ 𝓟 s, x_1 ∈ {x}ᶜ → f x_1 ≠ f x
[PROOFSTEP]
simpa [not_imp_not, sub_eq_zero] using (A.trans this.isBigO_symm).eq_zero_imp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivAt f f' x
hf' : ∃ C, ∀ (z : E), ‖z‖ ≤ C * ‖↑f' z‖
⊢ ∀ᶠ (z : E) in 𝓝[{x}ᶜ] x, f z ≠ f x
[PROOFSTEP]
simpa only [compl_eq_univ_diff] using (hasFDerivWithinAt_univ.2 h).eventually_ne hf'
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
f' : E →L[ℝ] F
x : E
L : Filter E
⊢ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖) L (𝓝 0) ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ • (f x' - f x - ↑f' (x' - x))) L (𝓝 0)
[PROOFSTEP]
symm
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
f' : E →L[ℝ] F
x : E
L : Filter E
⊢ Tendsto (fun x' => ‖x' - x‖⁻¹ • (f x' - f x - ↑f' (x' - x))) L (𝓝 0) ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖) L (𝓝 0)
[PROOFSTEP]
rw [tendsto_iff_norm_tendsto_zero]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
f' : E →L[ℝ] F
x : E
L : Filter E
⊢ Tendsto (fun e => ‖‖e - x‖⁻¹ • (f e - f x - ↑f' (e - x)) - 0‖) L (𝓝 0) ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖) L (𝓝 0)
[PROOFSTEP]
refine' tendsto_congr fun x' => _
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
f' : E →L[ℝ] F
x : E
L : Filter E
x' : E
⊢ ‖‖x' - x‖⁻¹ • (f x' - f x - ↑f' (x' - x)) - 0‖ = ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖
[PROOFSTEP]
simp [norm_smul]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
f' : E →L[ℝ] F
x : E
hf : HasFDerivAt f f' x
v : E
⊢ Tendsto (fun c => c • (f (x + c⁻¹ • v) - f x)) atTop (𝓝 (↑f' v))
[PROOFSTEP]
apply hf.lim v
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
f' : E →L[ℝ] F
x : E
hf : HasFDerivAt f f' x
v : E
⊢ Tendsto (fun n => ‖n‖) atTop atTop
[PROOFSTEP]
rw [tendsto_atTop_atTop]
[GOAL]
E : Type u_1
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : E → F
f' : E →L[ℝ] F
x : E
hf : HasFDerivAt f f' x
v : E
⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ ‖a‖
[PROOFSTEP]
exact fun b => ⟨b, fun a ha => le_trans ha (le_abs_self _)⟩
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
x : E
h : HasFDerivWithinAt f f' s x
⊢ MapsTo (↑f') (tangentConeAt 𝕜 s x) (tangentConeAt 𝕜 (f '' s) (f x))
[PROOFSTEP]
rintro v ⟨c, d, dtop, clim, cdlim⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
x : E
h : HasFDerivWithinAt f f' s x
v : E
c : ℕ → 𝕜
d : ℕ → E
dtop : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) atTop atTop
cdlim : Tendsto (fun n => c n • d n) atTop (𝓝 v)
⊢ ↑f' v ∈ tangentConeAt 𝕜 (f '' s) (f x)
[PROOFSTEP]
refine' ⟨c, fun n => f (x + d n) - f x, mem_of_superset dtop _, clim, h.lim atTop dtop clim cdlim⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
x : E
h : HasFDerivWithinAt f f' s x
v : E
c : ℕ → 𝕜
d : ℕ → E
dtop : ∀ᶠ (n : ℕ) in atTop, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) atTop atTop
cdlim : Tendsto (fun n => c n • d n) atTop (𝓝 v)
⊢ {x_1 | (fun n => x + d n ∈ s) x_1} ⊆ {x_1 | (fun n => f x + (fun n => f (x + d n) - f x) n ∈ f '' s) x_1}
[PROOFSTEP]
simp (config := { contextual := true }) [-mem_image, mem_image_of_mem]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
x : E
h : HasFDerivWithinAt f f' s x
hs : UniqueDiffWithinAt 𝕜 s x
h' : DenseRange ↑f'
⊢ UniqueDiffWithinAt 𝕜 (f '' s) (f x)
[PROOFSTEP]
refine' ⟨h'.dense_of_mapsTo f'.continuous hs.1 _, h.continuousWithinAt.mem_closure_image hs.2⟩
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
x : E
h : HasFDerivWithinAt f f' s x
hs : UniqueDiffWithinAt 𝕜 s x
h' : DenseRange ↑f'
⊢ MapsTo ↑f' ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 s x)) ↑(Submodule.span 𝕜 (tangentConeAt 𝕜 (f '' s) (f x)))
[PROOFSTEP]
show Submodule.span 𝕜 (tangentConeAt 𝕜 s x) ≤ (Submodule.span 𝕜 (tangentConeAt 𝕜 (f '' s) (f x))).comap f'
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
x : E
h : HasFDerivWithinAt f f' s x
hs : UniqueDiffWithinAt 𝕜 s x
h' : DenseRange ↑f'
⊢ Submodule.span 𝕜 (tangentConeAt 𝕜 s x) ≤ Submodule.comap f' (Submodule.span 𝕜 (tangentConeAt 𝕜 (f '' s) (f x)))
[PROOFSTEP]
rw [Submodule.span_le]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
x : E
h : HasFDerivWithinAt f f' s x
hs : UniqueDiffWithinAt 𝕜 s x
h' : DenseRange ↑f'
⊢ tangentConeAt 𝕜 s x ⊆ ↑(Submodule.comap f' (Submodule.span 𝕜 (tangentConeAt 𝕜 (f '' s) (f x))))
[PROOFSTEP]
exact h.mapsTo_tangent_cone.mono Subset.rfl Submodule.subset_span
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
s : Set E
f' : E →L[𝕜] F
e : F ≃L[𝕜] E
⊢ UniqueDiffOn 𝕜 (↑e ⁻¹' s) ↔ UniqueDiffOn 𝕜 s
[PROOFSTEP]
rw [← e.image_symm_eq_preimage, e.symm.uniqueDiffOn_image_iff]
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Equiv", "llama_tokens": 39110} |
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
⊢ ∃ f, tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
[PROOFSTEP]
obtain ⟨d : ℝ, d_pos : 0 < d, hd : Euclidean.closedBall x d ⊆ s⟩ := Euclidean.nhds_basis_closedBall.mem_iff.1 hs
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
⊢ ∃ f, tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
[PROOFSTEP]
let c : ContDiffBump (toEuclidean x) :=
{ rIn := d / 2
rOut := d
rIn_pos := half_pos d_pos
rIn_lt_rOut := half_lt_self d_pos }
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
⊢ ∃ f, tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
[PROOFSTEP]
let f : E → ℝ := c ∘ toEuclidean
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
⊢ ∃ f, tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
[PROOFSTEP]
have f_supp : f.support ⊆ Euclidean.ball x d := by
intro y hy
have : toEuclidean y ∈ Function.support c := by
simpa only [Function.mem_support, Function.comp_apply, Ne.def] using hy
rwa [c.support_eq] at this
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
⊢ support f ⊆ Euclidean.ball x d
[PROOFSTEP]
intro y hy
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
y : E
hy : y ∈ support f
⊢ y ∈ Euclidean.ball x d
[PROOFSTEP]
have : toEuclidean y ∈ Function.support c := by simpa only [Function.mem_support, Function.comp_apply, Ne.def] using hy
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
y : E
hy : y ∈ support f
⊢ ↑toEuclidean y ∈ support ↑c
[PROOFSTEP]
simpa only [Function.mem_support, Function.comp_apply, Ne.def] using hy
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
y : E
hy : y ∈ support f
this : ↑toEuclidean y ∈ support ↑c
⊢ y ∈ Euclidean.ball x d
[PROOFSTEP]
rwa [c.support_eq] at this
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
⊢ ∃ f, tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
[PROOFSTEP]
have f_tsupp : tsupport f ⊆ Euclidean.closedBall x d :=
by
rw [tsupport, ← Euclidean.closure_ball _ d_pos.ne']
exact closure_mono f_supp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
⊢ tsupport f ⊆ Euclidean.closedBall x d
[PROOFSTEP]
rw [tsupport, ← Euclidean.closure_ball _ d_pos.ne']
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
⊢ closure (support f) ⊆ closure (Euclidean.ball x d)
[PROOFSTEP]
exact closure_mono f_supp
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ ∃ f, tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
[PROOFSTEP]
refine' ⟨f, f_tsupp.trans hd, _, _, _, _⟩
[GOAL]
case intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ HasCompactSupport f
[PROOFSTEP]
refine' isCompact_of_isClosed_bounded isClosed_closure _
[GOAL]
case intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ Metric.Bounded (tsupport f)
[PROOFSTEP]
have : Bounded (Euclidean.closedBall x d) := Euclidean.isCompact_closedBall.bounded
[GOAL]
case intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
this : Metric.Bounded (Euclidean.closedBall x d)
⊢ Metric.Bounded (tsupport f)
[PROOFSTEP]
apply this.mono _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
this : Metric.Bounded (Euclidean.closedBall x d)
⊢ tsupport f ⊆ Euclidean.closedBall x d
[PROOFSTEP]
refine' (IsClosed.closure_subset_iff Euclidean.isClosed_closedBall).2 _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
this : Metric.Bounded (Euclidean.closedBall x d)
⊢ support f ⊆ Euclidean.closedBall x d
[PROOFSTEP]
exact f_supp.trans Euclidean.ball_subset_closedBall
[GOAL]
case intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ ContDiff ℝ ⊤ f
[PROOFSTEP]
apply c.contDiff.comp
[GOAL]
case intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ ContDiff ℝ ⊤ ↑toEuclidean
[PROOFSTEP]
exact ContinuousLinearEquiv.contDiff _
[GOAL]
case intro.intro.refine'_3
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ range f ⊆ Icc 0 1
[PROOFSTEP]
rintro t ⟨y, rfl⟩
[GOAL]
case intro.intro.refine'_3.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
y : E
⊢ f y ∈ Icc 0 1
[PROOFSTEP]
exact ⟨c.nonneg, c.le_one⟩
[GOAL]
case intro.intro.refine'_4
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ f x = 1
[PROOFSTEP]
apply c.one_of_mem_closedBall
[GOAL]
case intro.intro.refine'_4
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ ↑toEuclidean x ∈ closedBall (↑toEuclidean x) c.rIn
[PROOFSTEP]
apply mem_closedBall_self
[GOAL]
case intro.intro.refine'_4.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
x : E
hs : s ∈ 𝓝 x
d : ℝ
d_pos : 0 < d
hd : Euclidean.closedBall x d ⊆ s
c : ContDiffBump (↑toEuclidean x) :=
{ rIn := d / 2, rOut := d, rIn_pos := (_ : 0 < d / 2), rIn_lt_rOut := (_ : d / 2 < d) }
f : E → ℝ := ↑c ∘ ↑toEuclidean
f_supp : support f ⊆ Euclidean.ball x d
f_tsupp : tsupport f ⊆ Euclidean.closedBall x d
⊢ 0 ≤ c.rIn
[PROOFSTEP]
exact (half_pos d_pos).le
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
rcases eq_empty_or_nonempty s with (rfl | h's)
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
hs : IsOpen ∅
⊢ ∃ f, support f = ∅ ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
exact
⟨fun _ => 0, Function.support_zero, contDiff_const, by
simp only [range_const, singleton_subset_iff, left_mem_Icc, zero_le_one]⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
hs : IsOpen ∅
⊢ (range fun x => 0) ⊆ Icc 0 1
[PROOFSTEP]
simp only [range_const, singleton_subset_iff, left_mem_Icc, zero_le_one]
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
let ι := { f : E → ℝ // f.support ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
obtain ⟨T, T_count, hT⟩ : ∃ T : Set ι, T.Countable ∧ ⋃ f ∈ T, support (f : E → ℝ) = s :=
by
have : ⋃ f : ι, (f : E → ℝ).support = s :=
by
refine' Subset.antisymm (iUnion_subset fun f => f.2.1) _
intro x hx
rcases exists_smooth_tsupport_subset (hs.mem_nhds hx) with ⟨f, hf⟩
let g : ι := ⟨f, (subset_tsupport f).trans hf.1, hf.2.1, hf.2.2.1, hf.2.2.2.1⟩
have : x ∈ support (g : E → ℝ) := by
simp only [hf.2.2.2.2, Subtype.coe_mk, mem_support, Ne.def, one_ne_zero, not_false_iff]
exact mem_iUnion_of_mem _ this
simp_rw [← this]
apply isOpen_iUnion_countable
rintro ⟨f, hf⟩
exact hf.2.2.1.continuous.isOpen_support
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
⊢ ∃ T, Set.Countable T ∧ ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
[PROOFSTEP]
have : ⋃ f : ι, (f : E → ℝ).support = s :=
by
refine' Subset.antisymm (iUnion_subset fun f => f.2.1) _
intro x hx
rcases exists_smooth_tsupport_subset (hs.mem_nhds hx) with ⟨f, hf⟩
let g : ι := ⟨f, (subset_tsupport f).trans hf.1, hf.2.1, hf.2.2.1, hf.2.2.2.1⟩
have : x ∈ support (g : E → ℝ) := by
simp only [hf.2.2.2.2, Subtype.coe_mk, mem_support, Ne.def, one_ne_zero, not_false_iff]
exact mem_iUnion_of_mem _ this
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
⊢ ⋃ (f : ι), support ↑f = s
[PROOFSTEP]
refine' Subset.antisymm (iUnion_subset fun f => f.2.1) _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
⊢ s ⊆ ⋃ (f : ι), support ↑f
[PROOFSTEP]
intro x hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
x : E
hx : x ∈ s
⊢ x ∈ ⋃ (f : ι), support ↑f
[PROOFSTEP]
rcases exists_smooth_tsupport_subset (hs.mem_nhds hx) with ⟨f, hf⟩
[GOAL]
case intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
x : E
hx : x ∈ s
f : E → ℝ
hf : tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
⊢ x ∈ ⋃ (f : ι), support ↑f
[PROOFSTEP]
let g : ι := ⟨f, (subset_tsupport f).trans hf.1, hf.2.1, hf.2.2.1, hf.2.2.2.1⟩
[GOAL]
case intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
x : E
hx : x ∈ s
f : E → ℝ
hf : tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
g : ι := { val := f, property := (_ : support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1) }
⊢ x ∈ ⋃ (f : ι), support ↑f
[PROOFSTEP]
have : x ∈ support (g : E → ℝ) := by
simp only [hf.2.2.2.2, Subtype.coe_mk, mem_support, Ne.def, one_ne_zero, not_false_iff]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
x : E
hx : x ∈ s
f : E → ℝ
hf : tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
g : ι := { val := f, property := (_ : support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1) }
⊢ x ∈ support ↑g
[PROOFSTEP]
simp only [hf.2.2.2.2, Subtype.coe_mk, mem_support, Ne.def, one_ne_zero, not_false_iff]
[GOAL]
case intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
x : E
hx : x ∈ s
f : E → ℝ
hf : tsupport f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 ∧ f x = 1
g : ι := { val := f, property := (_ : support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1) }
this : x ∈ support ↑g
⊢ x ∈ ⋃ (f : ι), support ↑f
[PROOFSTEP]
exact mem_iUnion_of_mem _ this
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
this : ⋃ (f : ι), support ↑f = s
⊢ ∃ T, Set.Countable T ∧ ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
[PROOFSTEP]
simp_rw [← this]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
this : ⋃ (f : ι), support ↑f = s
⊢ ∃ T,
Set.Countable T ∧
⋃ (f : { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }) (_ : f ∈ T),
support ↑f =
⋃ (f : { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }), support ↑f
[PROOFSTEP]
apply isOpen_iUnion_countable
[GOAL]
case H
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
this : ⋃ (f : ι), support ↑f = s
⊢ ∀ (i : { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }), IsOpen (support ↑i)
[PROOFSTEP]
rintro ⟨f, hf⟩
[GOAL]
case H.mk
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
this : ⋃ (f : ι), support ↑f = s
f : E → ℝ
hf : support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
⊢ IsOpen (support ↑{ val := f, property := hf })
[PROOFSTEP]
exact hf.2.2.1.continuous.isOpen_support
[GOAL]
case inr.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
obtain ⟨g0, hg⟩ : ∃ g0 : ℕ → ι, T = range g0 :=
by
apply Countable.exists_eq_range T_count
rcases eq_empty_or_nonempty T with (rfl | hT)
· simp only [iUnion_false, iUnion_empty] at hT
simp only [← hT, mem_empty_iff_false, iUnion_of_empty, iUnion_empty, Set.not_nonempty_empty] at h's
· exact hT
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
⊢ ∃ g0, T = range g0
[PROOFSTEP]
apply Countable.exists_eq_range T_count
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
⊢ Set.Nonempty T
[PROOFSTEP]
rcases eq_empty_or_nonempty T with (rfl | hT)
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T_count : Set.Countable ∅
hT : ⋃ (f : ι) (_ : f ∈ ∅), support ↑f = s
⊢ Set.Nonempty ∅
[PROOFSTEP]
simp only [iUnion_false, iUnion_empty] at hT
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T_count : Set.Countable ∅
hT :
⋃ (f : { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }) (_ : f ∈ ∅), support ↑f = s
⊢ Set.Nonempty ∅
[PROOFSTEP]
simp only [← hT, mem_empty_iff_false, iUnion_of_empty, iUnion_empty, Set.not_nonempty_empty] at h's
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT✝ : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
hT : Set.Nonempty T
⊢ Set.Nonempty T
[PROOFSTEP]
exact hT
[GOAL]
case inr.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
let g : ℕ → E → ℝ := fun n => (g0 n).1
[GOAL]
case inr.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
have g_s : ∀ n, support (g n) ⊆ s := fun n => (g0 n).2.1
[GOAL]
case inr.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
have s_g : ∀ x ∈ s, ∃ n, x ∈ support (g n) := by
intro x hx
rw [← hT] at hx
obtain ⟨i, iT, hi⟩ : ∃ (i : ι) (_ : i ∈ T), x ∈ support (i : E → ℝ) := by simpa only [mem_iUnion] using hx
rw [hg, mem_range] at iT
rcases iT with ⟨n, hn⟩
rw [← hn] at hi
exact ⟨n, hi⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
⊢ ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
[PROOFSTEP]
intro x hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
x : E
hx : x ∈ s
⊢ ∃ n, x ∈ support (g n)
[PROOFSTEP]
rw [← hT] at hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
x : E
hx : x ∈ ⋃ (f : ι) (_ : f ∈ T), support ↑f
⊢ ∃ n, x ∈ support (g n)
[PROOFSTEP]
obtain ⟨i, iT, hi⟩ : ∃ (i : ι) (_ : i ∈ T), x ∈ support (i : E → ℝ) := by simpa only [mem_iUnion] using hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
x : E
hx : x ∈ ⋃ (f : ι) (_ : f ∈ T), support ↑f
⊢ ∃ i x_1, x ∈ support ↑i
[PROOFSTEP]
simpa only [mem_iUnion] using hx
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
x : E
hx : x ∈ ⋃ (f : ι) (_ : f ∈ T), support ↑f
i : ι
iT : i ∈ T
hi : x ∈ support ↑i
⊢ ∃ n, x ∈ support (g n)
[PROOFSTEP]
rw [hg, mem_range] at iT
[GOAL]
case intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
x : E
hx : x ∈ ⋃ (f : ι) (_ : f ∈ T), support ↑f
i : ι
iT : ∃ y, g0 y = i
hi : x ∈ support ↑i
⊢ ∃ n, x ∈ support (g n)
[PROOFSTEP]
rcases iT with ⟨n, hn⟩
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
x : E
hx : x ∈ ⋃ (f : ι) (_ : f ∈ T), support ↑f
i : ι
hi : x ∈ support ↑i
n : ℕ
hn : g0 n = i
⊢ ∃ n, x ∈ support (g n)
[PROOFSTEP]
rw [← hn] at hi
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
x : E
hx : x ∈ ⋃ (f : ι) (_ : f ∈ T), support ↑f
i : ι
n : ℕ
hi : x ∈ support ↑(g0 n)
hn : g0 n = i
⊢ ∃ n, x ∈ support (g n)
[PROOFSTEP]
exact ⟨n, hi⟩
[GOAL]
case inr.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
have g_smooth : ∀ n, ContDiff ℝ ⊤ (g n) := fun n => (g0 n).2.2.2.1
[GOAL]
case inr.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
have g_comp_supp : ∀ n, HasCompactSupport (g n) := fun n => (g0 n).2.2.1
[GOAL]
case inr.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
have g_nonneg : ∀ n x, 0 ≤ g n x := fun n x => ((g0 n).2.2.2.2 (mem_range_self x)).1
[GOAL]
case inr.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
obtain ⟨δ, δpos, c, δc, c_lt⟩ : ∃ δ : ℕ → ℝ≥0, (∀ i : ℕ, 0 < δ i) ∧ ∃ c : NNReal, HasSum δ c ∧ c < 1
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
⊢ ∃ δ, (∀ (i : ℕ), 0 < δ i) ∧ ∃ c, HasSum δ c ∧ c < 1
case inr.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
exact NNReal.exists_pos_sum_of_countable one_ne_zero ℕ
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
have : ∀ n : ℕ, ∃ r : ℝ, 0 < r ∧ ∀ i ≤ n, ∀ x, ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ δ n :=
by
intro n
have : ∀ i, ∃ R, ∀ x, ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R :=
by
intro i
have : BddAbove (range fun x => ‖iteratedFDeriv ℝ i (fun x : E => g n x) x‖) :=
by
apply ((g_smooth n).continuous_iteratedFDeriv le_top).norm.bddAbove_range_of_hasCompactSupport
apply HasCompactSupport.comp_left _ norm_zero
apply (g_comp_supp n).iteratedFDeriv
rcases this with ⟨R, hR⟩
exact ⟨R, fun x => hR (mem_range_self _)⟩
choose R hR using this
let M := max (((Finset.range (n + 1)).image R).max' (by simp)) 1
have M_pos : 0 < M := zero_lt_one.trans_le (le_max_right _ _)
have δnpos : 0 < δ n := δpos n
have IR : ∀ i ≤ n, R i ≤ M := by
intro i hi
refine' le_trans _ (le_max_left _ _)
apply Finset.le_max'
apply Finset.mem_image_of_mem
simpa only [Finset.mem_range, Nat.lt_add_one_iff]
refine' ⟨M⁻¹ * δ n, by positivity, fun i hi x => _⟩
calc
‖iteratedFDeriv ℝ i ((M⁻¹ * δ n) • g n) x‖ = ‖(M⁻¹ * δ n) • iteratedFDeriv ℝ i (g n) x‖ := by
rw [iteratedFDeriv_const_smul_apply]; exact (g_smooth n).of_le le_top
_ = M⁻¹ * δ n * ‖iteratedFDeriv ℝ i (g n) x‖ := by rw [norm_smul, Real.norm_of_nonneg]; positivity
_ ≤ M⁻¹ * δ n * M := (mul_le_mul_of_nonneg_left ((hR i x).trans (IR i hi)) (by positivity))
_ = δ n := by field_simp [M_pos.ne']
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
⊢ ∀ (n : ℕ), ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
intro n
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
⊢ ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
have : ∀ i, ∃ R, ∀ x, ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R :=
by
intro i
have : BddAbove (range fun x => ‖iteratedFDeriv ℝ i (fun x : E => g n x) x‖) :=
by
apply ((g_smooth n).continuous_iteratedFDeriv le_top).norm.bddAbove_range_of_hasCompactSupport
apply HasCompactSupport.comp_left _ norm_zero
apply (g_comp_supp n).iteratedFDeriv
rcases this with ⟨R, hR⟩
exact ⟨R, fun x => hR (mem_range_self _)⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
⊢ ∀ (i : ℕ), ∃ R, ∀ (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R
[PROOFSTEP]
intro i
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n i : ℕ
⊢ ∃ R, ∀ (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R
[PROOFSTEP]
have : BddAbove (range fun x => ‖iteratedFDeriv ℝ i (fun x : E => g n x) x‖) :=
by
apply ((g_smooth n).continuous_iteratedFDeriv le_top).norm.bddAbove_range_of_hasCompactSupport
apply HasCompactSupport.comp_left _ norm_zero
apply (g_comp_supp n).iteratedFDeriv
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n i : ℕ
⊢ BddAbove (range fun x => ‖iteratedFDeriv ℝ i (fun x => g n x) x‖)
[PROOFSTEP]
apply ((g_smooth n).continuous_iteratedFDeriv le_top).norm.bddAbove_range_of_hasCompactSupport
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n i : ℕ
⊢ HasCompactSupport fun x => ‖iteratedFDeriv ℝ i (g n) x‖
[PROOFSTEP]
apply HasCompactSupport.comp_left _ norm_zero
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n i : ℕ
⊢ HasCompactSupport fun x => iteratedFDeriv ℝ i (g n) x
[PROOFSTEP]
apply (g_comp_supp n).iteratedFDeriv
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n i : ℕ
this : BddAbove (range fun x => ‖iteratedFDeriv ℝ i (fun x => g n x) x‖)
⊢ ∃ R, ∀ (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R
[PROOFSTEP]
rcases this with ⟨R, hR⟩
[GOAL]
case intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n i : ℕ
R : ℝ
hR : R ∈ upperBounds (range fun x => ‖iteratedFDeriv ℝ i (fun x => g n x) x‖)
⊢ ∃ R, ∀ (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R
[PROOFSTEP]
exact ⟨R, fun x => hR (mem_range_self _)⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
this : ∀ (i : ℕ), ∃ R, ∀ (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R
⊢ ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
choose R hR using this
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
⊢ ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
let M := max (((Finset.range (n + 1)).image R).max' (by simp)) 1
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
⊢ Finset.Nonempty (Finset.image R (Finset.range (n + 1)))
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
⊢ ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
have M_pos : 0 < M := zero_lt_one.trans_le (le_max_right _ _)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
⊢ ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
have δnpos : 0 < δ n := δpos n
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
⊢ ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
have IR : ∀ i ≤ n, R i ≤ M := by
intro i hi
refine' le_trans _ (le_max_left _ _)
apply Finset.le_max'
apply Finset.mem_image_of_mem
simpa only [Finset.mem_range, Nat.lt_add_one_iff]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
⊢ ∀ (i : ℕ), i ≤ n → R i ≤ M
[PROOFSTEP]
intro i hi
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
i : ℕ
hi : i ≤ n
⊢ R i ≤ M
[PROOFSTEP]
refine' le_trans _ (le_max_left _ _)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
i : ℕ
hi : i ≤ n
⊢ R i ≤
Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1))))
[PROOFSTEP]
apply Finset.le_max'
[GOAL]
case H2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
i : ℕ
hi : i ≤ n
⊢ R i ∈ Finset.image R (Finset.range (n + 1))
[PROOFSTEP]
apply Finset.mem_image_of_mem
[GOAL]
case H2.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
i : ℕ
hi : i ≤ n
⊢ i ∈ Finset.range (n + 1)
[PROOFSTEP]
simpa only [Finset.mem_range, Nat.lt_add_one_iff]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
⊢ ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
refine' ⟨M⁻¹ * δ n, by positivity, fun i hi x => _⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
⊢ 0 < M⁻¹ * ↑(δ n)
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
i : ℕ
hi : i ≤ n
x : E
⊢ ‖iteratedFDeriv ℝ i ((M⁻¹ * ↑(δ n)) • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
calc
‖iteratedFDeriv ℝ i ((M⁻¹ * δ n) • g n) x‖ = ‖(M⁻¹ * δ n) • iteratedFDeriv ℝ i (g n) x‖ := by
rw [iteratedFDeriv_const_smul_apply]; exact (g_smooth n).of_le le_top
_ = M⁻¹ * δ n * ‖iteratedFDeriv ℝ i (g n) x‖ := by rw [norm_smul, Real.norm_of_nonneg]; positivity
_ ≤ M⁻¹ * δ n * M := (mul_le_mul_of_nonneg_left ((hR i x).trans (IR i hi)) (by positivity))
_ = δ n := by field_simp [M_pos.ne']
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
i : ℕ
hi : i ≤ n
x : E
⊢ ‖iteratedFDeriv ℝ i ((M⁻¹ * ↑(δ n)) • g n) x‖ = ‖(M⁻¹ * ↑(δ n)) • iteratedFDeriv ℝ i (g n) x‖
[PROOFSTEP]
rw [iteratedFDeriv_const_smul_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
i : ℕ
hi : i ≤ n
x : E
⊢ ContDiff ℝ (↑i) (g n)
[PROOFSTEP]
exact (g_smooth n).of_le le_top
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
i : ℕ
hi : i ≤ n
x : E
⊢ ‖(M⁻¹ * ↑(δ n)) • iteratedFDeriv ℝ i (g n) x‖ = M⁻¹ * ↑(δ n) * ‖iteratedFDeriv ℝ i (g n) x‖
[PROOFSTEP]
rw [norm_smul, Real.norm_of_nonneg]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
i : ℕ
hi : i ≤ n
x : E
⊢ 0 ≤ M⁻¹ * ↑(δ n)
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
i : ℕ
hi : i ≤ n
x : E
⊢ 0 ≤ M⁻¹ * ↑(δ n)
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
n : ℕ
R : ℕ → ℝ
hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i
M : ℝ :=
max
(Finset.max' (Finset.image R (Finset.range (n + 1))) (_ : Finset.Nonempty (Finset.image R (Finset.range (n + 1)))))
1
M_pos : 0 < M
δnpos : 0 < δ n
IR : ∀ (i : ℕ), i ≤ n → R i ≤ M
i : ℕ
hi : i ≤ n
x : E
⊢ M⁻¹ * ↑(δ n) * M = ↑(δ n)
[PROOFSTEP]
field_simp [M_pos.ne']
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
this : ∀ (n : ℕ), ∃ r, 0 < r ∧ ∀ (i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r • g n) x‖ ≤ ↑(δ n)
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
choose r rpos hr using this
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
have S : ∀ x, Summable fun n => (r n • g n) x := by
intro x
refine' summable_of_nnnorm_bounded _ δc.summable fun n => _
rw [← NNReal.coe_le_coe, coe_nnnorm]
simpa only [norm_iteratedFDeriv_zero] using hr n 0 (zero_le n) x
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
⊢ ∀ (x : E), Summable fun n => (r n • g n) x
[PROOFSTEP]
intro x
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
x : E
⊢ Summable fun n => (r n • g n) x
[PROOFSTEP]
refine' summable_of_nnnorm_bounded _ δc.summable fun n => _
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
x : E
n : ℕ
⊢ ‖(r n • g n) x‖₊ ≤ δ n
[PROOFSTEP]
rw [← NNReal.coe_le_coe, coe_nnnorm]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
x : E
n : ℕ
⊢ ‖(r n • g n) x‖ ≤ ↑(δ n)
[PROOFSTEP]
simpa only [norm_iteratedFDeriv_zero] using hr n 0 (zero_le n) x
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
⊢ ∃ f, support f = s ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
[PROOFSTEP]
refine' ⟨fun x => ∑' n, (r n • g n) x, _, _, _⟩
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
⊢ (support fun x => ∑' (n : ℕ), (r n • g n) x) = s
[PROOFSTEP]
apply Subset.antisymm
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₁
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
⊢ (support fun x => ∑' (n : ℕ), (r n • g n) x) ⊆ s
[PROOFSTEP]
intro x hx
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₁
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : x ∈ support fun x => ∑' (n : ℕ), (r n • g n) x
⊢ x ∈ s
[PROOFSTEP]
simp only [Pi.smul_apply, Algebra.id.smul_eq_mul, mem_support, Ne.def] at hx
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₁
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : ¬∑' (n : ℕ), r n * ↑(g0 n) x = 0
⊢ x ∈ s
[PROOFSTEP]
contrapose! hx
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₁
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : ¬x ∈ s
⊢ ∑' (n : ℕ), r n * ↑(g0 n) x = 0
[PROOFSTEP]
have : ∀ n, g n x = 0 := by
intro n
contrapose! hx
exact g_s n hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : ¬x ∈ s
⊢ ∀ (n : ℕ), g n x = 0
[PROOFSTEP]
intro n
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : ¬x ∈ s
n : ℕ
⊢ g n x = 0
[PROOFSTEP]
contrapose! hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
n : ℕ
hx : (fun n => ↑(g0 n)) n x ≠ 0
⊢ x ∈ s
[PROOFSTEP]
exact g_s n hx
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₁
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : ¬x ∈ s
this : ∀ (n : ℕ), g n x = 0
⊢ ∑' (n : ℕ), r n * ↑(g0 n) x = 0
[PROOFSTEP]
simp only [this, mul_zero, tsum_zero]
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₂
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
⊢ s ⊆ support fun x => ∑' (n : ℕ), (r n • g n) x
[PROOFSTEP]
intro x hx
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₂
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : x ∈ s
⊢ x ∈ support fun x => ∑' (n : ℕ), (r n • g n) x
[PROOFSTEP]
obtain ⟨n, hn⟩ : ∃ n, x ∈ support (g n)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : x ∈ s
⊢ ∃ n, x ∈ support (g n)
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₂.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : x ∈ s
n : ℕ
hn : x ∈ support (g n)
⊢ x ∈ support fun x => ∑' (n : ℕ), (r n • g n) x
[PROOFSTEP]
exact s_g x hx
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₂.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : x ∈ s
n : ℕ
hn : x ∈ support (g n)
⊢ x ∈ support fun x => ∑' (n : ℕ), (r n • g n) x
[PROOFSTEP]
have I : 0 < r n * g n x := mul_pos (rpos n) (lt_of_le_of_ne (g_nonneg n x) (Ne.symm hn))
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_1.h₂.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
x : E
hx : x ∈ s
n : ℕ
hn : x ∈ support (g n)
I : 0 < r n * g n x
⊢ x ∈ support fun x => ∑' (n : ℕ), (r n • g n) x
[PROOFSTEP]
exact ne_of_gt (tsum_pos (S x) (fun i => mul_nonneg (rpos i).le (g_nonneg i x)) n I)
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
⊢ ContDiff ℝ ⊤ fun x => ∑' (n : ℕ), (r n • g n) x
[PROOFSTEP]
refine'
contDiff_tsum_of_eventually (fun n => (g_smooth n).const_smul (r n)) (fun k _ => (NNReal.hasSum_coe.2 δc).summable) _
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
⊢ ∀ (k : ℕ), ↑k ≤ ⊤ → ∀ᶠ (i : ℕ) in Filter.cofinite, ∀ (x : E), ‖iteratedFDeriv ℝ k (fun x => (r i • g i) x) x‖ ≤ ↑(δ i)
[PROOFSTEP]
intro i _
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
i : ℕ
a✝ : ↑i ≤ ⊤
⊢ ∀ᶠ (i_1 : ℕ) in Filter.cofinite, ∀ (x : E), ‖iteratedFDeriv ℝ i (fun x => (r i_1 • g i_1) x) x‖ ≤ ↑(δ i_1)
[PROOFSTEP]
simp only [Nat.cofinite_eq_atTop, Pi.smul_apply, Algebra.id.smul_eq_mul, Filter.eventually_atTop, ge_iff_le]
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
i : ℕ
a✝ : ↑i ≤ ⊤
⊢ ∃ a, ∀ (b : ℕ), a ≤ b → ∀ (x : E), ‖iteratedFDeriv ℝ i (fun x => r b * ↑(g0 b) x) x‖ ≤ ↑(δ b)
[PROOFSTEP]
exact ⟨i, fun n hn x => hr _ _ hn _⟩
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_3
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
⊢ (range fun x => ∑' (n : ℕ), (r n • g n) x) ⊆ Icc 0 1
[PROOFSTEP]
rintro - ⟨y, rfl⟩
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_3.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
y : E
⊢ (fun x => ∑' (n : ℕ), (r n • g n) x) y ∈ Icc 0 1
[PROOFSTEP]
refine' ⟨tsum_nonneg fun n => mul_nonneg (rpos n).le (g_nonneg n y), le_trans _ c_lt.le⟩
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_3.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
y : E
⊢ (fun x => ∑' (n : ℕ), (r n • g n) x) y ≤ (fun a => ↑a) c
[PROOFSTEP]
have A : HasSum (fun n => (δ n : ℝ)) c := NNReal.hasSum_coe.2 δc
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_3.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
y : E
A : HasSum (fun n => ↑(δ n)) ↑c
⊢ (fun x => ∑' (n : ℕ), (r n • g n) x) y ≤ (fun a => ↑a) c
[PROOFSTEP]
simp only [Pi.smul_apply, smul_eq_mul, NNReal.val_eq_coe, ← A.tsum_eq, ge_iff_le]
[GOAL]
case inr.intro.intro.intro.intro.intro.intro.intro.refine'_3.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
y : E
A : HasSum (fun n => ↑(δ n)) ↑c
⊢ ∑' (n : ℕ), r n * ↑(g0 n) y ≤ ∑' (b : ℕ), ↑(δ b)
[PROOFSTEP]
apply tsum_le_tsum _ (S y) A.summable
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
y : E
A : HasSum (fun n => ↑(δ n)) ↑c
⊢ ∀ (i : ℕ), (r i • g i) y ≤ ↑(δ i)
[PROOFSTEP]
intro n
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
y : E
A : HasSum (fun n => ↑(δ n)) ↑c
n : ℕ
⊢ (r n • g n) y ≤ ↑(δ n)
[PROOFSTEP]
apply (le_abs_self _).trans
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
s : Set E
hs : IsOpen s
h's : Set.Nonempty s
ι : Type u_1 := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1 }
T : Set ι
T_count : Set.Countable T
hT : ⋃ (f : ι) (_ : f ∈ T), support ↑f = s
g0 : ℕ → ι
hg : T = range g0
g : ℕ → E → ℝ := fun n => ↑(g0 n)
g_s : ∀ (n : ℕ), support (g n) ⊆ s
s_g : ∀ (x : E), x ∈ s → ∃ n, x ∈ support (g n)
g_smooth : ∀ (n : ℕ), ContDiff ℝ ⊤ (g n)
g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n)
g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x
δ : ℕ → ℝ≥0
δpos : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
δc : HasSum δ c
c_lt : c < 1
r : ℕ → ℝ
rpos : ∀ (n : ℕ), 0 < r n
hr : ∀ (n i : ℕ), i ≤ n → ∀ (x : E), ‖iteratedFDeriv ℝ i (r n • g n) x‖ ≤ ↑(δ n)
S : ∀ (x : E), Summable fun n => (r n • g n) x
y : E
A : HasSum (fun n => ↑(δ n)) ↑c
n : ℕ
⊢ |(r n • g n) y| ≤ ↑(δ n)
[PROOFSTEP]
simpa only [norm_iteratedFDeriv_zero] using hr n 0 (zero_le n) y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
⊢ ∃ u, ContDiff ℝ ⊤ u ∧ (∀ (x : E), u x ∈ Icc 0 1) ∧ support u = ball 0 1 ∧ ∀ (x : E), u (-x) = u x
[PROOFSTEP]
have A : IsOpen (ball (0 : E) 1) := isOpen_ball
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
⊢ ∃ u, ContDiff ℝ ⊤ u ∧ (∀ (x : E), u x ∈ Icc 0 1) ∧ support u = ball 0 1 ∧ ∀ (x : E), u (-x) = u x
[PROOFSTEP]
obtain ⟨f, f_support, f_smooth, f_range⟩ :
∃ f : E → ℝ, f.support = ball (0 : E) 1 ∧ ContDiff ℝ ⊤ f ∧ Set.range f ⊆ Set.Icc 0 1
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
⊢ ∃ f, support f = ball 0 1 ∧ ContDiff ℝ ⊤ f ∧ range f ⊆ Icc 0 1
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
⊢ ∃ u, ContDiff ℝ ⊤ u ∧ (∀ (x : E), u x ∈ Icc 0 1) ∧ support u = ball 0 1 ∧ ∀ (x : E), u (-x) = u x
[PROOFSTEP]
exact A.exists_smooth_support_eq
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
⊢ ∃ u, ContDiff ℝ ⊤ u ∧ (∀ (x : E), u x ∈ Icc 0 1) ∧ support u = ball 0 1 ∧ ∀ (x : E), u (-x) = u x
[PROOFSTEP]
have B : ∀ x, f x ∈ Icc (0 : ℝ) 1 := fun x => f_range (mem_range_self x)
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
⊢ ∃ u, ContDiff ℝ ⊤ u ∧ (∀ (x : E), u x ∈ Icc 0 1) ∧ support u = ball 0 1 ∧ ∀ (x : E), u (-x) = u x
[PROOFSTEP]
refine' ⟨fun x => (f x + f (-x)) / 2, _, _, _, _⟩
[GOAL]
case intro.intro.intro.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
⊢ ContDiff ℝ ⊤ fun x => (f x + f (-x)) / 2
[PROOFSTEP]
exact (f_smooth.add (f_smooth.comp contDiff_neg)).div_const _
[GOAL]
case intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
⊢ ∀ (x : E), (fun x => (f x + f (-x)) / 2) x ∈ Icc 0 1
[PROOFSTEP]
intro x
[GOAL]
case intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
⊢ (fun x => (f x + f (-x)) / 2) x ∈ Icc 0 1
[PROOFSTEP]
simp only [mem_Icc]
[GOAL]
case intro.intro.intro.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
⊢ 0 ≤ (f x + f (-x)) / 2 ∧ (f x + f (-x)) / 2 ≤ 1
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.refine'_2.left
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
⊢ 0 ≤ (f x + f (-x)) / 2
[PROOFSTEP]
linarith [(B x).1, (B (-x)).1]
[GOAL]
case intro.intro.intro.refine'_2.right
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
⊢ (f x + f (-x)) / 2 ≤ 1
[PROOFSTEP]
linarith [(B x).2, (B (-x)).2]
[GOAL]
case intro.intro.intro.refine'_3
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
⊢ (support fun x => (f x + f (-x)) / 2) = ball 0 1
[PROOFSTEP]
refine' support_eq_iff.2 ⟨fun x hx => _, fun x hx => _⟩
[GOAL]
case intro.intro.intro.refine'_3.refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : x ∈ ball 0 1
⊢ (f x + f (-x)) / 2 ≠ 0
[PROOFSTEP]
apply ne_of_gt
[GOAL]
case intro.intro.intro.refine'_3.refine'_1.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : x ∈ ball 0 1
⊢ 0 < (f x + f (-x)) / 2
[PROOFSTEP]
have : 0 < f x := by
apply lt_of_le_of_ne (B x).1 (Ne.symm _)
rwa [← f_support] at hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : x ∈ ball 0 1
⊢ 0 < f x
[PROOFSTEP]
apply lt_of_le_of_ne (B x).1 (Ne.symm _)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : x ∈ ball 0 1
⊢ f x ≠ 0
[PROOFSTEP]
rwa [← f_support] at hx
[GOAL]
case intro.intro.intro.refine'_3.refine'_1.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : x ∈ ball 0 1
this : 0 < f x
⊢ 0 < (f x + f (-x)) / 2
[PROOFSTEP]
linarith [(B (-x)).1]
[GOAL]
case intro.intro.intro.refine'_3.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : ¬x ∈ ball 0 1
⊢ (f x + f (-x)) / 2 = 0
[PROOFSTEP]
have I1 : x ∉ support f := by rwa [f_support]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : ¬x ∈ ball 0 1
⊢ ¬x ∈ support f
[PROOFSTEP]
rwa [f_support]
[GOAL]
case intro.intro.intro.refine'_3.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : ¬x ∈ ball 0 1
I1 : ¬x ∈ support f
⊢ (f x + f (-x)) / 2 = 0
[PROOFSTEP]
have I2 : -x ∉ support f := by
rw [f_support]
simpa using hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : ¬x ∈ ball 0 1
I1 : ¬x ∈ support f
⊢ ¬-x ∈ support f
[PROOFSTEP]
rw [f_support]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : ¬x ∈ ball 0 1
I1 : ¬x ∈ support f
⊢ ¬-x ∈ ball 0 1
[PROOFSTEP]
simpa using hx
[GOAL]
case intro.intro.intro.refine'_3.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : ¬x ∈ ball 0 1
I1 : ¬x ∈ support f
I2 : ¬-x ∈ support f
⊢ (f x + f (-x)) / 2 = 0
[PROOFSTEP]
simp only [mem_support, Classical.not_not] at I1 I2
[GOAL]
case intro.intro.intro.refine'_3.refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
hx : ¬x ∈ ball 0 1
I1 : f x = 0
I2 : f (-x) = 0
⊢ (f x + f (-x)) / 2 = 0
[PROOFSTEP]
simp only [I1, I2, add_zero, zero_div]
[GOAL]
case intro.intro.intro.refine'_4
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
⊢ ∀ (x : E), (fun x => (f x + f (-x)) / 2) (-x) = (fun x => (f x + f (-x)) / 2) x
[PROOFSTEP]
intro x
[GOAL]
case intro.intro.intro.refine'_4
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
A : IsOpen (ball 0 1)
f : E → ℝ
f_support : support f = ball 0 1
f_smooth : ContDiff ℝ ⊤ f
f_range : range f ⊆ Icc 0 1
B : ∀ (x : E), f x ∈ Icc 0 1
x : E
⊢ (fun x => (f x + f (-x)) / 2) (-x) = (fun x => (f x + f (-x)) / 2) x
[PROOFSTEP]
simp only [add_comm, neg_neg]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
⊢ HasCompactSupport u
[PROOFSTEP]
rw [hasCompactSupport_def, u_support, closure_ball (0 : E) one_ne_zero]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
⊢ IsCompact (closedBall 0 1)
[PROOFSTEP]
exact isCompact_closedBall _ _
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
⊢ 0 < ∫ (x : E), u x ∂μ
[PROOFSTEP]
refine' (integral_pos_iff_support_of_nonneg u_nonneg _).mpr _
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
⊢ Integrable fun i => u i
[PROOFSTEP]
exact (u_continuous E).integrable_of_hasCompactSupport (u_compact_support E)
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
⊢ 0 < ↑↑μ (support fun i => u i)
[PROOFSTEP]
rw [u_support]
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
⊢ 0 < ↑↑μ (ball 0 1)
[PROOFSTEP]
exact measure_ball_pos _ _ zero_lt_one
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
⊢ w D = fun x => ((∫ (x : E), u x ∂μ) * |D| ^ ↑(finrank ℝ E))⁻¹ • u (D⁻¹ • x)
[PROOFSTEP]
ext1 x
[GOAL]
case h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ w D x = ((∫ (x : E), u x ∂μ) * |D| ^ ↑(finrank ℝ E))⁻¹ • u (D⁻¹ • x)
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ 0 ≤ w D x
[PROOFSTEP]
apply mul_nonneg _ (u_nonneg _)
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ 0 ≤ ((∫ (x : E), u x ∂μ) * |D| ^ ↑(finrank ℝ E))⁻¹
[PROOFSTEP]
apply inv_nonneg.2
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ 0 ≤ (∫ (x : E), u x ∂μ) * |D| ^ ↑(finrank ℝ E)
[PROOFSTEP]
apply mul_nonneg (u_int_pos E).le
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ 0 ≤ |D| ^ ↑(finrank ℝ E)
[PROOFSTEP]
norm_cast
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ 0 ≤ |D| ^ finrank ℝ E
[PROOFSTEP]
apply pow_nonneg (abs_nonneg D)
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x y : E
⊢ ∀ (a : E), a ∈ closedBall 0 1 → 0 ≤ 1
[PROOFSTEP]
simp only [zero_le_one, imp_true_iff]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
⊢ ∫ (x : E), w D x ∂μ = 1
[PROOFSTEP]
simp_rw [w, integral_smul]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
⊢ ((∫ (x : E), u x ∂μ) * |D| ^ ↑(finrank ℝ E))⁻¹ • ∫ (a : E), u (D⁻¹ • a) ∂μ = 1
[PROOFSTEP]
rw [integral_comp_inv_smul_of_nonneg μ (u : E → ℝ) Dpos.le, abs_of_nonneg Dpos.le, mul_comm]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
⊢ (D ^ ↑(finrank ℝ E) * ∫ (x : E), u x ∂μ)⁻¹ • D ^ finrank ℝ E • ∫ (x : E), u x ∂μ = 1
[PROOFSTEP]
field_simp [Dpos.ne', (u_int_pos E).ne']
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
⊢ support (w D) = ball 0 D
[PROOFSTEP]
have B : D • ball (0 : E) 1 = ball 0 D := by rw [smul_unitBall Dpos.ne', Real.norm_of_nonneg Dpos.le]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
⊢ D • ball 0 1 = ball 0 D
[PROOFSTEP]
rw [smul_unitBall Dpos.ne', Real.norm_of_nonneg Dpos.le]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
B : D • ball 0 1 = ball 0 D
⊢ support (w D) = ball 0 D
[PROOFSTEP]
have C : D ^ finrank ℝ E ≠ 0 := by
norm_cast
exact pow_ne_zero _ Dpos.ne'
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
B : D • ball 0 1 = ball 0 D
⊢ D ^ ↑(finrank ℝ E) ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
B : D • ball 0 1 = ball 0 D
⊢ ¬D ^ finrank ℝ E = 0
[PROOFSTEP]
exact pow_ne_zero _ Dpos.ne'
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
B : D • ball 0 1 = ball 0 D
C : D ^ ↑(finrank ℝ E) ≠ 0
⊢ support (w D) = ball 0 D
[PROOFSTEP]
simp only [w_def, Algebra.id.smul_eq_mul, support_mul, support_inv, univ_inter, support_comp_inv_smul₀ Dpos.ne',
u_support, B, support_const (u_int_pos E).ne', support_const C, abs_of_nonneg Dpos.le]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
⊢ HasCompactSupport (w D)
[PROOFSTEP]
rw [hasCompactSupport_def, w_support E Dpos, closure_ball (0 : E) Dpos.ne']
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
Dpos : 0 < D
⊢ IsCompact (closedBall 0 D)
[PROOFSTEP]
exact isCompact_closedBall _ _
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ y D (-x) = y D x
[PROOFSTEP]
apply convolution_neg_of_neg_eq
[GOAL]
case h1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ ∀ᵐ (x : E) ∂μ, w D (-x) = w D x
[PROOFSTEP]
apply eventually_of_forall fun x => _
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ ∀ (x : E), w D (-x) = w D x
[PROOFSTEP]
simp only [w_def, Real.rpow_nat_cast, mul_inv_rev, smul_neg, u_neg, smul_eq_mul, forall_const]
[GOAL]
case h2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ ∀ᵐ (x : E) ∂μ, φ (-x) = φ x
[PROOFSTEP]
apply eventually_of_forall fun x => _
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
⊢ ∀ (x : E), φ (-x) = φ x
[PROOFSTEP]
simp only [φ, indicator, mem_closedBall, dist_zero_right, norm_neg, forall_const]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
⊢ y D x = 1
[PROOFSTEP]
change (w D ⋆[lsmul ℝ ℝ, μ] φ) x = 1
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 1
[PROOFSTEP]
have B : ∀ y : E, y ∈ ball x D → φ y = 1 :=
by
have C : ball x D ⊆ ball 0 1 := by
apply ball_subset_ball'
simp only [mem_closedBall] at hx
linarith only [hx]
intro y hy
simp only [φ, indicator, mem_closedBall, ite_eq_left_iff, not_le, zero_ne_one]
intro h'y
linarith only [mem_ball.1 (C hy), h'y]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
⊢ ∀ (y : E), y ∈ ball x D → φ y = 1
[PROOFSTEP]
have C : ball x D ⊆ ball 0 1 := by
apply ball_subset_ball'
simp only [mem_closedBall] at hx
linarith only [hx]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
⊢ ball x D ⊆ ball 0 1
[PROOFSTEP]
apply ball_subset_ball'
[GOAL]
case h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
⊢ D + dist x 0 ≤ 1
[PROOFSTEP]
simp only [mem_closedBall] at hx
[GOAL]
case h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : dist x 0 ≤ 1 - D
⊢ D + dist x 0 ≤ 1
[PROOFSTEP]
linarith only [hx]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
C : ball x D ⊆ ball 0 1
⊢ ∀ (y : E), y ∈ ball x D → φ y = 1
[PROOFSTEP]
intro y hy
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
C : ball x D ⊆ ball 0 1
y : E
hy : y ∈ ball x D
⊢ φ y = 1
[PROOFSTEP]
simp only [φ, indicator, mem_closedBall, ite_eq_left_iff, not_le, zero_ne_one]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
C : ball x D ⊆ ball 0 1
y : E
hy : y ∈ ball x D
⊢ 1 < dist y 0 → False
[PROOFSTEP]
intro h'y
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
C : ball x D ⊆ ball 0 1
y : E
hy : y ∈ ball x D
h'y : 1 < dist y 0
⊢ False
[PROOFSTEP]
linarith only [mem_ball.1 (C hy), h'y]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
B : ∀ (y : E), y ∈ ball x D → φ y = 1
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 1
[PROOFSTEP]
have Bx : φ x = 1 := B _ (mem_ball_self Dpos)
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
B : ∀ (y : E), y ∈ ball x D → φ y = 1
Bx : φ x = 1
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 1
[PROOFSTEP]
have B' : ∀ y, y ∈ ball x D → φ y = φ x := by rw [Bx]; exact B
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
B : ∀ (y : E), y ∈ ball x D → φ y = 1
Bx : φ x = 1
⊢ ∀ (y : E), y ∈ ball x D → φ y = φ x
[PROOFSTEP]
rw [Bx]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
B : ∀ (y : E), y ∈ ball x D → φ y = 1
Bx : φ x = 1
⊢ ∀ (y : E), y ∈ ball x D → φ y = 1
[PROOFSTEP]
exact B
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
B : ∀ (y : E), y ∈ ball x D → φ y = 1
Bx : φ x = 1
B' : ∀ (y : E), y ∈ ball x D → φ y = φ x
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 1
[PROOFSTEP]
rw [convolution_eq_right' _ (le_of_eq (w_support E Dpos)) B']
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : x ∈ closedBall 0 (1 - D)
B : ∀ (y : E), y ∈ ball x D → φ y = 1
Bx : φ x = 1
B' : ∀ (y : E), y ∈ ball x D → φ y = φ x
⊢ ∫ (t : E), ↑(↑(lsmul ℝ ℝ) (w D t)) (φ x) ∂μ = 1
[PROOFSTEP]
simp only [lsmul_apply, Algebra.id.smul_eq_mul, integral_mul_right, w_integral E Dpos, Bx, one_mul]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
⊢ y D x = 0
[PROOFSTEP]
change (w D ⋆[lsmul ℝ ℝ, μ] φ) x = 0
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 0
[PROOFSTEP]
have B : ∀ y, y ∈ ball x D → φ y = 0 := by
intro y hy
simp only [φ, indicator, mem_closedBall_zero_iff, ite_eq_right_iff, one_ne_zero]
intro h'y
have C : ball y D ⊆ ball 0 (1 + D) := by
apply ball_subset_ball'
rw [← dist_zero_right] at h'y
linarith only [h'y]
exact hx (C (mem_ball_comm.1 hy))
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
⊢ ∀ (y : E), y ∈ ball x D → φ y = 0
[PROOFSTEP]
intro y hy
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
y : E
hy : y ∈ ball x D
⊢ φ y = 0
[PROOFSTEP]
simp only [φ, indicator, mem_closedBall_zero_iff, ite_eq_right_iff, one_ne_zero]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
y : E
hy : y ∈ ball x D
⊢ ‖y‖ ≤ 1 → False
[PROOFSTEP]
intro h'y
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
y : E
hy : y ∈ ball x D
h'y : ‖y‖ ≤ 1
⊢ False
[PROOFSTEP]
have C : ball y D ⊆ ball 0 (1 + D) := by
apply ball_subset_ball'
rw [← dist_zero_right] at h'y
linarith only [h'y]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
y : E
hy : y ∈ ball x D
h'y : ‖y‖ ≤ 1
⊢ ball y D ⊆ ball 0 (1 + D)
[PROOFSTEP]
apply ball_subset_ball'
[GOAL]
case h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
y : E
hy : y ∈ ball x D
h'y : ‖y‖ ≤ 1
⊢ D + dist y 0 ≤ 1 + D
[PROOFSTEP]
rw [← dist_zero_right] at h'y
[GOAL]
case h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
y : E
hy : y ∈ ball x D
h'y : dist y 0 ≤ 1
⊢ D + dist y 0 ≤ 1 + D
[PROOFSTEP]
linarith only [h'y]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
y : E
hy : y ∈ ball x D
h'y : ‖y‖ ≤ 1
C : ball y D ⊆ ball 0 (1 + D)
⊢ False
[PROOFSTEP]
exact hx (C (mem_ball_comm.1 hy))
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
B : ∀ (y : E), y ∈ ball x D → φ y = 0
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 0
[PROOFSTEP]
have Bx : φ x = 0 := B _ (mem_ball_self Dpos)
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
B : ∀ (y : E), y ∈ ball x D → φ y = 0
Bx : φ x = 0
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 0
[PROOFSTEP]
have B' : ∀ y, y ∈ ball x D → φ y = φ x := by rw [Bx]; exact B
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
B : ∀ (y : E), y ∈ ball x D → φ y = 0
Bx : φ x = 0
⊢ ∀ (y : E), y ∈ ball x D → φ y = φ x
[PROOFSTEP]
rw [Bx]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
B : ∀ (y : E), y ∈ ball x D → φ y = 0
Bx : φ x = 0
⊢ ∀ (y : E), y ∈ ball x D → φ y = 0
[PROOFSTEP]
exact B
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
B : ∀ (y : E), y ∈ ball x D → φ y = 0
Bx : φ x = 0
B' : ∀ (y : E), y ∈ ball x D → φ y = φ x
⊢ w D ⋆[lsmul ℝ ℝ, x] φ = 0
[PROOFSTEP]
rw [convolution_eq_right' _ (le_of_eq (w_support E Dpos)) B']
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
hx : ¬x ∈ ball 0 (1 + D)
B : ∀ (y : E), y ∈ ball x D → φ y = 0
Bx : φ x = 0
B' : ∀ (y : E), y ∈ ball x D → φ y = φ x
⊢ ∫ (t : E), ↑(↑(lsmul ℝ ℝ) (w D t)) (φ x) ∂μ = 0
[PROOFSTEP]
simp only [lsmul_apply, Algebra.id.smul_eq_mul, Bx, mul_zero, integral_const]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
⊢ y D x ≤ 1
[PROOFSTEP]
have A : (w D ⋆[lsmul ℝ ℝ, μ] φ) x ≤ (w D ⋆[lsmul ℝ ℝ, μ] 1) x :=
by
apply convolution_mono_right_of_nonneg _ (w_nonneg D) (indicator_le_self' fun x _ => zero_le_one) fun _ => zero_le_one
refine'
(HasCompactSupport.convolutionExistsLeft _ (w_compact_support E Dpos) _ (locallyIntegrable_const (1 : ℝ))
x).integrable
exact continuous_const.mul ((u_continuous E).comp (continuous_id.const_smul _))
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
⊢ w D ⋆[lsmul ℝ ℝ, x] φ ≤ w D ⋆[lsmul ℝ ℝ, x] 1
[PROOFSTEP]
apply convolution_mono_right_of_nonneg _ (w_nonneg D) (indicator_le_self' fun x _ => zero_le_one) fun _ => zero_le_one
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
⊢ ConvolutionExistsAt (fun x => w D x) (fun x => 1) x (lsmul ℝ ℝ)
[PROOFSTEP]
refine'
(HasCompactSupport.convolutionExistsLeft _ (w_compact_support E Dpos) _ (locallyIntegrable_const (1 : ℝ))
x).integrable
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
⊢ Continuous (w D)
[PROOFSTEP]
exact continuous_const.mul ((u_continuous E).comp (continuous_id.const_smul _))
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
A : w D ⋆[lsmul ℝ ℝ, x] φ ≤ w D ⋆[lsmul ℝ ℝ, x] 1
⊢ y D x ≤ 1
[PROOFSTEP]
have B : (w D ⋆[lsmul ℝ ℝ, μ] fun _ => (1 : ℝ)) x = 1 := by
simp only [convolution, ContinuousLinearMap.map_smul, mul_inv_rev, coe_smul', mul_one, lsmul_apply,
Algebra.id.smul_eq_mul, integral_mul_left, w_integral E Dpos, Pi.smul_apply]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
A : w D ⋆[lsmul ℝ ℝ, x] φ ≤ w D ⋆[lsmul ℝ ℝ, x] 1
⊢ (w D ⋆[lsmul ℝ ℝ, x] fun x => 1) = 1
[PROOFSTEP]
simp only [convolution, ContinuousLinearMap.map_smul, mul_inv_rev, coe_smul', mul_one, lsmul_apply,
Algebra.id.smul_eq_mul, integral_mul_left, w_integral E Dpos, Pi.smul_apply]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
A : w D ⋆[lsmul ℝ ℝ, x] φ ≤ w D ⋆[lsmul ℝ ℝ, x] 1
B : (w D ⋆[lsmul ℝ ℝ, x] fun x => 1) = 1
⊢ y D x ≤ 1
[PROOFSTEP]
exact A.trans (le_of_eq B)
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : x ∈ ball 0 (1 + D)
⊢ 0 < y D x
[PROOFSTEP]
simp only [mem_ball_zero_iff] at hx
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
⊢ 0 < y D x
[PROOFSTEP]
refine' (integral_pos_iff_support_of_nonneg (w_mul_φ_nonneg D x) _).2 _
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
⊢ Integrable fun i => w D i * φ (x - i)
[PROOFSTEP]
have F_comp : HasCompactSupport (w D) := w_compact_support E Dpos
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
F_comp : HasCompactSupport (w D)
⊢ Integrable fun i => w D i * φ (x - i)
[PROOFSTEP]
have B : LocallyIntegrable (φ : E → ℝ) μ := (locallyIntegrable_const _).indicator measurableSet_closedBall
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
F_comp : HasCompactSupport (w D)
B : LocallyIntegrable φ
⊢ Integrable fun i => w D i * φ (x - i)
[PROOFSTEP]
have C : Continuous (w D : E → ℝ) := continuous_const.mul ((u_continuous E).comp (continuous_id.const_smul _))
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
F_comp : HasCompactSupport (w D)
B : LocallyIntegrable φ
C : Continuous (w D)
⊢ Integrable fun i => w D i * φ (x - i)
[PROOFSTEP]
exact (HasCompactSupport.convolutionExistsLeft (lsmul ℝ ℝ : ℝ →L[ℝ] ℝ →L[ℝ] ℝ) F_comp C B x).integrable
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
⊢ 0 < ↑↑μ (support fun i => w D i * φ (x - i))
[PROOFSTEP]
set z := (D / (1 + D)) • x with hz
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
⊢ 0 < ↑↑μ (support fun i => w D i * φ (x - i))
[PROOFSTEP]
have B : 0 < 1 + D := by linarith
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
⊢ 0 < 1 + D
[PROOFSTEP]
linarith
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
⊢ 0 < ↑↑μ (support fun i => w D i * φ (x - i))
[PROOFSTEP]
have C : ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊆ support fun y : E => w D y * φ (x - y) :=
by
intro y hy
simp only [support_mul, w_support E Dpos]
simp only [φ, mem_inter_iff, mem_support, Ne.def, indicator_apply_eq_zero, mem_closedBall_zero_iff, one_ne_zero,
not_forall, not_false_iff, exists_prop, and_true_iff]
constructor
· apply ball_subset_ball' _ hy
simp only [hz, norm_smul, abs_of_nonneg Dpos.le, abs_of_nonneg B.le, dist_zero_right, Real.norm_eq_abs, abs_div]
simp only [div_le_iff B, field_simps]
ring_nf
rfl
· have ID : ‖D / (1 + D) - 1‖ = 1 / (1 + D) := by
rw [Real.norm_of_nonpos]
· simp only [B.ne', Ne.def, not_false_iff, mul_one, neg_sub, add_tsub_cancel_right, field_simps]
· simp only [B.ne', Ne.def, not_false_iff, mul_one, field_simps]
apply div_nonpos_of_nonpos_of_nonneg _ B.le
linarith only
rw [← mem_closedBall_iff_norm']
apply closedBall_subset_closedBall' _ (ball_subset_closedBall hy)
rw [← one_smul ℝ x, dist_eq_norm, hz, ← sub_smul, one_smul, norm_smul, ID]
simp only [B.ne', div_le_iff B, field_simps]
nlinarith only [hx, D_lt_one]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
⊢ ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊆ support fun y => w D y * φ (x - y)
[PROOFSTEP]
intro y hy
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ y ∈ support fun y => w D y * φ (x - y)
[PROOFSTEP]
simp only [support_mul, w_support E Dpos]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ y ∈ ball 0 D ∩ support fun x_1 => φ (x - x_1)
[PROOFSTEP]
simp only [φ, mem_inter_iff, mem_support, Ne.def, indicator_apply_eq_zero, mem_closedBall_zero_iff, one_ne_zero,
not_forall, not_false_iff, exists_prop, and_true_iff]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ y ∈ ball 0 D ∧ ‖x - y‖ ≤ 1
[PROOFSTEP]
constructor
[GOAL]
case left
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ y ∈ ball 0 D
[PROOFSTEP]
apply ball_subset_ball' _ hy
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ D * (1 + D - ‖x‖) / (1 + D) + dist z 0 ≤ D
[PROOFSTEP]
simp only [hz, norm_smul, abs_of_nonneg Dpos.le, abs_of_nonneg B.le, dist_zero_right, Real.norm_eq_abs, abs_div]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ D * (1 + D - ‖x‖) / (1 + D) + D / (1 + D) * ‖x‖ ≤ D
[PROOFSTEP]
simp only [div_le_iff B, field_simps]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ D * (1 + D - ‖x‖) + D * ‖x‖ ≤ D * (1 + D)
[PROOFSTEP]
ring_nf
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ D + D ^ 2 ≤ D + D ^ 2
[PROOFSTEP]
rfl
[GOAL]
case right
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ ‖x - y‖ ≤ 1
[PROOFSTEP]
have ID : ‖D / (1 + D) - 1‖ = 1 / (1 + D) := by
rw [Real.norm_of_nonpos]
· simp only [B.ne', Ne.def, not_false_iff, mul_one, neg_sub, add_tsub_cancel_right, field_simps]
· simp only [B.ne', Ne.def, not_false_iff, mul_one, field_simps]
apply div_nonpos_of_nonpos_of_nonneg _ B.le
linarith only
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ ‖D / (1 + D) - 1‖ = 1 / (1 + D)
[PROOFSTEP]
rw [Real.norm_of_nonpos]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ -(D / (1 + D) - 1) = 1 / (1 + D)
[PROOFSTEP]
simp only [B.ne', Ne.def, not_false_iff, mul_one, neg_sub, add_tsub_cancel_right, field_simps]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ D / (1 + D) - 1 ≤ 0
[PROOFSTEP]
simp only [B.ne', Ne.def, not_false_iff, mul_one, field_simps]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ (D - (1 + D)) / (1 + D) ≤ 0
[PROOFSTEP]
apply div_nonpos_of_nonpos_of_nonneg _ B.le
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
⊢ D - (1 + D) ≤ 0
[PROOFSTEP]
linarith only
[GOAL]
case right
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
ID : ‖D / (1 + D) - 1‖ = 1 / (1 + D)
⊢ ‖x - y‖ ≤ 1
[PROOFSTEP]
rw [← mem_closedBall_iff_norm']
[GOAL]
case right
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
ID : ‖D / (1 + D) - 1‖ = 1 / (1 + D)
⊢ y ∈ closedBall x 1
[PROOFSTEP]
apply closedBall_subset_closedBall' _ (ball_subset_closedBall hy)
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
ID : ‖D / (1 + D) - 1‖ = 1 / (1 + D)
⊢ D * (1 + D - ‖x‖) / (1 + D) + dist z x ≤ 1
[PROOFSTEP]
rw [← one_smul ℝ x, dist_eq_norm, hz, ← sub_smul, one_smul, norm_smul, ID]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
ID : ‖D / (1 + D) - 1‖ = 1 / (1 + D)
⊢ D * (1 + D - ‖x‖) / (1 + D) + 1 / (1 + D) * ‖x‖ ≤ 1
[PROOFSTEP]
simp only [B.ne', div_le_iff B, field_simps]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
y : E
hy : y ∈ ball z (D * (1 + D - ‖x‖) / (1 + D))
ID : ‖D / (1 + D) - 1‖ = 1 / (1 + D)
⊢ D * (1 + D - ‖x‖) + 1 * ‖x‖ ≤ 1 * (1 + D)
[PROOFSTEP]
nlinarith only [hx, D_lt_one]
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
C : ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊆ support fun y => w D y * φ (x - y)
⊢ 0 < ↑↑μ (support fun i => w D i * φ (x - i))
[PROOFSTEP]
apply lt_of_lt_of_le _ (measure_mono C)
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
C : ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊆ support fun y => w D y * φ (x - y)
⊢ 0 < ↑↑μ (ball z (D * (1 + D - ‖x‖) / (1 + D)))
[PROOFSTEP]
apply measure_ball_pos
[GOAL]
case hr
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
C : ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊆ support fun y => w D y * φ (x - y)
⊢ 0 < D * (1 + D - ‖x‖) / (1 + D)
[PROOFSTEP]
exact div_pos (mul_pos Dpos (by linarith only [hx])) B
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
D : ℝ
x : E
Dpos : 0 < D
D_lt_one : D < 1
hx : ‖x‖ < 1 + D
z : E := (D / (1 + D)) • x
hz : z = (D / (1 + D)) • x
B : 0 < 1 + D
C : ball z (D * (1 + D - ‖x‖) / (1 + D)) ⊆ support fun y => w D y * φ (x - y)
⊢ 0 < 1 + D - ‖x‖
[PROOFSTEP]
linarith only [hx]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
⊢ ContDiffOn ℝ ⊤ (uncurry y) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
have hs : IsOpen (Ioo (0 : ℝ) (1 : ℝ)) := isOpen_Ioo
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
⊢ ContDiffOn ℝ ⊤ (uncurry y) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
have hk : IsCompact (closedBall (0 : E) 1) := ProperSpace.isCompact_closedBall _ _
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (uncurry y) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
refine' contDiffOn_convolution_left_with_param (lsmul ℝ ℝ) hs hk _ _ _
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ∀ (p : ℝ) (x : E), p ∈ Ioo 0 1 → ¬x ∈ closedBall 0 1 → w p x = 0
[PROOFSTEP]
rintro p x hp hx
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
p : ℝ
x : E
hp : p ∈ Ioo 0 1
hx : ¬x ∈ closedBall 0 1
⊢ w p x = 0
[PROOFSTEP]
simp only [w, mul_inv_rev, Algebra.id.smul_eq_mul, mul_eq_zero, inv_eq_zero]
[GOAL]
case refine'_1
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
p : ℝ
x : E
hp : p ∈ Ioo 0 1
hx : ¬x ∈ closedBall 0 1
⊢ (|p| ^ ↑(finrank ℝ E) = 0 ∨ ∫ (x : E), u x ∂μ = 0) ∨ u (p⁻¹ • x) = 0
[PROOFSTEP]
right
[GOAL]
case refine'_1.h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
p : ℝ
x : E
hp : p ∈ Ioo 0 1
hx : ¬x ∈ closedBall 0 1
⊢ u (p⁻¹ • x) = 0
[PROOFSTEP]
contrapose! hx
[GOAL]
case refine'_1.h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
p : ℝ
x : E
hp : p ∈ Ioo 0 1
hx : u (p⁻¹ • x) ≠ 0
⊢ x ∈ closedBall 0 1
[PROOFSTEP]
have : p⁻¹ • x ∈ support u := mem_support.2 hx
[GOAL]
case refine'_1.h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
p : ℝ
x : E
hp : p ∈ Ioo 0 1
hx : u (p⁻¹ • x) ≠ 0
this : p⁻¹ • x ∈ support u
⊢ x ∈ closedBall 0 1
[PROOFSTEP]
simp only [u_support, norm_smul, mem_ball_zero_iff, Real.norm_eq_abs, abs_inv, abs_of_nonneg hp.1.le, ← div_eq_inv_mul,
div_lt_one hp.1] at this
[GOAL]
case refine'_1.h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
p : ℝ
x : E
hp : p ∈ Ioo 0 1
hx : u (p⁻¹ • x) ≠ 0
this : ‖x‖ < p
⊢ x ∈ closedBall 0 1
[PROOFSTEP]
rw [mem_closedBall_zero_iff]
[GOAL]
case refine'_1.h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
p : ℝ
x : E
hp : p ∈ Ioo 0 1
hx : u (p⁻¹ • x) ≠ 0
this : ‖x‖ < p
⊢ ‖x‖ ≤ 1
[PROOFSTEP]
exact this.le.trans hp.2.le
[GOAL]
case refine'_2
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ LocallyIntegrable φ
[PROOFSTEP]
exact (locallyIntegrable_const _).indicator measurableSet_closedBall
[GOAL]
case refine'_3
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (↿w) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
apply ContDiffOn.mul
[GOAL]
case refine'_3.hf
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun x => ((∫ (x : E), u x ∂μ) * |x.fst| ^ ↑(finrank ℝ E))⁻¹) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
norm_cast
[GOAL]
case refine'_3.hf
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun x => ((∫ (x : E), u x ∂μ) * |x.fst| ^ finrank ℝ E)⁻¹) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
refine'
(contDiffOn_const.mul _).inv fun x hx =>
ne_of_gt (mul_pos (u_int_pos E) (pow_pos (abs_pos_of_pos hx.1.1) (finrank ℝ E)))
[GOAL]
case refine'_3.hf
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun x => |x.fst| ^ finrank ℝ E) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
apply ContDiffOn.pow
[GOAL]
case refine'_3.hf.hf
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun y => |y.fst|) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
simp_rw [← Real.norm_eq_abs]
[GOAL]
case refine'_3.hf.hf
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun y => ‖y.fst‖) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
apply @ContDiffOn.norm ℝ
[GOAL]
case refine'_3.hf.hf.hf
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun y => y.fst) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
exact contDiffOn_fst
[GOAL]
case refine'_3.hf.hf.h0
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ∀ (x : ℝ × E), x ∈ Ioo 0 1 ×ˢ univ → x.fst ≠ 0
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_3.hf.hf.h0
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
x : ℝ × E
hx : x ∈ Ioo 0 1 ×ˢ univ
⊢ x.fst ≠ 0
[PROOFSTEP]
exact ne_of_gt hx.1.1
[GOAL]
case refine'_3.hg
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun x => u (x.fst⁻¹ • x.snd)) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
apply (u_smooth E).comp_contDiffOn
[GOAL]
case refine'_3.hg
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
⊢ ContDiffOn ℝ ⊤ (fun x => x.fst⁻¹ • x.snd) (Ioo 0 1 ×ˢ univ)
[PROOFSTEP]
exact ContDiffOn.smul (contDiffOn_fst.inv fun x hx => ne_of_gt hx.1.1) contDiffOn_snd
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
⊢ HasContDiffBump E
[PROOFSTEP]
refine' ⟨⟨_⟩⟩
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
⊢ ContDiffBumpBase E
[PROOFSTEP]
borelize E
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
⊢ ContDiffBumpBase E
[PROOFSTEP]
have IR : ∀ R : ℝ, 1 < R → 0 < (R - 1) / (R + 1) := by intro R hR; apply div_pos <;> linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
⊢ ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
[PROOFSTEP]
intro R hR
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
R : ℝ
hR : 1 < R
⊢ 0 < (R - 1) / (R + 1)
[PROOFSTEP]
apply div_pos
[GOAL]
case ha
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
R : ℝ
hR : 1 < R
⊢ 0 < R - 1
[PROOFSTEP]
linarith
[GOAL]
case hb
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
R : ℝ
hR : 1 < R
⊢ 0 < R + 1
[PROOFSTEP]
linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ContDiffBumpBase E
[PROOFSTEP]
exact
{ toFun := fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0
mem_Icc := fun R x => by
simp only [mem_Icc]
split_ifs with h
· refine' ⟨y_nonneg _ _, y_le_one _ (IR R h)⟩
· simp only [le_refl, zero_le_one, and_self]
symmetric := fun R x => by
simp only
split_ifs
· simp only [y_neg, smul_neg]
· rfl
smooth :=
by
suffices
ContDiffOn ℝ ⊤ (uncurry y ∘ fun p : ℝ × E => ((p.1 - 1) / (p.1 + 1), ((p.1 + 1) / 2)⁻¹ • p.2)) (Ioi 1 ×ˢ univ)
by
apply this.congr
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
simp only [hR, uncurry_apply_pair, if_true, Function.comp_apply]
apply (y_smooth E).comp
· apply ContDiffOn.prod
· refine' (contDiffOn_fst.sub contDiffOn_const).div (contDiffOn_fst.add contDiffOn_const) _
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
apply ne_of_gt
dsimp only
linarith
· apply ContDiffOn.smul _ contDiffOn_snd
refine' ((contDiffOn_fst.add contDiffOn_const).div_const _).inv _
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
apply ne_of_gt
dsimp only
linarith
· rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
have A : 0 < (R - 1) / (R + 1) := by apply div_pos <;> linarith
have B : (R - 1) / (R + 1) < 1 := by apply (div_lt_one _).2 <;> linarith
simp only [mem_preimage, prod_mk_mem_set_prod_eq, mem_Ioo, mem_univ, and_true_iff, A, B]
eq_one := fun R hR x hx => by
have A : 0 < R + 1 := by linarith
simp only [hR, if_true]
apply y_eq_one_of_mem_closedBall (IR R hR)
simp only [norm_smul, inv_div, mem_closedBall_zero_iff, Real.norm_eq_abs, abs_div, abs_two, abs_of_nonneg A.le]
calc
2 / (R + 1) * ‖x‖ ≤ 2 / (R + 1) * 1 := mul_le_mul_of_nonneg_left hx (div_nonneg zero_le_two A.le)
_ = 1 - (R - 1) / (R + 1) := by field_simp [A.ne']; ring
support := fun R hR => by
have A : 0 < (R + 1) / 2 := by linarith
have A' : 0 < R + 1 := by linarith
have C : (R - 1) / (R + 1) < 1 := by apply (div_lt_one _).2 <;> linarith
simp only [hR, if_true, support_comp_inv_smul₀ A.ne', y_support _ (IR R hR) C, _root_.smul_ball A.ne',
Real.norm_of_nonneg A.le, smul_zero]
refine' congr (congr_arg ball (Eq.refl 0)) _
field_simp [A'.ne']
ring }
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
⊢ (fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R x ∈ Icc 0 1
[PROOFSTEP]
simp only [mem_Icc]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
⊢ (0 ≤ if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) ∧
(if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) ≤ 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
h : 1 < R
⊢ 0 ≤ y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) ∧ y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) ≤ 1
[PROOFSTEP]
refine' ⟨y_nonneg _ _, y_le_one _ (IR R h)⟩
[GOAL]
case neg
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
h : ¬1 < R
⊢ 0 ≤ 0 ∧ 0 ≤ 1
[PROOFSTEP]
simp only [le_refl, zero_le_one, and_self]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
⊢ (fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R (-x) =
(fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R x
[PROOFSTEP]
simp only
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
⊢ (if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • -x) else 0) =
if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
h✝ : 1 < R
⊢ y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • -x) = y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x)
[PROOFSTEP]
simp only [y_neg, smul_neg]
[GOAL]
case neg
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
h✝ : ¬1 < R
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ContDiffOn ℝ ⊤ (uncurry fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) (Ioi 1 ×ˢ univ)
[PROOFSTEP]
suffices ContDiffOn ℝ ⊤ (uncurry y ∘ fun p : ℝ × E => ((p.1 - 1) / (p.1 + 1), ((p.1 + 1) / 2)⁻¹ • p.2)) (Ioi 1 ×ˢ univ)
by
apply this.congr
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
simp only [hR, uncurry_apply_pair, if_true, Function.comp_apply]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
this : ContDiffOn ℝ ⊤ (uncurry y ∘ fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) (Ioi 1 ×ˢ univ)
⊢ ContDiffOn ℝ ⊤ (uncurry fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) (Ioi 1 ×ˢ univ)
[PROOFSTEP]
apply this.congr
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
this : ContDiffOn ℝ ⊤ (uncurry y ∘ fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) (Ioi 1 ×ˢ univ)
⊢ ∀ (x : ℝ × E),
x ∈ Ioi 1 ×ˢ univ →
uncurry (fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) x =
(uncurry y ∘ fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) x
[PROOFSTEP]
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
[GOAL]
case mk.intro
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
this : ContDiffOn ℝ ⊤ (uncurry y ∘ fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) (Ioi 1 ×ˢ univ)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ uncurry (fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) (R, x) =
(uncurry y ∘ fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) (R, x)
[PROOFSTEP]
simp only [hR, uncurry_apply_pair, if_true, Function.comp_apply]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ContDiffOn ℝ ⊤ (uncurry y ∘ fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) (Ioi 1 ×ˢ univ)
[PROOFSTEP]
apply (y_smooth E).comp
[GOAL]
case hf
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ContDiffOn ℝ ⊤ (fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) (Ioi 1 ×ˢ univ)
[PROOFSTEP]
apply ContDiffOn.prod
[GOAL]
case hf.hf
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ContDiffOn ℝ ⊤ (fun x => (x.fst - 1) / (x.fst + 1)) (Ioi 1 ×ˢ univ)
[PROOFSTEP]
refine' (contDiffOn_fst.sub contDiffOn_const).div (contDiffOn_fst.add contDiffOn_const) _
[GOAL]
case hf.hf
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ∀ (x : ℝ × E), x ∈ Ioi 1 ×ˢ univ → x.fst + 1 ≠ 0
[PROOFSTEP]
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
[GOAL]
case hf.hf.mk.intro
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ (R, x).fst + 1 ≠ 0
[PROOFSTEP]
apply ne_of_gt
[GOAL]
case hf.hf.mk.intro.h
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ 0 < (R, x).fst + 1
[PROOFSTEP]
dsimp only
[GOAL]
case hf.hf.mk.intro.h
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ 0 < R + 1
[PROOFSTEP]
linarith
[GOAL]
case hf.hg
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ContDiffOn ℝ ⊤ (fun x => ((x.fst + 1) / 2)⁻¹ • x.snd) (Ioi 1 ×ˢ univ)
[PROOFSTEP]
apply ContDiffOn.smul _ contDiffOn_snd
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ContDiffOn ℝ ⊤ (fun x => ((x.fst + 1) / 2)⁻¹) (Ioi 1 ×ˢ univ)
[PROOFSTEP]
refine' ((contDiffOn_fst.add contDiffOn_const).div_const _).inv _
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ ∀ (x : ℝ × E), x ∈ Ioi 1 ×ˢ univ → (x.fst + 1) / 2 ≠ 0
[PROOFSTEP]
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
[GOAL]
case mk.intro
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ ((R, x).fst + 1) / 2 ≠ 0
[PROOFSTEP]
apply ne_of_gt
[GOAL]
case mk.intro.h
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ 0 < ((R, x).fst + 1) / 2
[PROOFSTEP]
dsimp only
[GOAL]
case mk.intro.h
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ 0 < (R + 1) / 2
[PROOFSTEP]
linarith
[GOAL]
case st
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
⊢ Ioi 1 ×ˢ univ ⊆ (fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) ⁻¹' Ioo 0 1 ×ˢ univ
[PROOFSTEP]
rintro ⟨R, x⟩ ⟨hR : 1 < R, _⟩
[GOAL]
case st.mk.intro
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ (R, x) ∈ (fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) ⁻¹' Ioo 0 1 ×ˢ univ
[PROOFSTEP]
have A : 0 < (R - 1) / (R + 1) := by apply div_pos <;> linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ 0 < (R - 1) / (R + 1)
[PROOFSTEP]
apply div_pos
[GOAL]
case ha
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ 0 < R - 1
[PROOFSTEP]
linarith
[GOAL]
case hb
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
⊢ 0 < R + 1
[PROOFSTEP]
linarith
[GOAL]
case st.mk.intro
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
A : 0 < (R - 1) / (R + 1)
⊢ (R, x) ∈ (fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) ⁻¹' Ioo 0 1 ×ˢ univ
[PROOFSTEP]
have B : (R - 1) / (R + 1) < 1 := by apply (div_lt_one _).2 <;> linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
A : 0 < (R - 1) / (R + 1)
⊢ (R - 1) / (R + 1) < 1
[PROOFSTEP]
apply (div_lt_one _).2
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
A : 0 < (R - 1) / (R + 1)
⊢ R - 1 < R + 1
[PROOFSTEP]
linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
A : 0 < (R - 1) / (R + 1)
⊢ 0 < R + 1
[PROOFSTEP]
linarith
[GOAL]
case st.mk.intro
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
x : E
hR : 1 < R
right✝ : (R, x).snd ∈ univ
A : 0 < (R - 1) / (R + 1)
B : (R - 1) / (R + 1) < 1
⊢ (R, x) ∈ (fun p => ((p.fst - 1) / (p.fst + 1), ((p.fst + 1) / 2)⁻¹ • p.snd)) ⁻¹' Ioo 0 1 ×ˢ univ
[PROOFSTEP]
simp only [mem_preimage, prod_mk_mem_set_prod_eq, mem_Ioo, mem_univ, and_true_iff, A, B]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
⊢ (fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R x = 1
[PROOFSTEP]
have A : 0 < R + 1 := by linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
⊢ 0 < R + 1
[PROOFSTEP]
linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
A : 0 < R + 1
⊢ (fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R x = 1
[PROOFSTEP]
simp only [hR, if_true]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
A : 0 < R + 1
⊢ y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) = 1
[PROOFSTEP]
apply y_eq_one_of_mem_closedBall (IR R hR)
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
A : 0 < R + 1
⊢ ((R + 1) / 2)⁻¹ • x ∈ closedBall 0 (1 - (R - 1) / (R + 1))
[PROOFSTEP]
simp only [norm_smul, inv_div, mem_closedBall_zero_iff, Real.norm_eq_abs, abs_div, abs_two, abs_of_nonneg A.le]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
A : 0 < R + 1
⊢ 2 / (R + 1) * ‖x‖ ≤ 1 - (R - 1) / (R + 1)
[PROOFSTEP]
calc
2 / (R + 1) * ‖x‖ ≤ 2 / (R + 1) * 1 := mul_le_mul_of_nonneg_left hx (div_nonneg zero_le_two A.le)
_ = 1 - (R - 1) / (R + 1) := by field_simp [A.ne']; ring
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
A : 0 < R + 1
⊢ 2 / (R + 1) * 1 = 1 - (R - 1) / (R + 1)
[PROOFSTEP]
field_simp [A.ne']
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
x : E
hx : ‖x‖ ≤ 1
A : 0 < R + 1
⊢ 2 = 1 + 1
[PROOFSTEP]
ring
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
⊢ support ((fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R) = ball 0 R
[PROOFSTEP]
have A : 0 < (R + 1) / 2 := by linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
⊢ 0 < (R + 1) / 2
[PROOFSTEP]
linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
⊢ support ((fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R) = ball 0 R
[PROOFSTEP]
have A' : 0 < R + 1 := by linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
⊢ 0 < R + 1
[PROOFSTEP]
linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
⊢ support ((fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R) = ball 0 R
[PROOFSTEP]
have C : (R - 1) / (R + 1) < 1 := by apply (div_lt_one _).2 <;> linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
⊢ (R - 1) / (R + 1) < 1
[PROOFSTEP]
apply (div_lt_one _).2
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
⊢ R - 1 < R + 1
[PROOFSTEP]
linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
⊢ 0 < R + 1
[PROOFSTEP]
linarith
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
C : (R - 1) / (R + 1) < 1
⊢ support ((fun R x => if 1 < R then y ((R - 1) / (R + 1)) (((R + 1) / 2)⁻¹ • x) else 0) R) = ball 0 R
[PROOFSTEP]
simp only [hR, if_true, support_comp_inv_smul₀ A.ne', y_support _ (IR R hR) C, _root_.smul_ball A.ne',
Real.norm_of_nonneg A.le, smul_zero]
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
C : (R - 1) / (R + 1) < 1
⊢ ball 0 ((R + 1) / 2 * (1 + (R - 1) / (R + 1))) = ball 0 R
[PROOFSTEP]
refine' congr (congr_arg ball (Eq.refl 0)) _
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
C : (R - 1) / (R + 1) < 1
⊢ (R + 1) / 2 * (1 + (R - 1) / (R + 1)) = R
[PROOFSTEP]
field_simp [A'.ne']
[GOAL]
E✝ : Type u_1
inst✝⁵ : NormedAddCommGroup E✝
inst✝⁴ : NormedSpace ℝ E✝
inst✝³ : FiniteDimensional ℝ E✝
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : FiniteDimensional ℝ E
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
IR : ∀ (R : ℝ), 1 < R → 0 < (R - 1) / (R + 1)
R : ℝ
hR : 1 < R
A : 0 < (R + 1) / 2
A' : 0 < R + 1
C : (R - 1) / (R + 1) < 1
⊢ (R + 1) * (R + R) = R * (2 * (R + 1))
[PROOFSTEP]
ring
| {"mathlib_filename": "Mathlib.Analysis.Calculus.BumpFunction.FiniteDimension", "llama_tokens": 99482} |
[GOAL]
α : Type u_1
E : Type u_2
inst✝ : SeminormedAddCommGroup E
s t : Set α
f✝ : α → E
a✝ : α
h : s ⊆ t
f : α → E
a : α
⊢ ‖indicator s f a‖ ≤ ‖indicator t f a‖
[PROOFSTEP]
simp only [norm_indicator_eq_indicator_norm]
[GOAL]
α : Type u_1
E : Type u_2
inst✝ : SeminormedAddCommGroup E
s t : Set α
f✝ : α → E
a✝ : α
h : s ⊆ t
f : α → E
a : α
⊢ indicator s (fun a => ‖f a‖) a ≤ indicator t (fun a => ‖f a‖) a
[PROOFSTEP]
exact indicator_le_indicator_of_subset ‹_› (fun _ => norm_nonneg _) _
[GOAL]
α : Type u_1
E : Type u_2
inst✝ : SeminormedAddCommGroup E
s t : Set α
f : α → E
a : α
⊢ ‖indicator s f a‖ ≤ ‖f a‖
[PROOFSTEP]
rw [norm_indicator_eq_indicator_norm]
[GOAL]
α : Type u_1
E : Type u_2
inst✝ : SeminormedAddCommGroup E
s t : Set α
f : α → E
a : α
⊢ indicator s (fun a => ‖f a‖) a ≤ ‖f a‖
[PROOFSTEP]
apply indicator_norm_le_norm_self
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.IndicatorFunction", "llama_tokens": 429} |
[GOAL]
𝕜 : Type u_1
inst✝¹¹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁴ : NormedAddCommGroup G'
inst✝³ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
inst✝² : Fintype ι
F' : ι → Type u_7
inst✝¹ : (i : ι) → NormedAddCommGroup (F' i)
inst✝ : (i : ι) → NormedSpace 𝕜 (F' i)
φ : (i : ι) → E → F' i
φ' : (i : ι) → E →L[𝕜] F' i
Φ : E → (i : ι) → F' i
Φ' : E →L[𝕜] (i : ι) → F' i
⊢ HasStrictFDerivAt Φ Φ' x ↔ ∀ (i : ι), HasStrictFDerivAt (fun x => Φ x i) (comp (proj i) Φ') x
[PROOFSTEP]
simp only [HasStrictFDerivAt, ContinuousLinearMap.coe_pi]
[GOAL]
𝕜 : Type u_1
inst✝¹¹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁴ : NormedAddCommGroup G'
inst✝³ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
inst✝² : Fintype ι
F' : ι → Type u_7
inst✝¹ : (i : ι) → NormedAddCommGroup (F' i)
inst✝ : (i : ι) → NormedSpace 𝕜 (F' i)
φ : (i : ι) → E → F' i
φ' : (i : ι) → E →L[𝕜] F' i
Φ : E → (i : ι) → F' i
Φ' : E →L[𝕜] (i : ι) → F' i
⊢ ((fun p => Φ p.fst - Φ p.snd - ↑Φ' (p.fst - p.snd)) =o[𝓝 (x, x)] fun p => p.fst - p.snd) ↔
∀ (i : ι),
(fun p => Φ p.fst i - Φ p.snd i - ↑(comp (proj i) Φ') (p.fst - p.snd)) =o[𝓝 (x, x)] fun p => p.fst - p.snd
[PROOFSTEP]
exact isLittleO_pi
[GOAL]
𝕜 : Type u_1
inst✝¹¹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁴ : NormedAddCommGroup G'
inst✝³ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
inst✝² : Fintype ι
F' : ι → Type u_7
inst✝¹ : (i : ι) → NormedAddCommGroup (F' i)
inst✝ : (i : ι) → NormedSpace 𝕜 (F' i)
φ : (i : ι) → E → F' i
φ' : (i : ι) → E →L[𝕜] F' i
Φ : E → (i : ι) → F' i
Φ' : E →L[𝕜] (i : ι) → F' i
⊢ HasFDerivAtFilter Φ Φ' x L ↔ ∀ (i : ι), HasFDerivAtFilter (fun x => Φ x i) (comp (proj i) Φ') x L
[PROOFSTEP]
simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi]
[GOAL]
𝕜 : Type u_1
inst✝¹¹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedSpace 𝕜 F
G : Type u_4
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : NormedSpace 𝕜 G
G' : Type u_5
inst✝⁴ : NormedAddCommGroup G'
inst✝³ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ι : Type u_6
inst✝² : Fintype ι
F' : ι → Type u_7
inst✝¹ : (i : ι) → NormedAddCommGroup (F' i)
inst✝ : (i : ι) → NormedSpace 𝕜 (F' i)
φ : (i : ι) → E → F' i
φ' : (i : ι) → E →L[𝕜] F' i
Φ : E → (i : ι) → F' i
Φ' : E →L[𝕜] (i : ι) → F' i
⊢ ((fun x' => Φ x' - Φ x - ↑Φ' (x' - x)) =o[L] fun x' => x' - x) ↔
∀ (i : ι), (fun x' => Φ x' i - Φ x i - ↑(comp (proj i) Φ') (x' - x)) =o[L] fun x' => x' - x
[PROOFSTEP]
exact isLittleO_pi
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Prod", "llama_tokens": 1875} |
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
C : ℝ
⊢ Tendsto (fun n => C / ↑n) atTop (𝓝 0)
[PROOFSTEP]
simpa only [mul_zero] using tendsto_const_nhds.mul tendsto_inverse_atTop_nhds_0_nat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ Tendsto (fun n => (↑n)⁻¹) atTop (𝓝 0)
[PROOFSTEP]
rw [← NNReal.tendsto_coe]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ Tendsto (fun a => ↑(↑a)⁻¹) atTop (𝓝 ↑0)
[PROOFSTEP]
exact _root_.tendsto_inverse_atTop_nhds_0_nat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
C : ℝ≥0
⊢ Tendsto (fun n => C / ↑n) atTop (𝓝 0)
[PROOFSTEP]
simpa using tendsto_const_nhds.mul NNReal.tendsto_inverse_atTop_nhds_0_nat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
this : Tendsto (fun n => 1 / ↑(n + 1)) atTop (𝓝 0)
⊢ Tendsto (fun n => 1 / (↑n + 1)) atTop (𝓝 0)
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁴ : Semiring 𝕜
inst✝³ : Algebra ℝ≥0 𝕜
inst✝² : TopologicalSpace 𝕜
inst✝¹ : TopologicalSemiring 𝕜
inst✝ : ContinuousSMul ℝ≥0 𝕜
⊢ Tendsto (↑(algebraMap ℝ≥0 𝕜) ∘ fun n => (↑n)⁻¹) atTop (𝓝 0)
[PROOFSTEP]
convert (continuous_algebraMap ℝ≥0 𝕜).continuousAt.tendsto.comp tendsto_inverse_atTop_nhds_0_nat
[GOAL]
case h.e'_5.h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁴ : Semiring 𝕜
inst✝³ : Algebra ℝ≥0 𝕜
inst✝² : TopologicalSpace 𝕜
inst✝¹ : TopologicalSemiring 𝕜
inst✝ : ContinuousSMul ℝ≥0 𝕜
⊢ 0 = ↑(algebraMap ℝ≥0 𝕜) 0
[PROOFSTEP]
rw [map_zero]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
⊢ Tendsto (fun n => ↑n / (↑n + x)) atTop (𝓝 1)
[PROOFSTEP]
refine' Tendsto.congr' ((eventually_ne_atTop 0).mp (eventually_of_forall fun n hn => _)) _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
⊢ ℕ → 𝕜
[PROOFSTEP]
exact fun n : ℕ => 1 / (1 + x / n)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
n : ℕ
hn : n ≠ 0
⊢ 1 / (1 + x / ↑n) = (fun n => ↑n / (↑n + x)) n
[PROOFSTEP]
field_simp [Nat.cast_ne_zero.mpr hn]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
⊢ Tendsto (fun n => 1 / (1 + x / ↑n)) atTop (𝓝 1)
[PROOFSTEP]
have : 𝓝 (1 : 𝕜) = 𝓝 (1 / (1 + x * (0 : 𝕜))) := by rw [mul_zero, add_zero, div_one]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
⊢ 𝓝 1 = 𝓝 (1 / (1 + x * 0))
[PROOFSTEP]
rw [mul_zero, add_zero, div_one]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
⊢ Tendsto (fun n => 1 / (1 + x / ↑n)) atTop (𝓝 1)
[PROOFSTEP]
rw [this]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
⊢ Tendsto (fun n => 1 / (1 + x / ↑n)) atTop (𝓝 (1 / (1 + x * 0)))
[PROOFSTEP]
refine' tendsto_const_nhds.div (tendsto_const_nhds.add _) (by simp)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
⊢ 1 + x * 0 ≠ 0
[PROOFSTEP]
simp
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
⊢ Tendsto (fun n => x / ↑n) atTop (𝓝 (x * 0))
[PROOFSTEP]
simp_rw [div_eq_mul_inv]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
⊢ Tendsto (fun n => x * (↑n)⁻¹) atTop (𝓝 (x * 0))
[PROOFSTEP]
refine' tendsto_const_nhds.mul _
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
⊢ Tendsto (fun n => (↑n)⁻¹) atTop (𝓝 0)
[PROOFSTEP]
have := ((continuous_algebraMap ℝ 𝕜).tendsto _).comp tendsto_inverse_atTop_nhds_0_nat
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this✝ : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
this : Tendsto (↑(algebraMap ℝ 𝕜) ∘ fun n => (↑n)⁻¹) atTop (𝓝 (↑(algebraMap ℝ 𝕜) 0))
⊢ Tendsto (fun n => (↑n)⁻¹) atTop (𝓝 0)
[PROOFSTEP]
rw [map_zero, Filter.tendsto_atTop'] at this
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this✝ : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
this : ∀ (s : Set 𝕜), s ∈ 𝓝 0 → ∃ a, ∀ (b : ℕ), b ≥ a → (↑(algebraMap ℝ 𝕜) ∘ fun n => (↑n)⁻¹) b ∈ s
⊢ Tendsto (fun n => (↑n)⁻¹) atTop (𝓝 0)
[PROOFSTEP]
refine' Iff.mpr tendsto_atTop' _
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this✝ : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
this : ∀ (s : Set 𝕜), s ∈ 𝓝 0 → ∃ a, ∀ (b : ℕ), b ≥ a → (↑(algebraMap ℝ 𝕜) ∘ fun n => (↑n)⁻¹) b ∈ s
⊢ ∀ (s : Set 𝕜), s ∈ 𝓝 0 → ∃ a, ∀ (b : ℕ), b ≥ a → (↑b)⁻¹ ∈ s
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝⁵ : DivisionRing 𝕜
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : CharZero 𝕜
inst✝² : Algebra ℝ 𝕜
inst✝¹ : ContinuousSMul ℝ 𝕜
inst✝ : TopologicalDivisionRing 𝕜
x : 𝕜
this✝ : 𝓝 1 = 𝓝 (1 / (1 + x * 0))
this : ∀ (s : Set 𝕜), s ∈ 𝓝 0 → ∃ a, ∀ (b : ℕ), b ≥ a → (↑(algebraMap ℝ 𝕜) ∘ fun n => (↑n)⁻¹) b ∈ s
s✝ : Set 𝕜
a✝ : s✝ ∈ 𝓝 0
⊢ ∃ a, ∀ (b : ℕ), b ≥ a → (↑b)⁻¹ ∈ s✝
[PROOFSTEP]
simp_all only [comp_apply, map_inv₀, map_natCast]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h₁ : 0 ≤ r
h₂ : r < 1
hr : 0 = r
⊢ Tendsto (fun n => r ^ (n + 1)) atTop (𝓝 0)
[PROOFSTEP]
simp [_root_.pow_succ, ← hr, tendsto_const_nhds]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h₁ : 0 ≤ r
h₂ : r < 1
hr : 0 < r
this : Tendsto (fun n => r⁻¹ ^ n) atTop atTop
n : ℕ
⊢ ((fun r => r⁻¹) ∘ fun n => r⁻¹ ^ n) n = r ^ n
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
⊢ Tendsto (fun n => r ^ n) atTop (𝓝 0) ↔ |r| < 1
[PROOFSTEP]
rw [tendsto_zero_iff_abs_tendsto_zero]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
⊢ Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0) ↔ |r| < 1
[PROOFSTEP]
refine ⟨fun h ↦ by_contra (fun hr_le ↦ ?_), fun h ↦ ?_⟩
[GOAL]
case refine_1
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
⊢ False
[PROOFSTEP]
by_cases hr : 1 = |r|
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : 1 = |r|
⊢ False
[PROOFSTEP]
replace h : Tendsto (fun n : ℕ ↦ |r| ^ n) atTop (𝓝 0) := by simpa only [← abs_pow, h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : 1 = |r|
⊢ Tendsto (fun n => |r| ^ n) atTop (𝓝 0)
[PROOFSTEP]
simpa only [← abs_pow, h]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
hr_le : ¬|r| < 1
hr : 1 = |r|
h : Tendsto (fun n => |r| ^ n) atTop (𝓝 0)
⊢ False
[PROOFSTEP]
simp only [hr.symm, one_pow] at h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
hr_le : ¬|r| < 1
hr : 1 = |r|
h : Tendsto (fun n => 1) atTop (𝓝 0)
⊢ False
[PROOFSTEP]
exact zero_ne_one <| tendsto_nhds_unique h tendsto_const_nhds
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
⊢ False
[PROOFSTEP]
apply @not_tendsto_nhds_of_tendsto_atTop 𝕜 ℕ _ _ _ _ atTop _ (fun n ↦ |r| ^ n) _ 0 _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
⊢ Tendsto (fun n => |r| ^ n) atTop atTop
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
⊢ Tendsto (fun n => |r| ^ n) atTop (𝓝 0)
[PROOFSTEP]
refine (pow_strictMono_right $ lt_of_le_of_ne (le_of_not_lt hr_le) hr).monotone.tendsto_atTop_atTop (fun b ↦ ?_)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
b : 𝕜
⊢ ∃ a, b ≤ |r| ^ a
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
⊢ Tendsto (fun n => |r| ^ n) atTop (𝓝 0)
[PROOFSTEP]
obtain ⟨n, hn⟩ := (pow_unbounded_of_one_lt b (lt_of_le_of_ne (le_of_not_lt hr_le) hr))
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
b : 𝕜
n : ℕ
hn : b < |r| ^ n
⊢ ∃ a, b ≤ |r| ^ a
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
⊢ Tendsto (fun n => |r| ^ n) atTop (𝓝 0)
[PROOFSTEP]
exacts [⟨n, le_of_lt hn⟩, by simpa only [← abs_pow]]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
hr_le : ¬|r| < 1
hr : ¬1 = |r|
⊢ Tendsto (fun n => |r| ^ n) atTop (𝓝 0)
[PROOFSTEP]
simpa only [← abs_pow]
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝³ : LinearOrderedField 𝕜
inst✝² : Archimedean 𝕜
inst✝¹ : TopologicalSpace 𝕜
inst✝ : OrderTopology 𝕜
r : 𝕜
h : |r| < 1
⊢ Tendsto (abs ∘ fun n => r ^ n) atTop (𝓝 0)
[PROOFSTEP]
simpa only [← abs_pow] using (tendsto_pow_atTop_nhds_0_of_lt_1 (abs_nonneg r)) h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
hn : 0 < n
h : ∀ (k : ℕ), k < n → c * u k < u (k + 1)
⊢ c ^ n * u 0 < u n
[PROOFSTEP]
apply (monotone_mul_left_of_nonneg hc).seq_pos_lt_seq_of_le_of_lt hn _ _ h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
hn : 0 < n
h : ∀ (k : ℕ), k < n → c * u k < u (k + 1)
⊢ c ^ 0 * u 0 ≤ u 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
hn : 0 < n
h : ∀ (k : ℕ), k < n → c * u k < u (k + 1)
⊢ ∀ (k : ℕ), k < n → c ^ (k + 1) * u 0 ≤ c * (c ^ k * u 0)
[PROOFSTEP]
simp [_root_.pow_succ, mul_assoc, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
h : ∀ (k : ℕ), k < n → c * u k ≤ u (k + 1)
⊢ c ^ n * u 0 ≤ u n
[PROOFSTEP]
apply (monotone_mul_left_of_nonneg hc).seq_le_seq n _ _ h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
h : ∀ (k : ℕ), k < n → c * u k ≤ u (k + 1)
⊢ c ^ 0 * u 0 ≤ u 0
[PROOFSTEP]
simp [_root_.pow_succ, mul_assoc, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
h : ∀ (k : ℕ), k < n → c * u k ≤ u (k + 1)
⊢ ∀ (k : ℕ), k < n → c ^ (k + 1) * u 0 ≤ c * (c ^ k * u 0)
[PROOFSTEP]
simp [_root_.pow_succ, mul_assoc, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
hn : 0 < n
h : ∀ (k : ℕ), k < n → u (k + 1) < c * u k
⊢ u n < c ^ n * u 0
[PROOFSTEP]
apply (monotone_mul_left_of_nonneg hc).seq_pos_lt_seq_of_lt_of_le hn _ h _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
hn : 0 < n
h : ∀ (k : ℕ), k < n → u (k + 1) < c * u k
⊢ u 0 ≤ c ^ 0 * u 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
hn : 0 < n
h : ∀ (k : ℕ), k < n → u (k + 1) < c * u k
⊢ ∀ (k : ℕ), k < n → c * (c ^ k * u 0) ≤ c ^ (k + 1) * u 0
[PROOFSTEP]
simp [_root_.pow_succ, mul_assoc, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
h : ∀ (k : ℕ), k < n → u (k + 1) ≤ c * u k
⊢ u n ≤ c ^ n * u 0
[PROOFSTEP]
apply (monotone_mul_left_of_nonneg hc).seq_le_seq n _ h _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
h : ∀ (k : ℕ), k < n → u (k + 1) ≤ c * u k
⊢ u 0 ≤ c ^ 0 * u 0
[PROOFSTEP]
simp [_root_.pow_succ, mul_assoc, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
u : ℕ → ℝ
c : ℝ
hc : 0 ≤ c
n : ℕ
h : ∀ (k : ℕ), k < n → u (k + 1) ≤ c * u k
⊢ ∀ (k : ℕ), k < n → c * (c ^ k * u 0) ≤ c ^ (k + 1) * u 0
[PROOFSTEP]
simp [_root_.pow_succ, mul_assoc, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr : r < 1
⊢ Tendsto (fun a => ↑(r ^ a)) atTop (𝓝 ↑0)
[PROOFSTEP]
simp only [NNReal.coe_pow, NNReal.coe_zero, _root_.tendsto_pow_atTop_nhds_0_of_lt_1 r.coe_nonneg hr]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : r < 1
⊢ Tendsto (fun n => r ^ n) atTop (𝓝 0)
[PROOFSTEP]
rcases ENNReal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr' : ↑r < 1
hr : ↑r < 1
⊢ Tendsto (fun n => ↑r ^ n) atTop (𝓝 0)
[PROOFSTEP]
rw [← ENNReal.coe_zero]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr' : ↑r < 1
hr : ↑r < 1
⊢ Tendsto (fun n => ↑r ^ n) atTop (𝓝 ↑0)
[PROOFSTEP]
norm_cast at *
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr' hr : r < 1
⊢ Tendsto (fun a => r ^ a) atTop (𝓝 0)
[PROOFSTEP]
apply NNReal.tendsto_pow_atTop_nhds_0_of_lt_1 hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ
h₁ : 0 ≤ r
h₂ : r < 1
this✝ : r ≠ 1
this : Tendsto (fun n => (r ^ n - 1) * (r - 1)⁻¹) atTop (𝓝 ((0 - 1) * (r - 1)⁻¹))
⊢ Tendsto (fun n => ∑ i in Finset.range n, r ^ i) atTop (𝓝 (1 - r)⁻¹)
[PROOFSTEP]
simp_all [neg_inv, geom_sum_eq, div_eq_mul_inv]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ HasSum (fun n => (1 / 2) ^ n) 2
[PROOFSTEP]
convert hasSum_geometric_of_lt_1 _ _
[GOAL]
case h.e'_6
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ 2 = (1 - 1 / 2)⁻¹
[PROOFSTEP]
norm_num
[GOAL]
case convert_2
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case convert_3
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ ∑ i in Finset.range n, (1 / 2) ^ i ≤ 2
[PROOFSTEP]
have : ∀ i, 0 ≤ (1 / (2 : ℝ)) ^ i := by
intro i
apply pow_nonneg
norm_num
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ ∀ (i : ℕ), 0 ≤ (1 / 2) ^ i
[PROOFSTEP]
intro i
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
⊢ 0 ≤ (1 / 2) ^ i
[PROOFSTEP]
apply pow_nonneg
[GOAL]
case H
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
this : ∀ (i : ℕ), 0 ≤ (1 / 2) ^ i
⊢ ∑ i in Finset.range n, (1 / 2) ^ i ≤ 2
[PROOFSTEP]
convert sum_le_tsum (range n) (fun i _ => this i) summable_geometric_two
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
this : ∀ (i : ℕ), 0 ≤ (1 / 2) ^ i
⊢ 2 = ∑' (i : ℕ), (1 / 2) ^ i
[PROOFSTEP]
exact tsum_geometric_two.symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ (∑' (i : ℕ), if n ≤ i then 2⁻¹ ^ i else 0) = 2 * 2⁻¹ ^ n
[PROOFSTEP]
have A : Summable fun i : ℕ => ite (n ≤ i) ((2⁻¹ : ℝ) ^ i) 0 := by
apply summable_of_nonneg_of_le _ _ summable_geometric_two <;>
· intro i
by_cases hi : n ≤ i <;> simp [hi]; apply pow_nonneg; exact zero_le_two
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ Summable fun i => if n ≤ i then 2⁻¹ ^ i else 0
[PROOFSTEP]
apply summable_of_nonneg_of_le _ _ summable_geometric_two
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ ∀ (b : ℕ), 0 ≤ if n ≤ b then 2⁻¹ ^ b else 0
[PROOFSTEP]
intro i
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
⊢ 0 ≤ if n ≤ i then 2⁻¹ ^ i else 0
[PROOFSTEP]
by_cases hi : n ≤ i
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : n ≤ i
⊢ 0 ≤ if n ≤ i then 2⁻¹ ^ i else 0
[PROOFSTEP]
simp [hi]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : ¬n ≤ i
⊢ 0 ≤ if n ≤ i then 2⁻¹ ^ i else 0
[PROOFSTEP]
simp [hi]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : n ≤ i
⊢ 0 ≤ 2 ^ i
[PROOFSTEP]
apply pow_nonneg
[GOAL]
case pos.H
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : n ≤ i
⊢ 0 ≤ 2
[PROOFSTEP]
exact zero_le_two
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ ∀ (b : ℕ), (if n ≤ b then 2⁻¹ ^ b else 0) ≤ (1 / 2) ^ b
[PROOFSTEP]
intro i
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
⊢ (if n ≤ i then 2⁻¹ ^ i else 0) ≤ (1 / 2) ^ i
[PROOFSTEP]
by_cases hi : n ≤ i
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : n ≤ i
⊢ (if n ≤ i then 2⁻¹ ^ i else 0) ≤ (1 / 2) ^ i
[PROOFSTEP]
simp [hi]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : ¬n ≤ i
⊢ (if n ≤ i then 2⁻¹ ^ i else 0) ≤ (1 / 2) ^ i
[PROOFSTEP]
simp [hi]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : ¬n ≤ i
⊢ 0 ≤ 2 ^ i
[PROOFSTEP]
apply pow_nonneg
[GOAL]
case neg.H
α : Type u_1
β : Type u_2
ι : Type u_3
n i : ℕ
hi : ¬n ≤ i
⊢ 0 ≤ 2
[PROOFSTEP]
exact zero_le_two
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
A : Summable fun i => if n ≤ i then 2⁻¹ ^ i else 0
⊢ (∑' (i : ℕ), if n ≤ i then 2⁻¹ ^ i else 0) = 2 * 2⁻¹ ^ n
[PROOFSTEP]
have B : ((Finset.range n).sum fun i : ℕ => ite (n ≤ i) ((2⁻¹ : ℝ) ^ i) 0) = 0 :=
Finset.sum_eq_zero fun i hi => ite_eq_right_iff.2 fun h => (lt_irrefl _ ((Finset.mem_range.1 hi).trans_le h)).elim
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
A : Summable fun i => if n ≤ i then 2⁻¹ ^ i else 0
B : (∑ i in Finset.range n, if n ≤ i then 2⁻¹ ^ i else 0) = 0
⊢ (∑' (i : ℕ), if n ≤ i then 2⁻¹ ^ i else 0) = 2 * 2⁻¹ ^ n
[PROOFSTEP]
simp only [← _root_.sum_add_tsum_nat_add n A, B, if_true, zero_add, zero_le', le_add_iff_nonneg_left, pow_add,
_root_.tsum_mul_right, tsum_geometric_inv_two]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
a : ℝ
⊢ HasSum (fun n => a / 2 / 2 ^ n) a
[PROOFSTEP]
convert HasSum.mul_left (a / 2) (hasSum_geometric_of_lt_1 (le_of_lt one_half_pos) one_half_lt_one) using 1
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
a : ℝ
⊢ (fun n => a / 2 / 2 ^ n) = fun i => a / 2 * (1 / 2) ^ i
[PROOFSTEP]
funext n
[GOAL]
case h.e'_5.h
α : Type u_1
β : Type u_2
ι : Type u_3
a : ℝ
n : ℕ
⊢ a / 2 / 2 ^ n = a / 2 * (1 / 2) ^ n
[PROOFSTEP]
simp
[GOAL]
case h.e'_5.h
α : Type u_1
β : Type u_2
ι : Type u_3
a : ℝ
n : ℕ
⊢ a / 2 / 2 ^ n = a / 2 * (2 ^ n)⁻¹
[PROOFSTEP]
rfl
[GOAL]
case h.e'_6
α : Type u_1
β : Type u_2
ι : Type u_3
a : ℝ
⊢ a = a / 2 * (1 - 1 / 2)⁻¹
[PROOFSTEP]
norm_num
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr : r < 1
⊢ HasSum (fun n => r ^ n) (1 - r)⁻¹
[PROOFSTEP]
apply NNReal.hasSum_coe.1
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr : r < 1
⊢ HasSum (fun a => ↑(r ^ a)) ↑(1 - r)⁻¹
[PROOFSTEP]
push_cast
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr : r < 1
⊢ HasSum (fun a => ↑r ^ a) (↑(1 - r))⁻¹
[PROOFSTEP]
rw [NNReal.coe_sub (le_of_lt hr)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr : r < 1
⊢ HasSum (fun a => ↑r ^ a) (↑1 - ↑r)⁻¹
[PROOFSTEP]
exact hasSum_geometric_of_lt_1 r.coe_nonneg hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
⊢ ∑' (n : ℕ), r ^ n = (1 - r)⁻¹
[PROOFSTEP]
cases' lt_or_le r 1 with hr hr
[GOAL]
case inl
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : r < 1
⊢ ∑' (n : ℕ), r ^ n = (1 - r)⁻¹
[PROOFSTEP]
rcases ENNReal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩
[GOAL]
case inl.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr' : ↑r < 1
hr : ↑r < 1
⊢ ∑' (n : ℕ), ↑r ^ n = (1 - ↑r)⁻¹
[PROOFSTEP]
norm_cast at *
[GOAL]
case inl.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr' hr : r < 1
⊢ ∑' (n : ℕ), ↑(r ^ n) = (1 - ↑r)⁻¹
[PROOFSTEP]
convert ENNReal.tsum_coe_eq (NNReal.hasSum_geometric hr)
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0
hr' hr : r < 1
⊢ (1 - ↑r)⁻¹ = ↑(1 - r)⁻¹
[PROOFSTEP]
rw [ENNReal.coe_inv <| ne_of_gt <| tsub_pos_iff_lt.2 hr, coe_sub, coe_one]
[GOAL]
case inr
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : 1 ≤ r
⊢ ∑' (n : ℕ), r ^ n = (1 - r)⁻¹
[PROOFSTEP]
rw [tsub_eq_zero_iff_le.mpr hr, ENNReal.inv_zero, ENNReal.tsum_eq_iSup_nat, iSup_eq_top]
[GOAL]
case inr
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : 1 ≤ r
⊢ ∀ (b : ℝ≥0∞), b < ⊤ → ∃ i, b < ∑ a in Finset.range i, r ^ a
[PROOFSTEP]
refine' fun a ha => (ENNReal.exists_nat_gt (lt_top_iff_ne_top.1 ha)).imp fun n hn => lt_of_lt_of_le hn _
[GOAL]
case inr
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : 1 ≤ r
a : ℝ≥0∞
ha : a < ⊤
n : ℕ
hn : a < ↑n
⊢ ↑n ≤ ∑ a in Finset.range n, r ^ a
[PROOFSTEP]
calc
(n : ℝ≥0∞) = ∑ i in range n, 1 := by rw [sum_const, nsmul_one, card_range]
_ ≤ ∑ i in range n, r ^ i := by gcongr; apply one_le_pow_of_one_le' hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : 1 ≤ r
a : ℝ≥0∞
ha : a < ⊤
n : ℕ
hn : a < ↑n
⊢ ↑n = ∑ i in Finset.range n, 1
[PROOFSTEP]
rw [sum_const, nsmul_one, card_range]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : 1 ≤ r
a : ℝ≥0∞
ha : a < ⊤
n : ℕ
hn : a < ↑n
⊢ ∑ i in Finset.range n, 1 ≤ ∑ i in Finset.range n, r ^ i
[PROOFSTEP]
gcongr
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ≥0∞
hr : 1 ≤ r
a : ℝ≥0∞
ha : a < ⊤
n : ℕ
hn : a < ↑n
i✝ : ℕ
a✝ : i✝ ∈ Finset.range n
⊢ 1 ≤ r ^ i✝
[PROOFSTEP]
apply one_le_pow_of_one_le' hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
r C : ℝ≥0∞
hr : r < 1
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n
⊢ CauchySeq f
[PROOFSTEP]
refine' cauchySeq_of_edist_le_of_tsum_ne_top _ hu _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
r C : ℝ≥0∞
hr : r < 1
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n
⊢ ∑' (n : ℕ), C * r ^ n ≠ ⊤
[PROOFSTEP]
rw [ENNReal.tsum_mul_left, ENNReal.tsum_geometric]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
r C : ℝ≥0∞
hr : r < 1
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n
⊢ C * (1 - r)⁻¹ ≠ ⊤
[PROOFSTEP]
refine' ENNReal.mul_ne_top hC (ENNReal.inv_ne_top.2 _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
r C : ℝ≥0∞
hr : r < 1
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n
⊢ 1 - r ≠ 0
[PROOFSTEP]
exact (tsub_pos_iff_lt.2 hr).ne'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
r C : ℝ≥0∞
hr : r < 1
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ edist (f n) a ≤ C * r ^ n / (1 - r)
[PROOFSTEP]
convert edist_le_tsum_of_edist_le_of_tendsto _ hu ha _
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
r C : ℝ≥0∞
hr : r < 1
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ C * r ^ n / (1 - r) = ∑' (m : ℕ), C * r ^ (n + m)
[PROOFSTEP]
simp only [pow_add, ENNReal.tsum_mul_left, ENNReal.tsum_geometric, div_eq_mul_inv, mul_assoc]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
r C : ℝ≥0∞
hr : r < 1
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
⊢ edist (f 0) a ≤ C / (1 - r)
[PROOFSTEP]
simpa only [_root_.pow_zero, mul_one] using edist_le_of_edist_le_geometric_of_tendsto r C hu ha 0
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C / 2 ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
⊢ CauchySeq f
[PROOFSTEP]
simp only [div_eq_mul_inv, ENNReal.inv_pow] at hu
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
a : α
ha : Tendsto f atTop (𝓝 a)
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * 2⁻¹ ^ n
⊢ CauchySeq f
[PROOFSTEP]
refine' cauchySeq_of_edist_le_geometric 2⁻¹ C _ hC hu
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
a : α
ha : Tendsto f atTop (𝓝 a)
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * 2⁻¹ ^ n
⊢ 2⁻¹ < 1
[PROOFSTEP]
simp [ENNReal.one_lt_two]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C / 2 ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ edist (f n) a ≤ 2 * C / 2 ^ n
[PROOFSTEP]
simp only [div_eq_mul_inv, ENNReal.inv_pow] at *
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * 2⁻¹ ^ n
⊢ edist (f n) a ≤ 2 * C * 2⁻¹ ^ n
[PROOFSTEP]
rw [mul_assoc, mul_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * 2⁻¹ ^ n
⊢ edist (f n) a ≤ C * 2⁻¹ ^ n * 2
[PROOFSTEP]
convert edist_le_of_edist_le_geometric_of_tendsto 2⁻¹ C hu ha n using 1
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * 2⁻¹ ^ n
⊢ C * 2⁻¹ ^ n * 2 = C * 2⁻¹ ^ n / (1 - 2⁻¹)
[PROOFSTEP]
rw [ENNReal.one_sub_inv_two, div_eq_mul_inv, inv_inv]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoEMetricSpace α
C : ℝ≥0∞
hC : C ≠ ⊤
f : ℕ → α
hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C / 2 ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
⊢ edist (f 0) a ≤ 2 * C
[PROOFSTEP]
simpa only [_root_.pow_zero, div_eq_mul_inv, inv_one, mul_one] using
edist_le_of_edist_le_geometric_two_of_tendsto C hu ha 0
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
⊢ HasSum (fun n => C * r ^ n) (C / (1 - r))
[PROOFSTEP]
rcases sign_cases_of_C_mul_pow_nonneg fun n => dist_nonneg.trans (hu n) with (rfl | ⟨_, r₀⟩)
[GOAL]
case inl
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ 0 * r ^ n
⊢ HasSum (fun n => 0 * r ^ n) (0 / (1 - r))
[PROOFSTEP]
simp [hasSum_zero]
[GOAL]
case inr.intro
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
left✝ : 0 < C
r₀ : 0 ≤ r
⊢ HasSum (fun n => C * r ^ n) (C / (1 - r))
[PROOFSTEP]
refine' HasSum.mul_left C _
[GOAL]
case inr.intro
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
left✝ : 0 < C
r₀ : 0 ≤ r
⊢ HasSum (fun n => r ^ n) (1 - r)⁻¹
[PROOFSTEP]
simpa using hasSum_geometric_of_lt_1 r₀ hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ dist (f n) a ≤ C * r ^ n / (1 - r)
[PROOFSTEP]
have := aux_hasSum_of_le_geometric hr hu
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
this : HasSum (fun n => C * r ^ n) (C / (1 - r))
⊢ dist (f n) a ≤ C * r ^ n / (1 - r)
[PROOFSTEP]
convert dist_le_tsum_of_dist_le_of_tendsto _ hu ⟨_, this⟩ ha n
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
this : HasSum (fun n => C * r ^ n) (C / (1 - r))
⊢ C * r ^ n / (1 - r) = ∑' (m : ℕ), C * r ^ (n + m)
[PROOFSTEP]
simp only [pow_add, mul_left_comm C, mul_div_right_comm]
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
this : HasSum (fun n => C * r ^ n) (C / (1 - r))
⊢ C / (1 - r) * r ^ n = ∑' (m : ℕ), r ^ n * (C * r ^ m)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
this : HasSum (fun n => C * r ^ n) (C / (1 - r))
⊢ r ^ n * (C / (1 - r)) = ∑' (m : ℕ), r ^ n * (C * r ^ m)
[PROOFSTEP]
exact (this.mul_left _).tsum_eq.symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
hu₂ : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C / 2 / 2 ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ dist (f n) a ≤ C / 2 ^ n
[PROOFSTEP]
convert dist_le_tsum_of_dist_le_of_tendsto _ hu₂ (summable_geometric_two' C) ha n
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
hu₂ : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C / 2 / 2 ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ C / 2 ^ n = ∑' (m : ℕ), C / 2 / 2 ^ (n + m)
[PROOFSTEP]
simp only [add_comm n, pow_add, ← div_div]
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
hu₂ : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C / 2 / 2 ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ C / 2 ^ n = ∑' (m : ℕ), C / 2 / 2 ^ m / 2 ^ n
[PROOFSTEP]
symm
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : PseudoMetricSpace α
r C : ℝ
hr : r < 1
f : ℕ → α
hu : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C * r ^ n
hu₂ : ∀ (n : ℕ), dist (f n) (f (n + 1)) ≤ C / 2 / 2 ^ n
a : α
ha : Tendsto f atTop (𝓝 a)
n : ℕ
⊢ ∑' (m : ℕ), C / 2 / 2 ^ m / 2 ^ n = C / 2 ^ n
[PROOFSTEP]
exact ((hasSum_geometric_two' C).div_const _).tsum_eq
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
m : ℝ
f : ℕ → ℕ
hm : 1 < m
fi : ∀ (i : ℕ), i ≤ f i
⊢ Summable fun i => 1 / m ^ f i
[PROOFSTEP]
refine'
summable_of_nonneg_of_le (fun a => one_div_nonneg.mpr (pow_nonneg (zero_le_one.trans hm.le) _)) (fun a => _)
(summable_geometric_of_lt_1 (one_div_nonneg.mpr (zero_le_one.trans hm.le))
((one_div_lt (zero_lt_one.trans hm) zero_lt_one).mpr (one_div_one.le.trans_lt hm)))
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
m : ℝ
f : ℕ → ℕ
hm : 1 < m
fi : ∀ (i : ℕ), i ≤ f i
a : ℕ
⊢ 1 / m ^ f a ≤ (1 / m) ^ a
[PROOFSTEP]
rw [div_pow, one_pow]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
m : ℝ
f : ℕ → ℕ
hm : 1 < m
fi : ∀ (i : ℕ), i ≤ f i
a : ℕ
⊢ 1 / m ^ f a ≤ 1 / m ^ a
[PROOFSTEP]
refine' (one_div_le_one_div _ _).mpr (pow_le_pow hm.le (fi a))
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
m : ℝ
f : ℕ → ℕ
hm : 1 < m
fi : ∀ (i : ℕ), i ≤ f i
a : ℕ
⊢ 0 < m ^ f a
[PROOFSTEP]
exact pow_pos (zero_lt_one.trans hm) _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
m : ℝ
f : ℕ → ℕ
hm : 1 < m
fi : ∀ (i : ℕ), i ≤ f i
a : ℕ
⊢ 0 < m ^ a
[PROOFSTEP]
exact pow_pos (zero_lt_one.trans hm) _
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
⊢ { ε' // (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c ≤ ε }
[PROOFSTEP]
let f n := ε / 2 / 2 ^ n
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
⊢ { ε' // (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c ≤ ε }
[PROOFSTEP]
have hf : HasSum f ε := hasSum_geometric_two' _
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
⊢ { ε' // (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c ≤ ε }
[PROOFSTEP]
have f0 : ∀ n, 0 < f n := fun n => div_pos (half_pos hε) (pow_pos zero_lt_two _)
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
f0 : ∀ (n : ℕ), 0 < f n
⊢ { ε' // (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c ≤ ε }
[PROOFSTEP]
refine' ⟨f ∘ Encodable.encode, fun i => f0 _, _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
f0 : ∀ (n : ℕ), 0 < f n
⊢ ∃ c, HasSum (f ∘ Encodable.encode) c ∧ c ≤ ε
[PROOFSTEP]
rcases hf.summable.comp_injective (@Encodable.encode_injective ι _) with ⟨c, hg⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
f0 : ∀ (n : ℕ), 0 < f n
c : ℝ
hg : HasSum (f ∘ Encodable.encode) c
⊢ ∃ c, HasSum (f ∘ Encodable.encode) c ∧ c ≤ ε
[PROOFSTEP]
refine' ⟨c, hg, hasSum_le_inj _ (@Encodable.encode_injective ι _) _ _ hg hf⟩
[GOAL]
case intro.refine'_1
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
f0 : ∀ (n : ℕ), 0 < f n
c : ℝ
hg : HasSum (f ∘ Encodable.encode) c
⊢ ∀ (c : ℕ), ¬c ∈ Set.range Encodable.encode → 0 ≤ f c
[PROOFSTEP]
intro i _
[GOAL]
case intro.refine'_1
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
f0 : ∀ (n : ℕ), 0 < f n
c : ℝ
hg : HasSum (f ∘ Encodable.encode) c
i : ℕ
a✝ : ¬i ∈ Set.range Encodable.encode
⊢ 0 ≤ f i
[PROOFSTEP]
exact le_of_lt (f0 _)
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
f0 : ∀ (n : ℕ), 0 < f n
c : ℝ
hg : HasSum (f ∘ Encodable.encode) c
⊢ ∀ (i : ι), (f ∘ Encodable.encode) i ≤ f (Encodable.encode i)
[PROOFSTEP]
intro n
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ
hε : 0 < ε
ι : Type ?u.561991
inst✝ : Encodable ι
f : ℕ → ℝ := fun n => ε / 2 / 2 ^ n
hf : HasSum f ε
f0 : ∀ (n : ℕ), 0 < f n
c : ℝ
hg : HasSum (f ∘ Encodable.encode) c
n : ι
⊢ (f ∘ Encodable.encode) n ≤ f (Encodable.encode n)
[PROOFSTEP]
exact le_rfl
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum (fun i => ε' ↑i) c ∧ c ≤ ε
[PROOFSTEP]
haveI := hs.toEncodable
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum (fun i => ε' ↑i) c ∧ c ≤ ε
[PROOFSTEP]
rcases posSumOfEncodable hε s with ⟨f, hf0, ⟨c, hfc, hcε⟩⟩
[GOAL]
case mk.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum (fun i => ε' ↑i) c ∧ c ≤ ε
[PROOFSTEP]
refine' ⟨fun i => if h : i ∈ s then f ⟨i, h⟩ else 1, fun i => _, ⟨c, _, hcε⟩⟩
[GOAL]
case mk.intro.intro.intro.refine'_1
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
i : ι
⊢ 0 < (fun i => if h : i ∈ s then f { val := i, property := h } else 1) i
[PROOFSTEP]
conv_rhs => simp
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
i : ι
| (fun i => if h : i ∈ s then f { val := i, property := h } else 1) i
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
i : ι
| (fun i => if h : i ∈ s then f { val := i, property := h } else 1) i
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
i : ι
| (fun i => if h : i ∈ s then f { val := i, property := h } else 1) i
[PROOFSTEP]
simp
[GOAL]
case mk.intro.intro.intro.refine'_1
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
i : ι
⊢ 0 < if h : i ∈ s then f { val := i, property := h } else 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
i : ι
h✝ : i ∈ s
⊢ 0 < f { val := i, property := h✝ }
case neg
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
i : ι
h✝ : ¬i ∈ s
⊢ 0 < 1
[PROOFSTEP]
exacts [hf0 _, zero_lt_one]
[GOAL]
case mk.intro.intro.intro.refine'_2
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
this : Encodable ↑s
f : ↑s → ℝ
hf0 : ∀ (i : ↑s), 0 < f i
c : ℝ
hfc : HasSum f c
hcε : c ≤ ε
⊢ HasSum (fun i => (fun i => if h : i ∈ s then f { val := i, property := h } else 1) ↑i) c
[PROOFSTEP]
simpa only [Subtype.coe_prop, dif_pos, Subtype.coe_eta]
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∀ (t : Finset ι), ↑t ⊆ s → ∑ i in t, ε' i ≤ ε
[PROOFSTEP]
rcases hs.exists_pos_hasSum_le hε with ⟨ε', hpos, c, hε'c, hcε⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
ε' : ι → ℝ
hpos : ∀ (i : ι), 0 < ε' i
c : ℝ
hε'c : HasSum (fun i => ε' ↑i) c
hcε : c ≤ ε
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∀ (t : Finset ι), ↑t ⊆ s → ∑ i in t, ε' i ≤ ε
[PROOFSTEP]
refine' ⟨ε', hpos, fun t ht => _⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
ε' : ι → ℝ
hpos : ∀ (i : ι), 0 < ε' i
c : ℝ
hε'c : HasSum (fun i => ε' ↑i) c
hcε : c ≤ ε
t : Finset ι
ht : ↑t ⊆ s
⊢ ∑ i in t, ε' i ≤ ε
[PROOFSTEP]
rw [← sum_subtype_of_mem _ ht]
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
ε' : ι → ℝ
hpos : ∀ (i : ι), 0 < ε' i
c : ℝ
hε'c : HasSum (fun i => ε' ↑i) c
hcε : c ≤ ε
t : Finset ι
ht : ↑t ⊆ s
⊢ ∑ x in Finset.subtype (fun x => x ∈ s) t, ε' ↑x ≤ ε
[PROOFSTEP]
refine' (sum_le_hasSum _ _ hε'c).trans hcε
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
s : Set ι
hs : Set.Countable s
ε : ℝ
hε : 0 < ε
ε' : ι → ℝ
hpos : ∀ (i : ι), 0 < ε' i
c : ℝ
hε'c : HasSum (fun i => ε' ↑i) c
hcε : c ≤ ε
t : Finset ι
ht : ↑t ⊆ s
⊢ ∀ (i : ↑s), ¬i ∈ Finset.subtype (fun x => x ∈ s) t → 0 ≤ ε' ↑i
[PROOFSTEP]
exact fun _ _ => (hpos _).le
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c < ε
[PROOFSTEP]
cases nonempty_encodable ι
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
val✝ : Encodable ι
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c < ε
[PROOFSTEP]
obtain ⟨a, a0, aε⟩ := exists_between (pos_iff_ne_zero.2 hε)
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
val✝ : Encodable ι
a : ℝ≥0
a0 : 0 < a
aε : a < ε
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c < ε
[PROOFSTEP]
obtain ⟨ε', hε', c, hc, hcε⟩ := posSumOfEncodable a0 ι
[GOAL]
case intro.intro.intro.mk.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
val✝ : Encodable ι
a : ℝ≥0
a0 : 0 < a
aε : a < ε
ε' : ι → ℝ
hε' : ∀ (i : ι), 0 < ε' i
c : ℝ
hc : HasSum ε' c
hcε : c ≤ (fun a => ↑a) a
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∃ c, HasSum ε' c ∧ c < ε
[PROOFSTEP]
exact
⟨fun i => ⟨ε' i, (hε' i).le⟩, fun i => NNReal.coe_lt_coe.1 <| hε' i,
⟨c, hasSum_le (fun i => (hε' i).le) hasSum_zero hc⟩, NNReal.hasSum_coe.1 hc,
aε.trans_le' <| NNReal.coe_le_coe.1 hcε⟩
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∑' (i : ι), ↑(ε' i) < ε
[PROOFSTEP]
rcases exists_between (pos_iff_ne_zero.2 hε) with ⟨r, h0r, hrε⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
r : ℝ≥0∞
h0r : 0 < r
hrε : r < ε
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∑' (i : ι), ↑(ε' i) < ε
[PROOFSTEP]
rcases lt_iff_exists_coe.1 hrε with ⟨x, rfl, _⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
x : ℝ≥0
right✝ : ↑x < ε
h0r : 0 < ↑x
hrε : ↑x < ε
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∑' (i : ι), ↑(ε' i) < ε
[PROOFSTEP]
rcases NNReal.exists_pos_sum_of_countable (coe_pos.1 h0r).ne' ι with ⟨ε', hp, c, hc, hcr⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
x : ℝ≥0
right✝ : ↑x < ε
h0r : 0 < ↑x
hrε : ↑x < ε
ε' : ι → ℝ≥0
hp : ∀ (i : ι), 0 < ε' i
c : ℝ≥0
hc : HasSum ε' c
hcr : c < x
⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∑' (i : ι), ↑(ε' i) < ε
[PROOFSTEP]
exact ⟨ε', hp, (ENNReal.tsum_coe_eq hc).symm ▸ lt_trans (coe_lt_coe.2 hcr) hrε⟩
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w : ι → ℝ≥0∞
hw : ∀ (i : ι), w i ≠ ⊤
⊢ ∃ δ, (∀ (i : ι), 0 < δ i) ∧ ∑' (i : ι), w i * ↑(δ i) < ε
[PROOFSTEP]
lift w to ι → ℝ≥0 using hw
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w : ι → ℝ≥0
⊢ ∃ δ, (∀ (i : ι), 0 < δ i) ∧ ∑' (i : ι), (fun i => ↑(w i)) i * ↑(δ i) < ε
[PROOFSTEP]
rcases exists_pos_sum_of_countable hε ι with ⟨δ', Hpos, Hsum⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w δ' : ι → ℝ≥0
Hpos : ∀ (i : ι), 0 < δ' i
Hsum : ∑' (i : ι), ↑(δ' i) < ε
⊢ ∃ δ, (∀ (i : ι), 0 < δ i) ∧ ∑' (i : ι), (fun i => ↑(w i)) i * ↑(δ i) < ε
[PROOFSTEP]
have : ∀ i, 0 < max 1 (w i) := fun i => zero_lt_one.trans_le (le_max_left _ _)
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w δ' : ι → ℝ≥0
Hpos : ∀ (i : ι), 0 < δ' i
Hsum : ∑' (i : ι), ↑(δ' i) < ε
this : ∀ (i : ι), 0 < max 1 (w i)
⊢ ∃ δ, (∀ (i : ι), 0 < δ i) ∧ ∑' (i : ι), (fun i => ↑(w i)) i * ↑(δ i) < ε
[PROOFSTEP]
refine' ⟨fun i => δ' i / max 1 (w i), fun i => div_pos (Hpos _) (this i), _⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w δ' : ι → ℝ≥0
Hpos : ∀ (i : ι), 0 < δ' i
Hsum : ∑' (i : ι), ↑(δ' i) < ε
this : ∀ (i : ι), 0 < max 1 (w i)
⊢ ∑' (i : ι), (fun i => ↑(w i)) i * ↑((fun i => δ' i / max 1 (w i)) i) < ε
[PROOFSTEP]
refine' lt_of_le_of_lt (ENNReal.tsum_le_tsum fun i => _) Hsum
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w δ' : ι → ℝ≥0
Hpos : ∀ (i : ι), 0 < δ' i
Hsum : ∑' (i : ι), ↑(δ' i) < ε
this : ∀ (i : ι), 0 < max 1 (w i)
i : ι
⊢ (fun i => ↑(w i)) i * ↑((fun i => δ' i / max 1 (w i)) i) ≤ ↑(δ' i)
[PROOFSTEP]
rw [coe_div (this i).ne']
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w δ' : ι → ℝ≥0
Hpos : ∀ (i : ι), 0 < δ' i
Hsum : ∑' (i : ι), ↑(δ' i) < ε
this : ∀ (i : ι), 0 < max 1 (w i)
i : ι
⊢ (fun i => ↑(w i)) i * (↑(δ' i) / ↑(max 1 (w i))) ≤ ↑(δ' i)
[PROOFSTEP]
refine' mul_le_of_le_div' (mul_le_mul_left' (ENNReal.inv_le_inv.2 _) _)
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ε : ℝ≥0∞
hε : ε ≠ 0
ι : Type u_4
inst✝ : Countable ι
w δ' : ι → ℝ≥0
Hpos : ∀ (i : ι), 0 < δ' i
Hsum : ∑' (i : ι), ↑(δ' i) < ε
this : ∀ (i : ι), 0 < max 1 (w i)
i : ι
⊢ (fun i => ↑(w i)) i ≤ ↑(max 1 (w i))
[PROOFSTEP]
exact coe_le_coe.2 (le_max_right _ _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ 0 ≤ ↑n !
[PROOFSTEP]
exact_mod_cast n.factorial_pos.le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
⊢ 0 ≤ ↑n
[PROOFSTEP]
exact_mod_cast n.zero_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ ∀ᶠ (b : ℕ) in atTop, ↑b ! / ↑b ^ b ≤ 1 / ↑b
[PROOFSTEP]
refine' (eventually_gt_atTop 0).mono fun n hn => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
n : ℕ
hn : 0 < n
⊢ ↑n ! / ↑n ^ n ≤ 1 / ↑n
[PROOFSTEP]
rcases Nat.exists_eq_succ_of_ne_zero hn.ne.symm with ⟨k, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
⊢ ↑(succ k)! / ↑(succ k) ^ succ k ≤ 1 / ↑(succ k)
[PROOFSTEP]
rw [← prod_range_add_one_eq_factorial, pow_eq_prod_const, div_eq_mul_inv, ← inv_eq_one_div, prod_natCast, Nat.cast_succ,
← prod_inv_distrib, ← prod_mul_distrib, Finset.prod_range_succ']
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
⊢ (∏ k_1 in Finset.range k, ↑(k_1 + 1 + 1) * (↑k + 1)⁻¹) * (↑(0 + 1) * (↑k + 1)⁻¹) ≤ (↑k + 1)⁻¹
[PROOFSTEP]
simp only [prod_range_succ', one_mul, Nat.cast_add, zero_add, Nat.cast_one]
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
⊢ (∏ x in Finset.range k, (↑x + 1 + 1) * (↑k + 1)⁻¹) * (↑k + 1)⁻¹ ≤ (↑k + 1)⁻¹
[PROOFSTEP]
refine' mul_le_of_le_one_left (inv_nonneg.mpr <| by exact_mod_cast hn.le) (prod_le_one _ _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
⊢ 0 ≤ ↑k + 1
[PROOFSTEP]
exact_mod_cast hn.le
[GOAL]
case intro.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
⊢ ∀ (i : ℕ), i ∈ Finset.range k → 0 ≤ (↑i + 1 + 1) * (↑k + 1)⁻¹
[PROOFSTEP]
intro x hx
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
⊢ ∀ (i : ℕ), i ∈ Finset.range k → (↑i + 1 + 1) * (↑k + 1)⁻¹ ≤ 1
[PROOFSTEP]
intro x hx
[GOAL]
case intro.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x ∈ Finset.range k
⊢ 0 ≤ (↑x + 1 + 1) * (↑k + 1)⁻¹
[PROOFSTEP]
rw [Finset.mem_range] at hx
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x ∈ Finset.range k
⊢ (↑x + 1 + 1) * (↑k + 1)⁻¹ ≤ 1
[PROOFSTEP]
rw [Finset.mem_range] at hx
[GOAL]
case intro.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ 0 ≤ (↑x + 1 + 1) * (↑k + 1)⁻¹
[PROOFSTEP]
refine' mul_nonneg _ (inv_nonneg.mpr _)
[GOAL]
case intro.refine'_1.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ 0 ≤ ↑x + 1 + 1
[PROOFSTEP]
norm_cast
[GOAL]
case intro.refine'_1.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ 0 ≤ ↑k + 1
[PROOFSTEP]
norm_cast
[GOAL]
case intro.refine'_1.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ 0 ≤ x + 1 + 1
[PROOFSTEP]
linarith
[GOAL]
case intro.refine'_1.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ 0 ≤ k + 1
[PROOFSTEP]
linarith
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ (↑x + 1 + 1) * (↑k + 1)⁻¹ ≤ 1
[PROOFSTEP]
refine' (div_le_one <| by exact_mod_cast hn).mpr _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ 0 < ↑k + 1
[PROOFSTEP]
exact_mod_cast hn
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ ↑x + 1 + 1 ≤ ↑k + 1
[PROOFSTEP]
norm_cast
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
hn : 0 < succ k
x : ℕ
hx : x < k
⊢ x + 1 + 1 ≤ k + 1
[PROOFSTEP]
linarith
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
x : ℕ
⊢ x ≤ ⌊max 0 (↑x + 1)⌋₊
[PROOFSTEP]
simp [Nat.le_floor_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
⊢ Tendsto (fun x => ↑⌊a * x⌋₊ / x) atTop (𝓝 a)
[PROOFSTEP]
have A : Tendsto (fun x : R => a - x⁻¹) atTop (𝓝 (a - 0)) := tendsto_const_nhds.sub tendsto_inv_atTop_zero
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 (a - 0))
⊢ Tendsto (fun x => ↑⌊a * x⌋₊ / x) atTop (𝓝 a)
[PROOFSTEP]
rw [sub_zero] at A
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
⊢ Tendsto (fun x => ↑⌊a * x⌋₊ / x) atTop (𝓝 a)
[PROOFSTEP]
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' A tendsto_const_nhds
[GOAL]
case hgf
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
⊢ ∀ᶠ (b : R) in atTop, a - b⁻¹ ≤ ↑⌊a * b⌋₊ / b
[PROOFSTEP]
refine' eventually_atTop.2 ⟨1, fun x hx => _⟩
[GOAL]
case hgf
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
⊢ a - x⁻¹ ≤ ↑⌊a * x⌋₊ / x
[PROOFSTEP]
simp only [le_div_iff (zero_lt_one.trans_le hx), _root_.sub_mul, inv_mul_cancel (zero_lt_one.trans_le hx).ne']
[GOAL]
case hgf
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
⊢ a * x - 1 ≤ ↑⌊a * x⌋₊
[PROOFSTEP]
have := Nat.lt_floor_add_one (a * x)
[GOAL]
case hgf
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
this : a * x < ↑⌊a * x⌋₊ + 1
⊢ a * x - 1 ≤ ↑⌊a * x⌋₊
[PROOFSTEP]
linarith
[GOAL]
case hfh
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
⊢ ∀ᶠ (b : R) in atTop, ↑⌊a * b⌋₊ / b ≤ a
[PROOFSTEP]
refine' eventually_atTop.2 ⟨1, fun x hx => _⟩
[GOAL]
case hfh
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
⊢ ↑⌊a * x⌋₊ / x ≤ a
[PROOFSTEP]
rw [div_le_iff (zero_lt_one.trans_le hx)]
[GOAL]
case hfh
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a - x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
⊢ ↑⌊a * x⌋₊ ≤ a * x
[PROOFSTEP]
simp [Nat.floor_le (mul_nonneg ha (zero_le_one.trans hx))]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
⊢ Tendsto (fun x => ↑⌊x⌋₊ / x) atTop (𝓝 1)
[PROOFSTEP]
simpa using tendsto_nat_floor_mul_div_atTop (zero_le_one' R)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)
[PROOFSTEP]
have A : Tendsto (fun x : R => a + x⁻¹) atTop (𝓝 (a + 0)) := tendsto_const_nhds.add tendsto_inv_atTop_zero
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a + x⁻¹) atTop (𝓝 (a + 0))
⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)
[PROOFSTEP]
rw [add_zero] at A
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)
⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)
[PROOFSTEP]
apply tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds A
[GOAL]
case hgf
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)
⊢ ∀ᶠ (b : R) in atTop, a ≤ ↑⌈a * b⌉₊ / b
[PROOFSTEP]
refine' eventually_atTop.2 ⟨1, fun x hx => _⟩
[GOAL]
case hgf
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
⊢ a ≤ ↑⌈a * x⌉₊ / x
[PROOFSTEP]
rw [le_div_iff (zero_lt_one.trans_le hx)]
[GOAL]
case hgf
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
⊢ a * x ≤ ↑⌈a * x⌉₊
[PROOFSTEP]
exact Nat.le_ceil _
[GOAL]
case hfh
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)
⊢ ∀ᶠ (b : R) in atTop, ↑⌈a * b⌉₊ / b ≤ a + b⁻¹
[PROOFSTEP]
refine' eventually_atTop.2 ⟨1, fun x hx => _⟩
[GOAL]
case hfh
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
a : R
ha : 0 ≤ a
A : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)
x : R
hx : x ≥ 1
⊢ ↑⌈a * x⌉₊ / x ≤ a + x⁻¹
[PROOFSTEP]
simp [div_le_iff (zero_lt_one.trans_le hx), inv_mul_cancel (zero_lt_one.trans_le hx).ne',
(Nat.ceil_lt_add_one (mul_nonneg ha (zero_le_one.trans hx))).le, add_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝³ : TopologicalSpace R
inst✝² : LinearOrderedField R
inst✝¹ : OrderTopology R
inst✝ : FloorRing R
⊢ Tendsto (fun x => ↑⌈x⌉₊ / x) atTop (𝓝 1)
[PROOFSTEP]
simpa using tendsto_nat_ceil_mul_div_atTop (zero_le_one' R)
| {"mathlib_filename": "Mathlib.Analysis.SpecificLimits.Basic", "llama_tokens": 32977} |
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ Tendsto (fun n => u n / ↑n) atTop (𝓝 l)
[PROOFSTEP]
have lnonneg : 0 ≤ l := by
rcases hlim 2 one_lt_two with ⟨c, _, ctop, clim⟩
have : Tendsto (fun n => u 0 / c n) atTop (𝓝 0) := tendsto_const_nhds.div_atTop (tendsto_nat_cast_atTop_iff.2 ctop)
apply le_of_tendsto_of_tendsto' this clim fun n => _
simp_rw [div_eq_inv_mul]
exact fun n => mul_le_mul_of_nonneg_left (hmono (zero_le _)) (inv_nonneg.2 (Nat.cast_nonneg _))
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ 0 ≤ l
[PROOFSTEP]
rcases hlim 2 one_lt_two with ⟨c, _, ctop, clim⟩
[GOAL]
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
c : ℕ → ℕ
left✝ : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ 2 * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ 0 ≤ l
[PROOFSTEP]
have : Tendsto (fun n => u 0 / c n) atTop (𝓝 0) := tendsto_const_nhds.div_atTop (tendsto_nat_cast_atTop_iff.2 ctop)
[GOAL]
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
c : ℕ → ℕ
left✝ : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ 2 * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
this : Tendsto (fun n => u 0 / ↑(c n)) atTop (𝓝 0)
⊢ 0 ≤ l
[PROOFSTEP]
apply le_of_tendsto_of_tendsto' this clim fun n => _
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
c : ℕ → ℕ
left✝ : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ 2 * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
this : Tendsto (fun n => u 0 / ↑(c n)) atTop (𝓝 0)
⊢ ∀ (n : ℕ), u 0 / ↑(c n) ≤ u (c n) / ↑(c n)
[PROOFSTEP]
simp_rw [div_eq_inv_mul]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
c : ℕ → ℕ
left✝ : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ 2 * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
this : Tendsto (fun n => u 0 / ↑(c n)) atTop (𝓝 0)
⊢ ∀ (n : ℕ), (↑(c n))⁻¹ * u 0 ≤ (↑(c n))⁻¹ * u (c n)
[PROOFSTEP]
exact fun n => mul_le_mul_of_nonneg_left (hmono (zero_le _)) (inv_nonneg.2 (Nat.cast_nonneg _))
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
⊢ Tendsto (fun n => u n / ↑n) atTop (𝓝 l)
[PROOFSTEP]
have A : ∀ ε : ℝ, 0 < ε → ∀ᶠ n in atTop, u n - n * l ≤ ε * (1 + ε + l) * n :=
by
intro ε εpos
rcases hlim (1 + ε) ((lt_add_iff_pos_right _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
have L : ∀ᶠ n in atTop, u (c n) - c n * l ≤ ε * c n :=
by
rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ, Asymptotics.isLittleO_iff] at clim
filter_upwards [clim εpos, ctop (Ioi_mem_atTop 0)] with n hn cnpos'
have cnpos : 0 < c n := cnpos'
calc
u (c n) - c n * l = (u (c n) / c n - l) * c n := by
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, field_simps]
_ ≤ ε * c n := by
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
exact le_trans (le_abs_self _) hn
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ u (c b) - c b * l ≤ ε * c b :=
eventually_atTop.1 (cgrowth.and L)
let M := ((Finset.range (a + 1)).image fun i => c i).max' (by simp)
filter_upwards [Ici_mem_atTop M] with n hn
have exN : ∃ N, n < c N := by
rcases(tendsto_atTop.1 ctop (n + 1)).exists with ⟨N, hN⟩
exact ⟨N, by linarith only [hN]⟩
let N := Nat.find exN
have ncN : n < c N := Nat.find_spec exN
have aN : a + 1 ≤ N := by
by_contra' h
have cNM : c N ≤ M := by
apply le_max'
apply mem_image_of_mem
exact mem_range.2 h
exact lt_irrefl _ ((cNM.trans hn).trans_lt ncN)
have Npos : 0 < N := lt_of_lt_of_le Nat.succ_pos' aN
have cNn : c (N - 1) ≤ n := by
have : N - 1 < N := Nat.pred_lt Npos.ne'
simpa only [not_lt] using Nat.find_min exN this
have IcN : (c N : ℝ) ≤ (1 + ε) * c (N - 1) :=
by
have A : a ≤ N - 1 := by
apply @Nat.le_of_add_le_add_right a 1 (N - 1)
rw [Nat.sub_add_cancel Npos]
exact aN
have B : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
have := (ha _ A).1
rwa [B] at this
calc
u n - n * l ≤ u (c N) - c (N - 1) * l := by
apply sub_le_sub (hmono ncN.le)
apply mul_le_mul_of_nonneg_right (Nat.cast_le.2 cNn) lnonneg
_ = u (c N) - c N * l + (c N - c (N - 1)) * l := by ring
_ ≤ ε * c N + ε * c (N - 1) * l := by
apply add_le_add
· apply (ha _ _).2
exact le_trans (by simp only [le_add_iff_nonneg_right, zero_le']) aN
· apply mul_le_mul_of_nonneg_right _ lnonneg
linarith only [IcN]
_ ≤ ε * ((1 + ε) * c (N - 1)) + ε * c (N - 1) * l := (add_le_add (mul_le_mul_of_nonneg_left IcN εpos.le) le_rfl)
_ = ε * (1 + ε + l) * c (N - 1) := by ring
_ ≤ ε * (1 + ε + l) * n := by
refine' mul_le_mul_of_nonneg_left (Nat.cast_le.2 cNn) _
apply mul_nonneg εpos.le
linarith only [εpos, lnonneg]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
⊢ ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
intro ε εpos
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
rcases hlim (1 + ε) ((lt_add_iff_pos_right _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
[GOAL]
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
have L : ∀ᶠ n in atTop, u (c n) - c n * l ≤ ε * c n :=
by
rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ, Asymptotics.isLittleO_iff] at clim
filter_upwards [clim εpos, ctop (Ioi_mem_atTop 0)] with n hn cnpos'
have cnpos : 0 < c n := cnpos'
calc
u (c n) - c n * l = (u (c n) / c n - l) * c n := by
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, field_simps]
_ ≤ ε * c n := by
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
exact le_trans (le_abs_self _) hn
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
[PROOFSTEP]
rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ, Asymptotics.isLittleO_iff] at clim
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
[PROOFSTEP]
filter_upwards [clim εpos, ctop (Ioi_mem_atTop 0)] with n hn cnpos'
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
[PROOFSTEP]
have cnpos : 0 < c n := cnpos'
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
[PROOFSTEP]
calc
u (c n) - c n * l = (u (c n) / c n - l) * c n := by
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, field_simps]
_ ≤ ε * c n := by
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
exact le_trans (le_abs_self _) hn
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) - ↑(c n) * l = (u (c n) / ↑(c n) - l) * ↑(c n)
[PROOFSTEP]
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, field_simps]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ (u (c n) / ↑(c n) - l) * ↑(c n) ≤ ε * ↑(c n)
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) / ↑(c n) - l ≤ ε
[PROOFSTEP]
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
hn : |u (c n) / ↑(c n) - l| ≤ ε
⊢ u (c n) / ↑(c n) - l ≤ ε
[PROOFSTEP]
exact le_trans (le_abs_self _) hn
[GOAL]
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ u (c b) - c b * l ≤ ε * c b :=
eventually_atTop.1 (cgrowth.and L)
[GOAL]
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
let M := ((Finset.range (a + 1)).image fun i => c i).max' (by simp)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
⊢ Finset.Nonempty (image (fun i => c i) (range (a + 1)))
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
filter_upwards [Ici_mem_atTop M] with n hn
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
have exN : ∃ N, n < c N := by
rcases(tendsto_atTop.1 ctop (n + 1)).exists with ⟨N, hN⟩
exact ⟨N, by linarith only [hN]⟩
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
⊢ ∃ N, n < c N
[PROOFSTEP]
rcases(tendsto_atTop.1 ctop (n + 1)).exists with ⟨N, hN⟩
[GOAL]
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
N : ℕ
hN : n + 1 ≤ c N
⊢ ∃ N, n < c N
[PROOFSTEP]
exact ⟨N, by linarith only [hN]⟩
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
N : ℕ
hN : n + 1 ≤ c N
⊢ n < c N
[PROOFSTEP]
linarith only [hN]
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
let N := Nat.find exN
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
have ncN : n < c N := Nat.find_spec exN
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
have aN : a + 1 ≤ N := by
by_contra' h
have cNM : c N ≤ M := by
apply le_max'
apply mem_image_of_mem
exact mem_range.2 h
exact lt_irrefl _ ((cNM.trans hn).trans_lt ncN)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ a + 1 ≤ N
[PROOFSTEP]
by_contra' h
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ False
[PROOFSTEP]
have cNM : c N ≤ M := by
apply le_max'
apply mem_image_of_mem
exact mem_range.2 h
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ c N ≤ M
[PROOFSTEP]
apply le_max'
[GOAL]
case H2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ c N ∈ image (fun i => c i) (range (a + 1))
[PROOFSTEP]
apply mem_image_of_mem
[GOAL]
case H2.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ N ∈ range (a + 1)
[PROOFSTEP]
exact mem_range.2 h
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
cNM : c N ≤ M
⊢ False
[PROOFSTEP]
exact lt_irrefl _ ((cNM.trans hn).trans_lt ncN)
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
have Npos : 0 < N := lt_of_lt_of_le Nat.succ_pos' aN
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
have cNn : c (N - 1) ≤ n := by
have : N - 1 < N := Nat.pred_lt Npos.ne'
simpa only [not_lt] using Nat.find_min exN this
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ c (N - 1) ≤ n
[PROOFSTEP]
have : N - 1 < N := Nat.pred_lt Npos.ne'
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
this : N - 1 < N
⊢ c (N - 1) ≤ n
[PROOFSTEP]
simpa only [not_lt] using Nat.find_min exN this
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
have IcN : (c N : ℝ) ≤ (1 + ε) * c (N - 1) :=
by
have A : a ≤ N - 1 := by
apply @Nat.le_of_add_le_add_right a 1 (N - 1)
rw [Nat.sub_add_cancel Npos]
exact aN
have B : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
have := (ha _ A).1
rwa [B] at this
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
[PROOFSTEP]
have A : a ≤ N - 1 := by
apply @Nat.le_of_add_le_add_right a 1 (N - 1)
rw [Nat.sub_add_cancel Npos]
exact aN
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a ≤ N - 1
[PROOFSTEP]
apply @Nat.le_of_add_le_add_right a 1 (N - 1)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a + 1 ≤ N - 1 + 1
[PROOFSTEP]
rw [Nat.sub_add_cancel Npos]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a + 1 ≤ N
[PROOFSTEP]
exact aN
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
[PROOFSTEP]
have B : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
B : N - 1 + 1 = N
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
[PROOFSTEP]
have := (ha _ A).1
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
B : N - 1 + 1 = N
this : ↑(c (N - 1 + 1)) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
[PROOFSTEP]
rwa [B] at this
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
calc
u n - n * l ≤ u (c N) - c (N - 1) * l := by
apply sub_le_sub (hmono ncN.le)
apply mul_le_mul_of_nonneg_right (Nat.cast_le.2 cNn) lnonneg
_ = u (c N) - c N * l + (c N - c (N - 1)) * l := by ring
_ ≤ ε * c N + ε * c (N - 1) * l := by
apply add_le_add
· apply (ha _ _).2
exact le_trans (by simp only [le_add_iff_nonneg_right, zero_le']) aN
· apply mul_le_mul_of_nonneg_right _ lnonneg
linarith only [IcN]
_ ≤ ε * ((1 + ε) * c (N - 1)) + ε * c (N - 1) * l := (add_le_add (mul_le_mul_of_nonneg_left IcN εpos.le) le_rfl)
_ = ε * (1 + ε + l) * c (N - 1) := by ring
_ ≤ ε * (1 + ε + l) * n := by
refine' mul_le_mul_of_nonneg_left (Nat.cast_le.2 cNn) _
apply mul_nonneg εpos.le
linarith only [εpos, lnonneg]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u n - ↑n * l ≤ u (c N) - ↑(c (N - 1)) * l
[PROOFSTEP]
apply sub_le_sub (hmono ncN.le)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c (N - 1)) * l ≤ ↑n * l
[PROOFSTEP]
apply mul_le_mul_of_nonneg_right (Nat.cast_le.2 cNn) lnonneg
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u (c N) - ↑(c (N - 1)) * l = u (c N) - ↑(c N) * l + (↑(c N) - ↑(c (N - 1))) * l
[PROOFSTEP]
ring
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u (c N) - ↑(c N) * l + (↑(c N) - ↑(c (N - 1))) * l ≤ ε * ↑(c N) + ε * ↑(c (N - 1)) * l
[PROOFSTEP]
apply add_le_add
[GOAL]
case h₁
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u (c N) - ↑(c N) * l ≤ ε * ↑(c N)
[PROOFSTEP]
apply (ha _ _).2
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ a ≤ N
[PROOFSTEP]
exact le_trans (by simp only [le_add_iff_nonneg_right, zero_le']) aN
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ a ≤ a + 1
[PROOFSTEP]
simp only [le_add_iff_nonneg_right, zero_le']
[GOAL]
case h₂
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ (↑(c N) - ↑(c (N - 1))) * l ≤ ε * ↑(c (N - 1)) * l
[PROOFSTEP]
apply mul_le_mul_of_nonneg_right _ lnonneg
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c N) - ↑(c (N - 1)) ≤ ε * ↑(c (N - 1))
[PROOFSTEP]
linarith only [IcN]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ε * ((1 + ε) * ↑(c (N - 1))) + ε * ↑(c (N - 1)) * l = ε * (1 + ε + l) * ↑(c (N - 1))
[PROOFSTEP]
ring
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ε * (1 + ε + l) * ↑(c (N - 1)) ≤ ε * (1 + ε + l) * ↑n
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left (Nat.cast_le.2 cNn) _
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ 0 ≤ ε * (1 + ε + l)
[PROOFSTEP]
apply mul_nonneg εpos.le
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ 0 ≤ 1 + ε + l
[PROOFSTEP]
linarith only [εpos, lnonneg]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
⊢ Tendsto (fun n => u n / ↑n) atTop (𝓝 l)
[PROOFSTEP]
have B : ∀ ε : ℝ, 0 < ε → ∀ᶠ n : ℕ in atTop, (n : ℝ) * l - u n ≤ ε * (1 + l) * n :=
by
intro ε εpos
rcases hlim (1 + ε) ((lt_add_iff_pos_right _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
have L : ∀ᶠ n : ℕ in atTop, (c n : ℝ) * l - u (c n) ≤ ε * c n :=
by
rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ, Asymptotics.isLittleO_iff] at clim
filter_upwards [clim εpos, ctop (Ioi_mem_atTop 0)] with n hn cnpos'
have cnpos : 0 < c n := cnpos'
calc
(c n : ℝ) * l - u (c n) = -(u (c n) / c n - l) * c n := by
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, neg_sub, field_simps]
_ ≤ ε * c n := by
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
exact le_trans (neg_le_abs_self _) hn
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ (c b : ℝ) * l - u (c b) ≤ ε * c b :=
eventually_atTop.1 (cgrowth.and L)
let M := ((Finset.range (a + 1)).image fun i => c i).max' (by simp)
filter_upwards [Ici_mem_atTop M] with n hn
have exN : ∃ N, n < c N := by
rcases(tendsto_atTop.1 ctop (n + 1)).exists with ⟨N, hN⟩
exact ⟨N, by linarith only [hN]⟩
let N := Nat.find exN
have ncN : n < c N := Nat.find_spec exN
have aN : a + 1 ≤ N := by
by_contra' h
have cNM : c N ≤ M := by
apply le_max'
apply mem_image_of_mem
exact mem_range.2 h
exact lt_irrefl _ ((cNM.trans hn).trans_lt ncN)
have Npos : 0 < N := lt_of_lt_of_le Nat.succ_pos' aN
have aN' : a ≤ N - 1 := by
apply @Nat.le_of_add_le_add_right a 1 (N - 1)
rw [Nat.sub_add_cancel Npos]
exact aN
have cNn : c (N - 1) ≤ n := by
have : N - 1 < N := Nat.pred_lt Npos.ne'
simpa only [not_lt] using Nat.find_min exN this
calc
(n : ℝ) * l - u n ≤ c N * l - u (c (N - 1)) :=
by
refine' add_le_add (mul_le_mul_of_nonneg_right (Nat.cast_le.2 ncN.le) lnonneg) _
exact neg_le_neg (hmono cNn)
_ ≤ (1 + ε) * c (N - 1) * l - u (c (N - 1)) :=
by
refine' add_le_add (mul_le_mul_of_nonneg_right _ lnonneg) le_rfl
have B : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
have := (ha _ aN').1
rwa [B] at this
_ = c (N - 1) * l - u (c (N - 1)) + ε * c (N - 1) * l := by ring
_ ≤ ε * c (N - 1) + ε * c (N - 1) * l := (add_le_add (ha _ aN').2 le_rfl)
_ = ε * (1 + l) * c (N - 1) := by ring
_ ≤ ε * (1 + l) * n := by
refine' mul_le_mul_of_nonneg_left (Nat.cast_le.2 cNn) _
exact mul_nonneg εpos.le (add_nonneg zero_le_one lnonneg)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
⊢ ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
intro ε εpos
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
rcases hlim (1 + ε) ((lt_add_iff_pos_right _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
[GOAL]
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
have L : ∀ᶠ n : ℕ in atTop, (c n : ℝ) * l - u (c n) ≤ ε * c n :=
by
rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ, Asymptotics.isLittleO_iff] at clim
filter_upwards [clim εpos, ctop (Ioi_mem_atTop 0)] with n hn cnpos'
have cnpos : 0 < c n := cnpos'
calc
(c n : ℝ) * l - u (c n) = -(u (c n) / c n - l) * c n := by
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, neg_sub, field_simps]
_ ≤ ε * c n := by
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
exact le_trans (neg_le_abs_self _) hn
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
[PROOFSTEP]
rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ, Asymptotics.isLittleO_iff] at clim
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
[PROOFSTEP]
filter_upwards [clim εpos, ctop (Ioi_mem_atTop 0)] with n hn cnpos'
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
[PROOFSTEP]
have cnpos : 0 < c n := cnpos'
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
[PROOFSTEP]
calc
(c n : ℝ) * l - u (c n) = -(u (c n) / c n - l) * c n := by
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, neg_sub, field_simps]
_ ≤ ε * c n := by
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
exact le_trans (neg_le_abs_self _) hn
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ ↑(c n) * l - u (c n) = -(u (c n) / ↑(c n) - l) * ↑(c n)
[PROOFSTEP]
simp only [cnpos.ne', Ne.def, Nat.cast_eq_zero, not_false_iff, neg_sub, field_simps]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ -(u (c n) / ↑(c n) - l) * ↑(c n) ≤ ε * ↑(c n)
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_right _ (Nat.cast_nonneg _)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ -(u (c n) / ↑(c n) - l) ≤ ε
[PROOFSTEP]
simp only [mul_one, Real.norm_eq_abs, abs_one] at hn
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim✝ : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
hn : |u (c n) / ↑(c n) - l| ≤ ε
⊢ -(u (c n) / ↑(c n) - l) ≤ ε
[PROOFSTEP]
exact le_trans (neg_le_abs_self _) hn
[GOAL]
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ (c b : ℝ) * l - u (c b) ≤ ε * c b :=
eventually_atTop.1 (cgrowth.and L)
[GOAL]
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
let M := ((Finset.range (a + 1)).image fun i => c i).max' (by simp)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
⊢ Finset.Nonempty (image (fun i => c i) (range (a + 1)))
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
filter_upwards [Ici_mem_atTop M] with n hn
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
have exN : ∃ N, n < c N := by
rcases(tendsto_atTop.1 ctop (n + 1)).exists with ⟨N, hN⟩
exact ⟨N, by linarith only [hN]⟩
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
⊢ ∃ N, n < c N
[PROOFSTEP]
rcases(tendsto_atTop.1 ctop (n + 1)).exists with ⟨N, hN⟩
[GOAL]
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
N : ℕ
hN : n + 1 ≤ c N
⊢ ∃ N, n < c N
[PROOFSTEP]
exact ⟨N, by linarith only [hN]⟩
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
N : ℕ
hN : n + 1 ≤ c N
⊢ n < c N
[PROOFSTEP]
linarith only [hN]
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
let N := Nat.find exN
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
have ncN : n < c N := Nat.find_spec exN
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
have aN : a + 1 ≤ N := by
by_contra' h
have cNM : c N ≤ M := by
apply le_max'
apply mem_image_of_mem
exact mem_range.2 h
exact lt_irrefl _ ((cNM.trans hn).trans_lt ncN)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ a + 1 ≤ N
[PROOFSTEP]
by_contra' h
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ False
[PROOFSTEP]
have cNM : c N ≤ M := by
apply le_max'
apply mem_image_of_mem
exact mem_range.2 h
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ c N ≤ M
[PROOFSTEP]
apply le_max'
[GOAL]
case H2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ c N ∈ image (fun i => c i) (range (a + 1))
[PROOFSTEP]
apply mem_image_of_mem
[GOAL]
case H2.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
⊢ N ∈ range (a + 1)
[PROOFSTEP]
exact mem_range.2 h
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : Nat.find exN < a + 1
cNM : c N ≤ M
⊢ False
[PROOFSTEP]
exact lt_irrefl _ ((cNM.trans hn).trans_lt ncN)
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
have Npos : 0 < N := lt_of_lt_of_le Nat.succ_pos' aN
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
have aN' : a ≤ N - 1 := by
apply @Nat.le_of_add_le_add_right a 1 (N - 1)
rw [Nat.sub_add_cancel Npos]
exact aN
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a ≤ N - 1
[PROOFSTEP]
apply @Nat.le_of_add_le_add_right a 1 (N - 1)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a + 1 ≤ N - 1 + 1
[PROOFSTEP]
rw [Nat.sub_add_cancel Npos]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a + 1 ≤ N
[PROOFSTEP]
exact aN
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
have cNn : c (N - 1) ≤ n := by
have : N - 1 < N := Nat.pred_lt Npos.ne'
simpa only [not_lt] using Nat.find_min exN this
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
⊢ c (N - 1) ≤ n
[PROOFSTEP]
have : N - 1 < N := Nat.pred_lt Npos.ne'
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
this : N - 1 < N
⊢ c (N - 1) ≤ n
[PROOFSTEP]
simpa only [not_lt] using Nat.find_min exN this
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
calc
(n : ℝ) * l - u n ≤ c N * l - u (c (N - 1)) :=
by
refine' add_le_add (mul_le_mul_of_nonneg_right (Nat.cast_le.2 ncN.le) lnonneg) _
exact neg_le_neg (hmono cNn)
_ ≤ (1 + ε) * c (N - 1) * l - u (c (N - 1)) :=
by
refine' add_le_add (mul_le_mul_of_nonneg_right _ lnonneg) le_rfl
have B : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
have := (ha _ aN').1
rwa [B] at this
_ = c (N - 1) * l - u (c (N - 1)) + ε * c (N - 1) * l := by ring
_ ≤ ε * c (N - 1) + ε * c (N - 1) * l := (add_le_add (ha _ aN').2 le_rfl)
_ = ε * (1 + l) * c (N - 1) := by ring
_ ≤ ε * (1 + l) * n := by
refine' mul_le_mul_of_nonneg_left (Nat.cast_le.2 cNn) _
exact mul_nonneg εpos.le (add_nonneg zero_le_one lnonneg)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑n * l - u n ≤ ↑(c N) * l - u (c (N - 1))
[PROOFSTEP]
refine' add_le_add (mul_le_mul_of_nonneg_right (Nat.cast_le.2 ncN.le) lnonneg) _
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ -u n ≤ -u (c (N - 1))
[PROOFSTEP]
exact neg_le_neg (hmono cNn)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑(c N) * l - u (c (N - 1)) ≤ (1 + ε) * ↑(c (N - 1)) * l - u (c (N - 1))
[PROOFSTEP]
refine' add_le_add (mul_le_mul_of_nonneg_right _ lnonneg) le_rfl
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
[PROOFSTEP]
have B : N - 1 + 1 = N := Nat.succ_pred_eq_of_pos Npos
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
B : N - 1 + 1 = N
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
[PROOFSTEP]
have := (ha _ aN').1
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
B : N - 1 + 1 = N
this : ↑(c (N - 1 + 1)) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
[PROOFSTEP]
rwa [B] at this
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ (1 + ε) * ↑(c (N - 1)) * l - u (c (N - 1)) = ↑(c (N - 1)) * l - u (c (N - 1)) + ε * ↑(c (N - 1)) * l
[PROOFSTEP]
ring
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ε * ↑(c (N - 1)) + ε * ↑(c (N - 1)) * l = ε * (1 + l) * ↑(c (N - 1))
[PROOFSTEP]
ring
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ε * (1 + l) * ↑(c (N - 1)) ≤ ε * (1 + l) * ↑n
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left (Nat.cast_le.2 cNn) _
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1))))
n : ℕ
hn :
n ∈ Set.Ici (max' (image (fun i => c i) (range (a + 1))) (_ : Finset.Nonempty (image (fun i => c i) (range (a + 1)))))
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ 0 ≤ ε * (1 + l)
[PROOFSTEP]
exact mul_nonneg εpos.le (add_nonneg zero_le_one lnonneg)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
⊢ Tendsto (fun n => u n / ↑n) atTop (𝓝 l)
[PROOFSTEP]
refine' tendsto_order.2 ⟨fun d hd => _, fun d hd => _⟩
[GOAL]
case refine'_1
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
[PROOFSTEP]
obtain ⟨ε, hε, εpos⟩ : ∃ ε : ℝ, d + ε * (1 + l) < l ∧ 0 < ε :=
by
have L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) :=
by
apply Tendsto.mono_left _ nhdsWithin_le_nhds
exact tendsto_const_nhds.add (tendsto_id.mul tendsto_const_nhds)
simp only [zero_mul, add_zero] at L
exact (((tendsto_order.1 L).2 l hd).and self_mem_nhdsWithin).exists
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
[PROOFSTEP]
have L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) :=
by
apply Tendsto.mono_left _ nhdsWithin_le_nhds
exact tendsto_const_nhds.add (tendsto_id.mul tendsto_const_nhds)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ Tendsto (fun ε => d + ε * (1 + l)) (𝓝[Set.Ioi 0] 0) (𝓝 (d + 0 * (1 + l)))
[PROOFSTEP]
apply Tendsto.mono_left _ nhdsWithin_le_nhds
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ Tendsto (fun ε => d + ε * (1 + l)) (𝓝 0) (𝓝 (d + 0 * (1 + l)))
[PROOFSTEP]
exact tendsto_const_nhds.add (tendsto_id.mul tendsto_const_nhds)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[Set.Ioi 0] 0) (𝓝 (d + 0 * (1 + l)))
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
[PROOFSTEP]
simp only [zero_mul, add_zero] at L
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[Set.Ioi 0] 0) (𝓝 d)
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
[PROOFSTEP]
exact (((tendsto_order.1 L).2 l hd).and self_mem_nhdsWithin).exists
[GOAL]
case refine'_1.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
[PROOFSTEP]
filter_upwards [B ε εpos, Ioi_mem_atTop 0] with n hn npos
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ d < u n / ↑n
[PROOFSTEP]
simp_rw [div_eq_inv_mul]
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ d < (↑n)⁻¹ * u n
[PROOFSTEP]
calc
d < (n : ℝ)⁻¹ * n * (l - ε * (1 + l)) := by
rw [inv_mul_cancel, one_mul]
· linarith only [hε]
· exact Nat.cast_ne_zero.2 (ne_of_gt npos)
_ = (n : ℝ)⁻¹ * (n * l - ε * (1 + l) * n) := by ring
_ ≤ (n : ℝ)⁻¹ * u n := by
refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (Nat.cast_nonneg _))
linarith only [hn]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ d < (↑n)⁻¹ * ↑n * (l - ε * (1 + l))
[PROOFSTEP]
rw [inv_mul_cancel, one_mul]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ d < l - ε * (1 + l)
[PROOFSTEP]
linarith only [hε]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ ↑n ≠ 0
[PROOFSTEP]
exact Nat.cast_ne_zero.2 (ne_of_gt npos)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ (↑n)⁻¹ * ↑n * (l - ε * (1 + l)) = (↑n)⁻¹ * (↑n * l - ε * (1 + l) * ↑n)
[PROOFSTEP]
ring
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ (↑n)⁻¹ * (↑n * l - ε * (1 + l) * ↑n) ≤ (↑n)⁻¹ * u n
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (Nat.cast_nonneg _))
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ ↑n * l - ε * (1 + l) * ↑n ≤ u n
[PROOFSTEP]
linarith only [hn]
[GOAL]
case refine'_2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
⊢ ∀ᶠ (b : ℕ) in atTop, u b / ↑b < d
[PROOFSTEP]
obtain ⟨ε, hε, εpos⟩ : ∃ ε : ℝ, l + ε * (1 + ε + l) < d ∧ 0 < ε :=
by
have L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 (l + 0 * (1 + 0 + l))) :=
by
apply Tendsto.mono_left _ nhdsWithin_le_nhds
exact tendsto_const_nhds.add (tendsto_id.mul ((tendsto_const_nhds.add tendsto_id).add tendsto_const_nhds))
simp only [zero_mul, add_zero] at L
exact (((tendsto_order.1 L).2 d hd).and self_mem_nhdsWithin).exists
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
[PROOFSTEP]
have L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 (l + 0 * (1 + 0 + l))) :=
by
apply Tendsto.mono_left _ nhdsWithin_le_nhds
exact tendsto_const_nhds.add (tendsto_id.mul ((tendsto_const_nhds.add tendsto_id).add tendsto_const_nhds))
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
⊢ Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[Set.Ioi 0] 0) (𝓝 (l + 0 * (1 + 0 + l)))
[PROOFSTEP]
apply Tendsto.mono_left _ nhdsWithin_le_nhds
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
⊢ Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝 0) (𝓝 (l + 0 * (1 + 0 + l)))
[PROOFSTEP]
exact tendsto_const_nhds.add (tendsto_id.mul ((tendsto_const_nhds.add tendsto_id).add tendsto_const_nhds))
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[Set.Ioi 0] 0) (𝓝 (l + 0 * (1 + 0 + l)))
⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
[PROOFSTEP]
simp only [zero_mul, add_zero] at L
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[Set.Ioi 0] 0) (𝓝 l)
⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
[PROOFSTEP]
exact (((tendsto_order.1 L).2 d hd).and self_mem_nhdsWithin).exists
[GOAL]
case refine'_2.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
⊢ ∀ᶠ (b : ℕ) in atTop, u b / ↑b < d
[PROOFSTEP]
filter_upwards [A ε εpos, Ioi_mem_atTop 0] with n hn npos
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
n : ℕ
hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ u n / ↑n < d
[PROOFSTEP]
simp_rw [div_eq_inv_mul]
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
n : ℕ
hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ (↑n)⁻¹ * u n < d
[PROOFSTEP]
calc
(n : ℝ)⁻¹ * u n ≤ (n : ℝ)⁻¹ * (n * l + ε * (1 + ε + l) * n) :=
by
refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (Nat.cast_nonneg _))
linarith only [hn]
_ = (n : ℝ)⁻¹ * n * (l + ε * (1 + ε + l)) := by ring
_ < d := by
rwa [inv_mul_cancel, one_mul]
exact Nat.cast_ne_zero.2 (ne_of_gt npos)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
n : ℕ
hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ (↑n)⁻¹ * u n ≤ (↑n)⁻¹ * (↑n * l + ε * (1 + ε + l) * ↑n)
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (Nat.cast_nonneg _))
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
n : ℕ
hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ u n ≤ ↑n * l + ε * (1 + ε + l) * ↑n
[PROOFSTEP]
linarith only [hn]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
n : ℕ
hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ (↑n)⁻¹ * (↑n * l + ε * (1 + ε + l) * ↑n) = (↑n)⁻¹ * ↑n * (l + ε * (1 + ε + l))
[PROOFSTEP]
ring
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
n : ℕ
hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ (↑n)⁻¹ * ↑n * (l + ε * (1 + ε + l)) < d
[PROOFSTEP]
rwa [inv_mul_cancel, one_mul]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d > l
ε : ℝ
hε : l + ε * (1 + ε + l) < d
εpos : 0 < ε
n : ℕ
hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ ↑n ≠ 0
[PROOFSTEP]
exact Nat.cast_ne_zero.2 (ne_of_gt npos)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
⊢ Tendsto (fun n => u n / ↑n) atTop (𝓝 l)
[PROOFSTEP]
apply tendsto_div_of_monotone_of_exists_subseq_tendsto_div u l hmono
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
⊢ ∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
[PROOFSTEP]
intro a ha
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
⊢ ∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
[PROOFSTEP]
obtain ⟨k, hk⟩ : ∃ k, c k < a := ((tendsto_order.1 clim).2 a ha).exists
[GOAL]
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
⊢ ∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
[PROOFSTEP]
refine'
⟨fun n => ⌊c k ^ n⌋₊, _, (tendsto_nat_floor_atTop (α := ℝ)).comp (tendsto_pow_atTop_atTop_of_one_lt (cone k)), hc k⟩
[GOAL]
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
⊢ ∀ᶠ (n : ℕ) in atTop, ↑((fun n => ⌊c k ^ n⌋₊) (n + 1)) ≤ a * ↑((fun n => ⌊c k ^ n⌋₊) n)
[PROOFSTEP]
have H : ∀ n : ℕ, (0 : ℝ) < ⌊c k ^ n⌋₊ := by
intro n
refine' zero_lt_one.trans_le _
simp only [Real.rpow_nat_cast, Nat.one_le_cast, Nat.one_le_floor_iff, one_le_pow_of_one_le (cone k).le n]
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
⊢ ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
[PROOFSTEP]
intro n
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
n : ℕ
⊢ 0 < ↑⌊c k ^ n⌋₊
[PROOFSTEP]
refine' zero_lt_one.trans_le _
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
n : ℕ
⊢ 1 ≤ ↑⌊c k ^ n⌋₊
[PROOFSTEP]
simp only [Real.rpow_nat_cast, Nat.one_le_cast, Nat.one_le_floor_iff, one_le_pow_of_one_le (cone k).le n]
[GOAL]
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
⊢ ∀ᶠ (n : ℕ) in atTop, ↑((fun n => ⌊c k ^ n⌋₊) (n + 1)) ≤ a * ↑((fun n => ⌊c k ^ n⌋₊) n)
[PROOFSTEP]
have A :
Tendsto (fun n : ℕ => (⌊c k ^ (n + 1)⌋₊ : ℝ) / c k ^ (n + 1) * c k / (⌊c k ^ n⌋₊ / c k ^ n)) atTop
(𝓝 (1 * c k / 1)) :=
by
refine' Tendsto.div (Tendsto.mul _ tendsto_const_nhds) _ one_ne_zero
· refine' tendsto_nat_floor_div_atTop.comp _
exact (tendsto_pow_atTop_atTop_of_one_lt (cone k)).comp (tendsto_add_atTop_nat 1)
· refine' tendsto_nat_floor_div_atTop.comp _
exact tendsto_pow_atTop_atTop_of_one_lt (cone k)
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
⊢ Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (1 * c k / 1))
[PROOFSTEP]
refine' Tendsto.div (Tendsto.mul _ tendsto_const_nhds) _ one_ne_zero
[GOAL]
case refine'_1
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
⊢ Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1)) atTop (𝓝 1)
[PROOFSTEP]
refine' tendsto_nat_floor_div_atTop.comp _
[GOAL]
case refine'_1
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
⊢ Tendsto (fun n => c k ^ (n + 1)) atTop atTop
[PROOFSTEP]
exact (tendsto_pow_atTop_atTop_of_one_lt (cone k)).comp (tendsto_add_atTop_nat 1)
[GOAL]
case refine'_2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
⊢ Tendsto (fun n => ↑⌊c k ^ n⌋₊ / c k ^ n) atTop (𝓝 1)
[PROOFSTEP]
refine' tendsto_nat_floor_div_atTop.comp _
[GOAL]
case refine'_2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
⊢ Tendsto (fun n => c k ^ n) atTop atTop
[PROOFSTEP]
exact tendsto_pow_atTop_atTop_of_one_lt (cone k)
[GOAL]
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (1 * c k / 1))
⊢ ∀ᶠ (n : ℕ) in atTop, ↑((fun n => ⌊c k ^ n⌋₊) (n + 1)) ≤ a * ↑((fun n => ⌊c k ^ n⌋₊) n)
[PROOFSTEP]
have B : Tendsto (fun n : ℕ => (⌊c k ^ (n + 1)⌋₊ : ℝ) / ⌊c k ^ n⌋₊) atTop (𝓝 (c k)) :=
by
simp only [one_mul, div_one] at A
convert A using 1
ext1 n
field_simp [(zero_lt_one.trans (cone k)).ne', (H n).ne']
ring
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (1 * c k / 1))
⊢ Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 (c k))
[PROOFSTEP]
simp only [one_mul, div_one] at A
[GOAL]
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (c k))
⊢ Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 (c k))
[PROOFSTEP]
convert A using 1
[GOAL]
case h.e'_3
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (c k))
⊢ (fun n => ↑⌊c k ^ (n + 1)⌋₊ / ↑⌊c k ^ n⌋₊) = fun n =>
↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_3.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (c k))
n : ℕ
⊢ ↑⌊c k ^ (n + 1)⌋₊ / ↑⌊c k ^ n⌋₊ = ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)
[PROOFSTEP]
field_simp [(zero_lt_one.trans (cone k)).ne', (H n).ne']
[GOAL]
case h.e'_3.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (c k))
n : ℕ
⊢ ↑⌊c k ^ (n + 1)⌋₊ * (c k ^ (n + 1) * ↑⌊c k ^ n⌋₊) = ↑⌊c k ^ (n + 1)⌋₊ * c k * c k ^ n * ↑⌊c k ^ n⌋₊
[PROOFSTEP]
ring
[GOAL]
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (1 * c k / 1))
B : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 (c k))
⊢ ∀ᶠ (n : ℕ) in atTop, ↑((fun n => ⌊c k ^ n⌋₊) (n + 1)) ≤ a * ↑((fun n => ⌊c k ^ n⌋₊) n)
[PROOFSTEP]
filter_upwards [(tendsto_order.1 B).2 a hk] with n hn
[GOAL]
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
c : ℕ → ℝ
cone : ∀ (k : ℕ), 1 < c k
clim : Tendsto c atTop (𝓝 1)
hc : ∀ (k : ℕ), Tendsto (fun n => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 l)
a : ℝ
ha : 1 < a
k : ℕ
hk : c k < a
H : ∀ (n : ℕ), 0 < ↑⌊c k ^ n⌋₊
A : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / c k ^ (n + 1) * c k / (↑⌊c k ^ n⌋₊ / c k ^ n)) atTop (𝓝 (1 * c k / 1))
B : Tendsto (fun n => ↑⌊c k ^ (n + 1)⌋₊ / ↑⌊c k ^ n⌋₊) atTop (𝓝 (c k))
n : ℕ
hn : ↑⌊c k ^ (n + 1)⌋₊ / ↑⌊c k ^ n⌋₊ < a
⊢ ↑⌊c k ^ (n + 1)⌋₊ ≤ a * ↑⌊c k ^ n⌋₊
[PROOFSTEP]
exact (div_le_iff (H n)).1 hn.le
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
⊢ ∑ i in filter (fun x => j < c ^ x) (range N), 1 / (c ^ i) ^ 2 ≤ c ^ 3 * (c - 1)⁻¹ / j ^ 2
[PROOFSTEP]
have cpos : 0 < c := zero_lt_one.trans hc
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
⊢ ∑ i in filter (fun x => j < c ^ x) (range N), 1 / (c ^ i) ^ 2 ≤ c ^ 3 * (c - 1)⁻¹ / j ^ 2
[PROOFSTEP]
have A : (0 : ℝ) < c⁻¹ ^ 2 := sq_pos_of_pos (inv_pos.2 cpos)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
⊢ ∑ i in filter (fun x => j < c ^ x) (range N), 1 / (c ^ i) ^ 2 ≤ c ^ 3 * (c - 1)⁻¹ / j ^ 2
[PROOFSTEP]
have B : c ^ 2 * ((1 : ℝ) - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹ :=
by
rw [← div_eq_mul_inv, ← div_eq_mul_inv, div_le_div_iff _ (sub_pos.2 hc)]
swap
· exact sub_pos.2 (pow_lt_one (inv_nonneg.2 cpos.le) (inv_lt_one hc) two_ne_zero)
have : c ^ 3 = c ^ 2 * c := by ring
simp only [mul_sub, this, mul_one, inv_pow, sub_le_sub_iff_left]
rw [mul_assoc, mul_comm c, ← mul_assoc, mul_inv_cancel (sq_pos_of_pos cpos).ne', one_mul]
simpa using pow_le_pow hc.le one_le_two
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
⊢ c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
[PROOFSTEP]
rw [← div_eq_mul_inv, ← div_eq_mul_inv, div_le_div_iff _ (sub_pos.2 hc)]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
⊢ c ^ 2 * (c - 1) ≤ c ^ 3 * (1 - c⁻¹ ^ 2)
N : ℕ j : ℝ hj : 0 < j c : ℝ hc : 1 < c cpos : 0 < c A : 0 < c⁻¹ ^ 2 ⊢ 0 < 1 - c⁻¹ ^ 2
[PROOFSTEP]
swap
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
⊢ 0 < 1 - c⁻¹ ^ 2
[PROOFSTEP]
exact sub_pos.2 (pow_lt_one (inv_nonneg.2 cpos.le) (inv_lt_one hc) two_ne_zero)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
⊢ c ^ 2 * (c - 1) ≤ c ^ 3 * (1 - c⁻¹ ^ 2)
[PROOFSTEP]
have : c ^ 3 = c ^ 2 * c := by ring
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
⊢ c ^ 3 = c ^ 2 * c
[PROOFSTEP]
ring
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
this : c ^ 3 = c ^ 2 * c
⊢ c ^ 2 * (c - 1) ≤ c ^ 3 * (1 - c⁻¹ ^ 2)
[PROOFSTEP]
simp only [mul_sub, this, mul_one, inv_pow, sub_le_sub_iff_left]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
this : c ^ 3 = c ^ 2 * c
⊢ c ^ 2 * c * (c ^ 2)⁻¹ ≤ c ^ 2
[PROOFSTEP]
rw [mul_assoc, mul_comm c, ← mul_assoc, mul_inv_cancel (sq_pos_of_pos cpos).ne', one_mul]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
this : c ^ 3 = c ^ 2 * c
⊢ c ≤ c ^ 2
[PROOFSTEP]
simpa using pow_le_pow hc.le one_le_two
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ ∑ i in filter (fun x => j < c ^ x) (range N), 1 / (c ^ i) ^ 2 ≤ c ^ 3 * (c - 1)⁻¹ / j ^ 2
[PROOFSTEP]
calc
(∑ i in (range N).filter fun i => j < c ^ i, (1 : ℝ) / (c ^ i) ^ 2) ≤
∑ i in Ico ⌊Real.log j / Real.log c⌋₊ N, (1 : ℝ) / (c ^ i) ^ 2 :=
by
refine' sum_le_sum_of_subset_of_nonneg _ fun i _hi _hident => div_nonneg zero_le_one (sq_nonneg _)
intro i hi
simp only [mem_filter, mem_range] at hi
simp only [hi.1, mem_Ico, and_true_iff]
apply Nat.floor_le_of_le
apply le_of_lt
rw [div_lt_iff (Real.log_pos hc), ← Real.log_pow]
exact Real.log_lt_log hj hi.2
_ = ∑ i in Ico ⌊Real.log j / Real.log c⌋₊ N, (c⁻¹ ^ 2) ^ i :=
by
congr 1 with i
simp [← pow_mul, mul_comm]
_ ≤ (c⁻¹ ^ 2) ^ ⌊Real.log j / Real.log c⌋₊ / ((1 : ℝ) - c⁻¹ ^ 2) :=
by
apply geom_sum_Ico_le_of_lt_one (sq_nonneg _)
rw [sq_lt_one_iff (inv_nonneg.2 (zero_le_one.trans hc.le))]
exact inv_lt_one hc
_ ≤ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c - 1) / ((1 : ℝ) - c⁻¹ ^ 2) :=
by
apply div_le_div _ _ _ le_rfl
· apply Real.rpow_nonneg_of_nonneg (sq_nonneg _)
· rw [← Real.rpow_nat_cast]
apply Real.rpow_le_rpow_of_exponent_ge A
· exact pow_le_one _ (inv_nonneg.2 (zero_le_one.trans hc.le)) (inv_le_one hc.le)
· exact (Nat.sub_one_lt_floor _).le
· simpa only [inv_pow, sub_pos] using inv_lt_one (one_lt_pow hc two_ne_zero)
_ = c ^ 2 * ((1 : ℝ) - c⁻¹ ^ 2)⁻¹ / j ^ 2 :=
by
have I : (c⁻¹ ^ 2) ^ (Real.log j / Real.log c) = (1 : ℝ) / j ^ 2 :=
by
apply Real.log_injOn_pos (Real.rpow_pos_of_pos A _)
· rw [one_div]
exact inv_pos.2 (sq_pos_of_pos hj)
rw [Real.log_rpow A]
simp only [one_div, Real.log_inv, Real.log_pow, Nat.cast_one, mul_neg, neg_inj]
field_simp [(Real.log_pos hc).ne']
ring
rw [Real.rpow_sub A, I]
have : c ^ 2 - 1 ≠ 0 := (sub_pos.2 (one_lt_pow hc two_ne_zero)).ne'
field_simp [hj.ne', (zero_lt_one.trans hc).ne']
ring
_ ≤ c ^ 3 * (c - 1)⁻¹ / j ^ 2 := by
apply div_le_div _ B (sq_pos_of_pos hj) le_rfl
exact mul_nonneg (pow_nonneg cpos.le _) (inv_nonneg.2 (sub_pos.2 hc).le)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ ∑ i in filter (fun i => j < c ^ i) (range N), 1 / (c ^ i) ^ 2 ≤
∑ i in Ico ⌊Real.log j / Real.log c⌋₊ N, 1 / (c ^ i) ^ 2
[PROOFSTEP]
refine' sum_le_sum_of_subset_of_nonneg _ fun i _hi _hident => div_nonneg zero_le_one (sq_nonneg _)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ filter (fun i => j < c ^ i) (range N) ⊆ Ico ⌊Real.log j / Real.log c⌋₊ N
[PROOFSTEP]
intro i hi
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
i : ℕ
hi : i ∈ filter (fun i => j < c ^ i) (range N)
⊢ i ∈ Ico ⌊Real.log j / Real.log c⌋₊ N
[PROOFSTEP]
simp only [mem_filter, mem_range] at hi
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
i : ℕ
hi : i < N ∧ j < c ^ i
⊢ i ∈ Ico ⌊Real.log j / Real.log c⌋₊ N
[PROOFSTEP]
simp only [hi.1, mem_Ico, and_true_iff]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
i : ℕ
hi : i < N ∧ j < c ^ i
⊢ ⌊Real.log j / Real.log c⌋₊ ≤ i
[PROOFSTEP]
apply Nat.floor_le_of_le
[GOAL]
case h
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
i : ℕ
hi : i < N ∧ j < c ^ i
⊢ Real.log j / Real.log c ≤ ↑i
[PROOFSTEP]
apply le_of_lt
[GOAL]
case h.a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
i : ℕ
hi : i < N ∧ j < c ^ i
⊢ Real.log j / Real.log c < ↑i
[PROOFSTEP]
rw [div_lt_iff (Real.log_pos hc), ← Real.log_pow]
[GOAL]
case h.a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
i : ℕ
hi : i < N ∧ j < c ^ i
⊢ Real.log j < Real.log (c ^ i)
[PROOFSTEP]
exact Real.log_lt_log hj hi.2
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ ∑ i in Ico ⌊Real.log j / Real.log c⌋₊ N, 1 / (c ^ i) ^ 2 = ∑ i in Ico ⌊Real.log j / Real.log c⌋₊ N, (c⁻¹ ^ 2) ^ i
[PROOFSTEP]
congr 1 with i
[GOAL]
case e_f.h
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
i : ℕ
⊢ 1 / (c ^ i) ^ 2 = (c⁻¹ ^ 2) ^ i
[PROOFSTEP]
simp [← pow_mul, mul_comm]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ ∑ i in Ico ⌊Real.log j / Real.log c⌋₊ N, (c⁻¹ ^ 2) ^ i ≤ (c⁻¹ ^ 2) ^ ⌊Real.log j / Real.log c⌋₊ / (1 - c⁻¹ ^ 2)
[PROOFSTEP]
apply geom_sum_Ico_le_of_lt_one (sq_nonneg _)
[GOAL]
case h'x
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ c⁻¹ ^ 2 < 1
[PROOFSTEP]
rw [sq_lt_one_iff (inv_nonneg.2 (zero_le_one.trans hc.le))]
[GOAL]
case h'x
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ c⁻¹ < 1
[PROOFSTEP]
exact inv_lt_one hc
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ (c⁻¹ ^ 2) ^ ⌊Real.log j / Real.log c⌋₊ / (1 - c⁻¹ ^ 2) ≤ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c - 1) / (1 - c⁻¹ ^ 2)
[PROOFSTEP]
apply div_le_div _ _ _ le_rfl
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ 0 ≤ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c - 1)
[PROOFSTEP]
apply Real.rpow_nonneg_of_nonneg (sq_nonneg _)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ (c⁻¹ ^ 2) ^ ⌊Real.log j / Real.log c⌋₊ ≤ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c - 1)
[PROOFSTEP]
rw [← Real.rpow_nat_cast]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ (c⁻¹ ^ 2) ^ ↑⌊Real.log j / Real.log c⌋₊ ≤ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c - 1)
[PROOFSTEP]
apply Real.rpow_le_rpow_of_exponent_ge A
[GOAL]
case hx1
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ c⁻¹ ^ 2 ≤ 1
[PROOFSTEP]
exact pow_le_one _ (inv_nonneg.2 (zero_le_one.trans hc.le)) (inv_le_one hc.le)
[GOAL]
case hyz
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ Real.log j / Real.log c - 1 ≤ ↑⌊Real.log j / Real.log c⌋₊
[PROOFSTEP]
exact (Nat.sub_one_lt_floor _).le
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ 0 < 1 - c⁻¹ ^ 2
[PROOFSTEP]
simpa only [inv_pow, sub_pos] using inv_lt_one (one_lt_pow hc two_ne_zero)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c - 1) / (1 - c⁻¹ ^ 2) = c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ / j ^ 2
[PROOFSTEP]
have I : (c⁻¹ ^ 2) ^ (Real.log j / Real.log c) = (1 : ℝ) / j ^ 2 :=
by
apply Real.log_injOn_pos (Real.rpow_pos_of_pos A _)
· rw [one_div]
exact inv_pos.2 (sq_pos_of_pos hj)
rw [Real.log_rpow A]
simp only [one_div, Real.log_inv, Real.log_pow, Nat.cast_one, mul_neg, neg_inj]
field_simp [(Real.log_pos hc).ne']
ring
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c) = 1 / j ^ 2
[PROOFSTEP]
apply Real.log_injOn_pos (Real.rpow_pos_of_pos A _)
[GOAL]
case a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ 1 / j ^ 2 ∈ Set.Ioi 0
[PROOFSTEP]
rw [one_div]
[GOAL]
case a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ (j ^ 2)⁻¹ ∈ Set.Ioi 0
[PROOFSTEP]
exact inv_pos.2 (sq_pos_of_pos hj)
[GOAL]
case a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ Real.log ((c⁻¹ ^ 2) ^ (Real.log j / Real.log c)) = Real.log (1 / j ^ 2)
[PROOFSTEP]
rw [Real.log_rpow A]
[GOAL]
case a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ Real.log j / Real.log c * Real.log (c⁻¹ ^ 2) = Real.log (1 / j ^ 2)
[PROOFSTEP]
simp only [one_div, Real.log_inv, Real.log_pow, Nat.cast_one, mul_neg, neg_inj]
[GOAL]
case a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ Real.log j / Real.log c * (↑2 * Real.log c) = ↑2 * Real.log j
[PROOFSTEP]
field_simp [(Real.log_pos hc).ne']
[GOAL]
case a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ Real.log j * (2 * Real.log c) = 2 * Real.log j * Real.log c
[PROOFSTEP]
ring
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
I : (c⁻¹ ^ 2) ^ (Real.log j / Real.log c) = 1 / j ^ 2
⊢ (c⁻¹ ^ 2) ^ (Real.log j / Real.log c - 1) / (1 - c⁻¹ ^ 2) = c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ / j ^ 2
[PROOFSTEP]
rw [Real.rpow_sub A, I]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
I : (c⁻¹ ^ 2) ^ (Real.log j / Real.log c) = 1 / j ^ 2
⊢ 1 / j ^ 2 / (c⁻¹ ^ 2) ^ 1 / (1 - c⁻¹ ^ 2) = c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ / j ^ 2
[PROOFSTEP]
have : c ^ 2 - 1 ≠ 0 := (sub_pos.2 (one_lt_pow hc two_ne_zero)).ne'
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
I : (c⁻¹ ^ 2) ^ (Real.log j / Real.log c) = 1 / j ^ 2
this : c ^ 2 - 1 ≠ 0
⊢ 1 / j ^ 2 / (c⁻¹ ^ 2) ^ 1 / (1 - c⁻¹ ^ 2) = c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ / j ^ 2
[PROOFSTEP]
field_simp [hj.ne', (zero_lt_one.trans hc).ne']
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
I : (c⁻¹ ^ 2) ^ (Real.log j / Real.log c) = 1 / j ^ 2
this : c ^ 2 - 1 ≠ 0
⊢ (c ^ 2 - 1) * j ^ 2 = j ^ 2 * (c ^ 2 - 1)
[PROOFSTEP]
ring
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ / j ^ 2 ≤ c ^ 3 * (c - 1)⁻¹ / j ^ 2
[PROOFSTEP]
apply div_le_div _ B (sq_pos_of_pos hj) le_rfl
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < c⁻¹ ^ 2
B : c ^ 2 * (1 - c⁻¹ ^ 2)⁻¹ ≤ c ^ 3 * (c - 1)⁻¹
⊢ 0 ≤ c ^ 3 * (c - 1)⁻¹
[PROOFSTEP]
exact mul_nonneg (pow_nonneg cpos.le _) (inv_nonneg.2 (sub_pos.2 hc).le)
[GOAL]
c : ℝ
hc : 1 < c
i : ℕ
⊢ (1 - c⁻¹) * c ^ i ≤ ↑⌊c ^ i⌋₊
[PROOFSTEP]
have cpos : 0 < c := zero_lt_one.trans hc
[GOAL]
c : ℝ
hc : 1 < c
i : ℕ
cpos : 0 < c
⊢ (1 - c⁻¹) * c ^ i ≤ ↑⌊c ^ i⌋₊
[PROOFSTEP]
rcases Nat.eq_zero_or_pos i with (rfl | hi)
[GOAL]
case inl
c : ℝ
hc : 1 < c
cpos : 0 < c
⊢ (1 - c⁻¹) * c ^ 0 ≤ ↑⌊c ^ 0⌋₊
[PROOFSTEP]
simp only [pow_zero, Nat.floor_one, Nat.cast_one, mul_one, sub_le_self_iff, inv_nonneg, cpos.le]
[GOAL]
case inr
c : ℝ
hc : 1 < c
i : ℕ
cpos : 0 < c
hi : i > 0
⊢ (1 - c⁻¹) * c ^ i ≤ ↑⌊c ^ i⌋₊
[PROOFSTEP]
have hident : 1 ≤ i := hi
[GOAL]
case inr
c : ℝ
hc : 1 < c
i : ℕ
cpos : 0 < c
hi : i > 0
hident : 1 ≤ i
⊢ (1 - c⁻¹) * c ^ i ≤ ↑⌊c ^ i⌋₊
[PROOFSTEP]
calc
(1 - c⁻¹) * c ^ i = c ^ i - c ^ i * c⁻¹ := by ring
_ ≤ c ^ i - 1 := by
simpa only [← div_eq_mul_inv, sub_le_sub_iff_left, one_le_div cpos, pow_one] using pow_le_pow hc.le hident
_ ≤ ⌊c ^ i⌋₊ := (Nat.sub_one_lt_floor _).le
[GOAL]
c : ℝ
hc : 1 < c
i : ℕ
cpos : 0 < c
hi : i > 0
hident : 1 ≤ i
⊢ (1 - c⁻¹) * c ^ i = c ^ i - c ^ i * c⁻¹
[PROOFSTEP]
ring
[GOAL]
c : ℝ
hc : 1 < c
i : ℕ
cpos : 0 < c
hi : i > 0
hident : 1 ≤ i
⊢ c ^ i - c ^ i * c⁻¹ ≤ c ^ i - 1
[PROOFSTEP]
simpa only [← div_eq_mul_inv, sub_le_sub_iff_left, one_le_div cpos, pow_one] using pow_le_pow hc.le hident
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
⊢ ∑ i in filter (fun x => j < ↑⌊c ^ x⌋₊) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
[PROOFSTEP]
have cpos : 0 < c := zero_lt_one.trans hc
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
⊢ ∑ i in filter (fun x => j < ↑⌊c ^ x⌋₊) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
[PROOFSTEP]
have A : 0 < 1 - c⁻¹ := sub_pos.2 (inv_lt_one hc)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ ∑ i in filter (fun x => j < ↑⌊c ^ x⌋₊) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
[PROOFSTEP]
calc
(∑ i in (range N).filter (j < ⌊c ^ ·⌋₊), (1 : ℝ) / (⌊c ^ i⌋₊ : ℝ) ^ 2) ≤
∑ i in (range N).filter (j < c ^ ·), (1 : ℝ) / (⌊c ^ i⌋₊ : ℝ) ^ 2 :=
by
apply sum_le_sum_of_subset_of_nonneg
· intro i hi
simp only [mem_filter, mem_range] at hi
simpa only [hi.1, mem_filter, mem_range, true_and_iff] using hi.2.trans_le (Nat.floor_le (pow_nonneg cpos.le _))
· intro i _hi _hident
exact div_nonneg zero_le_one (sq_nonneg _)
_ ≤ ∑ i in (range N).filter (j < c ^ ·), (1 - c⁻¹)⁻¹ ^ 2 * ((1 : ℝ) / (c ^ i) ^ 2) :=
by
refine' sum_le_sum fun i _hi => _
rw [mul_div_assoc', mul_one, div_le_div_iff]; rotate_left
· apply sq_pos_of_pos
refine' zero_lt_one.trans_le _
simp only [Nat.le_floor, one_le_pow_of_one_le, hc.le, Nat.one_le_cast, Nat.cast_one]
· exact sq_pos_of_pos (pow_pos cpos _)
rw [one_mul, ← mul_pow]
apply pow_le_pow_of_le_left (pow_nonneg cpos.le _)
rw [← div_eq_inv_mul, le_div_iff A, mul_comm]
exact mul_pow_le_nat_floor_pow hc i
_ ≤ (1 - c⁻¹)⁻¹ ^ 2 * (c ^ 3 * (c - 1)⁻¹) / j ^ 2 :=
by
rw [← mul_sum, ← mul_div_assoc']
refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _)
exact sum_div_pow_sq_le_div_sq N hj hc
_ = c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2 := by
congr 1
field_simp [cpos.ne', (sub_pos.2 hc).ne']
ring!
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ ∑ i in filter (fun x => j < ↑⌊c ^ x⌋₊) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤
∑ i in filter (fun x => j < c ^ x) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2
[PROOFSTEP]
apply sum_le_sum_of_subset_of_nonneg
[GOAL]
case h
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ filter (fun x => j < ↑⌊c ^ x⌋₊) (range N) ⊆ filter (fun x => j < c ^ x) (range N)
[PROOFSTEP]
intro i hi
[GOAL]
case h
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
hi : i ∈ filter (fun x => j < ↑⌊c ^ x⌋₊) (range N)
⊢ i ∈ filter (fun x => j < c ^ x) (range N)
[PROOFSTEP]
simp only [mem_filter, mem_range] at hi
[GOAL]
case h
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
hi : i < N ∧ j < ↑⌊c ^ i⌋₊
⊢ i ∈ filter (fun x => j < c ^ x) (range N)
[PROOFSTEP]
simpa only [hi.1, mem_filter, mem_range, true_and_iff] using hi.2.trans_le (Nat.floor_le (pow_nonneg cpos.le _))
[GOAL]
case hf
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ ∀ (i : ℕ),
i ∈ filter (fun x => j < c ^ x) (range N) → ¬i ∈ filter (fun x => j < ↑⌊c ^ x⌋₊) (range N) → 0 ≤ 1 / ↑⌊c ^ i⌋₊ ^ 2
[PROOFSTEP]
intro i _hi _hident
[GOAL]
case hf
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
_hident : ¬i ∈ filter (fun x => j < ↑⌊c ^ x⌋₊) (range N)
⊢ 0 ≤ 1 / ↑⌊c ^ i⌋₊ ^ 2
[PROOFSTEP]
exact div_nonneg zero_le_one (sq_nonneg _)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ ∑ i in filter (fun x => j < c ^ x) (range N), 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤
∑ i in filter (fun x => j < c ^ x) (range N), (1 - c⁻¹)⁻¹ ^ 2 * (1 / (c ^ i) ^ 2)
[PROOFSTEP]
refine' sum_le_sum fun i _hi => _
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 1 / ↑⌊c ^ i⌋₊ ^ 2 ≤ (1 - c⁻¹)⁻¹ ^ 2 * (1 / (c ^ i) ^ 2)
[PROOFSTEP]
rw [mul_div_assoc', mul_one, div_le_div_iff]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 1 * (c ^ i) ^ 2 ≤ (1 - c⁻¹)⁻¹ ^ 2 * ↑⌊c ^ i⌋₊ ^ 2
case b0
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 0 < ↑⌊c ^ i⌋₊ ^ 2
case d0
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 0 < (c ^ i) ^ 2
[PROOFSTEP]
rotate_left
[GOAL]
case b0
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 0 < ↑⌊c ^ i⌋₊ ^ 2
[PROOFSTEP]
apply sq_pos_of_pos
[GOAL]
case b0.ha
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 0 < ↑⌊c ^ i⌋₊
[PROOFSTEP]
refine' zero_lt_one.trans_le _
[GOAL]
case b0.ha
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 1 ≤ ↑⌊c ^ i⌋₊
[PROOFSTEP]
simp only [Nat.le_floor, one_le_pow_of_one_le, hc.le, Nat.one_le_cast, Nat.cast_one]
[GOAL]
case d0
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 0 < (c ^ i) ^ 2
[PROOFSTEP]
exact sq_pos_of_pos (pow_pos cpos _)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ 1 * (c ^ i) ^ 2 ≤ (1 - c⁻¹)⁻¹ ^ 2 * ↑⌊c ^ i⌋₊ ^ 2
[PROOFSTEP]
rw [one_mul, ← mul_pow]
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ (c ^ i) ^ 2 ≤ ((1 - c⁻¹)⁻¹ * ↑⌊c ^ i⌋₊) ^ 2
[PROOFSTEP]
apply pow_le_pow_of_le_left (pow_nonneg cpos.le _)
[GOAL]
case hab
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ c ^ i ≤ (1 - c⁻¹)⁻¹ * ↑⌊c ^ i⌋₊
[PROOFSTEP]
rw [← div_eq_inv_mul, le_div_iff A, mul_comm]
[GOAL]
case hab
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
i : ℕ
_hi : i ∈ filter (fun x => j < c ^ x) (range N)
⊢ (1 - c⁻¹) * c ^ i ≤ ↑⌊c ^ i⌋₊
[PROOFSTEP]
exact mul_pow_le_nat_floor_pow hc i
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ ∑ i in filter (fun x => j < c ^ x) (range N), (1 - c⁻¹)⁻¹ ^ 2 * (1 / (c ^ i) ^ 2) ≤
(1 - c⁻¹)⁻¹ ^ 2 * (c ^ 3 * (c - 1)⁻¹) / j ^ 2
[PROOFSTEP]
rw [← mul_sum, ← mul_div_assoc']
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ (1 - c⁻¹)⁻¹ ^ 2 * ∑ x in filter (fun x => j < c ^ x) (range N), 1 / (c ^ x) ^ 2 ≤
(1 - c⁻¹)⁻¹ ^ 2 * (c ^ 3 * (c - 1)⁻¹ / j ^ 2)
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _)
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ ∑ x in filter (fun x => j < c ^ x) (range N), 1 / (c ^ x) ^ 2 ≤ c ^ 3 * (c - 1)⁻¹ / j ^ 2
[PROOFSTEP]
exact sum_div_pow_sq_le_div_sq N hj hc
[GOAL]
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ (1 - c⁻¹)⁻¹ ^ 2 * (c ^ 3 * (c - 1)⁻¹) / j ^ 2 = c ^ 5 * (c - 1)⁻¹ ^ 3 / j ^ 2
[PROOFSTEP]
congr 1
[GOAL]
case e_a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ (1 - c⁻¹)⁻¹ ^ 2 * (c ^ 3 * (c - 1)⁻¹) = c ^ 5 * (c - 1)⁻¹ ^ 3
[PROOFSTEP]
field_simp [cpos.ne', (sub_pos.2 hc).ne']
[GOAL]
case e_a
N : ℕ
j : ℝ
hj : 0 < j
c : ℝ
hc : 1 < c
cpos : 0 < c
A : 0 < 1 - c⁻¹
⊢ c ^ 2 * c ^ 3 * (c - 1) ^ 3 = c ^ 5 * ((c - 1) ^ 2 * (c - 1))
[PROOFSTEP]
ring!
| {"mathlib_filename": "Mathlib.Analysis.SpecificLimits.FloorPow", "llama_tokens": 94642} |
[GOAL]
⊢ Continuous sin
[PROOFSTEP]
change Continuous fun z => (exp (-z * I) - exp (z * I)) * I / 2
[GOAL]
⊢ Continuous fun z => (exp (-z * I) - exp (z * I)) * I / 2
[PROOFSTEP]
continuity
[GOAL]
⊢ Continuous cos
[PROOFSTEP]
change Continuous fun z => (exp (z * I) + exp (-z * I)) / 2
[GOAL]
⊢ Continuous fun z => (exp (z * I) + exp (-z * I)) / 2
[PROOFSTEP]
continuity
[GOAL]
⊢ Continuous sinh
[PROOFSTEP]
change Continuous fun z => (exp z - exp (-z)) / 2
[GOAL]
⊢ Continuous fun z => (exp z - exp (-z)) / 2
[PROOFSTEP]
continuity
[GOAL]
⊢ Continuous cosh
[PROOFSTEP]
change Continuous fun z => (exp z + exp (-z)) / 2
[GOAL]
⊢ Continuous fun z => (exp z + exp (-z)) / 2
[PROOFSTEP]
continuity
[GOAL]
⊢ 1 ≤ 2
[PROOFSTEP]
norm_num
[GOAL]
⊢ cos (π / 2) = 0
[PROOFSTEP]
rw [Real.pi, mul_div_cancel_left _ (two_ne_zero' ℝ)]
[GOAL]
⊢ cos (choose exists_cos_eq_zero) = 0
[PROOFSTEP]
exact (Classical.choose_spec exists_cos_eq_zero).2
[GOAL]
⊢ 1 ≤ π / 2
[PROOFSTEP]
rw [Real.pi, mul_div_cancel_left _ (two_ne_zero' ℝ)]
[GOAL]
⊢ 1 ≤ choose exists_cos_eq_zero
[PROOFSTEP]
exact (Classical.choose_spec exists_cos_eq_zero).1.1
[GOAL]
⊢ π / 2 ≤ 2
[PROOFSTEP]
rw [Real.pi, mul_div_cancel_left _ (two_ne_zero' ℝ)]
[GOAL]
⊢ choose exists_cos_eq_zero ≤ 2
[PROOFSTEP]
exact (Classical.choose_spec exists_cos_eq_zero).1.2
[GOAL]
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
⊢ 2 / 2 ≤ π / 2
[PROOFSTEP]
rw [div_self (two_ne_zero' ℝ)]
[GOAL]
⊢ 1 ≤ π / 2
[PROOFSTEP]
exact one_le_pi_div_two
[GOAL]
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
⊢ 2 = 4 / 2
[PROOFSTEP]
norm_num
[GOAL]
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
⊢ 0 < 2 * π
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
⊢ 0 < pi
[PROOFSTEP]
exact_mod_cast Real.pi_pos
[GOAL]
⊢ sin π = 0
[PROOFSTEP]
rw [← mul_div_cancel_left π (two_ne_zero' ℝ), two_mul, add_div, sin_add, cos_pi_div_two]
[GOAL]
⊢ sin (π / 2) * 0 + 0 * sin (π / 2) = 0
[PROOFSTEP]
simp
[GOAL]
⊢ cos π = -1
[PROOFSTEP]
rw [← mul_div_cancel_left π (two_ne_zero' ℝ), mul_div_assoc, cos_two_mul, cos_pi_div_two]
[GOAL]
⊢ 2 * 0 ^ 2 - 1 = -1
[PROOFSTEP]
norm_num
[GOAL]
⊢ sin (2 * π) = 0
[PROOFSTEP]
simp [two_mul, sin_add]
[GOAL]
⊢ cos (2 * π) = 1
[PROOFSTEP]
simp [two_mul, cos_add]
[GOAL]
⊢ Function.Antiperiodic sin π
[PROOFSTEP]
simp [sin_add]
[GOAL]
⊢ Function.Antiperiodic cos π
[PROOFSTEP]
simp [cos_add]
[GOAL]
n : ℕ
⊢ cos (↑n * (2 * π) + π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.nat_mul n).add_antiperiod_eq cos_antiperiodic
[GOAL]
n : ℤ
⊢ cos (↑n * (2 * π) + π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.int_mul n).add_antiperiod_eq cos_antiperiodic
[GOAL]
n : ℕ
⊢ cos (↑n * (2 * π) - π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.nat_mul n).sub_antiperiod_eq cos_antiperiodic
[GOAL]
n : ℤ
⊢ cos (↑n * (2 * π) - π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.int_mul n).sub_antiperiod_eq cos_antiperiodic
[GOAL]
x : ℝ
h0x : 0 < x
hxp : x < π
hx2 : ¬x ≤ 2
⊢ 2 + 2 = 4
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
hx : x ∈ Icc 0 π
⊢ 0 ≤ sin x
[PROOFSTEP]
rw [← closure_Ioo pi_ne_zero.symm] at hx
[GOAL]
x : ℝ
hx : x ∈ closure (Ioo 0 π)
⊢ 0 ≤ sin x
[PROOFSTEP]
exact closure_lt_subset_le continuous_const continuous_sin (closure_mono (fun y => sin_pos_of_mem_Ioo) hx)
[GOAL]
⊢ sin (π / 2) = 1 ∨ sin (π / 2) = -1
[PROOFSTEP]
simpa [sq, mul_self_eq_one_iff] using sin_sq_add_cos_sq (π / 2)
[GOAL]
this : sin (π / 2) = 1 ∨ sin (π / 2) = -1
h : sin (π / 2) = -1
⊢ ¬0 < -1
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ sin (x + π / 2) = cos x
[PROOFSTEP]
simp [sin_add]
[GOAL]
x : ℝ
⊢ sin (x - π / 2) = -cos x
[PROOFSTEP]
simp [sub_eq_add_neg, sin_add]
[GOAL]
x : ℝ
⊢ sin (π / 2 - x) = cos x
[PROOFSTEP]
simp [sub_eq_add_neg, sin_add]
[GOAL]
x : ℝ
⊢ cos (x + π / 2) = -sin x
[PROOFSTEP]
simp [cos_add]
[GOAL]
x : ℝ
⊢ cos (x - π / 2) = sin x
[PROOFSTEP]
simp [sub_eq_add_neg, cos_add]
[GOAL]
x : ℝ
⊢ cos (π / 2 - x) = sin x
[PROOFSTEP]
rw [← cos_neg, neg_sub, cos_sub_pi_div_two]
[GOAL]
x : ℝ
hx : x ∈ Ioo (-(π / 2)) (π / 2)
⊢ 0 < x + π / 2
[PROOFSTEP]
linarith [hx.1]
[GOAL]
x : ℝ
hx : x ∈ Ioo (-(π / 2)) (π / 2)
⊢ x + π / 2 < π
[PROOFSTEP]
linarith [hx.2]
[GOAL]
x : ℝ
hx : x ∈ Icc (-(π / 2)) (π / 2)
⊢ 0 ≤ x + π / 2
[PROOFSTEP]
linarith [hx.1]
[GOAL]
x : ℝ
hx : x ∈ Icc (-(π / 2)) (π / 2)
⊢ x + π / 2 ≤ π
[PROOFSTEP]
linarith [hx.2]
[GOAL]
x : ℝ
hx₁ : π / 2 < x
hx₂ : x < π + π / 2
⊢ -(π / 2) < π - x
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx₁ : π / 2 < x
hx₂ : x < π + π / 2
⊢ π - x < π / 2
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx₁ : π / 2 ≤ x
hx₂ : x ≤ π + π / 2
⊢ -(π / 2) ≤ π - x
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx₁ : π / 2 ≤ x
hx₂ : x ≤ π + π / 2
⊢ π - x ≤ π / 2
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hl : 0 ≤ x
hu : x ≤ π
⊢ sin x = sqrt (1 - cos x ^ 2)
[PROOFSTEP]
rw [← abs_sin_eq_sqrt_one_sub_cos_sq, abs_of_nonneg (sin_nonneg_of_nonneg_of_le_pi hl hu)]
[GOAL]
x : ℝ
hl : -(π / 2) ≤ x
hu : x ≤ π / 2
⊢ cos x = sqrt (1 - sin x ^ 2)
[PROOFSTEP]
rw [← abs_cos_eq_sqrt_one_sub_sin_sq, abs_of_nonneg (cos_nonneg_of_mem_Icc ⟨hl, hu⟩)]
[GOAL]
x : ℝ
hx₁ : -π < x
hx₂ : x < π
h : x = 0
⊢ sin x = 0
[PROOFSTEP]
simp [h]
[GOAL]
x : ℝ
h : sin x = 0
h₃ : x - ↑⌊x / π⌋ * π > 0
⊢ 0 = sin (x - ↑⌊x / π⌋ * π)
[PROOFSTEP]
simp [sub_eq_add_neg, sin_add, h, sin_int_mul_pi]
[GOAL]
x : ℝ
⊢ sin x ≠ 0 ↔ ∀ (n : ℤ), ↑n * π ≠ x
[PROOFSTEP]
rw [← not_exists, not_iff_not, sin_eq_zero_iff]
[GOAL]
x : ℝ
⊢ sin x = 0 ↔ cos x = 1 ∨ cos x = -1
[PROOFSTEP]
rw [← mul_self_eq_one_iff, ← sin_sq_add_cos_sq x, sq, sq, ← sub_eq_iff_eq_add, sub_self]
[GOAL]
x : ℝ
⊢ sin x = 0 ↔ 0 = sin x * sin x
[PROOFSTEP]
exact ⟨fun h => by rw [h, mul_zero], eq_zero_of_mul_self_eq_zero ∘ Eq.symm⟩
[GOAL]
x : ℝ
h : sin x = 0
⊢ 0 = sin x * sin x
[PROOFSTEP]
rw [h, mul_zero]
[GOAL]
x : ℝ
h : cos x = 1
n : ℤ
hn : ↑n * π = x
hn0 : n % 2 = 0
⊢ ↑(n / 2) * (2 * π) = x
[PROOFSTEP]
rwa [← mul_assoc, ← @Int.cast_two ℝ, ← Int.cast_mul, Int.ediv_mul_cancel ((Int.dvd_iff_emod_eq_zero _ _).2 hn0)]
[GOAL]
x : ℝ
h : cos x = 1
n : ℤ
hn : ↑n * π = x
hn1 : n % 2 = 1
⊢ ↑(n / 2) * (2 * π) = x
[PROOFSTEP]
rw [← Int.emod_add_ediv n 2, hn1, Int.cast_add, Int.cast_one, add_mul, one_mul, add_comm, mul_comm (2 : ℤ),
Int.cast_mul, mul_assoc, Int.cast_two] at hn
[GOAL]
x : ℝ
h : cos x = 1
n : ℤ
hn : ↑(n / 2) * (2 * π) + π = x
hn1 : n % 2 = 1
⊢ ↑(n / 2) * (2 * π) = x
[PROOFSTEP]
rw [← hn, cos_int_mul_two_pi_add_pi] at h
[GOAL]
x : ℝ
n : ℤ
h : -1 = 1
hn : ↑(n / 2) * (2 * π) + π = x
hn1 : n % 2 = 1
⊢ ↑(n / 2) * (2 * π) = x
[PROOFSTEP]
exact absurd h (by norm_num)
[GOAL]
x : ℝ
n : ℤ
h : -1 = 1
hn : ↑(n / 2) * (2 * π) + π = x
hn1 : n % 2 = 1
⊢ ¬-1 = 1
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
hx₁ : -(2 * π) < x
hx₂ : x < 2 * π
h : cos x = 1
⊢ x = 0
[PROOFSTEP]
rcases(cos_eq_one_iff _).1 h with ⟨n, rfl⟩
[GOAL]
case intro
n : ℤ
hx₁ : -(2 * π) < ↑n * (2 * π)
hx₂ : ↑n * (2 * π) < 2 * π
h : cos (↑n * (2 * π)) = 1
⊢ ↑n * (2 * π) = 0
[PROOFSTEP]
rw [mul_lt_iff_lt_one_left two_pi_pos] at hx₂
[GOAL]
case intro
n : ℤ
hx₁ : -(2 * π) < ↑n * (2 * π)
hx₂ : ↑n < 1
h : cos (↑n * (2 * π)) = 1
⊢ ↑n * (2 * π) = 0
[PROOFSTEP]
rw [neg_lt, neg_mul_eq_neg_mul, mul_lt_iff_lt_one_left two_pi_pos] at hx₁
[GOAL]
case intro
n : ℤ
hx₁ : -↑n < 1
hx₂ : ↑n < 1
h : cos (↑n * (2 * π)) = 1
⊢ ↑n * (2 * π) = 0
[PROOFSTEP]
norm_cast at hx₁ hx₂
[GOAL]
case intro
n : ℤ
h : cos (↑n * (2 * π)) = 1
hx₁ : -n < 1
hx₂ : n < 1
⊢ ↑n * (2 * π) = 0
[PROOFSTEP]
obtain rfl : n = 0 := le_antisymm (by linarith) (by linarith)
[GOAL]
n : ℤ
h : cos (↑n * (2 * π)) = 1
hx₁ : -n < 1
hx₂ : n < 1
⊢ n ≤ 0
[PROOFSTEP]
linarith
[GOAL]
n : ℤ
h : cos (↑n * (2 * π)) = 1
hx₁ : -n < 1
hx₂ : n < 1
⊢ 0 ≤ n
[PROOFSTEP]
linarith
[GOAL]
case intro
h : cos (↑0 * (2 * π)) = 1
hx₁ : -0 < 1
hx₂ : 0 < 1
⊢ ↑0 * (2 * π) = 0
[PROOFSTEP]
simp
[GOAL]
x : ℝ
hx₁ : -(2 * π) < x
hx₂ : x < 2 * π
h : x = 0
⊢ cos x = 1
[PROOFSTEP]
simp [h]
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ cos y < cos x
[PROOFSTEP]
rw [← sub_lt_zero, cos_sub_cos]
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ -2 * sin ((y + x) / 2) * sin ((y - x) / 2) < 0
[PROOFSTEP]
have : 0 < sin ((y + x) / 2) := by refine' sin_pos_of_pos_of_lt_pi _ _ <;> linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ 0 < sin ((y + x) / 2)
[PROOFSTEP]
refine' sin_pos_of_pos_of_lt_pi _ _
[GOAL]
case refine'_1
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ 0 < (y + x) / 2
[PROOFSTEP]
linarith
[GOAL]
case refine'_2
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ (y + x) / 2 < π
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
this : 0 < sin ((y + x) / 2)
⊢ -2 * sin ((y + x) / 2) * sin ((y - x) / 2) < 0
[PROOFSTEP]
have : 0 < sin ((y - x) / 2) := by refine' sin_pos_of_pos_of_lt_pi _ _ <;> linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
this : 0 < sin ((y + x) / 2)
⊢ 0 < sin ((y - x) / 2)
[PROOFSTEP]
refine' sin_pos_of_pos_of_lt_pi _ _
[GOAL]
case refine'_1
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
this : 0 < sin ((y + x) / 2)
⊢ 0 < (y - x) / 2
[PROOFSTEP]
linarith
[GOAL]
case refine'_2
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
this : 0 < sin ((y + x) / 2)
⊢ (y - x) / 2 < π
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
this✝ : 0 < sin ((y + x) / 2)
this : 0 < sin ((y - x) / 2)
⊢ -2 * sin ((y + x) / 2) * sin ((y - x) / 2) < 0
[PROOFSTEP]
nlinarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx✝ : x ≤ π / 2
hy : π / 2 ≤ y
hx : x < π / 2
⊢ y ≤ π + π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx✝ : x ≤ π / 2
hy : π / 2 ≤ y
hx : x < π / 2
⊢ -(π / 2) < x
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx✝ : x ≤ π / 2
hy : π / 2 ≤ y
hx : x = π / 2
⊢ π / 2 < y
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx✝ : x ≤ π / 2
hy : π / 2 ≤ y
hx : x = π / 2
⊢ y < π + π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx✝ : x ≤ π / 2
hy : π / 2 ≤ y
hx : x = π / 2
⊢ 0 = cos x
[PROOFSTEP]
rw [hx, cos_pi_div_two]
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx : π / 2 ≤ x
hy : y ≤ π / 2
⊢ cos y < cos x
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx : π / 2 ≤ x
hy : π / 2 ≤ y
⊢ -cos x < -cos y
[PROOFSTEP]
rw [← cos_pi_sub, ← cos_pi_sub]
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx : π / 2 ≤ x
hy : π / 2 ≤ y
⊢ cos (π - x) < cos (π - y)
[PROOFSTEP]
apply cos_lt_cos_of_nonneg_of_le_pi_div_two
[GOAL]
case hx₁
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx : π / 2 ≤ x
hy : π / 2 ≤ y
⊢ 0 ≤ π - y
[PROOFSTEP]
linarith
[GOAL]
case hy₂
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx : π / 2 ≤ x
hy : π / 2 ≤ y
⊢ π - x ≤ π / 2
[PROOFSTEP]
linarith
[GOAL]
case hxy
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y ≤ π
hxy : x < y
hx : π / 2 ≤ x
hy : π / 2 ≤ y
⊢ π - y < π - x
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : -(π / 2) ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ sin x < sin y
[PROOFSTEP]
rw [← cos_sub_pi_div_two, ← cos_sub_pi_div_two, ← cos_neg (x - _), ← cos_neg (y - _)]
[GOAL]
x y : ℝ
hx₁ : -(π / 2) ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ cos (-(x - π / 2)) < cos (-(y - π / 2))
[PROOFSTEP]
apply cos_lt_cos_of_nonneg_of_le_pi
[GOAL]
case hx₁
x y : ℝ
hx₁ : -(π / 2) ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ 0 ≤ -(y - π / 2)
[PROOFSTEP]
linarith
[GOAL]
case hy₂
x y : ℝ
hx₁ : -(π / 2) ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ -(x - π / 2) ≤ π
[PROOFSTEP]
linarith
[GOAL]
case hxy
x y : ℝ
hx₁ : -(π / 2) ≤ x
hy₂ : y ≤ π / 2
hxy : x < y
⊢ -(y - π / 2) < -(x - π / 2)
[PROOFSTEP]
linarith
[GOAL]
⊢ SurjOn sin (Icc (-(π / 2)) (π / 2)) (Icc (-1) 1)
[PROOFSTEP]
simpa only [sin_neg, sin_pi_div_two] using
intermediate_value_Icc (neg_le_self pi_div_two_pos.le) continuous_sin.continuousOn
[GOAL]
⊢ SurjOn cos (Icc 0 π) (Icc (-1) 1)
[PROOFSTEP]
simpa only [cos_zero, cos_pi] using intermediate_value_Icc' pi_pos.le continuous_cos.continuousOn
[GOAL]
⊢ Set.Infinite (range cos)
[PROOFSTEP]
rw [Real.range_cos]
[GOAL]
⊢ Set.Infinite (Icc (-1) 1)
[PROOFSTEP]
exact Icc_infinite (by norm_num)
[GOAL]
⊢ -1 < 1
[PROOFSTEP]
norm_num
[GOAL]
⊢ Set.Infinite (range sin)
[PROOFSTEP]
rw [Real.range_sin]
[GOAL]
⊢ Set.Infinite (Icc (-1) 1)
[PROOFSTEP]
exact Icc_infinite (by norm_num)
[GOAL]
⊢ -1 < 1
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ sqrtTwoAddSeries x 0 = x
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ sqrtTwoAddSeries 0 1 = sqrt 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ sqrtTwoAddSeries 0 2 = sqrt (2 + sqrt 2)
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ sqrtTwoAddSeries 0 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
n : ℕ
⊢ sqrtTwoAddSeries 0 (n + 1) < 2
[PROOFSTEP]
refine' lt_of_lt_of_le _ (sqrt_sq zero_lt_two.le).le
[GOAL]
x : ℝ
n : ℕ
⊢ sqrtTwoAddSeries 0 (n + 1) < sqrt (2 ^ 2)
[PROOFSTEP]
rw [sqrtTwoAddSeries, sqrt_lt_sqrt_iff, ← lt_sub_iff_add_lt']
[GOAL]
x : ℝ
n : ℕ
⊢ sqrtTwoAddSeries 0 n < 2 ^ 2 - 2
[PROOFSTEP]
refine' (sqrtTwoAddSeries_lt_two n).trans_le _
[GOAL]
x : ℝ
n : ℕ
⊢ 2 ≤ 2 ^ 2 - 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
n : ℕ
⊢ 0 ≤ 2 + sqrtTwoAddSeries 0 n
[PROOFSTEP]
exact add_nonneg zero_le_two (sqrtTwoAddSeries_zero_nonneg n)
[GOAL]
x✝ x : ℝ
n : ℕ
⊢ sqrtTwoAddSeries x (n + 1 + 1) = sqrtTwoAddSeries (sqrt (2 + x)) (n + 1)
[PROOFSTEP]
rw [sqrtTwoAddSeries, sqrtTwoAddSeries_succ _ _, sqrtTwoAddSeries]
[GOAL]
x✝ x y : ℝ
h : x ≤ y
n : ℕ
⊢ sqrtTwoAddSeries x (n + 1) ≤ sqrtTwoAddSeries y (n + 1)
[PROOFSTEP]
rw [sqrtTwoAddSeries, sqrtTwoAddSeries]
[GOAL]
x✝ x y : ℝ
h : x ≤ y
n : ℕ
⊢ sqrt (2 + sqrtTwoAddSeries x n) ≤ sqrt (2 + sqrtTwoAddSeries y n)
[PROOFSTEP]
exact sqrt_le_sqrt (add_le_add_left (sqrtTwoAddSeries_monotone_left h _) _)
[GOAL]
x : ℝ
⊢ cos (π / 2 ^ (0 + 1)) = sqrtTwoAddSeries 0 0 / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
n : ℕ
⊢ cos (π / 2 ^ (n + 1 + 1)) = sqrtTwoAddSeries 0 (n + 1) / 2
[PROOFSTEP]
have : (2 : ℝ) ≠ 0 := two_ne_zero
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ cos (π / 2 ^ (n + 1 + 1)) = sqrtTwoAddSeries 0 (n + 1) / 2
[PROOFSTEP]
symm
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ sqrtTwoAddSeries 0 (n + 1) / 2 = cos (π / 2 ^ (n + 1 + 1))
[PROOFSTEP]
rw [div_eq_iff_mul_eq this]
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ cos (π / 2 ^ (n + 1 + 1)) * 2 = sqrtTwoAddSeries 0 (n + 1)
[PROOFSTEP]
symm
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ sqrtTwoAddSeries 0 (n + 1) = cos (π / 2 ^ (n + 1 + 1)) * 2
[PROOFSTEP]
rw [sqrtTwoAddSeries, sqrt_eq_iff_sq_eq, mul_pow, cos_sq, ← mul_div_assoc, Nat.add_succ, pow_succ,
mul_div_mul_left _ _ this, cos_pi_over_two_pow _, add_mul]
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 1 / 2 * 2 ^ 2 + sqrtTwoAddSeries 0 n / 2 / 2 * 2 ^ 2 = 2 + sqrtTwoAddSeries 0 n
case hx
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 ≤ 2 + sqrtTwoAddSeries 0 n
case hy x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 ≤ cos (π / 2 ^ (n + 1 + 1)) * 2
[PROOFSTEP]
congr
[GOAL]
case e_a
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 1 / 2 * 2 ^ 2 = 2
[PROOFSTEP]
norm_num
[GOAL]
case e_a
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ sqrtTwoAddSeries 0 n / 2 / 2 * 2 ^ 2 = sqrtTwoAddSeries 0 n
[PROOFSTEP]
rw [mul_comm, sq, mul_assoc, ← mul_div_assoc, mul_div_cancel_left, ← mul_div_assoc, mul_div_cancel_left]
[GOAL]
case e_a.ha
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 2 ≠ 0
[PROOFSTEP]
try exact this
[GOAL]
case e_a.ha
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 2 ≠ 0
[PROOFSTEP]
exact this
[GOAL]
case e_a.ha
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 2 ≠ 0
[PROOFSTEP]
try exact this
[GOAL]
case e_a.ha
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 2 ≠ 0
[PROOFSTEP]
exact this
[GOAL]
case hx
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 ≤ 2 + sqrtTwoAddSeries 0 n
case hy x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 ≤ cos (π / 2 ^ (n + 1 + 1)) * 2
[PROOFSTEP]
apply add_nonneg
[GOAL]
case hx.ha
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 ≤ 2
case hx.hb
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 ≤ sqrtTwoAddSeries 0 n
case hy x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 ≤ cos (π / 2 ^ (n + 1 + 1)) * 2
[PROOFSTEP]
norm_num
[GOAL]
case hx.hb
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 ≤ sqrtTwoAddSeries 0 n
case hy x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 ≤ cos (π / 2 ^ (n + 1 + 1)) * 2
[PROOFSTEP]
apply sqrtTwoAddSeries_zero_nonneg
[GOAL]
case hy
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 ≤ cos (π / 2 ^ (n + 1 + 1)) * 2
[PROOFSTEP]
norm_num
[GOAL]
case hy
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 ≤ cos (π / 2 ^ (n + 1 + 1))
[PROOFSTEP]
apply le_of_lt
[GOAL]
case hy.a
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < cos (π / 2 ^ (n + 1 + 1))
[PROOFSTEP]
apply cos_pos_of_mem_Ioo ⟨_, _⟩
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ -(π / 2) < π / 2 ^ (n + 1 + 1)
[PROOFSTEP]
trans (0 : ℝ)
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ -(π / 2) < 0
x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 < π / 2 ^ (n + 1 + 1)
[PROOFSTEP]
rw [neg_lt_zero]
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < π / 2
x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 < π / 2 ^ (n + 1 + 1)
[PROOFSTEP]
apply pi_div_two_pos
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < π / 2 ^ (n + 1 + 1)
[PROOFSTEP]
apply div_pos pi_pos
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < 2 ^ (n + 1 + 1)
[PROOFSTEP]
apply pow_pos
[GOAL]
case H
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ π / 2 ^ (n + 1 + 1) < π / 2
[PROOFSTEP]
apply div_lt_div' (le_refl π) _ pi_pos _
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 2 < 2 ^ (n + 1 + 1)
x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 < 2
[PROOFSTEP]
refine' lt_of_le_of_lt (le_of_eq (pow_one _).symm) _
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 2 ^ 1 < 2 ^ (n + 1 + 1)
x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 < 2
[PROOFSTEP]
apply pow_lt_pow
[GOAL]
case h
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 1 < 2
case h2
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 1 < n + 1 + 1
x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
case h2
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 1 < n + 1 + 1
x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 < 2
[PROOFSTEP]
apply Nat.succ_lt_succ
[GOAL]
case h2.a
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < n + 1
x : ℝ n : ℕ this : 2 ≠ 0 ⊢ 0 < 2
[PROOFSTEP]
apply Nat.succ_pos
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < 2
[PROOFSTEP]
all_goals norm_num
[GOAL]
x : ℝ
n : ℕ
this : 2 ≠ 0
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
n : ℕ
⊢ sin (π / 2 ^ (n + 1)) ^ 2 = 1 - (sqrtTwoAddSeries 0 n / 2) ^ 2
[PROOFSTEP]
rw [sin_sq, cos_pi_over_two_pow]
[GOAL]
x : ℝ
n : ℕ
⊢ sin (π / 2 ^ (n + 2)) ^ 2 = 1 / 2 - sqrtTwoAddSeries 0 n / 4
[PROOFSTEP]
rw [sin_sq_pi_over_two_pow, sqrtTwoAddSeries, div_pow, sq_sqrt, add_div, ← sub_sub]
[GOAL]
x : ℝ
n : ℕ
⊢ 1 - 2 / 2 ^ 2 - sqrtTwoAddSeries 0 n / 2 ^ 2 = 1 / 2 - sqrtTwoAddSeries 0 n / 4
x : ℝ n : ℕ ⊢ 0 ≤ 2 + sqrtTwoAddSeries 0 n
[PROOFSTEP]
congr
[GOAL]
case e_a
x : ℝ
n : ℕ
⊢ 1 - 2 / 2 ^ 2 = 1 / 2
case e_a.e_a
x : ℝ
n : ℕ
⊢ 2 ^ 2 = 4
x : ℝ n : ℕ ⊢ 0 ≤ 2 + sqrtTwoAddSeries 0 n
[PROOFSTEP]
norm_num
[GOAL]
case e_a.e_a
x : ℝ
n : ℕ
⊢ 2 ^ 2 = 4
x : ℝ n : ℕ ⊢ 0 ≤ 2 + sqrtTwoAddSeries 0 n
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
n : ℕ
⊢ 0 ≤ 2 + sqrtTwoAddSeries 0 n
[PROOFSTEP]
apply add_nonneg
[GOAL]
case ha
x : ℝ
n : ℕ
⊢ 0 ≤ 2
case hb x : ℝ n : ℕ ⊢ 0 ≤ sqrtTwoAddSeries 0 n
[PROOFSTEP]
norm_num
[GOAL]
case hb
x : ℝ
n : ℕ
⊢ 0 ≤ sqrtTwoAddSeries 0 n
[PROOFSTEP]
apply sqrtTwoAddSeries_zero_nonneg
[GOAL]
x : ℝ
n : ℕ
⊢ sin (π / 2 ^ (n + 2)) = sqrt (2 - sqrtTwoAddSeries 0 n) / 2
[PROOFSTEP]
symm
[GOAL]
x : ℝ
n : ℕ
⊢ sqrt (2 - sqrtTwoAddSeries 0 n) / 2 = sin (π / 2 ^ (n + 2))
[PROOFSTEP]
rw [div_eq_iff_mul_eq]
[GOAL]
x : ℝ
n : ℕ
⊢ sin (π / 2 ^ (n + 2)) * 2 = sqrt (2 - sqrtTwoAddSeries 0 n)
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
symm
[GOAL]
x : ℝ
n : ℕ
⊢ sqrt (2 - sqrtTwoAddSeries 0 n) = sin (π / 2 ^ (n + 2)) * 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
rw [sqrt_eq_iff_sq_eq, mul_pow, sin_sq_pi_over_two_pow_succ, sub_mul]
[GOAL]
x : ℝ
n : ℕ
⊢ 1 / 2 * 2 ^ 2 - sqrtTwoAddSeries 0 n / 4 * 2 ^ 2 = 2 - sqrtTwoAddSeries 0 n
[PROOFSTEP]
congr
[GOAL]
case e_a
x : ℝ
n : ℕ
⊢ 1 / 2 * 2 ^ 2 = 2
[PROOFSTEP]
norm_num
[GOAL]
case e_a
x : ℝ
n : ℕ
⊢ sqrtTwoAddSeries 0 n / 4 * 2 ^ 2 = sqrtTwoAddSeries 0 n
[PROOFSTEP]
norm_num
[GOAL]
case hx
x : ℝ
n : ℕ
⊢ 0 ≤ 2 - sqrtTwoAddSeries 0 n
[PROOFSTEP]
rw [sub_nonneg]
[GOAL]
case hx
x : ℝ
n : ℕ
⊢ sqrtTwoAddSeries 0 n ≤ 2
[PROOFSTEP]
apply le_of_lt
[GOAL]
case hx.a
x : ℝ
n : ℕ
⊢ sqrtTwoAddSeries 0 n < 2
[PROOFSTEP]
apply sqrtTwoAddSeries_lt_two
[GOAL]
case hy
x : ℝ
n : ℕ
⊢ 0 ≤ sin (π / 2 ^ (n + 2)) * 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
apply le_of_lt
[GOAL]
case hy.a
x : ℝ
n : ℕ
⊢ 0 < sin (π / 2 ^ (n + 2)) * 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
apply mul_pos
[GOAL]
case hy.a.ha
x : ℝ
n : ℕ
⊢ 0 < sin (π / 2 ^ (n + 2))
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
apply sin_pos_of_pos_of_lt_pi
[GOAL]
case hy.a.ha.h0x
x : ℝ
n : ℕ
⊢ 0 < π / 2 ^ (n + 2)
[PROOFSTEP]
apply div_pos pi_pos
[GOAL]
case hy.a.ha.h0x
x : ℝ
n : ℕ
⊢ 0 < 2 ^ (n + 2)
[PROOFSTEP]
apply pow_pos
[GOAL]
case hy.a.ha.h0x.H
x : ℝ
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
case hy.a.ha.hxp
x : ℝ
n : ℕ
⊢ π / 2 ^ (n + 2) < π
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
refine' lt_of_lt_of_le _ (le_of_eq (div_one _))
[GOAL]
case hy.a.ha.hxp
x : ℝ
n : ℕ
⊢ π / 2 ^ (n + 2) < π / 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
rw [div_lt_div_left]
[GOAL]
case hy.a.ha.hxp
x : ℝ
n : ℕ
⊢ 1 < 2 ^ (n + 2)
case hy.a.ha.hxp.ha
x : ℝ
n : ℕ
⊢ 0 < π
case hy.a.ha.hxp.hb
x : ℝ
n : ℕ
⊢ 0 < 2 ^ (n + 2)
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
refine' lt_of_le_of_lt (le_of_eq (pow_zero 2).symm) _
[GOAL]
case hy.a.ha.hxp
x : ℝ
n : ℕ
⊢ 2 ^ 0 < 2 ^ (n + 2)
case hy.a.ha.hxp.ha
x : ℝ
n : ℕ
⊢ 0 < π
case hy.a.ha.hxp.hb
x : ℝ
n : ℕ
⊢ 0 < 2 ^ (n + 2)
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
apply pow_lt_pow
[GOAL]
case hy.a.ha.hxp.h
x : ℝ
n : ℕ
⊢ 1 < 2
case hy.a.ha.hxp.h2
x : ℝ
n : ℕ
⊢ 0 < n + 2
case hy.a.ha.hxp.ha
x : ℝ
n : ℕ
⊢ 0 < π
case hy.a.ha.hxp.hb
x : ℝ
n : ℕ
⊢ 0 < 2 ^ (n + 2)
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
case hy.a.ha.hxp.h2
x : ℝ
n : ℕ
⊢ 0 < n + 2
case hy.a.ha.hxp.ha
x : ℝ
n : ℕ
⊢ 0 < π
case hy.a.ha.hxp.hb
x : ℝ
n : ℕ
⊢ 0 < 2 ^ (n + 2)
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
apply Nat.succ_pos
[GOAL]
case hy.a.ha.hxp.ha
x : ℝ
n : ℕ
⊢ 0 < π
case hy.a.ha.hxp.hb
x : ℝ
n : ℕ
⊢ 0 < 2 ^ (n + 2)
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
apply pi_pos
[GOAL]
case hy.a.ha.hxp.hb
x : ℝ
n : ℕ
⊢ 0 < 2 ^ (n + 2)
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
apply pow_pos
[GOAL]
case hy.a.ha.hxp.hb.H
x : ℝ
n : ℕ
⊢ 0 < 2
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
x : ℝ n : ℕ ⊢ 2 ≠ 0
[PROOFSTEP]
all_goals norm_num
[GOAL]
case hy.a.ha.hxp.hb.H
x : ℝ
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
case hy.a.ha.hxp.hc
x : ℝ
n : ℕ
⊢ 0 < 1
[PROOFSTEP]
norm_num
[GOAL]
case hy.a.hb
x : ℝ
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
n : ℕ
⊢ 2 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ cos (π / 4) = sqrt 2 / 2
[PROOFSTEP]
trans cos (π / 2 ^ 2)
[GOAL]
x : ℝ
⊢ cos (π / 4) = cos (π / 2 ^ 2)
x : ℝ ⊢ cos (π / 2 ^ 2) = sqrt 2 / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 4 = 2 ^ 2
x : ℝ ⊢ cos (π / 2 ^ 2) = sqrt 2 / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ cos (π / 2 ^ 2) = sqrt 2 / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ sin (π / 4) = sqrt 2 / 2
[PROOFSTEP]
trans sin (π / 2 ^ 2)
[GOAL]
x : ℝ
⊢ sin (π / 4) = sin (π / 2 ^ 2)
x : ℝ ⊢ sin (π / 2 ^ 2) = sqrt 2 / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 4 = 2 ^ 2
x : ℝ ⊢ sin (π / 2 ^ 2) = sqrt 2 / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ sin (π / 2 ^ 2) = sqrt 2 / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ cos (π / 8) = sqrt (2 + sqrt 2) / 2
[PROOFSTEP]
trans cos (π / 2 ^ 3)
[GOAL]
x : ℝ
⊢ cos (π / 8) = cos (π / 2 ^ 3)
x : ℝ ⊢ cos (π / 2 ^ 3) = sqrt (2 + sqrt 2) / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 8 = 2 ^ 3
x : ℝ ⊢ cos (π / 2 ^ 3) = sqrt (2 + sqrt 2) / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ cos (π / 2 ^ 3) = sqrt (2 + sqrt 2) / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ sin (π / 8) = sqrt (2 - sqrt 2) / 2
[PROOFSTEP]
trans sin (π / 2 ^ 3)
[GOAL]
x : ℝ
⊢ sin (π / 8) = sin (π / 2 ^ 3)
x : ℝ ⊢ sin (π / 2 ^ 3) = sqrt (2 - sqrt 2) / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 8 = 2 ^ 3
x : ℝ ⊢ sin (π / 2 ^ 3) = sqrt (2 - sqrt 2) / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ sin (π / 2 ^ 3) = sqrt (2 - sqrt 2) / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ cos (π / 16) = sqrt (2 + sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
trans cos (π / 2 ^ 4)
[GOAL]
x : ℝ
⊢ cos (π / 16) = cos (π / 2 ^ 4)
x : ℝ ⊢ cos (π / 2 ^ 4) = sqrt (2 + sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 16 = 2 ^ 4
x : ℝ ⊢ cos (π / 2 ^ 4) = sqrt (2 + sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ cos (π / 2 ^ 4) = sqrt (2 + sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ sin (π / 16) = sqrt (2 - sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
trans sin (π / 2 ^ 4)
[GOAL]
x : ℝ
⊢ sin (π / 16) = sin (π / 2 ^ 4)
x : ℝ ⊢ sin (π / 2 ^ 4) = sqrt (2 - sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 16 = 2 ^ 4
x : ℝ ⊢ sin (π / 2 ^ 4) = sqrt (2 - sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ sin (π / 2 ^ 4) = sqrt (2 - sqrt (2 + sqrt 2)) / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ cos (π / 32) = sqrt (2 + sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
trans cos (π / 2 ^ 5)
[GOAL]
x : ℝ
⊢ cos (π / 32) = cos (π / 2 ^ 5)
x : ℝ ⊢ cos (π / 2 ^ 5) = sqrt (2 + sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 32 = 2 ^ 5
x : ℝ ⊢ cos (π / 2 ^ 5) = sqrt (2 + sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ cos (π / 2 ^ 5) = sqrt (2 + sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ sin (π / 32) = sqrt (2 - sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
trans sin (π / 2 ^ 5)
[GOAL]
x : ℝ
⊢ sin (π / 32) = sin (π / 2 ^ 5)
x : ℝ ⊢ sin (π / 2 ^ 5) = sqrt (2 - sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
x : ℝ
⊢ 32 = 2 ^ 5
x : ℝ ⊢ sin (π / 2 ^ 5) = sqrt (2 - sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
⊢ sin (π / 2 ^ 5) = sqrt (2 - sqrt (2 + sqrt (2 + sqrt 2))) / 2
[PROOFSTEP]
simp
[GOAL]
x : ℝ
⊢ cos (π / 3) = 1 / 2
[PROOFSTEP]
have h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0 :=
by
have : cos (3 * (π / 3)) = cos π := by
congr 1
ring
linarith [cos_pi, cos_three_mul (π / 3)]
[GOAL]
x : ℝ
⊢ (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
[PROOFSTEP]
have : cos (3 * (π / 3)) = cos π := by
congr 1
ring
[GOAL]
x : ℝ
⊢ cos (3 * (π / 3)) = cos π
[PROOFSTEP]
congr 1
[GOAL]
case e_x
x : ℝ
⊢ 3 * (π / 3) = π
[PROOFSTEP]
ring
[GOAL]
x : ℝ
this : cos (3 * (π / 3)) = cos π
⊢ (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
[PROOFSTEP]
linarith [cos_pi, cos_three_mul (π / 3)]
[GOAL]
x : ℝ
h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
⊢ cos (π / 3) = 1 / 2
[PROOFSTEP]
cases' mul_eq_zero.mp h₁ with h h
[GOAL]
case inl
x : ℝ
h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
h : (2 * cos (π / 3) - 1) ^ 2 = 0
⊢ cos (π / 3) = 1 / 2
[PROOFSTEP]
linarith [pow_eq_zero h]
[GOAL]
case inr
x : ℝ
h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
h : 2 * cos (π / 3) + 2 = 0
⊢ cos (π / 3) = 1 / 2
[PROOFSTEP]
have : cos π < cos (π / 3) := by refine' cos_lt_cos_of_nonneg_of_le_pi _ rfl.ge _ <;> linarith [pi_pos]
[GOAL]
x : ℝ
h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
h : 2 * cos (π / 3) + 2 = 0
⊢ cos π < cos (π / 3)
[PROOFSTEP]
refine' cos_lt_cos_of_nonneg_of_le_pi _ rfl.ge _
[GOAL]
case refine'_1
x : ℝ
h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
h : 2 * cos (π / 3) + 2 = 0
⊢ 0 ≤ π / 3
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
case refine'_2
x : ℝ
h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
h : 2 * cos (π / 3) + 2 = 0
⊢ π / 3 < π
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
case inr
x : ℝ
h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0
h : 2 * cos (π / 3) + 2 = 0
this : cos π < cos (π / 3)
⊢ cos (π / 3) = 1 / 2
[PROOFSTEP]
linarith [cos_pi]
[GOAL]
x : ℝ
⊢ cos (π / 6) ^ 2 = 3 / 4
[PROOFSTEP]
have h1 : cos (π / 6) ^ 2 = 1 / 2 + 1 / 2 / 2 :=
by
convert cos_sq (π / 6) using 3
have h2 : 2 * (π / 6) = π / 3 := by linarith
rw [h2, cos_pi_div_three]
[GOAL]
x : ℝ
⊢ cos (π / 6) ^ 2 = 1 / 2 + 1 / 2 / 2
[PROOFSTEP]
convert cos_sq (π / 6) using 3
[GOAL]
case h.e'_3.h.e'_6.h.e'_5
x : ℝ
⊢ 1 / 2 = cos (2 * (π / 6))
[PROOFSTEP]
have h2 : 2 * (π / 6) = π / 3 := by linarith
[GOAL]
x : ℝ
⊢ 2 * (π / 6) = π / 3
[PROOFSTEP]
linarith
[GOAL]
case h.e'_3.h.e'_6.h.e'_5
x : ℝ
h2 : 2 * (π / 6) = π / 3
⊢ 1 / 2 = cos (2 * (π / 6))
[PROOFSTEP]
rw [h2, cos_pi_div_three]
[GOAL]
x : ℝ
h1 : cos (π / 6) ^ 2 = 1 / 2 + 1 / 2 / 2
⊢ cos (π / 6) ^ 2 = 3 / 4
[PROOFSTEP]
rw [← sub_eq_zero] at h1 ⊢
[GOAL]
x : ℝ
h1✝ : cos (π / 6) ^ 2 = 1 / 2 + 1 / 2 / 2
h1 : cos (π / 6) ^ 2 - (1 / 2 + 1 / 2 / 2) = 0
⊢ cos (π / 6) ^ 2 - 3 / 4 = 0
[PROOFSTEP]
convert h1 using 1
[GOAL]
case h.e'_2
x : ℝ
h1✝ : cos (π / 6) ^ 2 = 1 / 2 + 1 / 2 / 2
h1 : cos (π / 6) ^ 2 - (1 / 2 + 1 / 2 / 2) = 0
⊢ cos (π / 6) ^ 2 - 3 / 4 = cos (π / 6) ^ 2 - (1 / 2 + 1 / 2 / 2)
[PROOFSTEP]
ring
[GOAL]
x : ℝ
⊢ cos (π / 6) = sqrt 3 / 2
[PROOFSTEP]
suffices sqrt 3 = cos (π / 6) * 2 by
field_simp [(by norm_num : 0 ≠ 2)]
exact this.symm
[GOAL]
x : ℝ
this : sqrt 3 = cos (π / 6) * 2
⊢ cos (π / 6) = sqrt 3 / 2
[PROOFSTEP]
field_simp [(by norm_num : 0 ≠ 2)]
[GOAL]
x : ℝ
this : sqrt 3 = cos (π / 6) * 2
⊢ 0 ≠ 2
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
this : sqrt 3 = cos (π / 6) * 2
⊢ cos (π / 6) * 2 = sqrt 3
[PROOFSTEP]
exact this.symm
[GOAL]
x : ℝ
⊢ sqrt 3 = cos (π / 6) * 2
[PROOFSTEP]
rw [sqrt_eq_iff_sq_eq]
[GOAL]
x : ℝ
⊢ (cos (π / 6) * 2) ^ 2 = 3
[PROOFSTEP]
have h1 := (mul_right_inj' (by norm_num : (4 : ℝ) ≠ 0)).mpr sq_cos_pi_div_six
[GOAL]
x : ℝ
⊢ 4 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
h1 : 4 * cos (π / 6) ^ 2 = 4 * (3 / 4)
⊢ (cos (π / 6) * 2) ^ 2 = 3
[PROOFSTEP]
rw [← sub_eq_zero] at h1 ⊢
[GOAL]
x : ℝ
h1✝ : 4 * cos (π / 6) ^ 2 = 4 * (3 / 4)
h1 : 4 * cos (π / 6) ^ 2 - 4 * (3 / 4) = 0
⊢ (cos (π / 6) * 2) ^ 2 - 3 = 0
[PROOFSTEP]
convert h1 using 1
[GOAL]
case h.e'_2
x : ℝ
h1✝ : 4 * cos (π / 6) ^ 2 = 4 * (3 / 4)
h1 : 4 * cos (π / 6) ^ 2 - 4 * (3 / 4) = 0
⊢ (cos (π / 6) * 2) ^ 2 - 3 = 4 * cos (π / 6) ^ 2 - 4 * (3 / 4)
[PROOFSTEP]
ring
[GOAL]
case hx
x : ℝ
⊢ 0 ≤ 3
[PROOFSTEP]
norm_num
[GOAL]
case hy
x : ℝ
⊢ 0 ≤ cos (π / 6) * 2
[PROOFSTEP]
have : 0 < cos (π / 6) := by apply cos_pos_of_mem_Ioo; constructor <;> linarith [pi_pos]
[GOAL]
x : ℝ
⊢ 0 < cos (π / 6)
[PROOFSTEP]
apply cos_pos_of_mem_Ioo
[GOAL]
case hx
x : ℝ
⊢ π / 6 ∈ Ioo (-(π / 2)) (π / 2)
[PROOFSTEP]
constructor
[GOAL]
case hx.left
x : ℝ
⊢ -(π / 2) < π / 6
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
case hx.right
x : ℝ
⊢ π / 6 < π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
case hy
x : ℝ
this : 0 < cos (π / 6)
⊢ 0 ≤ cos (π / 6) * 2
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
⊢ sin (π / 6) = 1 / 2
[PROOFSTEP]
rw [← cos_pi_div_two_sub, ← cos_pi_div_three]
[GOAL]
x : ℝ
⊢ cos (π / 2 - π / 6) = cos (π / 3)
[PROOFSTEP]
congr
[GOAL]
case e_x
x : ℝ
⊢ π / 2 - π / 6 = π / 3
[PROOFSTEP]
ring
[GOAL]
x : ℝ
⊢ sin (π / 3) ^ 2 = 3 / 4
[PROOFSTEP]
rw [← cos_pi_div_two_sub, ← sq_cos_pi_div_six]
[GOAL]
x : ℝ
⊢ cos (π / 2 - π / 3) ^ 2 = cos (π / 6) ^ 2
[PROOFSTEP]
congr
[GOAL]
case e_a.e_x
x : ℝ
⊢ π / 2 - π / 3 = π / 6
[PROOFSTEP]
ring
[GOAL]
x : ℝ
⊢ sin (π / 3) = sqrt 3 / 2
[PROOFSTEP]
rw [← cos_pi_div_two_sub, ← cos_pi_div_six]
[GOAL]
x : ℝ
⊢ cos (π / 2 - π / 3) = cos (π / 6)
[PROOFSTEP]
congr
[GOAL]
case e_x
x : ℝ
⊢ π / 2 - π / 3 = π / 6
[PROOFSTEP]
ring
[GOAL]
⊢ tan (π / 4) = 1
[PROOFSTEP]
rw [tan_eq_sin_div_cos, cos_pi_div_four, sin_pi_div_four]
[GOAL]
⊢ sqrt 2 / 2 / (sqrt 2 / 2) = 1
[PROOFSTEP]
have h : sqrt 2 / 2 > 0 := by cancel_denoms
[GOAL]
⊢ sqrt 2 / 2 > 0
[PROOFSTEP]
cancel_denoms
[GOAL]
⊢ sqrt 2 / 2 > 0
[PROOFSTEP]
cancel_denoms
[GOAL]
h : sqrt 2 / 2 > 0
⊢ sqrt 2 / 2 / (sqrt 2 / 2) = 1
[PROOFSTEP]
exact div_self (ne_of_gt h)
[GOAL]
⊢ tan (π / 2) = 0
[PROOFSTEP]
simp [tan_eq_sin_div_cos]
[GOAL]
x : ℝ
h0x : 0 < x
hxp : x < π / 2
⊢ 0 < tan x
[PROOFSTEP]
rw [tan_eq_sin_div_cos]
[GOAL]
x : ℝ
h0x : 0 < x
hxp : x < π / 2
⊢ 0 < sin x / cos x
[PROOFSTEP]
exact div_pos (sin_pos_of_pos_of_lt_pi h0x (by linarith)) (cos_pos_of_mem_Ioo ⟨by linarith, hxp⟩)
[GOAL]
x : ℝ
h0x : 0 < x
hxp : x < π / 2
⊢ x < π
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
h0x : 0 < x
hxp : x < π / 2
⊢ -(π / 2) < x
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
h0x : 0 ≤ x
hxp✝ : x ≤ π / 2
h✝ : 0 < x
hxp : x = π / 2
⊢ 0 ≤ tan x
[PROOFSTEP]
simp [hxp, tan_eq_sin_div_cos]
[GOAL]
x : ℝ
h0x : 0 ≤ x
hxp : x ≤ π / 2
hx0 : 0 = x
x✝ : x < π / 2 ∨ x = π / 2
⊢ 0 ≤ tan x
[PROOFSTEP]
simp [hx0.symm]
[GOAL]
x : ℝ
hx0 : x < 0
hpx : -(π / 2) < x
⊢ 0 < -x
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx0 : x < 0
hpx : -(π / 2) < x
⊢ -x < π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
x : ℝ
hx0 : x ≤ 0
hpx : -(π / 2) ≤ x
⊢ 0 ≤ -x
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx0 : x ≤ 0
hpx : -(π / 2) ≤ x
⊢ -x ≤ π / 2
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y < π / 2
hxy : x < y
⊢ tan x < tan y
[PROOFSTEP]
rw [tan_eq_sin_div_cos, tan_eq_sin_div_cos]
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y < π / 2
hxy : x < y
⊢ sin x / cos x < sin y / cos y
[PROOFSTEP]
exact
div_lt_div (sin_lt_sin_of_lt_of_le_pi_div_two (by linarith) (le_of_lt hy₂) hxy)
(cos_le_cos_of_nonneg_of_le_pi hx₁ (by linarith) (le_of_lt hxy))
(sin_nonneg_of_nonneg_of_le_pi (by linarith) (by linarith)) (cos_pos_of_mem_Ioo ⟨by linarith, hy₂⟩)
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y < π / 2
hxy : x < y
⊢ -(π / 2) ≤ x
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y < π / 2
hxy : x < y
⊢ y ≤ π
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y < π / 2
hxy : x < y
⊢ 0 ≤ y
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y < π / 2
hxy : x < y
⊢ y ≤ π
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : 0 ≤ x
hy₂ : y < π / 2
hxy : x < y
⊢ -(π / 2) < y
[PROOFSTEP]
linarith
[GOAL]
x y : ℝ
hx₁ : -(π / 2) < x
hy₂ : y < π / 2
hxy : x < y
hx0 : x ≤ 0
hy0 : y ≤ 0
⊢ -tan y < -tan x
[PROOFSTEP]
rw [← tan_neg, ← tan_neg]
[GOAL]
x y : ℝ
hx₁ : -(π / 2) < x
hy₂ : y < π / 2
hxy : x < y
hx0 : x ≤ 0
hy0 : y ≤ 0
⊢ tan (-y) < tan (-x)
[PROOFSTEP]
exact tan_lt_tan_of_nonneg_of_lt_pi_div_two (neg_nonneg.2 hy0) (neg_lt.2 hx₁) (neg_lt_neg hxy)
[GOAL]
x y : ℝ
hx₁ : -(π / 2) < x
hy₂ : y < π / 2
hxy : x < y
hx0 : x ≤ 0
hy0✝ : 0 ≤ y
hy0 : 0 = y
⊢ tan x < tan y
[PROOFSTEP]
rw [← hy0, tan_zero]
[GOAL]
x y : ℝ
hx₁ : -(π / 2) < x
hy₂ : y < π / 2
hxy : x < y
hx0 : x ≤ 0
hy0✝ : 0 ≤ y
hy0 : 0 = y
⊢ tan x < 0
[PROOFSTEP]
exact tan_neg_of_neg_of_pi_div_two_lt (hy0.symm ▸ hxy) hx₁
[GOAL]
x y : ℝ
hx₁ : -(π / 2) < x
hy₂ : y < π / 2
hxy : x < y
hx0 : 0 ≤ x
hy0 : y ≤ 0
⊢ tan x < tan y
[PROOFSTEP]
linarith
[GOAL]
⊢ Function.Periodic tan π
[PROOFSTEP]
simpa only [Function.Periodic, tan_eq_sin_div_cos] using sin_antiperiodic.div cos_antiperiodic
[GOAL]
⊢ tan π = 0
[PROOFSTEP]
rw [tan_periodic.eq, tan_zero]
[GOAL]
x : ℝ
⊢ tan (π / 2 - x) = (tan x)⁻¹
[PROOFSTEP]
rw [tan_eq_sin_div_cos, tan_eq_sin_div_cos, inv_div, sin_pi_div_two_sub, cos_pi_div_two_sub]
[GOAL]
⊢ Tendsto sin (𝓝[Iio (π / 2)] (π / 2)) (𝓝 1)
[PROOFSTEP]
convert continuous_sin.continuousWithinAt.tendsto
[GOAL]
case h.e'_5.h.e'_3
⊢ 1 = sin (π / 2)
[PROOFSTEP]
simp
[GOAL]
⊢ Tendsto cos (𝓝[Iio (π / 2)] (π / 2)) (𝓝[Ioi 0] 0)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
[GOAL]
case h1
⊢ Tendsto cos (𝓝[Iio (π / 2)] (π / 2)) (𝓝 0)
[PROOFSTEP]
convert continuous_cos.continuousWithinAt.tendsto
[GOAL]
case h.e'_5.h.e'_3
⊢ 0 = cos (π / 2)
[PROOFSTEP]
simp
[GOAL]
case h2
⊢ ∀ᶠ (x : ℝ) in 𝓝[Iio (π / 2)] (π / 2), cos x ∈ Ioi 0
[PROOFSTEP]
filter_upwards [Ioo_mem_nhdsWithin_Iio (right_mem_Ioc.mpr (neg_lt_self pi_div_two_pos))] with x hx using
cos_pos_of_mem_Ioo hx
[GOAL]
⊢ Tendsto tan (𝓝[Iio (π / 2)] (π / 2)) atTop
[PROOFSTEP]
convert tendsto_cos_pi_div_two.inv_tendsto_zero.atTop_mul zero_lt_one tendsto_sin_pi_div_two using 1
[GOAL]
case h.e'_3
⊢ tan = fun x => cos⁻¹ x * sin x
[PROOFSTEP]
simp only [Pi.inv_apply, ← div_eq_inv_mul, ← tan_eq_sin_div_cos]
[GOAL]
⊢ Tendsto sin (𝓝[Ioi (-(π / 2))] (-(π / 2))) (𝓝 (-1))
[PROOFSTEP]
convert continuous_sin.continuousWithinAt.tendsto using 2
[GOAL]
case h.e'_5.h.e'_3
⊢ -1 = sin (-(π / 2))
[PROOFSTEP]
simp
[GOAL]
⊢ Tendsto cos (𝓝[Ioi (-(π / 2))] (-(π / 2))) (𝓝[Ioi 0] 0)
[PROOFSTEP]
apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
[GOAL]
case h1
⊢ Tendsto cos (𝓝[Ioi (-(π / 2))] (-(π / 2))) (𝓝 0)
[PROOFSTEP]
convert continuous_cos.continuousWithinAt.tendsto
[GOAL]
case h.e'_5.h.e'_3
⊢ 0 = cos (-(π / 2))
[PROOFSTEP]
simp
[GOAL]
case h2
⊢ ∀ᶠ (x : ℝ) in 𝓝[Ioi (-(π / 2))] (-(π / 2)), cos x ∈ Ioi 0
[PROOFSTEP]
filter_upwards [Ioo_mem_nhdsWithin_Ioi (left_mem_Ico.mpr (neg_lt_self pi_div_two_pos))] with x hx using
cos_pos_of_mem_Ioo hx
[GOAL]
⊢ Tendsto tan (𝓝[Ioi (-(π / 2))] (-(π / 2))) atBot
[PROOFSTEP]
convert tendsto_cos_neg_pi_div_two.inv_tendsto_zero.atTop_mul_neg (by norm_num) tendsto_sin_neg_pi_div_two using 1
[GOAL]
⊢ -1 < 0
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_3
⊢ tan = fun x => cos⁻¹ x * sin x
[PROOFSTEP]
simp only [Pi.inv_apply, ← div_eq_inv_mul, ← tan_eq_sin_div_cos]
[GOAL]
z : ℂ
⊢ sin z = 0 ↔ cos z = 1 ∨ cos z = -1
[PROOFSTEP]
rw [← mul_self_eq_one_iff, ← sin_sq_add_cos_sq, sq, sq, ← sub_eq_iff_eq_add, sub_self]
[GOAL]
z : ℂ
⊢ sin z = 0 ↔ 0 = sin z * sin z
[PROOFSTEP]
exact ⟨fun h => by rw [h, mul_zero], eq_zero_of_mul_self_eq_zero ∘ Eq.symm⟩
[GOAL]
z : ℂ
h : sin z = 0
⊢ 0 = sin z * sin z
[PROOFSTEP]
rw [h, mul_zero]
[GOAL]
⊢ cos (↑π / 2) = ↑(Real.cos (π / 2))
[PROOFSTEP]
rw [ofReal_cos]
[GOAL]
⊢ cos (↑π / 2) = cos ↑(π / 2)
[PROOFSTEP]
simp
[GOAL]
⊢ ↑(Real.cos (π / 2)) = 0
[PROOFSTEP]
simp
[GOAL]
⊢ sin (↑π / 2) = ↑(Real.sin (π / 2))
[PROOFSTEP]
rw [ofReal_sin]
[GOAL]
⊢ sin (↑π / 2) = sin ↑(π / 2)
[PROOFSTEP]
simp
[GOAL]
⊢ ↑(Real.sin (π / 2)) = 1
[PROOFSTEP]
simp
[GOAL]
⊢ sin ↑π = 0
[PROOFSTEP]
rw [← ofReal_sin, Real.sin_pi]
[GOAL]
⊢ ↑0 = 0
[PROOFSTEP]
simp
[GOAL]
⊢ cos ↑π = -1
[PROOFSTEP]
rw [← ofReal_cos, Real.cos_pi]
[GOAL]
⊢ ↑(-1) = -1
[PROOFSTEP]
simp
[GOAL]
⊢ sin (2 * ↑π) = 0
[PROOFSTEP]
simp [two_mul, sin_add]
[GOAL]
⊢ cos (2 * ↑π) = 1
[PROOFSTEP]
simp [two_mul, cos_add]
[GOAL]
⊢ Function.Antiperiodic sin ↑π
[PROOFSTEP]
simp [sin_add]
[GOAL]
⊢ Function.Antiperiodic cos ↑π
[PROOFSTEP]
simp [cos_add]
[GOAL]
n : ℕ
⊢ cos (↑n * (2 * ↑π) + ↑π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.nat_mul n).add_antiperiod_eq cos_antiperiodic
[GOAL]
n : ℤ
⊢ cos (↑n * (2 * ↑π) + ↑π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.int_mul n).add_antiperiod_eq cos_antiperiodic
[GOAL]
n : ℕ
⊢ cos (↑n * (2 * ↑π) - ↑π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.nat_mul n).sub_antiperiod_eq cos_antiperiodic
[GOAL]
n : ℤ
⊢ cos (↑n * (2 * ↑π) - ↑π) = -1
[PROOFSTEP]
simpa only [cos_zero] using (cos_periodic.int_mul n).sub_antiperiod_eq cos_antiperiodic
[GOAL]
x : ℂ
⊢ sin (x + ↑π / 2) = cos x
[PROOFSTEP]
simp [sin_add]
[GOAL]
x : ℂ
⊢ sin (x - ↑π / 2) = -cos x
[PROOFSTEP]
simp [sub_eq_add_neg, sin_add]
[GOAL]
x : ℂ
⊢ sin (↑π / 2 - x) = cos x
[PROOFSTEP]
simp [sub_eq_add_neg, sin_add]
[GOAL]
x : ℂ
⊢ cos (x + ↑π / 2) = -sin x
[PROOFSTEP]
simp [cos_add]
[GOAL]
x : ℂ
⊢ cos (x - ↑π / 2) = sin x
[PROOFSTEP]
simp [sub_eq_add_neg, cos_add]
[GOAL]
x : ℂ
⊢ cos (↑π / 2 - x) = sin x
[PROOFSTEP]
rw [← cos_neg, neg_sub, cos_sub_pi_div_two]
[GOAL]
⊢ Function.Periodic tan ↑π
[PROOFSTEP]
simpa only [tan_eq_sin_div_cos] using sin_antiperiodic.div cos_antiperiodic
[GOAL]
x : ℂ
⊢ tan (↑π / 2 - x) = (tan x)⁻¹
[PROOFSTEP]
rw [tan_eq_sin_div_cos, tan_eq_sin_div_cos, inv_div, sin_pi_div_two_sub, cos_pi_div_two_sub]
[GOAL]
⊢ Function.Antiperiodic exp (↑π * I)
[PROOFSTEP]
simp [exp_add, exp_mul_I]
[GOAL]
⊢ Function.Antiperiodic (fun x => exp (x * I)) ↑π
[PROOFSTEP]
simpa only [mul_inv_cancel_right₀ I_ne_zero] using exp_antiperiodic.mul_const I_ne_zero
[GOAL]
a b : ℝ
ha : a ≤ 0
z : ℂ
hz : |z.im| ≤ b
hb : b ≤ π / 2
⊢ ↑abs (exp (↑a * (exp z + exp (-z)))) ≤ Real.exp (a * Real.cos b * Real.exp |z.re|)
[PROOFSTEP]
simp only [abs_exp, Real.exp_le_exp, ofReal_mul_re, add_re, exp_re, neg_im, Real.cos_neg, ← add_mul, mul_assoc,
mul_comm (Real.cos b), neg_re, ← Real.cos_abs z.im]
[GOAL]
a b : ℝ
ha : a ≤ 0
z : ℂ
hz : |z.im| ≤ b
hb : b ≤ π / 2
⊢ a * ((Real.exp z.re + Real.exp (-z.re)) * Real.cos |z.im|) ≤ a * (Real.exp |z.re| * Real.cos b)
[PROOFSTEP]
have : Real.exp |z.re| ≤ Real.exp z.re + Real.exp (-z.re) :=
apply_abs_le_add_of_nonneg (fun x => (Real.exp_pos x).le) z.re
[GOAL]
a b : ℝ
ha : a ≤ 0
z : ℂ
hz : |z.im| ≤ b
hb : b ≤ π / 2
this : Real.exp |z.re| ≤ Real.exp z.re + Real.exp (-z.re)
⊢ a * ((Real.exp z.re + Real.exp (-z.re)) * Real.cos |z.im|) ≤ a * (Real.exp |z.re| * Real.cos b)
[PROOFSTEP]
refine' mul_le_mul_of_nonpos_left (mul_le_mul this _ _ ((Real.exp_pos _).le.trans this)) ha
[GOAL]
case refine'_1
a b : ℝ
ha : a ≤ 0
z : ℂ
hz : |z.im| ≤ b
hb : b ≤ π / 2
this : Real.exp |z.re| ≤ Real.exp z.re + Real.exp (-z.re)
⊢ Real.cos b ≤ Real.cos |z.im|
[PROOFSTEP]
exact Real.cos_le_cos_of_nonneg_of_le_pi (_root_.abs_nonneg _) (hb.trans <| half_le_self <| Real.pi_pos.le) hz
[GOAL]
case refine'_2
a b : ℝ
ha : a ≤ 0
z : ℂ
hz : |z.im| ≤ b
hb : b ≤ π / 2
this : Real.exp |z.re| ≤ Real.exp z.re + Real.exp (-z.re)
⊢ 0 ≤ Real.cos b
[PROOFSTEP]
refine' Real.cos_nonneg_of_mem_Icc ⟨_, hb⟩
[GOAL]
case refine'_2
a b : ℝ
ha : a ≤ 0
z : ℂ
hz : |z.im| ≤ b
hb : b ≤ π / 2
this : Real.exp |z.re| ≤ Real.exp z.re + Real.exp (-z.re)
⊢ -(π / 2) ≤ b
[PROOFSTEP]
exact (neg_nonpos.2 <| Real.pi_div_two_pos.le).trans ((_root_.abs_nonneg _).trans hz)
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic", "llama_tokens": 24732} |
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e (midpoint ℝ x y) = midpoint ℝ x y
[PROOFSTEP]
set z := midpoint ℝ x y
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
set s := {e : PE ≃ᵢ PE | e x = x ∧ e y = y}
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
haveI : Nonempty s :=
⟨⟨IsometryEquiv.refl PE, rfl, rfl⟩⟩
-- On the one hand, `e` cannot send the midpoint `z` of `[x, y]` too far
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
have h_bdd : BddAbove (range fun e : s => dist ((e : PE ≃ᵢ PE) z) z) :=
by
refine' ⟨dist x z + dist x z, forall_range_iff.2 <| Subtype.forall.2 _⟩
rintro e ⟨hx, _⟩
calc
dist (e z) z ≤ dist (e z) x + dist x z := dist_triangle (e z) x z
_ = dist (e x) (e z) + dist x z := by rw [hx, dist_comm]
_ = dist x z + dist x z := by
erw [e.dist_eq x z]
-- On the other hand, consider the map `f : (E ≃ᵢ E) → (E ≃ᵢ E)`
-- sending each `e` to `R ∘ e⁻¹ ∘ R ∘ e`, where `R` is the point reflection in the
-- midpoint `z` of `[x, y]`.
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
⊢ BddAbove (range fun e => dist (↑↑e z) z)
[PROOFSTEP]
refine' ⟨dist x z + dist x z, forall_range_iff.2 <| Subtype.forall.2 _⟩
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
⊢ ∀ (a : PE ≃ᵢ PE) (b : a ∈ s), dist (↑↑{ val := a, property := b } z) z ≤ dist x z + dist x z
[PROOFSTEP]
rintro e ⟨hx, _⟩
[GOAL]
case intro
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
e : PE ≃ᵢ PE
hx : ↑e x = x
right✝ : ↑e y = y
⊢ dist (↑↑{ val := e, property := (_ : ↑e x = x ∧ ↑e y = y) } z) z ≤ dist x z + dist x z
[PROOFSTEP]
calc
dist (e z) z ≤ dist (e z) x + dist x z := dist_triangle (e z) x z
_ = dist (e x) (e z) + dist x z := by rw [hx, dist_comm]
_ = dist x z + dist x z := by
erw [e.dist_eq x z]
-- On the other hand, consider the map `f : (E ≃ᵢ E) → (E ≃ᵢ E)`
-- sending each `e` to `R ∘ e⁻¹ ∘ R ∘ e`, where `R` is the point reflection in the
-- midpoint `z` of `[x, y]`.
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
e : PE ≃ᵢ PE
hx : ↑e x = x
right✝ : ↑e y = y
⊢ dist (↑e z) x + dist x z = dist (↑e x) (↑e z) + dist x z
[PROOFSTEP]
rw [hx, dist_comm]
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
e : PE ≃ᵢ PE
hx : ↑e x = x
right✝ : ↑e y = y
⊢ dist (↑e x) (↑e z) + dist x z = dist x z + dist x z
[PROOFSTEP]
erw [e.dist_eq x z]
-- On the other hand, consider the map `f : (E ≃ᵢ E) → (E ≃ᵢ E)`
-- sending each `e` to `R ∘ e⁻¹ ∘ R ∘ e`, where `R` is the point reflection in the
-- midpoint `z` of `[x, y]`.
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
set R : PE ≃ᵢ PE := (pointReflection ℝ z).toIsometryEquiv
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
set f : PE ≃ᵢ PE → PE ≃ᵢ PE := fun e => ((e.trans R).trans e.symm).trans R
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
have hf_dist : ∀ e, dist (f e z) z = 2 * dist (e z) z :=
by
intro e
dsimp
rw [dist_pointReflection_fixed, ← e.dist_eq, e.apply_symm_apply, dist_pointReflection_self_real, dist_comm]
-- Also note that `f` maps `s` to itself
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
⊢ ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
[PROOFSTEP]
intro e
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
e : PE ≃ᵢ PE
⊢ dist (↑(f e) z) z = 2 * dist (↑e z) z
[PROOFSTEP]
dsimp
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
e : PE ≃ᵢ PE
⊢ dist
(↑(pointReflection ℝ (midpoint ℝ x y))
(↑(IsometryEquiv.symm e) (↑(pointReflection ℝ (midpoint ℝ x y)) (↑e (midpoint ℝ x y)))))
(midpoint ℝ x y) =
2 * dist (↑e (midpoint ℝ x y)) (midpoint ℝ x y)
[PROOFSTEP]
rw [dist_pointReflection_fixed, ← e.dist_eq, e.apply_symm_apply, dist_pointReflection_self_real, dist_comm]
-- Also note that `f` maps `s` to itself
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
have hf_maps_to : MapsTo f s s := by
rintro e ⟨hx, hy⟩
constructor <;>
simp [hx, hy, e.symm_apply_eq.2 hx.symm, e.symm_apply_eq.2 hy.symm]
-- Therefore, `dist (e z) z = 0` for all `e ∈ s`.
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
⊢ MapsTo f s s
[PROOFSTEP]
rintro e ⟨hx, hy⟩
[GOAL]
case intro
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
e : PE ≃ᵢ PE
hx : ↑e x = x
hy : ↑e y = y
⊢ f e ∈ s
[PROOFSTEP]
constructor
[GOAL]
case intro.left
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
e : PE ≃ᵢ PE
hx : ↑e x = x
hy : ↑e y = y
⊢ ↑(f e) x = x
[PROOFSTEP]
simp [hx, hy, e.symm_apply_eq.2 hx.symm, e.symm_apply_eq.2 hy.symm]
-- Therefore, `dist (e z) z = 0` for all `e ∈ s`.
[GOAL]
case intro.right
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
e : PE ≃ᵢ PE
hx : ↑e x = x
hy : ↑e y = y
⊢ ↑(f e) y = y
[PROOFSTEP]
simp [hx, hy, e.symm_apply_eq.2 hx.symm, e.symm_apply_eq.2 hy.symm]
-- Therefore, `dist (e z) z = 0` for all `e ∈ s`.
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
set c := ⨆ e : s, dist ((e : PE ≃ᵢ PE) z) z
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
have : c ≤ c / 2 := by
apply ciSup_le
rintro ⟨e, he⟩
simp only [Subtype.coe_mk, le_div_iff' (zero_lt_two' ℝ), ← hf_dist]
exact le_ciSup h_bdd ⟨f e, hf_maps_to he⟩
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
⊢ c ≤ c / 2
[PROOFSTEP]
apply ciSup_le
[GOAL]
case H
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
⊢ ∀ (x : ↑s), dist (↑↑x z) z ≤ c / 2
[PROOFSTEP]
rintro ⟨e, he⟩
[GOAL]
case H.mk
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
e : PE ≃ᵢ PE
he : e ∈ s
⊢ dist (↑↑{ val := e, property := he } z) z ≤ c / 2
[PROOFSTEP]
simp only [Subtype.coe_mk, le_div_iff' (zero_lt_two' ℝ), ← hf_dist]
[GOAL]
case H.mk
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
e : PE ≃ᵢ PE
he : e ∈ s
⊢ dist
(↑(IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans e (toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y))))
(IsometryEquiv.symm e))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y))))
(midpoint ℝ x y))
(midpoint ℝ x y) ≤
⨆ (e : ↑{e | ↑e x = x ∧ ↑e y = y}), dist (↑↑e (midpoint ℝ x y)) (midpoint ℝ x y)
[PROOFSTEP]
exact le_ciSup h_bdd ⟨f e, hf_maps_to he⟩
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this✝ : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
this : c ≤ c / 2
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
replace : c ≤ 0
[GOAL]
case this
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this✝ : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
this : c ≤ c / 2
⊢ c ≤ 0
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this✝ : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
this : c ≤ 0
⊢ ∀ (e : PE ≃ᵢ PE), ↑e x = x → ↑e y = y → ↑e z = z
[PROOFSTEP]
refine' fun e hx hy => dist_le_zero.1 (le_trans _ this)
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
x y : PE
z : PE := midpoint ℝ x y
s : Set (PE ≃ᵢ PE) := {e | ↑e x = x ∧ ↑e y = y}
this✝ : Nonempty ↑s
h_bdd : BddAbove (range fun e => dist (↑↑e z) z)
R : PE ≃ᵢ PE := toIsometryEquiv (pointReflection ℝ z)
f : PE ≃ᵢ PE → PE ≃ᵢ PE :=
fun e => IsometryEquiv.trans (IsometryEquiv.trans (IsometryEquiv.trans e R) (IsometryEquiv.symm e)) R
hf_dist : ∀ (e : PE ≃ᵢ PE), dist (↑(f e) z) z = 2 * dist (↑e z) z
hf_maps_to : MapsTo f s s
c : ℝ := ⨆ (e : ↑s), dist (↑↑e z) z
this : c ≤ 0
e : PE ≃ᵢ PE
hx : ↑e x = x
hy : ↑e y = y
⊢ dist (↑e z) z ≤ c
[PROOFSTEP]
exact le_ciSup h_bdd ⟨e, hx, hy⟩
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
⊢ ↑f (midpoint ℝ x y) = midpoint ℝ (↑f x) (↑f y)
[PROOFSTEP]
set e : PE ≃ᵢ PE :=
((f.trans <| (pointReflection ℝ <| midpoint ℝ (f x) (f y)).toIsometryEquiv).trans f.symm).trans
(pointReflection ℝ <| midpoint ℝ x y).toIsometryEquiv
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
e : PE ≃ᵢ PE :=
IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans f (toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))))
(IsometryEquiv.symm f))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
⊢ ↑f (midpoint ℝ x y) = midpoint ℝ (↑f x) (↑f y)
[PROOFSTEP]
have hx : e x = x := by simp
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
e : PE ≃ᵢ PE :=
IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans f (toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))))
(IsometryEquiv.symm f))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
⊢ ↑e x = x
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
e : PE ≃ᵢ PE :=
IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans f (toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))))
(IsometryEquiv.symm f))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
hx : ↑e x = x
⊢ ↑f (midpoint ℝ x y) = midpoint ℝ (↑f x) (↑f y)
[PROOFSTEP]
have hy : e y = y := by simp
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
e : PE ≃ᵢ PE :=
IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans f (toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))))
(IsometryEquiv.symm f))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
hx : ↑e x = x
⊢ ↑e y = y
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
e : PE ≃ᵢ PE :=
IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans f (toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))))
(IsometryEquiv.symm f))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
hx : ↑e x = x
hy : ↑e y = y
⊢ ↑f (midpoint ℝ x y) = midpoint ℝ (↑f x) (↑f y)
[PROOFSTEP]
have hm := e.midpoint_fixed hx hy
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
e : PE ≃ᵢ PE :=
IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans f (toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))))
(IsometryEquiv.symm f))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
hx : ↑e x = x
hy : ↑e y = y
hm : ↑e (midpoint ℝ x y) = midpoint ℝ x y
⊢ ↑f (midpoint ℝ x y) = midpoint ℝ (↑f x) (↑f y)
[PROOFSTEP]
simp only [trans_apply] at hm
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x y : PE
e : PE ≃ᵢ PE :=
IsometryEquiv.trans
(IsometryEquiv.trans (IsometryEquiv.trans f (toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))))
(IsometryEquiv.symm f))
(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
hx : ↑e x = x
hy : ↑e y = y
hm :
↑(toIsometryEquiv (pointReflection ℝ (midpoint ℝ x y)))
(↑(IsometryEquiv.symm f)
(↑(toIsometryEquiv (pointReflection ℝ (midpoint ℝ (↑f x) (↑f y)))) (↑f (midpoint ℝ x y)))) =
midpoint ℝ x y
⊢ ↑f (midpoint ℝ x y) = midpoint ℝ (↑f x) (↑f y)
[PROOFSTEP]
rwa [← eq_symm_apply, toIsometryEquiv_symm, pointReflection_symm, coe_toIsometryEquiv, coe_toIsometryEquiv,
pointReflection_self, symm_apply_eq, @pointReflection_fixed_iff] at hm
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : E ≃ᵢ F
h0 : ↑f 0 = 0
src✝ : E →L[ℝ] F :=
AddMonoidHom.toRealLinearMap
(AddMonoidHom.ofMapMidpoint ℝ ℝ (↑f) h0 (_ : ∀ (x y : E), ↑f (midpoint ℝ x y) = midpoint ℝ (↑f x) (↑f y)))
(_ : Continuous ↑f)
x : E
⊢ ‖↑f x‖ = ‖x‖
[PROOFSTEP]
simp only [← dist_zero_right, ← h0, f.dist_eq]
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : E ≃ᵢ F
⊢ ↑(IsometryEquiv.trans f (IsometryEquiv.symm (addRight (↑f 0)))) 0 = 0
[PROOFSTEP]
simpa only [sub_eq_add_neg] using sub_self (f 0)
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
p : PE
⊢ ↑f p =
↑(toRealLinearIsometryEquiv
(IsometryEquiv.trans (vaddConst (Classical.arbitrary PE))
(IsometryEquiv.trans f (IsometryEquiv.symm (vaddConst (↑f (Classical.arbitrary PE)))))))
(p -ᵥ Classical.arbitrary PE) +ᵥ
↑f (Classical.arbitrary PE)
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
⊢ toIsometryEquiv (toRealAffineIsometryEquiv f) = f
[PROOFSTEP]
ext
[GOAL]
case H
E : Type u_1
PE : Type u_2
F : Type u_3
PF : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : MetricSpace PE
inst✝⁴ : NormedAddTorsor E PE
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : MetricSpace PF
inst✝ : NormedAddTorsor F PF
f : PE ≃ᵢ PF
x✝ : PE
⊢ ↑(toIsometryEquiv (toRealAffineIsometryEquiv f)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.MazurUlam", "llama_tokens": 15838} |
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
⊢ CompactSpace ↑(characterSpace 𝕜 A)
[PROOFSTEP]
rw [← isCompact_iff_compactSpace]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
⊢ IsCompact (characterSpace 𝕜 A)
[PROOFSTEP]
have h : characterSpace 𝕜 A ⊆ toNormedDual ⁻¹' Metric.closedBall 0 ‖(1 : A)‖ :=
by
intro φ hφ
rw [Set.mem_preimage, mem_closedBall_zero_iff]
exact (norm_le_norm_one ⟨φ, ⟨hφ.1, hφ.2⟩⟩ : _)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
⊢ characterSpace 𝕜 A ⊆ ↑toNormedDual ⁻¹' Metric.closedBall 0 ‖1‖
[PROOFSTEP]
intro φ hφ
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
φ : WeakDual 𝕜 A
hφ : φ ∈ characterSpace 𝕜 A
⊢ φ ∈ ↑toNormedDual ⁻¹' Metric.closedBall 0 ‖1‖
[PROOFSTEP]
rw [Set.mem_preimage, mem_closedBall_zero_iff]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
φ : WeakDual 𝕜 A
hφ : φ ∈ characterSpace 𝕜 A
⊢ ‖↑toNormedDual φ‖ ≤ ‖1‖
[PROOFSTEP]
exact (norm_le_norm_one ⟨φ, ⟨hφ.1, hφ.2⟩⟩ : _)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
h : characterSpace 𝕜 A ⊆ ↑toNormedDual ⁻¹' Metric.closedBall 0 ‖1‖
⊢ IsCompact (characterSpace 𝕜 A)
[PROOFSTEP]
exact isCompact_of_isClosed_subset (isCompact_closedBall 𝕜 0 _) CharacterSpace.isClosed h
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Algebra", "llama_tokens": 945} |
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.239
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : E
h : SameRay ℝ x y
⊢ ‖x + y‖ = ‖x‖ + ‖y‖
[PROOFSTEP]
rcases h.exists_eq_smul with ⟨u, a, b, ha, hb, -, rfl, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.239
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (a • u) (b • u)
⊢ ‖a • u + b • u‖ = ‖a • u‖ + ‖b • u‖
[PROOFSTEP]
rw [← add_smul, norm_smul_of_nonneg (add_nonneg ha hb), norm_smul_of_nonneg ha, norm_smul_of_nonneg hb, add_mul]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.3876
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : E
h : SameRay ℝ x y
⊢ ‖x - y‖ = |‖x‖ - ‖y‖|
[PROOFSTEP]
rcases h.exists_eq_smul with ⟨u, a, b, ha, hb, -, rfl, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.3876
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (a • u) (b • u)
⊢ ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
[PROOFSTEP]
wlog hab : b ≤ a with H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inr
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.3876
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (a • u) (b • u)
H :
∀ {E : Type u_1} [inst : SeminormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] {F : Type ?u.3876}
[inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] (u : E) (a b : ℝ),
0 ≤ a → 0 ≤ b → SameRay ℝ (a • u) (b • u) → b ≤ a → ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
hab : ¬b ≤ a
⊢ ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
[PROOFSTEP]
rw [SameRay.sameRay_comm] at h
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inr
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.3876
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (b • u) (a • u)
H :
∀ {E : Type u_1} [inst : SeminormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] {F : Type ?u.3876}
[inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] (u : E) (a b : ℝ),
0 ≤ a → 0 ≤ b → SameRay ℝ (a • u) (b • u) → b ≤ a → ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
hab : ¬b ≤ a
⊢ ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
[PROOFSTEP]
rw [norm_sub_rev, abs_sub_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inr
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.3876
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (b • u) (a • u)
H :
∀ {E : Type u_1} [inst : SeminormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] {F : Type ?u.3876}
[inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] (u : E) (a b : ℝ),
0 ≤ a → 0 ≤ b → SameRay ℝ (a • u) (b • u) → b ≤ a → ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
hab : ¬b ≤ a
⊢ ‖b • u - a • u‖ = |‖b • u‖ - ‖a • u‖|
[PROOFSTEP]
have := @H E _ _ ℝ
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inr
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (b • u) (a • u)
H :
∀ {E : Type u_1} [inst : SeminormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] {F : Type}
[inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] (u : E) (a b : ℝ),
0 ≤ a → 0 ≤ b → SameRay ℝ (a • u) (b • u) → b ≤ a → ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
hab : ¬b ≤ a
this :
∀ [inst : NormedAddCommGroup ℝ] [inst : NormedSpace ℝ ℝ] (u : E) (a b : ℝ),
0 ≤ a → 0 ≤ b → SameRay ℝ (a • u) (b • u) → b ≤ a → ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
⊢ ‖b • u - a • u‖ = |‖b • u‖ - ‖a • u‖|
[PROOFSTEP]
exact this u b a hb ha h (le_of_not_le hab)
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (a • u) (b • u)
hab : b ≤ a
⊢ ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
[PROOFSTEP]
rw [← sub_nonneg] at hab
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (a • u) (b • u)
hab✝ : b ≤ a
hab : 0 ≤ a - b
⊢ ‖a • u - b • u‖ = |‖a • u‖ - ‖b • u‖|
[PROOFSTEP]
rw [← sub_smul, norm_smul_of_nonneg hab, norm_smul_of_nonneg ha, norm_smul_of_nonneg hb, ← sub_mul,
abs_of_nonneg (mul_nonneg hab (norm_nonneg _))]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.8734
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : E
h : SameRay ℝ x y
⊢ ‖x‖ • y = ‖y‖ • x
[PROOFSTEP]
rcases h.exists_eq_smul with ⟨u, a, b, ha, hb, -, rfl, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.8734
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (a • u) (b • u)
⊢ ‖a • u‖ • b • u = ‖b • u‖ • a • u
[PROOFSTEP]
simp only [norm_smul_of_nonneg, *, mul_smul]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type ?u.8734
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
u : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
h : SameRay ℝ (a • u) (b • u)
⊢ a • ‖u‖ • b • u = b • ‖u‖ • a • u
[PROOFSTEP]
rw [smul_comm, smul_comm b, smul_comm a b u]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
⊢ Set.InjOn Norm.norm {y | SameRay ℝ x y}
[PROOFSTEP]
rintro y hy z hz h
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y✝ : F
hx : x ≠ 0
y : F
hy : y ∈ {y | SameRay ℝ x y}
z : F
hz : z ∈ {y | SameRay ℝ x y}
h : ‖y‖ = ‖z‖
⊢ y = z
[PROOFSTEP]
rcases hy.exists_nonneg_left hx with ⟨r, hr, rfl⟩
[GOAL]
case intro.intro
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
z : F
hz : z ∈ {y | SameRay ℝ x y}
r : ℝ
hr : 0 ≤ r
hy : r • x ∈ {y | SameRay ℝ x y}
h : ‖r • x‖ = ‖z‖
⊢ r • x = z
[PROOFSTEP]
rcases hz.exists_nonneg_left hx with ⟨s, hs, rfl⟩
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
r : ℝ
hr : 0 ≤ r
hy : r • x ∈ {y | SameRay ℝ x y}
s : ℝ
hs : 0 ≤ s
hz : s • x ∈ {y | SameRay ℝ x y}
h : ‖r • x‖ = ‖s • x‖
⊢ r • x = s • x
[PROOFSTEP]
rw [norm_smul, norm_smul, mul_left_inj' (norm_ne_zero_iff.2 hx), norm_of_nonneg hr, norm_of_nonneg hs] at h
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
r : ℝ
hr : 0 ≤ r
hy : r • x ∈ {y | SameRay ℝ x y}
s : ℝ
hs : 0 ≤ s
hz : s • x ∈ {y | SameRay ℝ x y}
h : r = s
⊢ r • x = s • x
[PROOFSTEP]
rw [h]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hy : y ≠ 0
⊢ Set.InjOn Norm.norm {x | SameRay ℝ x y}
[PROOFSTEP]
simpa only [SameRay.sameRay_comm] using norm_injOn_ray_left hy
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
hy : y ≠ 0
⊢ SameRay ℝ x y ↔ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y
[PROOFSTEP]
rw [inv_smul_eq_iff₀, smul_comm, eq_comm, inv_smul_eq_iff₀, sameRay_iff_norm_smul_eq]
[GOAL]
case ha
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
hy : y ≠ 0
⊢ ‖y‖ ≠ 0
[PROOFSTEP]
rwa [norm_ne_zero_iff]
[GOAL]
case ha
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
hy : y ≠ 0
⊢ ‖x‖ ≠ 0
[PROOFSTEP]
rwa [norm_ne_zero_iff]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
y : F
⊢ SameRay ℝ 0 y ↔ 0 = 0 ∨ y = 0 ∨ ‖0‖⁻¹ • 0 = ‖y‖⁻¹ • y
[PROOFSTEP]
simp [SameRay.zero_left]
[GOAL]
case inr
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y
[PROOFSTEP]
rcases eq_or_ne y 0 with (rfl | hy)
[GOAL]
case inr.inl
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
hx : x ≠ 0
⊢ SameRay ℝ x 0 ↔ x = 0 ∨ 0 = 0 ∨ ‖x‖⁻¹ • x = ‖0‖⁻¹ • 0
[PROOFSTEP]
simp [SameRay.zero_right]
[GOAL]
case inr.inr
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
hx : x ≠ 0
hy : y ≠ 0
⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y
[PROOFSTEP]
simp only [sameRay_iff_inv_norm_smul_eq_of_ne hx hy, *, false_or_iff]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
h : ‖x‖ = ‖y‖
⊢ SameRay ℝ x y ↔ x = y
[PROOFSTEP]
obtain rfl | hy := eq_or_ne y 0
[GOAL]
case inl
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
h : ‖x‖ = ‖0‖
⊢ SameRay ℝ x 0 ↔ x = 0
[PROOFSTEP]
rw [norm_zero, norm_eq_zero] at h
[GOAL]
case inl
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x : F
h : x = 0
⊢ SameRay ℝ x 0 ↔ x = 0
[PROOFSTEP]
exact iff_of_true (SameRay.zero_right _) h
[GOAL]
case inr
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
x y : F
h : ‖x‖ = ‖y‖
hy : y ≠ 0
⊢ SameRay ℝ x y ↔ x = y
[PROOFSTEP]
exact ⟨fun hxy => norm_injOn_ray_right hy hxy SameRay.rfl h, fun hxy => hxy ▸ SameRay.rfl⟩
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Ray", "llama_tokens": 5934} |
[GOAL]
𝕜 : Type u_1
inst✝¹ : IsROrC 𝕜
E : Type u_2
inst✝ : NormedAddCommGroup E
z : E
⊢ ‖↑‖z‖‖ = ‖z‖
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
hx : x ≠ 0
⊢ ‖(↑‖x‖)⁻¹ • x‖ = 1
[PROOFSTEP]
have : ‖x‖ ≠ 0 := by simp [hx]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
hx : x ≠ 0
⊢ ‖x‖ ≠ 0
[PROOFSTEP]
simp [hx]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
hx : x ≠ 0
this : ‖x‖ ≠ 0
⊢ ‖(↑‖x‖)⁻¹ • x‖ = 1
[PROOFSTEP]
field_simp [norm_smul]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_nonneg : 0 ≤ r
x : E
hx : x ≠ 0
⊢ ‖(↑r * (↑‖x‖)⁻¹) • x‖ = r
[PROOFSTEP]
have : ‖x‖ ≠ 0 := by simp [hx]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_nonneg : 0 ≤ r
x : E
hx : x ≠ 0
⊢ ‖x‖ ≠ 0
[PROOFSTEP]
simp [hx]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_nonneg : 0 ≤ r
x : E
hx : x ≠ 0
this : ‖x‖ ≠ 0
⊢ ‖(↑r * (↑‖x‖)⁻¹) • x‖ = r
[PROOFSTEP]
field_simp [norm_smul, r_nonneg, isROrC_simps]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
⊢ ‖↑f z‖ ≤ c / r * ‖z‖
[PROOFSTEP]
by_cases z_zero : z = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : z = 0
⊢ ‖↑f z‖ ≤ c / r * ‖z‖
[PROOFSTEP]
rw [z_zero]
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : z = 0
⊢ ‖↑f 0‖ ≤ c / r * ‖0‖
[PROOFSTEP]
simp only [LinearMap.map_zero, norm_zero, mul_zero]
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : z = 0
⊢ 0 ≤ 0
[PROOFSTEP]
exact le_rfl
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
⊢ ‖↑f z‖ ≤ c / r * ‖z‖
[PROOFSTEP]
set z₁ := ((r : 𝕜) * (‖z‖ : 𝕜)⁻¹) • z with hz₁
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
⊢ ‖↑f z‖ ≤ c / r * ‖z‖
[PROOFSTEP]
have norm_f_z₁ : ‖f z₁‖ ≤ c := by
apply h
rw [mem_sphere_zero_iff_norm]
exact norm_smul_inv_norm' r_pos.le z_zero
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
⊢ ‖↑f z₁‖ ≤ c
[PROOFSTEP]
apply h
[GOAL]
case a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
⊢ z₁ ∈ sphere 0 r
[PROOFSTEP]
rw [mem_sphere_zero_iff_norm]
[GOAL]
case a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
⊢ ‖z₁‖ = r
[PROOFSTEP]
exact norm_smul_inv_norm' r_pos.le z_zero
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
⊢ ‖↑f z‖ ≤ c / r * ‖z‖
[PROOFSTEP]
have r_ne_zero : (r : 𝕜) ≠ 0 := IsROrC.ofReal_ne_zero.mpr r_pos.ne'
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
⊢ ‖↑f z‖ ≤ c / r * ‖z‖
[PROOFSTEP]
have eq : f z = ‖z‖ / r * f z₁ := by
rw [hz₁, LinearMap.map_smul, smul_eq_mul]
rw [← mul_assoc, ← mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
⊢ ↑f z = ↑‖z‖ / ↑r * ↑f z₁
[PROOFSTEP]
rw [hz₁, LinearMap.map_smul, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
⊢ ↑f z = ↑‖z‖ / ↑r * (↑r * (↑‖z‖)⁻¹ * ↑f z)
[PROOFSTEP]
rw [← mul_assoc, ← mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
⊢ ↑‖z‖ ≠ 0
[PROOFSTEP]
simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
eq : ↑f z = ↑‖z‖ / ↑r * ↑f z₁
⊢ ‖↑f z‖ ≤ c / r * ‖z‖
[PROOFSTEP]
rw [eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le, div_mul_eq_mul_div,
div_mul_eq_mul_div, mul_comm]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
eq : ↑f z = ↑‖z‖ / ↑r * ↑f z₁
⊢ ‖↑f z₁‖ * ‖z‖ / r ≤ c * ‖z‖ / r
[PROOFSTEP]
apply div_le_div _ _ r_pos rfl.ge
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
eq : ↑f z = ↑‖z‖ / ↑r * ↑f z₁
⊢ 0 ≤ c * ‖z‖
[PROOFSTEP]
exact mul_nonneg ((norm_nonneg _).trans norm_f_z₁) (norm_nonneg z)
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →ₗ[𝕜] 𝕜
h : ∀ (z : E), z ∈ sphere 0 r → ‖↑f z‖ ≤ c
z : E
z_zero : ¬z = 0
z₁ : E := (↑r * (↑‖z‖)⁻¹) • z
hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z
norm_f_z₁ : ‖↑f z₁‖ ≤ c
r_ne_zero : ↑r ≠ 0
eq : ↑f z = ↑‖z‖ / ↑r * ↑f z₁
⊢ ‖↑f z₁‖ * ‖z‖ ≤ c * ‖z‖
[PROOFSTEP]
apply mul_le_mul norm_f_z₁ rfl.le (norm_nonneg z) ((norm_nonneg _).trans norm_f_z₁)
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →L[𝕜] 𝕜
h : ∀ (z : E), z ∈ closedBall 0 r → ‖↑f z‖ ≤ c
⊢ ‖f‖ ≤ c / r
[PROOFSTEP]
apply ContinuousLinearMap.op_norm_le_bound
[GOAL]
case hMp
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →L[𝕜] 𝕜
h : ∀ (z : E), z ∈ closedBall 0 r → ‖↑f z‖ ≤ c
⊢ 0 ≤ c / r
[PROOFSTEP]
apply div_nonneg _ r_pos.le
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →L[𝕜] 𝕜
h : ∀ (z : E), z ∈ closedBall 0 r → ‖↑f z‖ ≤ c
⊢ 0 ≤ c
[PROOFSTEP]
exact (norm_nonneg _).trans (h 0 (by simp only [norm_zero, mem_closedBall, dist_zero_left, r_pos.le]))
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →L[𝕜] 𝕜
h : ∀ (z : E), z ∈ closedBall 0 r → ‖↑f z‖ ≤ c
⊢ 0 ∈ closedBall 0 r
[PROOFSTEP]
simp only [norm_zero, mem_closedBall, dist_zero_left, r_pos.le]
[GOAL]
case hM
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →L[𝕜] 𝕜
h : ∀ (z : E), z ∈ closedBall 0 r → ‖↑f z‖ ≤ c
⊢ ∀ (x : E), ‖↑f x‖ ≤ c / r * ‖x‖
[PROOFSTEP]
apply LinearMap.bound_of_ball_bound' r_pos
[GOAL]
case hM.h
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
r_pos : 0 < r
c : ℝ
f : E →L[𝕜] 𝕜
h : ∀ (z : E), z ∈ closedBall 0 r → ‖↑f z‖ ≤ c
⊢ ∀ (z : E), z ∈ closedBall 0 r → ‖↑↑f z‖ ≤ c
[PROOFSTEP]
exact fun z hz => h z hz
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.IsROrC", "llama_tokens": 6053} |
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
⊢ (fun h =>
f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
refine'
IsLittleO.trans_isBigO (isLittleO_iff.2 fun ε εpos => _)
(isBigO_const_mul_self ((‖v‖ + ‖w‖) * ‖w‖) _ _)
-- consider a ball of radius `δ` around `x` in which the Taylor approximation for `f''` is
-- good up to `δ`.
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ioi 0] 0,
‖f (x + x_1 • v + x_1 • w) - f (x + x_1 • v) - x_1 • ↑(f' x) w - x_1 ^ 2 • ↑(↑f'' v) w -
(x_1 ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * x_1 ^ 2‖
[PROOFSTEP]
rw [HasFDerivWithinAt, HasFDerivAtFilter, isLittleO_iff] at hx
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ioi 0] 0,
‖f (x + x_1 • v + x_1 • w) - f (x + x_1 • v) - x_1 • ↑(f' x) w - x_1 ^ 2 • ↑(↑f'' v) w -
(x_1 ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * x_1 ^ 2‖
[PROOFSTEP]
rcases Metric.mem_nhdsWithin_iff.1 (hx εpos) with ⟨δ, δpos, sδ⟩
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ioi 0] 0,
‖f (x + x_1 • v + x_1 • w) - f (x + x_1 • v) - x_1 • ↑(f' x) w - x_1 ^ 2 • ↑(↑f'' v) w -
(x_1 ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * x_1 ^ 2‖
[PROOFSTEP]
have E1 : ∀ᶠ h in 𝓝[>] (0 : ℝ), h * (‖v‖ + ‖w‖) < δ :=
by
have : Filter.Tendsto (fun h => h * (‖v‖ + ‖w‖)) (𝓝[>] (0 : ℝ)) (𝓝 (0 * (‖v‖ + ‖w‖))) :=
(continuous_id.mul continuous_const).continuousWithinAt
apply (tendsto_order.1 this).2 δ
simpa only [zero_mul] using δpos
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
⊢ ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
[PROOFSTEP]
have : Filter.Tendsto (fun h => h * (‖v‖ + ‖w‖)) (𝓝[>] (0 : ℝ)) (𝓝 (0 * (‖v‖ + ‖w‖))) :=
(continuous_id.mul continuous_const).continuousWithinAt
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
this : Filter.Tendsto (fun h => h * (‖v‖ + ‖w‖)) (𝓝[Ioi 0] 0) (𝓝 (0 * (‖v‖ + ‖w‖)))
⊢ ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
[PROOFSTEP]
apply (tendsto_order.1 this).2 δ
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
this : Filter.Tendsto (fun h => h * (‖v‖ + ‖w‖)) (𝓝[Ioi 0] 0) (𝓝 (0 * (‖v‖ + ‖w‖)))
⊢ δ > 0 * (‖v‖ + ‖w‖)
[PROOFSTEP]
simpa only [zero_mul] using δpos
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ioi 0] 0,
‖f (x + x_1 • v + x_1 • w) - f (x + x_1 • v) - x_1 • ↑(f' x) w - x_1 ^ 2 • ↑(↑f'' v) w -
(x_1 ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * x_1 ^ 2‖
[PROOFSTEP]
have E2 : ∀ᶠ h in 𝓝[>] (0 : ℝ), (h : ℝ) < 1 :=
mem_nhdsWithin_Ioi_iff_exists_Ioo_subset.2 ⟨(1 : ℝ), by simp only [mem_Ioi, zero_lt_one], fun x hx => hx.2⟩
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
⊢ 1 ∈ Ioi 0
[PROOFSTEP]
simp only [mem_Ioi, zero_lt_one]
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ioi 0] 0,
‖f (x + x_1 • v + x_1 • w) - f (x + x_1 • v) - x_1 • ↑(f' x) w - x_1 ^ 2 • ↑(↑f'' v) w -
(x_1 ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * x_1 ^ 2‖
[PROOFSTEP]
filter_upwards [E1, E2, self_mem_nhdsWithin] with h hδ h_lt_1 hpos
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : h ∈ Ioi 0
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
replace hpos : 0 < h := hpos
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
have xt_mem : ∀ t ∈ Icc (0 : ℝ) 1, x + h • v + (t * h) • w ∈ interior s :=
by
intro t ht
have : x + h • v ∈ interior s := s_conv.add_smul_mem_interior xs hv ⟨hpos, h_lt_1.le⟩
rw [← smul_smul]
apply s_conv.interior.add_smul_mem this _ ht
rw [add_assoc] at hw
rw [add_assoc, ← smul_add]
exact
s_conv.add_smul_mem_interior xs hw
⟨hpos, h_lt_1.le⟩
-- define a function `g` on `[0,1]` (identified with `[v, v + w]`) such that `g 1 - g 0` is the
-- quantity to be estimated. We will check that its derivative is given by an explicit
-- expression `g'`, that we can bound. Then the desired bound for `g 1 - g 0` follows from the
-- mean value inequality.
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
⊢ ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
[PROOFSTEP]
intro t ht
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
t : ℝ
ht : t ∈ Icc 0 1
⊢ x + h • v + (t * h) • w ∈ interior s
[PROOFSTEP]
have : x + h • v ∈ interior s := s_conv.add_smul_mem_interior xs hv ⟨hpos, h_lt_1.le⟩
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
t : ℝ
ht : t ∈ Icc 0 1
this : x + h • v ∈ interior s
⊢ x + h • v + (t * h) • w ∈ interior s
[PROOFSTEP]
rw [← smul_smul]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
t : ℝ
ht : t ∈ Icc 0 1
this : x + h • v ∈ interior s
⊢ x + h • v + t • h • w ∈ interior s
[PROOFSTEP]
apply s_conv.interior.add_smul_mem this _ ht
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
t : ℝ
ht : t ∈ Icc 0 1
this : x + h • v ∈ interior s
⊢ x + h • v + h • w ∈ interior s
[PROOFSTEP]
rw [add_assoc] at hw
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + (v + w) ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
t : ℝ
ht : t ∈ Icc 0 1
this : x + h • v ∈ interior s
⊢ x + h • v + h • w ∈ interior s
[PROOFSTEP]
rw [add_assoc, ← smul_add]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + (v + w) ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
t : ℝ
ht : t ∈ Icc 0 1
this : x + h • v ∈ interior s
⊢ x + h • (v + w) ∈ interior s
[PROOFSTEP]
exact
s_conv.add_smul_mem_interior xs hw
⟨hpos, h_lt_1.le⟩
-- define a function `g` on `[0,1]` (identified with `[v, v + w]`) such that `g 1 - g 0` is the
-- quantity to be estimated. We will check that its derivative is given by an explicit
-- expression `g'`, that we can bound. Then the desired bound for `g 1 - g 0` follows from the
-- mean value inequality.
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
let g t := f (x + h • v + (t * h) • w) - (t * h) • f' x w - (t * h ^ 2) • f'' v w - ((t * h) ^ 2 / 2) • f'' w w
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
set g' := fun t => f' (x + h • v + (t * h) • w) (h • w) - h • f' x w - h ^ 2 • f'' v w - (t * h ^ 2) • f'' w w with hg'
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
have g_deriv : ∀ t ∈ Icc (0 : ℝ) 1, HasDerivWithinAt g (g' t) (Icc 0 1) t :=
by
intro t ht
apply_rules [HasDerivWithinAt.sub, HasDerivWithinAt.add]
· refine' (hf _ _).comp_hasDerivWithinAt _ _
· exact xt_mem t ht
apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.const_add, HasDerivAt.smul_const, hasDerivAt_mul_const]
· apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.smul_const, hasDerivAt_mul_const]
· apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.smul_const, hasDerivAt_mul_const]
· suffices H :
HasDerivWithinAt (fun u => ((u * h) ^ 2 / 2) • f'' w w)
((((2 : ℕ) : ℝ) * (t * h) ^ (2 - 1) * (1 * h) / 2) • f'' w w) (Icc 0 1) t
· convert H using 2
ring
apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.smul_const, hasDerivAt_id', HasDerivAt.pow,
HasDerivAt.mul_const]
-- check that `g'` is uniformly bounded, with a suitable bound `ε * ((‖v‖ + ‖w‖) * ‖w‖) * h^2`.
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
⊢ ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
[PROOFSTEP]
intro t ht
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt g (g' t) (Icc 0 1) t
[PROOFSTEP]
apply_rules [HasDerivWithinAt.sub, HasDerivWithinAt.add]
[GOAL]
case hf.hf.hf
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt (fun x_1 => f (x + h • v + (x_1 * h) • w)) (↑(f' (x + h • v + (t * h) • w)) (h • w)) (Icc 0 1) t
[PROOFSTEP]
refine' (hf _ _).comp_hasDerivWithinAt _ _
[GOAL]
case hf.hf.hf.refine'_1
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ x + h • v + (t * h) • w ∈ interior s
[PROOFSTEP]
exact xt_mem t ht
[GOAL]
case hf.hf.hf.refine'_2
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt (fun x_1 => x + h • v + (x_1 * h) • w) (h • w) (Icc 0 1) t
[PROOFSTEP]
apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.const_add, HasDerivAt.smul_const, hasDerivAt_mul_const]
[GOAL]
case hf.hf.hg
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt (fun x_1 => (x_1 * h) • ↑(f' x) w) (h • ↑(f' x) w) (Icc 0 1) t
[PROOFSTEP]
apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.smul_const, hasDerivAt_mul_const]
[GOAL]
case hf.hg
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt (fun x => (x * h ^ 2) • ↑(↑f'' v) w) (h ^ 2 • ↑(↑f'' v) w) (Icc 0 1) t
[PROOFSTEP]
apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.smul_const, hasDerivAt_mul_const]
[GOAL]
case hg
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt (fun x => ((x * h) ^ 2 / 2) • ↑(↑f'' w) w) ((t * h ^ 2) • ↑(↑f'' w) w) (Icc 0 1) t
[PROOFSTEP]
suffices H :
HasDerivWithinAt (fun u => ((u * h) ^ 2 / 2) • f'' w w) ((((2 : ℕ) : ℝ) * (t * h) ^ (2 - 1) * (1 * h) / 2) • f'' w w)
(Icc 0 1) t
[GOAL]
case hg
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
H :
HasDerivWithinAt (fun u => ((u * h) ^ 2 / 2) • ↑(↑f'' w) w) ((↑2 * (t * h) ^ (2 - 1) * (1 * h) / 2) • ↑(↑f'' w) w)
(Icc 0 1) t
⊢ HasDerivWithinAt (fun x => ((x * h) ^ 2 / 2) • ↑(↑f'' w) w) ((t * h ^ 2) • ↑(↑f'' w) w) (Icc 0 1) t
[PROOFSTEP]
convert H using 2
[GOAL]
case h.e'_7.h.e'_5
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
H :
HasDerivWithinAt (fun u => ((u * h) ^ 2 / 2) • ↑(↑f'' w) w) ((↑2 * (t * h) ^ (2 - 1) * (1 * h) / 2) • ↑(↑f'' w) w)
(Icc 0 1) t
⊢ t * h ^ 2 = ↑2 * (t * h) ^ (2 - 1) * (1 * h) / 2
[PROOFSTEP]
ring
[GOAL]
case H
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
t : ℝ
ht : t ∈ Icc 0 1
⊢ HasDerivWithinAt (fun u => ((u * h) ^ 2 / 2) • ↑(↑f'' w) w) ((↑2 * (t * h) ^ (2 - 1) * (1 * h) / 2) • ↑(↑f'' w) w)
(Icc 0 1) t
[PROOFSTEP]
apply_rules [HasDerivAt.hasDerivWithinAt, HasDerivAt.smul_const, hasDerivAt_id', HasDerivAt.pow, HasDerivAt.mul_const]
-- check that `g'` is uniformly bounded, with a suitable bound `ε * ((‖v‖ + ‖w‖) * ‖w‖) * h^2`.
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
have g'_bound : ∀ t ∈ Ico (0 : ℝ) 1, ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2 :=
by
intro t ht
have I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖) :=
calc
‖h • v + (t * h) • w‖ ≤ ‖h • v‖ + ‖(t * h) • w‖ := norm_add_le _ _
_ = h * ‖v‖ + t * (h * ‖w‖) := by
simp only [norm_smul, Real.norm_eq_abs, hpos.le, abs_of_nonneg, abs_mul, ht.left, mul_assoc]
_ ≤ h * ‖v‖ + 1 * (h * ‖w‖) := by gcongr; exact ht.2.le
_ = h * (‖v‖ + ‖w‖) := by ring
calc
‖g' t‖ = ‖(f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)) (h • w)‖ :=
by
rw [hg']
have : h * (t * h) = t * (h * h) := by ring
simp only [ContinuousLinearMap.coe_sub', ContinuousLinearMap.map_add, pow_two, ContinuousLinearMap.add_apply,
Pi.smul_apply, smul_sub, smul_add, smul_smul, ← sub_sub, ContinuousLinearMap.coe_smul', Pi.sub_apply,
ContinuousLinearMap.map_smul, this]
_ ≤ ‖f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)‖ * ‖h • w‖ :=
(ContinuousLinearMap.le_op_norm _ _)
_ ≤ ε * ‖h • v + (t * h) • w‖ * ‖h • w‖ :=
by
apply mul_le_mul_of_nonneg_right _ (norm_nonneg _)
have H : x + h • v + (t * h) • w ∈ Metric.ball x δ ∩ interior s :=
by
refine' ⟨_, xt_mem t ⟨ht.1, ht.2.le⟩⟩
rw [add_assoc, add_mem_ball_iff_norm]
exact I.trans_lt hδ
simpa only [mem_setOf_eq, add_assoc x, add_sub_cancel'] using sδ H
_ ≤ ε * (‖h • v‖ + ‖h • w‖) * ‖h • w‖ := by
gcongr
apply (norm_add_le _ _).trans
gcongr
simp only [norm_smul, Real.norm_eq_abs, abs_mul, abs_of_nonneg, ht.1, hpos.le, mul_assoc]
exact mul_le_of_le_one_left (mul_nonneg hpos.le (norm_nonneg _)) ht.2.le
_ = ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2 := by simp only [norm_smul, Real.norm_eq_abs, abs_mul, abs_of_nonneg, hpos.le];
ring
-- conclude using the mean value inequality
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
⊢ ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
[PROOFSTEP]
intro t ht
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
⊢ ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
[PROOFSTEP]
have I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖) :=
calc
‖h • v + (t * h) • w‖ ≤ ‖h • v‖ + ‖(t * h) • w‖ := norm_add_le _ _
_ = h * ‖v‖ + t * (h * ‖w‖) := by
simp only [norm_smul, Real.norm_eq_abs, hpos.le, abs_of_nonneg, abs_mul, ht.left, mul_assoc]
_ ≤ h * ‖v‖ + 1 * (h * ‖w‖) := by gcongr; exact ht.2.le
_ = h * (‖v‖ + ‖w‖) := by ring
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
⊢ ‖h • v‖ + ‖(t * h) • w‖ = h * ‖v‖ + t * (h * ‖w‖)
[PROOFSTEP]
simp only [norm_smul, Real.norm_eq_abs, hpos.le, abs_of_nonneg, abs_mul, ht.left, mul_assoc]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
⊢ h * ‖v‖ + t * (h * ‖w‖) ≤ h * ‖v‖ + 1 * (h * ‖w‖)
[PROOFSTEP]
gcongr
[GOAL]
case bc.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
⊢ t ≤ 1
[PROOFSTEP]
exact ht.2.le
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
⊢ h * ‖v‖ + 1 * (h * ‖w‖) = h * (‖v‖ + ‖w‖)
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
[PROOFSTEP]
calc
‖g' t‖ = ‖(f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)) (h • w)‖ :=
by
rw [hg']
have : h * (t * h) = t * (h * h) := by ring
simp only [ContinuousLinearMap.coe_sub', ContinuousLinearMap.map_add, pow_two, ContinuousLinearMap.add_apply,
Pi.smul_apply, smul_sub, smul_add, smul_smul, ← sub_sub, ContinuousLinearMap.coe_smul', Pi.sub_apply,
ContinuousLinearMap.map_smul, this]
_ ≤ ‖f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)‖ * ‖h • w‖ :=
(ContinuousLinearMap.le_op_norm _ _)
_ ≤ ε * ‖h • v + (t * h) • w‖ * ‖h • w‖ :=
by
apply mul_le_mul_of_nonneg_right _ (norm_nonneg _)
have H : x + h • v + (t * h) • w ∈ Metric.ball x δ ∩ interior s :=
by
refine' ⟨_, xt_mem t ⟨ht.1, ht.2.le⟩⟩
rw [add_assoc, add_mem_ball_iff_norm]
exact I.trans_lt hδ
simpa only [mem_setOf_eq, add_assoc x, add_sub_cancel'] using sδ H
_ ≤ ε * (‖h • v‖ + ‖h • w‖) * ‖h • w‖ := by
gcongr
apply (norm_add_le _ _).trans
gcongr
simp only [norm_smul, Real.norm_eq_abs, abs_mul, abs_of_nonneg, ht.1, hpos.le, mul_assoc]
exact mul_le_of_le_one_left (mul_nonneg hpos.le (norm_nonneg _)) ht.2.le
_ = ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2 := by simp only [norm_smul, Real.norm_eq_abs, abs_mul, abs_of_nonneg, hpos.le];
ring
-- conclude using the mean value inequality
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖g' t‖ = ‖↑(f' (x + h • v + (t * h) • w) - f' x - ↑f'' (h • v + (t * h) • w)) (h • w)‖
[PROOFSTEP]
rw [hg']
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖(fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w)
t‖ =
‖↑(f' (x + h • v + (t * h) • w) - f' x - ↑f'' (h • v + (t * h) • w)) (h • w)‖
[PROOFSTEP]
have : h * (t * h) = t * (h * h) := by ring
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ h * (t * h) = t * (h * h)
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
this : h * (t * h) = t * (h * h)
⊢ ‖(fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w)
t‖ =
‖↑(f' (x + h • v + (t * h) • w) - f' x - ↑f'' (h • v + (t * h) • w)) (h • w)‖
[PROOFSTEP]
simp only [ContinuousLinearMap.coe_sub', ContinuousLinearMap.map_add, pow_two, ContinuousLinearMap.add_apply,
Pi.smul_apply, smul_sub, smul_add, smul_smul, ← sub_sub, ContinuousLinearMap.coe_smul', Pi.sub_apply,
ContinuousLinearMap.map_smul, this]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖f' (x + h • v + (t * h) • w) - f' x - ↑f'' (h • v + (t * h) • w)‖ * ‖h • w‖ ≤ ε * ‖h • v + (t * h) • w‖ * ‖h • w‖
[PROOFSTEP]
apply mul_le_mul_of_nonneg_right _ (norm_nonneg _)
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖f' (x + h • v + (t * h) • w) - f' x - ↑f'' (h • v + (t * h) • w)‖ ≤ ε * ‖h • v + (t * h) • w‖
[PROOFSTEP]
have H : x + h • v + (t * h) • w ∈ Metric.ball x δ ∩ interior s :=
by
refine' ⟨_, xt_mem t ⟨ht.1, ht.2.le⟩⟩
rw [add_assoc, add_mem_ball_iff_norm]
exact I.trans_lt hδ
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ x + h • v + (t * h) • w ∈ Metric.ball x δ ∩ interior s
[PROOFSTEP]
refine' ⟨_, xt_mem t ⟨ht.1, ht.2.le⟩⟩
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ x + h • v + (t * h) • w ∈ Metric.ball x δ
[PROOFSTEP]
rw [add_assoc, add_mem_ball_iff_norm]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖h • v + (t * h) • w‖ < δ
[PROOFSTEP]
exact I.trans_lt hδ
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
H : x + h • v + (t * h) • w ∈ Metric.ball x δ ∩ interior s
⊢ ‖f' (x + h • v + (t * h) • w) - f' x - ↑f'' (h • v + (t * h) • w)‖ ≤ ε * ‖h • v + (t * h) • w‖
[PROOFSTEP]
simpa only [mem_setOf_eq, add_assoc x, add_sub_cancel'] using sδ H
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ε * ‖h • v + (t * h) • w‖ * ‖h • w‖ ≤ ε * (‖h • v‖ + ‖h • w‖) * ‖h • w‖
[PROOFSTEP]
gcongr
[GOAL]
case h.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖h • v + (t * h) • w‖ ≤ ‖h • v‖ + ‖h • w‖
[PROOFSTEP]
apply (norm_add_le _ _).trans
[GOAL]
case h.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖h • v‖ + ‖(t * h) • w‖ ≤ ‖h • v‖ + ‖h • w‖
[PROOFSTEP]
gcongr
[GOAL]
case h.h.bc
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ‖(t * h) • w‖ ≤ ‖h • w‖
[PROOFSTEP]
simp only [norm_smul, Real.norm_eq_abs, abs_mul, abs_of_nonneg, ht.1, hpos.le, mul_assoc]
[GOAL]
case h.h.bc
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ t * (h * ‖w‖) ≤ h * ‖w‖
[PROOFSTEP]
exact mul_le_of_le_one_left (mul_nonneg hpos.le (norm_nonneg _)) ht.2.le
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ε * (‖h • v‖ + ‖h • w‖) * ‖h • w‖ = ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
[PROOFSTEP]
simp only [norm_smul, Real.norm_eq_abs, abs_mul, abs_of_nonneg, hpos.le]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
t : ℝ
ht : t ∈ Ico 0 1
I : ‖h • v + (t * h) • w‖ ≤ h * (‖v‖ + ‖w‖)
⊢ ε * (h * ‖v‖ + h * ‖w‖) * (h * ‖w‖) = ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
[PROOFSTEP]
ring
-- conclude using the mean value inequality
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
have I : ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2 := by
simpa only [mul_one, sub_zero] using
norm_image_sub_le_of_norm_deriv_le_segment' g_deriv g'_bound 1 (right_mem_Icc.2 zero_le_one)
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
[PROOFSTEP]
simpa only [mul_one, sub_zero] using
norm_image_sub_le_of_norm_deriv_le_segment' g_deriv g'_bound 1 (right_mem_Icc.2 zero_le_one)
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
I : ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ ≤
ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖
[PROOFSTEP]
convert I using 1
[GOAL]
case h.e'_3
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
I : ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ ‖f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w‖ =
‖g 1 - g 0‖
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.e_a
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
I : ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w = g 1 - g 0
[PROOFSTEP]
simp only [Nat.one_ne_zero, add_zero, one_mul, zero_div, zero_mul, sub_zero, zero_smul, Ne.def, not_false_iff,
bit0_eq_zero, zero_pow']
[GOAL]
case h.e'_3.e_a
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
I : ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w =
f (x + h • v + h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w - f (x + h • v)
[PROOFSTEP]
abel
[GOAL]
case h.e'_3.e_a
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
I : ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ f (x + h • v + h • w) - f (x + h • v) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w =
f (x + h • v + h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (h ^ 2 / 2) • ↑(↑f'' w) w - f (x + h • v)
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - ↑f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
v w : E
hv : x + v ∈ interior s
hw : x + v + w ∈ interior s
ε : ℝ
εpos : 0 < ε
δ : ℝ
δpos : δ > 0
sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - ↑f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1}
E1 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h * (‖v‖ + ‖w‖) < δ
E2 : ∀ᶠ (h : ℝ) in 𝓝[Ioi 0] 0, h < 1
h : ℝ
hδ : h * (‖v‖ + ‖w‖) < δ
h_lt_1 : h < 1
hpos : 0 < h
xt_mem : ∀ (t : ℝ), t ∈ Icc 0 1 → x + h • v + (t * h) • w ∈ interior s
g : ℝ → F :=
fun t =>
f (x + h • v + (t * h) • w) - (t * h) • ↑(f' x) w - (t * h ^ 2) • ↑(↑f'' v) w - ((t * h) ^ 2 / 2) • ↑(↑f'' w) w
g' : ℝ → (fun x => F) (h • w) :=
fun t => ↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
hg' :
g' = fun t =>
↑(f' (x + h • v + (t * h) • w)) (h • w) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' v) w - (t * h ^ 2) • ↑(↑f'' w) w
g_deriv : ∀ (t : ℝ), t ∈ Icc 0 1 → HasDerivWithinAt g (g' t) (Icc 0 1) t
g'_bound : ∀ (t : ℝ), t ∈ Ico 0 1 → ‖g' t‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
I : ‖g 1 - g 0‖ ≤ ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
⊢ ε * ‖(‖v‖ + ‖w‖) * ‖w‖ * h ^ 2‖ = ε * ((‖v‖ + ‖w‖) * ‖w‖) * h ^ 2
[PROOFSTEP]
simp only [Real.norm_eq_abs, abs_mul, add_nonneg (norm_nonneg v) (norm_nonneg w), abs_of_nonneg, hpos.le, mul_assoc,
pow_bit0_abs, norm_nonneg, abs_pow]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have A : (1 : ℝ) / 2 ∈ Ioc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have B : (1 : ℝ) / 2 ∈ Icc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have C : ∀ w : E, (2 : ℝ) • w = 2 • w := fun w => by simp only [two_smul]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w✝ : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w✝ ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
w : E
⊢ 2 • w = 2 • w
[PROOFSTEP]
simp only [two_smul]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have h2v2w : x + (2 : ℝ) • v + (2 : ℝ) • w ∈ interior s :=
by
convert s_conv.interior.add_smul_sub_mem h4v h4w B using 1
simp only [smul_sub, smul_smul, one_div, add_sub_add_left_eq_sub, mul_add, add_smul]
norm_num
simp only [show (4 : ℝ) = (2 : ℝ) + (2 : ℝ) by norm_num, _root_.add_smul]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ x + 2 • v + 2 • w ∈ interior s
[PROOFSTEP]
convert s_conv.interior.add_smul_sub_mem h4v h4w B using 1
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ x + 2 • v + 2 • w = x + 4 • v + (1 / 2) • (x + 4 • w - (x + 4 • v))
[PROOFSTEP]
simp only [smul_sub, smul_smul, one_div, add_sub_add_left_eq_sub, mul_add, add_smul]
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ x + 2 • v + 2 • w = x + 4 • v + ((2⁻¹ * 4) • w - (2⁻¹ * 4) • v)
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ x + 2 • v + 2 • w = x + 4 • v + (2 • w - 2 • v)
[PROOFSTEP]
simp only [show (4 : ℝ) = (2 : ℝ) + (2 : ℝ) by norm_num, _root_.add_smul]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ 4 = 2 + 2
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ x + 2 • v + 2 • w = x + (2 • v + 2 • v) + (2 • w - 2 • v)
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
⊢ x + 2 • v + 2 • w = x + (2 • v + 2 • v) + (2 • w - 2 • v)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have h2vww : x + (2 • v + w) + w ∈ interior s := by
convert h2v2w using 1
simp only [two_smul]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
⊢ x + (2 • v + w) + w ∈ interior s
[PROOFSTEP]
convert h2v2w using 1
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
⊢ x + (2 • v + w) + w = x + 2 • v + 2 • w
[PROOFSTEP]
simp only [two_smul]
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
⊢ x + (v + v + w) + w = x + (v + v) + (w + w)
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
⊢ x + (v + v + w) + w = x + (v + v) + (w + w)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have h2v : x + (2 : ℝ) • v ∈ interior s :=
by
convert s_conv.add_smul_sub_mem_interior xs h4v A using 1
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
⊢ x + 2 • v ∈ interior s
[PROOFSTEP]
convert s_conv.add_smul_sub_mem_interior xs h4v A using 1
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
⊢ x + 2 • v = x + (1 / 2) • (x + 4 • v - x)
[PROOFSTEP]
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj]
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
⊢ 2 • v = (2⁻¹ * 4) • v
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have h2w : x + (2 : ℝ) • w ∈ interior s :=
by
convert s_conv.add_smul_sub_mem_interior xs h4w A using 1
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
⊢ x + 2 • w ∈ interior s
[PROOFSTEP]
convert s_conv.add_smul_sub_mem_interior xs h4w A using 1
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
⊢ x + 2 • w = x + (1 / 2) • (x + 4 • w - x)
[PROOFSTEP]
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj]
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
⊢ 2 • w = (2⁻¹ * 4) • w
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have hvw : x + (v + w) ∈ interior s :=
by
convert s_conv.add_smul_sub_mem_interior xs h2v2w A using 1
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj, smul_add, smul_sub]
norm_num
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
⊢ x + (v + w) ∈ interior s
[PROOFSTEP]
convert s_conv.add_smul_sub_mem_interior xs h2v2w A using 1
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
⊢ x + (v + w) = x + (1 / 2) • (x + 2 • v + 2 • w - x)
[PROOFSTEP]
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj, smul_add, smul_sub]
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
⊢ v + w = 2⁻¹ • x + (2⁻¹ * 2) • v + (2⁻¹ * 2) • w - 2⁻¹ • x
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
⊢ v + w = (1 / 2) • x + v + w - (1 / 2) • x
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
⊢ v + w = (1 / 2) • x + v + w - (1 / 2) • x
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have h2vw : x + (2 • v + w) ∈ interior s :=
by
convert s_conv.interior.add_smul_sub_mem h2v h2v2w B using 1
simp only [smul_add, smul_sub, smul_smul, ← C]
norm_num
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
⊢ x + (2 • v + w) ∈ interior s
[PROOFSTEP]
convert s_conv.interior.add_smul_sub_mem h2v h2v2w B using 1
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
⊢ x + (2 • v + w) = x + 2 • v + (1 / 2) • (x + 2 • v + 2 • w - (x + 2 • v))
[PROOFSTEP]
simp only [smul_add, smul_sub, smul_smul, ← C]
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
⊢ x + (2 • v + w) = x + 2 • v + ((1 / 2) • x + (1 / 2 * 2) • v + (1 / 2 * 2) • w - ((1 / 2) • x + (1 / 2 * 2) • v))
[PROOFSTEP]
norm_num
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
⊢ x + (2 • v + w) = x + 2 • v + w
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
⊢ x + (2 • v + w) = x + 2 • v + w
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have hvww : x + (v + w) + w ∈ interior s :=
by
convert s_conv.interior.add_smul_sub_mem h2w h2v2w B using 1
rw [one_div, add_sub_add_right_eq_sub, add_sub_cancel', inv_smul_smul₀ two_ne_zero, two_smul]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
⊢ x + (v + w) + w ∈ interior s
[PROOFSTEP]
convert s_conv.interior.add_smul_sub_mem h2w h2v2w B using 1
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
⊢ x + (v + w) + w = x + 2 • w + (1 / 2) • (x + 2 • v + 2 • w - (x + 2 • w))
[PROOFSTEP]
rw [one_div, add_sub_add_right_eq_sub, add_sub_cancel', inv_smul_smul₀ two_ne_zero, two_smul]
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
⊢ x + (v + w) + w = x + (w + w) + v
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
⊢ x + (v + w) + w = x + (w + w) + v
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
hvww : x + (v + w) + w ∈ interior s
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have TA1 := s_conv.taylor_approx_two_segment hf xs hx h2vw h2vww
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
hvww : x + (v + w) + w ∈ interior s
TA1 :
(fun h =>
f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (2 • v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
have TA2 := s_conv.taylor_approx_two_segment hf xs hx hvw hvww
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
hvww : x + (v + w) + w ∈ interior s
TA1 :
(fun h =>
f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (2 • v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
TA2 :
(fun h =>
f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
[PROOFSTEP]
convert TA1.sub TA2 using 1
[GOAL]
case h.e'_7
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
hvww : x + (v + w) + w ∈ interior s
TA1 :
(fun h =>
f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (2 • v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
TA2 :
(fun h =>
f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
⊢ (fun h =>
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w) =
fun x_1 =>
f (x + x_1 • (2 • v + w) + x_1 • w) - f (x + x_1 • (2 • v + w)) - x_1 • ↑(f' x) w -
x_1 ^ 2 • ↑(↑f'' (2 • v + w)) w -
(x_1 ^ 2 / 2) • ↑(↑f'' w) w -
(f (x + x_1 • (v + w) + x_1 • w) - f (x + x_1 • (v + w)) - x_1 • ↑(f' x) w - x_1 ^ 2 • ↑(↑f'' (v + w)) w -
(x_1 ^ 2 / 2) • ↑(↑f'' w) w)
[PROOFSTEP]
ext h
[GOAL]
case h.e'_7.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
hvww : x + (v + w) + w ∈ interior s
TA1 :
(fun h =>
f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (2 • v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
TA2 :
(fun h =>
f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
h : ℝ
⊢ f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w =
f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (2 • v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w -
(f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w)
[PROOFSTEP]
simp only [two_smul, smul_add, ← add_assoc, ContinuousLinearMap.map_add, ContinuousLinearMap.add_apply, Pi.smul_apply,
ContinuousLinearMap.coe_smul', ContinuousLinearMap.map_smul]
[GOAL]
case h.e'_7.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
hvww : x + (v + w) + w ∈ interior s
TA1 :
(fun h =>
f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (2 • v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
TA2 :
(fun h =>
f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
h : ℝ
⊢ f (x + h • v + h • v + h • w + h • w) + f (x + h • v + h • w) - f (x + h • v + h • v + h • w) -
f (x + h • v + h • w + h • w) -
h ^ 2 • ↑(↑f'' v) w =
f (x + h • v + h • v + h • w + h • w) - f (x + h • v + h • v + h • w) - h • ↑(f' x) w -
(h ^ 2 • ↑(↑f'' v) w + h ^ 2 • ↑(↑f'' v) w + h ^ 2 • ↑(↑f'' w) w) -
(h ^ 2 / 2) • ↑(↑f'' w) w -
(f (x + h • v + h • w + h • w) - f (x + h • v + h • w) - h • ↑(f' x) w -
(h ^ 2 • ↑(↑f'' v) w + h ^ 2 • ↑(↑f'' w) w) -
(h ^ 2 / 2) • ↑(↑f'' w) w)
[PROOFSTEP]
abel
[GOAL]
case h.e'_7.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : 1 / 2 ∈ Ioc 0 1
B : 1 / 2 ∈ Icc 0 1
C : ∀ (w : E), 2 • w = 2 • w
h2v2w : x + 2 • v + 2 • w ∈ interior s
h2vww : x + (2 • v + w) + w ∈ interior s
h2v : x + 2 • v ∈ interior s
h2w : x + 2 • w ∈ interior s
hvw : x + (v + w) ∈ interior s
h2vw : x + (2 • v + w) ∈ interior s
hvww : x + (v + w) + w ∈ interior s
TA1 :
(fun h =>
f (x + h • (2 • v + w) + h • w) - f (x + h • (2 • v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (2 • v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
TA2 :
(fun h =>
f (x + h • (v + w) + h • w) - f (x + h • (v + w)) - h • ↑(f' x) w - h ^ 2 • ↑(↑f'' (v + w)) w -
(h ^ 2 / 2) • ↑(↑f'' w) w) =o[𝓝[Ioi 0] 0]
fun h => h ^ 2
h : ℝ
⊢ f (x + h • v + h • v + h • w + h • w) + f (x + h • v + h • w) - f (x + h • v + h • v + h • w) -
f (x + h • v + h • w + h • w) -
h ^ 2 • ↑(↑f'' v) w =
f (x + h • v + h • v + h • w + h • w) - f (x + h • v + h • v + h • w) - h • ↑(f' x) w -
(h ^ 2 • ↑(↑f'' v) w + h ^ 2 • ↑(↑f'' v) w + h ^ 2 • ↑(↑f'' w) w) -
(h ^ 2 / 2) • ↑(↑f'' w) w -
(f (x + h • v + h • w + h • w) - f (x + h • v + h • w) - h • ↑(f' x) w -
(h ^ 2 • ↑(↑f'' v) w + h ^ 2 • ↑(↑f'' w) w) -
(h ^ 2 / 2) • ↑(↑f'' w) w)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
⊢ ↑(↑f'' w) v = ↑(↑f'' v) w
[PROOFSTEP]
have A : (fun h : ℝ => h ^ 2 • (f'' w v - f'' v w)) =o[𝓝[>] 0] fun h => h ^ 2 :=
by
convert
(s_conv.isLittleO_alternate_sum_square hf xs hx h4v h4w).sub
(s_conv.isLittleO_alternate_sum_square hf xs hx h4w h4v) using
1
ext h
simp only [add_comm, smul_add, smul_sub]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
⊢ (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
[PROOFSTEP]
convert
(s_conv.isLittleO_alternate_sum_square hf xs hx h4v h4w).sub
(s_conv.isLittleO_alternate_sum_square hf xs hx h4w h4v) using
1
[GOAL]
case h.e'_7
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
⊢ (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) = fun x_1 =>
f (x + x_1 • (2 • v + 2 • w)) + f (x + x_1 • (v + w)) - f (x + x_1 • (2 • v + w)) - f (x + x_1 • (v + 2 • w)) -
x_1 ^ 2 • ↑(↑f'' v) w -
(f (x + x_1 • (2 • w + 2 • v)) + f (x + x_1 • (w + v)) - f (x + x_1 • (2 • w + v)) - f (x + x_1 • (w + 2 • v)) -
x_1 ^ 2 • ↑(↑f'' w) v)
[PROOFSTEP]
ext h
[GOAL]
case h.e'_7.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
h : ℝ
⊢ h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w) =
f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) -
h ^ 2 • ↑(↑f'' v) w -
(f (x + h • (2 • w + 2 • v)) + f (x + h • (w + v)) - f (x + h • (2 • w + v)) - f (x + h • (w + 2 • v)) -
h ^ 2 • ↑(↑f'' w) v)
[PROOFSTEP]
simp only [add_comm, smul_add, smul_sub]
[GOAL]
case h.e'_7.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
h : ℝ
⊢ h ^ 2 • ↑(↑f'' w) v - h ^ 2 • ↑(↑f'' v) w =
f (x + (h • v + h • w)) + f (x + (h • 2 • v + h • 2 • w)) - f (x + (h • w + h • 2 • v)) -
f (x + (h • v + h • 2 • w)) -
h ^ 2 • ↑(↑f'' v) w -
(f (x + (h • v + h • w)) + f (x + (h • 2 • v + h • 2 • w)) - f (x + (h • v + h • 2 • w)) -
f (x + (h • w + h • 2 • v)) -
h ^ 2 • ↑(↑f'' w) v)
[PROOFSTEP]
abel
[GOAL]
case h.e'_7.h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
h : ℝ
⊢ h ^ 2 • ↑(↑f'' w) v - h ^ 2 • ↑(↑f'' v) w =
f (x + (h • v + h • w)) + f (x + (h • 2 • v + h • 2 • w)) - f (x + (h • w + h • 2 • v)) -
f (x + (h • v + h • 2 • w)) -
h ^ 2 • ↑(↑f'' v) w -
(f (x + (h • v + h • w)) + f (x + (h • 2 • v + h • 2 • w)) - f (x + (h • v + h • 2 • w)) -
f (x + (h • w + h • 2 • v)) -
h ^ 2 • ↑(↑f'' w) v)
[PROOFSTEP]
abel
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
⊢ ↑(↑f'' w) v = ↑(↑f'' v) w
[PROOFSTEP]
have B : (fun _ : ℝ => f'' w v - f'' v w) =o[𝓝[>] 0] fun _ => (1 : ℝ) :=
by
have : (fun h : ℝ => 1 / h ^ 2) =O[𝓝[>] 0] fun h => 1 / h ^ 2 := isBigO_refl _ _
have C := this.smul_isLittleO A
apply C.congr' _ _
· filter_upwards [self_mem_nhdsWithin]
intro h (hpos : 0 < h)
rw [← one_smul ℝ (f'' w v - f'' v w), smul_smul, smul_smul]
congr 1
field_simp [LT.lt.ne' hpos]
· filter_upwards [self_mem_nhdsWithin] with h (hpos : 0 < h)
field_simp [LT.lt.ne' hpos, SMul.smul]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
⊢ (fun x => ↑(↑f'' w) v - ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0] fun x => 1
[PROOFSTEP]
have : (fun h : ℝ => 1 / h ^ 2) =O[𝓝[>] 0] fun h => 1 / h ^ 2 := isBigO_refl _ _
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
⊢ (fun x => ↑(↑f'' w) v - ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0] fun x => 1
[PROOFSTEP]
have C := this.smul_isLittleO A
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
⊢ (fun x => ↑(↑f'' w) v - ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0] fun x => 1
[PROOFSTEP]
apply C.congr' _ _
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
⊢ (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =ᶠ[𝓝[Ioi 0] 0] fun x => ↑(↑f'' w) v - ↑(↑f'' v) w
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin]
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
⊢ ∀ (a : ℝ), a ∈ Ioi 0 → (1 / a ^ 2) • a ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w) = ↑(↑f'' w) v - ↑(↑f'' v) w
[PROOFSTEP]
intro h (hpos : 0 < h)
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
h : ℝ
hpos : 0 < h
⊢ (1 / h ^ 2) • h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w) = ↑(↑f'' w) v - ↑(↑f'' v) w
[PROOFSTEP]
rw [← one_smul ℝ (f'' w v - f'' v w), smul_smul, smul_smul]
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
h : ℝ
hpos : 0 < h
⊢ (1 / h ^ 2 * h ^ 2 * 1) • (↑(↑f'' w) v - ↑(↑f'' v) w) = 1 • (↑(↑f'' w) v - ↑(↑f'' v) w)
[PROOFSTEP]
congr 1
[GOAL]
case h.e_a
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
h : ℝ
hpos : 0 < h
⊢ 1 / h ^ 2 * h ^ 2 * 1 = 1
[PROOFSTEP]
field_simp [LT.lt.ne' hpos]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
⊢ (fun x => (1 / x ^ 2) • x ^ 2) =ᶠ[𝓝[Ioi 0] 0] fun x => 1
[PROOFSTEP]
filter_upwards [self_mem_nhdsWithin] with h (hpos : 0 < h)
[GOAL]
case h
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
this : (fun h => 1 / h ^ 2) =O[𝓝[Ioi 0] 0] fun h => 1 / h ^ 2
C : (fun x => (1 / x ^ 2) • x ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun x => (1 / x ^ 2) • x ^ 2
h : ℝ
hpos : 0 < h
⊢ (1 / h ^ 2) • h ^ 2 = 1
[PROOFSTEP]
field_simp [LT.lt.ne' hpos, SMul.smul]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
h4v : x + 4 • v ∈ interior s
h4w : x + 4 • w ∈ interior s
A : (fun h => h ^ 2 • (↑(↑f'' w) v - ↑(↑f'' v) w)) =o[𝓝[Ioi 0] 0] fun h => h ^ 2
B : (fun x => ↑(↑f'' w) v - ↑(↑f'' v) w) =o[𝓝[Ioi 0] 0] fun x => 1
⊢ ↑(↑f'' w) v = ↑(↑f'' v) w
[PROOFSTEP]
simpa only [sub_eq_zero] using isLittleO_const_const_iff.1 B
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
hne : Set.Nonempty (interior s)
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w : E
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
rcases hne with ⟨y, hy⟩
[GOAL]
case intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
obtain ⟨z, hz⟩ : ∃ z, z = ((1 : ℝ) / 4) • (y - x) := ⟨((1 : ℝ) / 4) • (y - x), rfl⟩
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
have A : ∀ m : E, Filter.Tendsto (fun t : ℝ => x + (4 : ℝ) • (z + t • m)) (𝓝 0) (𝓝 y) :=
by
intro m
have : x + (4 : ℝ) • (z + (0 : ℝ) • m) = y := by simp [hz]
rw [← this]
refine' tendsto_const_nhds.add <| tendsto_const_nhds.smul <| tendsto_const_nhds.add _
exact continuousAt_id.smul continuousAt_const
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
⊢ ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
[PROOFSTEP]
intro m
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
m : E
⊢ Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
[PROOFSTEP]
have : x + (4 : ℝ) • (z + (0 : ℝ) • m) = y := by simp [hz]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
m : E
⊢ x + 4 • (z + 0 • m) = y
[PROOFSTEP]
simp [hz]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
m : E
this : x + 4 • (z + 0 • m) = y
⊢ Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
[PROOFSTEP]
rw [← this]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
m : E
this : x + 4 • (z + 0 • m) = y
⊢ Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 (x + 4 • (z + 0 • m)))
[PROOFSTEP]
refine' tendsto_const_nhds.add <| tendsto_const_nhds.smul <| tendsto_const_nhds.add _
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
m : E
this : x + 4 • (z + 0 • m) = y
⊢ Filter.Tendsto (fun t => t • m) (𝓝 0) (𝓝 (0 • m))
[PROOFSTEP]
exact continuousAt_id.smul continuousAt_const
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
have B : ∀ m : E, ∀ᶠ t in 𝓝[>] (0 : ℝ), x + (4 : ℝ) • (z + t • m) ∈ interior s :=
by
intro m
apply nhdsWithin_le_nhds
apply A m
rw [mem_interior_iff_mem_nhds] at hy
exact interior_mem_nhds.2 hy
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
⊢ ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
[PROOFSTEP]
intro m
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
m : E
⊢ ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
[PROOFSTEP]
apply nhdsWithin_le_nhds
[GOAL]
case a
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
m : E
⊢ {x_1 | (fun t => x + 4 • (z + t • m) ∈ interior s) x_1} ∈ 𝓝 0
[PROOFSTEP]
apply A m
[GOAL]
case a.a
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
m : E
⊢ interior s ∈ 𝓝 y
[PROOFSTEP]
rw [mem_interior_iff_mem_nhds] at hy
[GOAL]
case a.a
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : s ∈ 𝓝 y
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
m : E
⊢ interior s ∈ 𝓝 y
[PROOFSTEP]
exact interior_mem_nhds.2 hy
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
choose t ts tpos using fun m => ((B m).and self_mem_nhdsWithin).exists
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
have C : ∀ m : E, f'' m z = f'' z m := by
intro m
have : f'' (z + t m • m) (z + t 0 • (0 : E)) = f'' (z + t 0 • (0 : E)) (z + t m • m) :=
s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts 0) (ts m)
simp only [ContinuousLinearMap.map_add, ContinuousLinearMap.map_smul, add_right_inj, ContinuousLinearMap.add_apply,
Pi.smul_apply, ContinuousLinearMap.coe_smul', add_zero, ContinuousLinearMap.zero_apply, smul_zero,
ContinuousLinearMap.map_zero] at this
exact smul_right_injective F (tpos m).ne' this
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
⊢ ∀ (m : E), ↑(↑f'' m) z = ↑(↑f'' z) m
[PROOFSTEP]
intro m
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
m : E
⊢ ↑(↑f'' m) z = ↑(↑f'' z) m
[PROOFSTEP]
have : f'' (z + t m • m) (z + t 0 • (0 : E)) = f'' (z + t 0 • (0 : E)) (z + t m • m) :=
s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts 0) (ts m)
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
m : E
this : ↑(↑f'' (z + t m • m)) (z + t 0 • 0) = ↑(↑f'' (z + t 0 • 0)) (z + t m • m)
⊢ ↑(↑f'' m) z = ↑(↑f'' z) m
[PROOFSTEP]
simp only [ContinuousLinearMap.map_add, ContinuousLinearMap.map_smul, add_right_inj, ContinuousLinearMap.add_apply,
Pi.smul_apply, ContinuousLinearMap.coe_smul', add_zero, ContinuousLinearMap.zero_apply, smul_zero,
ContinuousLinearMap.map_zero] at this
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
m : E
this : t m • ↑(↑f'' m) z = t m • ↑(↑f'' z) m
⊢ ↑(↑f'' m) z = ↑(↑f'' z) m
[PROOFSTEP]
exact smul_right_injective F (tpos m).ne' this
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
C : ∀ (m : E), ↑(↑f'' m) z = ↑(↑f'' z) m
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
have : f'' (z + t v • v) (z + t w • w) = f'' (z + t w • w) (z + t v • v) :=
s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts w) (ts v)
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
C : ∀ (m : E), ↑(↑f'' m) z = ↑(↑f'' z) m
this : ↑(↑f'' (z + t v • v)) (z + t w • w) = ↑(↑f'' (z + t w • w)) (z + t v • v)
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
simp only [ContinuousLinearMap.map_add, ContinuousLinearMap.map_smul, smul_add, smul_smul,
ContinuousLinearMap.add_apply, Pi.smul_apply, ContinuousLinearMap.coe_smul', C] at this
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
C : ∀ (m : E), ↑(↑f'' m) z = ↑(↑f'' z) m
this :
↑(↑f'' z) z + t v • ↑(↑f'' z) v + (t w • ↑(↑f'' z) w + (t w * t v) • ↑(↑f'' v) w) =
↑(↑f'' z) z + t w • ↑(↑f'' z) w + (t v • ↑(↑f'' z) v + (t v * t w) • ↑(↑f'' w) v)
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
rw [add_assoc, add_assoc, add_right_inj, add_left_comm, add_right_inj, add_right_inj, mul_comm] at this
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
C : ∀ (m : E), ↑(↑f'' m) z = ↑(↑f'' z) m
this : (t v * t w) • ↑(↑f'' v) w = (t v * t w) • ↑(↑f'' w) v
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
apply smul_right_injective F _ this
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s✝ : Set E
s_conv✝ : Convex ℝ s✝
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s✝ → HasFDerivAt f✝ (f'✝ x) x
x✝ : E
xs✝ : x✝ ∈ s✝
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s✝) x✝
s : Set E
s_conv : Convex ℝ s
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ (x : E), x ∈ interior s → HasFDerivAt f (f' x) x
x : E
xs : x ∈ s
hx : HasFDerivWithinAt f' f'' (interior s) x
v w y : E
hy : y ∈ interior s
z : E
hz : z = (1 / 4) • (y - x)
A : ∀ (m : E), Filter.Tendsto (fun t => x + 4 • (z + t • m)) (𝓝 0) (𝓝 y)
B : ∀ (m : E), ∀ᶠ (t : ℝ) in 𝓝[Ioi 0] 0, x + 4 • (z + t • m) ∈ interior s
t : E → ℝ
ts : ∀ (m : E), x + 4 • (z + t m • m) ∈ interior s
tpos : ∀ (m : E), 0 < t m
C : ∀ (m : E), ↑(↑f'' m) z = ↑(↑f'' z) m
this : (t v * t w) • ↑(↑f'' v) w = (t v * t w) • ↑(↑f'' w) v
⊢ t v * t w ≠ 0
[PROOFSTEP]
simp [(tpos v).ne', (tpos w).ne']
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s → HasFDerivAt f✝ (f'✝ x) x
x : E
xs : x ∈ s
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s) x
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt f (f' y) y
hx : HasFDerivAt f' f'' x
v w : E
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
rcases Metric.mem_nhds_iff.1 hf with ⟨ε, εpos, hε⟩
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s → HasFDerivAt f✝ (f'✝ x) x
x : E
xs : x ∈ s
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s) x
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt f (f' y) y
hx : HasFDerivAt f' f'' x
v w : E
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x}
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
have A : (interior (Metric.ball x ε)).Nonempty := by rwa [Metric.isOpen_ball.interior_eq, Metric.nonempty_ball]
[GOAL]
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s → HasFDerivAt f✝ (f'✝ x) x
x : E
xs : x ∈ s
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s) x
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt f (f' y) y
hx : HasFDerivAt f' f'' x
v w : E
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x}
⊢ Set.Nonempty (interior (Metric.ball x ε))
[PROOFSTEP]
rwa [Metric.isOpen_ball.interior_eq, Metric.nonempty_ball]
[GOAL]
case intro.intro
E : Type u_1
F : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
s : Set E
s_conv : Convex ℝ s
f✝ : E → F
f'✝ : E → E →L[ℝ] F
f''✝ : E →L[ℝ] E →L[ℝ] F
hf✝ : ∀ (x : E), x ∈ interior s → HasFDerivAt f✝ (f'✝ x) x
x : E
xs : x ∈ s
hx✝ : HasFDerivWithinAt f'✝ f''✝ (interior s) x
f : E → F
f' : E → E →L[ℝ] F
f'' : E →L[ℝ] E →L[ℝ] F
hf : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt f (f' y) y
hx : HasFDerivAt f' f'' x
v w : E
ε : ℝ
εpos : ε > 0
hε : Metric.ball x ε ⊆ {x | (fun y => HasFDerivAt f (f' y) y) x}
A : Set.Nonempty (interior (Metric.ball x ε))
⊢ ↑(↑f'' v) w = ↑(↑f'' w) v
[PROOFSTEP]
exact
Convex.second_derivative_within_at_symmetric (convex_ball x ε) A (fun y hy => hε (interior_subset hy))
(Metric.mem_ball_self εpos) hx.hasFDerivWithinAt v w
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Symmetric", "llama_tokens": 104944} |
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
h : HasFPowerSeriesAt f p x
⊢ HasStrictFDerivAt f (↑(continuousMultilinearCurryFin1 𝕜 E F) (p 1)) x
[PROOFSTEP]
refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
h : HasFPowerSeriesAt f p x
⊢ (fun y => ‖y - (x, x)‖ * ‖y.fst - y.snd‖) =o[nhds (x, x)] fun x => ‖x.fst - x.snd‖
[PROOFSTEP]
refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => ‖y - (x, x)‖, _, EventuallyEq.rfl⟩
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
h : HasFPowerSeriesAt f p x
⊢ Tendsto (fun y => ‖y - (x, x)‖) (nhds (x, x)) (nhds 0)
[PROOFSTEP]
refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
h : HasFPowerSeriesAt f p x
⊢ ‖id (x, x) - (x, x)‖ = 0
[PROOFSTEP]
rw [_root_.id, sub_self, norm_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
⊢ HasFPowerSeriesOnBall (_root_.fderiv 𝕜 f)
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
[PROOFSTEP]
suffices A :
HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 𝕜 E F (p.changeOrigin (z - x) 1))
((continuousMultilinearCurryFin1 𝕜 E F : (E[×1]→L[𝕜] F) →L[𝕜] E →L[𝕜] F).compFormalMultilinearSeries
(p.changeOriginSeries 1))
x r
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
A :
HasFPowerSeriesOnBall
(fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
⊢ HasFPowerSeriesOnBall (_root_.fderiv 𝕜 f)
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
[PROOFSTEP]
apply A.congr
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
A :
HasFPowerSeriesOnBall
(fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
⊢ Set.EqOn (fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(_root_.fderiv 𝕜 f) (EMetric.ball x r)
[PROOFSTEP]
intro z hz
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
A :
HasFPowerSeriesOnBall
(fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
z : E
hz : z ∈ EMetric.ball x r
⊢ (fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) z =
_root_.fderiv 𝕜 f z
[PROOFSTEP]
dsimp
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
A :
HasFPowerSeriesOnBall
(fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
z : E
hz : z ∈ EMetric.ball x r
⊢ ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1) = _root_.fderiv 𝕜 f z
[PROOFSTEP]
rw [← h.fderiv_eq, add_sub_cancel'_right]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
A :
HasFPowerSeriesOnBall
(fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
z : E
hz : z ∈ EMetric.ball x r
⊢ ↑‖z - x‖₊ < r
[PROOFSTEP]
simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz
[GOAL]
case A
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
⊢ HasFPowerSeriesOnBall
(fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
[PROOFSTEP]
suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r
[GOAL]
case A
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
B :
HasFPowerSeriesOnBall (fun z => FormalMultilinearSeries.changeOrigin p (z - x) 1)
(FormalMultilinearSeries.changeOriginSeries p 1) x r
⊢ HasFPowerSeriesOnBall
(fun z => ↑(continuousMultilinearCurryFin1 𝕜 E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1))
(ContinuousLinearMap.compFormalMultilinearSeries
(↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 𝕜 E F).toLinearEquiv))
(FormalMultilinearSeries.changeOriginSeries p 1))
x r
case B
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
⊢ HasFPowerSeriesOnBall (fun z => FormalMultilinearSeries.changeOrigin p (z - x) 1)
(FormalMultilinearSeries.changeOriginSeries p 1) x r
[PROOFSTEP]
exact (continuousMultilinearCurryFin1 𝕜 E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B
[GOAL]
case B
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : HasFPowerSeriesOnBall f p x r
⊢ HasFPowerSeriesOnBall (fun z => FormalMultilinearSeries.changeOrigin p (z - x) 1)
(FormalMultilinearSeries.changeOriginSeries p 1) x r
[PROOFSTEP]
simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
⊢ AnalyticOn 𝕜 (_root_.fderiv 𝕜 f) s
[PROOFSTEP]
intro y hy
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
y : E
hy : y ∈ s
⊢ AnalyticAt 𝕜 (_root_.fderiv 𝕜 f) y
[PROOFSTEP]
rcases h y hy with ⟨p, r, hp⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p✝ : FormalMultilinearSeries 𝕜 E F
r✝ : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
y : E
hy : y ∈ s
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
hp : HasFPowerSeriesOnBall f p y r
⊢ AnalyticAt 𝕜 (_root_.fderiv 𝕜 f) y
[PROOFSTEP]
exact hp.fderiv.analyticAt
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
⊢ AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
⊢ AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 Nat.zero f) s
[PROOFSTEP]
rw [iteratedFDeriv_zero_eq_comp]
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
⊢ AnalyticOn 𝕜 (↑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 𝕜 E F)) ∘ f) s
[PROOFSTEP]
exact ((continuousMultilinearCurryFin0 𝕜 E F).symm : F →L[𝕜] E[×0]→L[𝕜] F).comp_analyticOn h
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
⊢ AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 (Nat.succ n) f) s
[PROOFSTEP]
rw [iteratedFDeriv_succ_eq_comp_left]
-- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined.
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
⊢ AnalyticOn 𝕜 (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ _root_.fderiv 𝕜 (_root_.iteratedFDeriv 𝕜 n f))
s
[PROOFSTEP]
convert
@ContinuousLinearMap.comp_analyticOn 𝕜 E ?_ (ContinuousMultilinearMap 𝕜 (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_
?_ ?_ s ?g IH.fderiv
[GOAL]
case h.e'_9.h.e'_4
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
⊢ ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) = ↑?g
case g
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
⊢ (E →L[𝕜] ContinuousMultilinearMap 𝕜 (fun i => E) F) →L[𝕜] ContinuousMultilinearMap 𝕜 (fun x => E) F
[PROOFSTEP]
case g => exact ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun _ : Fin (n + 1) => E) F)
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
⊢ (E →L[𝕜] ContinuousMultilinearMap 𝕜 (fun i => E) F) →L[𝕜] ContinuousMultilinearMap 𝕜 (fun x => E) F
[PROOFSTEP]
case g => exact ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun _ : Fin (n + 1) => E) F)
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
⊢ (E →L[𝕜] ContinuousMultilinearMap 𝕜 (fun i => E) F) →L[𝕜] ContinuousMultilinearMap 𝕜 (fun x => E) F
[PROOFSTEP]
exact ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun _ : Fin (n + 1) => E) F)
[GOAL]
case h.e'_9.h.e'_4
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.iteratedFDeriv 𝕜 n f) s
⊢ ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) =
↑↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F).toLinearEquiv)
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
⊢ ContDiffOn 𝕜 n f s
[PROOFSTEP]
let t := {x | AnalyticAt 𝕜 f x}
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
⊢ ContDiffOn 𝕜 n f s
[PROOFSTEP]
suffices : ContDiffOn 𝕜 n f t
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
this : ContDiffOn 𝕜 n f t
⊢ ContDiffOn 𝕜 n f s
case this
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
⊢ ContDiffOn 𝕜 n f t
[PROOFSTEP]
exact this.mono h
[GOAL]
case this
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
⊢ ContDiffOn 𝕜 n f t
[PROOFSTEP]
have H : AnalyticOn 𝕜 f t := fun x hx => hx
[GOAL]
case this
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
⊢ ContDiffOn 𝕜 n f t
[PROOFSTEP]
have t_open : IsOpen t := isOpen_analyticAt 𝕜 f
[GOAL]
case this
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
⊢ ContDiffOn 𝕜 n f t
[PROOFSTEP]
apply contDiffOn_of_continuousOn_differentiableOn
[GOAL]
case this.Hcont
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
⊢ ∀ (m : ℕ), ↑m ≤ n → ContinuousOn (fun x => iteratedFDerivWithin 𝕜 m f t x) t
[PROOFSTEP]
rintro m -
[GOAL]
case this.Hcont
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
m : ℕ
⊢ ContinuousOn (fun x => iteratedFDerivWithin 𝕜 m f t x) t
[PROOFSTEP]
apply (H.iteratedFDeriv m).continuousOn.congr
[GOAL]
case this.Hcont
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
m : ℕ
⊢ Set.EqOn (fun x => iteratedFDerivWithin 𝕜 m f t x) (_root_.iteratedFDeriv 𝕜 m f) t
[PROOFSTEP]
intro x hx
[GOAL]
case this.Hcont
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x✝ : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
m : ℕ
x : E
hx : x ∈ t
⊢ (fun x => iteratedFDerivWithin 𝕜 m f t x) x = _root_.iteratedFDeriv 𝕜 m f x
[PROOFSTEP]
exact iteratedFDerivWithin_of_isOpen _ t_open hx
[GOAL]
case this.Hdiff
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
⊢ ∀ (m : ℕ), ↑m < n → DifferentiableOn 𝕜 (fun x => iteratedFDerivWithin 𝕜 m f t x) t
[PROOFSTEP]
rintro m -
[GOAL]
case this.Hdiff
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
m : ℕ
⊢ DifferentiableOn 𝕜 (fun x => iteratedFDerivWithin 𝕜 m f t x) t
[PROOFSTEP]
apply (H.iteratedFDeriv m).differentiableOn.congr
[GOAL]
case this.Hdiff
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
m : ℕ
⊢ ∀ (x : E), x ∈ t → iteratedFDerivWithin 𝕜 m f t x = _root_.iteratedFDeriv 𝕜 m f x
[PROOFSTEP]
intro x hx
[GOAL]
case this.Hdiff
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x✝ : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ∞
t : Set E := {x | AnalyticAt 𝕜 f x}
H : AnalyticOn 𝕜 f t
t_open : IsOpen t
m : ℕ
x : E
hx : x ∈ t
⊢ iteratedFDerivWithin 𝕜 m f t x = _root_.iteratedFDeriv 𝕜 m f x
[PROOFSTEP]
exact iteratedFDerivWithin_of_isOpen _ t_open hx
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticAt 𝕜 f x
n : ℕ∞
⊢ ContDiffAt 𝕜 n f x
[PROOFSTEP]
obtain ⟨s, hs, hf⟩ := h.exists_mem_nhds_analyticOn
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s✝ : Set E
inst✝ : CompleteSpace F
h : AnalyticAt 𝕜 f x
n : ℕ∞
s : Set E
hs : s ∈ nhds x
hf : AnalyticOn 𝕜 f s
⊢ ContDiffAt 𝕜 n f x
[PROOFSTEP]
exact hf.contDiffOn.contDiffAt hs
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 𝕜 F
r : ℝ≥0∞
f : 𝕜 → F
x : 𝕜
s : Set 𝕜
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
⊢ AnalyticOn 𝕜 (_root_.deriv^[n] f) s
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 𝕜 F
r : ℝ≥0∞
f : 𝕜 → F
x : 𝕜
s : Set 𝕜
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
⊢ AnalyticOn 𝕜 (_root_.deriv^[Nat.zero] f) s
[PROOFSTEP]
exact h
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 𝕜 F
r : ℝ≥0∞
f : 𝕜 → F
x : 𝕜
s : Set 𝕜
inst✝ : CompleteSpace F
h : AnalyticOn 𝕜 f s
n : ℕ
IH : AnalyticOn 𝕜 (_root_.deriv^[n] f) s
⊢ AnalyticOn 𝕜 (_root_.deriv^[Nat.succ n] f) s
[PROOFSTEP]
simpa only [Function.iterate_succ', Function.comp_apply] using IH.deriv
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Analytic", "llama_tokens": 12099} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : NontriviallyNormedField 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
inst✝¹ : CompleteSpace 𝕜
f : E →L[𝕜] F
inst✝ : FiniteDimensional 𝕜 { x // x ∈ range f }
⊢ Submodule.ClosedComplemented (ker f)
[PROOFSTEP]
set f' : E →L[𝕜] range f := f.codRestrict _ (LinearMap.mem_range_self (f : E →ₗ[𝕜] F))
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : NontriviallyNormedField 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
inst✝¹ : CompleteSpace 𝕜
f : E →L[𝕜] F
inst✝ : FiniteDimensional 𝕜 { x // x ∈ range f }
f' : E →L[𝕜] { x // x ∈ range f } := codRestrict f (range f) (_ : ∀ (x : E), ↑↑f x ∈ range ↑f)
⊢ Submodule.ClosedComplemented (ker f)
[PROOFSTEP]
rcases f'.exists_right_inverse_of_surjective (f : E →ₗ[𝕜] F).range_rangeRestrict with ⟨g, hg⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : NontriviallyNormedField 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
inst✝¹ : CompleteSpace 𝕜
f : E →L[𝕜] F
inst✝ : FiniteDimensional 𝕜 { x // x ∈ range f }
f' : E →L[𝕜] { x // x ∈ range f } := codRestrict f (range f) (_ : ∀ (x : E), ↑↑f x ∈ range ↑f)
g : { x // x ∈ range f } →L[𝕜] E
hg : comp f' g = id 𝕜 { x // x ∈ range f }
⊢ Submodule.ClosedComplemented (ker f)
[PROOFSTEP]
simpa only [ker_codRestrict] using f'.closedComplemented_ker_of_rightInverse g (ext_iff.1 hg)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace E
p q : Subspace 𝕜 E
h : IsCompl p q
hp : IsClosed ↑p
hq : IsClosed ↑q
⊢ ({ x // x ∈ p } × { x // x ∈ q }) ≃L[𝕜] E
[PROOFSTEP]
haveI := hp.completeSpace_coe
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace E
p q : Subspace 𝕜 E
h : IsCompl p q
hp : IsClosed ↑p
hq : IsClosed ↑q
this : CompleteSpace ↑↑p
⊢ ({ x // x ∈ p } × { x // x ∈ q }) ≃L[𝕜] E
[PROOFSTEP]
haveI := hq.completeSpace_coe
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace E
p q : Subspace 𝕜 E
h : IsCompl p q
hp : IsClosed ↑p
hq : IsClosed ↑q
this✝ : CompleteSpace ↑↑p
this : CompleteSpace ↑↑q
⊢ ({ x // x ∈ p } × { x // x ∈ q }) ≃L[𝕜] E
[PROOFSTEP]
refine' (p.prodEquivOfIsCompl q h).toContinuousLinearEquivOfContinuous _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁷ : NontriviallyNormedField 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
inst✝² : NormedAddCommGroup G
inst✝¹ : NormedSpace 𝕜 G
inst✝ : CompleteSpace E
p q : Subspace 𝕜 E
h : IsCompl p q
hp : IsClosed ↑p
hq : IsClosed ↑q
this✝ : CompleteSpace ↑↑p
this : CompleteSpace ↑↑q
⊢ Continuous ↑(Submodule.prodEquivOfIsCompl p q h)
[PROOFSTEP]
exact (p.subtypeL.coprod q.subtypeL).continuous
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : NontriviallyNormedField 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
inst✝² : CompleteSpace E
p q : Subspace 𝕜 E
inst✝¹ : CompleteSpace 𝕜
inst✝ : FiniteDimensional 𝕜 (E ⧸ p)
hp : IsClosed ↑p
⊢ Submodule.ClosedComplemented p
[PROOFSTEP]
obtain ⟨q, hq⟩ : ∃ q, IsCompl p q := p.exists_isCompl
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : NontriviallyNormedField 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
inst✝² : CompleteSpace E
p q✝ : Subspace 𝕜 E
inst✝¹ : CompleteSpace 𝕜
inst✝ : FiniteDimensional 𝕜 (E ⧸ p)
hp : IsClosed ↑p
q : Subspace 𝕜 E
hq : IsCompl p q
⊢ Submodule.ClosedComplemented p
[PROOFSTEP]
haveI : FiniteDimensional 𝕜 q := (p.quotientEquivOfIsCompl q hq).finiteDimensional
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : NontriviallyNormedField 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace 𝕜 E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedSpace 𝕜 F
inst✝⁴ : NormedAddCommGroup G
inst✝³ : NormedSpace 𝕜 G
inst✝² : CompleteSpace E
p q✝ : Subspace 𝕜 E
inst✝¹ : CompleteSpace 𝕜
inst✝ : FiniteDimensional 𝕜 (E ⧸ p)
hp : IsClosed ↑p
q : Subspace 𝕜 E
hq : IsCompl p q
this : FiniteDimensional 𝕜 { x // x ∈ q }
⊢ Submodule.ClosedComplemented p
[PROOFSTEP]
exact closedComplemented_of_closed_compl hq hp q.closed_of_finiteDimensional
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Complemented", "llama_tokens": 2536} |
{"mathlib_filename": "Mathlib.Analysis.NormedSpace.Extr", "llama_tokens": 0} |
|
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e e₁ e₂ : ENorm 𝕜 V
h : ↑e₁ = ↑e₂
⊢ e₁ = e₂
[PROOFSTEP]
cases e₁
[GOAL]
case mk
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e e₂ : ENorm 𝕜 V
toFun✝ : V → ℝ≥0∞
eq_zero'✝ : ∀ (x : V), toFun✝ x = 0 → x = 0
map_add_le'✝ : ∀ (x y : V), toFun✝ (x + y) ≤ toFun✝ x + toFun✝ y
map_smul_le'✝ : ∀ (c : 𝕜) (x : V), toFun✝ (c • x) ≤ ↑‖c‖₊ * toFun✝ x
h : ↑{ toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ } = ↑e₂
⊢ { toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ } = e₂
[PROOFSTEP]
cases e₂
[GOAL]
case mk.mk
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
toFun✝¹ : V → ℝ≥0∞
eq_zero'✝¹ : ∀ (x : V), toFun✝¹ x = 0 → x = 0
map_add_le'✝¹ : ∀ (x y : V), toFun✝¹ (x + y) ≤ toFun✝¹ x + toFun✝¹ y
map_smul_le'✝¹ : ∀ (c : 𝕜) (x : V), toFun✝¹ (c • x) ≤ ↑‖c‖₊ * toFun✝¹ x
toFun✝ : V → ℝ≥0∞
eq_zero'✝ : ∀ (x : V), toFun✝ x = 0 → x = 0
map_add_le'✝ : ∀ (x y : V), toFun✝ (x + y) ≤ toFun✝ x + toFun✝ y
map_smul_le'✝ : ∀ (c : 𝕜) (x : V), toFun✝ (c • x) ≤ ↑‖c‖₊ * toFun✝ x
h :
↑{ toFun := toFun✝¹, eq_zero' := eq_zero'✝¹, map_add_le' := map_add_le'✝¹, map_smul_le' := map_smul_le'✝¹ } =
↑{ toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ }
⊢ { toFun := toFun✝¹, eq_zero' := eq_zero'✝¹, map_add_le' := map_add_le'✝¹, map_smul_le' := map_smul_le'✝¹ } =
{ toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ }
[PROOFSTEP]
congr
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
⊢ ↑e (c • x) = ↑‖c‖₊ * ↑e x
[PROOFSTEP]
apply le_antisymm (e.map_smul_le' c x)
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
⊢ ↑‖c‖₊ * ↑e x ≤ ↑e (c • x)
[PROOFSTEP]
by_cases hc : c = 0
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hc : c = 0
⊢ ↑‖c‖₊ * ↑e x ≤ ↑e (c • x)
[PROOFSTEP]
simp [hc]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hc : ¬c = 0
⊢ ↑‖c‖₊ * ↑e x ≤ ↑e (c • x)
[PROOFSTEP]
calc
(‖c‖₊ : ℝ≥0∞) * e x = ‖c‖₊ * e (c⁻¹ • c • x) := by rw [inv_smul_smul₀ hc]
_ ≤ ‖c‖₊ * (‖c⁻¹‖₊ * e (c • x)) := (mul_le_mul_left' (e.map_smul_le' _ _) _)
_ = e (c • x) := by
rw [← mul_assoc, nnnorm_inv, ENNReal.coe_inv, ENNReal.mul_inv_cancel _ ENNReal.coe_ne_top, one_mul] <;> simp [hc]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hc : ¬c = 0
⊢ ↑‖c‖₊ * ↑e x = ↑‖c‖₊ * ↑e (c⁻¹ • c • x)
[PROOFSTEP]
rw [inv_smul_smul₀ hc]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hc : ¬c = 0
⊢ ↑‖c‖₊ * (↑‖c⁻¹‖₊ * ↑e (c • x)) = ↑e (c • x)
[PROOFSTEP]
rw [← mul_assoc, nnnorm_inv, ENNReal.coe_inv, ENNReal.mul_inv_cancel _ ENNReal.coe_ne_top, one_mul]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hc : ¬c = 0
⊢ ↑‖c‖₊ ≠ 0
[PROOFSTEP]
simp [hc]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hc : ¬c = 0
⊢ ‖c‖₊ ≠ 0
[PROOFSTEP]
simp [hc]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
⊢ ↑e 0 = 0
[PROOFSTEP]
rw [← zero_smul 𝕜 (0 : V), e.map_smul]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
⊢ ↑‖0‖₊ * ↑e 0 = 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x : V
⊢ ↑e (-x) = ↑‖-1‖₊ * ↑e x
[PROOFSTEP]
rw [← map_smul, neg_one_smul]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x : V
⊢ ↑‖-1‖₊ * ↑e x = ↑e x
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
⊢ ↑e (x - y) = ↑e (y - x)
[PROOFSTEP]
rw [← neg_sub, e.map_neg]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
⊢ ↑e (x - y) = ↑e (x + -y)
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
⊢ ↑e x + ↑e (-y) = ↑e x + ↑e y
[PROOFSTEP]
rw [e.map_neg]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x : V
⊢ (fun x => if x = 0 then 0 else ⊤) x = 0 → x = 0
[PROOFSTEP]
simp only
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x : V
⊢ (if x = 0 then 0 else ⊤) = 0 → x = 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x : V
h✝ : x = 0
⊢ 0 = 0 → x = 0
[PROOFSTEP]
simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x : V
h✝ : ¬x = 0
⊢ ⊤ = 0 → x = 0
[PROOFSTEP]
simp [*]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
⊢ (fun x => if x = 0 then 0 else ⊤) (x + y) ≤ (fun x => if x = 0 then 0 else ⊤) x + (fun x => if x = 0 then 0 else ⊤) y
[PROOFSTEP]
simp only
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
⊢ (if x + y = 0 then 0 else ⊤) ≤ (if x = 0 then 0 else ⊤) + if y = 0 then 0 else ⊤
[PROOFSTEP]
split_ifs with hxy hx hy hy hx hy hy
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : x = 0
hy : y = 0
⊢ 0 ≤ 0 + 0
[PROOFSTEP]
try simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : x = 0
hy : y = 0
⊢ 0 ≤ 0 + 0
[PROOFSTEP]
simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : x = 0
hy : ¬y = 0
⊢ 0 ≤ 0 + ⊤
[PROOFSTEP]
try simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : x = 0
hy : ¬y = 0
⊢ 0 ≤ 0 + ⊤
[PROOFSTEP]
simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : ¬x = 0
hy : y = 0
⊢ 0 ≤ ⊤ + 0
[PROOFSTEP]
try simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : ¬x = 0
hy : y = 0
⊢ 0 ≤ ⊤ + 0
[PROOFSTEP]
simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : ¬x = 0
hy : ¬y = 0
⊢ 0 ≤ ⊤ + ⊤
[PROOFSTEP]
try simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : x + y = 0
hx : ¬x = 0
hy : ¬y = 0
⊢ 0 ≤ ⊤ + ⊤
[PROOFSTEP]
simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : x = 0
hy : y = 0
⊢ ⊤ ≤ 0 + 0
[PROOFSTEP]
try simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : x = 0
hy : y = 0
⊢ ⊤ ≤ 0 + 0
[PROOFSTEP]
simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : x = 0
hy : ¬y = 0
⊢ ⊤ ≤ 0 + ⊤
[PROOFSTEP]
try simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : x = 0
hy : ¬y = 0
⊢ ⊤ ≤ 0 + ⊤
[PROOFSTEP]
simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : ¬x = 0
hy : y = 0
⊢ ⊤ ≤ ⊤ + 0
[PROOFSTEP]
try simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : ¬x = 0
hy : y = 0
⊢ ⊤ ≤ ⊤ + 0
[PROOFSTEP]
simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : ¬x = 0
hy : ¬y = 0
⊢ ⊤ ≤ ⊤ + ⊤
[PROOFSTEP]
try simp [*]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : ¬x = 0
hy : ¬y = 0
⊢ ⊤ ≤ ⊤ + ⊤
[PROOFSTEP]
simp [*]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
hxy : ¬x + y = 0
hx : x = 0
hy : y = 0
⊢ False
[PROOFSTEP]
simp [hx, hy] at hxy
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
⊢ (fun x => if x = 0 then 0 else ⊤) (c • x) ≤ ↑‖c‖₊ * (fun x => if x = 0 then 0 else ⊤) x
[PROOFSTEP]
simp only
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
⊢ (if c • x = 0 then 0 else ⊤) ≤ ↑‖c‖₊ * if x = 0 then 0 else ⊤
[PROOFSTEP]
split_ifs with hcx hx hx
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hcx : c • x = 0
hx : x = 0
⊢ 0 ≤ ↑‖c‖₊ * 0
[PROOFSTEP]
simp only [smul_eq_zero, not_or] at hcx
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hcx : c • x = 0
hx : ¬x = 0
⊢ 0 ≤ ↑‖c‖₊ * ⊤
[PROOFSTEP]
simp only [smul_eq_zero, not_or] at hcx
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hcx : ¬c • x = 0
hx : x = 0
⊢ ⊤ ≤ ↑‖c‖₊ * 0
[PROOFSTEP]
simp only [smul_eq_zero, not_or] at hcx
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hcx : ¬c • x = 0
hx : ¬x = 0
⊢ ⊤ ≤ ↑‖c‖₊ * ⊤
[PROOFSTEP]
simp only [smul_eq_zero, not_or] at hcx
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hx : x = 0
hcx : c = 0 ∨ x = 0
⊢ 0 ≤ ↑‖c‖₊ * 0
[PROOFSTEP]
simp only [mul_zero, le_refl]
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hx : ¬x = 0
hcx : c = 0 ∨ x = 0
⊢ 0 ≤ ↑‖c‖₊ * ⊤
[PROOFSTEP]
have : c = 0 := by tauto
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hx : ¬x = 0
hcx : c = 0 ∨ x = 0
⊢ c = 0
[PROOFSTEP]
tauto
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hx : ¬x = 0
hcx : c = 0 ∨ x = 0
this : c = 0
⊢ 0 ≤ ↑‖c‖₊ * ⊤
[PROOFSTEP]
simp [this]
[GOAL]
case pos
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hx : x = 0
hcx : ¬c = 0 ∧ ¬x = 0
⊢ ⊤ ≤ ↑‖c‖₊ * 0
[PROOFSTEP]
tauto
[GOAL]
case neg
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : V
hx : ¬x = 0
hcx : ¬c = 0 ∧ ¬x = 0
⊢ ⊤ ≤ ↑‖c‖₊ * ⊤
[PROOFSTEP]
simpa [mul_top'] using hcx.1
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e✝ e : ENorm 𝕜 V
x : V
h : x = 0
⊢ ↑e x ≤ ↑⊤ x
[PROOFSTEP]
simp [h]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e✝ e : ENorm 𝕜 V
x : V
h : ¬x = 0
⊢ ↑e x ≤ ↑⊤ x
[PROOFSTEP]
simp [top_map h]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
src✝ : PartialOrder (ENorm 𝕜 V) := partialOrder
e₁ e₂ : ENorm 𝕜 V
c : 𝕜
x : V
⊢ (fun x => max (↑e₁ x) (↑e₂ x)) (c • x) = ↑‖c‖₊ * (fun x => max (↑e₁ x) (↑e₂ x)) x
[PROOFSTEP]
simp only [map_smul, ENNReal.mul_max]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x : V
⊢ edist x x = 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y z : V
⊢ ↑e (x - z) = ↑e (x - y + (y - z))
[PROOFSTEP]
rw [sub_add_sub_cancel]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
x y : V
⊢ edist x y = 0 → x = y
[PROOFSTEP]
simp [sub_eq_zero]
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
⊢ 0 ∈
{ carrier := {x | ↑e x < ⊤},
add_mem' := (_ : ∀ {x y : V}, x ∈ {x | ↑e x < ⊤} → y ∈ {x | ↑e x < ⊤} → ↑e (x + y) < ⊤) }.carrier
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
⊢ MetricSpace { x // x ∈ finiteSubspace e }
[PROOFSTEP]
letI := e.emetricSpace
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
this : EMetricSpace V := emetricSpace e
⊢ MetricSpace { x // x ∈ finiteSubspace e }
[PROOFSTEP]
refine' EMetricSpace.toMetricSpace fun x y => _
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
this : EMetricSpace V := emetricSpace e
x y : { x // x ∈ finiteSubspace e }
⊢ edist x y ≠ ⊤
[PROOFSTEP]
change e (x - y) ≠ ⊤
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
this : EMetricSpace V := emetricSpace e
x y : { x // x ∈ finiteSubspace e }
⊢ ↑e (↑x - ↑y) ≠ ⊤
[PROOFSTEP]
exact ne_top_of_le_ne_top (ENNReal.add_lt_top.2 ⟨x.2, y.2⟩).ne (e.map_sub_le x y)
[GOAL]
𝕜 : Type u_1
V : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : AddCommGroup V
inst✝ : Module 𝕜 V
e : ENorm 𝕜 V
c : 𝕜
x : { x // x ∈ finiteSubspace e }
⊢ ‖c • x‖ = ‖c‖ * ‖x‖
[PROOFSTEP]
simp [finite_norm_eq, ENNReal.toReal_mul]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.ENorm", "llama_tokens": 8621} |
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
⊢ IsOpen (A f L r ε)
[PROOFSTEP]
rw [Metric.isOpen_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
⊢ ∀ (x : E), x ∈ A f L r ε → ∃ ε_1, ε_1 > 0 ∧ ball x ε_1 ⊆ A f L r ε
[PROOFSTEP]
rintro x ⟨r', r'_mem, hr'⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
x : E
r' : ℝ
r'_mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
⊢ ∃ ε_1, ε_1 > 0 ∧ ball x ε_1 ⊆ A f L r ε
[PROOFSTEP]
obtain ⟨s, s_gt, s_lt⟩ : ∃ s : ℝ, r / 2 < s ∧ s < r' := exists_between r'_mem.1
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
x : E
r' : ℝ
r'_mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
⊢ ∃ ε_1, ε_1 > 0 ∧ ball x ε_1 ⊆ A f L r ε
[PROOFSTEP]
have : s ∈ Ioc (r / 2) r := ⟨s_gt, le_of_lt (s_lt.trans_le r'_mem.2)⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
x : E
r' : ℝ
r'_mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
⊢ ∃ ε_1, ε_1 > 0 ∧ ball x ε_1 ⊆ A f L r ε
[PROOFSTEP]
refine' ⟨r' - s, by linarith, fun x' hx' => ⟨s, this, _⟩⟩
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
x : E
r' : ℝ
r'_mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
⊢ r' - s > 0
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
x : E
r' : ℝ
r'_mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : E
hx' : x' ∈ ball x (r' - s)
⊢ ∀ (y : E), y ∈ ball x' s → ∀ (z : E), z ∈ ball x' s → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
[PROOFSTEP]
have B : ball x' s ⊆ ball x r' := ball_subset (le_of_lt hx')
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
x : E
r' : ℝ
r'_mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : E
hx' : x' ∈ ball x (r' - s)
B : ball x' s ⊆ ball x r'
⊢ ∀ (y : E), y ∈ ball x' s → ∀ (z : E), z ∈ ball x' s → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
[PROOFSTEP]
intro y hy z hz
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε : ℝ
x : E
r' : ℝ
r'_mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : E
hx' : x' ∈ ball x (r' - s)
B : ball x' s ⊆ ball x r'
y : E
hy : y ∈ ball x' s
z : E
hz : z ∈ ball x' s
⊢ ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
[PROOFSTEP]
exact hr' y (B hy) z (B hz)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
r s ε : ℝ
⊢ IsOpen (B f K r s ε)
[PROOFSTEP]
simp only [B]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
r s ε : ℝ
⊢ IsOpen (⋃ (L : E →L[𝕜] F) (_ : L ∈ K), A f L r ε ∩ A f L s ε)
[PROOFSTEP]
exact isOpen_iUnion fun _ => isOpen_iUnion fun _ => (isOpen_a _ _ _).inter (isOpen_a _ _ _)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
⊢ A f L r ε ⊆ A f L r δ
[PROOFSTEP]
rintro x ⟨r', r'r, hr'⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
x : E
r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
⊢ x ∈ A f L r δ
[PROOFSTEP]
refine' ⟨r', r'r, fun y hy z hz => (hr' y hy z hz).trans (mul_le_mul_of_nonneg_right h _)⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
x : E
r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
y : E
hy : y ∈ ball x r'
z : E
hz : z ∈ ball x r'
⊢ 0 ≤ r
[PROOFSTEP]
linarith [mem_ball.1 hy, r'r.2, @dist_nonneg _ _ y x]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
r ε : ℝ
L : E →L[𝕜] F
x : E
hx : x ∈ A f L r ε
y z : E
hy : y ∈ closedBall x (r / 2)
hz : z ∈ closedBall x (r / 2)
⊢ ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
[PROOFSTEP]
rcases hx with ⟨r', r'mem, hr'⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
r ε : ℝ
L : E →L[𝕜] F
x y z : E
hy : y ∈ closedBall x (r / 2)
hz : z ∈ closedBall x (r / 2)
r' : ℝ
r'mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
⊢ ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
[PROOFSTEP]
exact hr' _ ((mem_closedBall.1 hy).trans_lt r'mem.1) _ ((mem_closedBall.1 hz).trans_lt r'mem.1)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ε
[PROOFSTEP]
have := hx.hasFDerivAt
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this : HasFDerivAt f (fderiv 𝕜 f x) x
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ε
[PROOFSTEP]
simp only [HasFDerivAt, HasFDerivAtFilter, isLittleO_iff] at this
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ε
[PROOFSTEP]
rcases eventually_nhds_iff_ball.1 (this (half_pos hε)) with ⟨R, R_pos, hR⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ε
[PROOFSTEP]
refine' ⟨R, R_pos, fun r hr => _⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
⊢ x ∈ A f (fderiv 𝕜 f x) r ε
[PROOFSTEP]
have : r ∈ Ioc (r / 2) r := ⟨half_lt_self hr.1, le_rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
⊢ x ∈ A f (fderiv 𝕜 f x) r ε
[PROOFSTEP]
refine' ⟨r, this, fun y hy z hz => _⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : y ∈ ball x r
z : E
hz : z ∈ ball x r
⊢ ‖f z - f y - ↑(fderiv 𝕜 f x) (z - y)‖ ≤ ε * r
[PROOFSTEP]
calc
‖f z - f y - (fderiv 𝕜 f x) (z - y)‖ = ‖f z - f x - (fderiv 𝕜 f x) (z - x) - (f y - f x - (fderiv 𝕜 f x) (y - x))‖ :=
by congr 1; simp only [ContinuousLinearMap.map_sub]; abel
_ ≤ ‖f z - f x - (fderiv 𝕜 f x) (z - x)‖ + ‖f y - f x - (fderiv 𝕜 f x) (y - x)‖ := (norm_sub_le _ _)
_ ≤ ε / 2 * ‖z - x‖ + ε / 2 * ‖y - x‖ :=
(add_le_add (hR _ (lt_trans (mem_ball.1 hz) hr.2)) (hR _ (lt_trans (mem_ball.1 hy) hr.2)))
_ ≤ ε / 2 * r + ε / 2 * r := by rw [mem_ball_iff_norm] at hz hy ; gcongr
_ = ε * r := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : y ∈ ball x r
z : E
hz : z ∈ ball x r
⊢ ‖f z - f y - ↑(fderiv 𝕜 f x) (z - y)‖ = ‖f z - f x - ↑(fderiv 𝕜 f x) (z - x) - (f y - f x - ↑(fderiv 𝕜 f x) (y - x))‖
[PROOFSTEP]
congr 1
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : y ∈ ball x r
z : E
hz : z ∈ ball x r
⊢ f z - f y - ↑(fderiv 𝕜 f x) (z - y) = f z - f x - ↑(fderiv 𝕜 f x) (z - x) - (f y - f x - ↑(fderiv 𝕜 f x) (y - x))
[PROOFSTEP]
simp only [ContinuousLinearMap.map_sub]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : y ∈ ball x r
z : E
hz : z ∈ ball x r
⊢ f z - f y - (↑(fderiv 𝕜 f x) z - ↑(fderiv 𝕜 f x) y) =
f z - f x - (↑(fderiv 𝕜 f x) z - ↑(fderiv 𝕜 f x) x) - (f y - f x - (↑(fderiv 𝕜 f x) y - ↑(fderiv 𝕜 f x) x))
[PROOFSTEP]
abel
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : y ∈ ball x r
z : E
hz : z ∈ ball x r
⊢ f z - f y - (↑(fderiv 𝕜 f x) z - ↑(fderiv 𝕜 f x) y) =
f z - f x - (↑(fderiv 𝕜 f x) z - ↑(fderiv 𝕜 f x) x) - (f y - f x - (↑(fderiv 𝕜 f x) y - ↑(fderiv 𝕜 f x) x))
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : y ∈ ball x r
z : E
hz : z ∈ ball x r
⊢ ε / 2 * ‖z - x‖ + ε / 2 * ‖y - x‖ ≤ ε / 2 * r + ε / 2 * r
[PROOFSTEP]
rw [mem_ball_iff_norm] at hz hy
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : ‖y - x‖ < r
z : E
hz : ‖z - x‖ < r
⊢ ε / 2 * ‖z - x‖ + ε / 2 * ‖y - x‖ ≤ ε / 2 * r + ε / 2 * r
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
ε : ℝ
hε : 0 < ε
x : E
hx : DifferentiableAt 𝕜 f x
this✝ : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑(fderiv 𝕜 f x) (x_1 - x)‖ ≤ c * ‖x_1 - x‖
R : ℝ
R_pos : R > 0
hR : ∀ (y : E), y ∈ ball x R → ‖f y - f x - ↑(fderiv 𝕜 f x) (y - x)‖ ≤ ε / 2 * ‖y - x‖
r : ℝ
hr : r ∈ Ioo 0 R
this : r ∈ Ioc (r / 2) r
y : E
hy : y ∈ ball x r
z : E
hz : z ∈ ball x r
⊢ ε / 2 * r + ε / 2 * r = ε * r
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ‖L₁ - L₂‖ ≤ 4 * ‖c‖ * ε
[PROOFSTEP]
have : 0 ≤ 4 * ‖c‖ * ε := mul_nonneg (mul_nonneg (by norm_num : (0 : ℝ) ≤ 4) (norm_nonneg _)) hε.le
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ 0 ≤ 4
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
⊢ ‖L₁ - L₂‖ ≤ 4 * ‖c‖ * ε
[PROOFSTEP]
refine' op_norm_le_of_shell (half_pos hr) this hc _
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
⊢ ∀ (x : E), r / 2 / ‖c‖ ≤ ‖x‖ → ‖x‖ < r / 2 → ‖↑(L₁ - L₂) x‖ ≤ 4 * ‖c‖ * ε * ‖x‖
[PROOFSTEP]
intro y ley ylt
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r / 2 / ‖c‖ ≤ ‖y‖
ylt : ‖y‖ < r / 2
⊢ ‖↑(L₁ - L₂) y‖ ≤ 4 * ‖c‖ * ε * ‖y‖
[PROOFSTEP]
rw [div_div, div_le_iff' (mul_pos (by norm_num : (0 : ℝ) < 2) (zero_lt_one.trans hc))] at ley
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r / (2 * ‖c‖) ≤ ‖y‖
ylt : ‖y‖ < r / 2
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ ‖↑(L₁ - L₂) y‖ ≤ 4 * ‖c‖ * ε * ‖y‖
[PROOFSTEP]
calc
‖(L₁ - L₂) y‖ = ‖f (x + y) - f x - L₂ (x + y - x) - (f (x + y) - f x - L₁ (x + y - x))‖ := by simp
_ ≤ ‖f (x + y) - f x - L₂ (x + y - x)‖ + ‖f (x + y) - f x - L₁ (x + y - x)‖ := (norm_sub_le _ _)
_ ≤ ε * r + ε * r := by
apply add_le_add
· apply le_of_mem_a h₂
· simp only [le_of_lt (half_pos hr), mem_closedBall, dist_self]
· simp only [dist_eq_norm, add_sub_cancel', mem_closedBall, ylt.le]
· apply le_of_mem_a h₁
· simp only [le_of_lt (half_pos hr), mem_closedBall, dist_self]
· simp only [dist_eq_norm, add_sub_cancel', mem_closedBall, ylt.le]
_ = 2 * ε * r := by ring
_ ≤ 2 * ε * (2 * ‖c‖ * ‖y‖) := (mul_le_mul_of_nonneg_left ley (mul_nonneg (by norm_num) hε.le))
_ = 4 * ‖c‖ * ε * ‖y‖ := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ ‖↑(L₁ - L₂) y‖ = ‖f (x + y) - f x - ↑L₂ (x + y - x) - (f (x + y) - f x - ↑L₁ (x + y - x))‖
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ ‖f (x + y) - f x - ↑L₂ (x + y - x)‖ + ‖f (x + y) - f x - ↑L₁ (x + y - x)‖ ≤ ε * r + ε * r
[PROOFSTEP]
apply add_le_add
[GOAL]
case h₁
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ ‖f (x + y) - f x - ↑L₂ (x + y - x)‖ ≤ ε * r
[PROOFSTEP]
apply le_of_mem_a h₂
[GOAL]
case h₁.hy
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ x ∈ closedBall x (r / 2)
[PROOFSTEP]
simp only [le_of_lt (half_pos hr), mem_closedBall, dist_self]
[GOAL]
case h₁.hz
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ x + y ∈ closedBall x (r / 2)
[PROOFSTEP]
simp only [dist_eq_norm, add_sub_cancel', mem_closedBall, ylt.le]
[GOAL]
case h₂
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ ‖f (x + y) - f x - ↑L₁ (x + y - x)‖ ≤ ε * r
[PROOFSTEP]
apply le_of_mem_a h₁
[GOAL]
case h₂.hy
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ x ∈ closedBall x (r / 2)
[PROOFSTEP]
simp only [le_of_lt (half_pos hr), mem_closedBall, dist_self]
[GOAL]
case h₂.hz
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ x + y ∈ closedBall x (r / 2)
[PROOFSTEP]
simp only [dist_eq_norm, add_sub_cancel', mem_closedBall, ylt.le]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ ε * r + ε * r = 2 * ε * r
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ 0 ≤ 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
c : 𝕜
hc : 1 < ‖c‖
r ε : ℝ
hε : 0 < ε
hr : 0 < r
x : E
L₁ L₂ : E →L[𝕜] F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
this : 0 ≤ 4 * ‖c‖ * ε
y : E
ley : r ≤ 2 * ‖c‖ * ‖y‖
ylt : ‖y‖ < r / 2
⊢ 2 * ε * (2 * ‖c‖ * ‖y‖) = 4 * ‖c‖ * ε * ‖y‖
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
⊢ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K} ⊆ D f K
[PROOFSTEP]
intro x hx
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
⊢ x ∈ D f K
[PROOFSTEP]
rw [D, mem_iInter]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
⊢ ∀ (i : ℕ), x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ i)
[PROOFSTEP]
intro e
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
have : (0 : ℝ) < (1 / 2) ^ e := pow_pos (by norm_num) _
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
rcases mem_a_of_differentiable this hx.1 with ⟨R, R_pos, hR⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
obtain ⟨n, hn⟩ : ∃ n : ℕ, (1 / 2) ^ n < R := exists_pow_lt_of_lt_one R_pos (by norm_num : (1 : ℝ) / 2 < 1)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
simp only [mem_iUnion, mem_iInter, B, mem_inter_iff]
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
⊢ ∃ i,
∀ (i_1 : ℕ),
i_1 ≥ i →
∀ (i_3 : ℕ), i_3 ≥ i → ∃ i h, x ∈ A f i ((1 / 2) ^ i_1) ((1 / 2) ^ e) ∧ x ∈ A f i ((1 / 2) ^ i_3) ((1 / 2) ^ e)
[PROOFSTEP]
refine' ⟨n, fun p hp q hq => ⟨fderiv 𝕜 f x, hx.2, ⟨_, _⟩⟩⟩
[GOAL]
case intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ x ∈ A f (fderiv 𝕜 f x) ((1 / 2) ^ p) ((1 / 2) ^ e)
[PROOFSTEP]
refine' hR _ ⟨pow_pos (by norm_num) _, lt_of_le_of_lt _ hn⟩
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ (1 / 2) ^ p ≤ (1 / 2) ^ n
[PROOFSTEP]
exact pow_le_pow_of_le_one (by norm_num) (by norm_num) (by assumption)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ n ≤ p
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ x ∈ A f (fderiv 𝕜 f x) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
refine' hR _ ⟨pow_pos (by norm_num) _, lt_of_le_of_lt _ hn⟩
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ (1 / 2) ^ q ≤ (1 / 2) ^ n
[PROOFSTEP]
exact pow_le_pow_of_le_one (by norm_num) (by norm_num) (by assumption)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
x : E
hx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ n ≤ q
[PROOFSTEP]
assumption
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
⊢ D f K ⊆ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
have P : ∀ {n : ℕ}, (0 : ℝ) < (1 / 2) ^ n := fun {n} => pow_pos (by norm_num) n
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
n : ℕ
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
⊢ D f K ⊆ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
rcases NormedField.exists_one_lt_norm 𝕜 with ⟨c, hc⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
⊢ D f K ⊆ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
have cpos : 0 < ‖c‖ := lt_trans zero_lt_one hc
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
⊢ D f K ⊆ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
intro x hx
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
have :
∀ e : ℕ,
∃ n : ℕ,
∀ p q, n ≤ p → n ≤ q → ∃ L ∈ K, x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e) :=
by
intro e
have := mem_iInter.1 hx e
rcases mem_iUnion.1 this with ⟨n, hn⟩
refine' ⟨n, fun p q hp hq => _⟩
simp only [mem_iInter, ge_iff_le] at hn
rcases mem_iUnion.1 (hn p hp q hq) with ⟨L, hL⟩
exact
⟨L, exists_prop.mp <| mem_iUnion.1 hL⟩
/- Recast the assumptions: for each `e`, there exist `n e` and linear maps `L e p q` in `K`
such that, for `p, q ≥ n e`, then `f` is well approximated by `L e p q` at scale `2 ^ (-p)` and
`2 ^ (-q)`, with an error `2 ^ (-e)`. -/
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
⊢ ∀ (e : ℕ),
∃ n,
∀ (p q : ℕ),
n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
intro e
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
e : ℕ
⊢ ∃ n,
∀ (p q : ℕ), n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
have := mem_iInter.1 hx e
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∃ n,
∀ (p q : ℕ), n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
rcases mem_iUnion.1 this with ⟨n, hn⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n : ℕ
hn : x ∈ ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∃ n,
∀ (p q : ℕ), n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
refine' ⟨n, fun p q hp hq => _⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n : ℕ
hn : x ∈ ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
p q : ℕ
hp : n ≤ p
hq : n ≤ q
⊢ ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
simp only [mem_iInter, ge_iff_le] at hn
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n p q : ℕ
hp : n ≤ p
hq : n ≤ q
hn : ∀ (i : ℕ), n ≤ i → ∀ (i_2 : ℕ), n ≤ i_2 → x ∈ B f K ((1 / 2) ^ i) ((1 / 2) ^ i_2) ((1 / 2) ^ e)
⊢ ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
rcases mem_iUnion.1 (hn p hp q hq) with ⟨L, hL⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n p q : ℕ
hp : n ≤ p
hq : n ≤ q
hn : ∀ (i : ℕ), n ≤ i → ∀ (i_2 : ℕ), n ≤ i_2 → x ∈ B f K ((1 / 2) ^ i) ((1 / 2) ^ i_2) ((1 / 2) ^ e)
L : E →L[𝕜] F
hL : x ∈ ⋃ (_ : L ∈ K), A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
exact
⟨L, exists_prop.mp <| mem_iUnion.1 hL⟩
/- Recast the assumptions: for each `e`, there exist `n e` and linear maps `L e p q` in `K`
such that, for `p, q ≥ n e`, then `f` is well approximated by `L e p q` at scale `2 ^ (-p)` and
`2 ^ (-q)`, with an error `2 ^ (-e)`. -/
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
this :
∀ (e : ℕ),
∃ n,
∀ (p q : ℕ),
n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
choose! n L hn using this
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
have M :
∀ e p q e' p' q',
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e :=
by
intro e p q e' p' q' hp hq hp' hq' he'
let r := max (n e) (n e')
have I : ((1 : ℝ) / 2) ^ e' ≤ (1 / 2) ^ e := pow_le_pow_of_le_one (by norm_num) (by norm_num) he'
have J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p q hp hq).2.1
have I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.1
exact norm_sub_le_of_mem_a hc P P I1 I2
have J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.2
have I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.2
exact norm_sub_le_of_mem_a hc P P I1 (a_mono _ _ I I2)
have J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.1
have I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' q' hp' hq').2.1
exact norm_sub_le_of_mem_a hc P P (a_mono _ _ I I1) (a_mono _ _ I I2)
calc
‖L e p q - L e' p' q'‖ = ‖L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')‖ := by congr 1; abel
_ ≤ ‖L e p q - L e p r‖ + ‖L e p r - L e' p' r‖ + ‖L e' p' r - L e' p' q'‖ :=
(le_trans (norm_add_le _ _) (add_le_add_right (norm_add_le _ _) _))
_ ≤ 4 * ‖c‖ * (1 / 2) ^ e + 4 * ‖c‖ * (1 / 2) ^ e + 4 * ‖c‖ * (1 / 2) ^ e := (add_le_add (add_le_add J1 J2) J3)
_ = 12 * ‖c‖ * (1 / 2) ^ e := by
ring
/- For definiteness, use `L0 e = L e (n e) (n e)`, to have a single sequence. We claim that this
is a Cauchy sequence. -/
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
intro e p q e' p' q' hp hq hp' hq' he'
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
let r := max (n e) (n e')
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have I : ((1 : ℝ) / 2) ^ e' ≤ (1 / 2) ^ e := pow_le_pow_of_le_one (by norm_num) (by norm_num) he'
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p q hp hq).2.1
have I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.1
exact norm_sub_le_of_mem_a hc P P I1 I2
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
⊢ ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p q hp hq).2.1
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e)
⊢ ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.1
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e)
I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e)
⊢ ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
exact norm_sub_le_of_mem_a hc P P I1 I2
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.2
have I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.2
exact norm_sub_le_of_mem_a hc P P I1 (a_mono _ _ I I2)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.2
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e)
⊢ ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.2
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e)
I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e')
⊢ ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
exact norm_sub_le_of_mem_a hc P P I1 (a_mono _ _ I I2)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.1
have I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' q' hp' hq').2.1
exact norm_sub_le_of_mem_a hc P P (a_mono _ _ I I1) (a_mono _ _ I I2)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.1
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e')
⊢ ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
have I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' q' hp' hq').2.1
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e')
I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e')
⊢ ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
exact norm_sub_le_of_mem_a hc P P (a_mono _ _ I I1) (a_mono _ _ I I2)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
calc
‖L e p q - L e' p' q'‖ = ‖L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')‖ := by congr 1; abel
_ ≤ ‖L e p q - L e p r‖ + ‖L e p r - L e' p' r‖ + ‖L e' p' r - L e' p' q'‖ :=
(le_trans (norm_add_le _ _) (add_le_add_right (norm_add_le _ _) _))
_ ≤ 4 * ‖c‖ * (1 / 2) ^ e + 4 * ‖c‖ * (1 / 2) ^ e + 4 * ‖c‖ * (1 / 2) ^ e := (add_le_add (add_le_add J1 J2) J3)
_ = 12 * ‖c‖ * (1 / 2) ^ e := by
ring
/- For definiteness, use `L0 e = L e (n e) (n e)`, to have a single sequence. We claim that this
is a Cauchy sequence. -/
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ = ‖L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')‖
[PROOFSTEP]
congr 1
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ L e p q - L e' p' q' = L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')
[PROOFSTEP]
abel
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ L e p q - L e' p' q' = L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * ‖c‖ * (1 / 2) ^ e
⊢ 4 * ‖c‖ * (1 / 2) ^ e + 4 * ‖c‖ * (1 / 2) ^ e + 4 * ‖c‖ * (1 / 2) ^ e = 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
ring
/- For definiteness, use `L0 e = L e (n e) (n e)`, to have a single sequence. We claim that this
is a Cauchy sequence. -/
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
let L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
have : CauchySeq L0 := by
rw [Metric.cauchySeq_iff']
intro ε εpos
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / (12 * ‖c‖) :=
exists_pow_lt_of_lt_one (div_pos εpos (mul_pos (by norm_num) cpos)) (by norm_num)
refine' ⟨e, fun e' he' => _⟩
rw [dist_comm, dist_eq_norm]
calc
‖L0 e - L0 e'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e := M _ _ _ _ _ _ le_rfl le_rfl le_rfl le_rfl he'
_ < 12 * ‖c‖ * (ε / (12 * ‖c‖)) := by gcongr
_ = ε := by field_simp [(by norm_num : (12 : ℝ) ≠ 0), ne_of_gt cpos];
ring
-- As it is Cauchy, the sequence `L0` converges, to a limit `f'` in `K`.
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
⊢ CauchySeq L0
[PROOFSTEP]
rw [Metric.cauchySeq_iff']
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
⊢ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (L0 n) (L0 N) < ε
[PROOFSTEP]
intro ε εpos
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (L0 n) (L0 N) < ε
[PROOFSTEP]
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / (12 * ‖c‖) :=
exists_pow_lt_of_lt_one (div_pos εpos (mul_pos (by norm_num) cpos)) (by norm_num)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
⊢ 0 < 12
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / (12 * ‖c‖)
⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (L0 n) (L0 N) < ε
[PROOFSTEP]
refine' ⟨e, fun e' he' => _⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / (12 * ‖c‖)
e' : ℕ
he' : e' ≥ e
⊢ dist (L0 e') (L0 e) < ε
[PROOFSTEP]
rw [dist_comm, dist_eq_norm]
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / (12 * ‖c‖)
e' : ℕ
he' : e' ≥ e
⊢ ‖L0 e - L0 e'‖ < ε
[PROOFSTEP]
calc
‖L0 e - L0 e'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e := M _ _ _ _ _ _ le_rfl le_rfl le_rfl le_rfl he'
_ < 12 * ‖c‖ * (ε / (12 * ‖c‖)) := by gcongr
_ = ε := by field_simp [(by norm_num : (12 : ℝ) ≠ 0), ne_of_gt cpos];
ring
-- As it is Cauchy, the sequence `L0` converges, to a limit `f'` in `K`.
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / (12 * ‖c‖)
e' : ℕ
he' : e' ≥ e
⊢ 12 * ‖c‖ * (1 / 2) ^ e < 12 * ‖c‖ * (ε / (12 * ‖c‖))
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / (12 * ‖c‖)
e' : ℕ
he' : e' ≥ e
⊢ 12 * ‖c‖ * (ε / (12 * ‖c‖)) = ε
[PROOFSTEP]
field_simp [(by norm_num : (12 : ℝ) ≠ 0), ne_of_gt cpos]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / (12 * ‖c‖)
e' : ℕ
he' : e' ≥ e
⊢ 12 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / (12 * ‖c‖)
e' : ℕ
he' : e' ≥ e
⊢ 12 * ‖c‖ * ε = ε * (12 * ‖c‖)
[PROOFSTEP]
ring
-- As it is Cauchy, the sequence `L0` converges, to a limit `f'` in `K`.
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
obtain ⟨f', f'K, hf'⟩ : ∃ f' ∈ K, Tendsto L0 atTop (𝓝 f') :=
cauchySeq_tendsto_of_isComplete hK (fun e => (hn e (n e) (n e) le_rfl le_rfl).1) this
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
have Lf' : ∀ e p, n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e :=
by
intro e p hp
apply le_of_tendsto (tendsto_const_nhds.sub hf').norm
rw [eventually_atTop]
exact
⟨e, fun e' he' => M _ _ _ _ _ _ le_rfl hp le_rfl le_rfl he'⟩
-- Let us show that `f` has derivative `f'` at `x`.
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
⊢ ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
intro e p hp
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
e p : ℕ
hp : n e ≤ p
⊢ ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
apply le_of_tendsto (tendsto_const_nhds.sub hf').norm
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
e p : ℕ
hp : n e ≤ p
⊢ ∀ᶠ (c_1 : ℕ) in atTop, ‖L e (n e) p - L0 c_1‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
rw [eventually_atTop]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
e p : ℕ
hp : n e ≤ p
⊢ ∃ a, ∀ (b : ℕ), b ≥ a → ‖L e (n e) p - L0 b‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
[PROOFSTEP]
exact
⟨e, fun e' he' => M _ _ _ _ _ _ le_rfl hp le_rfl le_rfl he'⟩
-- Let us show that `f` has derivative `f'` at `x`.
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
have : HasFDerivAt f f' x :=
by
simp only [hasFDerivAt_iff_isLittleO_nhds_zero, isLittleO_iff]
/- to get an approximation with a precision `ε`, we will replace `f` with `L e (n e) m` for
some large enough `e` (yielding a small error by uniform approximation). As one can vary `m`,
this makes it possible to cover all scales, and thus to obtain a good linear approximation in
the whole ball of radius `(1/2)^(n e)`. -/
intro ε εpos
have pos : 0 < 4 + 12 * ‖c‖ := by positivity
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / (4 + 12 * ‖c‖) := exists_pow_lt_of_lt_one (div_pos εpos pos) (by norm_num)
rw [eventually_nhds_iff_ball]
refine'
⟨(1 / 2) ^ (n e + 1), P, fun y hy => _⟩
-- We need to show that `f (x + y) - f x - f' y` is small. For this, we will work at scale
-- `k` where `k` is chosen with `‖y‖ ∼ 2 ^ (-k)`.
by_cases y_pos : y = 0; · simp [y_pos]
have yzero : 0 < ‖y‖ := norm_pos_iff.mpr y_pos
have y_lt : ‖y‖ < (1 / 2) ^ (n e + 1) := by simpa using mem_ball_iff_norm.1 hy
have yone : ‖y‖ ≤ 1 :=
le_trans y_lt.le
(pow_le_one _ (by norm_num) (by norm_num))
-- define the scale `k`.
obtain ⟨k, hk, h'k⟩ : ∃ k : ℕ, (1 / 2) ^ (k + 1) < ‖y‖ ∧ ‖y‖ ≤ (1 / 2) ^ k :=
exists_nat_pow_near_of_lt_one yzero yone (by norm_num : (0 : ℝ) < 1 / 2)
(by norm_num : (1 : ℝ) / 2 < 1)
-- the scale is large enough (as `y` is small enough)
have k_gt : n e < k :=
by
have : ((1 : ℝ) / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1) := lt_trans hk y_lt
rw [pow_lt_pow_iff_of_lt_one (by norm_num : (0 : ℝ) < 1 / 2) (by norm_num)] at this
linarith
set m := k - 1
have m_ge : n e ≤ m := Nat.le_pred_of_lt k_gt
have km : k = m + 1 := (Nat.succ_pred_eq_of_pos (lt_of_le_of_lt (zero_le _) k_gt)).symm
rw [km] at hk h'k
have J1 : ‖f (x + y) - f x - L e (n e) m (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m :=
by
apply le_of_mem_a (hn e (n e) m le_rfl m_ge).2.2
· simp only [mem_closedBall, dist_self]
exact div_nonneg (le_of_lt P) zero_le_two
· simpa only [dist_eq_norm, add_sub_cancel', mem_closedBall, pow_succ', mul_one_div] using h'k
have J2 : ‖f (x + y) - f x - L e (n e) m y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖ :=
calc
‖f (x + y) - f x - L e (n e) m y‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m := by simpa only [add_sub_cancel'] using J1
_ = 4 * (1 / 2) ^ e * (1 / 2) ^ (m + 2) := by field_simp; ring
_ ≤ 4 * (1 / 2) ^ e * ‖y‖ :=
mul_le_mul_of_nonneg_left (le_of_lt hk)
(mul_nonneg (by norm_num) (le_of_lt P))
-- use the previous estimates to see that `f (x + y) - f x - f' y` is small.
calc
‖f (x + y) - f x - f' y‖ = ‖f (x + y) - f x - L e (n e) m y + (L e (n e) m - f') y‖ := congr_arg _ (by simp)
_ ≤ 4 * (1 / 2) ^ e * ‖y‖ + 12 * ‖c‖ * (1 / 2) ^ e * ‖y‖ :=
(norm_add_le_of_le J2 ((le_op_norm _ _).trans (mul_le_mul_of_nonneg_right (Lf' _ _ m_ge) (norm_nonneg _))))
_ = (4 + 12 * ‖c‖) * ‖y‖ * (1 / 2) ^ e := by ring
_ ≤ (4 + 12 * ‖c‖) * ‖y‖ * (ε / (4 + 12 * ‖c‖)) := by gcongr
_ = ε * ‖y‖ := by field_simp [ne_of_gt pos]; ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
⊢ HasFDerivAt f f' x
[PROOFSTEP]
simp only [hasFDerivAt_iff_isLittleO_nhds_zero, isLittleO_iff]
/- to get an approximation with a precision `ε`, we will replace `f` with `L e (n e) m` for
some large enough `e` (yielding a small error by uniform approximation). As one can vary `m`,
this makes it possible to cover all scales, and thus to obtain a good linear approximation in
the whole ball of radius `(1/2)^(n e)`. -/
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
⊢ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 0, ‖f (x + x_1) - f x - ↑f' x_1‖ ≤ c * ‖x_1‖
[PROOFSTEP]
intro ε εpos
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (x_1 : E) in 𝓝 0, ‖f (x + x_1) - f x - ↑f' x_1‖ ≤ ε * ‖x_1‖
[PROOFSTEP]
have pos : 0 < 4 + 12 * ‖c‖ := by positivity
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
⊢ 0 < 4 + 12 * ‖c‖
[PROOFSTEP]
positivity
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
⊢ ∀ᶠ (x_1 : E) in 𝓝 0, ‖f (x + x_1) - f x - ↑f' x_1‖ ≤ ε * ‖x_1‖
[PROOFSTEP]
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / (4 + 12 * ‖c‖) := exists_pow_lt_of_lt_one (div_pos εpos pos) (by norm_num)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
⊢ ∀ᶠ (x_1 : E) in 𝓝 0, ‖f (x + x_1) - f x - ↑f' x_1‖ ≤ ε * ‖x_1‖
[PROOFSTEP]
rw [eventually_nhds_iff_ball]
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
⊢ ∃ ε_1, ε_1 > 0 ∧ ∀ (y : E), y ∈ ball 0 ε_1 → ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
refine'
⟨(1 / 2) ^ (n e + 1), P, fun y hy => _⟩
-- We need to show that `f (x + y) - f x - f' y` is small. For this, we will work at scale
-- `k` where `k` is chosen with `‖y‖ ∼ 2 ^ (-k)`.
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
by_cases y_pos : y = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : y = 0
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
simp [y_pos]
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have yzero : 0 < ‖y‖ := norm_pos_iff.mpr y_pos
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have y_lt : ‖y‖ < (1 / 2) ^ (n e + 1) := by simpa using mem_ball_iff_norm.1 hy
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
⊢ ‖y‖ < (1 / 2) ^ (n e + 1)
[PROOFSTEP]
simpa using mem_ball_iff_norm.1 hy
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have yone : ‖y‖ ≤ 1 :=
le_trans y_lt.le
(pow_le_one _ (by norm_num) (by norm_num))
-- define the scale `k`.
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
obtain ⟨k, hk, h'k⟩ : ∃ k : ℕ, (1 / 2) ^ (k + 1) < ‖y‖ ∧ ‖y‖ ≤ (1 / 2) ^ k :=
exists_nat_pow_near_of_lt_one yzero yone (by norm_num : (0 : ℝ) < 1 / 2)
(by norm_num : (1 : ℝ) / 2 < 1)
-- the scale is large enough (as `y` is small enough)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have k_gt : n e < k := by
have : ((1 : ℝ) / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1) := lt_trans hk y_lt
rw [pow_lt_pow_iff_of_lt_one (by norm_num : (0 : ℝ) < 1 / 2) (by norm_num)] at this
linarith
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
⊢ n e < k
[PROOFSTEP]
have : ((1 : ℝ) / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1) := lt_trans hk y_lt
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
this : (1 / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1)
⊢ n e < k
[PROOFSTEP]
rw [pow_lt_pow_iff_of_lt_one (by norm_num : (0 : ℝ) < 1 / 2) (by norm_num)] at this
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
this : (1 / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1)
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
this : (1 / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1)
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
this : n e + 1 < k + 1
⊢ n e < k
[PROOFSTEP]
linarith
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
k_gt : n e < k
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
set m := k - 1
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
k_gt : n e < k
m : ℕ := k - 1
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have m_ge : n e ≤ m := Nat.le_pred_of_lt k_gt
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
k_gt : n e < k
m : ℕ := k - 1
m_ge : n e ≤ m
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have km : k = m + 1 := (Nat.succ_pred_eq_of_pos (lt_of_le_of_lt (zero_le _) k_gt)).symm
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
k_gt : n e < k
m : ℕ := k - 1
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
rw [km] at hk h'k
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have J1 : ‖f (x + y) - f x - L e (n e) m (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m :=
by
apply le_of_mem_a (hn e (n e) m le_rfl m_ge).2.2
· simp only [mem_closedBall, dist_self]
exact div_nonneg (le_of_lt P) zero_le_two
· simpa only [dist_eq_norm, add_sub_cancel', mem_closedBall, pow_succ', mul_one_div] using h'k
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
[PROOFSTEP]
apply le_of_mem_a (hn e (n e) m le_rfl m_ge).2.2
[GOAL]
case hy
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
⊢ x ∈ closedBall x ((1 / 2) ^ m / 2)
[PROOFSTEP]
simp only [mem_closedBall, dist_self]
[GOAL]
case hy
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
⊢ 0 ≤ (1 / 2) ^ (k - 1) / 2
[PROOFSTEP]
exact div_nonneg (le_of_lt P) zero_le_two
[GOAL]
case hz
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
⊢ x + y ∈ closedBall x ((1 / 2) ^ m / 2)
[PROOFSTEP]
simpa only [dist_eq_norm, add_sub_cancel', mem_closedBall, pow_succ', mul_one_div] using h'k
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
have J2 : ‖f (x + y) - f x - L e (n e) m y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖ :=
calc
‖f (x + y) - f x - L e (n e) m y‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m := by simpa only [add_sub_cancel'] using J1
_ = 4 * (1 / 2) ^ e * (1 / 2) ^ (m + 2) := by field_simp; ring
_ ≤ 4 * (1 / 2) ^ e * ‖y‖ :=
mul_le_mul_of_nonneg_left (le_of_lt hk)
(mul_nonneg (by norm_num) (le_of_lt P))
-- use the previous estimates to see that `f (x + y) - f x - f' y` is small.
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
⊢ ‖f (x + y) - f x - ↑(L e (n e) m) y‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
[PROOFSTEP]
simpa only [add_sub_cancel'] using J1
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
⊢ (1 / 2) ^ e * (1 / 2) ^ m = 4 * (1 / 2) ^ e * (1 / 2) ^ (m + 2)
[PROOFSTEP]
field_simp
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
⊢ 2 ^ e * 2 ^ (k - 1 + 2) = 4 * (2 ^ e * 2 ^ (k - 1))
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
⊢ 0 ≤ 4
[PROOFSTEP]
norm_num
[GOAL]
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
J2 : ‖f (x + y) - f x - ↑(L e (n e) m) y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖
⊢ ‖f (x + y) - f x - ↑f' y‖ ≤ ε * ‖y‖
[PROOFSTEP]
calc
‖f (x + y) - f x - f' y‖ = ‖f (x + y) - f x - L e (n e) m y + (L e (n e) m - f') y‖ := congr_arg _ (by simp)
_ ≤ 4 * (1 / 2) ^ e * ‖y‖ + 12 * ‖c‖ * (1 / 2) ^ e * ‖y‖ :=
(norm_add_le_of_le J2 ((le_op_norm _ _).trans (mul_le_mul_of_nonneg_right (Lf' _ _ m_ge) (norm_nonneg _))))
_ = (4 + 12 * ‖c‖) * ‖y‖ * (1 / 2) ^ e := by ring
_ ≤ (4 + 12 * ‖c‖) * ‖y‖ * (ε / (4 + 12 * ‖c‖)) := by gcongr
_ = ε * ‖y‖ := by field_simp [ne_of_gt pos]; ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
J2 : ‖f (x + y) - f x - ↑(L e (n e) m) y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖
⊢ f (x + y) - f x - ↑f' y = f (x + y) - f x - ↑(L e (n e) m) y + ↑(L e (n e) m - f') y
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
J2 : ‖f (x + y) - f x - ↑(L e (n e) m) y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖
⊢ 4 * (1 / 2) ^ e * ‖y‖ + 12 * ‖c‖ * (1 / 2) ^ e * ‖y‖ = (4 + 12 * ‖c‖) * ‖y‖ * (1 / 2) ^ e
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
J2 : ‖f (x + y) - f x - ↑(L e (n e) m) y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖
⊢ (4 + 12 * ‖c‖) * ‖y‖ * (1 / 2) ^ e ≤ (4 + 12 * ‖c‖) * ‖y‖ * (ε / (4 + 12 * ‖c‖))
[PROOFSTEP]
gcongr
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
J2 : ‖f (x + y) - f x - ↑(L e (n e) m) y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖
⊢ (4 + 12 * ‖c‖) * ‖y‖ * (ε / (4 + 12 * ‖c‖)) = ε * ‖y‖
[PROOFSTEP]
field_simp [ne_of_gt pos]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
J1 : ‖f (x + y) - f x - ↑(L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
J2 : ‖f (x + y) - f x - ↑(L e (n e) m) y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖
⊢ (4 + 12 * ‖c‖) * ‖y‖ * ε = ε * ‖y‖ * (4 + 12 * ‖c‖)
[PROOFSTEP]
ring
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
this : HasFDerivAt f f' x
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
rw [← this.fderiv] at f'K
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K✝ K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
cpos : 0 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : E →L[𝕜] F
f'K : fderiv 𝕜 f x ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
this : HasFDerivAt f f' x
⊢ x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
exact ⟨this.differentiableAt, f'K⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
⊢ MeasurableSet {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}
[PROOFSTEP]
simp only [D, differentiable_set_eq_d K hK]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
⊢ MeasurableSet
(⋂ (e : ℕ), ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
x✝ : ℕ
⊢ MeasurableSet (⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ x✝))
[PROOFSTEP]
refine MeasurableSet.iUnion fun _ => ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
x✝¹ x✝ : ℕ
⊢ MeasurableSet (⋂ (p : ℕ) (_ : p ≥ x✝) (q : ℕ) (_ : q ≥ x✝), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ x✝¹))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
x✝² x✝¹ x✝ : ℕ
⊢ MeasurableSet (⋂ (_ : x✝ ≥ x✝¹) (q : ℕ) (_ : q ≥ x✝¹), B f K ((1 / 2) ^ x✝) ((1 / 2) ^ q) ((1 / 2) ^ x✝²))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
x✝³ x✝² x✝¹ : ℕ
x✝ : x✝¹ ≥ x✝²
⊢ MeasurableSet (⋂ (q : ℕ) (_ : q ≥ x✝²), B f K ((1 / 2) ^ x✝¹) ((1 / 2) ^ q) ((1 / 2) ^ x✝³))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
x✝⁴ x✝³ x✝² : ℕ
x✝¹ : x✝² ≥ x✝³
x✝ : ℕ
⊢ MeasurableSet (⋂ (_ : x✝ ≥ x✝³), B f K ((1 / 2) ^ x✝²) ((1 / 2) ^ x✝) ((1 / 2) ^ x✝⁴))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E → F
K✝ : Set (E →L[𝕜] F)
inst✝¹ : MeasurableSpace E
inst✝ : OpensMeasurableSpace E
K : Set (E →L[𝕜] F)
hK : IsComplete K
x✝⁵ x✝⁴ x✝³ : ℕ
x✝² : x✝³ ≥ x✝⁴
x✝¹ : ℕ
x✝ : x✝¹ ≥ x✝⁴
⊢ MeasurableSet (B f K ((1 / 2) ^ x✝³) ((1 / 2) ^ x✝¹) ((1 / 2) ^ x✝⁵))
[PROOFSTEP]
refine isOpen_b.measurableSet
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
inst✝² : MeasurableSpace E
inst✝¹ : OpensMeasurableSpace E
inst✝ : CompleteSpace F
⊢ MeasurableSet {x | DifferentiableAt 𝕜 f x}
[PROOFSTEP]
have : IsComplete (univ : Set (E →L[𝕜] F)) := complete_univ
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
inst✝² : MeasurableSpace E
inst✝¹ : OpensMeasurableSpace E
inst✝ : CompleteSpace F
this : IsComplete univ
⊢ MeasurableSet {x | DifferentiableAt 𝕜 f x}
[PROOFSTEP]
convert measurableSet_of_differentiableAt_of_isComplete 𝕜 f this
[GOAL]
case h.e'_3.h.e'_2.h.a
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
inst✝² : MeasurableSpace E
inst✝¹ : OpensMeasurableSpace E
inst✝ : CompleteSpace F
this : IsComplete univ
x✝ : E
⊢ DifferentiableAt 𝕜 f x✝ ↔ DifferentiableAt 𝕜 f x✝ ∧ fderiv 𝕜 f x✝ ∈ univ
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
inst✝² : MeasurableSpace E
inst✝¹ : OpensMeasurableSpace E
inst✝ : CompleteSpace F
⊢ Measurable (fderiv 𝕜 f)
[PROOFSTEP]
refine' measurable_of_isClosed fun s hs => _
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
inst✝² : MeasurableSpace E
inst✝¹ : OpensMeasurableSpace E
inst✝ : CompleteSpace F
s : Set (E →L[𝕜] F)
hs : IsClosed s
⊢ MeasurableSet (fderiv 𝕜 f ⁻¹' s)
[PROOFSTEP]
have :
fderiv 𝕜 f ⁻¹' s =
{x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s} ∪ {x | ¬DifferentiableAt 𝕜 f x} ∩ {_x | (0 : E →L[𝕜] F) ∈ s} :=
Set.ext fun x => mem_preimage.trans fderiv_mem_iff
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
inst✝² : MeasurableSpace E
inst✝¹ : OpensMeasurableSpace E
inst✝ : CompleteSpace F
s : Set (E →L[𝕜] F)
hs : IsClosed s
this : fderiv 𝕜 f ⁻¹' s = {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s} ∪ {x | ¬DifferentiableAt 𝕜 f x} ∩ {_x | 0 ∈ s}
⊢ MeasurableSet (fderiv 𝕜 f ⁻¹' s)
[PROOFSTEP]
rw [this]
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
inst✝² : MeasurableSpace E
inst✝¹ : OpensMeasurableSpace E
inst✝ : CompleteSpace F
s : Set (E →L[𝕜] F)
hs : IsClosed s
this : fderiv 𝕜 f ⁻¹' s = {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s} ∪ {x | ¬DifferentiableAt 𝕜 f x} ∩ {_x | 0 ∈ s}
⊢ MeasurableSet ({x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s} ∪ {x | ¬DifferentiableAt 𝕜 f x} ∩ {_x | 0 ∈ s})
[PROOFSTEP]
exact
(measurableSet_of_differentiableAt_of_isComplete _ _ hs.isComplete).union
((measurableSet_of_differentiableAt _ _).compl.inter (MeasurableSet.const _))
[GOAL]
𝕜 : Type u_1
inst✝¹¹ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedSpace 𝕜 F
f✝ : E → F
K : Set (E →L[𝕜] F)
inst✝⁶ : MeasurableSpace E
inst✝⁵ : OpensMeasurableSpace E
inst✝⁴ : CompleteSpace F
inst✝³ : MeasurableSpace 𝕜
inst✝² : OpensMeasurableSpace 𝕜
inst✝¹ : MeasurableSpace F
inst✝ : BorelSpace F
f : 𝕜 → F
⊢ Measurable (deriv f)
[PROOFSTEP]
simpa only [fderiv_deriv] using measurable_fderiv_apply_const 𝕜 f 1
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
f✝ : E → F
K : Set (E →L[𝕜] F)
inst✝⁵ : MeasurableSpace E
inst✝⁴ : OpensMeasurableSpace E
inst✝³ : CompleteSpace F
inst✝² : MeasurableSpace 𝕜
inst✝¹ : OpensMeasurableSpace 𝕜
inst✝ : SecondCountableTopology F
f : 𝕜 → F
⊢ StronglyMeasurable (deriv f)
[PROOFSTEP]
borelize F
[GOAL]
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace 𝕜 F
f✝ : E → F
K : Set (E →L[𝕜] F)
inst✝⁵ : MeasurableSpace E
inst✝⁴ : OpensMeasurableSpace E
inst✝³ : CompleteSpace F
inst✝² : MeasurableSpace 𝕜
inst✝¹ : OpensMeasurableSpace 𝕜
inst✝ : SecondCountableTopology F
f : 𝕜 → F
this✝¹ : MeasurableSpace F := borel F
this✝ : BorelSpace F
⊢ StronglyMeasurable (deriv f)
[PROOFSTEP]
exact (measurable_deriv f).stronglyMeasurable
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x : ℝ
hx : x ∈ A f L r ε
⊢ A f L r ε ∈ 𝓝[Ioi x] x
[PROOFSTEP]
rcases hx with ⟨r', rr', hr'⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
⊢ A f L r ε ∈ 𝓝[Ioi x] x
[PROOFSTEP]
rw [mem_nhdsWithin_Ioi_iff_exists_Ioo_subset]
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
⊢ ∃ u, u ∈ Ioi x ∧ Ioo x u ⊆ A f L r ε
[PROOFSTEP]
obtain ⟨s, s_gt, s_lt⟩ : ∃ s : ℝ, r / 2 < s ∧ s < r' := exists_between rr'.1
[GOAL]
case intro.intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
⊢ ∃ u, u ∈ Ioi x ∧ Ioo x u ⊆ A f L r ε
[PROOFSTEP]
have : s ∈ Ioc (r / 2) r := ⟨s_gt, le_of_lt (s_lt.trans_le rr'.2)⟩
[GOAL]
case intro.intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
⊢ ∃ u, u ∈ Ioi x ∧ Ioo x u ⊆ A f L r ε
[PROOFSTEP]
refine' ⟨x + r' - s, by simp only [mem_Ioi]; linarith, fun x' hx' => ⟨s, this, _⟩⟩
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
⊢ x + r' - s ∈ Ioi x
[PROOFSTEP]
simp only [mem_Ioi]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
⊢ x < x + r' - s
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : ℝ
hx' : x' ∈ Ioo x (x + r' - s)
⊢ ∀ (y : ℝ), y ∈ Icc x' (x' + s) → ∀ (z : ℝ), z ∈ Icc x' (x' + s) → ‖f z - f y - (z - y) • L‖ ≤ ε * r
[PROOFSTEP]
have A : Icc x' (x' + s) ⊆ Icc x (x + r') := by
apply Icc_subset_Icc hx'.1.le
linarith [hx'.2]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : ℝ
hx' : x' ∈ Ioo x (x + r' - s)
⊢ Icc x' (x' + s) ⊆ Icc x (x + r')
[PROOFSTEP]
apply Icc_subset_Icc hx'.1.le
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : ℝ
hx' : x' ∈ Ioo x (x + r' - s)
⊢ x' + s ≤ x + r'
[PROOFSTEP]
linarith [hx'.2]
[GOAL]
case intro.intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : ℝ
hx' : x' ∈ Ioo x (x + r' - s)
A : Icc x' (x' + s) ⊆ Icc x (x + r')
⊢ ∀ (y : ℝ), y ∈ Icc x' (x' + s) → ∀ (z : ℝ), z ∈ Icc x' (x' + s) → ‖f z - f y - (z - y) • L‖ ≤ ε * r
[PROOFSTEP]
intro y hy z hz
[GOAL]
case intro.intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε x r' : ℝ
rr' : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
s : ℝ
s_gt : r / 2 < s
s_lt : s < r'
this : s ∈ Ioc (r / 2) r
x' : ℝ
hx' : x' ∈ Ioo x (x + r' - s)
A : Icc x' (x' + s) ⊆ Icc x (x + r')
y : ℝ
hy : y ∈ Icc x' (x' + s)
z : ℝ
hz : z ∈ Icc x' (x' + s)
⊢ ‖f z - f y - (z - y) • L‖ ≤ ε * r
[PROOFSTEP]
exact hr' y (A hy) z (A hz)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
r s ε x : ℝ
hx : x ∈ B f K r s ε
⊢ B f K r s ε ∈ 𝓝[Ioi x] x
[PROOFSTEP]
obtain ⟨L, LK, hL₁, hL₂⟩ : ∃ L : F, L ∈ K ∧ x ∈ A f L r ε ∧ x ∈ A f L s ε := by
simpa only [B, mem_iUnion, mem_inter_iff, exists_prop] using hx
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
r s ε x : ℝ
hx : x ∈ B f K r s ε
⊢ ∃ L, L ∈ K ∧ x ∈ A f L r ε ∧ x ∈ A f L s ε
[PROOFSTEP]
simpa only [B, mem_iUnion, mem_inter_iff, exists_prop] using hx
[GOAL]
case intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
r s ε x : ℝ
hx : x ∈ B f K r s ε
L : F
LK : L ∈ K
hL₁ : x ∈ A f L r ε
hL₂ : x ∈ A f L s ε
⊢ B f K r s ε ∈ 𝓝[Ioi x] x
[PROOFSTEP]
filter_upwards [a_mem_nhdsWithin_Ioi hL₁, a_mem_nhdsWithin_Ioi hL₂] with y hy₁ hy₂
[GOAL]
case h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
r s ε x : ℝ
hx : x ∈ B f K r s ε
L : F
LK : L ∈ K
hL₁ : x ∈ A f L r ε
hL₂ : x ∈ A f L s ε
y : ℝ
hy₁ : y ∈ A f L r ε
hy₂ : y ∈ A f L s ε
⊢ y ∈ B f K r s ε
[PROOFSTEP]
simp only [B, mem_iUnion, mem_inter_iff, exists_prop]
[GOAL]
case h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
r s ε x : ℝ
hx : x ∈ B f K r s ε
L : F
LK : L ∈ K
hL₁ : x ∈ A f L r ε
hL₂ : x ∈ A f L s ε
y : ℝ
hy₁ : y ∈ A f L r ε
hy₂ : y ∈ A f L s ε
⊢ ∃ i, i ∈ K ∧ y ∈ A f i r ε ∧ y ∈ A f i s ε
[PROOFSTEP]
exact ⟨L, LK, hy₁, hy₂⟩
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε δ : ℝ
h : ε ≤ δ
⊢ A f L r ε ⊆ A f L r δ
[PROOFSTEP]
rintro x ⟨r', r'r, hr'⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε δ : ℝ
h : ε ≤ δ
x r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
⊢ x ∈ A f L r δ
[PROOFSTEP]
refine' ⟨r', r'r, fun y hy z hz => (hr' y hy z hz).trans (mul_le_mul_of_nonneg_right h _)⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
L : F
r ε δ : ℝ
h : ε ≤ δ
x r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
y : ℝ
hy : y ∈ Icc x (x + r')
z : ℝ
hz : z ∈ Icc x (x + r')
⊢ 0 ≤ r
[PROOFSTEP]
linarith [hy.1, hy.2, r'r.2]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r ε : ℝ
L : F
x : ℝ
hx : x ∈ A f L r ε
y z : ℝ
hy : y ∈ Icc x (x + r / 2)
hz : z ∈ Icc x (x + r / 2)
⊢ ‖f z - f y - (z - y) • L‖ ≤ ε * r
[PROOFSTEP]
rcases hx with ⟨r', r'mem, hr'⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r ε : ℝ
L : F
x y z : ℝ
hy : y ∈ Icc x (x + r / 2)
hz : z ∈ Icc x (x + r / 2)
r' : ℝ
r'mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
⊢ ‖f z - f y - (z - y) • L‖ ≤ ε * r
[PROOFSTEP]
have A : x + r / 2 ≤ x + r' := by linarith [r'mem.1]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r ε : ℝ
L : F
x y z : ℝ
hy : y ∈ Icc x (x + r / 2)
hz : z ∈ Icc x (x + r / 2)
r' : ℝ
r'mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
⊢ x + r / 2 ≤ x + r'
[PROOFSTEP]
linarith [r'mem.1]
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r ε : ℝ
L : F
x y z : ℝ
hy : y ∈ Icc x (x + r / 2)
hz : z ∈ Icc x (x + r / 2)
r' : ℝ
r'mem : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : ℝ), y ∈ Icc x (x + r') → ∀ (z : ℝ), z ∈ Icc x (x + r') → ‖f z - f y - (z - y) • L‖ ≤ ε * r
A : x + r / 2 ≤ x + r'
⊢ ‖f z - f y - (z - y) • L‖ ≤ ε * r
[PROOFSTEP]
exact hr' _ ((Icc_subset_Icc le_rfl A) hy) _ ((Icc_subset_Icc le_rfl A) hz)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ε
[PROOFSTEP]
have := hx.hasDerivWithinAt
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this : HasDerivWithinAt f (derivWithin f (Ici x) x) (Ici x) x
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ε
[PROOFSTEP]
simp_rw [hasDerivWithinAt_iff_isLittleO, isLittleO_iff] at this
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ε
[PROOFSTEP]
rcases mem_nhdsWithin_Ici_iff_exists_Ico_subset.1 (this (half_pos hε)) with ⟨m, xm, hm⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
⊢ ∃ R, R > 0 ∧ ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ε
[PROOFSTEP]
refine' ⟨m - x, by linarith [show x < m from xm], fun r hr => _⟩
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
⊢ m - x > 0
[PROOFSTEP]
linarith [show x < m from xm]
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
⊢ x ∈ A f (derivWithin f (Ici x) x) r ε
[PROOFSTEP]
have : r ∈ Ioc (r / 2) r := ⟨half_lt_self hr.1, le_rfl⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
⊢ x ∈ A f (derivWithin f (Ici x) x) r ε
[PROOFSTEP]
refine' ⟨r, this, fun y hy z hz => _⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ ‖f z - f y - (z - y) • derivWithin f (Ici x) x‖ ≤ ε * r
[PROOFSTEP]
calc
‖f z - f y - (z - y) • derivWithin f (Ici x) x‖ =
‖f z - f x - (z - x) • derivWithin f (Ici x) x - (f y - f x - (y - x) • derivWithin f (Ici x) x)‖ :=
by congr 1; simp only [sub_smul]; abel
_ ≤ ‖f z - f x - (z - x) • derivWithin f (Ici x) x‖ + ‖f y - f x - (y - x) • derivWithin f (Ici x) x‖ :=
(norm_sub_le _ _)
_ ≤ ε / 2 * ‖z - x‖ + ε / 2 * ‖y - x‖ :=
(add_le_add (hm ⟨hz.1, hz.2.trans_lt (by linarith [hr.2])⟩) (hm ⟨hy.1, hy.2.trans_lt (by linarith [hr.2])⟩))
_ ≤ ε / 2 * r + ε / 2 * r := by
gcongr
· rw [Real.norm_of_nonneg] <;> linarith [hz.1, hz.2]
· rw [Real.norm_of_nonneg] <;> linarith [hy.1, hy.2]
_ = ε * r := by ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ ‖f z - f y - (z - y) • derivWithin f (Ici x) x‖ =
‖f z - f x - (z - x) • derivWithin f (Ici x) x - (f y - f x - (y - x) • derivWithin f (Ici x) x)‖
[PROOFSTEP]
congr 1
[GOAL]
case e_a
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ f z - f y - (z - y) • derivWithin f (Ici x) x =
f z - f x - (z - x) • derivWithin f (Ici x) x - (f y - f x - (y - x) • derivWithin f (Ici x) x)
[PROOFSTEP]
simp only [sub_smul]
[GOAL]
case e_a
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ f z - f y - (z • derivWithin f (Ici x) x - y • derivWithin f (Ici x) x) =
f z - f x - (z • derivWithin f (Ici x) x - x • derivWithin f (Ici x) x) -
(f y - f x - (y • derivWithin f (Ici x) x - x • derivWithin f (Ici x) x))
[PROOFSTEP]
abel
[GOAL]
case e_a
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ f z - f y - (z • derivWithin f (Ici x) x - y • derivWithin f (Ici x) x) =
f z - f x - (z • derivWithin f (Ici x) x - x • derivWithin f (Ici x) x) -
(f y - f x - (y • derivWithin f (Ici x) x - x • derivWithin f (Ici x) x))
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ x + r < m
[PROOFSTEP]
linarith [hr.2]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ x + r < m
[PROOFSTEP]
linarith [hr.2]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ ε / 2 * ‖z - x‖ + ε / 2 * ‖y - x‖ ≤ ε / 2 * r + ε / 2 * r
[PROOFSTEP]
gcongr
[GOAL]
case h₁.h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ ‖z - x‖ ≤ r
[PROOFSTEP]
rw [Real.norm_of_nonneg]
[GOAL]
case h₁.h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ z - x ≤ r
[PROOFSTEP]
linarith [hz.1, hz.2]
[GOAL]
case h₁.h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ 0 ≤ z - x
[PROOFSTEP]
linarith [hz.1, hz.2]
[GOAL]
case h₂.h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ ‖y - x‖ ≤ r
[PROOFSTEP]
rw [Real.norm_of_nonneg]
[GOAL]
case h₂.h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ y - x ≤ r
[PROOFSTEP]
linarith [hy.1, hy.2]
[GOAL]
case h₂.h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ 0 ≤ y - x
[PROOFSTEP]
linarith [hy.1, hy.2]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
ε : ℝ
hε : 0 < ε
x : ℝ
hx : DifferentiableWithinAt ℝ f (Ici x) x
this✝ :
∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • derivWithin f (Ici x) x‖ ≤ c * ‖x_1 - x‖
m : ℝ
xm : m ∈ Ioi x
hm : Ico x m ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - (x_2 - x) • derivWithin f (Ici x) x‖ ≤ ε / 2 * ‖x_2 - x‖) x_1}
r : ℝ
hr : r ∈ Ioo 0 (m - x)
this : r ∈ Ioc (r / 2) r
y : ℝ
hy : y ∈ Icc x (x + r)
z : ℝ
hz : z ∈ Icc x (x + r)
⊢ ε / 2 * r + ε / 2 * r = ε * r
[PROOFSTEP]
ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ‖L₁ - L₂‖ ≤ 4 * ε
[PROOFSTEP]
suffices H : ‖(r / 2) • (L₁ - L₂)‖ ≤ r / 2 * (4 * ε)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
H : ‖(r / 2) • (L₁ - L₂)‖ ≤ r / 2 * (4 * ε)
⊢ ‖L₁ - L₂‖ ≤ 4 * ε
[PROOFSTEP]
rwa [norm_smul, Real.norm_of_nonneg (half_pos hr).le, mul_le_mul_left (half_pos hr)] at H
[GOAL]
case H
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ‖(r / 2) • (L₁ - L₂)‖ ≤ r / 2 * (4 * ε)
[PROOFSTEP]
calc
‖(r / 2) • (L₁ - L₂)‖ = ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₂ - (f (x + r / 2) - f x - (x + r / 2 - x) • L₁)‖ :=
by simp [smul_sub]
_ ≤ ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₂‖ + ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₁‖ := (norm_sub_le _ _)
_ ≤ ε * r + ε * r := by
apply add_le_add
· apply le_of_mem_a h₂ <;> simp [(half_pos hr).le]
· apply le_of_mem_a h₁ <;> simp [(half_pos hr).le]
_ = r / 2 * (4 * ε) := by ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ‖(r / 2) • (L₁ - L₂)‖ = ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₂ - (f (x + r / 2) - f x - (x + r / 2 - x) • L₁)‖
[PROOFSTEP]
simp [smul_sub]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₂‖ + ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₁‖ ≤ ε * r + ε * r
[PROOFSTEP]
apply add_le_add
[GOAL]
case h₁
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₂‖ ≤ ε * r
[PROOFSTEP]
apply le_of_mem_a h₂
[GOAL]
case h₁.hy
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ x ∈ Icc x (x + r / 2)
[PROOFSTEP]
simp [(half_pos hr).le]
[GOAL]
case h₁.hz
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ x + r / 2 ∈ Icc x (x + r / 2)
[PROOFSTEP]
simp [(half_pos hr).le]
[GOAL]
case h₂
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ‖f (x + r / 2) - f x - (x + r / 2 - x) • L₁‖ ≤ ε * r
[PROOFSTEP]
apply le_of_mem_a h₁
[GOAL]
case h₂.hy
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ x ∈ Icc x (x + r / 2)
[PROOFSTEP]
simp [(half_pos hr).le]
[GOAL]
case h₂.hz
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ x + r / 2 ∈ Icc x (x + r / 2)
[PROOFSTEP]
simp [(half_pos hr).le]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
r x : ℝ
hr : 0 < r
ε : ℝ
L₁ L₂ : F
h₁ : x ∈ A f L₁ r ε
h₂ : x ∈ A f L₂ r ε
⊢ ε * r + ε * r = r / 2 * (4 * ε)
[PROOFSTEP]
ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
⊢ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K} ⊆ D f K
[PROOFSTEP]
intro x hx
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
⊢ x ∈ D f K
[PROOFSTEP]
rw [D, mem_iInter]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
⊢ ∀ (i : ℕ), x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ i)
[PROOFSTEP]
intro e
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
have : (0 : ℝ) < (1 / 2) ^ e := pow_pos (by norm_num) _
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
rcases mem_a_of_differentiable this hx.1 with ⟨R, R_pos, hR⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
obtain ⟨n, hn⟩ : ∃ n : ℕ, (1 / 2) ^ n < R := exists_pow_lt_of_lt_one R_pos (by norm_num : (1 : ℝ) / 2 < 1)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
simp only [mem_iUnion, mem_iInter, B, mem_inter_iff]
[GOAL]
case intro.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
⊢ ∃ i,
∀ (i_1 : ℕ),
i_1 ≥ i →
∀ (i_3 : ℕ), i_3 ≥ i → ∃ i h, x ∈ A f i ((1 / 2) ^ i_1) ((1 / 2) ^ e) ∧ x ∈ A f i ((1 / 2) ^ i_3) ((1 / 2) ^ e)
[PROOFSTEP]
refine' ⟨n, fun p hp q hq => ⟨derivWithin f (Ici x) x, hx.2, ⟨_, _⟩⟩⟩
[GOAL]
case intro.intro.intro.refine'_1
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ x ∈ A f (derivWithin f (Ici x) x) ((1 / 2) ^ p) ((1 / 2) ^ e)
[PROOFSTEP]
refine' hR _ ⟨pow_pos (by norm_num) _, lt_of_le_of_lt _ hn⟩
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro.refine'_1
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ (1 / 2) ^ p ≤ (1 / 2) ^ n
[PROOFSTEP]
exact pow_le_pow_of_le_one (by norm_num) (by norm_num) (by assumption)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ n ≤ p
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.intro.refine'_2
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ x ∈ A f (derivWithin f (Ici x) x) ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
refine' hR _ ⟨pow_pos (by norm_num) _, lt_of_le_of_lt _ hn⟩
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro.refine'_2
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ (1 / 2) ^ q ≤ (1 / 2) ^ n
[PROOFSTEP]
exact pow_le_pow_of_le_one (by norm_num) (by norm_num) (by assumption)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K : Set F
x : ℝ
hx : x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
e : ℕ
this : 0 < (1 / 2) ^ e
R : ℝ
R_pos : R > 0
hR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (derivWithin f (Ici x) x) r ((1 / 2) ^ e)
n : ℕ
hn : (1 / 2) ^ n < R
p : ℕ
hp : p ≥ n
q : ℕ
hq : q ≥ n
⊢ n ≤ q
[PROOFSTEP]
assumption
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
⊢ D f K ⊆ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
have P : ∀ {n : ℕ}, (0 : ℝ) < (1 / 2) ^ n := fun {n} => pow_pos (by norm_num) n
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
n : ℕ
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
⊢ D f K ⊆ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
intro x hx
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
have :
∀ e : ℕ,
∃ n : ℕ,
∀ p q, n ≤ p → n ≤ q → ∃ L ∈ K, x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e) :=
by
intro e
have := mem_iInter.1 hx e
rcases mem_iUnion.1 this with ⟨n, hn⟩
refine' ⟨n, fun p q hp hq => _⟩
simp only [mem_iInter, ge_iff_le] at hn
rcases mem_iUnion.1 (hn p hp q hq) with ⟨L, hL⟩
exact
⟨L, exists_prop.mp <| mem_iUnion.1 hL⟩
/- Recast the assumptions: for each `e`, there exist `n e` and linear maps `L e p q` in `K`
such that, for `p, q ≥ n e`, then `f` is well approximated by `L e p q` at scale `2 ^ (-p)` and
`2 ^ (-q)`, with an error `2 ^ (-e)`. -/
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
⊢ ∀ (e : ℕ),
∃ n,
∀ (p q : ℕ),
n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
intro e
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
e : ℕ
⊢ ∃ n,
∀ (p q : ℕ), n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
have := mem_iInter.1 hx e
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∃ n,
∀ (p q : ℕ), n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
rcases mem_iUnion.1 this with ⟨n, hn⟩
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n : ℕ
hn : x ∈ ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∃ n,
∀ (p q : ℕ), n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
refine' ⟨n, fun p q hp hq => _⟩
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n : ℕ
hn : x ∈ ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
p q : ℕ
hp : n ≤ p
hq : n ≤ q
⊢ ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
simp only [mem_iInter, ge_iff_le] at hn
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n p q : ℕ
hp : n ≤ p
hq : n ≤ q
hn : ∀ (i : ℕ), n ≤ i → ∀ (i_2 : ℕ), n ≤ i_2 → x ∈ B f K ((1 / 2) ^ i) ((1 / 2) ^ i_2) ((1 / 2) ^ e)
⊢ ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
rcases mem_iUnion.1 (hn p hp q hq) with ⟨L, hL⟩
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
e : ℕ
this : x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)
n p q : ℕ
hp : n ≤ p
hq : n ≤ q
hn : ∀ (i : ℕ), n ≤ i → ∀ (i_2 : ℕ), n ≤ i_2 → x ∈ B f K ((1 / 2) ^ i) ((1 / 2) ^ i_2) ((1 / 2) ^ e)
L : F
hL : x ∈ ⋃ (_ : L ∈ K), A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
[PROOFSTEP]
exact
⟨L, exists_prop.mp <| mem_iUnion.1 hL⟩
/- Recast the assumptions: for each `e`, there exist `n e` and linear maps `L e p q` in `K`
such that, for `p, q ≥ n e`, then `f` is well approximated by `L e p q` at scale `2 ^ (-p)` and
`2 ^ (-q)`, with an error `2 ^ (-e)`. -/
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
this :
∀ (e : ℕ),
∃ n,
∀ (p q : ℕ),
n ≤ p → n ≤ q → ∃ L, L ∈ K ∧ x ∈ A f L ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f L ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
choose! n L hn using this
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
have M :
∀ e p q e' p' q', n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e :=
by
intro e p q e' p' q' hp hq hp' hq' he'
let r := max (n e) (n e')
have I : ((1 : ℝ) / 2) ^ e' ≤ (1 / 2) ^ e := pow_le_pow_of_le_one (by norm_num) (by norm_num) he'
have J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p q hp hq).2.1
have I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.1
exact norm_sub_le_of_mem_a P _ I1 I2
have J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.2
have I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.2
exact norm_sub_le_of_mem_a P _ I1 (a_mono _ _ I I2)
have J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.1
have I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' q' hp' hq').2.1
exact norm_sub_le_of_mem_a P _ (a_mono _ _ I I1) (a_mono _ _ I I2)
calc
‖L e p q - L e' p' q'‖ = ‖L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')‖ := by congr 1; abel
_ ≤ ‖L e p q - L e p r‖ + ‖L e p r - L e' p' r‖ + ‖L e' p' r - L e' p' q'‖ :=
(le_trans (norm_add_le _ _) (add_le_add_right (norm_add_le _ _) _))
_ ≤ 4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e := by
gcongr
-- Porting note: proof was `by apply_rules [add_le_add]`
_ = 12 * (1 / 2) ^ e := by
ring
/- For definiteness, use `L0 e = L e (n e) (n e)`, to have a single sequence. We claim that this
is a Cauchy sequence. -/
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
⊢ ∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
intro e p q e' p' q' hp hq hp' hq' he'
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
let r := max (n e) (n e')
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
have I : ((1 : ℝ) / 2) ^ e' ≤ (1 / 2) ^ e := pow_le_pow_of_le_one (by norm_num) (by norm_num) he'
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
have J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p q hp hq).2.1
have I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.1
exact norm_sub_le_of_mem_a P _ I1 I2
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
⊢ ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
have I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p q hp hq).2.1
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e)
⊢ ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
have I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.1
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
I1 : x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e)
I2 : x ∈ A f (L e p r) ((1 / 2) ^ p) ((1 / 2) ^ e)
⊢ ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
exact norm_sub_le_of_mem_a P _ I1 I2
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
have J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.2
have I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.2
exact norm_sub_le_of_mem_a P _ I1 (a_mono _ _ I I2)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
⊢ ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
have I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e) := (hn e p r hp (le_max_left _ _)).2.2
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e)
⊢ ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
have I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.2
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
I1 : x ∈ A f (L e p r) ((1 / 2) ^ r) ((1 / 2) ^ e)
I2 : x ∈ A f (L e' p' r) ((1 / 2) ^ r) ((1 / 2) ^ e')
⊢ ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
exact norm_sub_le_of_mem_a P _ I1 (a_mono _ _ I I2)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
have J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e :=
by
have I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.1
have I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' q' hp' hq').2.1
exact norm_sub_le_of_mem_a P _ (a_mono _ _ I I1) (a_mono _ _ I I2)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
⊢ ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
have I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' r hp' (le_max_right _ _)).2.1
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e')
⊢ ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
have I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e') := (hn e' p' q' hp' hq').2.1
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
I1 : x ∈ A f (L e' p' r) ((1 / 2) ^ p') ((1 / 2) ^ e')
I2 : x ∈ A f (L e' p' q') ((1 / 2) ^ p') ((1 / 2) ^ e')
⊢ ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
[PROOFSTEP]
exact norm_sub_le_of_mem_a P _ (a_mono _ _ I I1) (a_mono _ _ I I2)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
calc
‖L e p q - L e' p' q'‖ = ‖L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')‖ := by congr 1; abel
_ ≤ ‖L e p q - L e p r‖ + ‖L e p r - L e' p' r‖ + ‖L e' p' r - L e' p' q'‖ :=
(le_trans (norm_add_le _ _) (add_le_add_right (norm_add_le _ _) _))
_ ≤ 4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e := by
gcongr
-- Porting note: proof was `by apply_rules [add_le_add]`
_ = 12 * (1 / 2) ^ e := by
ring
/- For definiteness, use `L0 e = L e (n e) (n e)`, to have a single sequence. We claim that this
is a Cauchy sequence. -/
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
⊢ ‖L e p q - L e' p' q'‖ = ‖L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')‖
[PROOFSTEP]
congr 1
[GOAL]
case e_a
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
⊢ L e p q - L e' p' q' = L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')
[PROOFSTEP]
abel
[GOAL]
case e_a
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
⊢ L e p q - L e' p' q' = L e p q - L e p r + (L e p r - L e' p' r) + (L e' p' r - L e' p' q')
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
⊢ ‖L e p q - L e p r‖ + ‖L e p r - L e' p' r‖ + ‖L e' p' r - L e' p' q'‖ ≤
4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e
[PROOFSTEP]
gcongr
-- Porting note: proof was `by apply_rules [add_le_add]`
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
e p q e' p' q' : ℕ
hp : n e ≤ p
hq : n e ≤ q
hp' : n e' ≤ p'
hq' : n e' ≤ q'
he' : e ≤ e'
r : ℕ := max (n e) (n e')
I : (1 / 2) ^ e' ≤ (1 / 2) ^ e
J1 : ‖L e p q - L e p r‖ ≤ 4 * (1 / 2) ^ e
J2 : ‖L e p r - L e' p' r‖ ≤ 4 * (1 / 2) ^ e
J3 : ‖L e' p' r - L e' p' q'‖ ≤ 4 * (1 / 2) ^ e
⊢ 4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e + 4 * (1 / 2) ^ e = 12 * (1 / 2) ^ e
[PROOFSTEP]
ring
/- For definiteness, use `L0 e = L e (n e) (n e)`, to have a single sequence. We claim that this
is a Cauchy sequence. -/
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
let L0 : ℕ → F := fun e => L e (n e) (n e)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
have : CauchySeq L0 := by
rw [Metric.cauchySeq_iff']
intro ε εpos
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / 12 := exists_pow_lt_of_lt_one (div_pos εpos (by norm_num)) (by norm_num)
refine' ⟨e, fun e' he' => _⟩
rw [dist_comm, dist_eq_norm]
calc
‖L0 e - L0 e'‖ ≤ 12 * (1 / 2) ^ e := M _ _ _ _ _ _ le_rfl le_rfl le_rfl le_rfl he'
_ < 12 * (ε / 12) := (mul_lt_mul' le_rfl he (le_of_lt P) (by norm_num))
_ = ε := by field_simp [(by norm_num : (12 : ℝ) ≠ 0)];
ring
-- As it is Cauchy, the sequence `L0` converges, to a limit `f'` in `K`.
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
⊢ CauchySeq L0
[PROOFSTEP]
rw [Metric.cauchySeq_iff']
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
⊢ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (L0 n) (L0 N) < ε
[PROOFSTEP]
intro ε εpos
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (L0 n) (L0 N) < ε
[PROOFSTEP]
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / 12 := exists_pow_lt_of_lt_one (div_pos εpos (by norm_num)) (by norm_num)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
⊢ 0 < 12
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / 12
⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (L0 n) (L0 N) < ε
[PROOFSTEP]
refine' ⟨e, fun e' he' => _⟩
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / 12
e' : ℕ
he' : e' ≥ e
⊢ dist (L0 e') (L0 e) < ε
[PROOFSTEP]
rw [dist_comm, dist_eq_norm]
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / 12
e' : ℕ
he' : e' ≥ e
⊢ ‖L0 e - L0 e'‖ < ε
[PROOFSTEP]
calc
‖L0 e - L0 e'‖ ≤ 12 * (1 / 2) ^ e := M _ _ _ _ _ _ le_rfl le_rfl le_rfl le_rfl he'
_ < 12 * (ε / 12) := (mul_lt_mul' le_rfl he (le_of_lt P) (by norm_num))
_ = ε := by field_simp [(by norm_num : (12 : ℝ) ≠ 0)];
ring
-- As it is Cauchy, the sequence `L0` converges, to a limit `f'` in `K`.
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / 12
e' : ℕ
he' : e' ≥ e
⊢ 0 < 12
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / 12
e' : ℕ
he' : e' ≥ e
⊢ 12 * (ε / 12) = ε
[PROOFSTEP]
field_simp [(by norm_num : (12 : ℝ) ≠ 0)]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / 12
e' : ℕ
he' : e' ≥ e
⊢ 12 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
ε : ℝ
εpos : ε > 0
e : ℕ
he : (1 / 2) ^ e < ε / 12
e' : ℕ
he' : e' ≥ e
⊢ 12 * ε = ε * 12
[PROOFSTEP]
ring
-- As it is Cauchy, the sequence `L0` converges, to a limit `f'` in `K`.
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
obtain ⟨f', f'K, hf'⟩ : ∃ f' ∈ K, Tendsto L0 atTop (𝓝 f') :=
cauchySeq_tendsto_of_isComplete hK (fun e => (hn e (n e) (n e) le_rfl le_rfl).1) this
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
have Lf' : ∀ e p, n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e :=
by
intro e p hp
apply le_of_tendsto (tendsto_const_nhds.sub hf').norm
rw [eventually_atTop]
exact
⟨e, fun e' he' => M _ _ _ _ _ _ le_rfl hp le_rfl le_rfl he'⟩
-- Let us show that `f` has right derivative `f'` at `x`.
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
⊢ ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
intro e p hp
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
e p : ℕ
hp : n e ≤ p
⊢ ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
apply le_of_tendsto (tendsto_const_nhds.sub hf').norm
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
e p : ℕ
hp : n e ≤ p
⊢ ∀ᶠ (c : ℕ) in atTop, ‖L e (n e) p - L0 c‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
rw [eventually_atTop]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
e p : ℕ
hp : n e ≤ p
⊢ ∃ a, ∀ (b : ℕ), b ≥ a → ‖L e (n e) p - L0 b‖ ≤ 12 * (1 / 2) ^ e
[PROOFSTEP]
exact
⟨e, fun e' he' => M _ _ _ _ _ _ le_rfl hp le_rfl le_rfl he'⟩
-- Let us show that `f` has right derivative `f'` at `x`.
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
have : HasDerivWithinAt f f' (Ici x) x :=
by
simp only [hasDerivWithinAt_iff_isLittleO, isLittleO_iff]
/- to get an approximation with a precision `ε`, we will replace `f` with `L e (n e) m` for
some large enough `e` (yielding a small error by uniform approximation). As one can vary `m`,
this makes it possible to cover all scales, and thus to obtain a good linear approximation in
the whole interval of length `(1/2)^(n e)`. -/
intro ε εpos
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / 16 := exists_pow_lt_of_lt_one (div_pos εpos (by norm_num)) (by norm_num)
have xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1)) := by
simp only [one_div, left_mem_Ico, lt_add_iff_pos_right, inv_pos, pow_pos, zero_lt_two, zero_lt_one]
filter_upwards [Icc_mem_nhdsWithin_Ici xmem] with y hy
rcases eq_or_lt_of_le hy.1 with (rfl | xy)
· simp only [sub_self, zero_smul, norm_zero, mul_zero, le_rfl]
have yzero : 0 < y - x := sub_pos.2 xy
have y_le : y - x ≤ (1 / 2) ^ (n e + 1) := by linarith [hy.2]
have yone : y - x ≤ 1 :=
le_trans y_le
(pow_le_one _ (by norm_num) (by norm_num))
-- define the scale `k`.
obtain ⟨k, hk, h'k⟩ : ∃ k : ℕ, (1 / 2) ^ (k + 1) < y - x ∧ y - x ≤ (1 / 2) ^ k :=
exists_nat_pow_near_of_lt_one yzero yone (by norm_num : (0 : ℝ) < 1 / 2)
(by norm_num : (1 : ℝ) / 2 < 1)
-- the scale is large enough (as `y - x` is small enough)
have k_gt : n e < k :=
by
have : ((1 : ℝ) / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1) := lt_of_lt_of_le hk y_le
rw [pow_lt_pow_iff_of_lt_one (by norm_num : (0 : ℝ) < 1 / 2) (by norm_num)] at this
linarith
set m := k - 1
have m_ge : n e ≤ m := Nat.le_pred_of_lt k_gt
have km : k = m + 1 := (Nat.succ_pred_eq_of_pos (lt_of_le_of_lt (zero_le _) k_gt)).symm
rw [km] at hk h'k
have J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖ :=
calc
‖f y - f x - (y - x) • L e (n e) m‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m :=
by
apply le_of_mem_a (hn e (n e) m le_rfl m_ge).2.2
· simp only [one_div, inv_pow, left_mem_Icc, le_add_iff_nonneg_right]
exact div_nonneg (inv_nonneg.2 (pow_nonneg zero_le_two _)) zero_le_two
· simp only [pow_add, tsub_le_iff_left] at h'k
simpa only [hy.1, mem_Icc, true_and_iff, one_div, pow_one] using h'k
_ = 4 * (1 / 2) ^ e * (1 / 2) ^ (m + 2) := by field_simp; ring
_ ≤ 4 * (1 / 2) ^ e * (y - x) := (mul_le_mul_of_nonneg_left (le_of_lt hk) (mul_nonneg (by norm_num) (le_of_lt P)))
_ = 4 * (1 / 2) ^ e * ‖y - x‖ := by rw [Real.norm_of_nonneg yzero.le]
calc
‖f y - f x - (y - x) • f'‖ = ‖f y - f x - (y - x) • L e (n e) m + (y - x) • (L e (n e) m - f')‖ := by
simp only [smul_sub, sub_add_sub_cancel]
_ ≤ 4 * (1 / 2) ^ e * ‖y - x‖ + ‖y - x‖ * (12 * (1 / 2) ^ e) :=
(norm_add_le_of_le J (by rw [norm_smul]; exact mul_le_mul_of_nonneg_left (Lf' _ _ m_ge) (norm_nonneg _)))
_ = 16 * ‖y - x‖ * (1 / 2) ^ e := by ring
_ ≤ 16 * ‖y - x‖ * (ε / 16) := (mul_le_mul_of_nonneg_left he.le (mul_nonneg (by norm_num) (norm_nonneg _)))
_ = ε * ‖y - x‖ := by ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
⊢ HasDerivWithinAt f f' (Ici x) x
[PROOFSTEP]
simp only [hasDerivWithinAt_iff_isLittleO, isLittleO_iff]
/- to get an approximation with a precision `ε`, we will replace `f` with `L e (n e) m` for
some large enough `e` (yielding a small error by uniform approximation). As one can vary `m`,
this makes it possible to cover all scales, and thus to obtain a good linear approximation in
the whole interval of length `(1/2)^(n e)`. -/
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
⊢ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • f'‖ ≤ c * ‖x_1 - x‖
[PROOFSTEP]
intro ε εpos
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • f'‖ ≤ ε * ‖x_1 - x‖
[PROOFSTEP]
obtain ⟨e, he⟩ : ∃ e : ℕ, (1 / 2) ^ e < ε / 16 := exists_pow_lt_of_lt_one (div_pos εpos (by norm_num)) (by norm_num)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
⊢ 0 < 16
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • f'‖ ≤ ε * ‖x_1 - x‖
[PROOFSTEP]
have xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1)) := by
simp only [one_div, left_mem_Ico, lt_add_iff_pos_right, inv_pos, pow_pos, zero_lt_two, zero_lt_one]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
⊢ x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
[PROOFSTEP]
simp only [one_div, left_mem_Ico, lt_add_iff_pos_right, inv_pos, pow_pos, zero_lt_two, zero_lt_one]
[GOAL]
case intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[Ici x] x, ‖f x_1 - f x - (x_1 - x) • f'‖ ≤ ε * ‖x_1 - x‖
[PROOFSTEP]
filter_upwards [Icc_mem_nhdsWithin_Ici xmem] with y hy
[GOAL]
case h
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
rcases eq_or_lt_of_le hy.1 with (rfl | xy)
[GOAL]
case h.inl
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
hy : x ∈ Icc x (x + (1 / 2) ^ (n e + 1))
⊢ ‖f x - f x - (x - x) • f'‖ ≤ ε * ‖x - x‖
[PROOFSTEP]
simp only [sub_self, zero_smul, norm_zero, mul_zero, le_rfl]
[GOAL]
case h.inr
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
have yzero : 0 < y - x := sub_pos.2 xy
[GOAL]
case h.inr
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
have y_le : y - x ≤ (1 / 2) ^ (n e + 1) := by linarith [hy.2]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
⊢ y - x ≤ (1 / 2) ^ (n e + 1)
[PROOFSTEP]
linarith [hy.2]
[GOAL]
case h.inr
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
have yone : y - x ≤ 1 :=
le_trans y_le
(pow_le_one _ (by norm_num) (by norm_num))
-- define the scale `k`.
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
⊢ 1 / 2 ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
case h.inr
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
obtain ⟨k, hk, h'k⟩ : ∃ k : ℕ, (1 / 2) ^ (k + 1) < y - x ∧ y - x ≤ (1 / 2) ^ k :=
exists_nat_pow_near_of_lt_one yzero yone (by norm_num : (0 : ℝ) < 1 / 2)
(by norm_num : (1 : ℝ) / 2 < 1)
-- the scale is large enough (as `y - x` is small enough)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case h.inr.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
have k_gt : n e < k :=
by
have : ((1 : ℝ) / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1) := lt_of_lt_of_le hk y_le
rw [pow_lt_pow_iff_of_lt_one (by norm_num : (0 : ℝ) < 1 / 2) (by norm_num)] at this
linarith
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
⊢ n e < k
[PROOFSTEP]
have : ((1 : ℝ) / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1) := lt_of_lt_of_le hk y_le
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
this : (1 / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1)
⊢ n e < k
[PROOFSTEP]
rw [pow_lt_pow_iff_of_lt_one (by norm_num : (0 : ℝ) < 1 / 2) (by norm_num)] at this
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
this : (1 / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1)
⊢ 0 < 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
this : (1 / 2) ^ (k + 1) < (1 / 2) ^ (n e + 1)
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
this : n e + 1 < k + 1
⊢ n e < k
[PROOFSTEP]
linarith
[GOAL]
case h.inr.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
k_gt : n e < k
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
set m := k - 1
[GOAL]
case h.inr.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
k_gt : n e < k
m : ℕ := k - 1
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
have m_ge : n e ≤ m := Nat.le_pred_of_lt k_gt
[GOAL]
case h.inr.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
k_gt : n e < k
m : ℕ := k - 1
m_ge : n e ≤ m
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
have km : k = m + 1 := (Nat.succ_pred_eq_of_pos (lt_of_le_of_lt (zero_le _) k_gt)).symm
[GOAL]
case h.inr.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < y - x
h'k : y - x ≤ (1 / 2) ^ k
k_gt : n e < k
m : ℕ := k - 1
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
rw [km] at hk h'k
[GOAL]
case h.inr.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
have J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖ :=
calc
‖f y - f x - (y - x) • L e (n e) m‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m :=
by
apply le_of_mem_a (hn e (n e) m le_rfl m_ge).2.2
· simp only [one_div, inv_pow, left_mem_Icc, le_add_iff_nonneg_right]
exact div_nonneg (inv_nonneg.2 (pow_nonneg zero_le_two _)) zero_le_two
· simp only [pow_add, tsub_le_iff_left] at h'k
simpa only [hy.1, mem_Icc, true_and_iff, one_div, pow_one] using h'k
_ = 4 * (1 / 2) ^ e * (1 / 2) ^ (m + 2) := by field_simp; ring
_ ≤ 4 * (1 / 2) ^ e * (y - x) := (mul_le_mul_of_nonneg_left (le_of_lt hk) (mul_nonneg (by norm_num) (le_of_lt P)))
_ = 4 * (1 / 2) ^ e * ‖y - x‖ := by rw [Real.norm_of_nonneg yzero.le]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f y - f x - (y - x) • L e (n e) m‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m
[PROOFSTEP]
apply le_of_mem_a (hn e (n e) m le_rfl m_ge).2.2
[GOAL]
case hy
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ x ∈ Icc x (x + (1 / 2) ^ m / 2)
[PROOFSTEP]
simp only [one_div, inv_pow, left_mem_Icc, le_add_iff_nonneg_right]
[GOAL]
case hy
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ 0 ≤ (2 ^ (k - 1))⁻¹ / 2
[PROOFSTEP]
exact div_nonneg (inv_nonneg.2 (pow_nonneg zero_le_two _)) zero_le_two
[GOAL]
case hz
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ y ∈ Icc x (x + (1 / 2) ^ m / 2)
[PROOFSTEP]
simp only [pow_add, tsub_le_iff_left] at h'k
[GOAL]
case hz
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
h'k : y ≤ x + (1 / 2) ^ (k - 1) * (1 / 2) ^ 1
⊢ y ∈ Icc x (x + (1 / 2) ^ m / 2)
[PROOFSTEP]
simpa only [hy.1, mem_Icc, true_and_iff, one_div, pow_one] using h'k
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ (1 / 2) ^ e * (1 / 2) ^ m = 4 * (1 / 2) ^ e * (1 / 2) ^ (m + 2)
[PROOFSTEP]
field_simp
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ 2 ^ e * 2 ^ (k - 1 + 2) = 4 * (2 ^ e * 2 ^ (k - 1))
[PROOFSTEP]
ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ 0 ≤ 4
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
⊢ 4 * (1 / 2) ^ e * (y - x) = 4 * (1 / 2) ^ e * ‖y - x‖
[PROOFSTEP]
rw [Real.norm_of_nonneg yzero.le]
[GOAL]
case h.inr.intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖
⊢ ‖f y - f x - (y - x) • f'‖ ≤ ε * ‖y - x‖
[PROOFSTEP]
calc
‖f y - f x - (y - x) • f'‖ = ‖f y - f x - (y - x) • L e (n e) m + (y - x) • (L e (n e) m - f')‖ := by
simp only [smul_sub, sub_add_sub_cancel]
_ ≤ 4 * (1 / 2) ^ e * ‖y - x‖ + ‖y - x‖ * (12 * (1 / 2) ^ e) :=
(norm_add_le_of_le J (by rw [norm_smul]; exact mul_le_mul_of_nonneg_left (Lf' _ _ m_ge) (norm_nonneg _)))
_ = 16 * ‖y - x‖ * (1 / 2) ^ e := by ring
_ ≤ 16 * ‖y - x‖ * (ε / 16) := (mul_le_mul_of_nonneg_left he.le (mul_nonneg (by norm_num) (norm_nonneg _)))
_ = ε * ‖y - x‖ := by ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖
⊢ ‖f y - f x - (y - x) • f'‖ = ‖f y - f x - (y - x) • L e (n e) m + (y - x) • (L e (n e) m - f')‖
[PROOFSTEP]
simp only [smul_sub, sub_add_sub_cancel]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖
⊢ ‖(y - x) • (L e (n e) m - f')‖ ≤ ‖y - x‖ * (12 * (1 / 2) ^ e)
[PROOFSTEP]
rw [norm_smul]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖
⊢ ‖y - x‖ * ‖L e (n e) m - f'‖ ≤ ‖y - x‖ * (12 * (1 / 2) ^ e)
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left (Lf' _ _ m_ge) (norm_nonneg _)
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖
⊢ 4 * (1 / 2) ^ e * ‖y - x‖ + ‖y - x‖ * (12 * (1 / 2) ^ e) = 16 * ‖y - x‖ * (1 / 2) ^ e
[PROOFSTEP]
ring
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖
⊢ 0 ≤ 16
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
e : ℕ
he : (1 / 2) ^ e < ε / 16
xmem : x ∈ Ico x (x + (1 / 2) ^ (n e + 1))
y : ℝ
hy : y ∈ Icc x (x + (1 / 2) ^ (n e + 1))
xy : x < y
yzero : 0 < y - x
y_le : y - x ≤ (1 / 2) ^ (n e + 1)
yone : y - x ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : y - x ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < y - x
m_ge : n e ≤ m
km : k = m + 1
J : ‖f y - f x - (y - x) • L e (n e) m‖ ≤ 4 * (1 / 2) ^ e * ‖y - x‖
⊢ 16 * ‖y - x‖ * (ε / 16) = ε * ‖y - x‖
[PROOFSTEP]
ring
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
this : HasDerivWithinAt f f' (Ici x) x
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
rw [← this.derivWithin (uniqueDiffOn_Ici x x Set.left_mem_Ici)] at f'K
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
x : ℝ
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * (1 / 2) ^ e
L0 : ℕ → F := fun e => L e (n e) (n e)
this✝ : CauchySeq L0
f' : F
f'K : derivWithin f (Ici x) x ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * (1 / 2) ^ e
this : HasDerivWithinAt f f' (Ici x) x
⊢ x ∈ {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
exact ⟨this.differentiableWithinAt, f'K⟩
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
⊢ MeasurableSet {x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ K}
[PROOFSTEP]
simp only [differentiable_set_eq_d K hK, D]
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
⊢ MeasurableSet
(⋂ (e : ℕ), ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
x✝ : ℕ
⊢ MeasurableSet (⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ x✝))
[PROOFSTEP]
refine MeasurableSet.iUnion fun _ => ?_
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
x✝¹ x✝ : ℕ
⊢ MeasurableSet (⋂ (p : ℕ) (_ : p ≥ x✝) (q : ℕ) (_ : q ≥ x✝), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ x✝¹))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
x✝² x✝¹ x✝ : ℕ
⊢ MeasurableSet (⋂ (_ : x✝ ≥ x✝¹) (q : ℕ) (_ : q ≥ x✝¹), B f K ((1 / 2) ^ x✝) ((1 / 2) ^ q) ((1 / 2) ^ x✝²))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
x✝³ x✝² x✝¹ : ℕ
x✝ : x✝¹ ≥ x✝²
⊢ MeasurableSet (⋂ (q : ℕ) (_ : q ≥ x✝²), B f K ((1 / 2) ^ x✝¹) ((1 / 2) ^ q) ((1 / 2) ^ x✝³))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
x✝⁴ x✝³ x✝² : ℕ
x✝¹ : x✝² ≥ x✝³
x✝ : ℕ
⊢ MeasurableSet (⋂ (_ : x✝ ≥ x✝³), B f K ((1 / 2) ^ x✝²) ((1 / 2) ^ x✝) ((1 / 2) ^ x✝⁴))
[PROOFSTEP]
refine MeasurableSet.iInter fun _ => ?_
[GOAL]
F : Type u_1
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
f : ℝ → F
K✝ K : Set F
hK : IsComplete K
x✝⁵ x✝⁴ x✝³ : ℕ
x✝² : x✝³ ≥ x✝⁴
x✝¹ : ℕ
x✝ : x✝¹ ≥ x✝⁴
⊢ MeasurableSet (B f K ((1 / 2) ^ x✝³) ((1 / 2) ^ x✝¹) ((1 / 2) ^ x✝⁵))
[PROOFSTEP]
exact measurableSet_b
[GOAL]
F : Type u_1
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝ : CompleteSpace F
⊢ MeasurableSet {x | DifferentiableWithinAt ℝ f (Ici x) x}
[PROOFSTEP]
have : IsComplete (univ : Set F) := complete_univ
[GOAL]
F : Type u_1
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝ : CompleteSpace F
this : IsComplete univ
⊢ MeasurableSet {x | DifferentiableWithinAt ℝ f (Ici x) x}
[PROOFSTEP]
convert measurableSet_of_differentiableWithinAt_Ici_of_isComplete f this
[GOAL]
case h.e'_3.h.e'_2.h.a
F : Type u_1
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝ : CompleteSpace F
this : IsComplete univ
x✝ : ℝ
⊢ DifferentiableWithinAt ℝ f (Ici x✝) x✝ ↔ DifferentiableWithinAt ℝ f (Ici x✝) x✝ ∧ derivWithin f (Ici x✝) x✝ ∈ univ
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝² : CompleteSpace F
inst✝¹ : MeasurableSpace F
inst✝ : BorelSpace F
⊢ Measurable fun x => derivWithin f (Ici x) x
[PROOFSTEP]
refine' measurable_of_isClosed fun s hs => _
[GOAL]
F : Type u_1
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝² : CompleteSpace F
inst✝¹ : MeasurableSpace F
inst✝ : BorelSpace F
s : Set ((fun x => F) 1)
hs : IsClosed s
⊢ MeasurableSet ((fun x => derivWithin f (Ici x) x) ⁻¹' s)
[PROOFSTEP]
have :
(fun x => derivWithin f (Ici x) x) ⁻¹' s =
{x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ s} ∪
{x | ¬DifferentiableWithinAt ℝ f (Ici x) x} ∩ {_x | (0 : F) ∈ s} :=
Set.ext fun x => mem_preimage.trans derivWithin_mem_iff
[GOAL]
F : Type u_1
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝² : CompleteSpace F
inst✝¹ : MeasurableSpace F
inst✝ : BorelSpace F
s : Set ((fun x => F) 1)
hs : IsClosed s
this :
(fun x => derivWithin f (Ici x) x) ⁻¹' s =
{x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ s} ∪
{x | ¬DifferentiableWithinAt ℝ f (Ici x) x} ∩ {_x | 0 ∈ s}
⊢ MeasurableSet ((fun x => derivWithin f (Ici x) x) ⁻¹' s)
[PROOFSTEP]
rw [this]
[GOAL]
F : Type u_1
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝² : CompleteSpace F
inst✝¹ : MeasurableSpace F
inst✝ : BorelSpace F
s : Set ((fun x => F) 1)
hs : IsClosed s
this :
(fun x => derivWithin f (Ici x) x) ⁻¹' s =
{x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ s} ∪
{x | ¬DifferentiableWithinAt ℝ f (Ici x) x} ∩ {_x | 0 ∈ s}
⊢ MeasurableSet
({x | DifferentiableWithinAt ℝ f (Ici x) x ∧ derivWithin f (Ici x) x ∈ s} ∪
{x | ¬DifferentiableWithinAt ℝ f (Ici x) x} ∩ {_x | 0 ∈ s})
[PROOFSTEP]
exact
(measurableSet_of_differentiableWithinAt_Ici_of_isComplete _ hs.isComplete).union
((measurableSet_of_differentiableWithinAt_Ici _).compl.inter (MeasurableSet.const _))
[GOAL]
F : Type u_1
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝¹ : CompleteSpace F
inst✝ : SecondCountableTopology F
⊢ StronglyMeasurable fun x => derivWithin f (Ici x) x
[PROOFSTEP]
borelize F
[GOAL]
F : Type u_1
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝¹ : CompleteSpace F
inst✝ : SecondCountableTopology F
this✝¹ : MeasurableSpace F := borel F
this✝ : BorelSpace F
⊢ StronglyMeasurable fun x => derivWithin f (Ici x) x
[PROOFSTEP]
exact (measurable_derivWithin_Ici f).stronglyMeasurable
[GOAL]
F : Type u_1
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝ : CompleteSpace F
⊢ MeasurableSet {x | DifferentiableWithinAt ℝ f (Ioi x) x}
[PROOFSTEP]
simpa [differentiableWithinAt_Ioi_iff_Ici] using measurableSet_of_differentiableWithinAt_Ici f
[GOAL]
F : Type u_1
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝² : CompleteSpace F
inst✝¹ : MeasurableSpace F
inst✝ : BorelSpace F
⊢ Measurable fun x => derivWithin f (Ioi x) x
[PROOFSTEP]
simpa [derivWithin_Ioi_eq_Ici] using measurable_derivWithin_Ici f
[GOAL]
F : Type u_1
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝¹ : CompleteSpace F
inst✝ : SecondCountableTopology F
⊢ StronglyMeasurable fun x => derivWithin f (Ioi x) x
[PROOFSTEP]
borelize F
[GOAL]
F : Type u_1
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
f : ℝ → F
K : Set F
inst✝¹ : CompleteSpace F
inst✝ : SecondCountableTopology F
this✝¹ : MeasurableSpace F := borel F
this✝ : BorelSpace F
⊢ StronglyMeasurable fun x => derivWithin f (Ioi x) x
[PROOFSTEP]
exact (measurable_derivWithin_Ioi f).stronglyMeasurable
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Measurable", "llama_tokens": 177276} |
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝¹¹ : Fintype m
inst✝¹⁰ : DecidableEq m
inst✝⁹ : Fintype n
inst✝⁸ : DecidableEq n
inst✝⁷ : (i : m) → Fintype (n' i)
inst✝⁶ : (i : m) → DecidableEq (n' i)
inst✝⁵ : Field 𝕂
inst✝⁴ : Ring 𝔸
inst✝³ : TopologicalSpace 𝔸
inst✝² : TopologicalRing 𝔸
inst✝¹ : Algebra 𝕂 𝔸
inst✝ : T2Space 𝔸
v : m → 𝔸
⊢ exp 𝕂 (diagonal v) = diagonal (exp 𝕂 v)
[PROOFSTEP]
simp_rw [exp_eq_tsum, diagonal_pow, ← diagonal_smul, ← diagonal_tsum]
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝¹¹ : Fintype m
inst✝¹⁰ : DecidableEq m
inst✝⁹ : Fintype n
inst✝⁸ : DecidableEq n
inst✝⁷ : (i : m) → Fintype (n' i)
inst✝⁶ : (i : m) → DecidableEq (n' i)
inst✝⁵ : Field 𝕂
inst✝⁴ : Ring 𝔸
inst✝³ : TopologicalSpace 𝔸
inst✝² : TopologicalRing 𝔸
inst✝¹ : Algebra 𝕂 𝔸
inst✝ : T2Space 𝔸
v : m → Matrix n n 𝔸
⊢ exp 𝕂 (blockDiagonal v) = blockDiagonal (exp 𝕂 v)
[PROOFSTEP]
simp_rw [exp_eq_tsum, ← blockDiagonal_pow, ← blockDiagonal_smul, ← blockDiagonal_tsum]
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝¹¹ : Fintype m
inst✝¹⁰ : DecidableEq m
inst✝⁹ : Fintype n
inst✝⁸ : DecidableEq n
inst✝⁷ : (i : m) → Fintype (n' i)
inst✝⁶ : (i : m) → DecidableEq (n' i)
inst✝⁵ : Field 𝕂
inst✝⁴ : Ring 𝔸
inst✝³ : TopologicalSpace 𝔸
inst✝² : TopologicalRing 𝔸
inst✝¹ : Algebra 𝕂 𝔸
inst✝ : T2Space 𝔸
v : (i : m) → Matrix (n' i) (n' i) 𝔸
⊢ exp 𝕂 (blockDiagonal' v) = blockDiagonal' (exp 𝕂 v)
[PROOFSTEP]
simp_rw [exp_eq_tsum, ← blockDiagonal'_pow, ← blockDiagonal'_smul, ← blockDiagonal'_tsum]
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁷ : Fintype m
inst✝⁶ : DecidableEq m
inst✝⁵ : Field 𝕂
inst✝⁴ : CommRing 𝔸
inst✝³ : TopologicalSpace 𝔸
inst✝² : TopologicalRing 𝔸
inst✝¹ : Algebra 𝕂 𝔸
inst✝ : T2Space 𝔸
A : Matrix m m 𝔸
⊢ exp 𝕂 Aᵀ = (exp 𝕂 A)ᵀ
[PROOFSTEP]
simp_rw [exp_eq_tsum, transpose_tsum, transpose_smul, transpose_pow]
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A B : Matrix m m 𝔸
h : Commute A B
⊢ exp 𝕂 (A + B) = exp 𝕂 A * exp 𝕂 B
[PROOFSTEP]
letI : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A B : Matrix m m 𝔸
h : Commute A B
this : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
⊢ exp 𝕂 (A + B) = exp 𝕂 A * exp 𝕂 B
[PROOFSTEP]
letI : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A B : Matrix m m 𝔸
h : Commute A B
this✝ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
⊢ exp 𝕂 (A + B) = exp 𝕂 A * exp 𝕂 B
[PROOFSTEP]
letI : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A B : Matrix m m 𝔸
h : Commute A B
this✝¹ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this✝ : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
this : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
⊢ exp 𝕂 (A + B) = exp 𝕂 A * exp 𝕂 B
[PROOFSTEP]
exact exp_add_of_commute h
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
ι : Type u_7
s : Finset ι
f : ι → Matrix m m 𝔸
h : Set.Pairwise ↑s fun i j => Commute (f i) (f j)
⊢ exp 𝕂 (∑ i in s, f i) =
Finset.noncommProd s (fun i => exp 𝕂 (f i))
(_ : ∀ (i : ι), i ∈ ↑s → ∀ (j : ι), j ∈ ↑s → i ≠ j → Commute (exp 𝕂 (f i)) (exp 𝕂 (f j)))
[PROOFSTEP]
letI : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
ι : Type u_7
s : Finset ι
f : ι → Matrix m m 𝔸
h : Set.Pairwise ↑s fun i j => Commute (f i) (f j)
this : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
⊢ exp 𝕂 (∑ i in s, f i) =
Finset.noncommProd s (fun i => exp 𝕂 (f i))
(_ : ∀ (i : ι), i ∈ ↑s → ∀ (j : ι), j ∈ ↑s → i ≠ j → Commute (exp 𝕂 (f i)) (exp 𝕂 (f j)))
[PROOFSTEP]
letI : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
ι : Type u_7
s : Finset ι
f : ι → Matrix m m 𝔸
h : Set.Pairwise ↑s fun i j => Commute (f i) (f j)
this✝ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
⊢ exp 𝕂 (∑ i in s, f i) =
Finset.noncommProd s (fun i => exp 𝕂 (f i))
(_ : ∀ (i : ι), i ∈ ↑s → ∀ (j : ι), j ∈ ↑s → i ≠ j → Commute (exp 𝕂 (f i)) (exp 𝕂 (f j)))
[PROOFSTEP]
letI : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
ι : Type u_7
s : Finset ι
f : ι → Matrix m m 𝔸
h : Set.Pairwise ↑s fun i j => Commute (f i) (f j)
this✝¹ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this✝ : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
this : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
⊢ exp 𝕂 (∑ i in s, f i) =
Finset.noncommProd s (fun i => exp 𝕂 (f i))
(_ : ∀ (i : ι), i ∈ ↑s → ∀ (j : ι), j ∈ ↑s → i ≠ j → Commute (exp 𝕂 (f i)) (exp 𝕂 (f j)))
[PROOFSTEP]
exact exp_sum_of_commute s f h
[GOAL]
𝕂 : Type u_1
m : Type u_2
n✝ : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n✝
inst✝⁵ : DecidableEq n✝
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
n : ℕ
A : Matrix m m 𝔸
⊢ exp 𝕂 (n • A) = exp 𝕂 A ^ n
[PROOFSTEP]
letI : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n✝ : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n✝
inst✝⁵ : DecidableEq n✝
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
n : ℕ
A : Matrix m m 𝔸
this : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
⊢ exp 𝕂 (n • A) = exp 𝕂 A ^ n
[PROOFSTEP]
letI : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n✝ : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n✝
inst✝⁵ : DecidableEq n✝
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
n : ℕ
A : Matrix m m 𝔸
this✝ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
⊢ exp 𝕂 (n • A) = exp 𝕂 A ^ n
[PROOFSTEP]
letI : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
[GOAL]
𝕂 : Type u_1
m : Type u_2
n✝ : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n✝
inst✝⁵ : DecidableEq n✝
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
n : ℕ
A : Matrix m m 𝔸
this✝¹ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this✝ : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
this : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
⊢ exp 𝕂 (n • A) = exp 𝕂 A ^ n
[PROOFSTEP]
exact exp_nsmul n A
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
⊢ IsUnit (exp 𝕂 A)
[PROOFSTEP]
letI : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
this : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
⊢ IsUnit (exp 𝕂 A)
[PROOFSTEP]
letI : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
this✝ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
⊢ IsUnit (exp 𝕂 A)
[PROOFSTEP]
letI : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
this✝¹ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this✝ : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
this : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
⊢ IsUnit (exp 𝕂 A)
[PROOFSTEP]
exact isUnit_exp _ A
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
U : (Matrix m m 𝔸)ˣ
A : Matrix m m 𝔸
⊢ exp 𝕂 (↑U * A * ↑U⁻¹) = ↑U * exp 𝕂 A * ↑U⁻¹
[PROOFSTEP]
letI : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
U : (Matrix m m 𝔸)ˣ
A : Matrix m m 𝔸
this : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
⊢ exp 𝕂 (↑U * A * ↑U⁻¹) = ↑U * exp 𝕂 A * ↑U⁻¹
[PROOFSTEP]
letI : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
U : (Matrix m m 𝔸)ˣ
A : Matrix m m 𝔸
this✝ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
⊢ exp 𝕂 (↑U * A * ↑U⁻¹) = ↑U * exp 𝕂 A * ↑U⁻¹
[PROOFSTEP]
letI : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
U : (Matrix m m 𝔸)ˣ
A : Matrix m m 𝔸
this✝¹ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this✝ : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
this : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
⊢ exp 𝕂 (↑U * A * ↑U⁻¹) = ↑U * exp 𝕂 A * ↑U⁻¹
[PROOFSTEP]
exact exp_units_conj _ U A
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
⊢ exp 𝕂 (-A) = (exp 𝕂 A)⁻¹
[PROOFSTEP]
rw [nonsing_inv_eq_ring_inverse]
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
⊢ exp 𝕂 (-A) = Ring.inverse (exp 𝕂 A)
[PROOFSTEP]
letI : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
this : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
⊢ exp 𝕂 (-A) = Ring.inverse (exp 𝕂 A)
[PROOFSTEP]
letI : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
this✝ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
⊢ exp 𝕂 (-A) = Ring.inverse (exp 𝕂 A)
[PROOFSTEP]
letI : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
this✝¹ : SeminormedRing (Matrix m m 𝔸) := Matrix.linftyOpSemiNormedRing
this✝ : NormedRing (Matrix m m 𝔸) := Matrix.linftyOpNormedRing
this : NormedAlgebra 𝕂 (Matrix m m 𝔸) := Matrix.linftyOpNormedAlgebra
⊢ exp 𝕂 (-A) = Ring.inverse (exp 𝕂 A)
[PROOFSTEP]
exact (Ring.inverse_exp _ A).symm
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
z : ℤ
A : Matrix m m 𝔸
⊢ exp 𝕂 (z • A) = exp 𝕂 A ^ z
[PROOFSTEP]
obtain ⟨n, rfl | rfl⟩ := z.eq_nat_or_neg
[GOAL]
case intro.inl
𝕂 : Type u_1
m : Type u_2
n✝ : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n✝
inst✝⁵ : DecidableEq n✝
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
n : ℕ
⊢ exp 𝕂 (↑n • A) = exp 𝕂 A ^ ↑n
[PROOFSTEP]
rw [zpow_ofNat, coe_nat_zsmul, exp_nsmul]
[GOAL]
case intro.inr
𝕂 : Type u_1
m : Type u_2
n✝ : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n✝
inst✝⁵ : DecidableEq n✝
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
n : ℕ
⊢ exp 𝕂 (-↑n • A) = exp 𝕂 A ^ (-↑n)
[PROOFSTEP]
have : IsUnit (exp 𝕂 A).det := (Matrix.isUnit_iff_isUnit_det _).mp (isUnit_exp _ _)
[GOAL]
case intro.inr
𝕂 : Type u_1
m : Type u_2
n✝ : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n✝
inst✝⁵ : DecidableEq n✝
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
A : Matrix m m 𝔸
n : ℕ
this : IsUnit (det (exp 𝕂 A))
⊢ exp 𝕂 (-↑n • A) = exp 𝕂 A ^ (-↑n)
[PROOFSTEP]
rw [Matrix.zpow_neg this, zpow_ofNat, neg_smul, exp_neg, coe_nat_zsmul, exp_nsmul]
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
U A : Matrix m m 𝔸
hy : IsUnit U
u : (Matrix m m 𝔸)ˣ
hu : ↑u = U
⊢ exp 𝕂 (↑u * A * (↑u)⁻¹) = ↑u * exp 𝕂 A * (↑u)⁻¹
[PROOFSTEP]
simpa only [Matrix.coe_units_inv] using exp_units_conj 𝕂 u A
[GOAL]
𝕂 : Type u_1
m : Type u_2
n : Type u_3
p : Type u_4
n' : m → Type u_5
𝔸 : Type u_6
inst✝⁹ : IsROrC 𝕂
inst✝⁸ : Fintype m
inst✝⁷ : DecidableEq m
inst✝⁶ : Fintype n
inst✝⁵ : DecidableEq n
inst✝⁴ : (i : m) → Fintype (n' i)
inst✝³ : (i : m) → DecidableEq (n' i)
inst✝² : NormedCommRing 𝔸
inst✝¹ : NormedAlgebra 𝕂 𝔸
inst✝ : CompleteSpace 𝔸
U A : Matrix m m 𝔸
hy : IsUnit U
u : (Matrix m m 𝔸)ˣ
hu : ↑u = U
⊢ exp 𝕂 ((↑u)⁻¹ * A * ↑u) = (↑u)⁻¹ * exp 𝕂 A * ↑u
[PROOFSTEP]
simpa only [Matrix.coe_units_inv] using exp_units_conj' 𝕂 u A
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.MatrixExponential", "llama_tokens": 11943} |
[GOAL]
E : Type u_1
F : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
inst✝⁷ : SeminormedAddCommGroup E
inst✝⁶ : SeminormedAddCommGroup F
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NontriviallyNormedField 𝕜₂
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedSpace 𝕜₂ F
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹ : RingHomIsometric σ₁₂
ι : Type u_5
inst✝ : CompleteSpace E
g : ι → E →SL[σ₁₂] F
h : ∀ (x : E), ∃ C, ∀ (i : ι), ‖↑(g i) x‖ ≤ C
⊢ ∃ C', ∀ (i : ι), ‖g i‖ ≤ C'
[PROOFSTEP]
rw [show (∃ C, ∀ i, ‖g i‖ ≤ C) ↔ _ from (NormedSpace.equicontinuous_TFAE g).out 5 2]
[GOAL]
E : Type u_1
F : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
inst✝⁷ : SeminormedAddCommGroup E
inst✝⁶ : SeminormedAddCommGroup F
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NontriviallyNormedField 𝕜₂
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedSpace 𝕜₂ F
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹ : RingHomIsometric σ₁₂
ι : Type u_5
inst✝ : CompleteSpace E
g : ι → E →SL[σ₁₂] F
h : ∀ (x : E), ∃ C, ∀ (i : ι), ‖↑(g i) x‖ ≤ C
⊢ UniformEquicontinuous (FunLike.coe ∘ g)
[PROOFSTEP]
refine (norm_withSeminorms 𝕜₂ F).banach_steinhaus (fun _ x ↦ ?_)
[GOAL]
E : Type u_1
F : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
inst✝⁷ : SeminormedAddCommGroup E
inst✝⁶ : SeminormedAddCommGroup F
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NontriviallyNormedField 𝕜₂
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedSpace 𝕜₂ F
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹ : RingHomIsometric σ₁₂
ι : Type u_5
inst✝ : CompleteSpace E
g : ι → E →SL[σ₁₂] F
h : ∀ (x : E), ∃ C, ∀ (i : ι), ‖↑(g i) x‖ ≤ C
x✝ : Fin 1
x : E
⊢ BddAbove (range fun i => ↑(normSeminorm 𝕜₂ F) (↑(g i) x))
[PROOFSTEP]
simpa [bddAbove_def, forall_range_iff] using h x
[GOAL]
E : Type u_1
F : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
inst✝⁷ : SeminormedAddCommGroup E
inst✝⁶ : SeminormedAddCommGroup F
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NontriviallyNormedField 𝕜₂
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedSpace 𝕜₂ F
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹ : RingHomIsometric σ₁₂
ι : Type u_5
inst✝ : CompleteSpace E
g : ι → E →SL[σ₁₂] F
h : ∀ (x : E), ⨆ (i : ι), ↑‖↑(g i) x‖₊ < ⊤
⊢ ⨆ (i : ι), ↑‖g i‖₊ < ⊤
[PROOFSTEP]
rw [show ((⨆ i, ↑‖g i‖₊) < ∞) ↔ _ from (NormedSpace.equicontinuous_TFAE g).out 8 2]
[GOAL]
E : Type u_1
F : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
inst✝⁷ : SeminormedAddCommGroup E
inst✝⁶ : SeminormedAddCommGroup F
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NontriviallyNormedField 𝕜₂
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedSpace 𝕜₂ F
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹ : RingHomIsometric σ₁₂
ι : Type u_5
inst✝ : CompleteSpace E
g : ι → E →SL[σ₁₂] F
h : ∀ (x : E), ⨆ (i : ι), ↑‖↑(g i) x‖₊ < ⊤
⊢ UniformEquicontinuous (FunLike.coe ∘ g)
[PROOFSTEP]
refine (norm_withSeminorms 𝕜₂ F).banach_steinhaus (fun _ x ↦ ?_)
[GOAL]
E : Type u_1
F : Type u_2
𝕜 : Type u_3
𝕜₂ : Type u_4
inst✝⁷ : SeminormedAddCommGroup E
inst✝⁶ : SeminormedAddCommGroup F
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NontriviallyNormedField 𝕜₂
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedSpace 𝕜₂ F
σ₁₂ : 𝕜 →+* 𝕜₂
inst✝¹ : RingHomIsometric σ₁₂
ι : Type u_5
inst✝ : CompleteSpace E
g : ι → E →SL[σ₁₂] F
h : ∀ (x : E), ⨆ (i : ι), ↑‖↑(g i) x‖₊ < ⊤
x✝ : Fin 1
x : E
⊢ BddAbove (range fun i => ↑(normSeminorm 𝕜₂ F) (↑(g i) x))
[PROOFSTEP]
simpa [← NNReal.bddAbove_coe, ← Set.range_comp] using (WithTop.iSup_coe_lt_top (fun i ↦ ‖g i x‖₊)).mp (h x)
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.BanachSteinhaus", "llama_tokens": 1778} |
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
inst✝⁵ : Semiring R₁
inst✝⁴ : Semiring R₂
σ₁₂ : R₁ →+* R₂
M₁ : Type u_3
M₂ : Type u_4
inst✝³ : TopologicalSpace M₁
inst✝² : AddCommMonoid M₁
inst✝¹ : TopologicalSpace M₂
inst✝ : T2Space M₂
f : M₁ → M₂
⊢ IsCompactOperator f ↔ ∃ V, V ∈ 𝓝 0 ∧ IsCompact (closure (f '' V))
[PROOFSTEP]
rw [isCompactOperator_iff_exists_mem_nhds_image_subset_compact]
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
inst✝⁵ : Semiring R₁
inst✝⁴ : Semiring R₂
σ₁₂ : R₁ →+* R₂
M₁ : Type u_3
M₂ : Type u_4
inst✝³ : TopologicalSpace M₁
inst✝² : AddCommMonoid M₁
inst✝¹ : TopologicalSpace M₂
inst✝ : T2Space M₂
f : M₁ → M₂
⊢ (∃ V, V ∈ 𝓝 0 ∧ ∃ K, IsCompact K ∧ f '' V ⊆ K) ↔ ∃ V, V ∈ 𝓝 0 ∧ IsCompact (closure (f '' V))
[PROOFSTEP]
exact
⟨fun ⟨V, hV, K, hK, hKV⟩ => ⟨V, hV, isCompact_closure_of_subset_compact hK hKV⟩, fun ⟨V, hV, hVc⟩ =>
⟨V, hV, closure (f '' V), hVc, subset_closure⟩⟩
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝⁸ : NontriviallyNormedField 𝕜₁
inst✝⁷ : SeminormedRing 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁶ : TopologicalSpace M₁
inst✝⁵ : AddCommMonoid M₁
inst✝⁴ : TopologicalSpace M₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module 𝕜₁ M₁
inst✝¹ : Module 𝕜₂ M₂
inst✝ : ContinuousConstSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
S : Set M₁
hS : IsVonNBounded 𝕜₁ S
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrS : ∀ (a : 𝕜₁), r ≤ ‖a‖ → S ⊆ a • ↑f ⁻¹' K
c : 𝕜₁
hc : r < ‖c‖
this : c ≠ 0 := ne_zero_of_norm_ne_zero (Ne.symm (LT.lt.ne (LT.lt.trans hr hc)))
⊢ ↑f '' S ⊆ ↑σ₁₂ c • K
[PROOFSTEP]
rw [image_subset_iff, preimage_smul_setₛₗ _ _ _ f this.isUnit]
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝⁸ : NontriviallyNormedField 𝕜₁
inst✝⁷ : SeminormedRing 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁶ : TopologicalSpace M₁
inst✝⁵ : AddCommMonoid M₁
inst✝⁴ : TopologicalSpace M₂
inst✝³ : AddCommMonoid M₂
inst✝² : Module 𝕜₁ M₁
inst✝¹ : Module 𝕜₂ M₂
inst✝ : ContinuousConstSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
S : Set M₁
hS : IsVonNBounded 𝕜₁ S
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrS : ∀ (a : 𝕜₁), r ≤ ‖a‖ → S ⊆ a • ↑f ⁻¹' K
c : 𝕜₁
hc : r < ‖c‖
this : c ≠ 0 := ne_zero_of_norm_ne_zero (Ne.symm (LT.lt.ne (LT.lt.trans hr hc)))
⊢ S ⊆ c • ↑f ⁻¹' K
[PROOFSTEP]
exact hrS c hc.le
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝⁷ : NontriviallyNormedField 𝕜₁
inst✝⁶ : SeminormedRing 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁵ : SeminormedAddCommGroup M₁
inst✝⁴ : TopologicalSpace M₂
inst✝³ : AddCommMonoid M₂
inst✝² : NormedSpace 𝕜₁ M₁
inst✝¹ : Module 𝕜₂ M₂
inst✝ : ContinuousConstSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
S : Set M₁
hS : Metric.Bounded S
⊢ IsVonNBounded 𝕜₁ S
[PROOFSTEP]
rwa [NormedSpace.isVonNBounded_iff, ← Metric.bounded_iff_isBounded]
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝⁸ : NontriviallyNormedField 𝕜₁
inst✝⁷ : SeminormedRing 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
M₃ : Type u_5
inst✝⁶ : SeminormedAddCommGroup M₁
inst✝⁵ : TopologicalSpace M₂
inst✝⁴ : AddCommMonoid M₂
inst✝³ : NormedSpace 𝕜₁ M₁
inst✝² : Module 𝕜₂ M₂
inst✝¹ : ContinuousConstSMul 𝕜₂ M₂
inst✝ : T2Space M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
S : Set M₁
hS : Metric.Bounded S
⊢ IsVonNBounded 𝕜₁ S
[PROOFSTEP]
rwa [NormedSpace.isVonNBounded_iff, ← Metric.bounded_iff_isBounded]
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
R₄ : Type u_4
inst✝¹² : Semiring R₁
inst✝¹¹ : Semiring R₂
inst✝¹⁰ : CommSemiring R₃
inst✝⁹ : CommSemiring R₄
σ₁₂ : R₁ →+* R₂
σ₁₄ : R₁ →+* R₄
σ₃₄ : R₃ →+* R₄
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
M₄ : Type u_8
inst✝⁸ : TopologicalSpace M₁
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : TopologicalSpace M₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : TopologicalSpace M₃
inst✝³ : AddCommGroup M₃
inst✝² : TopologicalSpace M₄
inst✝¹ : AddCommGroup M₄
inst✝ : TopologicalAddGroup M₄
f g : M₁ → M₄
hf : IsCompactOperator f
hg : IsCompactOperator g
⊢ IsCompactOperator (f - g)
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
R₄ : Type u_4
inst✝¹² : Semiring R₁
inst✝¹¹ : Semiring R₂
inst✝¹⁰ : CommSemiring R₃
inst✝⁹ : CommSemiring R₄
σ₁₂ : R₁ →+* R₂
σ₁₄ : R₁ →+* R₄
σ₃₄ : R₃ →+* R₄
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
M₄ : Type u_8
inst✝⁸ : TopologicalSpace M₁
inst✝⁷ : AddCommMonoid M₁
inst✝⁶ : TopologicalSpace M₂
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : TopologicalSpace M₃
inst✝³ : AddCommGroup M₃
inst✝² : TopologicalSpace M₄
inst✝¹ : AddCommGroup M₄
inst✝ : TopologicalAddGroup M₄
f g : M₁ → M₄
hf : IsCompactOperator f
hg : IsCompactOperator g
⊢ IsCompactOperator (f + -g)
[PROOFSTEP]
exact hf.add hg.neg
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁹ : Semiring R₁
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁶ : TopologicalSpace M₁
inst✝⁵ : TopologicalSpace M₂
inst✝⁴ : TopologicalSpace M₃
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
f : M₂ → M₃
hf : IsCompactOperator f
g : M₁ →SL[σ₁₂] M₂
⊢ IsCompactOperator (f ∘ ↑g)
[PROOFSTEP]
have := g.continuous.tendsto 0
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁹ : Semiring R₁
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁶ : TopologicalSpace M₁
inst✝⁵ : TopologicalSpace M₂
inst✝⁴ : TopologicalSpace M₃
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
f : M₂ → M₃
hf : IsCompactOperator f
g : M₁ →SL[σ₁₂] M₂
this : Tendsto (↑g) (𝓝 0) (𝓝 (↑g 0))
⊢ IsCompactOperator (f ∘ ↑g)
[PROOFSTEP]
rw [map_zero] at this
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁹ : Semiring R₁
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁶ : TopologicalSpace M₁
inst✝⁵ : TopologicalSpace M₂
inst✝⁴ : TopologicalSpace M₃
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
f : M₂ → M₃
hf : IsCompactOperator f
g : M₁ →SL[σ₁₂] M₂
this : Tendsto (↑g) (𝓝 0) (𝓝 0)
⊢ IsCompactOperator (f ∘ ↑g)
[PROOFSTEP]
rcases hf with ⟨K, hK, hKf⟩
[GOAL]
case intro.intro
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁹ : Semiring R₁
inst✝⁸ : Semiring R₂
inst✝⁷ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁶ : TopologicalSpace M₁
inst✝⁵ : TopologicalSpace M₂
inst✝⁴ : TopologicalSpace M₃
inst✝³ : AddCommMonoid M₁
inst✝² : Module R₁ M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R₂ M₂
f : M₂ → M₃
g : M₁ →SL[σ₁₂] M₂
this : Tendsto (↑g) (𝓝 0) (𝓝 0)
K : Set M₃
hK : IsCompact K
hKf : f ⁻¹' K ∈ 𝓝 0
⊢ IsCompactOperator (f ∘ ↑g)
[PROOFSTEP]
exact ⟨K, hK, this hKf⟩
[GOAL]
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁷ : Semiring R₁
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁴ : TopologicalSpace M₁
inst✝³ : TopologicalSpace M₂
inst✝² : TopologicalSpace M₃
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M₁ → M₂
hf : IsCompactOperator f
g : M₂ → M₃
hg : Continuous g
⊢ IsCompactOperator (g ∘ f)
[PROOFSTEP]
rcases hf with ⟨K, hK, hKf⟩
[GOAL]
case intro.intro
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁷ : Semiring R₁
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁴ : TopologicalSpace M₁
inst✝³ : TopologicalSpace M₂
inst✝² : TopologicalSpace M₃
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M₁ → M₂
g : M₂ → M₃
hg : Continuous g
K : Set M₂
hK : IsCompact K
hKf : f ⁻¹' K ∈ 𝓝 0
⊢ IsCompactOperator (g ∘ f)
[PROOFSTEP]
refine' ⟨g '' K, hK.image hg, mem_of_superset hKf _⟩
[GOAL]
case intro.intro
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁷ : Semiring R₁
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁴ : TopologicalSpace M₁
inst✝³ : TopologicalSpace M₂
inst✝² : TopologicalSpace M₃
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M₁ → M₂
g : M₂ → M₃
hg : Continuous g
K : Set M₂
hK : IsCompact K
hKf : f ⁻¹' K ∈ 𝓝 0
⊢ f ⁻¹' K ⊆ g ∘ f ⁻¹' (g '' K)
[PROOFSTEP]
rw [preimage_comp]
[GOAL]
case intro.intro
R₁ : Type u_1
R₂ : Type u_2
R₃ : Type u_3
inst✝⁷ : Semiring R₁
inst✝⁶ : Semiring R₂
inst✝⁵ : Semiring R₃
σ₁₂ : R₁ →+* R₂
σ₂₃ : R₂ →+* R₃
M₁ : Type u_4
M₂ : Type u_5
M₃ : Type u_6
inst✝⁴ : TopologicalSpace M₁
inst✝³ : TopologicalSpace M₂
inst✝² : TopologicalSpace M₃
inst✝¹ : AddCommMonoid M₁
inst✝ : Module R₁ M₁
f : M₁ → M₂
g : M₂ → M₃
hg : Continuous g
K : Set M₂
hK : IsCompact K
hKf : f ⁻¹' K ∈ 𝓝 0
⊢ f ⁻¹' K ⊆ f ⁻¹' (g ⁻¹' (g '' K))
[PROOFSTEP]
exact preimage_mono (subset_preimage_image _ _)
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
⊢ Continuous ↑f
[PROOFSTEP]
letI : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace _
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
this : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
⊢ Continuous ↑f
[PROOFSTEP]
haveI : UniformAddGroup M₂ := comm_topologicalAddGroup_is_uniform
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
⊢ Continuous ↑f
[PROOFSTEP]
refine' continuous_of_continuousAt_zero f fun U hU => _
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 (↑f 0)
⊢ U ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
rw [map_zero] at hU
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
hf : IsCompactOperator ↑f
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
⊢ U ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
rcases hf with
⟨K, hK, hKf⟩
-- But any compact set is totally bounded, hence Von-Neumann bounded. Thus, `K` absorbs `U`.
-- This gives `r > 0` such that `∀ a : 𝕜₂, r ≤ ‖a‖ → K ⊆ a • U`.
[GOAL]
case intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
⊢ U ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
rcases hK.totallyBounded.isVonNBounded 𝕜₂ hU with
⟨r, hr, hrU⟩
-- Choose `c : 𝕜₂` with `r < ‖c‖`.
[GOAL]
case intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
⊢ U ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
rcases NormedField.exists_lt_norm 𝕜₁ r with ⟨c, hc⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
⊢ U ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
have hcnz : c ≠ 0 := ne_zero_of_norm_ne_zero (hr.trans hc).ne.symm
[GOAL]
case intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
⊢ U ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
suffices (σ₁₂ <| c⁻¹) • K ⊆ U by
refine' mem_of_superset _ this
have : IsUnit c⁻¹ := hcnz.isUnit.inv
rwa [mem_map, preimage_smul_setₛₗ _ _ _ f this, set_smul_mem_nhds_zero_iff (inv_ne_zero hcnz)]
-- Since `σ₁₂ c⁻¹` = `(σ₁₂ c)⁻¹`, we have to prove that `K ⊆ σ₁₂ c • U`.
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝¹ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this✝ : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
this : ↑σ₁₂ c⁻¹ • K ⊆ U
⊢ U ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
refine' mem_of_superset _ this
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝¹ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this✝ : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
this : ↑σ₁₂ c⁻¹ • K ⊆ U
⊢ ↑σ₁₂ c⁻¹ • K ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
have : IsUnit c⁻¹ := hcnz.isUnit.inv
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝² : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this✝¹ : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
this✝ : ↑σ₁₂ c⁻¹ • K ⊆ U
this : IsUnit c⁻¹
⊢ ↑σ₁₂ c⁻¹ • K ∈ map (↑f) (𝓝 0)
[PROOFSTEP]
rwa [mem_map, preimage_smul_setₛₗ _ _ _ f this, set_smul_mem_nhds_zero_iff (inv_ne_zero hcnz)]
-- Since `σ₁₂ c⁻¹` = `(σ₁₂ c)⁻¹`, we have to prove that `K ⊆ σ₁₂ c • U`.
[GOAL]
case intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
⊢ ↑σ₁₂ c⁻¹ • K ⊆ U
[PROOFSTEP]
rw [map_inv₀, ← subset_set_smul_iff₀ ((map_ne_zero σ₁₂).mpr hcnz)]
-- But `σ₁₂` is isometric, so `‖σ₁₂ c‖ = ‖c‖ > r`, which concludes the argument since
-- `∀ a : 𝕜₂, r ≤ ‖a‖ → K ⊆ a • U`.
[GOAL]
case intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
⊢ K ⊆ ↑σ₁₂ c • U
[PROOFSTEP]
refine' hrU (σ₁₂ c) _
[GOAL]
case intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
⊢ r ≤ ‖↑σ₁₂ c‖
[PROOFSTEP]
rw [RingHomIsometric.is_iso]
[GOAL]
case intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹² : NontriviallyNormedField 𝕜₁
inst✝¹¹ : NontriviallyNormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
inst✝¹⁰ : RingHomIsometric σ₁₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁹ : TopologicalSpace M₁
inst✝⁸ : AddCommGroup M₁
inst✝⁷ : TopologicalSpace M₂
inst✝⁶ : AddCommGroup M₂
inst✝⁵ : Module 𝕜₁ M₁
inst✝⁴ : Module 𝕜₂ M₂
inst✝³ : TopologicalAddGroup M₁
inst✝² : ContinuousConstSMul 𝕜₁ M₁
inst✝¹ : TopologicalAddGroup M₂
inst✝ : ContinuousSMul 𝕜₂ M₂
f : M₁ →ₛₗ[σ₁₂] M₂
this✝ : UniformSpace M₂ := TopologicalAddGroup.toUniformSpace M₂
this : UniformAddGroup M₂
U : Set M₂
hU : U ∈ 𝓝 0
K : Set M₂
hK : IsCompact K
hKf : ↑f ⁻¹' K ∈ 𝓝 0
r : ℝ
hr : 0 < r
hrU : ∀ (a : 𝕜₂), r ≤ ‖a‖ → K ⊆ a • U
c : 𝕜₁
hc : r < ‖c‖
hcnz : c ≠ 0
⊢ r ≤ ‖c‖
[PROOFSTEP]
exact hc.le
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
⊢ IsClosed {f | IsCompactOperator ↑f}
[PROOFSTEP]
refine' isClosed_of_closure_subset _
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
⊢ closure {f | IsCompactOperator ↑f} ⊆ {f | IsCompactOperator ↑f}
[PROOFSTEP]
rintro u hu
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu : u ∈ closure {f | IsCompactOperator ↑f}
⊢ u ∈ {f | IsCompactOperator ↑f}
[PROOFSTEP]
rw [mem_closure_iff_nhds_zero] at hu
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
⊢ u ∈ {f | IsCompactOperator ↑f}
[PROOFSTEP]
suffices TotallyBounded (u '' Metric.closedBall 0 1)
by
change IsCompactOperator (u : M₁ →ₛₗ[σ₁₂] M₂)
rw [isCompactOperator_iff_isCompact_closure_image_closedBall (u : M₁ →ₛₗ[σ₁₂] M₂) zero_lt_one]
exact isCompact_of_totallyBounded_isClosed this.closure isClosed_closure
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
this : TotallyBounded (↑u '' closedBall 0 1)
⊢ u ∈ {f | IsCompactOperator ↑f}
[PROOFSTEP]
change IsCompactOperator (u : M₁ →ₛₗ[σ₁₂] M₂)
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
this : TotallyBounded (↑u '' closedBall 0 1)
⊢ IsCompactOperator ↑↑u
[PROOFSTEP]
rw [isCompactOperator_iff_isCompact_closure_image_closedBall (u : M₁ →ₛₗ[σ₁₂] M₂) zero_lt_one]
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
this : TotallyBounded (↑u '' closedBall 0 1)
⊢ IsCompact (closure (↑↑u '' closedBall 0 1))
[PROOFSTEP]
exact isCompact_of_totallyBounded_isClosed this.closure isClosed_closure
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
⊢ TotallyBounded (↑u '' closedBall 0 1)
[PROOFSTEP]
rw [totallyBounded_iff_subset_finite_iUnion_nhds_zero]
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
⊢ ∀ (U : Set M₂), U ∈ 𝓝 0 → ∃ t, Set.Finite t ∧ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ t), y +ᵥ U
[PROOFSTEP]
intro U hU
[GOAL]
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
⊢ ∃ t, Set.Finite t ∧ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ t), y +ᵥ U
[PROOFSTEP]
rcases exists_nhds_zero_half hU with ⟨V, hV, hVU⟩
[GOAL]
case intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
⊢ ∃ t, Set.Finite t ∧ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ t), y +ᵥ U
[PROOFSTEP]
let SV : Set M₁ × Set M₂ := ⟨closedBall 0 1, -V⟩
[GOAL]
case intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
⊢ ∃ t, Set.Finite t ∧ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ t), y +ᵥ U
[PROOFSTEP]
rcases hu {f | ∀ x ∈ SV.1, f x ∈ SV.2}
(ContinuousLinearMap.hasBasis_nhds_zero.mem_of_mem
⟨NormedSpace.isVonNBounded_closedBall _ _ _, neg_mem_nhds_zero M₂ hV⟩) with
⟨v, hv, huv⟩
[GOAL]
case intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
⊢ ∃ t, Set.Finite t ∧ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ t), y +ᵥ U
[PROOFSTEP]
rcases totallyBounded_iff_subset_finite_iUnion_nhds_zero.mp (hv.isCompact_closure_image_closedBall 1).totallyBounded V
hV with
⟨T, hT, hTv⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
⊢ ∃ t, Set.Finite t ∧ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ t), y +ᵥ U
[PROOFSTEP]
have hTv : v '' closedBall 0 1 ⊆ _ := subset_closure.trans hTv
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv✝ : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
hTv : ↑v '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
⊢ ∃ t, Set.Finite t ∧ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ t), y +ᵥ U
[PROOFSTEP]
refine' ⟨T, hT, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv✝ : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
hTv : ↑v '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
⊢ ↑u '' closedBall 0 1 ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ U
[PROOFSTEP]
rw [image_subset_iff, preimage_iUnion₂] at hTv ⊢
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv✝ : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
hTv : closedBall 0 1 ⊆ ⋃ (i : M₂) (_ : i ∈ T), ↑v ⁻¹' (i +ᵥ V)
⊢ closedBall 0 1 ⊆ ⋃ (i : M₂) (_ : i ∈ T), ↑u ⁻¹' (i +ᵥ U)
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv✝ : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
hTv : closedBall 0 1 ⊆ ⋃ (i : M₂) (_ : i ∈ T), ↑v ⁻¹' (i +ᵥ V)
x : M₁
hx : x ∈ closedBall 0 1
⊢ x ∈ ⋃ (i : M₂) (_ : i ∈ T), ↑u ⁻¹' (i +ᵥ U)
[PROOFSTEP]
specialize hTv hx
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv✝ : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
hTv : x ∈ ⋃ (i : M₂) (_ : i ∈ T), ↑v ⁻¹' (i +ᵥ V)
⊢ x ∈ ⋃ (i : M₂) (_ : i ∈ T), ↑u ⁻¹' (i +ᵥ U)
[PROOFSTEP]
rw [mem_iUnion₂] at hTv ⊢
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv✝ : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
hTv : ∃ i j, x ∈ ↑v ⁻¹' (i +ᵥ V)
⊢ ∃ i j, x ∈ ↑u ⁻¹' (i +ᵥ U)
[PROOFSTEP]
rcases hTv with ⟨t, ht, htx⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
t : M₂
ht : t ∈ T
htx : x ∈ ↑v ⁻¹' (t +ᵥ V)
⊢ ∃ i j, x ∈ ↑u ⁻¹' (i +ᵥ U)
[PROOFSTEP]
refine' ⟨t, ht, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
t : M₂
ht : t ∈ T
htx : x ∈ ↑v ⁻¹' (t +ᵥ V)
⊢ x ∈ ↑u ⁻¹' (t +ᵥ U)
[PROOFSTEP]
rw [mem_preimage, mem_vadd_set_iff_neg_vadd_mem, vadd_eq_add, neg_add_eq_sub] at htx ⊢
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
t : M₂
ht : t ∈ T
htx : ↑v x - t ∈ V
⊢ ↑u x - t ∈ U
[PROOFSTEP]
convert hVU _ htx _ (huv x hx) using 1
[GOAL]
case h.e'_4
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
t : M₂
ht : t ∈ T
htx : ↑v x - t ∈ V
⊢ ↑u x - t = ↑v x - t + -↑(v - u) x
[PROOFSTEP]
rw [ContinuousLinearMap.sub_apply]
[GOAL]
case h.e'_4
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
t : M₂
ht : t ∈ T
htx : ↑v x - t ∈ V
⊢ ↑u x - t = ↑v x - t + -(↑v x - ↑u x)
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
𝕜₁ : Type u_1
𝕜₂ : Type u_2
inst✝¹⁰ : NontriviallyNormedField 𝕜₁
inst✝⁹ : NormedField 𝕜₂
σ₁₂ : 𝕜₁ →+* 𝕜₂
M₁ : Type u_3
M₂ : Type u_4
inst✝⁸ : SeminormedAddCommGroup M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : NormedSpace 𝕜₁ M₁
inst✝⁵ : Module 𝕜₂ M₂
inst✝⁴ : UniformSpace M₂
inst✝³ : UniformAddGroup M₂
inst✝² : ContinuousConstSMul 𝕜₂ M₂
inst✝¹ : T2Space M₂
inst✝ : CompleteSpace M₂
u : M₁ →SL[σ₁₂] M₂
hu✝ : u ∈ closure {f | IsCompactOperator ↑f}
hu : ∀ (U : Set (M₁ →SL[σ₁₂] M₂)), U ∈ 𝓝 0 → ∃ y, y ∈ {f | IsCompactOperator ↑f} ∧ y - u ∈ U
U : Set M₂
hU : U ∈ 𝓝 0
V : Set M₂
hV : V ∈ 𝓝 0
hVU : ∀ (v : M₂), v ∈ V → ∀ (w : M₂), w ∈ V → v + w ∈ U
SV : Set M₁ × Set M₂ := (closedBall 0 1, -V)
v : M₁ →SL[σ₁₂] M₂
hv : v ∈ {f | IsCompactOperator ↑f}
huv : v - u ∈ {f | ∀ (x : M₁), x ∈ SV.fst → ↑f x ∈ SV.snd}
T : Set M₂
hT : Set.Finite T
hTv : closure (↑↑v '' closedBall 0 1) ⊆ ⋃ (y : M₂) (_ : y ∈ T), y +ᵥ V
x : M₁
hx : x ∈ closedBall 0 1
t : M₂
ht : t ∈ T
htx : ↑v x - t ∈ V
⊢ ↑u x - t = ↑v x - t + -(↑v x - ↑u x)
[PROOFSTEP]
abel
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.CompactOperator", "llama_tokens": 24864} |
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ¬DifferentiableWithinAt 𝕜 f s x
⊢ fderivWithin 𝕜 f s x = 0
[PROOFSTEP]
have : ¬∃ f', HasFDerivWithinAt f f' s x := h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ¬DifferentiableWithinAt 𝕜 f s x
this : ¬∃ f', HasFDerivWithinAt f f' s x
⊢ fderivWithin 𝕜 f s x = 0
[PROOFSTEP]
simp [fderivWithin, this]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ¬DifferentiableAt 𝕜 f x
⊢ fderiv 𝕜 f x = 0
[PROOFSTEP]
have : ¬∃ f', HasFDerivAt f f' x := h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ¬DifferentiableAt 𝕜 f x
this : ¬∃ f', HasFDerivAt f f' x
⊢ fderiv 𝕜 f x = 0
[PROOFSTEP]
simp [fderiv, this]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x) :=
by
conv in 𝓝[s] x => rw [← add_zero x]
rw [nhdsWithin, tendsto_inf]
constructor
· apply tendsto_const_nhds.add (tangentConeAt.lim_zero l clim cdlim)
· rwa [tendsto_principal]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
⊢ Tendsto (fun n => x + d n) l (𝓝[s] x)
[PROOFSTEP]
conv in 𝓝[s] x => rw [← add_zero x]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
| 𝓝[s] x
[PROOFSTEP]
rw [← add_zero x]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
| 𝓝[s] x
[PROOFSTEP]
rw [← add_zero x]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
| 𝓝[s] x
[PROOFSTEP]
rw [← add_zero x]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
⊢ Tendsto (fun n => x + d n) l (𝓝[s] (x + 0))
[PROOFSTEP]
rw [nhdsWithin, tendsto_inf]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
⊢ Tendsto (fun n => x + d n) l (𝓝 (x + 0)) ∧ Tendsto (fun n => x + d n) l (𝓟 s)
[PROOFSTEP]
constructor
[GOAL]
case left
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
⊢ Tendsto (fun n => x + d n) l (𝓝 (x + 0))
[PROOFSTEP]
apply tendsto_const_nhds.add (tangentConeAt.lim_zero l clim cdlim)
[GOAL]
case right
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
⊢ Tendsto (fun n => x + d n) l (𝓟 s)
[PROOFSTEP]
rwa [tendsto_principal]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have : (fun y => f y - f x - f' (y - x)) =o[𝓝[s] x] fun y => y - x := h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have : (fun n => f (x + d n) - f x - f' (x + d n - x)) =o[l] fun n => x + d n - x := this.comp_tendsto tendsto_arg
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have : (fun n => f (x + d n) - f x - f' (d n)) =o[l] d := by simpa only [add_sub_cancel']
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
⊢ (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
[PROOFSTEP]
simpa only [add_sub_cancel']
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝¹ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝ : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have : (fun n => c n • (f (x + d n) - f x - f' (d n))) =o[l] fun n => c n • d n := (isBigO_refl c l).smul_isLittleO this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝² : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝¹ : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝ : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have : (fun n => c n • (f (x + d n) - f x - f' (d n))) =o[l] fun _ => (1 : ℝ) := this.trans_isBigO (cdlim.isBigO_one ℝ)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝³ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝² : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝¹ : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this✝ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun x => 1
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have L1 : Tendsto (fun n => c n • (f (x + d n) - f x - f' (d n))) l (𝓝 0) := (isLittleO_one_iff ℝ).1 this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝³ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝² : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝¹ : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this✝ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun x => 1
L1 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) l (𝓝 0)
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have L2 : Tendsto (fun n => f' (c n • d n)) l (𝓝 (f' v)) := Tendsto.comp f'.cont.continuousAt cdlim
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝³ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝² : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝¹ : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this✝ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun x => 1
L1 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) l (𝓝 0)
L2 : Tendsto (fun n => ↑f' (c n • d n)) l (𝓝 (↑f' v))
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have L3 : Tendsto (fun n => c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)) l (𝓝 (0 + f' v)) := L1.add L2
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝³ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝² : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝¹ : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this✝ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun x => 1
L1 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) l (𝓝 0)
L2 : Tendsto (fun n => ↑f' (c n • d n)) l (𝓝 (↑f' v))
L3 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n)) + ↑f' (c n • d n)) l (𝓝 (0 + ↑f' v))
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
have : (fun n => c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)) = fun n => c n • (f (x + d n) - f x) :=
by
ext n
simp [smul_add, smul_sub]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝³ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝² : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝¹ : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this✝ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun x => 1
L1 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) l (𝓝 0)
L2 : Tendsto (fun n => ↑f' (c n • d n)) l (𝓝 (↑f' v))
L3 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n)) + ↑f' (c n • d n)) l (𝓝 (0 + ↑f' v))
⊢ (fun n => c n • (f (x + d n) - f x - ↑f' (d n)) + ↑f' (c n • d n)) = fun n => c n • (f (x + d n) - f x)
[PROOFSTEP]
ext n
[GOAL]
case h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝³ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝² : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝¹ : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this✝ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun x => 1
L1 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) l (𝓝 0)
L2 : Tendsto (fun n => ↑f' (c n • d n)) l (𝓝 (↑f' v))
L3 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n)) + ↑f' (c n • d n)) l (𝓝 (0 + ↑f' v))
n : α
⊢ c n • (f (x + d n) - f x - ↑f' (d n)) + ↑f' (c n • d n) = c n • (f (x + d n) - f x)
[PROOFSTEP]
simp [smul_add, smul_sub]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
α : Type u_6
l : Filter α
c : α → 𝕜
d : α → E
v : E
dtop : ∀ᶠ (n : α) in l, x + d n ∈ s
clim : Tendsto (fun n => ‖c n‖) l atTop
cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)
tendsto_arg : Tendsto (fun n => x + d n) l (𝓝[s] x)
this✝⁴ : (fun y => f y - f x - ↑f' (y - x)) =o[𝓝[s] x] fun y => y - x
this✝³ : (fun n => f (x + d n) - f x - ↑f' (x + d n - x)) =o[l] fun n => x + d n - x
this✝² : (fun n => f (x + d n) - f x - ↑f' (d n)) =o[l] d
this✝¹ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun n => c n • d n
this✝ : (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) =o[l] fun x => 1
L1 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n))) l (𝓝 0)
L2 : Tendsto (fun n => ↑f' (c n • d n)) l (𝓝 (↑f' v))
L3 : Tendsto (fun n => c n • (f (x + d n) - f x - ↑f' (d n)) + ↑f' (c n • d n)) l (𝓝 (0 + ↑f' v))
this : (fun n => c n • (f (x + d n) - f x - ↑f' (d n)) + ↑f' (c n • d n)) = fun n => c n • (f (x + d n) - f x)
⊢ Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
rwa [this, zero_add] at L3
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ HasFDerivAtFilter f f' x L ↔ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖) L (𝓝 0)
[PROOFSTEP]
have h : ∀ x', ‖x' - x‖ = 0 → ‖f x' - f x - f' (x' - x)‖ = 0 := fun x' hx' =>
by
rw [sub_eq_zero.1 (norm_eq_zero.1 hx')]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
x' : E
hx' : ‖x' - x‖ = 0
⊢ ‖f x' - f x - ↑f' (x' - x)‖ = 0
[PROOFSTEP]
rw [sub_eq_zero.1 (norm_eq_zero.1 hx')]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
x' : E
hx' : ‖x' - x‖ = 0
⊢ ‖f x - f x - ↑f' (x - x)‖ = 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∀ (x' : E), ‖x' - x‖ = 0 → ‖f x' - f x - ↑f' (x' - x)‖ = 0
⊢ HasFDerivAtFilter f f' x L ↔ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖) L (𝓝 0)
[PROOFSTEP]
unfold HasFDerivAtFilter
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∀ (x' : E), ‖x' - x‖ = 0 → ‖f x' - f x - ↑f' (x' - x)‖ = 0
⊢ ((fun x' => f x' - f x - ↑f' (x' - x)) =o[L] fun x' => x' - x) ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖) L (𝓝 0)
[PROOFSTEP]
rw [← isLittleO_norm_left, ← isLittleO_norm_right, isLittleO_iff_tendsto h]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∀ (x' : E), ‖x' - x‖ = 0 → ‖f x' - f x - ↑f' (x' - x)‖ = 0
⊢ Tendsto (fun x_1 => ‖f x_1 - f x - ↑f' (x_1 - x)‖ / ‖x_1 - x‖) L (𝓝 0) ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - ↑f' (x' - x)‖) L (𝓝 0)
[PROOFSTEP]
exact tendsto_congr fun _ => div_eq_inv_mul _ _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ HasFDerivAt f f' x ↔ (fun h => f (x + h) - f x - ↑f' h) =o[𝓝 0] fun h => h
[PROOFSTEP]
rw [HasFDerivAt, HasFDerivAtFilter, ← map_add_left_nhds_zero x, isLittleO_map]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ ((fun x' => f x' - f x - ↑f' (x' - x)) ∘ (fun x x_1 => x + x_1) x) =o[𝓝 0]
((fun x' => x' - x) ∘ (fun x x_1 => x + x_1) x) ↔
(fun h => f (x + h) - f x - ↑f' h) =o[𝓝 0] fun h => h
[PROOFSTEP]
simp [(· ∘ ·)]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖
⊢ ‖f'‖ ≤ C
[PROOFSTEP]
refine' le_of_forall_pos_le_add fun ε ε0 => op_norm_le_of_nhds_zero _ _
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖
ε : ℝ
ε0 : 0 < ε
⊢ 0 ≤ C + ε
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖
ε : ℝ
ε0 : 0 < ε
⊢ ∀ᶠ (x : E) in 𝓝 0, ‖↑f' x‖ ≤ (C + ε) * ‖x‖
[PROOFSTEP]
exact add_nonneg hC₀ ε0.le
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖
ε : ℝ
ε0 : 0 < ε
⊢ ∀ᶠ (x : E) in 𝓝 0, ‖↑f' x‖ ≤ (C + ε) * ‖x‖
[PROOFSTEP]
rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (a : E) in 𝓝 0, ‖f ((fun x x_1 => x + x_1) x₀ a) - f x₀‖ ≤ C * ‖(fun x x_1 => x + x_1) x₀ a - x₀‖
ε : ℝ
ε0 : 0 < ε
⊢ ∀ᶠ (x : E) in 𝓝 0, ‖↑f' x‖ ≤ (C + ε) * ‖x‖
[PROOFSTEP]
filter_upwards [isLittleO_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip] with y hy hyC
[GOAL]
case h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (a : E) in 𝓝 0, ‖f ((fun x x_1 => x + x_1) x₀ a) - f x₀‖ ≤ C * ‖(fun x x_1 => x + x_1) x₀ a - x₀‖
ε : ℝ
ε0 : 0 < ε
y : E
hy : ‖f (x₀ + y) - f x₀ - ↑f' y‖ ≤ ε * ‖y‖
hyC : ‖f (x₀ + y) - f x₀‖ ≤ C * ‖x₀ + y - x₀‖
⊢ ‖↑f' y‖ ≤ (C + ε) * ‖y‖
[PROOFSTEP]
rw [add_sub_cancel'] at hyC
[GOAL]
case h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (a : E) in 𝓝 0, ‖f ((fun x x_1 => x + x_1) x₀ a) - f x₀‖ ≤ C * ‖(fun x x_1 => x + x_1) x₀ a - x₀‖
ε : ℝ
ε0 : 0 < ε
y : E
hy : ‖f (x₀ + y) - f x₀ - ↑f' y‖ ≤ ε * ‖y‖
hyC : ‖f (x₀ + y) - f x₀‖ ≤ C * ‖y‖
⊢ ‖↑f' y‖ ≤ (C + ε) * ‖y‖
[PROOFSTEP]
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
_ = (C + ε) * ‖y‖ := (add_mul _ _ _).symm
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
s : Set E
hs : s ∈ 𝓝 x₀
C : ℝ≥0
hlip : LipschitzOnWith C f s
⊢ ‖f'‖ ≤ ↑C
[PROOFSTEP]
refine' hf.le_of_lip' C.coe_nonneg _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
s : Set E
hs : s ∈ 𝓝 x₀
C : ℝ≥0
hlip : LipschitzOnWith C f s
⊢ ∀ᶠ (x : E) in 𝓝 x₀, ‖f x - f x₀‖ ≤ ↑C * ‖x - x₀‖
[PROOFSTEP]
filter_upwards [hs] with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f f' x
[PROOFSTEP]
simp only [HasFDerivWithinAt, nhdsWithin_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ HasFDerivAtFilter f f' x (𝓝 x) ↔ HasFDerivAt f f' x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
⊢ HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x
[PROOFSTEP]
rcases eq_or_ne x y with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ HasFDerivWithinAt f f' (insert x s) x ↔ HasFDerivWithinAt f f' s x
[PROOFSTEP]
simp_rw [HasFDerivWithinAt, HasFDerivAtFilter]
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ ((fun x' => f x' - f x - ↑f' (x' - x)) =o[𝓝[insert x s] x] fun x' => x' - x) ↔
(fun x' => f x' - f x - ↑f' (x' - x)) =o[𝓝[s] x] fun x' => x' - x
[PROOFSTEP]
apply Asymptotics.isLittleO_insert
[GOAL]
case inl.h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ f x - f x - ↑f' (x - x) = 0
[PROOFSTEP]
simp only [sub_self, map_zero]
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
h : x ≠ y
⊢ HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x
[PROOFSTEP]
refine' ⟨fun h => h.mono <| subset_insert y s, fun hf => hf.mono_of_mem _⟩
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
h : x ≠ y
hf : HasFDerivWithinAt f f' s x
⊢ s ∈ 𝓝[insert y s] x
[PROOFSTEP]
simp_rw [nhdsWithin_insert_of_ne h, self_mem_nhdsWithin]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
⊢ HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' s x
[PROOFSTEP]
rw [← hasFDerivWithinAt_insert, insert_diff_singleton, hasFDerivWithinAt_insert]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
⊢ HasFDerivAt f f' x
[PROOFSTEP]
rw [HasFDerivAt, HasFDerivAtFilter, isLittleO_iff]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
⊢ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝 x, ‖f x_1 - f x - ↑f' (x_1 - x)‖ ≤ c * ‖x_1 - x‖
[PROOFSTEP]
exact fun c hc => tendsto_id.prod_mk_nhds tendsto_const_nhds (isLittleO_iff.1 hf hc)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
K : ℝ≥0
hK : ‖f'‖₊ < K
⊢ ∃ s, s ∈ 𝓝 x ∧ LipschitzOnWith K f s
[PROOFSTEP]
have := hf.add_isBigOWith (f'.isBigOWith_comp _ _) hK
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
K : ℝ≥0
hK : ‖f'‖₊ < K
this :
IsBigOWith ((fun a => ↑a) K) (𝓝 (x, x)) (fun x => f x.fst - f x.snd - ↑f' (x.fst - x.snd) + ↑f' (x.fst - x.snd))
fun p => p.fst - p.snd
⊢ ∃ s, s ∈ 𝓝 x ∧ LipschitzOnWith K f s
[PROOFSTEP]
simp only [sub_add_cancel, IsBigOWith] at this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
K : ℝ≥0
hK : ‖f'‖₊ < K
this : ∀ᶠ (x : E × E) in 𝓝 (x, x), ‖f x.fst - f x.snd‖ ≤ ↑K * ‖x.fst - x.snd‖
⊢ ∃ s, s ∈ 𝓝 x ∧ LipschitzOnWith K f s
[PROOFSTEP]
rcases exists_nhds_square this with ⟨U, Uo, xU, hU⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasStrictFDerivAt f f' x
K : ℝ≥0
hK : ‖f'‖₊ < K
this : ∀ᶠ (x : E × E) in 𝓝 (x, x), ‖f x.fst - f x.snd‖ ≤ ↑K * ‖x.fst - x.snd‖
U : Set E
Uo : IsOpen U
xU : x ∈ U
hU : U ×ˢ U ⊆ {x | (fun x => ‖f x.fst - f x.snd‖ ≤ ↑K * ‖x.fst - x.snd‖) x}
⊢ ∃ s, s ∈ 𝓝 x ∧ LipschitzOnWith K f s
[PROOFSTEP]
exact ⟨U, Uo.mem_nhds xU, lipschitzOnWith_iff_norm_sub_le.2 fun x hx y hy => hU (mk_mem_prod hx hy)⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAt f f' x
v : E
α : Type u_6
c : α → 𝕜
l : Filter α
hc : Tendsto (fun n => ‖c n‖) l atTop
⊢ Tendsto (fun n => c n • (f (x + (c n)⁻¹ • v) - f x)) l (𝓝 (↑f' v))
[PROOFSTEP]
refine' (hasFDerivWithinAt_univ.2 hf).lim _ univ_mem hc _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAt f f' x
v : E
α : Type u_6
c : α → 𝕜
l : Filter α
hc : Tendsto (fun n => ‖c n‖) l atTop
⊢ Tendsto (fun n => c n • (c n)⁻¹ • v) l (𝓝 v)
[PROOFSTEP]
intro U hU
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAt f f' x
v : E
α : Type u_6
c : α → 𝕜
l : Filter α
hc : Tendsto (fun n => ‖c n‖) l atTop
U : Set E
hU : U ∈ 𝓝 v
⊢ U ∈ map (fun n => c n • (c n)⁻¹ • v) l
[PROOFSTEP]
refine' (eventually_ne_of_tendsto_norm_atTop hc (0 : 𝕜)).mono fun y hy => _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAt f f' x
v : E
α : Type u_6
c : α → 𝕜
l : Filter α
hc : Tendsto (fun n => ‖c n‖) l atTop
U : Set E
hU : U ∈ 𝓝 v
y : α
hy : c y ≠ 0
⊢ (fun n => c n • (c n)⁻¹ • v) y ∈ U
[PROOFSTEP]
convert mem_of_mem_nhds hU
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAt f f' x
v : E
α : Type u_6
c : α → 𝕜
l : Filter α
hc : Tendsto (fun n => ‖c n‖) l atTop
U : Set E
hU : U ∈ 𝓝 v
y : α
hy : c y ≠ 0
⊢ (fun n => c n • (c n)⁻¹ • v) y = v
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hf : HasFDerivAt f f' x
v : E
α : Type u_6
c : α → 𝕜
l : Filter α
hc : Tendsto (fun n => ‖c n‖) l atTop
U : Set E
hU : U ∈ 𝓝 v
y : α
hy : c y ≠ 0
⊢ c y • (c y)⁻¹ • v = v
[PROOFSTEP]
rw [← mul_smul, mul_inv_cancel hy, one_smul]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h₀ : HasFDerivAt f f₀' x
h₁ : HasFDerivAt f f₁' x
⊢ f₀' = f₁'
[PROOFSTEP]
rw [← hasFDerivWithinAt_univ] at h₀ h₁
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h₀ : HasFDerivWithinAt f f₀' univ x
h₁ : HasFDerivWithinAt f f₁' univ x
⊢ f₀' = f₁'
[PROOFSTEP]
exact uniqueDiffWithinAt_univ.eq h₀ h₁
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : t ∈ 𝓝[s] x
⊢ HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x
[PROOFSTEP]
simp [HasFDerivWithinAt, nhdsWithin_restrict'' s h]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : t ∈ 𝓝 x
⊢ HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x
[PROOFSTEP]
simp [HasFDerivWithinAt, nhdsWithin_restrict' s h]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hs : HasFDerivWithinAt f f' s x
ht : HasFDerivWithinAt f f' t x
⊢ HasFDerivWithinAt f f' (s ∪ t) x
[PROOFSTEP]
simp only [HasFDerivWithinAt, nhdsWithin_union]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hs : HasFDerivWithinAt f f' s x
ht : HasFDerivWithinAt f f' t x
⊢ HasFDerivAtFilter f f' x (𝓝[s] x ⊔ 𝓝[t] x)
[PROOFSTEP]
exact hs.sup ht
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivWithinAt f f' s x
hs : s ∈ 𝓝 x
⊢ HasFDerivAt f f' x
[PROOFSTEP]
rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableWithinAt 𝕜 f s x
⊢ HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x
[PROOFSTEP]
dsimp only [fderivWithin]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableWithinAt 𝕜 f s x
⊢ HasFDerivWithinAt f (if h : ∃ f', HasFDerivWithinAt f f' s x then choose h else 0) s x
[PROOFSTEP]
dsimp only [DifferentiableWithinAt] at h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∃ f', HasFDerivWithinAt f f' s x
⊢ HasFDerivWithinAt f (if h : ∃ f', HasFDerivWithinAt f f' s x then choose h else 0) s x
[PROOFSTEP]
rw [dif_pos h]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∃ f', HasFDerivWithinAt f f' s x
⊢ HasFDerivWithinAt f (choose h) s x
[PROOFSTEP]
exact Classical.choose_spec h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableAt 𝕜 f x
⊢ HasFDerivAt f (fderiv 𝕜 f x) x
[PROOFSTEP]
dsimp only [fderiv]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableAt 𝕜 f x
⊢ HasFDerivAt f (if h : ∃ f', HasFDerivAt f f' x then choose h else 0) x
[PROOFSTEP]
dsimp only [DifferentiableAt] at h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∃ f', HasFDerivAt f f' x
⊢ HasFDerivAt f (if h : ∃ f', HasFDerivAt f f' x then choose h else 0) x
[PROOFSTEP]
rw [dif_pos h]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∃ f', HasFDerivAt f f' x
⊢ HasFDerivAt f (choose h) x
[PROOFSTEP]
exact Classical.choose_spec h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivAt f f' x
⊢ fderiv 𝕜 f x = f'
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : HasFDerivAt f f' x
x✝ : E
⊢ ↑(fderiv 𝕜 f x) x✝ = ↑f' x✝
[PROOFSTEP]
rw [h.unique h.differentiableAt.hasFDerivAt]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ¬x ∈ closure s
⊢ HasFDerivWithinAt f f' s x
[PROOFSTEP]
simp only [mem_closure_iff_nhdsWithin_neBot, neBot_iff, Ne.def, Classical.not_not] at h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : 𝓝[s] x = ⊥
⊢ HasFDerivWithinAt f f' s x
[PROOFSTEP]
simp [HasFDerivWithinAt, HasFDerivAtFilter, h, IsLittleO, IsBigOWith]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : DifferentiableWithinAt 𝕜 f t x
st : s ⊆ t
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
rcases h with ⟨f', hf'⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
st : s ⊆ t
f' : E →L[𝕜] F
hf' : HasFDerivWithinAt f f' t x
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
exact ⟨f', hf'.mono st⟩
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ DifferentiableWithinAt 𝕜 f univ x ↔ DifferentiableAt 𝕜 f x
[PROOFSTEP]
simp only [DifferentiableWithinAt, hasFDerivWithinAt_univ, DifferentiableAt]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ht : t ∈ 𝓝 x
⊢ DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter ht]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ht : t ∈ 𝓝[s] x
⊢ DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter' ht]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
⊢ DifferentiableOn 𝕜 f univ ↔ Differentiable 𝕜 f
[PROOFSTEP]
simp only [DifferentiableOn, Differentiable, differentiableWithinAt_univ, mem_univ, forall_true_left]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : ∀ (x : E), x ∈ s → ∃ u, IsOpen u ∧ x ∈ u ∧ DifferentiableOn 𝕜 f (s ∩ u)
⊢ DifferentiableOn 𝕜 f s
[PROOFSTEP]
intro x xs
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
h : ∀ (x : E), x ∈ s → ∃ u, IsOpen u ∧ x ∈ u ∧ DifferentiableOn 𝕜 f (s ∩ u)
x : E
xs : x ∈ s
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
rcases h x xs with ⟨t, t_open, xt, ht⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t✝ : Set E
L L₁ L₂ : Filter E
h : ∀ (x : E), x ∈ s → ∃ u, IsOpen u ∧ x ∈ u ∧ DifferentiableOn 𝕜 f (s ∩ u)
x : E
xs : x ∈ s
t : Set E
t_open : IsOpen t
xt : x ∈ t
ht : DifferentiableOn 𝕜 f (s ∩ t)
⊢ DifferentiableWithinAt 𝕜 f s x
[PROOFSTEP]
exact (differentiableWithinAt_inter (IsOpen.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
ht : t ∈ 𝓝 x
⊢ fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x
[PROOFSTEP]
simp only [fderivWithin, hasFDerivWithinAt_inter ht]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : s ∈ 𝓝 x
⊢ fderivWithin 𝕜 f s x = fderiv 𝕜 f x
[PROOFSTEP]
simp only [fderiv, fderivWithin, HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.2 h]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hs : UniqueDiffWithinAt 𝕜 s x
h : DifferentiableAt 𝕜 f x
⊢ fderivWithin 𝕜 f s x = fderiv 𝕜 f x
[PROOFSTEP]
rw [← fderivWithin_univ]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hs : UniqueDiffWithinAt 𝕜 s x
h : DifferentiableAt 𝕜 f x
⊢ fderivWithin 𝕜 f s x = fderivWithin 𝕜 f univ x
[PROOFSTEP]
exact fderivWithin_subset (subset_univ _) hs h.differentiableWithinAt
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
f : E → F
s : Set (E →L[𝕜] F)
x : E
⊢ fderiv 𝕜 f x ∈ s ↔ DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s ∨ ¬DifferentiableAt 𝕜 f x ∧ 0 ∈ s
[PROOFSTEP]
by_cases hx : DifferentiableAt 𝕜 f x
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
f : E → F
s : Set (E →L[𝕜] F)
x : E
hx : DifferentiableAt 𝕜 f x
⊢ fderiv 𝕜 f x ∈ s ↔ DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s ∨ ¬DifferentiableAt 𝕜 f x ∧ 0 ∈ s
[PROOFSTEP]
simp [fderiv_zero_of_not_differentiableAt, *]
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t : Set E
L L₁ L₂ : Filter E
f : E → F
s : Set (E →L[𝕜] F)
x : E
hx : ¬DifferentiableAt 𝕜 f x
⊢ fderiv 𝕜 f x ∈ s ↔ DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s ∨ ¬DifferentiableAt 𝕜 f x ∧ 0 ∈ s
[PROOFSTEP]
simp [fderiv_zero_of_not_differentiableAt, *]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t✝ : Set E
L L₁ L₂ : Filter E
f : E → F
t : Set E
s : Set (E →L[𝕜] F)
x : E
⊢ fderivWithin 𝕜 f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ fderivWithin 𝕜 f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
[PROOFSTEP]
by_cases hx : DifferentiableWithinAt 𝕜 f t x
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t✝ : Set E
L L₁ L₂ : Filter E
f : E → F
t : Set E
s : Set (E →L[𝕜] F)
x : E
hx : DifferentiableWithinAt 𝕜 f t x
⊢ fderivWithin 𝕜 f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ fderivWithin 𝕜 f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
[PROOFSTEP]
simp [fderivWithin_zero_of_not_differentiableWithinAt, *]
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s✝ t✝ : Set E
L L₁ L₂ : Filter E
f : E → F
t : Set E
s : Set (E →L[𝕜] F)
x : E
hx : ¬DifferentiableWithinAt 𝕜 f t x
⊢ fderivWithin 𝕜 f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ fderivWithin 𝕜 f t x ∈ s ∨ ¬DifferentiableWithinAt 𝕜 f t x ∧ 0 ∈ s
[PROOFSTEP]
simp [fderivWithin_zero_of_not_differentiableWithinAt, *]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
s : Set E
x₀ : E
n : ℕ
h : f =O[𝓝[s] x₀] fun x => ‖x - x₀‖ ^ n
hx₀ : x₀ ∈ s
hn : 1 < n
⊢ HasFDerivWithinAt f 0 s x₀
[PROOFSTEP]
simp_rw [HasFDerivWithinAt, HasFDerivAtFilter, h.eq_zero_of_norm_pow_within hx₀ <| zero_lt_one.trans hn, zero_apply,
sub_zero, h.trans_isLittleO ((isLittleO_pow_sub_sub x₀ hn).mono nhdsWithin_le_nhds)]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
x₀ : E
n : ℕ
h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n
hn : 1 < n
⊢ HasFDerivAt f 0 x₀
[PROOFSTEP]
rw [← nhdsWithin_univ] at h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
x₀ : E
n : ℕ
h : f =O[𝓝[univ] x₀] fun x => ‖x - x₀‖ ^ n
hn : 1 < n
⊢ HasFDerivAt f 0 x₀
[PROOFSTEP]
exact (h.hasFDerivWithinAt (mem_univ _) hn).hasFDerivAt_of_univ
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s✝ t : Set E
L L₁ L₂ : Filter E
f : E → F
s : Set E
x₀ : E
f' : E →L[𝕜] F
h : HasFDerivWithinAt f f' s x₀
⊢ (fun x => f x - f x₀) =O[𝓝[s] x₀] fun x => x - x₀
[PROOFSTEP]
simpa only [sub_add_cancel] using h.isBigO.add (isBigO_sub f' (𝓝[s] x₀) x₀)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f'✝ f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
x₀ : E
f' : E →L[𝕜] F
h : HasFDerivAt f f' x₀
⊢ (fun x => f x - f x₀) =O[𝓝 x₀] fun x => x - x₀
[PROOFSTEP]
simpa only [sub_add_cancel] using h.isBigO.add (isBigO_sub f' (𝓝 x₀) x₀)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
⊢ Tendsto f L (𝓝 (f x))
[PROOFSTEP]
have : Tendsto (fun x' => f x' - f x) L (𝓝 0) :=
by
refine' h.isBigO_sub.trans_tendsto (Tendsto.mono_left _ hL)
rw [← sub_self x]
exact tendsto_id.sub tendsto_const_nhds
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
⊢ Tendsto (fun x' => f x' - f x) L (𝓝 0)
[PROOFSTEP]
refine' h.isBigO_sub.trans_tendsto (Tendsto.mono_left _ hL)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
⊢ Tendsto (fun x' => x' - x) (𝓝 x) (𝓝 0)
[PROOFSTEP]
rw [← sub_self x]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
⊢ Tendsto (fun x' => x' - x) (𝓝 x) (𝓝 (x - x))
[PROOFSTEP]
exact tendsto_id.sub tendsto_const_nhds
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
this : Tendsto (fun x' => f x' - f x) L (𝓝 0)
⊢ Tendsto f L (𝓝 (f x))
[PROOFSTEP]
have := this.add (@tendsto_const_nhds _ _ _ (f x) _)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
this✝ : Tendsto (fun x' => f x' - f x) L (𝓝 0)
this : Tendsto (fun x_1 => f x_1 - f x + f x) L (𝓝 (0 + f x))
⊢ Tendsto f L (𝓝 (f x))
[PROOFSTEP]
rw [zero_add (f x)] at this
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
this✝ : Tendsto (fun x' => f x' - f x) L (𝓝 0)
this : Tendsto (fun x_1 => f x_1 - f x + f x) L (𝓝 (f x))
⊢ Tendsto f L (𝓝 (f x))
[PROOFSTEP]
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hL : L ≤ 𝓝 x
h : HasFDerivAtFilter f f' x L
this✝ : Tendsto (fun x' => f x' - f x) L (𝓝 0)
this : Tendsto (fun x_1 => f x_1 - f x + f x) L (𝓝 (f x))
⊢ ∀ (x_1 : E), f x_1 - f x + f x = f x_1
[PROOFSTEP]
simp only [sub_add_cancel, eq_self_iff_true, forall_const]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
h : s =ᶠ[𝓝[{y}ᶜ] x] t
⊢ HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' (t \ {y}) x
[PROOFSTEP]
suffices 𝓝[s \ { y }] x = 𝓝[t \ { y }] x by simp only [HasFDerivWithinAt, this]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
h : s =ᶠ[𝓝[{y}ᶜ] x] t
this : 𝓝[s \ {y}] x = 𝓝[t \ {y}] x
⊢ HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' (t \ {y}) x
[PROOFSTEP]
simp only [HasFDerivWithinAt, this]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
h : s =ᶠ[𝓝[{y}ᶜ] x] t
⊢ 𝓝[s \ {y}] x = 𝓝[t \ {y}] x
[PROOFSTEP]
simpa only [set_eventuallyEq_iff_inf_principal, ← nhdsWithin_inter', diff_eq, inter_comm] using h
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
y : E
h : s =ᶠ[𝓝[{y}ᶜ] x] t
⊢ fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x
[PROOFSTEP]
simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : f₀ =ᶠ[𝓝 x] f₁
h' : ∀ (y : E), ↑f₀' y = ↑f₁' y
⊢ HasStrictFDerivAt f₀ f₀' x ↔ HasStrictFDerivAt f₁ f₁' x
[PROOFSTEP]
refine' isLittleO_congr ((h.prod_mk_nhds h).mono _) (eventually_of_forall fun _ => _root_.rfl)
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : f₀ =ᶠ[𝓝 x] f₁
h' : ∀ (y : E), ↑f₀' y = ↑f₁' y
⊢ ∀ (x : E × E),
f₀ x.fst = f₁ x.fst ∧ f₀ x.snd = f₁ x.snd →
(fun p => f₀ p.fst - f₀ p.snd - ↑f₀' (p.fst - p.snd)) x = (fun p => f₁ p.fst - f₁ p.snd - ↑f₁' (p.fst - p.snd)) x
[PROOFSTEP]
rintro p ⟨hp₁, hp₂⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : f₀ =ᶠ[𝓝 x] f₁
h' : ∀ (y : E), ↑f₀' y = ↑f₁' y
p : E × E
hp₁ : f₀ p.fst = f₁ p.fst
hp₂ : f₀ p.snd = f₁ p.snd
⊢ (fun p => f₀ p.fst - f₀ p.snd - ↑f₀' (p.fst - p.snd)) p = (fun p => f₁ p.fst - f₁ p.snd - ↑f₁' (p.fst - p.snd)) p
[PROOFSTEP]
simp only [*]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h₀ : f₀ =ᶠ[L] f₁
hx : f₀ x = f₁ x
h₁ : ∀ (x : E), ↑f₀' x = ↑f₁' x
y : E
hy : f₀ y = f₁ y
⊢ (fun x' => f₀ x' - f₀ x - ↑f₀' (x' - x)) y = (fun x' => f₁ x' - f₁ x - ↑f₁' (x' - x)) y
[PROOFSTEP]
simp only [hy, h₁, hx]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hs : f₁ =ᶠ[𝓝[s] x] f
hx : f₁ x = f x
⊢ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x
[PROOFSTEP]
simp only [fderivWithin, hs.hasFDerivWithinAt_iff hx]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
h : f₁ =ᶠ[𝓝 x] f
⊢ fderiv 𝕜 f₁ x = fderiv 𝕜 f x
[PROOFSTEP]
rw [← fderivWithin_univ, ← fderivWithin_univ, h.fderivWithin_eq_nhds]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
x : E
⊢ ∀ (x : E × E), 0 = _root_.id x.fst - _root_.id x.snd - ↑(ContinuousLinearMap.id 𝕜 E) (x.fst - x.snd)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L✝ L₁ L₂ : Filter E
x : E
L : Filter E
⊢ ∀ (x_1 : E), 0 = _root_.id x_1 - _root_.id x - ↑(ContinuousLinearMap.id 𝕜 E) (x_1 - x)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderivWithin 𝕜 _root_.id s x = ContinuousLinearMap.id 𝕜 E
[PROOFSTEP]
rw [DifferentiableAt.fderivWithin differentiableAt_id hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderiv 𝕜 _root_.id x = ContinuousLinearMap.id 𝕜 E
[PROOFSTEP]
exact fderiv_id
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝¹ : E
s t : Set E
L L₁ L₂ : Filter E
c : F
x : E
x✝ : E × E
⊢ 0 = (fun x => c) x✝.fst - (fun x => c) x✝.snd - ↑0 (x✝.fst - x✝.snd)
[PROOFSTEP]
simp only [zero_apply, sub_self]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝¹ : E
s t : Set E
L✝ L₁ L₂ : Filter E
c : F
x : E
L : Filter E
x✝ : E
⊢ 0 = (fun x => c) x✝ - (fun x => c) x - ↑0 (x✝ - x)
[PROOFSTEP]
simp only [zero_apply, sub_self]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
⊢ (fderiv 𝕜 fun x => c) = 0
[PROOFSTEP]
ext m
[GOAL]
case h.h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
m x✝ : E
⊢ ↑(fderiv 𝕜 (fun x => c) m) x✝ = ↑(OfNat.ofNat 0 m) x✝
[PROOFSTEP]
rw [fderiv_const_apply]
[GOAL]
case h.h
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
m x✝ : E
⊢ ↑0 x✝ = ↑(OfNat.ofNat 0 m) x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderivWithin 𝕜 (fun x => c) s x = 0
[PROOFSTEP]
rw [DifferentiableAt.fderivWithin (differentiableAt_const _) hxs]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x : E
s t : Set E
L L₁ L₂ : Filter E
c : F
hxs : UniqueDiffWithinAt 𝕜 s x
⊢ fderiv 𝕜 (fun x => c) x = 0
[PROOFSTEP]
exact fderiv_const_apply _
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
f : E → F
x : E
⊢ HasFDerivWithinAt f 0 {x} x
[PROOFSTEP]
simp only [HasFDerivWithinAt, nhdsWithin_singleton, HasFDerivAtFilter, isLittleO_pure, ContinuousLinearMap.zero_apply,
sub_self]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
h : Subsingleton E
f : E → F
x : E
⊢ HasFDerivAt f 0 x
[PROOFSTEP]
rw [← hasFDerivWithinAt_univ, subsingleton_univ.eq_singleton_of_mem (mem_univ x)]
[GOAL]
𝕜 : Type u_1
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type u_4
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
G' : Type u_5
inst✝¹ : NormedAddCommGroup G'
inst✝ : NormedSpace 𝕜 G'
f✝ f₀ f₁ g : E → F
f' f₀' f₁' g' e : E →L[𝕜] F
x✝ : E
s t : Set E
L L₁ L₂ : Filter E
h : Subsingleton E
f : E → F
x : E
⊢ HasFDerivWithinAt f 0 {x} x
[PROOFSTEP]
exact hasFDerivWithinAt_singleton f x
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
x : E
h : ¬x ∈ tsupport f
⊢ HasStrictFDerivAt f 0 x
[PROOFSTEP]
rw [not_mem_tsupport_iff_eventuallyEq] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
x : E
h : f =ᶠ[𝓝 x] 0
⊢ HasStrictFDerivAt f 0 x
[PROOFSTEP]
exact (hasStrictFDerivAt_const (0 : F) x).congr_of_eventuallyEq h.symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
x✝ x : E
⊢ x ∈ support (fderiv 𝕜 f) → x ∈ tsupport f
[PROOFSTEP]
rw [← not_imp_not, nmem_support]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
x✝ x : E
⊢ ¬x ∈ tsupport f → fderiv 𝕜 f x = 0
[PROOFSTEP]
exact fderiv_of_not_mem_tsupport _
| {"mathlib_filename": "Mathlib.Analysis.Calculus.FDeriv.Basic", "llama_tokens": 49035} |
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
⊢ UniformSpace.toTopologicalSpace ≤ WeakDual.instTopologicalSpace
[PROOFSTEP]
convert (@toWeakDual_continuous _ _ _ _ (by assumption)).le_induced
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
⊢ NormedSpace 𝕜 E
[PROOFSTEP]
assumption
[GOAL]
case h.e'_4
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
⊢ WeakDual.instTopologicalSpace = TopologicalSpace.induced (fun x' => ↑toWeakDual x') WeakDual.instTopologicalSpace
[PROOFSTEP]
exact induced_id.symm
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
⊢ IsClosed (polar 𝕜 s)
[PROOFSTEP]
simp only [polar_def, setOf_forall]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
⊢ IsClosed (⋂ (i : E) (_ : i ∈ s), {x | ‖↑x i‖ ≤ 1})
[PROOFSTEP]
exact isClosed_biInter fun x hx => isClosed_Iic.preimage (WeakBilin.eval_continuous _ _).norm
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.WeakDual", "llama_tokens": 571} |
[GOAL]
X : Type u_1
inst✝² : NormedAddCommGroup X
M : Type u_2
inst✝¹ : Ring M
inst✝ : Module M X
P : M
h : IsLprojection X P
x : X
⊢ ‖x‖ = ‖(1 - P) • x‖ + ‖(1 - (1 - P)) • x‖
[PROOFSTEP]
rw [add_comm, sub_sub_cancel]
[GOAL]
X : Type u_1
inst✝² : NormedAddCommGroup X
M : Type u_2
inst✝¹ : Ring M
inst✝ : Module M X
P : M
h : IsLprojection X P
x : X
⊢ ‖x‖ = ‖P • x‖ + ‖(1 - P) • x‖
[PROOFSTEP]
exact h.Lnorm x
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
⊢ Commute P Q
[PROOFSTEP]
have PR_eq_RPR : ∀ R : M, IsLprojection X R → P * R = R * P * R := fun R h₃ => by
--porting note: Needed to fix function, which changes indent of following linesrefine
@eq_of_smul_eq_smul _ X _ _ _ _ fun x => by
rw [← norm_sub_eq_zero_iff]
have e1 : ‖R • x‖ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ :=
calc
‖R • x‖ =
‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖(R * R) • x - R • P • R • x‖ + ‖(1 - R) • (1 - P) • R • x‖) :=
by rw [h₁.Lnorm, h₃.Lnorm, h₃.Lnorm ((1 - P) • R • x), sub_smul 1 P, one_smul, smul_sub, mul_smul]
_ =
‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ +
(‖R • x - R • P • R • x‖ + ‖((1 - R) * R) • x - (1 - R) • P • R • x‖) :=
by rw [h₃.proj.eq, sub_smul 1 P, one_smul, smul_sub, mul_smul]
_ = ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖(1 - R) • P • R • x‖) := by
rw [sub_mul, h₃.proj.eq, one_mul, sub_self, zero_smul, zero_sub, norm_neg]
_ = ‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖ := by abel
_ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ :=
by
rw [GE.ge]
have := add_le_add_right (norm_le_insert' (R • x) (R • P • R • x)) (2 • ‖(1 - R) • P • R • x‖)
simpa only [mul_smul, sub_smul, one_smul] using this
rw [GE.ge] at e1
nth_rewrite 2 [← add_zero ‖R • x‖] at e1
rw [add_le_add_iff_left, two_smul, ← two_mul] at e1
rw [le_antisymm_iff]
refine' ⟨_, norm_nonneg _⟩
rwa [← mul_zero (2 : ℝ), mul_le_mul_left (show (0 : ℝ) < 2 by norm_num)] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
⊢ P * R = R * P * R
[PROOFSTEP]
refine
@eq_of_smul_eq_smul _ X _ _ _ _ fun x => by
rw [← norm_sub_eq_zero_iff]
have e1 : ‖R • x‖ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ :=
calc
‖R • x‖ =
‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖(R * R) • x - R • P • R • x‖ + ‖(1 - R) • (1 - P) • R • x‖) :=
by rw [h₁.Lnorm, h₃.Lnorm, h₃.Lnorm ((1 - P) • R • x), sub_smul 1 P, one_smul, smul_sub, mul_smul]
_ =
‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ +
(‖R • x - R • P • R • x‖ + ‖((1 - R) * R) • x - (1 - R) • P • R • x‖) :=
by rw [h₃.proj.eq, sub_smul 1 P, one_smul, smul_sub, mul_smul]
_ = ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖(1 - R) • P • R • x‖) := by
rw [sub_mul, h₃.proj.eq, one_mul, sub_self, zero_smul, zero_sub, norm_neg]
_ = ‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖ := by abel
_ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ :=
by
rw [GE.ge]
have := add_le_add_right (norm_le_insert' (R • x) (R • P • R • x)) (2 • ‖(1 - R) • P • R • x‖)
simpa only [mul_smul, sub_smul, one_smul] using this
rw [GE.ge] at e1
nth_rewrite 2 [← add_zero ‖R • x‖] at e1
rw [add_le_add_iff_left, two_smul, ← two_mul] at e1
rw [le_antisymm_iff]
refine' ⟨_, norm_nonneg _⟩
rwa [← mul_zero (2 : ℝ), mul_le_mul_left (show (0 : ℝ) < 2 by norm_num)] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ (P * R) • x = (R * P * R) • x
[PROOFSTEP]
rw [← norm_sub_eq_zero_iff]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖(P * R) • x - (R * P * R) • x‖ = 0
[PROOFSTEP]
have e1 : ‖R • x‖ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ :=
calc
‖R • x‖ = ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖(R * R) • x - R • P • R • x‖ + ‖(1 - R) • (1 - P) • R • x‖) :=
by rw [h₁.Lnorm, h₃.Lnorm, h₃.Lnorm ((1 - P) • R • x), sub_smul 1 P, one_smul, smul_sub, mul_smul]
_ =
‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ +
(‖R • x - R • P • R • x‖ + ‖((1 - R) * R) • x - (1 - R) • P • R • x‖) :=
by rw [h₃.proj.eq, sub_smul 1 P, one_smul, smul_sub, mul_smul]
_ = ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖(1 - R) • P • R • x‖) := by
rw [sub_mul, h₃.proj.eq, one_mul, sub_self, zero_smul, zero_sub, norm_neg]
_ = ‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖ := by abel
_ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ :=
by
rw [GE.ge]
have := add_le_add_right (norm_le_insert' (R • x) (R • P • R • x)) (2 • ‖(1 - R) • P • R • x‖)
simpa only [mul_smul, sub_smul, one_smul] using this
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖R • x‖ = ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖(R * R) • x - R • P • R • x‖ + ‖(1 - R) • (1 - P) • R • x‖)
[PROOFSTEP]
rw [h₁.Lnorm, h₃.Lnorm, h₃.Lnorm ((1 - P) • R • x), sub_smul 1 P, one_smul, smul_sub, mul_smul]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖(R * R) • x - R • P • R • x‖ + ‖(1 - R) • (1 - P) • R • x‖) =
‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖((1 - R) * R) • x - (1 - R) • P • R • x‖)
[PROOFSTEP]
rw [h₃.proj.eq, sub_smul 1 P, one_smul, smul_sub, mul_smul]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖((1 - R) * R) • x - (1 - R) • P • R • x‖) =
‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖(1 - R) • P • R • x‖)
[PROOFSTEP]
rw [sub_mul, h₃.proj.eq, one_mul, sub_self, zero_smul, zero_sub, norm_neg]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖(1 - R) • P • R • x‖) =
‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖
[PROOFSTEP]
abel
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖R • P • R • x‖ + ‖(1 - R) • P • R • x‖ + (‖R • x - R • P • R • x‖ + ‖(1 - R) • P • R • x‖) =
‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖
[PROOFSTEP]
abel
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖
[PROOFSTEP]
rw [GE.ge]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
⊢ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ ≤ ‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖
[PROOFSTEP]
have := add_le_add_right (norm_le_insert' (R • x) (R • P • R • x)) (2 • ‖(1 - R) • P • R • x‖)
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
this : ‖R • x‖ + 2 • ‖(1 - R) • P • R • x‖ ≤ ‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖
⊢ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ ≤ ‖R • P • R • x‖ + ‖R • x - R • P • R • x‖ + 2 • ‖(1 - R) • P • R • x‖
[PROOFSTEP]
simpa only [mul_smul, sub_smul, one_smul] using this
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
e1 : ‖R • x‖ ≥ ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖
⊢ ‖(P * R) • x - (R * P * R) • x‖ = 0
[PROOFSTEP]
rw [GE.ge] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
e1 : ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ ≤ ‖R • x‖
⊢ ‖(P * R) • x - (R * P * R) • x‖ = 0
[PROOFSTEP]
nth_rewrite 2 [← add_zero ‖R • x‖] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
e1 : ‖R • x‖ + 2 • ‖(P * R) • x - (R * P * R) • x‖ ≤ ‖R • x‖ + 0
⊢ ‖(P * R) • x - (R * P * R) • x‖ = 0
[PROOFSTEP]
rw [add_le_add_iff_left, two_smul, ← two_mul] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
e1 : 2 * ‖(P * R) • x - (R * P * R) • x‖ ≤ 0
⊢ ‖(P * R) • x - (R * P * R) • x‖ = 0
[PROOFSTEP]
rw [le_antisymm_iff]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
e1 : 2 * ‖(P * R) • x - (R * P * R) • x‖ ≤ 0
⊢ ‖(P * R) • x - (R * P * R) • x‖ ≤ 0 ∧ 0 ≤ ‖(P * R) • x - (R * P * R) • x‖
[PROOFSTEP]
refine' ⟨_, norm_nonneg _⟩
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
e1 : 2 * ‖(P * R) • x - (R * P * R) • x‖ ≤ 0
⊢ ‖(P * R) • x - (R * P * R) • x‖ ≤ 0
[PROOFSTEP]
rwa [← mul_zero (2 : ℝ), mul_le_mul_left (show (0 : ℝ) < 2 by norm_num)] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
R : M
h₃ : IsLprojection X R
x : X
e1 : 2 * ‖(P * R) • x - (R * P * R) • x‖ ≤ 2 * 0
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
PR_eq_RPR : ∀ (R : M), IsLprojection X R → P * R = R * P * R
⊢ Commute P Q
[PROOFSTEP]
have QP_eq_QPQ : Q * P = Q * P * Q :=
by
have e1 : P * (1 - Q) = P * (1 - Q) - (Q * P - Q * P * Q) :=
calc
P * (1 - Q) = (1 - Q) * P * (1 - Q) := by rw [PR_eq_RPR (1 - Q) h₂.Lcomplement]
_ = P * (1 - Q) - (Q * P - Q * P * Q) := by noncomm_ring
rwa [eq_sub_iff_add_eq, add_right_eq_self, sub_eq_zero] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
PR_eq_RPR : ∀ (R : M), IsLprojection X R → P * R = R * P * R
⊢ Q * P = Q * P * Q
[PROOFSTEP]
have e1 : P * (1 - Q) = P * (1 - Q) - (Q * P - Q * P * Q) :=
calc
P * (1 - Q) = (1 - Q) * P * (1 - Q) := by rw [PR_eq_RPR (1 - Q) h₂.Lcomplement]
_ = P * (1 - Q) - (Q * P - Q * P * Q) := by noncomm_ring
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
PR_eq_RPR : ∀ (R : M), IsLprojection X R → P * R = R * P * R
⊢ P * (1 - Q) = (1 - Q) * P * (1 - Q)
[PROOFSTEP]
rw [PR_eq_RPR (1 - Q) h₂.Lcomplement]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
PR_eq_RPR : ∀ (R : M), IsLprojection X R → P * R = R * P * R
⊢ (1 - Q) * P * (1 - Q) = P * (1 - Q) - (Q * P - Q * P * Q)
[PROOFSTEP]
noncomm_ring
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
PR_eq_RPR : ∀ (R : M), IsLprojection X R → P * R = R * P * R
e1 : P * (1 - Q) = P * (1 - Q) - (Q * P - Q * P * Q)
⊢ Q * P = Q * P * Q
[PROOFSTEP]
rwa [eq_sub_iff_add_eq, add_right_eq_self, sub_eq_zero] at e1
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
PR_eq_RPR : ∀ (R : M), IsLprojection X R → P * R = R * P * R
QP_eq_QPQ : Q * P = Q * P * Q
⊢ Commute P Q
[PROOFSTEP]
show P * Q = Q * P
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
PR_eq_RPR : ∀ (R : M), IsLprojection X R → P * R = R * P * R
QP_eq_QPQ : Q * P = Q * P * Q
⊢ P * Q = Q * P
[PROOFSTEP]
rw [QP_eq_QPQ, PR_eq_RPR Q h₂]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
⊢ IsLprojection X (P * Q)
[PROOFSTEP]
refine' ⟨IsIdempotentElem.mul_of_commute (h₁.commute h₂) h₁.proj h₂.proj, _⟩
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
⊢ ∀ (x : X), ‖x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖
[PROOFSTEP]
intro x
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖x‖ ≤ ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖
[PROOFSTEP]
calc
‖x‖ = ‖(P * Q) • x + (x - (P * Q) • x)‖ := by rw [add_sub_cancel'_right ((P * Q) • x) x]
_ ≤ ‖(P * Q) • x‖ + ‖x - (P * Q) • x‖ := by apply norm_add_le
_ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖ := by rw [sub_smul, one_smul]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖x‖ = ‖(P * Q) • x + (x - (P * Q) • x)‖
[PROOFSTEP]
rw [add_sub_cancel'_right ((P * Q) • x) x]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖(P * Q) • x + (x - (P * Q) • x)‖ ≤ ‖(P * Q) • x‖ + ‖x - (P * Q) • x‖
[PROOFSTEP]
apply norm_add_le
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖(P * Q) • x‖ + ‖x - (P * Q) • x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖
[PROOFSTEP]
rw [sub_smul, one_smul]
[GOAL]
case refine'_2
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖ ≤ ‖x‖
[PROOFSTEP]
calc
‖x‖ = ‖P • Q • x‖ + (‖Q • x - P • Q • x‖ + ‖x - Q • x‖) := by
rw [h₂.Lnorm x, h₁.Lnorm (Q • x), sub_smul, one_smul, sub_smul, one_smul, add_assoc]
_ ≥ ‖P • Q • x‖ + ‖Q • x - P • Q • x + (x - Q • x)‖ :=
((add_le_add_iff_left ‖P • Q • x‖).mpr (norm_add_le (Q • x - P • Q • x) (x - Q • x)))
_ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖ := by rw [sub_add_sub_cancel', sub_smul, one_smul, mul_smul]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖x‖ = ‖P • Q • x‖ + (‖Q • x - P • Q • x‖ + ‖x - Q • x‖)
[PROOFSTEP]
rw [h₂.Lnorm x, h₁.Lnorm (Q • x), sub_smul, one_smul, sub_smul, one_smul, add_assoc]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
x : X
⊢ ‖P • Q • x‖ + ‖Q • x - P • Q • x + (x - Q • x)‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖
[PROOFSTEP]
rw [sub_add_sub_cancel', sub_smul, one_smul, mul_smul]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
⊢ IsLprojection X (P + Q - P * Q)
[PROOFSTEP]
convert (Lcomplement_iff _).mp (h₁.Lcomplement.mul h₂.Lcomplement) using 1
[GOAL]
case h.e'_6
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : M
h₁ : IsLprojection X P
h₂ : IsLprojection X Q
⊢ P + Q - P * Q = 1 - (1 - P) * (1 - Q)
[PROOFSTEP]
noncomm_ring
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P : { P // IsLprojection X P }
⊢ P ≤ P
[PROOFSTEP]
simpa only [coe_inf, ← sq] using P.prop.proj.eq.symm
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
h₁ : P ≤ Q
h₂ : Q ≤ R
⊢ P ≤ R
[PROOFSTEP]
simp only [coe_inf] at h₁ h₂ ⊢
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
h₁ : ↑P = ↑P * ↑Q
h₂ : ↑Q = ↑Q * ↑R
⊢ ↑P = ↑P * ↑R
[PROOFSTEP]
rw [h₁, mul_assoc, ← h₂]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : { P // IsLprojection X P }
h₁ : P ≤ Q
h₂ : Q ≤ P
⊢ ↑P = ↑Q
[PROOFSTEP]
convert (P.prop.commute Q.prop).eq
[GOAL]
X : Type u_1
inst✝² : NormedAddCommGroup X
M : Type u_2
inst✝¹ : Ring M
inst✝ : Module M X
⊢ IsIdempotentElem 0
[PROOFSTEP]
rw [IsIdempotentElem, zero_mul]
[GOAL]
X : Type u_1
inst✝² : NormedAddCommGroup X
M : Type u_2
inst✝¹ : Ring M
inst✝ : Module M X
x : X
⊢ ‖x‖ = ‖0 • x‖ + ‖(1 - 0) • x‖
[PROOFSTEP]
simp only [zero_smul, norm_zero, sub_zero, one_smul, zero_add]
[GOAL]
X : Type u_1
inst✝² : NormedAddCommGroup X
M : Type u_2
inst✝¹ : Ring M
inst✝ : Module M X
P : { P // IsLprojection X P }
Q : M
⊢ ↑Pᶜ * Q = Q - ↑P * Q
[PROOFSTEP]
rw [coe_compl, sub_mul, one_mul]
[GOAL]
X : Type u_1
inst✝² : NormedAddCommGroup X
M : Type u_2
inst✝¹ : Ring M
inst✝ : Module M X
P : { P // IsLprojection X P }
⊢ ↑P * ↑Pᶜ = 0
[PROOFSTEP]
rw [coe_compl, mul_sub, mul_one, P.prop.proj.eq, sub_self]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
⊢ (↑P + ↑Pᶜ * ↑R) * (↑P + ↑Q * ↑R * ↑Pᶜ) = ↑P + ↑Q * ↑R * ↑Pᶜ
[PROOFSTEP]
rw [add_mul, mul_add, mul_add, (mul_assoc _ (R : M) (↑Q * ↑R * ↑Pᶜ)), ← mul_assoc (R : M) (↑Q * ↑R) _, ← coe_inf Q,
(Pᶜ.prop.commute R.prop).eq, ((Q ⊓ R).prop.commute Pᶜ.prop).eq, (R.prop.commute (Q ⊓ R).prop).eq, coe_inf Q,
mul_assoc (Q : M), ← mul_assoc, mul_assoc (R : M), (Pᶜ.prop.commute P.prop).eq, mul_compl_self, zero_mul, mul_zero,
zero_add, add_zero, ← mul_assoc, P.prop.proj.eq, R.prop.proj.eq, ← coe_inf Q, mul_assoc,
((Q ⊓ R).prop.commute Pᶜ.prop).eq, ← mul_assoc, Pᶜ.prop.proj.eq]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : { P // IsLprojection X P }
⊢ P ≤ P ⊔ Q
[PROOFSTEP]
rw [le_def, coe_inf, coe_sup, ← add_sub, mul_add, mul_sub, ← mul_assoc, P.prop.proj.eq, sub_self, add_zero]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : { P // IsLprojection X P }
⊢ Q ≤ P ⊔ Q
[PROOFSTEP]
rw [le_def, coe_inf, coe_sup, ← add_sub, mul_add, mul_sub, (P.prop.commute Q.prop).eq, ← mul_assoc, Q.prop.proj.eq,
add_sub_cancel'_right]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
⊢ P ≤ R → Q ≤ R → P ⊔ Q ≤ R
[PROOFSTEP]
rw [le_def, le_def, le_def, coe_inf, coe_inf, coe_sup, coe_inf, coe_sup, ← add_sub, add_mul, sub_mul, mul_assoc]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
⊢ ↑P = ↑P * ↑R → ↑Q = ↑Q * ↑R → ↑P + (↑Q - ↑P * ↑Q) = ↑P * ↑R + (↑Q * ↑R - ↑P * (↑Q * ↑R))
[PROOFSTEP]
intro h₁ h₂
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
h₁ : ↑P = ↑P * ↑R
h₂ : ↑Q = ↑Q * ↑R
⊢ ↑P + (↑Q - ↑P * ↑Q) = ↑P * ↑R + (↑Q * ↑R - ↑P * (↑Q * ↑R))
[PROOFSTEP]
rw [← h₂, ← h₁]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : { P // IsLprojection X P }
⊢ P ⊓ Q ≤ P
[PROOFSTEP]
rw [le_def, coe_inf, coe_inf, coe_inf, mul_assoc, (Q.prop.commute P.prop).eq, ← mul_assoc, P.prop.proj.eq]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q : { P // IsLprojection X P }
⊢ P ⊓ Q ≤ Q
[PROOFSTEP]
rw [le_def, coe_inf, coe_inf, coe_inf, mul_assoc, Q.prop.proj.eq]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
⊢ P ≤ Q → P ≤ R → P ≤ Q ⊓ R
[PROOFSTEP]
rw [le_def, le_def, le_def, coe_inf, coe_inf, coe_inf, coe_inf, ← mul_assoc]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
⊢ ↑P = ↑P * ↑Q → ↑P = ↑P * ↑R → ↑P = ↑P * ↑Q * ↑R
[PROOFSTEP]
intro h₁ h₂
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
h₁ : ↑P = ↑P * ↑Q
h₂ : ↑P = ↑P * ↑R
⊢ ↑P = ↑P * ↑Q * ↑R
[PROOFSTEP]
rw [← h₁, ← h₂]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
⊢ (P ⊔ Q) ⊓ (P ⊔ R) ≤ P ⊔ Q ⊓ R
[PROOFSTEP]
have e₁ : ↑((P ⊔ Q) ⊓ (P ⊔ R)) = ↑P + ↑Q * (R : M) * ↑Pᶜ := by
rw [coe_inf, coe_sup, coe_sup, ← add_sub, ← add_sub, ← compl_mul, ← compl_mul, add_mul, mul_add,
(Pᶜ.prop.commute Q.prop).eq, mul_add, ← mul_assoc, mul_assoc (Q : M), (Pᶜ.prop.commute P.prop).eq, mul_compl_self,
zero_mul, mul_zero, zero_add, add_zero, ← mul_assoc, mul_assoc (Q : M), P.prop.proj.eq, Pᶜ.prop.proj.eq, mul_assoc,
(Pᶜ.prop.commute R.prop).eq, ← mul_assoc]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
⊢ ↑((P ⊔ Q) ⊓ (P ⊔ R)) = ↑P + ↑Q * ↑R * ↑Pᶜ
[PROOFSTEP]
rw [coe_inf, coe_sup, coe_sup, ← add_sub, ← add_sub, ← compl_mul, ← compl_mul, add_mul, mul_add,
(Pᶜ.prop.commute Q.prop).eq, mul_add, ← mul_assoc, mul_assoc (Q : M), (Pᶜ.prop.commute P.prop).eq, mul_compl_self,
zero_mul, mul_zero, zero_add, add_zero, ← mul_assoc, mul_assoc (Q : M), P.prop.proj.eq, Pᶜ.prop.proj.eq, mul_assoc,
(Pᶜ.prop.commute R.prop).eq, ← mul_assoc]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
e₁ : ↑((P ⊔ Q) ⊓ (P ⊔ R)) = ↑P + ↑Q * ↑R * ↑Pᶜ
⊢ (P ⊔ Q) ⊓ (P ⊔ R) ≤ P ⊔ Q ⊓ R
[PROOFSTEP]
have e₂ : ↑((P ⊔ Q) ⊓ (P ⊔ R)) * ↑(P ⊔ Q ⊓ R) = (P : M) + ↑Q * ↑R * ↑Pᶜ := by
rw [coe_inf, coe_sup, coe_sup, coe_sup, ← add_sub, ← add_sub, ← add_sub, ← compl_mul, ← compl_mul, ← compl_mul,
(Pᶜ.prop.commute (Q ⊓ R).prop).eq, coe_inf, mul_assoc, distrib_lattice_lemma, (Q.prop.commute R.prop).eq,
distrib_lattice_lemma]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
e₁ : ↑((P ⊔ Q) ⊓ (P ⊔ R)) = ↑P + ↑Q * ↑R * ↑Pᶜ
⊢ ↑((P ⊔ Q) ⊓ (P ⊔ R)) * ↑(P ⊔ Q ⊓ R) = ↑P + ↑Q * ↑R * ↑Pᶜ
[PROOFSTEP]
rw [coe_inf, coe_sup, coe_sup, coe_sup, ← add_sub, ← add_sub, ← add_sub, ← compl_mul, ← compl_mul, ← compl_mul,
(Pᶜ.prop.commute (Q ⊓ R).prop).eq, coe_inf, mul_assoc, distrib_lattice_lemma, (Q.prop.commute R.prop).eq,
distrib_lattice_lemma]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
P Q R : { P // IsLprojection X P }
e₁ : ↑((P ⊔ Q) ⊓ (P ⊔ R)) = ↑P + ↑Q * ↑R * ↑Pᶜ
e₂ : ↑((P ⊔ Q) ⊓ (P ⊔ R)) * ↑(P ⊔ Q ⊓ R) = ↑P + ↑Q * ↑R * ↑Pᶜ
⊢ (P ⊔ Q) ⊓ (P ⊔ R) ≤ P ⊔ Q ⊓ R
[PROOFSTEP]
rw [le_def, e₁, coe_inf, e₂]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
src✝² : HasCompl { f // IsLprojection X f } := hasCompl
src✝¹ : SDiff { P // IsLprojection X P } := sdiff
src✝ : BoundedOrder { P // IsLprojection X P } := boundedOrder
P : { P // IsLprojection X P }
⊢ ↑(P ⊓ Pᶜ) = ↑⊥
[PROOFSTEP]
rw [coe_inf, coe_compl, coe_bot, ← coe_compl, mul_compl_self]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
src✝² : HasCompl { f // IsLprojection X f } := hasCompl
src✝¹ : SDiff { P // IsLprojection X P } := sdiff
src✝ : BoundedOrder { P // IsLprojection X P } := boundedOrder
P : { P // IsLprojection X P }
⊢ ↑⊤ = ↑(P ⊔ Pᶜ)
[PROOFSTEP]
rw [coe_top, coe_sup, coe_compl, add_sub_cancel'_right, ← coe_compl, mul_compl_self, sub_zero]
[GOAL]
X : Type u_1
inst✝³ : NormedAddCommGroup X
M : Type u_2
inst✝² : Ring M
inst✝¹ : Module M X
inst✝ : FaithfulSMul M X
src✝² : HasCompl { f // IsLprojection X f } := hasCompl
src✝¹ : SDiff { P // IsLprojection X P } := sdiff
src✝ : BoundedOrder { P // IsLprojection X P } := boundedOrder
P Q : { P // IsLprojection X P }
⊢ ↑(P \ Q) = ↑(P ⊓ Qᶜ)
[PROOFSTEP]
rw [coe_sdiff, ← coe_compl, coe_inf]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.MStructure", "llama_tokens": 14815} |
[GOAL]
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!) c
hs : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)!) s
⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)
[PROOFSTEP]
replace hc := hasSum_coe.mpr hc
[GOAL]
q : ℍ
hq : q.re = 0
c s : ℝ
hs : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)!) s
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)
[PROOFSTEP]
replace hs := (hs.div_const ‖q‖).smul_const q
[GOAL]
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)
[PROOFSTEP]
obtain rfl | hq0 := eq_or_ne q 0
[GOAL]
case inl
c s : ℝ
hq : 0.re = 0
hc : HasSum (fun a => ↑((-1) ^ a * ‖0‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)
⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => 0) (↑c + (s / ‖0‖) • 0)
[PROOFSTEP]
simp_rw [expSeries_apply_zero, norm_zero, div_zero, zero_smul, add_zero]
[GOAL]
case inl
c s : ℝ
hq : 0.re = 0
hc : HasSum (fun a => ↑((-1) ^ a * ‖0‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)
⊢ HasSum (fun n => Pi.single 0 1 n) ↑c
[PROOFSTEP]
simp_rw [norm_zero] at hc
[GOAL]
case inl
c s : ℝ
hq : 0.re = 0
hs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)
hc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c
⊢ HasSum (fun n => Pi.single 0 1 n) ↑c
[PROOFSTEP]
convert hc using 1
[GOAL]
case h.e'_5
c s : ℝ
hq : 0.re = 0
hs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)
hc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c
⊢ (fun n => Pi.single 0 1 n) = fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)
[PROOFSTEP]
ext (_ | n) : 1
[GOAL]
case h.e'_5.h.zero
c s : ℝ
hq : 0.re = 0
hs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)
hc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c
⊢ Pi.single 0 1 Nat.zero = ↑((-1) ^ Nat.zero * 0 ^ (2 * Nat.zero) / ↑(2 * Nat.zero)!)
[PROOFSTEP]
rw [pow_zero, Nat.zero_eq, mul_zero, pow_zero, Nat.factorial_zero, Nat.cast_one, div_one, one_mul, Pi.single_eq_same,
coe_one]
[GOAL]
case h.e'_5.h.succ
c s : ℝ
hq : 0.re = 0
hs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)
hc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c
n : ℕ
⊢ Pi.single 0 1 (Nat.succ n) = ↑((-1) ^ Nat.succ n * 0 ^ (2 * Nat.succ n) / ↑(2 * Nat.succ n)!)
[PROOFSTEP]
rw [zero_pow (mul_pos two_pos (Nat.succ_pos _)), mul_zero, zero_div, Pi.single_eq_of_ne n.succ_ne_zero, coe_zero]
[GOAL]
case inr
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)
[PROOFSTEP]
simp_rw [expSeries_apply_eq]
[GOAL]
case inr
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)
[PROOFSTEP]
have hq2 : q ^ 2 = -normSq q := sq_eq_neg_normSq.mpr hq
[GOAL]
case inr
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)
[PROOFSTEP]
have hqn := norm_ne_zero_iff.mpr hq0
[GOAL]
case inr
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)
[PROOFSTEP]
refine' HasSum.even_add_odd _ _
[GOAL]
case inr.refine'_1
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
⊢ HasSum (fun k => (↑(2 * k)!)⁻¹ • q ^ (2 * k)) ↑c
[PROOFSTEP]
convert hc using 1
[GOAL]
case h.e'_5
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
⊢ (fun k => (↑(2 * k)!)⁻¹ • q ^ (2 * k)) = fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)
[PROOFSTEP]
ext n : 1
[GOAL]
case h.e'_5.h
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
⊢ (↑(2 * n)!)⁻¹ • q ^ (2 * n) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!)
[PROOFSTEP]
letI k : ℝ := ↑(2 * n)!
[GOAL]
case h.e'_5.h
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ (↑(2 * n)!)⁻¹ • q ^ (2 * n) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!)
[PROOFSTEP]
calc
k⁻¹ • q ^ (2 * n) = k⁻¹ • (-normSq q) ^ n := by rw [pow_mul, hq2]; norm_cast
_ = k⁻¹ • ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) := ?_
_ = ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n) / k) := ?_
[GOAL]
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ k⁻¹ • q ^ (2 * n) = ↑(k⁻¹ • (-↑normSq q) ^ n)
[PROOFSTEP]
rw [pow_mul, hq2]
[GOAL]
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ k⁻¹ • (-↑(↑normSq q)) ^ n = ↑(k⁻¹ • (-↑normSq q) ^ n)
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_5.h.calc_1
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ ↑(k⁻¹ • (-↑normSq q) ^ n) = k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n))
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_5.h.calc_1
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ ↑(k⁻¹ • (-↑normSq q) ^ n) = k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n))
[PROOFSTEP]
rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq]
[GOAL]
case h.e'_5.h.calc_1
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ ↑(k⁻¹ • ((-1) ^ n * (‖q‖ * ‖q‖) ^ n)) = k⁻¹ • ↑((-1) ^ n * (‖q‖ * ‖q‖) ^ n)
[PROOFSTEP]
push_cast
[GOAL]
case h.e'_5.h.calc_1
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ (↑(2 * n)!)⁻¹ • ((-1) ^ n * (↑‖q‖ * ↑‖q‖) ^ n) = (↑(2 * n)!)⁻¹ • ((-1) ^ n * (↑‖q‖ * ↑‖q‖) ^ n)
[PROOFSTEP]
rfl
[GOAL]
case h.e'_5.h.calc_2
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n)) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / k)
[PROOFSTEP]
rw [← coe_mul_eq_smul, div_eq_mul_inv]
[GOAL]
case h.e'_5.h.calc_2
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ ↑k⁻¹ * ↑((-1) ^ n * ‖q‖ ^ (2 * n)) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) * k⁻¹)
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_5.h.calc_2
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n)!
⊢ ↑(k⁻¹ * (↑(Int.negSucc 0 ^ n) * ‖q‖ ^ (2 * n))) = ↑(↑(Int.negSucc 0 ^ n) * ‖q‖ ^ (2 * n) * k⁻¹)
[PROOFSTEP]
ring_nf
[GOAL]
case inr.refine'_2
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
⊢ HasSum (fun k => (↑(2 * k + 1)!)⁻¹ • q ^ (2 * k + 1)) ((s / ‖q‖) • q)
[PROOFSTEP]
convert hs using 1
[GOAL]
case h.e'_5
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
⊢ (fun k => (↑(2 * k + 1)!)⁻¹ • q ^ (2 * k + 1)) = fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q
[PROOFSTEP]
ext n : 1
[GOAL]
case h.e'_5.h
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
⊢ (↑(2 * n + 1)!)⁻¹ • q ^ (2 * n + 1) = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)! / ‖q‖) • q
[PROOFSTEP]
let k : ℝ := ↑(2 * n + 1)!
[GOAL]
case h.e'_5.h
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ (↑(2 * n + 1)!)⁻¹ • q ^ (2 * n + 1) = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)! / ‖q‖) • q
[PROOFSTEP]
calc
k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-normSq q) ^ n * q) :=
by
rw [pow_succ', pow_mul, hq2]
norm_cast
_ = k⁻¹ • ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) • q := ?_
_ = ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := ?_
[GOAL]
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • (↑((-↑normSq q) ^ n) * q)
[PROOFSTEP]
rw [pow_succ', pow_mul, hq2]
[GOAL]
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ k⁻¹ • ((-↑(↑normSq q)) ^ n * q) = k⁻¹ • (↑((-↑normSq q) ^ n) * q)
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_5.h.calc_1
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ k⁻¹ • (↑((-↑normSq q) ^ n) * q) = k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_5.h.calc_1.e_a
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ ↑((-↑normSq q) ^ n) * q = ((-1) ^ n * ‖q‖ ^ (2 * n)) • q
[PROOFSTEP]
rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq, ← coe_mul_eq_smul]
[GOAL]
case h.e'_5.h.calc_2
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q
[PROOFSTEP]
rw [smul_smul]
[GOAL]
case h.e'_5.h.calc_2
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ (k⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n))) • q = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_5.h.calc_2.e_a
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ k⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n)) = (-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖
[PROOFSTEP]
simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]
[GOAL]
case h.e'_5.h.calc_2.e_a
q : ℍ
hq : q.re = 0
c s : ℝ
hc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c
hs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)
hq0 : q ≠ 0
hq2 : q ^ 2 = -↑(↑normSq q)
hqn : ‖q‖ ≠ 0
n : ℕ
k : ℝ := ↑(2 * n + 1)!
⊢ (↑(2 * n + 1)!)⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n)) = (-1) ^ n * (‖q‖ ^ (2 * n) * (↑(2 * n + 1)!)⁻¹)
[PROOFSTEP]
ring
[GOAL]
q : ℍ
hq : q.re = 0
⊢ exp ℝ q = ↑(Real.cos ‖q‖) + (Real.sin ‖q‖ / ‖q‖) • q
[PROOFSTEP]
rw [exp_eq_tsum]
[GOAL]
q : ℍ
hq : q.re = 0
⊢ (fun x => ∑' (n : ℕ), (↑n !)⁻¹ • x ^ n) q = ↑(Real.cos ‖q‖) + (Real.sin ‖q‖ / ‖q‖) • q
[PROOFSTEP]
refine' HasSum.tsum_eq _
[GOAL]
q : ℍ
hq : q.re = 0
⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑(Real.cos ‖q‖) + (Real.sin ‖q‖ / ‖q‖) • q)
[PROOFSTEP]
simp_rw [← expSeries_apply_eq]
[GOAL]
q : ℍ
hq : q.re = 0
⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑(Real.cos ‖q‖) + (Real.sin ‖q‖ / ‖q‖) • q)
[PROOFSTEP]
exact hasSum_expSeries_of_imaginary hq (Real.hasSum_cos _) (Real.hasSum_sin _)
[GOAL]
q : ℍ
⊢ exp ℝ q = exp ℝ q.re • (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q)
[PROOFSTEP]
rw [← exp_of_re_eq_zero q.im q.im_re, ← coe_mul_eq_smul, ← exp_coe, ← exp_add_of_commute, re_add_im]
[GOAL]
q : ℍ
⊢ Commute (↑q.re) (im q)
[PROOFSTEP]
exact Algebra.commutes q.re (_ : ℍ[ℝ])
[GOAL]
q : ℍ
⊢ (exp ℝ q).re = exp ℝ q.re * Real.cos ‖q - ↑q.re‖
[PROOFSTEP]
simp [exp_eq]
[GOAL]
q : ℍ
⊢ im (exp ℝ q) = (exp ℝ q.re * (Real.sin ‖im q‖ / ‖im q‖)) • im q
[PROOFSTEP]
simp [exp_eq, smul_smul]
[GOAL]
q : ℍ
⊢ ↑normSq (exp ℝ q) = ↑normSq (exp ℝ q.re • (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q))
[PROOFSTEP]
rw [exp_eq]
[GOAL]
q : ℍ
⊢ ↑normSq (exp ℝ q.re • (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q)) =
exp ℝ q.re ^ 2 * ↑normSq (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q)
[PROOFSTEP]
rw [normSq_smul]
[GOAL]
q : ℍ
⊢ exp ℝ q.re ^ 2 * ↑normSq (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q) =
exp ℝ q.re ^ 2 * (Real.cos ‖im q‖ ^ 2 + Real.sin ‖im q‖ ^ 2)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
q : ℍ
⊢ ↑normSq (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q) = Real.cos ‖im q‖ ^ 2 + Real.sin ‖im q‖ ^ 2
[PROOFSTEP]
obtain hv | hv := eq_or_ne ‖q.im‖ 0
[GOAL]
case e_a.inl
q : ℍ
hv : ‖im q‖ = 0
⊢ ↑normSq (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q) = Real.cos ‖im q‖ ^ 2 + Real.sin ‖im q‖ ^ 2
[PROOFSTEP]
simp [hv]
[GOAL]
case e_a.inr
q : ℍ
hv : ‖im q‖ ≠ 0
⊢ ↑normSq (↑(Real.cos ‖im q‖) + (Real.sin ‖im q‖ / ‖im q‖) • im q) = Real.cos ‖im q‖ ^ 2 + Real.sin ‖im q‖ ^ 2
[PROOFSTEP]
rw [normSq_add, normSq_smul, star_smul, coe_mul_eq_smul, smul_re, smul_re, star_re, im_re, smul_zero, smul_zero,
mul_zero, add_zero, div_pow, normSq_coe, normSq_eq_norm_mul_self, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
[GOAL]
q : ℍ
⊢ exp ℝ q.re ^ 2 * (Real.cos ‖im q‖ ^ 2 + Real.sin ‖im q‖ ^ 2) = exp ℝ q.re ^ 2
[PROOFSTEP]
rw [Real.cos_sq_add_sin_sq, mul_one]
[GOAL]
q : ℍ
⊢ ‖exp ℝ q‖ = ‖exp ℝ q.re‖
[PROOFSTEP]
rw [norm_eq_sqrt_real_inner (exp ℝ q), inner_self, normSq_exp, Real.sqrt_sq_eq_abs, Real.norm_eq_abs]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.QuaternionExponential", "llama_tokens": 11087} |
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁴ : SeminormedRing 𝕜
inst✝³ : Ring 𝕜₂
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
f : 𝕜 →ₗ[𝕜] E
x : 𝕜
⊢ ‖↑f x‖ ≤ ‖↑f 1‖ * ‖x‖
[PROOFSTEP]
conv_lhs => rw [← mul_one x]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁴ : SeminormedRing 𝕜
inst✝³ : Ring 𝕜₂
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
f : 𝕜 →ₗ[𝕜] E
x : 𝕜
| ‖↑f x‖
[PROOFSTEP]
rw [← mul_one x]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁴ : SeminormedRing 𝕜
inst✝³ : Ring 𝕜₂
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
f : 𝕜 →ₗ[𝕜] E
x : 𝕜
| ‖↑f x‖
[PROOFSTEP]
rw [← mul_one x]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁴ : SeminormedRing 𝕜
inst✝³ : Ring 𝕜₂
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
f : 𝕜 →ₗ[𝕜] E
x : 𝕜
| ‖↑f x‖
[PROOFSTEP]
rw [← mul_one x]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁴ : SeminormedRing 𝕜
inst✝³ : Ring 𝕜₂
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
f : 𝕜 →ₗ[𝕜] E
x : 𝕜
⊢ ‖↑f (x * 1)‖ ≤ ‖↑f 1‖ * ‖x‖
[PROOFSTEP]
rw [← smul_eq_mul, f.map_smul, mul_comm]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁴ : SeminormedRing 𝕜
inst✝³ : Ring 𝕜₂
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
f : 𝕜 →ₗ[𝕜] E
x : 𝕜
⊢ ‖x • ↑f 1‖ ≤ ‖x‖ * ‖↑f 1‖
[PROOFSTEP]
exact norm_smul_le _ _
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁷ : Ring 𝕜
inst✝⁶ : Ring 𝕜₂
inst✝⁵ : SeminormedAddCommGroup E
inst✝⁴ : SeminormedAddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜₂ F
σ : 𝕜 →+* 𝕜₂
f✝ : E →ₛₗ[σ] F
σ₂₁ : 𝕜₂ →+* 𝕜
inst✝¹ : RingHomInvPair σ σ₂₁
inst✝ : RingHomInvPair σ₂₁ σ
a : ℝ
ha : 0 < a
f : E ≃ₛₗ[σ] F
⊢ (∀ (x : E), ‖↑f x‖ = a * ‖x‖) → ∀ (y : F), ‖↑(LinearEquiv.symm f) y‖ = a⁻¹ * ‖y‖
[PROOFSTEP]
intro hf y
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁷ : Ring 𝕜
inst✝⁶ : Ring 𝕜₂
inst✝⁵ : SeminormedAddCommGroup E
inst✝⁴ : SeminormedAddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜₂ F
σ : 𝕜 →+* 𝕜₂
f✝ : E →ₛₗ[σ] F
σ₂₁ : 𝕜₂ →+* 𝕜
inst✝¹ : RingHomInvPair σ σ₂₁
inst✝ : RingHomInvPair σ₂₁ σ
a : ℝ
ha : 0 < a
f : E ≃ₛₗ[σ] F
hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖
y : F
⊢ ‖↑(LinearEquiv.symm f) y‖ = a⁻¹ * ‖y‖
[PROOFSTEP]
calc
‖f.symm y‖ = a⁻¹ * (a * ‖f.symm y‖) := by rw [← mul_assoc, inv_mul_cancel (ne_of_lt ha).symm, one_mul]
_ = a⁻¹ * ‖f (f.symm y)‖ := by rw [hf]
_ = a⁻¹ * ‖y‖ := by simp
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁷ : Ring 𝕜
inst✝⁶ : Ring 𝕜₂
inst✝⁵ : SeminormedAddCommGroup E
inst✝⁴ : SeminormedAddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜₂ F
σ : 𝕜 →+* 𝕜₂
f✝ : E →ₛₗ[σ] F
σ₂₁ : 𝕜₂ →+* 𝕜
inst✝¹ : RingHomInvPair σ σ₂₁
inst✝ : RingHomInvPair σ₂₁ σ
a : ℝ
ha : 0 < a
f : E ≃ₛₗ[σ] F
hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖
y : F
⊢ ‖↑(LinearEquiv.symm f) y‖ = a⁻¹ * (a * ‖↑(LinearEquiv.symm f) y‖)
[PROOFSTEP]
rw [← mul_assoc, inv_mul_cancel (ne_of_lt ha).symm, one_mul]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁷ : Ring 𝕜
inst✝⁶ : Ring 𝕜₂
inst✝⁵ : SeminormedAddCommGroup E
inst✝⁴ : SeminormedAddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜₂ F
σ : 𝕜 →+* 𝕜₂
f✝ : E →ₛₗ[σ] F
σ₂₁ : 𝕜₂ →+* 𝕜
inst✝¹ : RingHomInvPair σ σ₂₁
inst✝ : RingHomInvPair σ₂₁ σ
a : ℝ
ha : 0 < a
f : E ≃ₛₗ[σ] F
hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖
y : F
⊢ a⁻¹ * (a * ‖↑(LinearEquiv.symm f) y‖) = a⁻¹ * ‖↑f (↑(LinearEquiv.symm f) y)‖
[PROOFSTEP]
rw [hf]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝⁷ : Ring 𝕜
inst✝⁶ : Ring 𝕜₂
inst✝⁵ : SeminormedAddCommGroup E
inst✝⁴ : SeminormedAddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜₂ F
σ : 𝕜 →+* 𝕜₂
f✝ : E →ₛₗ[σ] F
σ₂₁ : 𝕜₂ →+* 𝕜
inst✝¹ : RingHomInvPair σ σ₂₁
inst✝ : RingHomInvPair σ₂₁ σ
a : ℝ
ha : 0 < a
f : E ≃ₛₗ[σ] F
hf : ∀ (x : E), ‖↑f x‖ = a * ‖x‖
y : F
⊢ a⁻¹ * ‖↑f (↑(LinearEquiv.symm f) y)‖ = a⁻¹ * ‖y‖
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
x : E
c : 𝕜
⊢ ‖↑(LinearMap.toSpanSingleton 𝕜 E x) c‖ = ‖x‖ * ‖c‖
[PROOFSTEP]
rw [mul_comm]
[GOAL]
𝕜 : Type u_1
𝕜₂ : Type u_2
E : Type u_3
F : Type u_4
G : Type u_5
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
x : E
c : 𝕜
⊢ ‖↑(LinearMap.toSpanSingleton 𝕜 E x) c‖ = ‖c‖ * ‖x‖
[PROOFSTEP]
exact norm_smul _ _
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.ContinuousLinearMap", "llama_tokens": 2802} |
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
t : R
h : ‖t‖ < ‖↑x⁻¹‖⁻¹
⊢ ‖-(↑x⁻¹ * t)‖ < 1
[PROOFSTEP]
nontriviality R using zero_lt_one
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
t : R
h : ‖t‖ < ‖↑x⁻¹‖⁻¹
✝ : Nontrivial R
⊢ ‖-(↑x⁻¹ * t)‖ < 1
[PROOFSTEP]
have hpos : 0 < ‖(↑x⁻¹ : R)‖ := Units.norm_pos x⁻¹
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
t : R
h : ‖t‖ < ‖↑x⁻¹‖⁻¹
✝ : Nontrivial R
hpos : 0 < ‖↑x⁻¹‖
⊢ ‖-(↑x⁻¹ * t)‖ < 1
[PROOFSTEP]
calc
‖-(↑x⁻¹ * t)‖ = ‖↑x⁻¹ * t‖ := by rw [norm_neg]
_ ≤ ‖(↑x⁻¹ : R)‖ * ‖t‖ := (norm_mul_le (x⁻¹).1 _)
_ < ‖(↑x⁻¹ : R)‖ * ‖(↑x⁻¹ : R)‖⁻¹ := by nlinarith only [h, hpos]
_ = 1 := mul_inv_cancel (ne_of_gt hpos)
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
t : R
h : ‖t‖ < ‖↑x⁻¹‖⁻¹
✝ : Nontrivial R
hpos : 0 < ‖↑x⁻¹‖
⊢ ‖-(↑x⁻¹ * t)‖ = ‖↑x⁻¹ * t‖
[PROOFSTEP]
rw [norm_neg]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
t : R
h : ‖t‖ < ‖↑x⁻¹‖⁻¹
✝ : Nontrivial R
hpos : 0 < ‖↑x⁻¹‖
⊢ ‖↑x⁻¹‖ * ‖t‖ < ‖↑x⁻¹‖ * ‖↑x⁻¹‖⁻¹
[PROOFSTEP]
nlinarith only [h, hpos]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
t : R
h : ‖t‖ < ‖↑x⁻¹‖⁻¹
⊢ ↑x + t = ↑(x * oneSub (-(↑x⁻¹ * t)) (_ : ‖-(↑x⁻¹ * t)‖ < 1))
[PROOFSTEP]
simp [mul_add]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
y : R
h : ‖y - ↑x‖ < ‖↑x⁻¹‖⁻¹
⊢ y = ↑(add x (y - ↑x) h)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
⊢ IsOpen {x | IsUnit x}
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
✝ : Nontrivial R
⊢ IsOpen {x | IsUnit x}
[PROOFSTEP]
apply Metric.isOpen_iff.mpr
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
✝ : Nontrivial R
⊢ ∀ (x : R), x ∈ {x | IsUnit x} → ∃ ε, ε > 0 ∧ Metric.ball x ε ⊆ {x | IsUnit x}
[PROOFSTEP]
rintro _ ⟨x, rfl⟩
[GOAL]
case intro
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
✝ : Nontrivial R
x : Rˣ
⊢ ∃ ε, ε > 0 ∧ Metric.ball (↑x) ε ⊆ {x | IsUnit x}
[PROOFSTEP]
refine' ⟨‖(↑x⁻¹ : R)‖⁻¹, _root_.inv_pos.mpr (Units.norm_pos x⁻¹), fun y hy ↦ _⟩
[GOAL]
case intro
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
✝ : Nontrivial R
x : Rˣ
y : R
hy : y ∈ Metric.ball ↑x ‖↑x⁻¹‖⁻¹
⊢ y ∈ {x | IsUnit x}
[PROOFSTEP]
rw [mem_ball_iff_norm] at hy
[GOAL]
case intro
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
✝ : Nontrivial R
x : Rˣ
y : R
hy : ‖y - ↑x‖ < ‖↑x⁻¹‖⁻¹
⊢ y ∈ {x | IsUnit x}
[PROOFSTEP]
exact (x.ofNearby y hy).isUnit
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
hx : x ∈ nonunits R
h₁ : x ∈ Metric.ball 1 1
⊢ ‖1 - x‖ < 1
[PROOFSTEP]
rwa [mem_ball_iff_norm'] at h₁
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
h : ‖t‖ < 1
⊢ inverse (1 - t) = ↑(Units.oneSub t h)⁻¹
[PROOFSTEP]
rw [← inverse_unit (Units.oneSub t h), Units.oneSub_val]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
⊢ ∀ᶠ (t : R) in 𝓝 0, inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
✝ : Nontrivial R
⊢ ∀ᶠ (t : R) in 𝓝 0, inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
[PROOFSTEP]
rw [Metric.eventually_nhds_iff]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
✝ : Nontrivial R
⊢ ∃ ε, ε > 0 ∧ ∀ ⦃y : R⦄, dist y 0 < ε → inverse (↑x + y) = inverse (1 + ↑x⁻¹ * y) * ↑x⁻¹
[PROOFSTEP]
refine ⟨‖(↑x⁻¹ : R)‖⁻¹, by cancel_denoms, fun t ht ↦ ?_⟩
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
✝ : Nontrivial R
⊢ ‖↑x⁻¹‖⁻¹ > 0
[PROOFSTEP]
cancel_denoms
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
✝ : Nontrivial R
⊢ ‖↑x⁻¹‖⁻¹ > 0
[PROOFSTEP]
cancel_denoms
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
✝ : Nontrivial R
t : R
ht : dist t 0 < ‖↑x⁻¹‖⁻¹
⊢ inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
[PROOFSTEP]
rw [dist_zero_right] at ht
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
✝ : Nontrivial R
t : R
ht : ‖t‖ < ‖↑x⁻¹‖⁻¹
⊢ inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
[PROOFSTEP]
rw [← x.add_val t ht, inverse_unit, Units.add, Units.copy_eq, mul_inv_rev, Units.val_mul, ← inverse_unit,
Units.oneSub_val, sub_neg_eq_add]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
n : ℕ
t : R
ht : ‖t‖ < 1
this : Summable fun n => t ^ n
⊢ ∑ i in range n, t ^ i + ∑' (i : ℕ), t ^ (i + n) = ∑ i in range n, t ^ i + t ^ n * inverse (1 - t)
[PROOFSTEP]
simp only [inverse_one_sub t ht, add_comm _ n, pow_add, this.tsum_mul_left]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
n : ℕ
t : R
ht : ‖t‖ < 1
this : Summable fun n => t ^ n
⊢ ∑ i in range n, t ^ i + t ^ n * ∑' (i : ℕ), t ^ i = ∑ i in range n, t ^ i + t ^ n * ↑(Units.oneSub t ht)⁻¹
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
n : ℕ
t : R
ht : dist t 0 < 1
⊢ ‖t‖ < 1
[PROOFSTEP]
rwa [← dist_zero_right]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
⊢ ∀ᶠ (t : R) in 𝓝 0, inverse (↑x + t) = (∑ i in range n, (-↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (-↑x⁻¹ * t) ^ n * inverse (↑x + t)
[PROOFSTEP]
have hzero : Tendsto (-(↑x⁻¹ : R) * ·) (𝓝 0) (𝓝 0) := (mulLeft_continuous _).tendsto' _ _ <| mul_zero _
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
⊢ ∀ᶠ (t : R) in 𝓝 0, inverse (↑x + t) = (∑ i in range n, (-↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (-↑x⁻¹ * t) ^ n * inverse (↑x + t)
[PROOFSTEP]
filter_upwards [inverse_add x, hzero.eventually (inverse_one_sub_nth_order n)] with t ht ht'
[GOAL]
case h
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
t : R
ht : inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
ht' : inverse (1 - -↑x⁻¹ * t) = ∑ i in range n, (-↑x⁻¹ * t) ^ i + (-↑x⁻¹ * t) ^ n * inverse (1 - -↑x⁻¹ * t)
⊢ inverse (↑x + t) = (∑ i in range n, (-↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (-↑x⁻¹ * t) ^ n * inverse (↑x + t)
[PROOFSTEP]
rw [neg_mul, sub_neg_eq_add] at ht'
[GOAL]
case h
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
t : R
ht : inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
ht' : inverse (1 + ↑x⁻¹ * t) = ∑ i in range n, (-(↑x⁻¹ * t)) ^ i + (-(↑x⁻¹ * t)) ^ n * inverse (1 + ↑x⁻¹ * t)
⊢ inverse (↑x + t) = (∑ i in range n, (-↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (-↑x⁻¹ * t) ^ n * inverse (↑x + t)
[PROOFSTEP]
conv_lhs => rw [ht, ht', add_mul, ← neg_mul, mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
t : R
ht : inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
ht' : inverse (1 + ↑x⁻¹ * t) = ∑ i in range n, (-(↑x⁻¹ * t)) ^ i + (-(↑x⁻¹ * t)) ^ n * inverse (1 + ↑x⁻¹ * t)
| inverse (↑x + t)
[PROOFSTEP]
rw [ht, ht', add_mul, ← neg_mul, mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
t : R
ht : inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
ht' : inverse (1 + ↑x⁻¹ * t) = ∑ i in range n, (-(↑x⁻¹ * t)) ^ i + (-(↑x⁻¹ * t)) ^ n * inverse (1 + ↑x⁻¹ * t)
| inverse (↑x + t)
[PROOFSTEP]
rw [ht, ht', add_mul, ← neg_mul, mul_assoc]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
t : R
ht : inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
ht' : inverse (1 + ↑x⁻¹ * t) = ∑ i in range n, (-(↑x⁻¹ * t)) ^ i + (-(↑x⁻¹ * t)) ^ n * inverse (1 + ↑x⁻¹ * t)
| inverse (↑x + t)
[PROOFSTEP]
rw [ht, ht', add_mul, ← neg_mul, mul_assoc]
[GOAL]
case h
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
t : R
ht : inverse (↑x + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹
ht' : inverse (1 + ↑x⁻¹ * t) = ∑ i in range n, (-(↑x⁻¹ * t)) ^ i + (-(↑x⁻¹ * t)) ^ n * inverse (1 + ↑x⁻¹ * t)
⊢ (∑ i in range n, (-↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (-↑x⁻¹ * t) ^ n * (inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹) =
(∑ i in range n, (-↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (-↑x⁻¹ * t) ^ n * inverse (↑x + t)
[PROOFSTEP]
rw [ht]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
⊢ (fun t => inverse (1 - t)) =O[𝓝 0] fun _t => 1
[PROOFSTEP]
simp only [IsBigO, IsBigOWith, Metric.eventually_nhds_iff]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
⊢ ∃ c ε, ε > 0 ∧ ∀ ⦃y : R⦄, dist y 0 < ε → ‖inverse (1 - y)‖ ≤ c * ‖1‖
[PROOFSTEP]
refine ⟨‖(1 : R)‖ + 1, (2 : ℝ)⁻¹, by norm_num, fun t ht ↦ ?_⟩
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
⊢ 2⁻¹ > 0
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : dist t 0 < 2⁻¹
⊢ ‖inverse (1 - t)‖ ≤ (‖1‖ + 1) * ‖1‖
[PROOFSTEP]
rw [dist_zero_right] at ht
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
⊢ ‖inverse (1 - t)‖ ≤ (‖1‖ + 1) * ‖1‖
[PROOFSTEP]
have ht' : ‖t‖ < 1 := by
have : (2 : ℝ)⁻¹ < 1 := by cancel_denoms
linarith
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
⊢ ‖t‖ < 1
[PROOFSTEP]
have : (2 : ℝ)⁻¹ < 1 := by cancel_denoms
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
⊢ 2⁻¹ < 1
[PROOFSTEP]
cancel_denoms
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
⊢ 2⁻¹ < 1
[PROOFSTEP]
cancel_denoms
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
this : 2⁻¹ < 1
⊢ ‖t‖ < 1
[PROOFSTEP]
linarith
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
⊢ ‖inverse (1 - t)‖ ≤ (‖1‖ + 1) * ‖1‖
[PROOFSTEP]
simp only [inverse_one_sub t ht', norm_one, mul_one, Set.mem_setOf_eq]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
⊢ ‖↑(Units.oneSub t ht')⁻¹‖ ≤ ‖1‖ + 1
[PROOFSTEP]
change ‖∑' n : ℕ, t ^ n‖ ≤ _
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
⊢ ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ + 1
[PROOFSTEP]
have := NormedRing.tsum_geometric_of_norm_lt_1 t ht'
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
⊢ ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ + 1
[PROOFSTEP]
have : (1 - ‖t‖)⁻¹ ≤ 2 := by
rw [← inv_inv (2 : ℝ)]
refine' inv_le_inv_of_le (by norm_num) _
have : (2 : ℝ)⁻¹ + (2 : ℝ)⁻¹ = 1 := by ring
linarith
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
⊢ (1 - ‖t‖)⁻¹ ≤ 2
[PROOFSTEP]
rw [← inv_inv (2 : ℝ)]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
⊢ (1 - ‖t‖)⁻¹ ≤ 2⁻¹⁻¹
[PROOFSTEP]
refine' inv_le_inv_of_le (by norm_num) _
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
⊢ 0 < 2⁻¹
[PROOFSTEP]
norm_num
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
⊢ 2⁻¹ ≤ 1 - ‖t‖
[PROOFSTEP]
have : (2 : ℝ)⁻¹ + (2 : ℝ)⁻¹ = 1 := by ring
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
⊢ 2⁻¹ + 2⁻¹ = 1
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this✝ : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
this : 2⁻¹ + 2⁻¹ = 1
⊢ 2⁻¹ ≤ 1 - ‖t‖
[PROOFSTEP]
linarith
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
t : R
ht : ‖t‖ < 2⁻¹
ht' : ‖t‖ < 1
this✝ : ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖t‖)⁻¹
this : (1 - ‖t‖)⁻¹ ≤ 2
⊢ ‖∑' (n : ℕ), t ^ n‖ ≤ ‖1‖ + 1
[PROOFSTEP]
linarith
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
⊢ (fun t => inverse (↑x + t)) =O[𝓝 0] fun _t => 1
[PROOFSTEP]
refine EventuallyEq.trans_isBigO (inverse_add x) (one_mul (1 : ℝ) ▸ ?_)
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
⊢ (fun x_1 => inverse (1 + ↑x⁻¹ * x_1) * ↑x⁻¹) =O[𝓝 0] fun _t => 1 * 1
[PROOFSTEP]
simp only [← sub_neg_eq_add, ← neg_mul]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
⊢ (fun x_1 => inverse (1 - -↑x⁻¹ * x_1) * ↑x⁻¹) =O[𝓝 0] fun _t => 1 * 1
[PROOFSTEP]
have hzero : Tendsto (-(↑x⁻¹ : R) * ·) (𝓝 0) (𝓝 0) := (mulLeft_continuous _).tendsto' _ _ <| mul_zero _
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
hzero : Tendsto (fun x_1 => -↑x⁻¹ * x_1) (𝓝 0) (𝓝 0)
⊢ (fun x_1 => inverse (1 - -↑x⁻¹ * x_1) * ↑x⁻¹) =O[𝓝 0] fun _t => 1 * 1
[PROOFSTEP]
exact (inverse_one_sub_norm.comp_tendsto hzero).mul (isBigO_const_const _ one_ne_zero _)
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
⊢ (fun t => inverse (↑x + t) - (∑ i in range n, (-↑x⁻¹ * t) ^ i) * ↑x⁻¹) =O[𝓝 0] fun t => ‖t‖ ^ n
[PROOFSTEP]
refine EventuallyEq.trans_isBigO (.sub (inverse_add_nth_order x n) (.refl _ _)) ?_
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
⊢ (fun x_1 =>
(∑ i in range n, (-↑x⁻¹ * x_1) ^ i) * ↑x⁻¹ + (-↑x⁻¹ * x_1) ^ n * inverse (↑x + x_1) -
(∑ i in range n, (-↑x⁻¹ * x_1) ^ i) * ↑x⁻¹) =O[𝓝 0]
fun t => ‖t‖ ^ n
[PROOFSTEP]
simp only [add_sub_cancel']
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
⊢ (fun x_1 => (-↑x⁻¹ * x_1) ^ n * inverse (↑x + x_1)) =O[𝓝 0] fun t => ‖t‖ ^ n
[PROOFSTEP]
refine ((isBigO_refl _ _).norm_right.mul (inverse_add_norm x)).trans ?_
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
⊢ (fun x_1 => ‖(-↑x⁻¹ * x_1) ^ n‖ * 1) =O[𝓝 0] fun t => ‖t‖ ^ n
[PROOFSTEP]
simp only [mul_one, isBigO_norm_left]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
n : ℕ
⊢ (fun x_1 => (-↑x⁻¹ * x_1) ^ n) =O[𝓝 0] fun t => ‖t‖ ^ n
[PROOFSTEP]
exact ((isBigO_refl _ _).norm_right.const_mul_left _).pow _
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
⊢ (fun t => inverse (↑x + t) - ↑x⁻¹) =O[𝓝 0] fun t => ‖t‖
[PROOFSTEP]
simpa using inverse_add_norm_diff_nth_order x 1
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
⊢ (fun t => inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =O[𝓝 0] fun t => ‖t‖ ^ 2
[PROOFSTEP]
convert inverse_add_norm_diff_nth_order x 2 using 2
[GOAL]
case h.e'_7.h
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
x✝ : R
⊢ inverse (↑x + x✝) - ↑x⁻¹ + ↑x⁻¹ * x✝ * ↑x⁻¹ = inverse (↑x + x✝) - (∑ i in range 2, (-↑x⁻¹ * x✝) ^ i) * ↑x⁻¹
[PROOFSTEP]
simp only [sum_range_succ, sum_range_zero, zero_add, pow_zero, pow_one, add_mul, one_mul, ← sub_sub, neg_mul,
sub_neg_eq_add]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
⊢ ContinuousAt inverse ↑x
[PROOFSTEP]
have h_is_o : (fun t : R => inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] (fun _ => 1 : R → ℝ) :=
(inverse_add_norm_diff_first_order x).trans_isLittleO (isLittleO_id_const one_ne_zero).norm_left
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
h_is_o : (fun t => inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] fun x => 1
⊢ ContinuousAt inverse ↑x
[PROOFSTEP]
have h_lim : Tendsto (fun y : R => y - x) (𝓝 x) (𝓝 0) :=
by
refine' tendsto_zero_iff_norm_tendsto_zero.mpr _
exact tendsto_iff_norm_tendsto_zero.mp tendsto_id
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
h_is_o : (fun t => inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] fun x => 1
⊢ Tendsto (fun y => y - ↑x) (𝓝 ↑x) (𝓝 0)
[PROOFSTEP]
refine' tendsto_zero_iff_norm_tendsto_zero.mpr _
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
h_is_o : (fun t => inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] fun x => 1
⊢ Tendsto (fun e => ‖e - ↑x‖) (𝓝 ↑x) (𝓝 0)
[PROOFSTEP]
exact tendsto_iff_norm_tendsto_zero.mp tendsto_id
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
h_is_o : (fun t => inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] fun x => 1
h_lim : Tendsto (fun y => y - ↑x) (𝓝 ↑x) (𝓝 0)
⊢ ContinuousAt inverse ↑x
[PROOFSTEP]
rw [ContinuousAt, tendsto_iff_norm_tendsto_zero, inverse_unit]
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : Rˣ
h_is_o : (fun t => inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] fun x => 1
h_lim : Tendsto (fun y => y - ↑x) (𝓝 ↑x) (𝓝 0)
⊢ Tendsto (fun e => ‖inverse e - ↑x⁻¹‖) (𝓝 ↑x) (𝓝 0)
[PROOFSTEP]
simpa [(· ∘ ·)] using h_is_o.norm_left.tendsto_div_nhds_zero.comp h_lim
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
I : Ideal R
x : R
hxI : x ∈ I
hx : ‖1 - x‖ < 1
u : Rˣ := Units.oneSub (1 - x) hx
⊢ 1 ∈ I
[PROOFSTEP]
simpa only [show u.inv * x = 1 by simp] using I.mul_mem_left u.inv hxI
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
I : Ideal R
x : R
hxI : x ∈ I
hx : ‖1 - x‖ < 1
u : Rˣ := Units.oneSub (1 - x) hx
⊢ u.inv * x = 1
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
I : Ideal R
hI : I ≠ ⊤
⊢ Ideal.closure I ≠ ⊤
[PROOFSTEP]
have h := closure_minimal (coe_subset_nonunits hI) nonunits.isClosed
[GOAL]
R : Type u_1
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
I : Ideal R
hI : I ≠ ⊤
h : closure ↑I ⊆ nonunits R
⊢ Ideal.closure I ≠ ⊤
[PROOFSTEP]
simpa only [I.closure.eq_top_iff_one, Ne.def] using mt (@h 1) one_not_mem_nonunits
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Units", "llama_tokens": 9899} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : Module 𝕜 (Completion E) := instModule
c : 𝕜
x : Completion E
y : E
⊢ ‖c • ↑E y‖ ≤ ‖c‖ * ‖↑E y‖
[PROOFSTEP]
simp only [← coe_smul, norm_coe, norm_smul, le_rfl]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : Completion A
⊢ dist x y = ‖x - y‖
[PROOFSTEP]
refine Completion.induction_on₂ x y ?_ ?_
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : Completion A
⊢ IsClosed {x | dist x.fst x.snd = ‖x.fst - x.snd‖}
[PROOFSTEP]
clear x y
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : Completion A
⊢ ∀ (a b : A), dist (↑A a) (↑A b) = ‖↑A a - ↑A b‖
[PROOFSTEP]
clear x y
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
⊢ IsClosed {x | dist x.fst x.snd = ‖x.fst - x.snd‖}
[PROOFSTEP]
refine' isClosed_eq (Completion.uniformContinuous_extension₂ _).continuous _
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
⊢ Continuous fun x => ‖x.fst - x.snd‖
[PROOFSTEP]
exact Continuous.comp Completion.continuous_extension continuous_sub
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
⊢ ∀ (a b : A), dist (↑A a) (↑A b) = ‖↑A a - ↑A b‖
[PROOFSTEP]
intro x y
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : A
⊢ dist (↑A x) (↑A y) = ‖↑A x - ↑A y‖
[PROOFSTEP]
rw [← Completion.coe_sub, norm_coe, Completion.dist_eq, dist_eq_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : Completion A
⊢ ‖x * y‖ ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
refine Completion.induction_on₂ x y ?_ ?_
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : Completion A
⊢ IsClosed {x | ‖x.fst * x.snd‖ ≤ ‖x.fst‖ * ‖x.snd‖}
[PROOFSTEP]
clear x y
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : Completion A
⊢ ∀ (a b : A), ‖↑A a * ↑A b‖ ≤ ‖↑A a‖ * ‖↑A b‖
[PROOFSTEP]
clear x y
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
⊢ IsClosed {x | ‖x.fst * x.snd‖ ≤ ‖x.fst‖ * ‖x.snd‖}
[PROOFSTEP]
exact
isClosed_le (Continuous.comp continuous_norm continuous_mul)
(Continuous.comp _root_.continuous_mul (Continuous.prod_map continuous_norm continuous_norm))
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
⊢ ∀ (a b : A), ‖↑A a * ↑A b‖ ≤ ‖↑A a‖ * ‖↑A b‖
[PROOFSTEP]
intro x y
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : A
⊢ ‖↑A x * ↑A y‖ ≤ ‖↑A x‖ * ‖↑A y‖
[PROOFSTEP]
simp only [← coe_mul, norm_coe]
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
A : Type u_3
inst✝ : SeminormedRing A
src✝¹ : Ring (Completion A) := ring
src✝ : MetricSpace (Completion A) := instMetricSpace
x y : A
⊢ ‖x * y‖ ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
exact norm_mul_le x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
A : Type u_3
inst✝² : SeminormedCommRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : UniformContinuousConstSMul 𝕜 A
src✝ : Algebra 𝕜 (Completion A) := algebra A 𝕜
r : 𝕜
x : Completion A
⊢ ‖r • x‖ ≤ ‖r‖ * ‖x‖
[PROOFSTEP]
refine Completion.induction_on x ?_ ?_
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
A : Type u_3
inst✝² : SeminormedCommRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : UniformContinuousConstSMul 𝕜 A
src✝ : Algebra 𝕜 (Completion A) := algebra A 𝕜
r : 𝕜
x : Completion A
⊢ IsClosed {a | ‖r • a‖ ≤ ‖r‖ * ‖a‖}
[PROOFSTEP]
clear x
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
A : Type u_3
inst✝² : SeminormedCommRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : UniformContinuousConstSMul 𝕜 A
src✝ : Algebra 𝕜 (Completion A) := algebra A 𝕜
r : 𝕜
x : Completion A
⊢ ∀ (a : A), ‖r • ↑A a‖ ≤ ‖r‖ * ‖↑A a‖
[PROOFSTEP]
clear x
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
A : Type u_3
inst✝² : SeminormedCommRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : UniformContinuousConstSMul 𝕜 A
src✝ : Algebra 𝕜 (Completion A) := algebra A 𝕜
r : 𝕜
⊢ IsClosed {a | ‖r • a‖ ≤ ‖r‖ * ‖a‖}
[PROOFSTEP]
exact
isClosed_le (Continuous.comp continuous_norm (continuous_const_smul r))
(Continuous.comp (continuous_mul_left _) continuous_norm)
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
A : Type u_3
inst✝² : SeminormedCommRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : UniformContinuousConstSMul 𝕜 A
src✝ : Algebra 𝕜 (Completion A) := algebra A 𝕜
r : 𝕜
⊢ ∀ (a : A), ‖r • ↑A a‖ ≤ ‖r‖ * ‖↑A a‖
[PROOFSTEP]
intro x
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
A : Type u_3
inst✝² : SeminormedCommRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : UniformContinuousConstSMul 𝕜 A
src✝ : Algebra 𝕜 (Completion A) := algebra A 𝕜
r : 𝕜
x : A
⊢ ‖r • ↑A x‖ ≤ ‖r‖ * ‖↑A x‖
[PROOFSTEP]
simp only [← coe_smul, norm_coe]
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
A : Type u_3
inst✝² : SeminormedCommRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : UniformContinuousConstSMul 𝕜 A
src✝ : Algebra 𝕜 (Completion A) := algebra A 𝕜
r : 𝕜
x : A
⊢ ‖r • x‖ ≤ ‖r‖ * ‖x‖
[PROOFSTEP]
exact norm_smul_le r x
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Completion", "llama_tokens": 3829} |
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
E : Type u_3
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace 𝕜' E
r : ℝ
c : ↑(closedBall 0 1)
x : ↑(ball 0 r)
⊢ ‖↑c • ↑x‖ < r
[PROOFSTEP]
simpa only [norm_smul, one_mul] using
mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
E : Type u_3
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace 𝕜' E
r : ℝ
c : ↑(closedBall 0 1)
x : ↑(closedBall 0 r)
⊢ ‖↑c • ↑x‖ ≤ r
[PROOFSTEP]
simpa only [norm_smul, one_mul] using
mul_le_mul (mem_closedBall_zero_iff.1 c.2) (mem_closedBall_zero_iff.1 x.2) (norm_nonneg _) zero_le_one
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
E : Type u_3
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace 𝕜' E
r : ℝ
c : ↑(sphere 0 1)
x : ↑(sphere 0 r)
⊢ ‖↑c • ↑x‖ = r
[PROOFSTEP]
rw [norm_smul, mem_sphere_zero_iff_norm.1 c.coe_prop, mem_sphere_zero_iff_norm.1 x.coe_prop, one_mul]
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
E : Type u_3
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedField 𝕜'
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace 𝕜' E
r✝ : ℝ
inst✝ : CharZero 𝕜
r : ℝ
hr : r ≠ 0
x : ↑(sphere 0 r)
h : x = -x
⊢ ↑x = -↑x
[PROOFSTEP]
conv_lhs => rw [h]
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
E : Type u_3
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedField 𝕜'
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace 𝕜' E
r✝ : ℝ
inst✝ : CharZero 𝕜
r : ℝ
hr : r ≠ 0
x : ↑(sphere 0 r)
h : x = -x
| ↑x
[PROOFSTEP]
rw [h]
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
E : Type u_3
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedField 𝕜'
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace 𝕜' E
r✝ : ℝ
inst✝ : CharZero 𝕜
r : ℝ
hr : r ≠ 0
x : ↑(sphere 0 r)
h : x = -x
| ↑x
[PROOFSTEP]
rw [h]
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
E : Type u_3
inst✝⁵ : NormedField 𝕜
inst✝⁴ : NormedField 𝕜'
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace 𝕜' E
r✝ : ℝ
inst✝ : CharZero 𝕜
r : ℝ
hr : r ≠ 0
x : ↑(sphere 0 r)
h : x = -x
| ↑x
[PROOFSTEP]
rw [h]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.BallAction", "llama_tokens": 1265} |
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
⊢ F →ₗ[𝕜] 𝕜
[PROOFSTEP]
let fc : F → 𝕜 := fun x => (fr x : 𝕜) - (I : 𝕜) * fr ((I : 𝕜) • x)
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
⊢ F →ₗ[𝕜] 𝕜
[PROOFSTEP]
have add : ∀ x y : F, fc (x + y) = fc x + fc y := by
intro x y
simp only [smul_add, LinearMap.map_add, ofReal_add]
rw [mul_add]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
⊢ ∀ (x y : F), fc (x + y) = fc x + fc y
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
x y : F
⊢ fc (x + y) = fc x + fc y
[PROOFSTEP]
simp only [smul_add, LinearMap.map_add, ofReal_add]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
x y : F
⊢ ↑(↑fr x) + ↑(↑fr y) - I * (↑(↑fr (I • x)) + ↑(↑fr (I • y))) =
↑(↑fr x) - I * ↑(↑fr (I • x)) + (↑(↑fr y) - I * ↑(↑fr (I • y)))
[PROOFSTEP]
rw [mul_add]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
x y : F
⊢ ↑(↑fr x) + ↑(↑fr y) - (I * ↑(↑fr (I • x)) + I * ↑(↑fr (I • y))) =
↑(↑fr x) - I * ↑(↑fr (I • x)) + (↑(↑fr y) - I * ↑(↑fr (I • y)))
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
x y : F
⊢ ↑(↑fr x) + ↑(↑fr y) - (I * ↑(↑fr (I • x)) + I * ↑(↑fr (I • y))) =
↑(↑fr x) - I * ↑(↑fr (I • x)) + (↑(↑fr y) - I * ↑(↑fr (I • y)))
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
⊢ F →ₗ[𝕜] 𝕜
[PROOFSTEP]
have A : ∀ (c : ℝ) (x : F), (fr ((c : 𝕜) • x) : 𝕜) = (c : 𝕜) * (fr x : 𝕜) :=
by
intro c x
rw [← ofReal_mul]
congr 1
rw [IsROrC.ofReal_alg, smul_assoc, fr.map_smul, Algebra.id.smul_eq_mul, one_smul]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
⊢ ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
[PROOFSTEP]
intro c x
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
c : ℝ
x : F
⊢ ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
[PROOFSTEP]
rw [← ofReal_mul]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
c : ℝ
x : F
⊢ ↑(↑fr (↑c • x)) = ↑(c * ↑fr x)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
c : ℝ
x : F
⊢ ↑fr (↑c • x) = c * ↑fr x
[PROOFSTEP]
rw [IsROrC.ofReal_alg, smul_assoc, fr.map_smul, Algebra.id.smul_eq_mul, one_smul]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
⊢ F →ₗ[𝕜] 𝕜
[PROOFSTEP]
have smul_ℝ : ∀ (c : ℝ) (x : F), fc ((c : 𝕜) • x) = (c : 𝕜) * fc x :=
by
intro c x
dsimp only
rw [A c x, smul_smul, mul_comm I (c : 𝕜), ← smul_smul, A, mul_sub]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
⊢ ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
[PROOFSTEP]
intro c x
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
c : ℝ
x : F
⊢ fc (↑c • x) = ↑c * fc x
[PROOFSTEP]
dsimp only
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
c : ℝ
x : F
⊢ ↑(↑fr (↑c • x)) - I * ↑(↑fr (I • ↑c • x)) = ↑c * (↑(↑fr x) - I * ↑(↑fr (I • x)))
[PROOFSTEP]
rw [A c x, smul_smul, mul_comm I (c : 𝕜), ← smul_smul, A, mul_sub]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
c : ℝ
x : F
⊢ ↑c * ↑(↑fr x) - I * (↑c * ↑(↑fr (I • x))) = ↑c * ↑(↑fr x) - ↑c * (I * ↑(↑fr (I • x)))
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
⊢ F →ₗ[𝕜] 𝕜
[PROOFSTEP]
have smul_I : ∀ x : F, fc ((I : 𝕜) • x) = (I : 𝕜) * fc x :=
by
intro x
dsimp only
cases' @I_mul_I_ax 𝕜 _ with h h
· simp [h]
rw [mul_sub, ← mul_assoc, smul_smul, h]
simp only [neg_mul, LinearMap.map_neg, one_mul, one_smul, mul_neg, ofReal_neg, neg_smul, sub_neg_eq_add, add_comm]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
⊢ ∀ (x : F), fc (I • x) = I * fc x
[PROOFSTEP]
intro x
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
x : F
⊢ fc (I • x) = I * fc x
[PROOFSTEP]
dsimp only
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
x : F
⊢ ↑(↑fr (I • x)) - I * ↑(↑fr (I • I • x)) = I * (↑(↑fr x) - I * ↑(↑fr (I • x)))
[PROOFSTEP]
cases' @I_mul_I_ax 𝕜 _ with h h
[GOAL]
case inl
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
x : F
h : I = 0
⊢ ↑(↑fr (I • x)) - I * ↑(↑fr (I • I • x)) = I * (↑(↑fr x) - I * ↑(↑fr (I • x)))
[PROOFSTEP]
simp [h]
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
x : F
h : I * I = -1
⊢ ↑(↑fr (I • x)) - I * ↑(↑fr (I • I • x)) = I * (↑(↑fr x) - I * ↑(↑fr (I • x)))
[PROOFSTEP]
rw [mul_sub, ← mul_assoc, smul_smul, h]
[GOAL]
case inr
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
x : F
h : I * I = -1
⊢ ↑(↑fr (I • x)) - I * ↑(↑fr (-1 • x)) = I * ↑(↑fr x) - -1 * ↑(↑fr (I • x))
[PROOFSTEP]
simp only [neg_mul, LinearMap.map_neg, one_mul, one_smul, mul_neg, ofReal_neg, neg_smul, sub_neg_eq_add, add_comm]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
smul_I : ∀ (x : F), fc (I • x) = I * fc x
⊢ F →ₗ[𝕜] 𝕜
[PROOFSTEP]
have smul_𝕜 : ∀ (c : 𝕜) (x : F), fc (c • x) = c • fc x :=
by
intro c x
rw [← re_add_im c, add_smul, add_smul, add, smul_ℝ, ← smul_smul, smul_ℝ, smul_I, ← mul_assoc]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
smul_I : ∀ (x : F), fc (I • x) = I * fc x
⊢ ∀ (c : 𝕜) (x : F), fc (c • x) = c • fc x
[PROOFSTEP]
intro c x
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
smul_I : ∀ (x : F), fc (I • x) = I * fc x
c : 𝕜
x : F
⊢ fc (c • x) = c • fc x
[PROOFSTEP]
rw [← re_add_im c, add_smul, add_smul, add, smul_ℝ, ← smul_smul, smul_ℝ, smul_I, ← mul_assoc]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
smul_I : ∀ (x : F), fc (I • x) = I * fc x
c : 𝕜
x : F
⊢ ↑(↑re c) * fc x + ↑(↑im c) * I * fc x = ↑(↑re c) • fc x + (↑(↑im c) * I) • fc x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
fc : F → 𝕜 := fun x => ↑(↑fr x) - I * ↑(↑fr (I • x))
add : ∀ (x y : F), fc (x + y) = fc x + fc y
A : ∀ (c : ℝ) (x : F), ↑(↑fr (↑c • x)) = ↑c * ↑(↑fr x)
smul_ℝ : ∀ (c : ℝ) (x : F), fc (↑c • x) = ↑c * fc x
smul_I : ∀ (x : F), fc (I • x) = I * fc x
smul_𝕜 : ∀ (c : 𝕜) (x : F), fc (c • x) = c • fc x
⊢ F →ₗ[𝕜] 𝕜
[PROOFSTEP]
exact
{ toFun := fc
map_add' := add
map_smul' := smul_𝕜 }
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
x : F
⊢ ↑re (↑(extendTo𝕜' fr) x) = ↑fr x
[PROOFSTEP]
simp only [extendTo𝕜'_apply, map_sub, zero_mul, mul_zero, sub_zero, isROrC_simps]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
x : F
⊢ ‖↑(extendTo𝕜' fr) x‖ ^ 2 = ↑re (↑(starRingEnd ((fun x => 𝕜) x)) (↑(extendTo𝕜' fr) x) * ↑(extendTo𝕜' fr) x)
[PROOFSTEP]
rw [IsROrC.conj_mul, normSq_eq_def', ofReal_re]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : Module ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →ₗ[ℝ] ℝ
x : F
⊢ ↑re (↑(starRingEnd ((fun x => 𝕜) x)) (↑(extendTo𝕜' fr) x) * ↑(extendTo𝕜' fr) x) =
↑fr (↑(starRingEnd ((fun x => 𝕜) x)) (↑(extendTo𝕜' fr) x) • x)
[PROOFSTEP]
rw [← smul_eq_mul, ← map_smul, extendTo𝕜'_apply_re]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
⊢ ‖↑(LinearMap.extendTo𝕜' ↑fr) x‖ ≤ ‖fr‖ * ‖x‖
[PROOFSTEP]
set lm : F →ₗ[𝕜] 𝕜 := fr.toLinearMap.extendTo𝕜'
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
⊢ ‖↑lm x‖ ≤ ‖fr‖ * ‖x‖
[PROOFSTEP]
by_cases h : lm x = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
h : ↑lm x = 0
⊢ ‖↑lm x‖ ≤ ‖fr‖ * ‖x‖
[PROOFSTEP]
rw [h, norm_zero]
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
h : ↑lm x = 0
⊢ 0 ≤ ‖fr‖ * ‖x‖
[PROOFSTEP]
apply mul_nonneg
[GOAL]
case pos.ha
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
h : ↑lm x = 0
⊢ 0 ≤ ‖fr‖
[PROOFSTEP]
exact norm_nonneg _
[GOAL]
case pos.hb
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
h : ↑lm x = 0
⊢ 0 ≤ ‖x‖
[PROOFSTEP]
exact norm_nonneg _
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
h : ¬↑lm x = 0
⊢ ‖↑lm x‖ ≤ ‖fr‖ * ‖x‖
[PROOFSTEP]
rw [← mul_le_mul_left (norm_pos_iff.2 h), ← sq]
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
h : ¬↑lm x = 0
⊢ ‖↑lm x‖ ^ 2 ≤ ‖↑lm x‖ * (‖fr‖ * ‖x‖)
[PROOFSTEP]
calc
‖lm x‖ ^ 2 = fr (conj (lm x : 𝕜) • x) := fr.toLinearMap.norm_extendTo𝕜'_apply_sq x
_ ≤ ‖fr (conj (lm x : 𝕜) • x)‖ := (le_abs_self _)
_ ≤ ‖fr‖ * ‖conj (lm x : 𝕜) • x‖ := (le_op_norm _ _)
_ = ‖(lm x : 𝕜)‖ * (‖fr‖ * ‖x‖) := by rw [norm_smul, norm_conj, mul_left_comm]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
F : Type u_2
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
inst✝¹ : NormedSpace ℝ F
inst✝ : IsScalarTower ℝ 𝕜 F
fr : F →L[ℝ] ℝ
x : F
lm : F →ₗ[𝕜] 𝕜 := LinearMap.extendTo𝕜' ↑fr
h : ¬↑lm x = 0
⊢ ‖fr‖ * ‖↑(starRingEnd ((fun x => 𝕜) x)) (↑lm x) • x‖ = ‖↑lm x‖ * (‖fr‖ * ‖x‖)
[PROOFSTEP]
rw [norm_smul, norm_conj, mul_left_comm]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
F : Type u_2
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
⊢ NormedSpace 𝕜 (RestrictScalars ℝ 𝕜 F)
[PROOFSTEP]
unfold RestrictScalars
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
F : Type u_2
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
⊢ NormedSpace 𝕜 F
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Extend", "llama_tokens": 10240} |
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
x : Unitization 𝕜 A
⊢ (fst x + 0, ↑↑(↑lift (NonUnitalAlgHom.Lmul 𝕜 A)) x) =
(fst x, ↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x))
[PROOFSTEP]
rw [add_zero]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
x : Unitization 𝕜 A
⊢ (fst x, ↑↑(↑lift (NonUnitalAlgHom.Lmul 𝕜 A)) x) = (fst x, ↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x))
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
⊢ Function.Injective ↑(splitMul 𝕜 A)
[PROOFSTEP]
rw [injective_iff_map_eq_zero]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
⊢ ∀ (a : Unitization 𝕜 A), ↑(splitMul 𝕜 A) a = 0 → a = 0
[PROOFSTEP]
intro x hx
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
x : Unitization 𝕜 A
hx : ↑(splitMul 𝕜 A) x = 0
⊢ x = 0
[PROOFSTEP]
induction x using Unitization.ind
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
r✝ : 𝕜
a✝ : A
hx : ↑(splitMul 𝕜 A) (inl r✝ + ↑a✝) = 0
⊢ inl r✝ + ↑a✝ = 0
[PROOFSTEP]
rw [map_add] at hx
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
r✝ : 𝕜
a✝ : A
hx : ↑(splitMul 𝕜 A) (inl r✝) + ↑(splitMul 𝕜 A) ↑a✝ = 0
⊢ inl r✝ + ↑a✝ = 0
[PROOFSTEP]
simp only [splitMul_apply, fst_inl, snd_inl, map_zero, add_zero, fst_inr, snd_inr, zero_add, Prod.mk_add_mk,
Prod.mk_eq_zero] at hx
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
r✝ : 𝕜
a✝ : A
hx : r✝ = 0 ∧ ↑(algebraMap 𝕜 (A →L[𝕜] A)) r✝ + ↑(mul 𝕜 A) a✝ = 0
⊢ inl r✝ + ↑a✝ = 0
[PROOFSTEP]
obtain ⟨rfl, hx⟩ := hx
[GOAL]
case h.intro
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
a✝ : A
hx : ↑(algebraMap 𝕜 (A →L[𝕜] A)) 0 + ↑(mul 𝕜 A) a✝ = 0
⊢ inl 0 + ↑a✝ = 0
[PROOFSTEP]
simp only [map_zero, zero_add, inl_zero] at hx ⊢
[GOAL]
case h.intro
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
a✝ : A
hx : ↑(mul 𝕜 A) a✝ = 0
⊢ ↑a✝ = 0
[PROOFSTEP]
rw [← map_zero (mul 𝕜 A)] at hx
[GOAL]
case h.intro
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NonUnitalNormedRing A
inst✝² : NormedSpace 𝕜 A
inst✝¹ : IsScalarTower 𝕜 A A
inst✝ : SMulCommClass 𝕜 A A
h : Function.Injective ↑(mul 𝕜 A)
a✝ : A
hx : ↑(mul 𝕜 A) a✝ = ↑(mul 𝕜 A) 0
⊢ ↑a✝ = 0
[PROOFSTEP]
rw [h hx, inr_zero]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖x‖ = ‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖
[PROOFSTEP]
rw [norm_def, splitMul_apply, Prod.norm_def, sup_eq_max]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
⊢ LipschitzWith 2 ↑(addEquiv 𝕜 A)
[PROOFSTEP]
rw [← Real.toNNReal_ofNat]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
⊢ LipschitzWith (Real.toNNReal 2) ↑(addEquiv 𝕜 A)
[PROOFSTEP]
refine AddMonoidHomClass.lipschitz_of_bound (Unitization.addEquiv 𝕜 A) 2 fun x => ?_
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖↑(addEquiv 𝕜 A) x‖ ≤ 2 * ‖x‖
[PROOFSTEP]
rw [norm_eq_sup, Prod.norm_def]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ max ‖(↑(addEquiv 𝕜 A) x).fst‖ ‖(↑(addEquiv 𝕜 A) x).snd‖ ≤
2 * (‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖)
[PROOFSTEP]
refine' max_le ?_ ?_
[GOAL]
case refine'_1
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖(↑(addEquiv 𝕜 A) x).fst‖ ≤ 2 * (‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖)
[PROOFSTEP]
rw [sup_eq_max, mul_max_of_nonneg _ _ (zero_le_two : (0 : ℝ) ≤ 2)]
[GOAL]
case refine'_1
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖(↑(addEquiv 𝕜 A) x).fst‖ ≤ max (2 * ‖fst x‖) (2 * ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖)
[PROOFSTEP]
exact le_max_of_le_left ((le_add_of_nonneg_left (norm_nonneg _)).trans_eq (two_mul _).symm)
[GOAL]
case refine'_2
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖(↑(addEquiv 𝕜 A) x).snd‖ ≤ 2 * (‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖)
[PROOFSTEP]
nontriviality A
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
✝ : Nontrivial A
⊢ ‖(↑(addEquiv 𝕜 A) x).snd‖ ≤ 2 * (‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖)
[PROOFSTEP]
rw [two_mul]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
✝ : Nontrivial A
⊢ ‖(↑(addEquiv 𝕜 A) x).snd‖ ≤
‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖ +
‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖
[PROOFSTEP]
calc
‖x.snd‖ = ‖mul 𝕜 A x.snd‖ := .symm <| (isometry_mul 𝕜 A).norm_map_of_map_zero (map_zero _) _
_ ≤ ‖algebraMap 𝕜 _ x.fst + mul 𝕜 A x.snd‖ + ‖x.fst‖ := by
simpa only [add_comm _ (mul 𝕜 A x.snd), norm_algebraMap'] using
norm_le_add_norm_add (mul 𝕜 A x.snd) (algebraMap 𝕜 _ x.fst)
_ ≤ _ := add_le_add le_sup_right le_sup_left
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
✝ : Nontrivial A
⊢ ‖↑(mul 𝕜 A) (snd x)‖ ≤ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖ + ‖fst x‖
[PROOFSTEP]
simpa only [add_comm _ (mul 𝕜 A x.snd), norm_algebraMap'] using
norm_le_add_norm_add (mul 𝕜 A x.snd) (algebraMap 𝕜 _ x.fst)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
⊢ AntilipschitzWith 2 ↑(addEquiv 𝕜 A)
[PROOFSTEP]
refine AddMonoidHomClass.antilipschitz_of_bound (addEquiv 𝕜 A) fun x => ?_
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖x‖ ≤ ↑2 * ‖↑(addEquiv 𝕜 A) x‖
[PROOFSTEP]
rw [norm_eq_sup, Prod.norm_def, NNReal.coe_two]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖fst x‖ ⊔ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖ ≤
2 * max ‖(↑(addEquiv 𝕜 A) x).fst‖ ‖(↑(addEquiv 𝕜 A) x).snd‖
[PROOFSTEP]
refine max_le ?_ ?_
[GOAL]
case refine_1
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖fst x‖ ≤ 2 * max ‖(↑(addEquiv 𝕜 A) x).fst‖ ‖(↑(addEquiv 𝕜 A) x).snd‖
[PROOFSTEP]
rw [mul_max_of_nonneg _ _ (zero_le_two : (0 : ℝ) ≤ 2)]
[GOAL]
case refine_1
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖fst x‖ ≤ max (2 * ‖(↑(addEquiv 𝕜 A) x).fst‖) (2 * ‖(↑(addEquiv 𝕜 A) x).snd‖)
[PROOFSTEP]
exact le_max_of_le_left ((le_add_of_nonneg_left (norm_nonneg _)).trans_eq (two_mul _).symm)
[GOAL]
case refine_2
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
⊢ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖ ≤
2 * max ‖(↑(addEquiv 𝕜 A) x).fst‖ ‖(↑(addEquiv 𝕜 A) x).snd‖
[PROOFSTEP]
nontriviality A
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
✝ : Nontrivial A
⊢ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x) + ↑(mul 𝕜 A) (snd x)‖ ≤
2 * max ‖(↑(addEquiv 𝕜 A) x).fst‖ ‖(↑(addEquiv 𝕜 A) x).snd‖
[PROOFSTEP]
calc
‖algebraMap 𝕜 _ x.fst + mul 𝕜 A x.snd‖ ≤ ‖algebraMap 𝕜 _ x.fst‖ + ‖mul 𝕜 A x.snd‖ := norm_add_le _ _
_ = ‖x.fst‖ + ‖x.snd‖ := by
rw [norm_algebraMap', (AddMonoidHomClass.isometry_iff_norm (mul 𝕜 A)).mp (isometry_mul 𝕜 A)]
_ ≤ _ := (add_le_add (le_max_left _ _) (le_max_right _ _)).trans_eq (two_mul _).symm
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : Unitization 𝕜 A
✝ : Nontrivial A
⊢ ‖↑(algebraMap 𝕜 (A →L[𝕜] A)) (fst x)‖ + ‖↑(mul 𝕜 A) (snd x)‖ = ‖fst x‖ + ‖snd x‖
[PROOFSTEP]
rw [norm_algebraMap', (AddMonoidHomClass.isometry_iff_norm (mul 𝕜 A)).mp (isometry_mul 𝕜 A)]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
⊢ 𝓤 (Unitization 𝕜 A) = 𝓤 (Unitization 𝕜 A)
[PROOFSTEP]
have key : UniformInducing (addEquiv 𝕜 A) :=
antilipschitzWith_addEquiv.uniformInducing lipschitzWith_addEquiv.uniformContinuous
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
key : UniformInducing ↑(addEquiv 𝕜 A)
⊢ 𝓤 (Unitization 𝕜 A) = 𝓤 (Unitization 𝕜 A)
[PROOFSTEP]
rw [← key.comap_uniformity]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
key : UniformInducing ↑(addEquiv 𝕜 A)
⊢ 𝓤 (Unitization 𝕜 A) = comap (fun x => (↑(addEquiv 𝕜 A) x.fst, ↑(addEquiv 𝕜 A) x.snd)) (𝓤 (𝕜 × A))
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
k : 𝕜
x : Unitization 𝕜 A
⊢ ‖k • x‖ ≤ ‖k‖ * ‖x‖
[PROOFSTEP]
rw [norm_def, map_smul, norm_smul, ← norm_def]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
⊢ ‖1‖ = 1
[PROOFSTEP]
simpa only [norm_eq_sup, fst_one, norm_one, snd_one, map_one, map_zero, add_zero, ge_iff_le, sup_eq_left] using
op_norm_le_bound _ zero_le_one fun x => by simp
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
x : A
⊢ ‖↑1 x‖ ≤ 1 * ‖x‖
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁵ : NontriviallyNormedField 𝕜
inst✝⁴ : NonUnitalNormedRing A
inst✝³ : NormedSpace 𝕜 A
inst✝² : IsScalarTower 𝕜 A A
inst✝¹ : SMulCommClass 𝕜 A A
inst✝ : RegularNormedAlgebra 𝕜 A
a : A
⊢ ‖↑a‖ = ‖a‖
[PROOFSTEP]
simp [norm_eq_sup]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Unitization", "llama_tokens": 7675} |
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x : E
x✝ : x ∈ univ
⊢ (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1
[PROOFSTEP]
have : 0 < 1 + ‖x‖ ^ 2 := by positivity
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x : E
x✝ : x ∈ univ
⊢ 0 < 1 + ‖x‖ ^ 2
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x : E
x✝ : x ∈ univ
this : 0 < 1 + ‖x‖ ^ 2
⊢ (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1
[PROOFSTEP]
rw [mem_ball_zero_iff, norm_smul, Real.norm_eq_abs, abs_inv, ← _root_.div_eq_inv_mul,
div_lt_one (abs_pos.mpr <| Real.sqrt_ne_zero'.mpr this), ← abs_norm x, ← sq_lt_sq, abs_norm, Real.sq_sqrt this.le]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x : E
x✝ : x ∈ univ
this : 0 < 1 + ‖x‖ ^ 2
⊢ ‖x‖ ^ 2 < 1 + ‖x‖ ^ 2
[PROOFSTEP]
exact lt_one_add _
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x : E
x✝ : x ∈ univ
⊢ (fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y) ((fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x) = x
[PROOFSTEP]
field_simp [norm_smul, smul_smul, (zero_lt_one_add_norm_sq x).ne', sq_abs, Real.sq_sqrt (zero_lt_one_add_norm_sq x).le,
← Real.sqrt_div (zero_lt_one_add_norm_sq x).le]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) ((fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y) y) = y
[PROOFSTEP]
have : 0 < 1 - ‖y‖ ^ 2 := by nlinarith [norm_nonneg y, mem_ball_zero_iff.1 hy]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ 0 < 1 - ‖y‖ ^ 2
[PROOFSTEP]
nlinarith [norm_nonneg y, mem_ball_zero_iff.1 hy]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
y : E
hy : y ∈ ball 0 1
this : 0 < 1 - ‖y‖ ^ 2
⊢ (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) ((fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y) y) = y
[PROOFSTEP]
field_simp [norm_smul, smul_smul, this.ne', sq_abs, Real.sq_sqrt this.le, ← Real.sqrt_div this.le]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
⊢ ContinuousOn
↑{ toFun := fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x, invFun := fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y,
source := univ, target := ball 0 1,
map_source' := (_ : ∀ (x : E), x ∈ univ → (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1),
map_target' := (_ : ∀ (x : E), x ∈ ball 0 1 → True),
left_inv' :=
(_ :
∀ (x : E),
x ∈ univ →
(Real.sqrt (1 - ‖(Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x‖ ^ 2))⁻¹ • (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x = x),
right_inv' :=
(_ :
∀ (y : E),
y ∈ ball 0 1 →
(Real.sqrt (1 + ‖(Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y‖ ^ 2))⁻¹ • (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y = y) }
{ toFun := fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x, invFun := fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y,
source := univ, target := ball 0 1,
map_source' := (_ : ∀ (x : E), x ∈ univ → (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1),
map_target' := (_ : ∀ (x : E), x ∈ ball 0 1 → True),
left_inv' :=
(_ :
∀ (x : E),
x ∈ univ →
(Real.sqrt (1 - ‖(Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x‖ ^ 2))⁻¹ • (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x = x),
right_inv' :=
(_ :
∀ (y : E),
y ∈ ball 0 1 →
(Real.sqrt (1 + ‖(Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y‖ ^ 2))⁻¹ • (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y =
y) }.source
[PROOFSTEP]
suffices Continuous fun (x : E) => (1 + ‖x‖ ^ 2).sqrt⁻¹ from (this.smul continuous_id).continuousOn
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
⊢ Continuous fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹
[PROOFSTEP]
refine' Continuous.inv₀ _ fun x => Real.sqrt_ne_zero'.mpr (by positivity)
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x : E
⊢ 0 < 1 + ‖x‖ ^ 2
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
⊢ Continuous fun x => Real.sqrt (1 + ‖x‖ ^ 2)
[PROOFSTEP]
continuity
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
⊢ ContinuousOn
{ toFun := fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x, invFun := fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y,
source := univ, target := ball 0 1,
map_source' := (_ : ∀ (x : E), x ∈ univ → (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1),
map_target' := (_ : ∀ (x : E), x ∈ ball 0 1 → True),
left_inv' :=
(_ :
∀ (x : E),
x ∈ univ →
(Real.sqrt (1 - ‖(Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x‖ ^ 2))⁻¹ • (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x = x),
right_inv' :=
(_ :
∀ (y : E),
y ∈ ball 0 1 →
(Real.sqrt (1 + ‖(Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y‖ ^ 2))⁻¹ • (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y =
y) }.invFun
{ toFun := fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x, invFun := fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y,
source := univ, target := ball 0 1,
map_source' := (_ : ∀ (x : E), x ∈ univ → (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1),
map_target' := (_ : ∀ (x : E), x ∈ ball 0 1 → True),
left_inv' :=
(_ :
∀ (x : E),
x ∈ univ →
(Real.sqrt (1 - ‖(Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x‖ ^ 2))⁻¹ • (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x = x),
right_inv' :=
(_ :
∀ (y : E),
y ∈ ball 0 1 →
(Real.sqrt (1 + ‖(Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y‖ ^ 2))⁻¹ • (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y =
y) }.target
[PROOFSTEP]
have : ∀ y ∈ ball (0 : E) 1, (1 - ‖(y : E)‖ ^ 2).sqrt ≠ 0 := fun y hy ↦
by
rw [Real.sqrt_ne_zero']
nlinarith [norm_nonneg y, mem_ball_zero_iff.1 hy]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ Real.sqrt (1 - ‖y‖ ^ 2) ≠ 0
[PROOFSTEP]
rw [Real.sqrt_ne_zero']
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ 0 < 1 - ‖y‖ ^ 2
[PROOFSTEP]
nlinarith [norm_nonneg y, mem_ball_zero_iff.1 hy]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
this : ∀ (y : E), y ∈ ball 0 1 → Real.sqrt (1 - ‖y‖ ^ 2) ≠ 0
⊢ ContinuousOn
{ toFun := fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x, invFun := fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y,
source := univ, target := ball 0 1,
map_source' := (_ : ∀ (x : E), x ∈ univ → (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1),
map_target' := (_ : ∀ (x : E), x ∈ ball 0 1 → True),
left_inv' :=
(_ :
∀ (x : E),
x ∈ univ →
(Real.sqrt (1 - ‖(Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x‖ ^ 2))⁻¹ • (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x = x),
right_inv' :=
(_ :
∀ (y : E),
y ∈ ball 0 1 →
(Real.sqrt (1 + ‖(Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y‖ ^ 2))⁻¹ • (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y =
y) }.invFun
{ toFun := fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x, invFun := fun y => (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y,
source := univ, target := ball 0 1,
map_source' := (_ : ∀ (x : E), x ∈ univ → (fun x => (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x) x ∈ ball 0 1),
map_target' := (_ : ∀ (x : E), x ∈ ball 0 1 → True),
left_inv' :=
(_ :
∀ (x : E),
x ∈ univ →
(Real.sqrt (1 - ‖(Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x‖ ^ 2))⁻¹ • (Real.sqrt (1 + ‖x‖ ^ 2))⁻¹ • x = x),
right_inv' :=
(_ :
∀ (y : E),
y ∈ ball 0 1 →
(Real.sqrt (1 + ‖(Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y‖ ^ 2))⁻¹ • (Real.sqrt (1 - ‖y‖ ^ 2))⁻¹ • y =
y) }.target
[PROOFSTEP]
exact
ContinuousOn.smul (ContinuousOn.inv₀ (continuousOn_const.sub (continuous_norm.continuousOn.pow _)).sqrt this)
continuousOn_id
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
⊢ ↑univUnitBall 0 = 0
[PROOFSTEP]
simp [LocalHomeomorph.univUnitBall_apply]
[GOAL]
E : Type u_1
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
⊢ ↑(LocalHomeomorph.symm univUnitBall) 0 = 0
[PROOFSTEP]
simp [LocalHomeomorph.univUnitBall_symm_apply]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : 0 < r
⊢ ↑(Homeomorph.trans (Homeomorph.smulOfNeZero r (_ : r ≠ 0))
(IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))) ''
ball 0 1 =
ball c r
[PROOFSTEP]
change (IsometryEquiv.vaddConst c) ∘ (r • ·) '' ball (0 : E) 1 = ball c r
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : 0 < r
⊢ (↑(IsometryEquiv.vaddConst c) ∘ fun x => r • x) '' ball 0 1 = ball c r
[PROOFSTEP]
rw [image_comp, image_smul, smul_unitBall hr.ne', IsometryEquiv.image_ball]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : 0 < r
⊢ ball (↑(IsometryEquiv.vaddConst c) 0) ‖r‖ = ball c r
[PROOFSTEP]
simp [abs_of_pos hr]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ (univBall c r).toLocalEquiv.source = univ
[PROOFSTEP]
unfold univBall
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ (if h : 0 < r then
LocalHomeomorph.trans' univUnitBall (unitBallBall c r h)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)
else
Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))).toLocalEquiv.source =
univ
[PROOFSTEP]
split_ifs
[GOAL]
case pos
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
h✝ : 0 < r
⊢ (LocalHomeomorph.trans' univUnitBall (unitBallBall c r h✝)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)).toLocalEquiv.source =
univ
[PROOFSTEP]
rfl
[GOAL]
case neg
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
h✝ : ¬0 < r
⊢ (Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))).toLocalEquiv.source = univ
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : 0 < r
⊢ (univBall c r).toLocalEquiv.target = ball c r
[PROOFSTEP]
rw [univBall, dif_pos hr]
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : 0 < r
⊢ (LocalHomeomorph.trans' univUnitBall (unitBallBall c r hr)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)).toLocalEquiv.target =
ball c r
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ ball c r ⊆ (univBall c r).toLocalEquiv.target
[PROOFSTEP]
by_cases hr : 0 < r
[GOAL]
case pos
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : 0 < r
⊢ ball c r ⊆ (univBall c r).toLocalEquiv.target
[PROOFSTEP]
rw [univBall_target c hr]
[GOAL]
case neg
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : ¬0 < r
⊢ ball c r ⊆ (univBall c r).toLocalEquiv.target
[PROOFSTEP]
rw [univBall, dif_neg hr]
[GOAL]
case neg
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
hr : ¬0 < r
⊢ ball c r ⊆ (Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))).toLocalEquiv.target
[PROOFSTEP]
exact subset_univ _
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ ↑(univBall c r) 0 = c
[PROOFSTEP]
unfold univBall
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ ↑(if h : 0 < r then
LocalHomeomorph.trans' univUnitBall (unitBallBall c r h)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)
else Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c)))
0 =
c
[PROOFSTEP]
split_ifs
[GOAL]
case pos
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
h✝ : 0 < r
⊢ ↑(LocalHomeomorph.trans' univUnitBall (unitBallBall c r h✝)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target))
0 =
c
[PROOFSTEP]
simp
[GOAL]
case neg
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
h✝ : ¬0 < r
⊢ ↑(Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))) 0 = c
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ ↑(LocalHomeomorph.symm (univBall c r)) c = 0
[PROOFSTEP]
have : 0 ∈ (univBall c r).source := by simp
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ 0 ∈ (univBall c r).toLocalEquiv.source
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
this : 0 ∈ (univBall c r).toLocalEquiv.source
⊢ ↑(LocalHomeomorph.symm (univBall c r)) c = 0
[PROOFSTEP]
simpa only [univBall_apply_zero] using (univBall c r).left_inv this
[GOAL]
E : Type u_1
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace ℝ E
P : Type u_2
inst✝¹ : PseudoMetricSpace P
inst✝ : NormedAddTorsor E P
c : P
r : ℝ
⊢ Continuous ↑(univBall c r)
[PROOFSTEP]
simpa [continuous_iff_continuousOn_univ] using (univBall c r).continuousOn
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.HomeomorphBall", "llama_tokens": 7227} |
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
r : ℝ
hr : Tendsto (fun n => ∑ i in Finset.range n, |f i|) atTop (𝓝 r)
⊢ Summable f
[PROOFSTEP]
refine' summable_of_summable_norm ⟨r, (hasSum_iff_tendsto_nat_of_nonneg _ _).2 _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
r : ℝ
hr : Tendsto (fun n => ∑ i in Finset.range n, |f i|) atTop (𝓝 r)
⊢ ∀ (i : ℕ), 0 ≤ ‖f i‖
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
r : ℝ
hr : Tendsto (fun n => ∑ i in Finset.range n, |f i|) atTop (𝓝 r)
⊢ Tendsto (fun n => ∑ i in Finset.range n, ‖f i‖) atTop (𝓝 r)
[PROOFSTEP]
exact fun i ↦ norm_nonneg _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
r : ℝ
hr : Tendsto (fun n => ∑ i in Finset.range n, |f i|) atTop (𝓝 r)
⊢ Tendsto (fun n => ∑ i in Finset.range n, ‖f i‖) atTop (𝓝 r)
[PROOFSTEP]
simpa only using hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NormedField 𝕜
m : ℤ
hm : m < 0
⊢ Tendsto (fun x => ‖x ^ m‖) (𝓝[{0}ᶜ] 0) atTop
[PROOFSTEP]
rcases neg_surjective m with ⟨m, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NormedField 𝕜
m : ℤ
hm : -m < 0
⊢ Tendsto (fun x => ‖x ^ (-m)‖) (𝓝[{0}ᶜ] 0) atTop
[PROOFSTEP]
rw [neg_lt_zero] at hm
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NormedField 𝕜
m : ℤ
hm : 0 < m
⊢ Tendsto (fun x => ‖x ^ (-m)‖) (𝓝[{0}ᶜ] 0) atTop
[PROOFSTEP]
lift m to ℕ using hm.le
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NormedField 𝕜
m : ℕ
hm : 0 < ↑m
⊢ Tendsto (fun x => ‖x ^ (-↑m)‖) (𝓝[{0}ᶜ] 0) atTop
[PROOFSTEP]
rw [Int.coe_nat_pos] at hm
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NormedField 𝕜
m : ℕ
hm : 0 < m
⊢ Tendsto (fun x => ‖x ^ (-↑m)‖) (𝓝[{0}ᶜ] 0) atTop
[PROOFSTEP]
simp only [norm_pow, zpow_neg, zpow_ofNat, ← inv_pow]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NormedField 𝕜
m : ℕ
hm : 0 < m
⊢ Tendsto (fun x => ‖x⁻¹‖ ^ m) (𝓝[{0}ᶜ] 0) atTop
[PROOFSTEP]
exact (tendsto_pow_atTop hm.ne').comp NormedField.tendsto_norm_inverse_nhdsWithin_0_atTop
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝔸 : Type u_6
inst✝² : NormedField 𝕜
inst✝¹ : NormedAddCommGroup 𝔸
inst✝ : NormedSpace 𝕜 𝔸
l : Filter ι
ε : ι → 𝕜
f : ι → 𝔸
hε : Tendsto ε l (𝓝 0)
hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) l (norm ∘ f)
⊢ Tendsto (ε • f) l (𝓝 0)
[PROOFSTEP]
rw [← isLittleO_one_iff 𝕜] at hε ⊢
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝔸 : Type u_6
inst✝² : NormedField 𝕜
inst✝¹ : NormedAddCommGroup 𝔸
inst✝ : NormedSpace 𝕜 𝔸
l : Filter ι
ε : ι → 𝕜
f : ι → 𝔸
hε : ε =o[l] fun _x => 1
hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) l (norm ∘ f)
⊢ (ε • f) =o[l] fun _x => 1
[PROOFSTEP]
simpa using IsLittleO.smul_isBigO hε (hf.isBigO_const (one_ne_zero : (1 : 𝕜) ≠ 0))
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NontriviallyNormedField 𝕜
m : ℤ
x : 𝕜
⊢ ContinuousAt (fun x => x ^ m) x ↔ x ≠ 0 ∨ 0 ≤ m
[PROOFSTEP]
refine' ⟨_, continuousAt_zpow₀ _ _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NontriviallyNormedField 𝕜
m : ℤ
x : 𝕜
⊢ ContinuousAt (fun x => x ^ m) x → x ≠ 0 ∨ 0 ≤ m
[PROOFSTEP]
contrapose!
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NontriviallyNormedField 𝕜
m : ℤ
x : 𝕜
⊢ x = 0 ∧ m < 0 → ¬ContinuousAt (fun x => x ^ m) x
[PROOFSTEP]
rintro ⟨rfl, hm⟩ hc
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NontriviallyNormedField 𝕜
m : ℤ
hm : m < 0
hc : ContinuousAt (fun x => x ^ m) 0
⊢ False
[PROOFSTEP]
exact
not_tendsto_atTop_of_tendsto_nhds (hc.tendsto.mono_left nhdsWithin_le_nhds).norm
(tendsto_norm_zpow_nhdsWithin_0_atTop hm)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝ : NontriviallyNormedField 𝕜
x : 𝕜
⊢ ContinuousAt Inv.inv x ↔ x ≠ 0
[PROOFSTEP]
simpa [(zero_lt_one' ℤ).not_le] using @continuousAt_zpow _ _ (-1) x
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r₁ r₂ : ℝ
h : |r₁| < |r₂|
⊢ (fun n => r₁ ^ n) =o[atTop] fun n => r₂ ^ n
[PROOFSTEP]
refine' (IsLittleO.of_norm_left _).of_norm_right
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r₁ r₂ : ℝ
h : |r₁| < |r₂|
⊢ (fun x => ‖r₁ ^ x‖) =o[atTop] fun x => ‖r₂ ^ x‖
[PROOFSTEP]
exact (isLittleO_pow_pow_of_lt_left (abs_nonneg r₁) h).congr (pow_abs r₁) (pow_abs r₂)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
have A : Ico 0 R ⊆ Ioo (-R) R := fun x hx ↦ ⟨(neg_lt_zero.2 (hx.1.trans_lt hx.2)).trans_le hx.1, hx.2⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
have B : Ioo 0 R ⊆ Ioo (-R) R := Subset.trans Ioo_subset_Ico_self A
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 1 → 3
[GOAL]
case tfae_1_to_3
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
⊢ (∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
exact fun ⟨a, ha, H⟩ ↦ ⟨a, ha, H.isBigO⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 2 → 1
[GOAL]
case tfae_2_to_1
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
exact fun ⟨a, ha, H⟩ ↦ ⟨a, B ha, H⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 3 → 2
[GOAL]
case tfae_3_to_2
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
⊢ (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
[PROOFSTEP]
rintro ⟨a, ha, H⟩
[GOAL]
case tfae_3_to_2.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
a : ℝ
ha : a ∈ Set.Ioo (-R) R
H : f =O[atTop] fun x => a ^ x
⊢ ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
[PROOFSTEP]
rcases exists_between (abs_lt.2 ha) with ⟨b, hab, hbR⟩
[GOAL]
case tfae_3_to_2.intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
a : ℝ
ha : a ∈ Set.Ioo (-R) R
H : f =O[atTop] fun x => a ^ x
b : ℝ
hab : |a| < b
hbR : b < R
⊢ ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
[PROOFSTEP]
exact
⟨b, ⟨(abs_nonneg a).trans_lt hab, hbR⟩,
H.trans_isLittleO (isLittleO_pow_pow_of_abs_lt_left (hab.trans_le (le_abs_self b)))⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 2 → 4
[GOAL]
case tfae_2_to_4
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
exact fun ⟨a, ha, H⟩ ↦ ⟨a, ha, H.isBigO⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 4 → 3
[GOAL]
case tfae_4_to_3
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
exact fun ⟨a, ha, H⟩ ↦
⟨a, B ha, H⟩
-- Add 5 and 6 using 4 → 6 → 5 → 3
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 4 → 6
[GOAL]
case tfae_4_to_6
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
[PROOFSTEP]
rintro ⟨a, ha, H⟩
[GOAL]
case tfae_4_to_6.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
a : ℝ
ha : a ∈ Set.Ioo 0 R
H : f =O[atTop] fun x => a ^ x
⊢ ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
[PROOFSTEP]
rcases bound_of_isBigO_nat_atTop H with ⟨C, hC₀, hC⟩
[GOAL]
case tfae_4_to_6.intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
a : ℝ
ha : a ∈ Set.Ioo 0 R
H : f =O[atTop] fun x => a ^ x
C : ℝ
hC₀ : C > 0
hC : ∀ ⦃x : ℕ⦄, a ^ x ≠ 0 → ‖f x‖ ≤ C * ‖a ^ x‖
⊢ ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
[PROOFSTEP]
refine' ⟨a, ha, C, hC₀, fun n ↦ _⟩
[GOAL]
case tfae_4_to_6.intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
a : ℝ
ha : a ∈ Set.Ioo 0 R
H : f =O[atTop] fun x => a ^ x
C : ℝ
hC₀ : C > 0
hC : ∀ ⦃x : ℕ⦄, a ^ x ≠ 0 → ‖f x‖ ≤ C * ‖a ^ x‖
n : ℕ
⊢ |f n| ≤ C * a ^ n
[PROOFSTEP]
simpa only [Real.norm_eq_abs, abs_pow, abs_of_nonneg ha.1.le] using hC (pow_ne_zero n ha.1.ne')
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 6 → 5
[GOAL]
case tfae_6_to_5
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
exact fun ⟨a, ha, C, H₀, H⟩ ↦ ⟨a, ha.2, C, Or.inl H₀, H⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 5 → 3
[GOAL]
case tfae_5_to_3
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
⊢ (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
[PROOFSTEP]
rintro ⟨a, ha, C, h₀, H⟩
[GOAL]
case tfae_5_to_3.intro.intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
a : ℝ
ha : a < R
C : ℝ
h₀ : 0 < C ∨ 0 < R
H : ∀ (n : ℕ), |f n| ≤ C * a ^ n
⊢ ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
[PROOFSTEP]
rcases sign_cases_of_C_mul_pow_nonneg fun n ↦ (abs_nonneg _).trans (H n) with (rfl | ⟨hC₀, ha₀⟩)
[GOAL]
case tfae_5_to_3.intro.intro.intro.intro.inl
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
a : ℝ
ha : a < R
h₀ : 0 < 0 ∨ 0 < R
H : ∀ (n : ℕ), |f n| ≤ 0 * a ^ n
⊢ ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
[PROOFSTEP]
obtain rfl : f = 0 := by
ext n
simpa using H n
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
a : ℝ
ha : a < R
h₀ : 0 < 0 ∨ 0 < R
H : ∀ (n : ℕ), |f n| ≤ 0 * a ^ n
⊢ f = 0
[PROOFSTEP]
ext n
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
a : ℝ
ha : a < R
h₀ : 0 < 0 ∨ 0 < R
H : ∀ (n : ℕ), |f n| ≤ 0 * a ^ n
n : ℕ
⊢ f n = OfNat.ofNat 0 n
[PROOFSTEP]
simpa using H n
[GOAL]
case tfae_5_to_3.intro.intro.intro.intro.inl
α : Type u_1
β : Type u_2
ι : Type u_3
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
a : ℝ
ha : a < R
h₀ : 0 < 0 ∨ 0 < R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ 0 =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ 0 =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ 0 =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ 0 =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ 0 =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ 0 =O[atTop] fun x => a ^ x) →
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ C * a ^ n) →
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ C * a ^ n
H : ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ 0 * a ^ n
⊢ ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x
[PROOFSTEP]
simp only [lt_irrefl, false_or_iff] at h₀
[GOAL]
case tfae_5_to_3.intro.intro.intro.intro.inl
α : Type u_1
β : Type u_2
ι : Type u_3
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
a : ℝ
ha : a < R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ 0 =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ 0 =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ 0 =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ 0 =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ 0 =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ 0 =O[atTop] fun x => a ^ x) →
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ C * a ^ n) →
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ C * a ^ n
H : ∀ (n : ℕ), |OfNat.ofNat 0 n| ≤ 0 * a ^ n
h₀ : 0 < R
⊢ ∃ a, a ∈ Set.Ioo (-R) R ∧ 0 =O[atTop] fun x => a ^ x
[PROOFSTEP]
exact ⟨0, ⟨neg_lt_zero.2 h₀, h₀⟩, isBigO_zero _ _⟩
[GOAL]
case tfae_5_to_3.intro.intro.intro.intro.inr.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
a : ℝ
ha : a < R
C : ℝ
h₀ : 0 < C ∨ 0 < R
H : ∀ (n : ℕ), |f n| ≤ C * a ^ n
hC₀ : 0 < C
ha₀ : 0 ≤ a
⊢ ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
[PROOFSTEP]
exact
⟨a, A ⟨ha₀, ha⟩, isBigO_of_le' _ fun n ↦ (H n).trans <| mul_le_mul_of_nonneg_left (le_abs_self _) hC₀.le⟩
-- Add 7 and 8 using 2 → 8 → 7 → 3
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 2 → 8
[GOAL]
case tfae_2_to_8
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
[PROOFSTEP]
rintro ⟨a, ha, H⟩
[GOAL]
case tfae_2_to_8.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
a : ℝ
ha : a ∈ Set.Ioo 0 R
H : f =o[atTop] fun x => a ^ x
⊢ ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
[PROOFSTEP]
refine' ⟨a, ha, (H.def zero_lt_one).mono fun n hn ↦ _⟩
[GOAL]
case tfae_2_to_8.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
a : ℝ
ha : a ∈ Set.Ioo 0 R
H : f =o[atTop] fun x => a ^ x
n : ℕ
hn : ‖f n‖ ≤ 1 * ‖a ^ n‖
⊢ |f n| ≤ a ^ n
[PROOFSTEP]
rwa [Real.norm_eq_abs, Real.norm_eq_abs, one_mul, abs_pow, abs_of_pos ha.1] at hn
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 8 → 7
[GOAL]
case tfae_8_to_7
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
exact fun ⟨a, ha, H⟩ ↦ ⟨a, ha.2, H⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 7 → 3
[GOAL]
case tfae_7_to_3
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
⊢ (∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
[PROOFSTEP]
rintro ⟨a, ha, H⟩
[GOAL]
case tfae_7_to_3.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
a : ℝ
ha : a < R
H : ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
⊢ ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
[PROOFSTEP]
have : 0 ≤ a := nonneg_of_eventually_pow_nonneg (H.mono fun n ↦ (abs_nonneg _).trans)
[GOAL]
case tfae_7_to_3.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
a : ℝ
ha : a < R
H : ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
this : 0 ≤ a
⊢ ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
[PROOFSTEP]
refine' ⟨a, A ⟨this, ha⟩, IsBigO.of_bound 1 _⟩
[GOAL]
case tfae_7_to_3.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
a : ℝ
ha : a < R
H : ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
this : 0 ≤ a
⊢ ∀ᶠ (x : ℕ) in atTop, ‖f x‖ ≤ 1 * ‖a ^ x‖
[PROOFSTEP]
simpa only [Real.norm_eq_abs, one_mul, abs_pow, abs_of_nonneg this]
-- porting note: used to work without explicitly having 6 → 7
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_7_to_3 : (∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_have 6 → 7
[GOAL]
case tfae_6_to_7
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_7_to_3 : (∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
⊢ (∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
[PROOFSTEP]
exact fun h ↦ tfae_8_to_7 <| tfae_2_to_8 <| tfae_3_to_2 <| tfae_5_to_3 <| tfae_6_to_5 h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : ℕ → ℝ
R : ℝ
A : Set.Ico 0 R ⊆ Set.Ioo (-R) R
B : Set.Ioo 0 R ⊆ Set.Ioo (-R) R
tfae_1_to_3 :
(∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_1 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x
tfae_3_to_2 : (∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x
tfae_2_to_4 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_3 : (∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_4_to_6 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_6_to_5 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n
tfae_5_to_3 : (∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_2_to_8 :
(∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x) → ∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_8_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
tfae_7_to_3 : (∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n) → ∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x
tfae_6_to_7 :
(∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n) → ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n
⊢ TFAE
[∃ a, a ∈ Set.Ioo (-R) R ∧ f =o[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =o[atTop] fun x => a ^ x,
∃ a, a ∈ Set.Ioo (-R) R ∧ f =O[atTop] fun x => a ^ x, ∃ a, a ∈ Set.Ioo 0 R ∧ f =O[atTop] fun x => a ^ x,
∃ a, a < R ∧ ∃ C x, ∀ (n : ℕ), |f n| ≤ C * a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∃ C, C > 0 ∧ ∀ (n : ℕ), |f n| ≤ C * a ^ n, ∃ a, a < R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n,
∃ a, a ∈ Set.Ioo 0 R ∧ ∀ᶠ (n : ℕ) in atTop, |f n| ≤ a ^ n]
[PROOFSTEP]
tfae_finish
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
⊢ (fun n => ↑n ^ k) =o[atTop] fun n => r ^ n
[PROOFSTEP]
have : Tendsto (fun x : ℝ ↦ x ^ k) (𝓝[>] 1) (𝓝 1) :=
((continuous_id.pow k).tendsto' (1 : ℝ) 1 (one_pow _)).mono_left inf_le_left
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
⊢ (fun n => ↑n ^ k) =o[atTop] fun n => r ^ n
[PROOFSTEP]
obtain ⟨r' : ℝ, hr' : r' ^ k < r, h1 : 1 < r'⟩ := ((this.eventually (gt_mem_nhds hr)).and self_mem_nhdsWithin).exists
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
⊢ (fun n => ↑n ^ k) =o[atTop] fun n => r ^ n
[PROOFSTEP]
have h0 : 0 ≤ r' := zero_le_one.trans h1.le
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
⊢ (fun n => ↑n ^ k) =o[atTop] fun n => r ^ n
[PROOFSTEP]
suffices : (fun n ↦ (n : R) ^ k : ℕ → R) =O[atTop] fun n : ℕ ↦ (r' ^ k) ^ n
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this✝ : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
this : (fun n => ↑n ^ k) =O[atTop] fun n => (r' ^ k) ^ n
⊢ (fun n => ↑n ^ k) =o[atTop] fun n => r ^ n
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
⊢ (fun n => ↑n ^ k) =O[atTop] fun n => (r' ^ k) ^ n
[PROOFSTEP]
exact this.trans_isLittleO (isLittleO_pow_pow_of_lt_left (pow_nonneg h0 _) hr')
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
⊢ (fun n => ↑n ^ k) =O[atTop] fun n => (r' ^ k) ^ n
[PROOFSTEP]
conv in (r' ^ _) ^ _ => rw [← pow_mul, mul_comm, pow_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
n : ℕ
| (r' ^ k) ^ n
[PROOFSTEP]
rw [← pow_mul, mul_comm, pow_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
n : ℕ
| (r' ^ k) ^ n
[PROOFSTEP]
rw [← pow_mul, mul_comm, pow_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
n : ℕ
| (r' ^ k) ^ n
[PROOFSTEP]
rw [← pow_mul, mul_comm, pow_mul]
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
⊢ (fun n => ↑n ^ k) =O[atTop] fun n => (r' ^ n) ^ k
[PROOFSTEP]
suffices : ∀ n : ℕ, ‖(n : R)‖ ≤ (r' - 1)⁻¹ * ‖(1 : R)‖ * ‖r' ^ n‖
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this✝ : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
this : ∀ (n : ℕ), ‖↑n‖ ≤ (r' - 1)⁻¹ * ‖1‖ * ‖r' ^ n‖
⊢ (fun n => ↑n ^ k) =O[atTop] fun n => (r' ^ n) ^ k
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
⊢ ∀ (n : ℕ), ‖↑n‖ ≤ (r' - 1)⁻¹ * ‖1‖ * ‖r' ^ n‖
[PROOFSTEP]
exact (isBigO_of_le' _ this).pow _
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
⊢ ∀ (n : ℕ), ‖↑n‖ ≤ (r' - 1)⁻¹ * ‖1‖ * ‖r' ^ n‖
[PROOFSTEP]
intro n
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
n : ℕ
⊢ ‖↑n‖ ≤ (r' - 1)⁻¹ * ‖1‖ * ‖r' ^ n‖
[PROOFSTEP]
rw [mul_right_comm]
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
n : ℕ
⊢ ‖↑n‖ ≤ (r' - 1)⁻¹ * ‖r' ^ n‖ * ‖1‖
[PROOFSTEP]
refine' n.norm_cast_le.trans (mul_le_mul_of_nonneg_right _ (norm_nonneg _))
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : ℝ
hr : 1 < r
this : Tendsto (fun x => x ^ k) (𝓝[Set.Ioi 1] 1) (𝓝 1)
r' : ℝ
hr' : r' ^ k < r
h1 : 1 < r'
h0 : 0 ≤ r'
n : ℕ
⊢ ↑n ≤ (r' - 1)⁻¹ * ‖r' ^ n‖
[PROOFSTEP]
simpa [_root_.div_eq_inv_mul, Real.norm_eq_abs, abs_of_nonneg h0] using n.cast_le_pow_div_sub h1
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
r : ℝ
hr : 1 < r
⊢ Nat.cast =o[atTop] fun n => r ^ n
[PROOFSTEP]
simpa only [pow_one] using @isLittleO_pow_const_const_pow_of_one_lt R _ 1 _ hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
⊢ (fun n => ↑n ^ k * r₁ ^ n) =o[atTop] fun n => r₂ ^ n
[PROOFSTEP]
by_cases h0 : r₁ = 0
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : r₁ = 0
⊢ (fun n => ↑n ^ k * r₁ ^ n) =o[atTop] fun n => r₂ ^ n
[PROOFSTEP]
refine' (isLittleO_zero _ _).congr' (mem_atTop_sets.2 <| ⟨1, fun n hn ↦ _⟩) EventuallyEq.rfl
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : r₁ = 0
n : ℕ
hn : n ≥ 1
⊢ n ∈ {x | (fun x => (fun _x => 0) x = (fun n => ↑n ^ k * r₁ ^ n) x) x}
[PROOFSTEP]
simp [zero_pow (zero_lt_one.trans_le hn), h0]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : ¬r₁ = 0
⊢ (fun n => ↑n ^ k * r₁ ^ n) =o[atTop] fun n => r₂ ^ n
[PROOFSTEP]
rw [← Ne.def, ← norm_pos_iff] at h0
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : 0 < ‖r₁‖
⊢ (fun n => ↑n ^ k * r₁ ^ n) =o[atTop] fun n => r₂ ^ n
[PROOFSTEP]
have A : (fun n ↦ (n : R) ^ k : ℕ → R) =o[atTop] fun n ↦ (r₂ / ‖r₁‖) ^ n :=
isLittleO_pow_const_const_pow_of_one_lt k ((one_lt_div h0).2 h)
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : 0 < ‖r₁‖
A : (fun n => ↑n ^ k) =o[atTop] fun n => (r₂ / ‖r₁‖) ^ n
⊢ (fun n => ↑n ^ k * r₁ ^ n) =o[atTop] fun n => r₂ ^ n
[PROOFSTEP]
suffices (fun n ↦ r₁ ^ n) =O[atTop] fun n ↦ ‖r₁‖ ^ n by
simpa [div_mul_cancel _ (pow_pos h0 _).ne'] using A.mul_isBigO this
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : 0 < ‖r₁‖
A : (fun n => ↑n ^ k) =o[atTop] fun n => (r₂ / ‖r₁‖) ^ n
this : (fun n => r₁ ^ n) =O[atTop] fun n => ‖r₁‖ ^ n
⊢ (fun n => ↑n ^ k * r₁ ^ n) =o[atTop] fun n => r₂ ^ n
[PROOFSTEP]
simpa [div_mul_cancel _ (pow_pos h0 _).ne'] using A.mul_isBigO this
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : 0 < ‖r₁‖
A : (fun n => ↑n ^ k) =o[atTop] fun n => (r₂ / ‖r₁‖) ^ n
⊢ (fun n => r₁ ^ n) =O[atTop] fun n => ‖r₁‖ ^ n
[PROOFSTEP]
exact IsBigO.of_bound 1 (by simpa using eventually_norm_pow_le r₁)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r₁ : R
r₂ : ℝ
h : ‖r₁‖ < r₂
h0 : 0 < ‖r₁‖
A : (fun n => ↑n ^ k) =o[atTop] fun n => (r₂ / ‖r₁‖) ^ n
⊢ ∀ᶠ (x : ℕ) in atTop, ‖r₁ ^ x‖ ≤ 1 * ‖‖r₁‖ ^ x‖
[PROOFSTEP]
simpa using eventually_norm_pow_le r₁
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
r : ℝ
hr : |r| < 1
⊢ Tendsto (fun n => ↑n ^ k * r ^ n) atTop (𝓝 0)
[PROOFSTEP]
by_cases h0 : r = 0
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
r : ℝ
hr : |r| < 1
h0 : r = 0
⊢ Tendsto (fun n => ↑n ^ k * r ^ n) atTop (𝓝 0)
[PROOFSTEP]
exact tendsto_const_nhds.congr' (mem_atTop_sets.2 ⟨1, fun n hn ↦ by simp [zero_lt_one.trans_le hn, h0]⟩)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
r : ℝ
hr : |r| < 1
h0 : r = 0
n : ℕ
hn : n ≥ 1
⊢ n ∈ {x | (fun x => 0 = (fun n => ↑n ^ k * r ^ n) x) x}
[PROOFSTEP]
simp [zero_lt_one.trans_le hn, h0]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
r : ℝ
hr : |r| < 1
h0 : ¬r = 0
⊢ Tendsto (fun n => ↑n ^ k * r ^ n) atTop (𝓝 0)
[PROOFSTEP]
have hr' : 1 < |r|⁻¹ := one_lt_inv (abs_pos.2 h0) hr
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
r : ℝ
hr : |r| < 1
h0 : ¬r = 0
hr' : 1 < |r|⁻¹
⊢ Tendsto (fun n => ↑n ^ k * r ^ n) atTop (𝓝 0)
[PROOFSTEP]
rw [tendsto_zero_iff_norm_tendsto_zero]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
k : ℕ
r : ℝ
hr : |r| < 1
h0 : ¬r = 0
hr' : 1 < |r|⁻¹
⊢ Tendsto (fun e => ‖↑e ^ k * r ^ e‖) atTop (𝓝 0)
[PROOFSTEP]
simpa [div_eq_mul_inv] using tendsto_pow_const_div_const_pow_of_one_lt k hr'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ
hr : |r| < 1
⊢ Tendsto (fun n => ↑n * r ^ n) atTop (𝓝 0)
[PROOFSTEP]
simpa only [pow_one] using tendsto_pow_const_mul_const_pow_of_abs_lt_one 1 hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
r : ℝ
hr : 0 ≤ r
h'r : r < 1
⊢ Tendsto (fun n => ↑n * r ^ n) atTop (𝓝 0)
[PROOFSTEP]
simpa only [pow_one] using tendsto_pow_const_mul_const_pow_of_lt_one 1 hr h'r
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
x : R
h : ‖x‖ < 1
⊢ Tendsto (fun n => x ^ n) atTop (𝓝 0)
[PROOFSTEP]
apply squeeze_zero_norm' (eventually_norm_pow_le x)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
x : R
h : ‖x‖ < 1
⊢ Tendsto (fun n => ‖x‖ ^ n) atTop (𝓝 0)
[PROOFSTEP]
exact tendsto_pow_atTop_nhds_0_of_lt_1 (norm_nonneg _) h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : ‖ξ‖ < 1
⊢ HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹
[PROOFSTEP]
have xi_ne_one : ξ ≠ 1 := by
contrapose! h
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : ‖ξ‖ < 1
⊢ ξ ≠ 1
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : ξ = 1
⊢ 1 ≤ ‖ξ‖
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : ‖ξ‖ < 1
xi_ne_one : ξ ≠ 1
⊢ HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹
[PROOFSTEP]
have A : Tendsto (fun n ↦ (ξ ^ n - 1) * (ξ - 1)⁻¹) atTop (𝓝 ((0 - 1) * (ξ - 1)⁻¹)) :=
((tendsto_pow_atTop_nhds_0_of_norm_lt_1 h).sub tendsto_const_nhds).mul tendsto_const_nhds
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : ‖ξ‖ < 1
xi_ne_one : ξ ≠ 1
A : Tendsto (fun n => (ξ ^ n - 1) * (ξ - 1)⁻¹) atTop (𝓝 ((0 - 1) * (ξ - 1)⁻¹))
⊢ HasSum (fun n => ξ ^ n) (1 - ξ)⁻¹
[PROOFSTEP]
rw [hasSum_iff_tendsto_nat_of_summable_norm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : ‖ξ‖ < 1
xi_ne_one : ξ ≠ 1
A : Tendsto (fun n => (ξ ^ n - 1) * (ξ - 1)⁻¹) atTop (𝓝 ((0 - 1) * (ξ - 1)⁻¹))
⊢ Tendsto (fun n => ∑ i in Finset.range n, ξ ^ i) atTop (𝓝 (1 - ξ)⁻¹)
[PROOFSTEP]
simpa [geom_sum_eq, xi_ne_one, neg_inv, div_eq_mul_inv] using A
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : ‖ξ‖ < 1
xi_ne_one : ξ ≠ 1
A : Tendsto (fun n => (ξ ^ n - 1) * (ξ - 1)⁻¹) atTop (𝓝 ((0 - 1) * (ξ - 1)⁻¹))
⊢ Summable fun i => ‖ξ ^ i‖
[PROOFSTEP]
simp [norm_pow, summable_geometric_of_lt_1 (norm_nonneg _) h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
⊢ (Summable fun n => ξ ^ n) ↔ ‖ξ‖ < 1
[PROOFSTEP]
refine' ⟨fun h ↦ _, summable_geometric_of_norm_lt_1⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : Summable fun n => ξ ^ n
⊢ ‖ξ‖ < 1
[PROOFSTEP]
obtain ⟨k : ℕ, hk : dist (ξ ^ k) 0 < 1⟩ := (h.tendsto_cofinite_zero.eventually (ball_mem_nhds _ zero_lt_one)).exists
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : Summable fun n => ξ ^ n
k : ℕ
hk : dist (ξ ^ k) 0 < 1
⊢ ‖ξ‖ < 1
[PROOFSTEP]
simp only [norm_pow, dist_zero_right] at hk
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : Summable fun n => ξ ^ n
k : ℕ
hk : ‖ξ‖ ^ k < 1
⊢ ‖ξ‖ < 1
[PROOFSTEP]
rw [← one_pow k] at hk
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
K : Type u_4
inst✝ : NormedField K
ξ : K
h : Summable fun n => ξ ^ n
k : ℕ
hk : ‖ξ‖ ^ k < 1 ^ k
⊢ ‖ξ‖ < 1
[PROOFSTEP]
exact lt_of_pow_lt_pow _ zero_le_one hk
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : R
hr : ‖r‖ < 1
⊢ Summable fun n => ‖↑n ^ k * r ^ n‖
[PROOFSTEP]
rcases exists_between hr with ⟨r', hrr', h⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝ : NormedRing R
k : ℕ
r : R
hr : ‖r‖ < 1
r' : ℝ
hrr' : ‖r‖ < r'
h : r' < 1
⊢ Summable fun n => ‖↑n ^ k * r ^ n‖
[PROOFSTEP]
exact
summable_of_isBigO_nat (summable_geometric_of_lt_1 ((norm_nonneg _).trans hrr'.le) h)
(isLittleO_pow_const_mul_const_pow_const_pow_of_norm_lt _ hrr').isBigO.norm_left
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
⊢ HasSum (fun n => ↑n * r ^ n) (r / (1 - r) ^ 2)
[PROOFSTEP]
have A : Summable (fun n ↦ (n : 𝕜) * r ^ n : ℕ → 𝕜) := by
simpa only [pow_one] using summable_pow_mul_geometric_of_norm_lt_1 1 hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
⊢ Summable fun n => ↑n * r ^ n
[PROOFSTEP]
simpa only [pow_one] using summable_pow_mul_geometric_of_norm_lt_1 1 hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
⊢ HasSum (fun n => ↑n * r ^ n) (r / (1 - r) ^ 2)
[PROOFSTEP]
have B : HasSum (r ^ · : ℕ → 𝕜) (1 - r)⁻¹ := hasSum_geometric_of_norm_lt_1 hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
⊢ HasSum (fun n => ↑n * r ^ n) (r / (1 - r) ^ 2)
[PROOFSTEP]
refine' A.hasSum_iff.2 _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
⊢ ∑' (b : ℕ), ↑b * r ^ b = r / (1 - r) ^ 2
[PROOFSTEP]
have hr' : r ≠ 1 := by
rintro rfl
simp [lt_irrefl] at hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
⊢ r ≠ 1
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
hr : ‖1‖ < 1
A : Summable fun n => ↑n * 1 ^ n
B : HasSum (fun x => 1 ^ x) (1 - 1)⁻¹
⊢ False
[PROOFSTEP]
simp [lt_irrefl] at hr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
hr' : r ≠ 1
⊢ ∑' (b : ℕ), ↑b * r ^ b = r / (1 - r) ^ 2
[PROOFSTEP]
set s : 𝕜 := ∑' n : ℕ, n * r ^ n
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
hr' : r ≠ 1
s : 𝕜 := ∑' (n : ℕ), ↑n * r ^ n
⊢ s = r / (1 - r) ^ 2
[PROOFSTEP]
calc
s = (1 - r) * s / (1 - r) := (mul_div_cancel_left _ (sub_ne_zero.2 hr'.symm)).symm
_ = (s - r * s) / (1 - r) := by rw [_root_.sub_mul, one_mul]
_ = (((0 : ℕ) * r ^ 0 + ∑' n : ℕ, (n + 1 : ℕ) * r ^ (n + 1)) - r * s) / (1 - r) := by rw [← tsum_eq_zero_add A]
_ = ((r * ∑' n : ℕ, (n + 1) * r ^ n) - r * s) / (1 - r) := by
simp [_root_.pow_succ, mul_left_comm _ r, _root_.tsum_mul_left]
_ = r / (1 - r) ^ 2 := by simp [add_mul, tsum_add A B.summable, mul_add, B.tsum_eq, ← div_eq_mul_inv, sq, div_div]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
hr' : r ≠ 1
s : 𝕜 := ∑' (n : ℕ), ↑n * r ^ n
⊢ (1 - r) * s / (1 - r) = (s - r * s) / (1 - r)
[PROOFSTEP]
rw [_root_.sub_mul, one_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
hr' : r ≠ 1
s : 𝕜 := ∑' (n : ℕ), ↑n * r ^ n
⊢ (s - r * s) / (1 - r) = (↑0 * r ^ 0 + ∑' (n : ℕ), ↑(n + 1) * r ^ (n + 1) - r * s) / (1 - r)
[PROOFSTEP]
rw [← tsum_eq_zero_add A]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
hr' : r ≠ 1
s : 𝕜 := ∑' (n : ℕ), ↑n * r ^ n
⊢ (↑0 * r ^ 0 + ∑' (n : ℕ), ↑(n + 1) * r ^ (n + 1) - r * s) / (1 - r) =
(r * ∑' (n : ℕ), (↑n + 1) * r ^ n - r * s) / (1 - r)
[PROOFSTEP]
simp [_root_.pow_succ, mul_left_comm _ r, _root_.tsum_mul_left]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
𝕜 : Type u_4
inst✝¹ : NormedField 𝕜
inst✝ : CompleteSpace 𝕜
r : 𝕜
hr : ‖r‖ < 1
A : Summable fun n => ↑n * r ^ n
B : HasSum (fun x => r ^ x) (1 - r)⁻¹
hr' : r ≠ 1
s : 𝕜 := ∑' (n : ℕ), ↑n * r ^ n
⊢ (r * ∑' (n : ℕ), (↑n + 1) * r ^ n - r * s) / (1 - r) = r / (1 - r) ^ 2
[PROOFSTEP]
simp [add_mul, tsum_add A B.summable, mul_add, B.tsum_eq, ← div_eq_mul_inv, sq, div_div]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C r : ℝ
hr : r < 1
u : ℕ → α
h : ∀ (n : ℕ), ‖u n - u (n + 1)‖ ≤ C * r ^ n
⊢ ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ C * r ^ n
[PROOFSTEP]
simpa [dist_eq_norm] using h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r C : ℝ
f : ℕ → α
hf : ∀ (n : ℕ), ‖f n‖ ≤ C * r ^ n
n : ℕ
⊢ dist (∑ i in Finset.range n, f i) (∑ i in Finset.range (n + 1), f i) ≤ C * r ^ n
[PROOFSTEP]
rw [sum_range_succ, dist_eq_norm, ← norm_neg, neg_sub, add_sub_cancel']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r C : ℝ
f : ℕ → α
hf : ∀ (n : ℕ), ‖f n‖ ≤ C * r ^ n
n : ℕ
⊢ ‖f n‖ ≤ C * r ^ n
[PROOFSTEP]
exact hf n
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r C : ℝ
f : ℕ → α
hr : r < 1
hf : ∀ (n : ℕ), ‖f n‖ ≤ C * r ^ n
a : α
ha : HasSum f a
n : ℕ
⊢ ‖∑ x in Finset.range n, f x - a‖ ≤ C * r ^ n / (1 - r)
[PROOFSTEP]
rw [← dist_eq_norm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r C : ℝ
f : ℕ → α
hr : r < 1
hf : ∀ (n : ℕ), ‖f n‖ ≤ C * r ^ n
a : α
ha : HasSum f a
n : ℕ
⊢ dist (∑ x in Finset.range n, f x) a ≤ C * r ^ n / (1 - r)
[PROOFSTEP]
apply dist_le_of_le_geometric_of_tendsto r C hr (dist_partial_sum_le_of_le_geometric hf)
[GOAL]
case ha
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r C : ℝ
f : ℕ → α
hr : r < 1
hf : ∀ (n : ℕ), ‖f n‖ ≤ C * r ^ n
a : α
ha : HasSum f a
n : ℕ
⊢ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 a)
[PROOFSTEP]
exact ha.tendsto_sum_nat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r C : ℝ
f u : ℕ → α
n : ℕ
⊢ dist (∑ k in Finset.range (n + 1), u k) (∑ k in Finset.range n, u k) = ‖u n‖
[PROOFSTEP]
simp [dist_eq_norm, sum_range_succ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r C : ℝ
f u : ℕ → α
n : ℕ
⊢ dist (∑ k in Finset.range n, u k) (∑ k in Finset.range (n + 1), u k) = ‖u n‖
[PROOFSTEP]
simp [dist_eq_norm', sum_range_succ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
r : ℝ
hr : r < 1
h : ∀ (n : ℕ), ‖u n‖ ≤ C * r ^ n
⊢ ∀ (n : ℕ), dist (∑ k in Finset.range n, u k) (∑ k in Finset.range (n + 1), u k) ≤ C * r ^ n
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
⊢ CauchySeq fun n => ∑ k in Finset.range (n + 1), u k
[PROOFSTEP]
set v : ℕ → α := fun n ↦ if n < N then 0 else u n
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
⊢ CauchySeq fun n => ∑ k in Finset.range (n + 1), u k
[PROOFSTEP]
have hC : 0 ≤ C := (zero_le_mul_right <| pow_pos hr₀ N).mp ((norm_nonneg _).trans <| h N <| le_refl N)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
⊢ CauchySeq fun n => ∑ k in Finset.range (n + 1), u k
[PROOFSTEP]
have : ∀ n ≥ N, u n = v n := by
intro n hn
simp [hn, if_neg (not_lt.mpr hn)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
⊢ ∀ (n : ℕ), n ≥ N → u n = v n
[PROOFSTEP]
intro n hn
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
n : ℕ
hn : n ≥ N
⊢ u n = v n
[PROOFSTEP]
simp [hn, if_neg (not_lt.mpr hn)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
⊢ CauchySeq fun n => ∑ k in Finset.range (n + 1), u k
[PROOFSTEP]
refine' cauchySeq_sum_of_eventually_eq this (NormedAddCommGroup.cauchy_series_of_le_geometric' hr₁ _)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
⊢ ℝ
[PROOFSTEP]
exact C
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
⊢ ∀ (n : ℕ), ‖v n‖ ≤ C * r ^ n
[PROOFSTEP]
intro n
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
n : ℕ
⊢ ‖v n‖ ≤ C * r ^ n
[PROOFSTEP]
simp only
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
n : ℕ
⊢ ‖if n < N then 0 else u n‖ ≤ C * r ^ n
[PROOFSTEP]
split_ifs with H
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
n : ℕ
H : n < N
⊢ ‖0‖ ≤ C * r ^ n
[PROOFSTEP]
rw [norm_zero]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
n : ℕ
H : n < N
⊢ 0 ≤ C * r ^ n
[PROOFSTEP]
exact mul_nonneg hC (pow_nonneg hr₀.le _)
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
n : ℕ
H : ¬n < N
⊢ ‖u n‖ ≤ C * r ^ n
[PROOFSTEP]
push_neg at H
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : SeminormedAddCommGroup α
r✝ C✝ : ℝ
f : ℕ → α
C : ℝ
u : ℕ → α
N : ℕ
r : ℝ
hr₀ : 0 < r
hr₁ : r < 1
h : ∀ (n : ℕ), n ≥ N → ‖u n‖ ≤ C * r ^ n
v : ℕ → α := fun n => if n < N then 0 else u n
hC : 0 ≤ C
this : ∀ (n : ℕ), n ≥ N → u n = v n
n : ℕ
H : N ≤ n
⊢ ‖u n‖ ≤ C * r ^ n
[PROOFSTEP]
exact h _ H
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ Summable fun n => x ^ n
[PROOFSTEP]
have h1 : Summable fun n : ℕ ↦ ‖x‖ ^ n := summable_geometric_of_lt_1 (norm_nonneg _) h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
h1 : Summable fun n => ‖x‖ ^ n
⊢ Summable fun n => x ^ n
[PROOFSTEP]
refine' summable_of_norm_bounded_eventually _ h1 _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
h1 : Summable fun n => ‖x‖ ^ n
⊢ ∀ᶠ (i : ℕ) in cofinite, ‖x ^ i‖ ≤ ‖x‖ ^ i
[PROOFSTEP]
rw [Nat.cofinite_eq_atTop]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
h1 : Summable fun n => ‖x‖ ^ n
⊢ ∀ᶠ (i : ℕ) in atTop, ‖x ^ i‖ ≤ ‖x‖ ^ i
[PROOFSTEP]
exact eventually_norm_pow_le x
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ ‖∑' (n : ℕ), x ^ n‖ ≤ ‖1‖ - 1 + (1 - ‖x‖)⁻¹
[PROOFSTEP]
rw [tsum_eq_zero_add (NormedRing.summable_geometric_of_norm_lt_1 x h)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ ‖x ^ 0 + ∑' (b : ℕ), x ^ (b + 1)‖ ≤ ‖1‖ - 1 + (1 - ‖x‖)⁻¹
[PROOFSTEP]
simp only [_root_.pow_zero]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ ‖1 + ∑' (b : ℕ), x ^ (b + 1)‖ ≤ ‖1‖ - 1 + (1 - ‖x‖)⁻¹
[PROOFSTEP]
refine' le_trans (norm_add_le _ _) _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ ‖1‖ + ‖∑' (b : ℕ), x ^ (b + 1)‖ ≤ ‖1‖ - 1 + (1 - ‖x‖)⁻¹
[PROOFSTEP]
have : ‖∑' b : ℕ, (fun n ↦ x ^ (n + 1)) b‖ ≤ (1 - ‖x‖)⁻¹ - 1 :=
by
refine' tsum_of_norm_bounded _ fun b ↦ norm_pow_le' _ (Nat.succ_pos b)
convert (hasSum_nat_add_iff' 1).mpr (hasSum_geometric_of_lt_1 (norm_nonneg x) h)
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ ‖∑' (b : ℕ), (fun n => x ^ (n + 1)) b‖ ≤ (1 - ‖x‖)⁻¹ - 1
[PROOFSTEP]
refine' tsum_of_norm_bounded _ fun b ↦ norm_pow_le' _ (Nat.succ_pos b)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ HasSum (fun b => ‖x‖ ^ (b + 1)) ((1 - ‖x‖)⁻¹ - 1)
[PROOFSTEP]
convert (hasSum_nat_add_iff' 1).mpr (hasSum_geometric_of_lt_1 (norm_nonneg x) h)
[GOAL]
case h.e'_6.h.e'_6
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ 1 = ∑ i in Finset.range 1, ‖x‖ ^ i
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this : ‖∑' (b : ℕ), (fun n => x ^ (n + 1)) b‖ ≤ (1 - ‖x‖)⁻¹ - 1
⊢ ‖1‖ + ‖∑' (b : ℕ), x ^ (b + 1)‖ ≤ ‖1‖ - 1 + (1 - ‖x‖)⁻¹
[PROOFSTEP]
linarith
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ (∑' (i : ℕ), x ^ i) * (1 - x) = 1
[PROOFSTEP]
have := (NormedRing.summable_geometric_of_norm_lt_1 x h).hasSum.mul_right (1 - x)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this : HasSum (fun i => x ^ i * (1 - x)) ((∑' (b : ℕ), x ^ b) * (1 - x))
⊢ (∑' (i : ℕ), x ^ i) * (1 - x) = 1
[PROOFSTEP]
refine' tendsto_nhds_unique this.tendsto_sum_nat _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this : HasSum (fun i => x ^ i * (1 - x)) ((∑' (b : ℕ), x ^ b) * (1 - x))
⊢ Tendsto (fun n => ∑ i in Finset.range n, x ^ i * (1 - x)) atTop (𝓝 1)
[PROOFSTEP]
have : Tendsto (fun n : ℕ ↦ 1 - x ^ n) atTop (𝓝 1) := by
simpa using tendsto_const_nhds.sub (tendsto_pow_atTop_nhds_0_of_norm_lt_1 h)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this : HasSum (fun i => x ^ i * (1 - x)) ((∑' (b : ℕ), x ^ b) * (1 - x))
⊢ Tendsto (fun n => 1 - x ^ n) atTop (𝓝 1)
[PROOFSTEP]
simpa using tendsto_const_nhds.sub (tendsto_pow_atTop_nhds_0_of_norm_lt_1 h)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this✝ : HasSum (fun i => x ^ i * (1 - x)) ((∑' (b : ℕ), x ^ b) * (1 - x))
this : Tendsto (fun n => 1 - x ^ n) atTop (𝓝 1)
⊢ Tendsto (fun n => ∑ i in Finset.range n, x ^ i * (1 - x)) atTop (𝓝 1)
[PROOFSTEP]
convert ← this
[GOAL]
case h.e'_3.h
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this✝ : HasSum (fun i => x ^ i * (1 - x)) ((∑' (b : ℕ), x ^ b) * (1 - x))
this : Tendsto (fun n => 1 - x ^ n) atTop (𝓝 1)
x✝ : ℕ
⊢ 1 - x ^ x✝ = ∑ i in Finset.range x✝, x ^ i * (1 - x)
[PROOFSTEP]
rw [← geom_sum_mul_neg, Finset.sum_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
⊢ (1 - x) * ∑' (i : ℕ), x ^ i = 1
[PROOFSTEP]
have := (NormedRing.summable_geometric_of_norm_lt_1 x h).hasSum.mul_left (1 - x)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this : HasSum (fun i => (1 - x) * x ^ i) ((1 - x) * ∑' (b : ℕ), x ^ b)
⊢ (1 - x) * ∑' (i : ℕ), x ^ i = 1
[PROOFSTEP]
refine' tendsto_nhds_unique this.tendsto_sum_nat _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this : HasSum (fun i => (1 - x) * x ^ i) ((1 - x) * ∑' (b : ℕ), x ^ b)
⊢ Tendsto (fun n => ∑ i in Finset.range n, (1 - x) * x ^ i) atTop (𝓝 1)
[PROOFSTEP]
have : Tendsto (fun n : ℕ ↦ 1 - x ^ n) atTop (nhds 1) := by
simpa using tendsto_const_nhds.sub (tendsto_pow_atTop_nhds_0_of_norm_lt_1 h)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this : HasSum (fun i => (1 - x) * x ^ i) ((1 - x) * ∑' (b : ℕ), x ^ b)
⊢ Tendsto (fun n => 1 - x ^ n) atTop (𝓝 1)
[PROOFSTEP]
simpa using tendsto_const_nhds.sub (tendsto_pow_atTop_nhds_0_of_norm_lt_1 h)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this✝ : HasSum (fun i => (1 - x) * x ^ i) ((1 - x) * ∑' (b : ℕ), x ^ b)
this : Tendsto (fun n => 1 - x ^ n) atTop (𝓝 1)
⊢ Tendsto (fun n => ∑ i in Finset.range n, (1 - x) * x ^ i) atTop (𝓝 1)
[PROOFSTEP]
convert ← this
[GOAL]
case h.e'_3.h
α : Type u_1
β : Type u_2
ι : Type u_3
R : Type u_4
inst✝¹ : NormedRing R
inst✝ : CompleteSpace R
x : R
h : ‖x‖ < 1
this✝ : HasSum (fun i => (1 - x) * x ^ i) ((1 - x) * ∑' (b : ℕ), x ^ b)
this : Tendsto (fun n => 1 - x ^ n) atTop (𝓝 1)
x✝ : ℕ
⊢ 1 - x ^ x✝ = ∑ i in Finset.range x✝, (1 - x) * x ^ i
[PROOFSTEP]
rw [← mul_neg_geom_sum, Finset.mul_sum]
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
⊢ Summable f
[PROOFSTEP]
by_cases hr₀ : 0 ≤ r
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
hr₀ : 0 ≤ r
⊢ Summable f
[PROOFSTEP]
rw [eventually_atTop] at h
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∃ a, ∀ (b : ℕ), b ≥ a → ‖f (b + 1)‖ ≤ r * ‖f b‖
hr₀ : 0 ≤ r
⊢ Summable f
[PROOFSTEP]
rcases h with ⟨N, hN⟩
[GOAL]
case pos.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
⊢ Summable f
[PROOFSTEP]
rw [← @summable_nat_add_iff α _ _ _ _ N]
[GOAL]
case pos.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
⊢ Summable fun n => f (n + N)
[PROOFSTEP]
refine'
summable_of_norm_bounded (fun n ↦ ‖f N‖ * r ^ n) (Summable.mul_left _ <| summable_geometric_of_lt_1 hr₀ hr₁) fun n ↦ _
[GOAL]
case pos.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n : ℕ
⊢ ‖f (n + N)‖ ≤ (fun n => ‖f N‖ * r ^ n) n
[PROOFSTEP]
simp only
[GOAL]
case pos.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n : ℕ
⊢ ‖f (n + N)‖ ≤ ‖f N‖ * r ^ n
[PROOFSTEP]
conv_rhs => rw [mul_comm, ← zero_add N]
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n : ℕ
| ‖f N‖ * r ^ n
[PROOFSTEP]
rw [mul_comm, ← zero_add N]
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n : ℕ
| ‖f N‖ * r ^ n
[PROOFSTEP]
rw [mul_comm, ← zero_add N]
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n : ℕ
| ‖f N‖ * r ^ n
[PROOFSTEP]
rw [mul_comm, ← zero_add N]
[GOAL]
case pos.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n : ℕ
⊢ ‖f (n + N)‖ ≤ r ^ n * ‖f (0 + N)‖
[PROOFSTEP]
refine' le_geom (u := fun n ↦ ‖f (n + N)‖) hr₀ n fun i _ ↦ _
[GOAL]
case pos.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n i : ℕ
x✝ : i < n
⊢ (fun n => ‖f (n + N)‖) (i + 1) ≤ r * (fun n => ‖f (n + N)‖) i
[PROOFSTEP]
convert hN (i + N) (N.le_add_left i) using 3
[GOAL]
case h.e'_3.h.e'_3.h.e'_1
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
hr₀ : 0 ≤ r
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ‖f (b + 1)‖ ≤ r * ‖f b‖
n i : ℕ
x✝ : i < n
⊢ i + 1 + N = i + N + 1
[PROOFSTEP]
ac_rfl
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
hr₀ : ¬0 ≤ r
⊢ Summable f
[PROOFSTEP]
push_neg at hr₀
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
hr₀ : r < 0
⊢ Summable f
[PROOFSTEP]
refine' summable_of_norm_bounded_eventually 0 summable_zero _
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
hr₀ : r < 0
⊢ ∀ᶠ (i : ℕ) in cofinite, ‖f i‖ ≤ OfNat.ofNat 0 i
[PROOFSTEP]
rw [Nat.cofinite_eq_atTop]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
hr₀ : r < 0
⊢ ∀ᶠ (i : ℕ) in atTop, ‖f i‖ ≤ OfNat.ofNat 0 i
[PROOFSTEP]
filter_upwards [h] with _ hn
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
hr₀ : r < 0
a✝ : ℕ
hn : ‖f (a✝ + 1)‖ ≤ r * ‖f a✝‖
⊢ ‖f a✝‖ ≤ OfNat.ofNat 0 a✝
[PROOFSTEP]
by_contra' h
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : SeminormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
r : ℝ
hr₁ : r < 1
h✝ : ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
hr₀ : r < 0
a✝ : ℕ
hn : ‖f (a✝ + 1)‖ ≤ r * ‖f a✝‖
h : OfNat.ofNat 0 a✝ < ‖f a✝‖
⊢ False
[PROOFSTEP]
exact not_lt.mpr (norm_nonneg _) (lt_of_le_of_lt hn <| mul_neg_of_neg_of_pos hr₀ h)
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : NormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
l : ℝ
hl₁ : l < 1
hf : ∀ᶠ (n : ℕ) in atTop, f n ≠ 0
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
⊢ Summable f
[PROOFSTEP]
rcases exists_between hl₁ with ⟨r, hr₀, hr₁⟩
[GOAL]
case intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : NormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
l : ℝ
hl₁ : l < 1
hf : ∀ᶠ (n : ℕ) in atTop, f n ≠ 0
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
r : ℝ
hr₀ : l < r
hr₁ : r < 1
⊢ Summable f
[PROOFSTEP]
refine' summable_of_ratio_norm_eventually_le hr₁ _
[GOAL]
case intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : NormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
l : ℝ
hl₁ : l < 1
hf : ∀ᶠ (n : ℕ) in atTop, f n ≠ 0
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
r : ℝ
hr₀ : l < r
hr₁ : r < 1
⊢ ∀ᶠ (n : ℕ) in atTop, ‖f (n + 1)‖ ≤ r * ‖f n‖
[PROOFSTEP]
filter_upwards [eventually_le_of_tendsto_lt hr₀ h, hf] with _ _ h₁
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝¹ : NormedAddCommGroup α
inst✝ : CompleteSpace α
f : ℕ → α
l : ℝ
hl₁ : l < 1
hf : ∀ᶠ (n : ℕ) in atTop, f n ≠ 0
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
r : ℝ
hr₀ : l < r
hr₁ : r < 1
a✝¹ : ℕ
a✝ : ‖f (a✝¹ + 1)‖ / ‖f a✝¹‖ ≤ r
h₁ : f a✝¹ ≠ 0
⊢ ‖f (a✝¹ + 1)‖ ≤ r * ‖f a✝¹‖
[PROOFSTEP]
rwa [← div_le_iff (norm_pos_iff.mpr h₁)]
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∃ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
h : ∀ᶠ (n : ℕ) in atTop, r * ‖f n‖ ≤ ‖f (n + 1)‖
⊢ ¬Summable f
[PROOFSTEP]
rw [eventually_atTop] at h
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∃ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
h : ∃ a, ∀ (b : ℕ), b ≥ a → r * ‖f b‖ ≤ ‖f (b + 1)‖
⊢ ¬Summable f
[PROOFSTEP]
rcases h with ⟨N₀, hN₀⟩
[GOAL]
case intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∃ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
⊢ ¬Summable f
[PROOFSTEP]
rw [frequently_atTop] at hf
[GOAL]
case intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
⊢ ¬Summable f
[PROOFSTEP]
rcases hf N₀ with ⟨N, hNN₀ : N₀ ≤ N, hN⟩
[GOAL]
case intro.intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
⊢ ¬Summable f
[PROOFSTEP]
rw [← @summable_nat_add_iff α _ _ _ _ N]
[GOAL]
case intro.intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
⊢ ¬Summable fun n => f (n + N)
[PROOFSTEP]
refine' mt Summable.tendsto_atTop_zero fun h' ↦ not_tendsto_atTop_of_tendsto_nhds (tendsto_norm_zero.comp h') _
[GOAL]
case intro.intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
⊢ Tendsto ((fun a => ‖a‖) ∘ fun n => f (n + N)) atTop atTop
[PROOFSTEP]
convert tendsto_atTop_of_geom_le _ hr _
[GOAL]
case intro.intro.intro.convert_2
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
⊢ 0 < ((fun a => ‖a‖) ∘ fun n => f (n + N)) 0
[PROOFSTEP]
refine' lt_of_le_of_ne (norm_nonneg _) _
[GOAL]
case intro.intro.intro.convert_2
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
⊢ 0 ≠ ((fun a => ‖a‖) ∘ fun n => f (n + N)) 0
[PROOFSTEP]
intro h''
[GOAL]
case intro.intro.intro.convert_2
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
h'' : 0 = ((fun a => ‖a‖) ∘ fun n => f (n + N)) 0
⊢ False
[PROOFSTEP]
specialize hN₀ N hNN₀
[GOAL]
case intro.intro.intro.convert_2
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
h'' : 0 = ((fun a => ‖a‖) ∘ fun n => f (n + N)) 0
hN₀ : r * ‖f N‖ ≤ ‖f (N + 1)‖
⊢ False
[PROOFSTEP]
simp only [comp_apply, zero_add] at h''
[GOAL]
case intro.intro.intro.convert_2
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
hN₀ : r * ‖f N‖ ≤ ‖f (N + 1)‖
h'' : 0 = ‖f N‖
⊢ False
[PROOFSTEP]
exact hN h''.symm
[GOAL]
case intro.intro.intro.convert_3
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
⊢ ∀ (n : ℕ), r * ((fun a => ‖a‖) ∘ fun n => f (n + N)) n ≤ ((fun a => ‖a‖) ∘ fun n => f (n + N)) (n + 1)
[PROOFSTEP]
intro i
[GOAL]
case intro.intro.intro.convert_3
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
i : ℕ
⊢ r * ((fun a => ‖a‖) ∘ fun n => f (n + N)) i ≤ ((fun a => ‖a‖) ∘ fun n => f (n + N)) (i + 1)
[PROOFSTEP]
dsimp only [comp_apply]
[GOAL]
case intro.intro.intro.convert_3
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
i : ℕ
⊢ r * ‖f (i + N)‖ ≤ ‖f (i + 1 + N)‖
[PROOFSTEP]
convert hN₀ (i + N) (hNN₀.trans (N.le_add_left i)) using 3
[GOAL]
case h.e'_4.h.e'_3.h.e'_1
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
r : ℝ
hr : 1 < r
hf : ∀ (a : ℕ), ∃ b, b ≥ a ∧ ‖f b‖ ≠ 0
N₀ : ℕ
hN₀ : ∀ (b : ℕ), b ≥ N₀ → r * ‖f b‖ ≤ ‖f (b + 1)‖
N : ℕ
hNN₀ : N₀ ≤ N
hN : ‖f N‖ ≠ 0
h' : Tendsto (fun n => f (n + N)) atTop (𝓝 0)
i : ℕ
⊢ i + 1 + N = i + N + 1
[PROOFSTEP]
ac_rfl
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
⊢ ¬Summable f
[PROOFSTEP]
have key : ∀ᶠ n in atTop, ‖f n‖ ≠ 0 :=
by
filter_upwards [eventually_ge_of_tendsto_gt hl h] with _ hn hc
rw [hc, _root_.div_zero] at hn
linarith
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
[PROOFSTEP]
filter_upwards [eventually_ge_of_tendsto_gt hl h] with _ hn hc
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
a✝ : ℕ
hn : 1 ≤ ‖f (a✝ + 1)‖ / ‖f a✝‖
hc : ‖f a✝‖ = 0
⊢ False
[PROOFSTEP]
rw [hc, _root_.div_zero] at hn
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
a✝ : ℕ
hn : 1 ≤ 0
hc : ‖f a✝‖ = 0
⊢ False
[PROOFSTEP]
linarith
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
key : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
⊢ ¬Summable f
[PROOFSTEP]
rcases exists_between hl with ⟨r, hr₀, hr₁⟩
[GOAL]
case intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
key : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
r : ℝ
hr₀ : 1 < r
hr₁ : r < l
⊢ ¬Summable f
[PROOFSTEP]
refine' not_summable_of_ratio_norm_eventually_ge hr₀ key.frequently _
[GOAL]
case intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
key : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
r : ℝ
hr₀ : 1 < r
hr₁ : r < l
⊢ ∀ᶠ (n : ℕ) in atTop, r * ‖f n‖ ≤ ‖f (n + 1)‖
[PROOFSTEP]
filter_upwards [eventually_ge_of_tendsto_gt hr₁ h, key] with _ _ h₁
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝ : SeminormedAddCommGroup α
f : ℕ → α
l : ℝ
hl : 1 < l
h : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)
key : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0
r : ℝ
hr₀ : 1 < r
hr₁ : r < l
a✝¹ : ℕ
a✝ : r ≤ ‖f (a✝¹ + 1)‖ / ‖f a✝¹‖
h₁ : ‖f a✝¹‖ ≠ 0
⊢ r * ‖f a✝¹‖ ≤ ‖f (a✝¹ + 1)‖
[PROOFSTEP]
rwa [← le_div_iff (lt_of_le_of_ne (norm_nonneg _) h₁.symm)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => ∑ i in Finset.range (n + 1), f i • z i
[PROOFSTEP]
simp_rw [Finset.sum_range_by_parts _ _ (Nat.succ _), sub_eq_add_neg, Nat.succ_sub_succ_eq_sub, tsub_zero]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n =>
f n • ∑ i in Finset.range (succ n), z i +
-∑ x in Finset.range n, (f (x + 1) + -f x) • ∑ i in Finset.range (x + 1), z i
[PROOFSTEP]
apply
(NormedField.tendsto_zero_smul_of_tendsto_zero_of_bounded hf0
⟨b, eventually_map.mpr <| eventually_of_forall fun n ↦ hgb <| n + 1⟩).cauchySeq.add
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => -∑ x in Finset.range n, (f (x + 1) + -f x) • ∑ i in Finset.range (x + 1), z i
[PROOFSTEP]
refine' CauchySeq.neg _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => ∑ x in Finset.range n, (f (x + 1) + -f x) • ∑ i in Finset.range (x + 1), z i
[PROOFSTEP]
refine'
cauchySeq_range_of_norm_bounded _ _
(fun n ↦ _ : ∀ n, ‖(f (n + 1) + -f n) • (Finset.range (n + 1)).sum z‖ ≤ b * |f (n + 1) - f n|)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => ∑ i in Finset.range n, b * |f (i + 1) - f i|
[PROOFSTEP]
simp_rw [abs_of_nonneg (sub_nonneg_of_le (hfa (Nat.le_succ _))), ← mul_sum]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => b * ∑ x in Finset.range n, (f (succ x) - f x)
[PROOFSTEP]
apply Real.uniformContinuous_const_mul.comp_cauchySeq
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => ∑ x in Finset.range n, (f (succ x) - f x)
[PROOFSTEP]
simp_rw [sum_range_sub, sub_eq_add_neg]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => f n + -f 0
[PROOFSTEP]
exact (Tendsto.cauchySeq hf0).add_const
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
n : ℕ
⊢ ‖(f (n + 1) + -f n) • Finset.sum (Finset.range (n + 1)) z‖ ≤ b * |f (n + 1) - f n|
[PROOFSTEP]
rw [norm_smul, mul_comm]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
hgb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
n : ℕ
⊢ ‖Finset.sum (Finset.range (n + 1)) z‖ * ‖f (n + 1) + -f n‖ ≤ b * |f (n + 1) - f n|
[PROOFSTEP]
exact mul_le_mul_of_nonneg_right (hgb _) (abs_nonneg _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
hzb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
⊢ CauchySeq fun n => ∑ i in Finset.range (n + 1), f i • z i
[PROOFSTEP]
have hfa' : Monotone fun n ↦ -f n := fun _ _ hab ↦ neg_le_neg <| hfa hab
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
hzb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
hfa' : Monotone fun n => -f n
⊢ CauchySeq fun n => ∑ i in Finset.range (n + 1), f i • z i
[PROOFSTEP]
have hf0' : Tendsto (fun n ↦ -f n) atTop (𝓝 0) := by
convert hf0.neg
norm_num
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
hzb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
hfa' : Monotone fun n => -f n
⊢ Tendsto (fun n => -f n) atTop (𝓝 0)
[PROOFSTEP]
convert hf0.neg
[GOAL]
case h.e'_5.h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
hzb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
hfa' : Monotone fun n => -f n
⊢ 0 = -0
[PROOFSTEP]
norm_num
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
hzb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
hfa' : Monotone fun n => -f n
hf0' : Tendsto (fun n => -f n) atTop (𝓝 0)
⊢ CauchySeq fun n => ∑ i in Finset.range (n + 1), f i • z i
[PROOFSTEP]
convert (hfa'.cauchySeq_series_mul_of_tendsto_zero_of_bounded hf0' hzb).neg
[GOAL]
case h.e'_5.h
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
hzb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
hfa' : Monotone fun n => -f n
hf0' : Tendsto (fun n => -f n) atTop (𝓝 0)
x✝ : ℕ
⊢ ∑ i in Finset.range (x✝ + 1), f i • z i = (-fun n => ∑ i in Finset.range (n + 1), -f i • z i) x✝
[PROOFSTEP]
funext
[GOAL]
case h.e'_5.h
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
hzb : ∀ (n : ℕ), ‖∑ i in Finset.range n, z i‖ ≤ b
hfa' : Monotone fun n => -f n
hf0' : Tendsto (fun n => -f n) atTop (𝓝 0)
x✝ : ℕ
⊢ ∑ i in Finset.range (x✝ + 1), f i • z i = (-fun n => ∑ i in Finset.range (n + 1), -f i • z i) x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
n : ℕ
⊢ ‖∑ i in Finset.range n, (-1) ^ i‖ ≤ 1
[PROOFSTEP]
rw [neg_one_geom_sum]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
n : ℕ
⊢ ‖if Even n then 0 else 1‖ ≤ 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
n : ℕ
h✝ : Even n
⊢ ‖0‖ ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
n : ℕ
h✝ : ¬Even n
⊢ ‖1‖ ≤ 1
[PROOFSTEP]
norm_num
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
⊢ CauchySeq fun n => ∑ i in Finset.range (n + 1), (-1) ^ i * f i
[PROOFSTEP]
simp_rw [mul_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Monotone f
hf0 : Tendsto f atTop (𝓝 0)
⊢ CauchySeq fun n => ∑ x in Finset.range (n + 1), f x * (-1) ^ x
[PROOFSTEP]
exact hfa.cauchySeq_series_mul_of_tendsto_zero_of_bounded hf0 norm_sum_neg_one_pow_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
⊢ CauchySeq fun n => ∑ i in Finset.range (n + 1), (-1) ^ i * f i
[PROOFSTEP]
simp_rw [mul_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : ℝ
f : ℕ → ℝ
z : ℕ → E
hfa : Antitone f
hf0 : Tendsto f atTop (𝓝 0)
⊢ CauchySeq fun n => ∑ x in Finset.range (n + 1), f x * (-1) ^ x
[PROOFSTEP]
exact hfa.cauchySeq_series_mul_of_tendsto_zero_of_bounded hf0 norm_sum_neg_one_pow_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
⊢ Summable fun n => x ^ n / ↑n !
[PROOFSTEP]
have A : (0 : ℝ) < ⌊‖x‖⌋₊ + 1 := zero_lt_one.trans_le (by simp)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
⊢ 1 ≤ ↑⌊‖x‖⌋₊ + 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
A : 0 < ↑⌊‖x‖⌋₊ + 1
⊢ Summable fun n => x ^ n / ↑n !
[PROOFSTEP]
have B : ‖x‖ / (⌊‖x‖⌋₊ + 1) < 1 :=
(div_lt_one A).2
(Nat.lt_floor_add_one _)
-- Then we apply the ratio test. The estimate works for `n ≥ ⌊‖x‖⌋₊`.
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
A : 0 < ↑⌊‖x‖⌋₊ + 1
B : ‖x‖ / (↑⌊‖x‖⌋₊ + 1) < 1
⊢ Summable fun n => x ^ n / ↑n !
[PROOFSTEP]
suffices : ∀ n ≥ ⌊‖x‖⌋₊, ‖x ^ (n + 1) / (n + 1)!‖ ≤ ‖x‖ / (⌊‖x‖⌋₊ + 1) * ‖x ^ n / ↑n !‖
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
A : 0 < ↑⌊‖x‖⌋₊ + 1
B : ‖x‖ / (↑⌊‖x‖⌋₊ + 1) < 1
this : ∀ (n : ℕ), n ≥ ⌊‖x‖⌋₊ → ‖x ^ (n + 1) / ↑(n + 1)!‖ ≤ ‖x‖ / (↑⌊‖x‖⌋₊ + 1) * ‖x ^ n / ↑n !‖
⊢ Summable fun n => x ^ n / ↑n !
case this
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
A : 0 < ↑⌊‖x‖⌋₊ + 1
B : ‖x‖ / (↑⌊‖x‖⌋₊ + 1) < 1
⊢ ∀ (n : ℕ), n ≥ ⌊‖x‖⌋₊ → ‖x ^ (n + 1) / ↑(n + 1)!‖ ≤ ‖x‖ / (↑⌊‖x‖⌋₊ + 1) * ‖x ^ n / ↑n !‖
[PROOFSTEP]
exact
summable_of_ratio_norm_eventually_le B
(eventually_atTop.2 ⟨⌊‖x‖⌋₊, this⟩)
-- Finally, we prove the upper estimate
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
A : 0 < ↑⌊‖x‖⌋₊ + 1
B : ‖x‖ / (↑⌊‖x‖⌋₊ + 1) < 1
⊢ ∀ (n : ℕ), n ≥ ⌊‖x‖⌋₊ → ‖x ^ (n + 1) / ↑(n + 1)!‖ ≤ ‖x‖ / (↑⌊‖x‖⌋₊ + 1) * ‖x ^ n / ↑n !‖
[PROOFSTEP]
intro n hn
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
A : 0 < ↑⌊‖x‖⌋₊ + 1
B : ‖x‖ / (↑⌊‖x‖⌋₊ + 1) < 1
n : ℕ
hn : n ≥ ⌊‖x‖⌋₊
⊢ ‖x ^ (n + 1) / ↑(n + 1)!‖ ≤ ‖x‖ / (↑⌊‖x‖⌋₊ + 1) * ‖x ^ n / ↑n !‖
[PROOFSTEP]
calc
‖x ^ (n + 1) / (n + 1)!‖ = ‖x‖ / (n + 1) * ‖x ^ n / (n !)‖ := by
rw [_root_.pow_succ, Nat.factorial_succ, Nat.cast_mul, ← _root_.div_mul_div_comm, norm_mul, norm_div,
Real.norm_coe_nat, Nat.cast_succ]
_ ≤ ‖x‖ / (⌊‖x‖⌋₊ + 1) * ‖x ^ n / (n !)‖ :=
-- Porting note: this was `by mono* with 0 ≤ ‖x ^ n / (n !)‖, 0 ≤ ‖x‖ <;> apply norm_nonneg`
-- but we can't wait on `mono`.mul_le_mul_of_nonneg_right
(div_le_div (norm_nonneg x) (le_refl ‖x‖) A (add_le_add (mono_cast hn) (le_refl 1))) (norm_nonneg (x ^ n / n !))
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
A : 0 < ↑⌊‖x‖⌋₊ + 1
B : ‖x‖ / (↑⌊‖x‖⌋₊ + 1) < 1
n : ℕ
hn : n ≥ ⌊‖x‖⌋₊
⊢ ‖x ^ (n + 1) / ↑(n + 1)!‖ = ‖x‖ / (↑n + 1) * ‖x ^ n / ↑n !‖
[PROOFSTEP]
rw [_root_.pow_succ, Nat.factorial_succ, Nat.cast_mul, ← _root_.div_mul_div_comm, norm_mul, norm_div, Real.norm_coe_nat,
Nat.cast_succ]
| {"mathlib_filename": "Mathlib.Analysis.SpecificLimits.Normed", "llama_tokens": 73337} |
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c : R
⊢ ContinuousLinearMap.id R M = 1 • toContinuousLinearMap LinearIsometry.id
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c✝ : R
hf : IsConformalMap f
c : R
hc : c ≠ 0
⊢ IsConformalMap (c • f)
[PROOFSTEP]
rcases hf with ⟨c', hc', li, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
g : N →L[R] G
c✝ c : R
hc : c ≠ 0
c' : R
hc' : c' ≠ 0
li : M →ₗᵢ[R] N
⊢ IsConformalMap (c • c' • toContinuousLinearMap li)
[PROOFSTEP]
exact ⟨c * c', mul_ne_zero hc hc', li, smul_smul _ _ _⟩
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁹ : NormedField R
inst✝⁸ : SeminormedAddCommGroup M
inst✝⁷ : SeminormedAddCommGroup N
inst✝⁶ : SeminormedAddCommGroup G
inst✝⁵ : NormedSpace R M
inst✝⁴ : NormedSpace R N
inst✝³ : NormedSpace R G
inst✝² : NormedAddCommGroup M'
inst✝¹ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c : R
inst✝ : Subsingleton M
f' : M →L[R] N
x : M
⊢ ‖↑0 x‖ = ‖x‖
[PROOFSTEP]
simp [Subsingleton.elim x 0]
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c : R
hg : IsConformalMap g
hf : IsConformalMap f
⊢ IsConformalMap (ContinuousLinearMap.comp g f)
[PROOFSTEP]
rcases hf with ⟨cf, hcf, lif, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
g : N →L[R] G
c : R
hg : IsConformalMap g
cf : R
hcf : cf ≠ 0
lif : M →ₗᵢ[R] N
⊢ IsConformalMap (ContinuousLinearMap.comp g (cf • toContinuousLinearMap lif))
[PROOFSTEP]
rcases hg with ⟨cg, hcg, lig, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
c cf : R
hcf : cf ≠ 0
lif : M →ₗᵢ[R] N
cg : R
hcg : cg ≠ 0
lig : N →ₗᵢ[R] G
⊢ IsConformalMap (ContinuousLinearMap.comp (cg • toContinuousLinearMap lig) (cf • toContinuousLinearMap lif))
[PROOFSTEP]
refine' ⟨cg * cf, mul_ne_zero hcg hcf, lig.comp lif, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
c cf : R
hcf : cf ≠ 0
lif : M →ₗᵢ[R] N
cg : R
hcg : cg ≠ 0
lig : N →ₗᵢ[R] G
⊢ ContinuousLinearMap.comp (cg • toContinuousLinearMap lig) (cf • toContinuousLinearMap lif) =
(cg * cf) • toContinuousLinearMap (LinearIsometry.comp lig lif)
[PROOFSTEP]
rw [smul_comp, comp_smul, mul_smul]
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
c cf : R
hcf : cf ≠ 0
lif : M →ₗᵢ[R] N
cg : R
hcg : cg ≠ 0
lig : N →ₗᵢ[R] G
⊢ cg • cf • ContinuousLinearMap.comp (toContinuousLinearMap lig) (toContinuousLinearMap lif) =
cg • cf • toContinuousLinearMap (LinearIsometry.comp lig lif)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
f✝ : M →L[R] N
g : N →L[R] G
c : R
f : M' →L[R] N
h : IsConformalMap f
⊢ Injective ↑f
[PROOFSTEP]
rcases h with ⟨c, hc, li, rfl⟩
[GOAL]
case intro.intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁸ : NormedField R
inst✝⁷ : SeminormedAddCommGroup M
inst✝⁶ : SeminormedAddCommGroup N
inst✝⁵ : SeminormedAddCommGroup G
inst✝⁴ : NormedSpace R M
inst✝³ : NormedSpace R N
inst✝² : NormedSpace R G
inst✝¹ : NormedAddCommGroup M'
inst✝ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c✝ c : R
hc : c ≠ 0
li : M' →ₗᵢ[R] N
⊢ Injective ↑(c • toContinuousLinearMap li)
[PROOFSTEP]
exact (smul_right_injective _ hc).comp li.injective
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁹ : NormedField R
inst✝⁸ : SeminormedAddCommGroup M
inst✝⁷ : SeminormedAddCommGroup N
inst✝⁶ : SeminormedAddCommGroup G
inst✝⁵ : NormedSpace R M
inst✝⁴ : NormedSpace R N
inst✝³ : NormedSpace R G
inst✝² : NormedAddCommGroup M'
inst✝¹ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c : R
inst✝ : Nontrivial M'
f' : M' →L[R] N
hf' : IsConformalMap f'
⊢ f' ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁹ : NormedField R
inst✝⁸ : SeminormedAddCommGroup M
inst✝⁷ : SeminormedAddCommGroup N
inst✝⁶ : SeminormedAddCommGroup G
inst✝⁵ : NormedSpace R M
inst✝⁴ : NormedSpace R N
inst✝³ : NormedSpace R G
inst✝² : NormedAddCommGroup M'
inst✝¹ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c : R
inst✝ : Nontrivial M'
hf' : IsConformalMap 0
⊢ False
[PROOFSTEP]
rcases exists_ne (0 : M') with ⟨a, ha⟩
[GOAL]
case intro
R : Type u_1
M : Type u_2
N : Type u_3
G : Type u_4
M' : Type u_5
inst✝⁹ : NormedField R
inst✝⁸ : SeminormedAddCommGroup M
inst✝⁷ : SeminormedAddCommGroup N
inst✝⁶ : SeminormedAddCommGroup G
inst✝⁵ : NormedSpace R M
inst✝⁴ : NormedSpace R N
inst✝³ : NormedSpace R G
inst✝² : NormedAddCommGroup M'
inst✝¹ : NormedSpace R M'
f : M →L[R] N
g : N →L[R] G
c : R
inst✝ : Nontrivial M'
hf' : IsConformalMap 0
a : M'
ha : a ≠ 0
⊢ False
[PROOFSTEP]
exact ha (hf'.injective rfl)
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.ConformalLinearMap", "llama_tokens": 3640} |
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝³ : NormedField α✝
inst✝² : SeminormedAddCommGroup β
α : Type u_5
inst✝¹ : NormedField α
inst✝ : NormedSpace α β
n : ℤ
x : β
⊢ ‖n • x‖ = ‖↑n‖ * ‖x‖
[PROOFSTEP]
rw [← norm_smul, ← Int.smul_one_eq_coe, smul_assoc, one_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝² : NormedField α
inst✝¹ : SeminormedAddCommGroup β
inst✝ : NormedSpace ℝ β
x : β
⊢ ‖x‖⁻¹ • x ∈ closedBall 0 1
[PROOFSTEP]
simp only [mem_closedBall_zero_iff, norm_smul, norm_inv, norm_norm, ← _root_.div_eq_inv_mul, div_self_le_one]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝² : NormedField α
inst✝¹ : SeminormedAddCommGroup β
inst✝ : NormedSpace ℝ β
t : ℝ
ht : 0 ≤ t
x : β
⊢ ‖t • x‖ = t * ‖x‖
[PROOFSTEP]
rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg ht]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁵ : NormedField α
inst✝⁴ : SeminormedAddCommGroup β
E : Type u_5
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace α E
F : Type u_6
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace α F
c : α
x : E
ε : ℝ
h : 0 < ε
⊢ ‖c • (id x - x)‖ = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
⊢ closure (ball x r) = closedBall x r
[PROOFSTEP]
refine' Subset.antisymm closure_ball_subset_closedBall fun y hy => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : y ∈ closedBall x r
⊢ y ∈ closure (ball x r)
[PROOFSTEP]
have : ContinuousWithinAt (fun c : ℝ => c • (y - x) + x) (Ico 0 1) 1 :=
((continuous_id.smul continuous_const).add continuous_const).continuousWithinAt
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : y ∈ closedBall x r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
⊢ y ∈ closure (ball x r)
[PROOFSTEP]
convert this.mem_closure _ _
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : y ∈ closedBall x r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
⊢ y = 1 • (y - x) + x
[PROOFSTEP]
rw [one_smul, sub_add_cancel]
[GOAL]
case convert_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : y ∈ closedBall x r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
⊢ 1 ∈ closure (Ico 0 1)
[PROOFSTEP]
simp [closure_Ico zero_ne_one, zero_le_one]
[GOAL]
case convert_3
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : y ∈ closedBall x r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
⊢ MapsTo (fun c => c • (y - x) + x) (Ico 0 1) (ball x r)
[PROOFSTEP]
rintro c ⟨hc0, hc1⟩
[GOAL]
case convert_3.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : y ∈ closedBall x r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
⊢ (fun c => c • (y - x) + x) c ∈ ball x r
[PROOFSTEP]
rw [mem_ball, dist_eq_norm, add_sub_cancel, norm_smul, Real.norm_eq_abs, abs_of_nonneg hc0, mul_comm, ← mul_one r]
[GOAL]
case convert_3.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : y ∈ closedBall x r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
⊢ ‖y - x‖ * c < r * 1
[PROOFSTEP]
rw [mem_closedBall, dist_eq_norm] at hy
[GOAL]
case convert_3.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
y : E
hy : ‖y - x‖ ≤ r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
⊢ ‖y - x‖ * c < r * 1
[PROOFSTEP]
replace hr : 0 < r := ((norm_nonneg _).trans hy).lt_of_ne hr.symm
[GOAL]
case convert_3.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
y : E
hy : ‖y - x‖ ≤ r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
hr : 0 < r
⊢ ‖y - x‖ * c < r * 1
[PROOFSTEP]
apply mul_lt_mul'
[GOAL]
case convert_3.intro.hac
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
y : E
hy : ‖y - x‖ ≤ r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
hr : 0 < r
⊢ ‖y - x‖ ≤ r
[PROOFSTEP]
assumption
[GOAL]
case convert_3.intro.hbd
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
y : E
hy : ‖y - x‖ ≤ r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
hr : 0 < r
⊢ c < 1
[PROOFSTEP]
assumption
[GOAL]
case convert_3.intro.hb
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
y : E
hy : ‖y - x‖ ≤ r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
hr : 0 < r
⊢ 0 ≤ c
[PROOFSTEP]
assumption
[GOAL]
case convert_3.intro.hc
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
y : E
hy : ‖y - x‖ ≤ r
this : ContinuousWithinAt (fun c => c • (y - x) + x) (Ico 0 1) 1
c : ℝ
hc0 : 0 ≤ c
hc1 : c < 1
hr : 0 < r
⊢ 0 < r
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
⊢ frontier (ball x r) = sphere x r
[PROOFSTEP]
rw [frontier, closure_ball x hr, isOpen_ball.interior_eq, closedBall_diff_ball]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
⊢ interior (closedBall x r) = ball x r
[PROOFSTEP]
cases' hr.lt_or_lt with hr hr
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr✝ : r ≠ 0
hr : r < 0
⊢ interior (closedBall x r) = ball x r
[PROOFSTEP]
rw [closedBall_eq_empty.2 hr, ball_eq_empty.2 hr.le, interior_empty]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr✝ : r ≠ 0
hr : 0 < r
⊢ interior (closedBall x r) = ball x r
[PROOFSTEP]
refine' Subset.antisymm _ ball_subset_interior_closedBall
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr✝ : r ≠ 0
hr : 0 < r
⊢ interior (closedBall x r) ⊆ ball x r
[PROOFSTEP]
intro y hy
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr✝ : r ≠ 0
hr : 0 < r
y : E
hy : y ∈ interior (closedBall x r)
⊢ y ∈ ball x r
[PROOFSTEP]
rcases(mem_closedBall.1 <| interior_subset hy).lt_or_eq with (hr | rfl)
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr✝¹ : r ≠ 0
hr✝ : 0 < r
y : E
hy : y ∈ interior (closedBall x r)
hr : dist y x < r
⊢ y ∈ ball x r
[PROOFSTEP]
exact hr
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
⊢ y ∈ ball x (dist y x)
[PROOFSTEP]
set f : ℝ → E := fun c : ℝ => c • (y - x) + x
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
⊢ y ∈ ball x (dist y x)
[PROOFSTEP]
suffices f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
by
have hfc : Continuous f := (continuous_id.smul continuous_const).add continuous_const
have hf1 : (1 : ℝ) ∈ f ⁻¹' interior (closedBall x <| dist y x) := by simpa
have h1 : (1 : ℝ) ∈ interior (Icc (-1 : ℝ) 1) :=
interior_mono this (preimage_interior_subset_interior_preimage hfc hf1)
contrapose h1
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
this : f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
⊢ y ∈ ball x (dist y x)
[PROOFSTEP]
have hfc : Continuous f := (continuous_id.smul continuous_const).add continuous_const
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
this : f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
hfc : Continuous f
⊢ y ∈ ball x (dist y x)
[PROOFSTEP]
have hf1 : (1 : ℝ) ∈ f ⁻¹' interior (closedBall x <| dist y x) := by simpa
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
this : f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
hfc : Continuous f
⊢ 1 ∈ f ⁻¹' interior (closedBall x (dist y x))
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
this : f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
hfc : Continuous f
hf1 : 1 ∈ f ⁻¹' interior (closedBall x (dist y x))
⊢ y ∈ ball x (dist y x)
[PROOFSTEP]
have h1 : (1 : ℝ) ∈ interior (Icc (-1 : ℝ) 1) := interior_mono this (preimage_interior_subset_interior_preimage hfc hf1)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
this : f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
hfc : Continuous f
hf1 : 1 ∈ f ⁻¹' interior (closedBall x (dist y x))
h1 : 1 ∈ interior (Icc (-1) 1)
⊢ y ∈ ball x (dist y x)
[PROOFSTEP]
contrapose h1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
this : f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
hfc : Continuous f
hf1 : 1 ∈ f ⁻¹' interior (closedBall x (dist y x))
h1 : ¬y ∈ ball x (dist y x)
⊢ ¬1 ∈ interior (Icc (-1) 1)
[PROOFSTEP]
simp
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
⊢ f ⁻¹' closedBall x (dist y x) ⊆ Icc (-1) 1
[PROOFSTEP]
intro c hc
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
c : ℝ
hc : c ∈ f ⁻¹' closedBall x (dist y x)
⊢ c ∈ Icc (-1) 1
[PROOFSTEP]
rw [mem_Icc, ← abs_le, ← Real.norm_eq_abs, ← mul_le_mul_right hr]
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x y : E
hr✝ : dist y x ≠ 0
hr : 0 < dist y x
hy : y ∈ interior (closedBall x (dist y x))
f : ℝ → E := fun c => c • (y - x) + x
c : ℝ
hc : c ∈ f ⁻¹' closedBall x (dist y x)
⊢ ‖c‖ * dist y x ≤ 1 * dist y x
[PROOFSTEP]
simpa [dist_eq_norm, norm_smul] using hc
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
⊢ frontier (closedBall x r) = sphere x r
[PROOFSTEP]
rw [frontier, closure_closedBall, interior_closedBall x hr, closedBall_diff_ball]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
⊢ interior (sphere x r) = ∅
[PROOFSTEP]
rw [← frontier_closedBall x hr, interior_frontier isClosed_ball]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
inst✝⁵ : SeminormedAddCommGroup β
E : Type u_5
inst✝⁴ : SeminormedAddCommGroup E
inst✝³ : NormedSpace α E
F : Type u_6
inst✝² : SeminormedAddCommGroup F
inst✝¹ : NormedSpace α F
inst✝ : NormedSpace ℝ E
x : E
r : ℝ
hr : r ≠ 0
⊢ frontier (sphere x r) = sphere x r
[PROOFSTEP]
rw [isClosed_sphere.frontier_eq, interior_sphere x hr, diff_empty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
e : E
⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples e }
[PROOFSTEP]
rcases eq_or_ne e 0 with (rfl | he)
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples 0 }
[PROOFSTEP]
rw [AddSubgroup.zmultiples_zero_eq_bot]
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
⊢ DiscreteTopology { x // x ∈ ⊥ }
[PROOFSTEP]
refine Subsingleton.discreteTopology (α := ↑(⊥ : Subspace ℚ E))
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
e : E
he : e ≠ 0
⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples e }
[PROOFSTEP]
rw [discreteTopology_iff_open_singleton_zero, isOpen_induced_iff]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
e : E
he : e ≠ 0
⊢ ∃ t, IsOpen t ∧ Subtype.val ⁻¹' t = {0}
[PROOFSTEP]
refine' ⟨Metric.ball 0 ‖e‖, Metric.isOpen_ball, _⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
e : E
he : e ≠ 0
⊢ Subtype.val ⁻¹' ball 0 ‖e‖ = {0}
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case inr.h.mk
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
e : E
he : e ≠ 0
x : E
hx : x ∈ AddSubgroup.zmultiples e
⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' ball 0 ‖e‖ ↔ { val := x, property := hx } ∈ {0}
[PROOFSTEP]
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
[GOAL]
case inr.h.mk.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁷ : NormedField α
inst✝⁶ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁵ : SeminormedAddCommGroup E✝
inst✝⁴ : NormedSpace α E✝
F : Type u_6
inst✝³ : SeminormedAddCommGroup F
inst✝² : NormedSpace α F
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℚ E
e : E
he : e ≠ 0
k : ℤ
hx : k • e ∈ AddSubgroup.zmultiples e
⊢ { val := k • e, property := hx } ∈ Subtype.val ⁻¹' ball 0 ‖e‖ ↔ { val := k • e, property := hx } ∈ {0}
[PROOFSTEP]
rw [mem_preimage, mem_ball_zero_iff, AddSubgroup.coe_mk, mem_singleton_iff, Subtype.ext_iff, AddSubgroup.coe_mk,
AddSubgroup.coe_zero, norm_zsmul ℚ k e, Int.norm_cast_rat, Int.norm_eq_abs,
mul_lt_iff_lt_one_left (norm_pos_iff.mpr he), ← @Int.cast_one ℝ _, Int.cast_lt, Int.abs_lt_one_iff, smul_eq_zero,
or_iff_left he]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁵ : NormedField α
inst✝⁴ : SeminormedAddCommGroup β
E : Type u_5
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace α E
F : Type u_6
inst✝¹ : SeminormedAddCommGroup F
inst✝ : NormedSpace α F
src✝¹ : SeminormedAddCommGroup (E × F) := seminormedAddCommGroup
src✝ : Module α (E × F) := instModule
s : α
x : E × F
⊢ ‖s • x‖ ≤ ‖s‖ * ‖x‖
[PROOFSTEP]
simp only [norm_smul, Prod.norm_def, Prod.smul_snd, Prod.smul_fst, mul_max_of_nonneg, norm_nonneg, le_rfl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁸ : NormedField α
inst✝⁷ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁶ : SeminormedAddCommGroup E✝
inst✝⁵ : NormedSpace α E✝
F : Type u_6
inst✝⁴ : SeminormedAddCommGroup F
inst✝³ : NormedSpace α F
E : ι → Type u_7
inst✝² : Fintype ι
inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace α (E i)
a : α
f : (i : ι) → E i
⊢ ‖a • f‖ ≤ ‖a‖ * ‖f‖
[PROOFSTEP]
simp_rw [← coe_nnnorm, ← NNReal.coe_mul, NNReal.coe_le_coe, Pi.nnnorm_def, NNReal.mul_finset_sup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁸ : NormedField α
inst✝⁷ : SeminormedAddCommGroup β
E✝ : Type u_5
inst✝⁶ : SeminormedAddCommGroup E✝
inst✝⁵ : NormedSpace α E✝
F : Type u_6
inst✝⁴ : SeminormedAddCommGroup F
inst✝³ : NormedSpace α F
E : ι → Type u_7
inst✝² : Fintype ι
inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i)
inst✝ : (i : ι) → NormedSpace α (E i)
a : α
f : (i : ι) → E i
⊢ (Finset.sup Finset.univ fun b => ‖(a • f) b‖₊) ≤ Finset.sup Finset.univ fun a_1 => ‖a‖₊ * ‖f a_1‖₊
[PROOFSTEP]
exact Finset.sup_mono_fun fun _ _ => norm_smul_le a _
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : AddCommGroup β
inst✝³ : Module α β
inst✝² : SeminormedAddCommGroup γ
inst✝¹ : NormedSpace α γ
inst✝ : LinearMapClass F α β γ
f : F
⊢ NormedSpace α β
[PROOFSTEP]
refine @NormedSpace.mk (α := α) (β := β) _ ?_ ?_ ?_
[GOAL]
case refine_1
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : AddCommGroup β
inst✝³ : Module α β
inst✝² : SeminormedAddCommGroup γ
inst✝¹ : NormedSpace α γ
inst✝ : LinearMapClass F α β γ
f : F
⊢ Module α β
[PROOFSTEP]
infer_instance
[GOAL]
case refine_2
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : AddCommGroup β
inst✝³ : Module α β
inst✝² : SeminormedAddCommGroup γ
inst✝¹ : NormedSpace α γ
inst✝ : LinearMapClass F α β γ
f : F
⊢ ∀ (a : α) (b : β), ‖a • b‖ ≤ ‖a‖ * ‖b‖
[PROOFSTEP]
intro a b
[GOAL]
case refine_2
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : AddCommGroup β
inst✝³ : Module α β
inst✝² : SeminormedAddCommGroup γ
inst✝¹ : NormedSpace α γ
inst✝ : LinearMapClass F α β γ
f : F
a : α
b : β
⊢ ‖a • b‖ ≤ ‖a‖ * ‖b‖
[PROOFSTEP]
change ‖(⇑f) (a • b)‖ ≤ ‖a‖ * ‖(⇑f) b‖
[GOAL]
case refine_2
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : AddCommGroup β
inst✝³ : Module α β
inst✝² : SeminormedAddCommGroup γ
inst✝¹ : NormedSpace α γ
inst✝ : LinearMapClass F α β γ
f : F
a : α
b : β
⊢ ‖↑f (a • b)‖ ≤ ‖a‖ * ‖↑f b‖
[PROOFSTEP]
exact (map_smul f a b).symm ▸ norm_smul_le a (f b)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
c : ℝ
hc : 0 ≤ c
⊢ ∃ x, ‖x‖ = c
[PROOFSTEP]
rcases exists_ne (0 : E) with ⟨x, hx⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
c : ℝ
hc : 0 ≤ c
x : E
hx : x ≠ 0
⊢ ∃ x, ‖x‖ = c
[PROOFSTEP]
rw [← norm_ne_zero_iff] at hx
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
c : ℝ
hc : 0 ≤ c
x : E
hx : ‖x‖ ≠ 0
⊢ ∃ x, ‖x‖ = c
[PROOFSTEP]
use c • ‖x‖⁻¹ • x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
c : ℝ
hc : 0 ≤ c
x : E
hx : ‖x‖ ≠ 0
⊢ ‖c • ‖x‖⁻¹ • x‖ = c
[PROOFSTEP]
simp [norm_smul, Real.norm_of_nonneg hc, abs_of_nonneg hc, inv_mul_cancel hx]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
⊢ interior (closedBall x r) = ball x r
[PROOFSTEP]
rcases eq_or_ne r 0 with (rfl | hr)
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
⊢ interior (closedBall x 0) = ball x 0
[PROOFSTEP]
rw [closedBall_zero, ball_zero, interior_singleton]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
hr : r ≠ 0
⊢ interior (closedBall x r) = ball x r
[PROOFSTEP]
exact interior_closedBall x hr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
⊢ frontier (closedBall x r) = sphere x r
[PROOFSTEP]
rw [frontier, closure_closedBall, interior_closedBall' x r, closedBall_diff_ball]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
⊢ interior (sphere x r) = ∅
[PROOFSTEP]
rw [← frontier_closedBall' x, interior_frontier isClosed_ball]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝⁶ : NormedField α
E : Type u_5
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace α E
F : Type u_6
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace α F
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
⊢ frontier (sphere x r) = sphere x r
[PROOFSTEP]
rw [isClosed_sphere.frontier_eq, interior_sphere' x, diff_empty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
E : Type u_6
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : Nontrivial E
c : ℝ
⊢ ∃ x, c < ‖x‖
[PROOFSTEP]
rcases exists_ne (0 : E) with ⟨x, hx⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
E : Type u_6
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : Nontrivial E
c : ℝ
x : E
hx : x ≠ 0
⊢ ∃ x, c < ‖x‖
[PROOFSTEP]
rcases NormedField.exists_lt_norm 𝕜 (c / ‖x‖) with ⟨r, hr⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
E : Type u_6
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : Nontrivial E
c : ℝ
x : E
hx : x ≠ 0
r : 𝕜
hr : c / ‖x‖ < ‖r‖
⊢ ∃ x, c < ‖x‖
[PROOFSTEP]
use r • x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
E : Type u_6
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : Nontrivial E
c : ℝ
x : E
hx : x ≠ 0
r : 𝕜
hr : c / ‖x‖ < ‖r‖
⊢ c < ‖r • x‖
[PROOFSTEP]
rwa [norm_smul, ← _root_.div_lt_iff]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
E : Type u_6
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : Nontrivial E
c : ℝ
x : E
hx : x ≠ 0
r : 𝕜
hr : c / ‖x‖ < ‖r‖
⊢ 0 < ‖x‖
[PROOFSTEP]
rwa [norm_pos_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜'✝ : Type u_6
inst✝⁴ : NormedField 𝕜
inst✝³ : SeminormedRing 𝕜'✝
inst✝² : NormedAlgebra 𝕜 𝕜'✝
𝕜' : Type ?u.294395
inst✝¹ : NormedRing 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
⊢ NormedSpace 𝕜 𝕜'
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜' : Type u_6
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedRing 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
x : 𝕜
⊢ ‖↑(algebraMap 𝕜 𝕜') x‖ = ‖x‖ * ‖1‖
[PROOFSTEP]
rw [Algebra.algebraMap_eq_smul_one]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜' : Type u_6
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedRing 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
x : 𝕜
⊢ ‖x • 1‖ = ‖x‖ * ‖1‖
[PROOFSTEP]
exact norm_smul _ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜' : Type u_6
inst✝³ : NormedField 𝕜
inst✝² : SeminormedRing 𝕜'
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormOneClass 𝕜'
x : 𝕜
⊢ ‖↑(algebraMap 𝕜 𝕜') x‖ = ‖x‖
[PROOFSTEP]
rw [norm_algebraMap, norm_one, mul_one]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜' : Type u_6
inst✝³ : NormedField 𝕜
inst✝² : SeminormedRing 𝕜'
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormOneClass 𝕜'
⊢ Isometry ↑(algebraMap 𝕜 𝕜')
[PROOFSTEP]
refine' Isometry.of_dist_eq fun x y => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜' : Type u_6
inst✝³ : NormedField 𝕜
inst✝² : SeminormedRing 𝕜'
inst✝¹ : NormedAlgebra 𝕜 𝕜'
inst✝ : NormOneClass 𝕜'
x y : 𝕜
⊢ dist (↑(algebraMap 𝕜 𝕜') x) (↑(algebraMap 𝕜 𝕜') y) = dist x y
[PROOFSTEP]
rw [dist_eq_norm, dist_eq_norm, ← RingHom.map_sub, norm_algebraMap']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜✝ : Type u_5
𝕜' : Type u_6
inst✝⁵ : NormedField 𝕜✝
inst✝⁴ : SeminormedRing 𝕜'
inst✝³ : NormedAlgebra 𝕜✝ 𝕜'
𝕜 : Type ?u.479633
inst✝² : NormedDivisionRing 𝕜
inst✝¹ : CharZero 𝕜
inst✝ : NormedAlgebra ℝ 𝕜
q : ℚ
x : 𝕜
⊢ ‖q • x‖ ≤ ‖q‖ * ‖x‖
[PROOFSTEP]
rw [← smul_one_smul ℝ q x, Rat.smul_one_eq_coe, norm_smul, Rat.norm_cast_real]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜' : Type u_6
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedRing 𝕜'
inst✝ : NormedAlgebra 𝕜 𝕜'
q : 𝕜
x✝ : PUnit
⊢ ‖q • x✝‖ ≤ ‖q‖ * ‖x✝‖
[PROOFSTEP]
simp only [norm_eq_zero, mul_zero, le_refl]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : Ring β
inst✝³ : Algebra α β
inst✝² : SeminormedRing γ
inst✝¹ : NormedAlgebra α γ
inst✝ : NonUnitalAlgHomClass F α β γ
f : F
⊢ NormedAlgebra α β
[PROOFSTEP]
refine @NormedAlgebra.mk (𝕜 := α) (𝕜' := β) _ ?_ ?_ ?_
[GOAL]
case refine_1
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : Ring β
inst✝³ : Algebra α β
inst✝² : SeminormedRing γ
inst✝¹ : NormedAlgebra α γ
inst✝ : NonUnitalAlgHomClass F α β γ
f : F
⊢ Algebra α β
[PROOFSTEP]
infer_instance
[GOAL]
case refine_2
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : Ring β
inst✝³ : Algebra α β
inst✝² : SeminormedRing γ
inst✝¹ : NormedAlgebra α γ
inst✝ : NonUnitalAlgHomClass F α β γ
f : F
⊢ ∀ (r : α) (x : β), ‖r • x‖ ≤ ‖r‖ * ‖x‖
[PROOFSTEP]
intro a b
[GOAL]
case refine_2
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : Ring β
inst✝³ : Algebra α β
inst✝² : SeminormedRing γ
inst✝¹ : NormedAlgebra α γ
inst✝ : NonUnitalAlgHomClass F α β γ
f : F
a : α
b : β
⊢ ‖a • b‖ ≤ ‖a‖ * ‖b‖
[PROOFSTEP]
change ‖(⇑f) (a • b)‖ ≤ ‖a‖ * ‖(⇑f) b‖
[GOAL]
case refine_2
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
ι : Type u_4
F : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
inst✝⁵ : NormedField α
inst✝⁴ : Ring β
inst✝³ : Algebra α β
inst✝² : SeminormedRing γ
inst✝¹ : NormedAlgebra α γ
inst✝ : NonUnitalAlgHomClass F α β γ
f : F
a : α
b : β
⊢ ‖↑f (a • b)‖ ≤ ‖a‖ * ‖↑f b‖
[PROOFSTEP]
exact (map_smul f a b).symm ▸ norm_smul_le a (f b)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
𝕜 : Type u_5
𝕜' : Type u_6
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : NormedAlgebra 𝕜 𝕜'
E : Type u_7
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜' E
src✝ : Module 𝕜 (RestrictScalars 𝕜 𝕜' E) := module 𝕜 𝕜' E
c : 𝕜
x : RestrictScalars 𝕜 𝕜' E
⊢ ‖↑(algebraMap 𝕜 𝕜') c‖ * ‖x‖ = ‖c‖ * ‖x‖
[PROOFSTEP]
rw [norm_algebraMap']
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Basic", "llama_tokens": 18814} |
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : E →L[𝕜] F
x : E
⊢ ⊤ ≤ FormalMultilinearSeries.radius (fpowerSeries f x)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : E →L[𝕜] F
x y✝ : E
x✝ : y✝ ∈ EMetric.ball 0 ⊤
⊢ HasSum (fun n => ↑(fpowerSeries f x (n + 2)) fun x => y✝)
(↑f (x + y✝) - ∑ i in Finset.range 2, ↑(fpowerSeries f x i) fun x => y✝)
[PROOFSTEP]
simp [Finset.sum_range_succ, ← sub_sub, hasSum_zero, fpowerSeries]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : E →L[𝕜] F →L[𝕜] G
x : E × F
⊢ ⊤ ≤ FormalMultilinearSeries.radius (fpowerSeriesBilinear f x)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : E →L[𝕜] F →L[𝕜] G
x y✝ : E × F
x✝ : y✝ ∈ EMetric.ball 0 ⊤
⊢ HasSum (fun n => ↑(fpowerSeriesBilinear f x (n + 3)) fun x => y✝)
(↑(↑f (x + y✝).fst) (x + y✝).snd - ∑ i in Finset.range 3, ↑(fpowerSeriesBilinear f x i) fun x => y✝)
[PROOFSTEP]
simp only [Finset.sum_range_succ, Finset.sum_range_one, Prod.fst_add, Prod.snd_add, f.map_add_add]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : E →L[𝕜] F →L[𝕜] G
x y✝ : E × F
x✝ : y✝ ∈ EMetric.ball 0 ⊤
⊢ HasSum (fun n => ↑(fpowerSeriesBilinear f x (n + 3)) fun x => y✝)
(↑(↑f x.fst) x.snd + ↑(↑(deriv₂ f) (x.fst, x.snd)) (y✝.fst, y✝.snd) + ↑(↑f y✝.fst) y✝.snd -
((((∑ x_1 in Finset.range 0, ↑(fpowerSeriesBilinear f x x_1) fun x => y✝) +
↑(fpowerSeriesBilinear f x 0) fun x => y✝) +
↑(fpowerSeriesBilinear f x 1) fun x => y✝) +
↑(fpowerSeriesBilinear f x 2) fun x => y✝))
[PROOFSTEP]
simp [fpowerSeriesBilinear, hasSum_zero]
| {"mathlib_filename": "Mathlib.Analysis.Analytic.Linear", "llama_tokens": 1378} |
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : Subsingleton A
a : A
⊢ spectralRadius 𝕜 a = 0
[PROOFSTEP]
simp [spectralRadius]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
⊢ spectralRadius 𝕜 0 = 0
[PROOFSTEP]
nontriviality A
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
✝ : Nontrivial A
⊢ spectralRadius 𝕜 0 = 0
[PROOFSTEP]
simp [spectralRadius]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ * ‖1‖ < ‖k‖
⊢ k ∈ ρ a
[PROOFSTEP]
rw [resolventSet, Set.mem_setOf_eq, Algebra.algebraMap_eq_smul_one]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ * ‖1‖ < ‖k‖
⊢ IsUnit (k • 1 - a)
[PROOFSTEP]
nontriviality A
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ * ‖1‖ < ‖k‖
✝ : Nontrivial A
⊢ IsUnit (k • 1 - a)
[PROOFSTEP]
have hk : k ≠ 0 := ne_zero_of_norm_ne_zero ((mul_nonneg (norm_nonneg _) (norm_nonneg _)).trans_lt h).ne'
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ * ‖1‖ < ‖k‖
✝ : Nontrivial A
hk : k ≠ 0
⊢ IsUnit (k • 1 - a)
[PROOFSTEP]
letI ku := Units.map ↑ₐ.toMonoidHom (Units.mk0 k hk)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ * ‖1‖ < ‖k‖
✝ : Nontrivial A
hk : k ≠ 0
ku : (fun x => Aˣ) (Units.mk0 k hk) := ↑(Units.map ↑↑ₐ) (Units.mk0 k hk)
⊢ IsUnit (k • 1 - a)
[PROOFSTEP]
rw [← inv_inv ‖(1 : A)‖, mul_inv_lt_iff (inv_pos.2 <| norm_pos_iff.2 (one_ne_zero : (1 : A) ≠ 0))] at h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ < ‖1‖⁻¹ * ‖k‖
✝ : Nontrivial A
hk : k ≠ 0
ku : Aˣ := ↑(Units.map ↑↑ₐ) (Units.mk0 k hk)
⊢ IsUnit (k • 1 - a)
[PROOFSTEP]
have hku : ‖-a‖ < ‖(↑ku⁻¹ : A)‖⁻¹ := by simpa [norm_algebraMap] using h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ < ‖1‖⁻¹ * ‖k‖
✝ : Nontrivial A
hk : k ≠ 0
ku : Aˣ := ↑(Units.map ↑↑ₐ) (Units.mk0 k hk)
⊢ ‖-a‖ < ‖↑ku⁻¹‖⁻¹
[PROOFSTEP]
simpa [norm_algebraMap] using h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
h : ‖a‖ < ‖1‖⁻¹ * ‖k‖
✝ : Nontrivial A
hk : k ≠ 0
ku : Aˣ := ↑(Units.map ↑↑ₐ) (Units.mk0 k hk)
hku : ‖-a‖ < ‖↑ku⁻¹‖⁻¹
⊢ IsUnit (k • 1 - a)
[PROOFSTEP]
simpa [sub_eq_add_neg, Algebra.algebraMap_eq_smul_one] using (ku.add (-a) hku).isUnit
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : NormOneClass A
a : A
k : 𝕜
h : ‖a‖ < ‖k‖
⊢ ‖a‖ * ‖1‖ < ‖k‖
[PROOFSTEP]
rwa [norm_one, mul_one]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
hk : k ∈ σ a
⊢ k ∈ Metric.closedBall 0 (‖a‖ * ‖1‖)
[PROOFSTEP]
simp [norm_le_norm_mul_of_mem hk]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : NormOneClass A
a : A
k : 𝕜
hk : k ∈ σ a
⊢ k ∈ Metric.closedBall 0 ‖a‖
[PROOFSTEP]
simp [norm_le_norm_of_mem hk]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : NormOneClass A
a : A
⊢ spectralRadius 𝕜 a ≤ ↑‖a‖₊
[PROOFSTEP]
refine' iSup₂_le fun k hk => _
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : NormOneClass A
a : A
k : 𝕜
hk : k ∈ σ a
⊢ ↑‖k‖₊ ≤ ↑‖a‖₊
[PROOFSTEP]
exact_mod_cast norm_le_norm_of_mem hk
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
a : A
ha : Set.Nonempty (σ a)
⊢ ∃ k, k ∈ σ a ∧ ↑‖k‖₊ = spectralRadius 𝕜 a
[PROOFSTEP]
obtain ⟨k, hk, h⟩ := (spectrum.isCompact a).exists_forall_ge ha continuous_nnnorm.continuousOn
[GOAL]
case intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
a : A
ha : Set.Nonempty (σ a)
k : 𝕜
hk : k ∈ σ a
h : ∀ (y : 𝕜), y ∈ σ a → ‖y‖₊ ≤ ‖k‖₊
⊢ ∃ k, k ∈ σ a ∧ ↑‖k‖₊ = spectralRadius 𝕜 a
[PROOFSTEP]
exact ⟨k, hk, le_antisymm (le_iSup₂ (α := ℝ≥0∞) k hk) (iSup₂_le <| by exact_mod_cast h)⟩
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
a : A
ha : Set.Nonempty (σ a)
k : 𝕜
hk : k ∈ σ a
h : ∀ (y : 𝕜), y ∈ σ a → ‖y‖₊ ≤ ‖k‖₊
⊢ ∀ (i : 𝕜), i ∈ σ a → ↑‖i‖₊ ≤ ↑‖k‖₊
[PROOFSTEP]
exact_mod_cast h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
a : A
ha : Set.Nonempty (σ a)
r : ℝ≥0
hr : ∀ (k : 𝕜), k ∈ σ a → ‖k‖₊ < r
⊢ ∀ (x : 𝕜), x ∈ σ a → (ENNReal.some ∘ fun a => ‖a‖₊) x < ↑r
[PROOFSTEP]
dsimp only [(· ∘ ·)]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : ProperSpace 𝕜
a : A
ha : Set.Nonempty (σ a)
r : ℝ≥0
hr : ∀ (k : 𝕜), k ∈ σ a → ‖k‖₊ < r
⊢ ∀ (x : 𝕜), x ∈ σ a → ↑‖x‖₊ < ↑r
[PROOFSTEP]
exact_mod_cast hr
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
⊢ spectralRadius 𝕜 a ≤ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1))
[PROOFSTEP]
refine'
iSup₂_le fun k hk =>
_
-- apply easy direction of the spectral mapping theorem for polynomials
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
⊢ ↑‖k‖₊ ≤ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1))
[PROOFSTEP]
have pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1)) := by
simpa only [one_mul, Algebra.algebraMap_eq_smul_one, one_smul, aeval_monomial, one_mul, eval_monomial] using
subset_polynomial_aeval a (@monomial 𝕜 _ (n + 1) (1 : 𝕜))
⟨k, hk, rfl⟩
-- power of the norm is bounded by norm of the power
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
⊢ k ^ (n + 1) ∈ σ (a ^ (n + 1))
[PROOFSTEP]
simpa only [one_mul, Algebra.algebraMap_eq_smul_one, one_smul, aeval_monomial, one_mul, eval_monomial] using
subset_polynomial_aeval a (@monomial 𝕜 _ (n + 1) (1 : 𝕜))
⟨k, hk, rfl⟩
-- power of the norm is bounded by norm of the power
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
⊢ ↑‖k‖₊ ≤ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1))
[PROOFSTEP]
have nnnorm_pow_le : (↑(‖k‖₊ ^ (n + 1)) : ℝ≥0∞) ≤ ‖a ^ (n + 1)‖₊ * ‖(1 : A)‖₊ := by
simpa only [Real.toNNReal_mul (norm_nonneg _), norm_toNNReal, nnnorm_pow k (n + 1), ENNReal.coe_mul] using
coe_mono
(Real.toNNReal_mono (norm_le_norm_mul_of_mem pow_mem))
-- take (n + 1)ᵗʰ roots and clean up the left-hand side
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
⊢ ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
[PROOFSTEP]
simpa only [Real.toNNReal_mul (norm_nonneg _), norm_toNNReal, nnnorm_pow k (n + 1), ENNReal.coe_mul] using
coe_mono
(Real.toNNReal_mono (norm_le_norm_mul_of_mem pow_mem))
-- take (n + 1)ᵗʰ roots and clean up the left-hand side
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
⊢ ↑‖k‖₊ ≤ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1))
[PROOFSTEP]
have hn : 0 < ((n + 1 : ℕ) : ℝ) := by exact_mod_cast Nat.succ_pos'
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
⊢ 0 < ↑(n + 1)
[PROOFSTEP]
exact_mod_cast Nat.succ_pos'
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖k‖₊ ≤ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1))
[PROOFSTEP]
convert monotone_rpow_of_nonneg (one_div_pos.mpr hn).le nnnorm_pow_le using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖k‖₊ = (fun x => x ^ (1 / ↑(n + 1))) ↑(‖k‖₊ ^ (n + 1))
case h.e'_4
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1)) = (fun x => x ^ (1 / ↑(n + 1))) (↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊)
[PROOFSTEP]
all_goals dsimp
[GOAL]
case h.e'_3
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖k‖₊ = (fun x => x ^ (1 / ↑(n + 1))) ↑(‖k‖₊ ^ (n + 1))
[PROOFSTEP]
dsimp
[GOAL]
case h.e'_4
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1)) = (fun x => x ^ (1 / ↑(n + 1))) (↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊)
[PROOFSTEP]
dsimp
[GOAL]
case h.e'_3
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖k‖₊ = ↑(‖k‖₊ ^ (n + 1)) ^ (1 / ↑(n + 1))
case h.e'_4
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1)) = (↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊) ^ (1 / ↑(n + 1))
[PROOFSTEP]
erw [coe_pow, ← rpow_nat_cast, ← rpow_mul, mul_one_div_cancel hn.ne', rpow_one]
[GOAL]
case h.e'_4
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
n : ℕ
k : 𝕜
hk : k ∈ σ a
pow_mem : k ^ (n + 1) ∈ σ (a ^ (n + 1))
nnnorm_pow_le : ↑(‖k‖₊ ^ (n + 1)) ≤ ↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊
hn : 0 < ↑(n + 1)
⊢ ↑‖a ^ (n + 1)‖₊ ^ (1 / (↑n + 1)) * ↑‖1‖₊ ^ (1 / (↑n + 1)) = (↑‖a ^ (n + 1)‖₊ * ↑‖1‖₊) ^ (1 / ↑(n + 1))
[PROOFSTEP]
rw [Nat.cast_succ, ENNReal.coe_mul_rpow]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
⊢ spectralRadius 𝕜 a ≤ liminf (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop
[PROOFSTEP]
refine' ENNReal.le_of_forall_lt_one_mul_le fun ε hε => _
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
⊢ ε * spectralRadius 𝕜 a ≤ liminf (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop
[PROOFSTEP]
by_cases ε = 0
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
⊢ ε * spectralRadius 𝕜 a ≤ liminf (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop
[PROOFSTEP]
by_cases ε = 0
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ε = 0
⊢ ε * spectralRadius 𝕜 a ≤ liminf (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop
[PROOFSTEP]
simp only [h, zero_mul, zero_le']
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
⊢ ε * spectralRadius 𝕜 a ≤ liminf (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop
[PROOFSTEP]
have hε' : ε⁻¹ ≠ ∞ := fun h' => h (by simpa only [inv_inv, inv_top] using congr_arg (fun x : ℝ≥0∞ => x⁻¹) h')
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
h' : ε⁻¹ = ⊤
⊢ ε = 0
[PROOFSTEP]
simpa only [inv_inv, inv_top] using congr_arg (fun x : ℝ≥0∞ => x⁻¹) h'
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
⊢ ε * spectralRadius 𝕜 a ≤ liminf (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop
[PROOFSTEP]
simp only [ENNReal.mul_le_iff_le_inv h (hε.trans_le le_top).ne, mul_comm ε⁻¹, liminf_eq_iSup_iInf_of_nat',
ENNReal.iSup_mul]
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
⊢ spectralRadius 𝕜 a ≤ ⨆ (i : ℕ), (⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i))) * ε⁻¹
[PROOFSTEP]
conv_rhs => arg 1; intro i; rw [ENNReal.iInf_mul hε']
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
| ⨆ (i : ℕ), (⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i))) * ε⁻¹
[PROOFSTEP]
arg 1; intro i; rw [ENNReal.iInf_mul hε']
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
| ⨆ (i : ℕ), (⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i))) * ε⁻¹
[PROOFSTEP]
arg 1; intro i; rw [ENNReal.iInf_mul hε']
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
| ⨆ (i : ℕ), (⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i))) * ε⁻¹
[PROOFSTEP]
arg 1
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
| fun i => (⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i))) * ε⁻¹
[PROOFSTEP]
intro i
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
i : ℕ
| (⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i))) * ε⁻¹
[PROOFSTEP]
rw [ENNReal.iInf_mul hε']
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : ε < 1
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
⊢ spectralRadius 𝕜 a ≤ ⨆ (i : ℕ), ⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i)) * ε⁻¹
[PROOFSTEP]
rw [← ENNReal.inv_lt_inv, inv_one] at hε
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
⊢ spectralRadius 𝕜 a ≤ ⨆ (i : ℕ), ⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i)) * ε⁻¹
[PROOFSTEP]
obtain ⟨N, hN⟩ := eventually_atTop.mp (ENNReal.eventually_pow_one_div_le (ENNReal.coe_ne_top : ↑‖(1 : A)‖₊ ≠ ∞) hε)
[GOAL]
case neg.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑‖1‖₊ ^ (1 / ↑b) ≤ ε⁻¹
⊢ spectralRadius 𝕜 a ≤ ⨆ (i : ℕ), ⨅ (i_1 : ℕ), ↑‖a ^ (i_1 + i)‖₊ ^ (1 / ↑(i_1 + i)) * ε⁻¹
[PROOFSTEP]
refine' le_trans _ (le_iSup _ (N + 1))
[GOAL]
case neg.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑‖1‖₊ ^ (1 / ↑b) ≤ ε⁻¹
⊢ spectralRadius 𝕜 a ≤ ⨅ (i : ℕ), ↑‖a ^ (i + (N + 1))‖₊ ^ (1 / ↑(i + (N + 1))) * ε⁻¹
[PROOFSTEP]
refine' le_iInf fun n => _
[GOAL]
case neg.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑‖1‖₊ ^ (1 / ↑b) ≤ ε⁻¹
n : ℕ
⊢ spectralRadius 𝕜 a ≤ ↑‖a ^ (n + (N + 1))‖₊ ^ (1 / ↑(n + (N + 1))) * ε⁻¹
[PROOFSTEP]
simp only [← add_assoc]
[GOAL]
case neg.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑‖1‖₊ ^ (1 / ↑b) ≤ ε⁻¹
n : ℕ
⊢ spectralRadius 𝕜 a ≤ ↑‖a ^ (n + N + 1)‖₊ ^ (1 / ↑(n + N + 1)) * ε⁻¹
[PROOFSTEP]
refine' (spectralRadius_le_pow_nnnorm_pow_one_div 𝕜 a (n + N)).trans _
[GOAL]
case neg.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑‖1‖₊ ^ (1 / ↑b) ≤ ε⁻¹
n : ℕ
⊢ ↑‖a ^ (n + N + 1)‖₊ ^ (1 / (↑(n + N) + 1)) * ↑‖1‖₊ ^ (1 / (↑(n + N) + 1)) ≤
↑‖a ^ (n + N + 1)‖₊ ^ (1 / ↑(n + N + 1)) * ε⁻¹
[PROOFSTEP]
norm_cast
[GOAL]
case neg.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑‖1‖₊ ^ (1 / ↑b) ≤ ε⁻¹
n : ℕ
⊢ ↑‖a ^ (n + N + 1)‖₊ ^ (1 / ↑(n + N + 1)) * ↑‖1‖₊ ^ (1 / ↑(n + N + 1)) ≤ ↑‖a ^ (n + N + 1)‖₊ ^ (1 / ↑(n + N + 1)) * ε⁻¹
[PROOFSTEP]
exact mul_le_mul_left' (hN (n + N + 1) (by linarith)) _
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
ε : ℝ≥0∞
hε : 1 < ε⁻¹
h : ¬ε = 0
hε' : ε⁻¹ ≠ ⊤
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑‖1‖₊ ^ (1 / ↑b) ≤ ε⁻¹
n : ℕ
⊢ n + N + 1 ≥ N
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
hk : k ∈ ρ a
⊢ HasDerivAt (resolvent a) (-resolvent a k ^ 2) k
[PROOFSTEP]
have H₁ : HasFDerivAt Ring.inverse _ (↑ₐ k - a) := hasFDerivAt_ring_inverse (𝕜 := 𝕜) hk.unit
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
hk : k ∈ ρ a
H₁ :
HasFDerivAt Ring.inverse
(-↑(↑(ContinuousLinearMap.mulLeftRight 𝕜 ((fun x => A) k)) ↑(IsUnit.unit hk)⁻¹) ↑(IsUnit.unit hk)⁻¹) (↑↑ₐ k - a)
⊢ HasDerivAt (resolvent a) (-resolvent a k ^ 2) k
[PROOFSTEP]
have H₂ : HasDerivAt (fun k => ↑ₐ k - a) 1 k := by simpa using (Algebra.linearMap 𝕜 A).hasDerivAt.sub_const a
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
hk : k ∈ ρ a
H₁ :
HasFDerivAt Ring.inverse
(-↑(↑(ContinuousLinearMap.mulLeftRight 𝕜 ((fun x => A) k)) ↑(IsUnit.unit hk)⁻¹) ↑(IsUnit.unit hk)⁻¹) (↑↑ₐ k - a)
⊢ HasDerivAt (fun k => ↑↑ₐ k - a) 1 k
[PROOFSTEP]
simpa using (Algebra.linearMap 𝕜 A).hasDerivAt.sub_const a
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
k : 𝕜
hk : k ∈ ρ a
H₁ :
HasFDerivAt Ring.inverse
(-↑(↑(ContinuousLinearMap.mulLeftRight 𝕜 ((fun x => A) k)) ↑(IsUnit.unit hk)⁻¹) ↑(IsUnit.unit hk)⁻¹) (↑↑ₐ k - a)
H₂ : HasDerivAt (fun k => ↑↑ₐ k - a) 1 k
⊢ HasDerivAt (resolvent a) (-resolvent a k ^ 2) k
[PROOFSTEP]
simpa [resolvent, sq, hk.unit_spec, ← Ring.inverse_unit hk.unit] using H₁.comp_hasDerivAt k H₂
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
⊢ ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
obtain ⟨c, c_pos, hc⟩ := (@NormedRing.inverse_one_sub_norm A _ _).exists_pos
[GOAL]
case intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
hc : IsBigOWith c (nhds 0) (fun t => Ring.inverse (1 - t)) fun _t => 1
⊢ ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
rw [isBigOWith_iff, eventually_iff, Metric.mem_nhds_iff] at hc
[GOAL]
case intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
hc : ∃ ε, ε > 0 ∧ Metric.ball 0 ε ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c * ‖1‖}
⊢ ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
rcases hc with ⟨δ, δ_pos, hδ⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c * ‖1‖}
⊢ ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
simp only [CstarRing.norm_one, mul_one] at hδ
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
⊢ ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
intro ε hε
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
⊢ ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
have ha₁ : 0 < ‖a‖ + 1 := lt_of_le_of_lt (norm_nonneg a) (lt_add_one _)
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
⊢ ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
have min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹) :=
lt_min (mul_pos δ_pos (inv_pos.mpr ha₁)) (mul_pos hε (inv_pos.mpr c_pos))
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
⊢ ∃ R, R > 0 ∧ ∀ (z : 𝕜), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
refine' ⟨(min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹))⁻¹, inv_pos.mpr min_pos, fun z hz => _⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜
hz : (min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹))⁻¹ ≤ ‖z‖
⊢ ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
have hnz : z ≠ 0 := norm_pos_iff.mp (lt_of_lt_of_le (inv_pos.mpr min_pos) hz)
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜
hz : (min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹))⁻¹ ≤ ‖z‖
hnz : z ≠ 0
⊢ ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
replace hz := inv_le_of_inv_le min_pos hz
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜
hnz : z ≠ 0
hz : ‖z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
⊢ ‖resolvent a z‖ ≤ ε
[PROOFSTEP]
rcases(⟨Units.mk0 z hnz, Units.val_mk0 hnz⟩ : IsUnit z) with ⟨z, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
⊢ ‖resolvent a ↑z‖ ≤ ε
[PROOFSTEP]
have lt_δ : ‖z⁻¹ • a‖ < δ :=
by
rw [Units.smul_def, norm_smul, Units.val_inv_eq_inv_val, norm_inv]
calc
‖(z : 𝕜)‖⁻¹ * ‖a‖ ≤ δ * (‖a‖ + 1)⁻¹ * ‖a‖ := mul_le_mul_of_nonneg_right (hz.trans (min_le_left _ _)) (norm_nonneg _)
_ < δ := by
conv => rw [mul_assoc]; rhs; rw [(mul_one δ).symm]
exact mul_lt_mul_of_pos_left ((inv_mul_lt_iff ha₁).mpr ((mul_one (‖a‖ + 1)).symm ▸ lt_add_one _)) δ_pos
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
⊢ ‖z⁻¹ • a‖ < δ
[PROOFSTEP]
rw [Units.smul_def, norm_smul, Units.val_inv_eq_inv_val, norm_inv]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
⊢ ‖↑z‖⁻¹ * ‖a‖ < δ
[PROOFSTEP]
calc
‖(z : 𝕜)‖⁻¹ * ‖a‖ ≤ δ * (‖a‖ + 1)⁻¹ * ‖a‖ := mul_le_mul_of_nonneg_right (hz.trans (min_le_left _ _)) (norm_nonneg _)
_ < δ := by
conv => rw [mul_assoc]; rhs; rw [(mul_one δ).symm]
exact mul_lt_mul_of_pos_left ((inv_mul_lt_iff ha₁).mpr ((mul_one (‖a‖ + 1)).symm ▸ lt_add_one _)) δ_pos
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
⊢ δ * (‖a‖ + 1)⁻¹ * ‖a‖ < δ
[PROOFSTEP]
conv => rw [mul_assoc]; rhs; rw [(mul_one δ).symm]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
| δ * (‖a‖ + 1)⁻¹ * ‖a‖ < δ
[PROOFSTEP]
rw [mul_assoc]; rhs; rw [(mul_one δ).symm]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
| δ * (‖a‖ + 1)⁻¹ * ‖a‖ < δ
[PROOFSTEP]
rw [mul_assoc]; rhs; rw [(mul_one δ).symm]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
| δ * (‖a‖ + 1)⁻¹ * ‖a‖ < δ
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
| δ * ((‖a‖ + 1)⁻¹ * ‖a‖) < δ
[PROOFSTEP]
rhs
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
| δ
[PROOFSTEP]
rw [(mul_one δ).symm]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
⊢ δ * ((‖a‖ + 1)⁻¹ * ‖a‖) < δ * 1
[PROOFSTEP]
exact mul_lt_mul_of_pos_left ((inv_mul_lt_iff ha₁).mpr ((mul_one (‖a‖ + 1)).symm ▸ lt_add_one _)) δ_pos
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
lt_δ : ‖z⁻¹ • a‖ < δ
⊢ ‖resolvent a ↑z‖ ≤ ε
[PROOFSTEP]
rw [← inv_smul_smul z (resolvent a (z : 𝕜)), units_smul_resolvent_self, resolvent, Algebra.algebraMap_eq_smul_one,
one_smul, Units.smul_def, norm_smul, Units.val_inv_eq_inv_val, norm_inv]
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
c : ℝ
c_pos : 0 < c
δ : ℝ
δ_pos : δ > 0
hδ : Metric.ball 0 δ ⊆ {x | ‖Ring.inverse (1 - x)‖ ≤ c}
ε : ℝ
hε : ε > 0
ha₁ : 0 < ‖a‖ + 1
min_pos : 0 < min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
z : 𝕜ˣ
hnz : ↑z ≠ 0
hz : ‖↑z‖⁻¹ ≤ min (δ * (‖a‖ + 1)⁻¹) (ε * c⁻¹)
lt_δ : ‖z⁻¹ • a‖ < δ
⊢ ‖↑z‖⁻¹ * ‖Ring.inverse (1 - z⁻¹ • a)‖ ≤ ε
[PROOFSTEP]
calc
_ ≤ ε * c⁻¹ * c :=
mul_le_mul (hz.trans (min_le_right _ _)) (hδ (mem_ball_zero_iff.mpr lt_δ)) (norm_nonneg _)
(mul_pos hε (inv_pos.mpr c_pos)).le
_ = _ := inv_mul_cancel_right₀ c_pos.ne.symm ε
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
⊢ (↑‖a‖₊)⁻¹ ≤ radius fun n => ContinuousMultilinearMap.mkPiField 𝕜 (Fin n) (a ^ n)
[PROOFSTEP]
refine' le_of_forall_nnreal_lt fun r hr => le_radius_of_bound_nnreal _ (max 1 ‖(1 : A)‖₊) fun n => _
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
n : ℕ
⊢ ‖ContinuousMultilinearMap.mkPiField 𝕜 (Fin n) (a ^ n)‖₊ * r ^ n ≤ max 1 ‖1‖₊
[PROOFSTEP]
rw [← norm_toNNReal, norm_mkPiField, norm_toNNReal]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
n : ℕ
⊢ ‖a ^ n‖₊ * r ^ n ≤ max 1 ‖1‖₊
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
⊢ ‖a ^ Nat.zero‖₊ * r ^ Nat.zero ≤ max 1 ‖1‖₊
[PROOFSTEP]
simp only [Nat.zero_eq, le_refl, mul_one, or_true_iff, le_max_iff, pow_zero]
[GOAL]
case succ
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
n : ℕ
⊢ ‖a ^ Nat.succ n‖₊ * r ^ Nat.succ n ≤ max 1 ‖1‖₊
[PROOFSTEP]
refine' le_trans (le_trans (mul_le_mul_right' (nnnorm_pow_le' a n.succ_pos) (r ^ n.succ)) _) (le_max_left _ _)
[GOAL]
case succ
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
n : ℕ
⊢ ‖a‖₊ ^ Nat.succ n * r ^ Nat.succ n ≤ 1
[PROOFSTEP]
by_cases ‖a‖₊ = 0
[GOAL]
case succ
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
n : ℕ
⊢ ‖a‖₊ ^ Nat.succ n * r ^ Nat.succ n ≤ 1
[PROOFSTEP]
by_cases ‖a‖₊ = 0
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
n : ℕ
h : ‖a‖₊ = 0
⊢ ‖a‖₊ ^ Nat.succ n * r ^ Nat.succ n ≤ 1
[PROOFSTEP]
simp only [h, zero_mul, zero_le', pow_succ]
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (↑‖a‖₊)⁻¹
n : ℕ
h : ¬‖a‖₊ = 0
⊢ ‖a‖₊ ^ Nat.succ n * r ^ Nat.succ n ≤ 1
[PROOFSTEP]
rw [← coe_inv h, coe_lt_coe, NNReal.lt_inv_iff_mul_lt h] at hr
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : r * ‖a‖₊ < 1
n : ℕ
h : ¬‖a‖₊ = 0
⊢ ‖a‖₊ ^ Nat.succ n * r ^ Nat.succ n ≤ 1
[PROOFSTEP]
simpa only [← mul_pow, mul_comm] using pow_le_one' hr.le n.succ
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
y : 𝕜
hy : y ∈ EMetric.ball 0 (↑‖a‖₊)⁻¹
⊢ HasSum (fun n => ↑(ContinuousMultilinearMap.mkPiField 𝕜 (Fin n) (a ^ n)) fun x => y) (Ring.inverse (1 - (0 + y) • a))
[PROOFSTEP]
have norm_lt : ‖y • a‖ < 1 := by
by_cases h : ‖a‖₊ = 0
· simp only [nnnorm_eq_zero.mp h, norm_zero, zero_lt_one, smul_zero]
· have nnnorm_lt : ‖y‖₊ < ‖a‖₊⁻¹ := by
simpa only [← coe_inv h, mem_ball_zero_iff, Metric.emetric_ball_nnreal] using hy
rwa [← coe_nnnorm, ← Real.lt_toNNReal_iff_coe_lt, Real.toNNReal_one, nnnorm_smul, ← NNReal.lt_inv_iff_mul_lt h]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
y : 𝕜
hy : y ∈ EMetric.ball 0 (↑‖a‖₊)⁻¹
⊢ ‖y • a‖ < 1
[PROOFSTEP]
by_cases h : ‖a‖₊ = 0
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
y : 𝕜
hy : y ∈ EMetric.ball 0 (↑‖a‖₊)⁻¹
h : ‖a‖₊ = 0
⊢ ‖y • a‖ < 1
[PROOFSTEP]
simp only [nnnorm_eq_zero.mp h, norm_zero, zero_lt_one, smul_zero]
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
y : 𝕜
hy : y ∈ EMetric.ball 0 (↑‖a‖₊)⁻¹
h : ¬‖a‖₊ = 0
⊢ ‖y • a‖ < 1
[PROOFSTEP]
have nnnorm_lt : ‖y‖₊ < ‖a‖₊⁻¹ := by simpa only [← coe_inv h, mem_ball_zero_iff, Metric.emetric_ball_nnreal] using hy
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
y : 𝕜
hy : y ∈ EMetric.ball 0 (↑‖a‖₊)⁻¹
h : ¬‖a‖₊ = 0
⊢ ‖y‖₊ < ‖a‖₊⁻¹
[PROOFSTEP]
simpa only [← coe_inv h, mem_ball_zero_iff, Metric.emetric_ball_nnreal] using hy
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
y : 𝕜
hy : y ∈ EMetric.ball 0 (↑‖a‖₊)⁻¹
h : ¬‖a‖₊ = 0
nnnorm_lt : ‖y‖₊ < ‖a‖₊⁻¹
⊢ ‖y • a‖ < 1
[PROOFSTEP]
rwa [← coe_nnnorm, ← Real.lt_toNNReal_iff_coe_lt, Real.toNNReal_one, nnnorm_smul, ← NNReal.lt_inv_iff_mul_lt h]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
y : 𝕜
hy : y ∈ EMetric.ball 0 (↑‖a‖₊)⁻¹
norm_lt : ‖y • a‖ < 1
⊢ HasSum (fun n => ↑(ContinuousMultilinearMap.mkPiField 𝕜 (Fin n) (a ^ n)) fun x => y) (Ring.inverse (1 - (0 + y) • a))
[PROOFSTEP]
simpa [← smul_pow, (NormedRing.summable_geometric_of_norm_lt_1 _ norm_lt).hasSum_iff] using
(NormedRing.inverse_one_sub _ norm_lt).symm
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
⊢ IsUnit (1 - z • a)
[PROOFSTEP]
by_cases hz : z = 0
[GOAL]
case pos
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
hz : z = 0
⊢ IsUnit (1 - z • a)
[PROOFSTEP]
simp only [hz, isUnit_one, sub_zero, zero_smul]
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
hz : ¬z = 0
⊢ IsUnit (1 - z • a)
[PROOFSTEP]
let u := Units.mk0 z hz
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
hz : ¬z = 0
u : 𝕜ˣ := Units.mk0 z hz
⊢ IsUnit (1 - z • a)
[PROOFSTEP]
suffices hu : IsUnit (u⁻¹ • (1 : A) - a)
[GOAL]
case neg
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
hz : ¬z = 0
u : 𝕜ˣ := Units.mk0 z hz
hu : IsUnit (u⁻¹ • 1 - a)
⊢ IsUnit (1 - z • a)
[PROOFSTEP]
rwa [IsUnit.smul_sub_iff_sub_inv_smul, inv_inv u] at hu
[GOAL]
case hu
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
hz : ¬z = 0
u : 𝕜ˣ := Units.mk0 z hz
⊢ IsUnit (u⁻¹ • 1 - a)
[PROOFSTEP]
rw [Units.smul_def, ← Algebra.algebraMap_eq_smul_one, ← mem_resolventSet_iff]
[GOAL]
case hu
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
hz : ¬z = 0
u : 𝕜ˣ := Units.mk0 z hz
⊢ ↑u⁻¹ ∈ resolventSet 𝕜 a
[PROOFSTEP]
refine' mem_resolventSet_of_spectralRadius_lt _
[GOAL]
case hu
𝕜 : Type u_1
A : Type u_2
inst✝² : NontriviallyNormedField 𝕜
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra 𝕜 A
a : A
z : 𝕜
h : ↑‖z‖₊ < (spectralRadius 𝕜 a)⁻¹
hz : ¬z = 0
u : 𝕜ˣ := Units.mk0 z hz
⊢ spectralRadius 𝕜 a < ↑‖↑u⁻¹‖₊
[PROOFSTEP]
rwa [Units.val_inv_eq_inv_val, nnnorm_inv, coe_inv (nnnorm_ne_zero_iff.mpr (Units.val_mk0 hz ▸ hz : (u : 𝕜) ≠ 0)),
lt_inv_iff_lt_inv]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (spectralRadius 𝕜 a)⁻¹
⊢ DifferentiableOn 𝕜 (fun z => Ring.inverse (1 - z • a)) (Metric.closedBall 0 ↑r)
[PROOFSTEP]
intro z z_mem
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (spectralRadius 𝕜 a)⁻¹
z : 𝕜
z_mem : z ∈ Metric.closedBall 0 ↑r
⊢ DifferentiableWithinAt 𝕜 (fun z => Ring.inverse (1 - z • a)) (Metric.closedBall 0 ↑r) z
[PROOFSTEP]
apply DifferentiableAt.differentiableWithinAt
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (spectralRadius 𝕜 a)⁻¹
z : 𝕜
z_mem : z ∈ Metric.closedBall 0 ↑r
⊢ DifferentiableAt 𝕜 (fun z => Ring.inverse (1 - z • a)) z
[PROOFSTEP]
have hu : IsUnit (1 - z • a) :=
by
refine' isUnit_one_sub_smul_of_lt_inv_radius (lt_of_le_of_lt (coe_mono _) hr)
simpa only [norm_toNNReal, Real.toNNReal_coe] using Real.toNNReal_mono (mem_closedBall_zero_iff.mp z_mem)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (spectralRadius 𝕜 a)⁻¹
z : 𝕜
z_mem : z ∈ Metric.closedBall 0 ↑r
⊢ IsUnit (1 - z • a)
[PROOFSTEP]
refine' isUnit_one_sub_smul_of_lt_inv_radius (lt_of_le_of_lt (coe_mono _) hr)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (spectralRadius 𝕜 a)⁻¹
z : 𝕜
z_mem : z ∈ Metric.closedBall 0 ↑r
⊢ ‖z‖₊ ≤ r
[PROOFSTEP]
simpa only [norm_toNNReal, Real.toNNReal_coe] using Real.toNNReal_mono (mem_closedBall_zero_iff.mp z_mem)
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (spectralRadius 𝕜 a)⁻¹
z : 𝕜
z_mem : z ∈ Metric.closedBall 0 ↑r
hu : IsUnit (1 - z • a)
⊢ DifferentiableAt 𝕜 (fun z => Ring.inverse (1 - z • a)) z
[PROOFSTEP]
have H₁ : Differentiable 𝕜 fun w : 𝕜 => 1 - w • a := (differentiable_id.smul_const a).const_sub 1
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
hr : ↑r < (spectralRadius 𝕜 a)⁻¹
z : 𝕜
z_mem : z ∈ Metric.closedBall 0 ↑r
hu : IsUnit (1 - z • a)
H₁ : Differentiable 𝕜 fun w => 1 - w • a
⊢ DifferentiableAt 𝕜 (fun z => Ring.inverse (1 - z • a)) z
[PROOFSTEP]
exact DifferentiableAt.comp z (differentiableAt_inverse hu) H₁.differentiableAt
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
⊢ limsup (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop ≤ spectralRadius ℂ a
[PROOFSTEP]
refine' ENNReal.inv_le_inv.mp (le_of_forall_pos_nnreal_lt fun r r_pos r_lt => _)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
⊢ ↑r ≤ (limsup (fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)) atTop)⁻¹
[PROOFSTEP]
simp_rw [inv_limsup, ← one_div]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
⊢ ↑r ≤ liminf (fun i => 1 / ↑‖a ^ i‖₊ ^ (1 / ↑i)) atTop
[PROOFSTEP]
let p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
⊢ ↑r ≤ liminf (fun i => 1 / ↑‖a ^ i‖₊ ^ (1 / ↑i)) atTop
[PROOFSTEP]
suffices h : (r : ℝ≥0∞) ≤ p.radius
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
h : ↑r ≤ FormalMultilinearSeries.radius p
⊢ ↑r ≤ liminf (fun i => 1 / ↑‖a ^ i‖₊ ^ (1 / ↑i)) atTop
[PROOFSTEP]
convert h
[GOAL]
case h.e'_4
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
h : ↑r ≤ FormalMultilinearSeries.radius p
⊢ liminf (fun i => 1 / ↑‖a ^ i‖₊ ^ (1 / ↑i)) atTop = FormalMultilinearSeries.radius p
[PROOFSTEP]
simp only [p.radius_eq_liminf, ← norm_toNNReal, norm_mkPiField]
[GOAL]
case h.e'_4
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
h : ↑r ≤ FormalMultilinearSeries.radius p
⊢ liminf (fun i => 1 / ↑(Real.toNNReal ‖a ^ i‖) ^ (1 / ↑i)) atTop =
liminf (fun n => 1 / ↑(Real.toNNReal ‖a ^ n‖ ^ (1 / ↑n))) atTop
[PROOFSTEP]
congr
[GOAL]
case h.e'_4.e_u
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
h : ↑r ≤ FormalMultilinearSeries.radius p
⊢ (fun i => 1 / ↑(Real.toNNReal ‖a ^ i‖) ^ (1 / ↑i)) = fun n => 1 / ↑(Real.toNNReal ‖a ^ n‖ ^ (1 / ↑n))
[PROOFSTEP]
ext n
[GOAL]
case h.e'_4.e_u.h
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
h : ↑r ≤ FormalMultilinearSeries.radius p
n : ℕ
⊢ 1 / ↑(Real.toNNReal ‖a ^ n‖) ^ (1 / ↑n) = 1 / ↑(Real.toNNReal ‖a ^ n‖ ^ (1 / ↑n))
[PROOFSTEP]
rw [norm_toNNReal, ENNReal.coe_rpow_def ‖a ^ n‖₊ (1 / n : ℝ), if_neg]
[GOAL]
case h.e'_4.e_u.h.hnc
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
h : ↑r ≤ FormalMultilinearSeries.radius p
n : ℕ
⊢ ¬(‖a ^ n‖₊ = 0 ∧ 1 / ↑n < 0)
[PROOFSTEP]
exact fun ha => (lt_self_iff_false _).mp (ha.2.trans_le (one_div_nonneg.mpr n.cast_nonneg : 0 ≤ (1 / n : ℝ)))
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
⊢ ↑r ≤ FormalMultilinearSeries.radius p
[PROOFSTEP]
have H₁ := (differentiableOn_inverse_one_sub_smul r_lt).hasFPowerSeriesOnBall r_pos
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
r : ℝ≥0
r_pos : 0 < r
r_lt : ↑r < (spectralRadius ℂ a)⁻¹
p : FormalMultilinearSeries ℂ ℂ A := fun n => ContinuousMultilinearMap.mkPiField ℂ (Fin n) (a ^ n)
H₁ :
HasFPowerSeriesOnBall (fun z => Ring.inverse (1 - z • a)) (cauchyPowerSeries (fun z => Ring.inverse (1 - z • a)) 0 ↑r)
0 ↑r
⊢ ↑r ≤ FormalMultilinearSeries.radius p
[PROOFSTEP]
exact ((hasFPowerSeriesOnBall_inverse_one_sub_smul ℂ a).exchange_radius H₁).r_le
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
⊢ Tendsto (fun n => ENNReal.ofReal (‖a ^ n‖ ^ (1 / ↑n))) atTop (𝓝 (spectralRadius ℂ a))
[PROOFSTEP]
convert pow_nnnorm_pow_one_div_tendsto_nhds_spectralRadius a using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
⊢ (fun n => ENNReal.ofReal (‖a ^ n‖ ^ (1 / ↑n))) = fun n => ↑‖a ^ n‖₊ ^ (1 / ↑n)
[PROOFSTEP]
ext1
[GOAL]
case h.e'_3.h
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
x✝ : ℕ
⊢ ENNReal.ofReal (‖a ^ x✝‖ ^ (1 / ↑x✝)) = ↑‖a ^ x✝‖₊ ^ (1 / ↑x✝)
[PROOFSTEP]
rw [← ofReal_rpow_of_nonneg (norm_nonneg _) _, ← coe_nnnorm, coe_nnreal_eq]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
x✝ : ℕ
⊢ 0 ≤ 1 / ↑x✝
[PROOFSTEP]
exact one_div_nonneg.mpr (by exact_mod_cast zero_le _)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
inst✝ : CompleteSpace A
a : A
x✝ : ℕ
⊢ 0 ≤ ↑x✝
[PROOFSTEP]
exact_mod_cast zero_le _
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
⊢ Set.Nonempty (spectrum ℂ a)
[PROOFSTEP]
rw [Set.nonempty_iff_ne_empty]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
⊢ spectrum ℂ a ≠ ∅
[PROOFSTEP]
by_contra h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
⊢ False
[PROOFSTEP]
have H₀ : resolventSet ℂ a = Set.univ := by rwa [spectrum, Set.compl_empty_iff] at h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
⊢ resolventSet ℂ a = Set.univ
[PROOFSTEP]
rwa [spectrum, Set.compl_empty_iff] at h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
⊢ False
[PROOFSTEP]
have H₁ : Differentiable ℂ fun z : ℂ => resolvent a z := fun z =>
(hasDerivAt_resolvent (H₀.symm ▸ Set.mem_univ z : z ∈ resolventSet ℂ a)).differentiableAt
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
⊢ False
[PROOFSTEP]
have H₂ := norm_resolvent_le_forall (𝕜 := ℂ) a
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
⊢ False
[PROOFSTEP]
have H₃ : ∀ z : ℂ, resolvent a z = resolvent a (0 : ℂ) :=
by
refine' fun z => H₁.apply_eq_apply_of_bounded (bounded_iff_forall_norm_le.mpr _) z 0
rcases H₂ 1 zero_lt_one with ⟨R, _, hR⟩
rcases(ProperSpace.isCompact_closedBall (0 : ℂ) R).exists_bound_of_continuousOn H₁.continuous.continuousOn with
⟨C, hC⟩
use max C 1
rintro _ ⟨w, rfl⟩
refine' Or.elim (em (‖w‖ ≤ R)) (fun hw => _) fun hw => _
· exact (hC w (mem_closedBall_zero_iff.mpr hw)).trans (le_max_left _ _)
·
exact
(hR w (not_le.mp hw).le).trans
(le_max_right _ _)
-- `resolvent a 0 = 0`, which is a contradiction because it isn't a unit.
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
⊢ ∀ (z : ℂ), resolvent a z = resolvent a 0
[PROOFSTEP]
refine' fun z => H₁.apply_eq_apply_of_bounded (bounded_iff_forall_norm_le.mpr _) z 0
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
z : ℂ
⊢ ∃ C, ∀ (x : A), (x ∈ Set.range fun z => resolvent a z) → ‖x‖ ≤ C
[PROOFSTEP]
rcases H₂ 1 zero_lt_one with ⟨R, _, hR⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
z : ℂ
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ 1
⊢ ∃ C, ∀ (x : A), (x ∈ Set.range fun z => resolvent a z) → ‖x‖ ≤ C
[PROOFSTEP]
rcases(ProperSpace.isCompact_closedBall (0 : ℂ) R).exists_bound_of_continuousOn H₁.continuous.continuousOn with ⟨C, hC⟩
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
z : ℂ
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ 1
C : ℝ
hC : ∀ (x : ℂ), x ∈ Metric.closedBall 0 R → ‖resolvent a x‖ ≤ C
⊢ ∃ C, ∀ (x : A), (x ∈ Set.range fun z => resolvent a z) → ‖x‖ ≤ C
[PROOFSTEP]
use max C 1
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
z : ℂ
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ 1
C : ℝ
hC : ∀ (x : ℂ), x ∈ Metric.closedBall 0 R → ‖resolvent a x‖ ≤ C
⊢ ∀ (x : A), (x ∈ Set.range fun z => resolvent a z) → ‖x‖ ≤ max C 1
[PROOFSTEP]
rintro _ ⟨w, rfl⟩
[GOAL]
case h.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
z : ℂ
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ 1
C : ℝ
hC : ∀ (x : ℂ), x ∈ Metric.closedBall 0 R → ‖resolvent a x‖ ≤ C
w : ℂ
⊢ ‖(fun z => resolvent a z) w‖ ≤ max C 1
[PROOFSTEP]
refine' Or.elim (em (‖w‖ ≤ R)) (fun hw => _) fun hw => _
[GOAL]
case h.intro.refine'_1
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
z : ℂ
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ 1
C : ℝ
hC : ∀ (x : ℂ), x ∈ Metric.closedBall 0 R → ‖resolvent a x‖ ≤ C
w : ℂ
hw : ‖w‖ ≤ R
⊢ ‖(fun z => resolvent a z) w‖ ≤ max C 1
[PROOFSTEP]
exact (hC w (mem_closedBall_zero_iff.mpr hw)).trans (le_max_left _ _)
[GOAL]
case h.intro.refine'_2
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
z : ℂ
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ 1
C : ℝ
hC : ∀ (x : ℂ), x ∈ Metric.closedBall 0 R → ‖resolvent a x‖ ≤ C
w : ℂ
hw : ¬‖w‖ ≤ R
⊢ ‖(fun z => resolvent a z) w‖ ≤ max C 1
[PROOFSTEP]
exact
(hR w (not_le.mp hw).le).trans
(le_max_right _ _)
-- `resolvent a 0 = 0`, which is a contradiction because it isn't a unit.
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
H₃ : ∀ (z : ℂ), resolvent a z = resolvent a 0
⊢ False
[PROOFSTEP]
have H₅ : resolvent a (0 : ℂ) = 0 :=
by
refine' norm_eq_zero.mp (le_antisymm (le_of_forall_pos_le_add fun ε hε => _) (norm_nonneg _))
rcases H₂ ε hε with ⟨R, _, hR⟩
simpa only [H₃ R] using
(zero_add ε).symm.subst
(hR R (by simp [le_abs_self]))
-- `not_isUnit_zero` is where we need `Nontrivial A`, it is unavoidable.
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
H₃ : ∀ (z : ℂ), resolvent a z = resolvent a 0
⊢ resolvent a 0 = 0
[PROOFSTEP]
refine' norm_eq_zero.mp (le_antisymm (le_of_forall_pos_le_add fun ε hε => _) (norm_nonneg _))
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
H₃ : ∀ (z : ℂ), resolvent a z = resolvent a 0
ε : ℝ
hε : 0 < ε
⊢ ‖resolvent a 0‖ ≤ 0 + ε
[PROOFSTEP]
rcases H₂ ε hε with ⟨R, _, hR⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
H₃ : ∀ (z : ℂ), resolvent a z = resolvent a 0
ε : ℝ
hε : 0 < ε
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
⊢ ‖resolvent a 0‖ ≤ 0 + ε
[PROOFSTEP]
simpa only [H₃ R] using
(zero_add ε).symm.subst
(hR R (by simp [le_abs_self]))
-- `not_isUnit_zero` is where we need `Nontrivial A`, it is unavoidable.
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
H₃ : ∀ (z : ℂ), resolvent a z = resolvent a 0
ε : ℝ
hε : 0 < ε
R : ℝ
left✝ : R > 0
hR : ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
⊢ R ≤ ‖↑R‖
[PROOFSTEP]
simp [le_abs_self]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
h : spectrum ℂ a = ∅
H₀ : resolventSet ℂ a = Set.univ
H₁ : Differentiable ℂ fun z => resolvent a z
H₂ : ∀ (ε : ℝ), ε > 0 → ∃ R, R > 0 ∧ ∀ (z : ℂ), R ≤ ‖z‖ → ‖resolvent a z‖ ≤ ε
H₃ : ∀ (z : ℂ), resolvent a z = resolvent a 0
H₅ : resolvent a 0 = 0
⊢ False
[PROOFSTEP]
exact not_isUnit_zero (H₅.subst (isUnit_resolvent.mp (mem_resolventSet_iff.mp (H₀.symm ▸ Set.mem_univ 0))))
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NormedRing A
inst✝² : NormedAlgebra ℂ A
inst✝¹ : CompleteSpace A
inst✝ : Nontrivial A
a : A
n : ℕ
⊢ spectrum ℂ (a ^ n) = (fun x => x ^ n) '' spectrum ℂ a
[PROOFSTEP]
simpa only [aeval_X_pow, eval_pow, eval_X] using map_polynomial_aeval a (X ^ n)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝¹ : NormedRing A
inst✝ : NormedAlgebra ℂ A
hA : ∀ {a : A}, IsUnit a ↔ a ≠ 0
a : A
z : ℂ
h : z ∈ σ a
⊢ ↑(algebraMap ℂ A) z = a
[PROOFSTEP]
rwa [mem_iff, hA, Classical.not_not, sub_eq_zero] at h
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra ℂ A
hA : ∀ {a : A}, IsUnit a ↔ a ≠ 0
inst✝ : CompleteSpace A
nt : Nontrivial A :=
{
exists_pair_ne :=
Exists.intro 1
(Exists.intro 0
(Iff.mp hA (Exists.intro { val := 1, inv := 1, val_inv := mul_one 1, inv_val := mul_one 1 } rfl))) }
src✝ : ℂ →ₐ[ℂ] A := Algebra.ofId ℂ A
z : ℂ
⊢ (fun a => Set.Nonempty.some (_ : Set.Nonempty (σ a))) (↑(algebraMap ℂ A) z) = z
[PROOFSTEP]
simpa only [@scalar_eq _ _ _ _ _ nt _] using (@spectrum.nonempty _ _ _ _ nt <| algebraMap ℂ A z).some_mem
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
⊢ exp 𝕜 z ∈ spectrum 𝕜 (exp 𝕜 a)
[PROOFSTEP]
have hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑ₐ z) * ↑ₐ (exp 𝕜 z) := by
rw [algebraMap_exp_comm z, ← exp_add_of_commute (Algebra.commutes z (a - ↑ₐ z)).symm, sub_add_cancel]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
⊢ exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
[PROOFSTEP]
rw [algebraMap_exp_comm z, ← exp_add_of_commute (Algebra.commutes z (a - ↑ₐ z)).symm, sub_add_cancel]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
⊢ exp 𝕜 z ∈ spectrum 𝕜 (exp 𝕜 a)
[PROOFSTEP]
let b := ∑' n : ℕ, ((n + 1).factorial⁻¹ : 𝕜) • (a - ↑ₐ z) ^ n
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
⊢ exp 𝕜 z ∈ spectrum 𝕜 (exp 𝕜 a)
[PROOFSTEP]
have hb : Summable fun n : ℕ => ((n + 1).factorial⁻¹ : 𝕜) • (a - ↑ₐ z) ^ n :=
by
refine' summable_of_norm_bounded_eventually _ (Real.summable_pow_div_factorial ‖a - ↑ₐ z‖) _
filter_upwards [Filter.eventually_cofinite_ne 0] with n hn
rw [norm_smul, mul_comm, norm_inv, IsROrC.norm_natCast, ← div_eq_mul_inv]
exact
div_le_div (pow_nonneg (norm_nonneg _) n) (norm_pow_le' (a - ↑ₐ z) (zero_lt_iff.mpr hn))
(by exact_mod_cast Nat.factorial_pos n) (by exact_mod_cast Nat.factorial_le (lt_add_one n).le)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
⊢ Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
[PROOFSTEP]
refine' summable_of_norm_bounded_eventually _ (Real.summable_pow_div_factorial ‖a - ↑ₐ z‖) _
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
⊢ ∀ᶠ (i : ℕ) in Filter.cofinite, ‖(↑(Nat.factorial (i + 1)))⁻¹ • (a - ↑↑ₐ z) ^ i‖ ≤ ‖a - ↑↑ₐ z‖ ^ i / ↑(Nat.factorial i)
[PROOFSTEP]
filter_upwards [Filter.eventually_cofinite_ne 0] with n hn
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
n : ℕ
hn : n ≠ 0
⊢ ‖(↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n‖ ≤ ‖a - ↑↑ₐ z‖ ^ n / ↑(Nat.factorial n)
[PROOFSTEP]
rw [norm_smul, mul_comm, norm_inv, IsROrC.norm_natCast, ← div_eq_mul_inv]
[GOAL]
case h
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
n : ℕ
hn : n ≠ 0
⊢ ‖(a - ↑↑ₐ z) ^ n‖ / ↑(Nat.factorial (n + 1)) ≤ ‖a - ↑↑ₐ z‖ ^ n / ↑(Nat.factorial n)
[PROOFSTEP]
exact
div_le_div (pow_nonneg (norm_nonneg _) n) (norm_pow_le' (a - ↑ₐ z) (zero_lt_iff.mpr hn))
(by exact_mod_cast Nat.factorial_pos n) (by exact_mod_cast Nat.factorial_le (lt_add_one n).le)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
n : ℕ
hn : n ≠ 0
⊢ 0 < ↑(Nat.factorial n)
[PROOFSTEP]
exact_mod_cast Nat.factorial_pos n
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
n : ℕ
hn : n ≠ 0
⊢ ↑(Nat.factorial n) ≤ ↑(Nat.factorial (n + 1))
[PROOFSTEP]
exact_mod_cast Nat.factorial_le (lt_add_one n).le
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
⊢ exp 𝕜 z ∈ spectrum 𝕜 (exp 𝕜 a)
[PROOFSTEP]
have h₀ : (∑' n : ℕ, ((n + 1).factorial⁻¹ : 𝕜) • (a - ↑ₐ z) ^ (n + 1)) = (a - ↑ₐ z) * b := by
simpa only [mul_smul_comm, pow_succ] using hb.tsum_mul_left (a - ↑ₐ z)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
⊢ ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
[PROOFSTEP]
simpa only [mul_smul_comm, pow_succ] using hb.tsum_mul_left (a - ↑ₐ z)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
⊢ exp 𝕜 z ∈ spectrum 𝕜 (exp 𝕜 a)
[PROOFSTEP]
have h₁ : (∑' n : ℕ, ((n + 1).factorial⁻¹ : 𝕜) • (a - ↑ₐ z) ^ (n + 1)) = b * (a - ↑ₐ z) := by
simpa only [pow_succ', Algebra.smul_mul_assoc] using hb.tsum_mul_right (a - ↑ₐ z)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
⊢ ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
[PROOFSTEP]
simpa only [pow_succ', Algebra.smul_mul_assoc] using hb.tsum_mul_right (a - ↑ₐ z)
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
⊢ exp 𝕜 z ∈ spectrum 𝕜 (exp 𝕜 a)
[PROOFSTEP]
have h₃ : exp 𝕜 (a - ↑ₐ z) = 1 + (a - ↑ₐ z) * b := by
rw [exp_eq_tsum]
convert tsum_eq_zero_add (expSeries_summable' (𝕂 := 𝕜) (a - ↑ₐ z))
simp only [Nat.factorial_zero, Nat.cast_one, inv_one, pow_zero, one_smul]
exact h₀.symm
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
⊢ exp 𝕜 (a - ↑↑ₐ z) = 1 + (a - ↑↑ₐ z) * b
[PROOFSTEP]
rw [exp_eq_tsum]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
⊢ (fun x => ∑' (n : ℕ), (↑(Nat.factorial n))⁻¹ • x ^ n) (a - ↑↑ₐ z) = 1 + (a - ↑↑ₐ z) * b
[PROOFSTEP]
convert tsum_eq_zero_add (expSeries_summable' (𝕂 := 𝕜) (a - ↑ₐ z))
[GOAL]
case h.e'_3.h.e'_5
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
⊢ 1 = (↑(Nat.factorial 0))⁻¹ • (a - ↑↑ₐ z) ^ 0
case h.e'_3.h.e'_6
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
⊢ (a - ↑↑ₐ z) * b = ∑' (b : ℕ), (↑(Nat.factorial (b + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (b + 1)
[PROOFSTEP]
simp only [Nat.factorial_zero, Nat.cast_one, inv_one, pow_zero, one_smul]
[GOAL]
case h.e'_3.h.e'_6
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
⊢ (a - ↑↑ₐ z) * b = ∑' (b : ℕ), (↑(Nat.factorial (b + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (b + 1)
[PROOFSTEP]
exact h₀.symm
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
h₃ : exp 𝕜 (a - ↑↑ₐ z) = 1 + (a - ↑↑ₐ z) * b
⊢ exp 𝕜 z ∈ spectrum 𝕜 (exp 𝕜 a)
[PROOFSTEP]
rw [spectrum.mem_iff, IsUnit.sub_iff, ← one_mul (↑ₐ (exp 𝕜 z)), hexpmul, ← _root_.sub_mul,
Commute.isUnit_mul_iff (Algebra.commutes (exp 𝕜 z) (exp 𝕜 (a - ↑ₐ z) - 1)).symm, sub_eq_iff_eq_add'.mpr h₃,
Commute.isUnit_mul_iff (h₀ ▸ h₁ : (a - ↑ₐ z) * b = b * (a - ↑ₐ z))]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : IsROrC 𝕜
inst✝² : NormedRing A
inst✝¹ : NormedAlgebra 𝕜 A
inst✝ : CompleteSpace A
a : A
z : 𝕜
hz : z ∈ spectrum 𝕜 a
hexpmul : exp 𝕜 a = exp 𝕜 (a - ↑↑ₐ z) * ↑↑ₐ (exp 𝕜 z)
b : A := ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
hb : Summable fun n => (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ n
h₀ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = (a - ↑↑ₐ z) * b
h₁ : ∑' (n : ℕ), (↑(Nat.factorial (n + 1)))⁻¹ • (a - ↑↑ₐ z) ^ (n + 1) = b * (a - ↑↑ₐ z)
h₃ : exp 𝕜 (a - ↑↑ₐ z) = 1 + (a - ↑↑ₐ z) * b
⊢ ¬((IsUnit (a - ↑↑ₐ z) ∧ IsUnit b) ∧ IsUnit (↑↑ₐ (exp 𝕜 z)))
[PROOFSTEP]
exact not_and_of_not_left _ (not_and_of_not_left _ ((not_iff_not.mpr IsUnit.sub_iff).mp hz))
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedRing A
inst✝² : NormedAlgebra 𝕜 A
inst✝¹ : CompleteSpace A
inst✝ : NormOneClass A
φ : A →ₐ[𝕜] 𝕜
x✝¹ : ℝ
x✝ : x✝¹ ≥ 0
h : ∀ (x : A), ‖↑(toContinuousLinearMap φ) x‖ ≤ x✝¹ * ‖x‖
⊢ 1 ≤ x✝¹
[PROOFSTEP]
simpa only [coe_toContinuousLinearMap, map_one, norm_one, mul_one] using h 1
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : CompleteSpace A
inst✝ : NormedAlgebra 𝕜 A
f : A →ₐ[𝕜] 𝕜
⊢ AlgHom.toContinuousLinearMap f ∈ characterSpace 𝕜 A
[PROOFSTEP]
rw [eq_set_map_one_map_mul]
[GOAL]
𝕜 : Type u_1
A : Type u_2
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedRing A
inst✝¹ : CompleteSpace A
inst✝ : NormedAlgebra 𝕜 A
f : A →ₐ[𝕜] 𝕜
⊢ AlgHom.toContinuousLinearMap f ∈ {φ | ↑φ 1 = 1 ∧ ∀ (x y : A), ↑φ (x * y) = ↑φ x * ↑φ y}
[PROOFSTEP]
exact ⟨map_one f, map_mul f⟩
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Spectrum", "llama_tokens": 42615} |
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
⊢ f.linear = (AffineIsometry.linearIsometry f).toLinearMap
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
x✝ : V
⊢ ↑f.linear x✝ = ↑(AffineIsometry.linearIsometry f).toLinearMap x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f✝ f g : P →ᵃⁱ[𝕜] P₂
⊢ (fun f => f.toFun) f = (fun f => f.toFun) g → f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f g : P →ᵃⁱ[𝕜] P₂
toAffineMap✝ : P →ᵃ[𝕜] P₂
norm_map✝ : ∀ (x : V), ‖↑toAffineMap✝.linear x‖ = ‖x‖
⊢ (fun f => f.toFun) { toAffineMap := toAffineMap✝, norm_map := norm_map✝ } = (fun f => f.toFun) g →
{ toAffineMap := toAffineMap✝, norm_map := norm_map✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
toAffineMap✝¹ : P →ᵃ[𝕜] P₂
norm_map✝¹ : ∀ (x : V), ‖↑toAffineMap✝¹.linear x‖ = ‖x‖
toAffineMap✝ : P →ᵃ[𝕜] P₂
norm_map✝ : ∀ (x : V), ‖↑toAffineMap✝.linear x‖ = ‖x‖
⊢ (fun f => f.toFun) { toAffineMap := toAffineMap✝¹, norm_map := norm_map✝¹ } =
(fun f => f.toFun) { toAffineMap := toAffineMap✝, norm_map := norm_map✝ } →
{ toAffineMap := toAffineMap✝¹, norm_map := norm_map✝¹ } = { toAffineMap := toAffineMap✝, norm_map := norm_map✝ }
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
⊢ ↑f.toAffineMap = ↑f
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
⊢ Injective toAffineMap
[PROOFSTEP]
rintro ⟨f, _⟩ ⟨g, _⟩ rfl
[GOAL]
case mk.mk
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f✝ : P →ᵃⁱ[𝕜] P₂
f : P →ᵃ[𝕜] P₂
norm_map✝¹ : ∀ (x : V), ‖↑f.linear x‖ = ‖x‖
norm_map✝ : ∀ (x : V), ‖↑{ toAffineMap := f, norm_map := norm_map✝¹ }.toAffineMap.linear x‖ = ‖x‖
⊢ { toAffineMap := f, norm_map := norm_map✝¹ } =
{ toAffineMap := { toAffineMap := f, norm_map := norm_map✝¹ }.toAffineMap, norm_map := norm_map✝ }
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : V →ₗᵢ[𝕜] V₂
⊢ AffineIsometry.linearIsometry (toAffineIsometry f) = f
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : V →ₗᵢ[𝕜] V₂
x✝ : V
⊢ ↑(AffineIsometry.linearIsometry (toAffineIsometry f)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
f₁ : P₁ →ᵃⁱ[𝕜] P₂
x y : P
⊢ dist (↑f x) (↑f y) = dist x y
[PROOFSTEP]
rw [dist_eq_norm_vsub V₂, dist_eq_norm_vsub V, ← map_vsub, f.linearIsometry.norm_map]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
f₁ : P₁ →ᵃⁱ[𝕜] P₂
x y : P
⊢ nndist (↑f x) (↑f y) = nndist x y
[PROOFSTEP]
simp [nndist_dist, (dist_map)]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃⁱ[𝕜] P₂
f₁ : P₁ →ᵃⁱ[𝕜] P₂
x y : P
⊢ edist (↑f x) (↑f y) = edist x y
[PROOFSTEP]
simp [edist_dist, (dist_map)]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
⊢ e.linear = (AffineIsometryEquiv.linearIsometryEquiv e).toLinearEquiv
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
x✝ : V
⊢ ↑e.linear x✝ = ↑(AffineIsometryEquiv.linearIsometryEquiv e).toLinearEquiv x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e f g : P ≃ᵃⁱ[𝕜] P₂
h : (fun f => f.toFun) f = (fun f => f.toFun) g
x✝ : (fun f => f.invFun) f = (fun f => f.invFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e g : P ≃ᵃⁱ[𝕜] P₂
toAffineEquiv✝ : P ≃ᵃ[𝕜] P₂
norm_map✝ : ∀ (x : V), ‖↑toAffineEquiv✝.linear x‖ = ‖x‖
h : (fun f => f.toFun) { toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ } = (fun f => f.toFun) g
x✝ : (fun f => f.invFun) { toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ } = (fun f => f.invFun) g
⊢ { toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
toAffineEquiv✝¹ : P ≃ᵃ[𝕜] P₂
norm_map✝¹ : ∀ (x : V), ‖↑toAffineEquiv✝¹.linear x‖ = ‖x‖
toAffineEquiv✝ : P ≃ᵃ[𝕜] P₂
norm_map✝ : ∀ (x : V), ‖↑toAffineEquiv✝.linear x‖ = ‖x‖
h :
(fun f => f.toFun) { toAffineEquiv := toAffineEquiv✝¹, norm_map := norm_map✝¹ } =
(fun f => f.toFun) { toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ }
x✝ :
(fun f => f.invFun) { toAffineEquiv := toAffineEquiv✝¹, norm_map := norm_map✝¹ } =
(fun f => f.invFun) { toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ }
⊢ { toAffineEquiv := toAffineEquiv✝¹, norm_map := norm_map✝¹ } =
{ toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toAffineEquiv
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
toAffineEquiv✝¹ : P ≃ᵃ[𝕜] P₂
norm_map✝¹ : ∀ (x : V), ‖↑toAffineEquiv✝¹.linear x‖ = ‖x‖
toAffineEquiv✝ : P ≃ᵃ[𝕜] P₂
norm_map✝ : ∀ (x : V), ‖↑toAffineEquiv✝.linear x‖ = ‖x‖
h :
(fun f => f.toFun) { toAffineEquiv := toAffineEquiv✝¹, norm_map := norm_map✝¹ } =
(fun f => f.toFun) { toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ }
x✝ :
(fun f => f.invFun) { toAffineEquiv := toAffineEquiv✝¹, norm_map := norm_map✝¹ } =
(fun f => f.invFun) { toAffineEquiv := toAffineEquiv✝, norm_map := norm_map✝ }
⊢ toAffineEquiv✝¹ = toAffineEquiv✝
[PROOFSTEP]
simpa [FunLike.coe_injective.eq_iff] using h
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e✝ : P ≃ᵃⁱ[𝕜] P₂
e : P₁ → P₂
e' : V₁ ≃ₗᵢ[𝕜] V₂
p : P₁
h : ∀ (p' : P₁), e p' = ↑e' (p' -ᵥ p) +ᵥ e p
⊢ AffineIsometryEquiv.linearIsometryEquiv (mk' e e' p h) = e'
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e✝ : P ≃ᵃⁱ[𝕜] P₂
e : P₁ → P₂
e' : V₁ ≃ₗᵢ[𝕜] V₂
p : P₁
h : ∀ (p' : P₁), e p' = ↑e' (p' -ᵥ p) +ᵥ e p
x✝ : V₁
⊢ ↑(AffineIsometryEquiv.linearIsometryEquiv (mk' e e' p h)) x✝ = ↑e' x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e : V ≃ₗᵢ[𝕜] V₂
⊢ ↑(toAffineIsometryEquiv e) = ↑e
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e : V ≃ₗᵢ[𝕜] V₂
⊢ AffineIsometryEquiv.linearIsometryEquiv (toAffineIsometryEquiv e) = e
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e : V ≃ₗᵢ[𝕜] V₂
x✝ : V
⊢ ↑(AffineIsometryEquiv.linearIsometryEquiv (toAffineIsometryEquiv e)) x✝ = ↑e x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e✝ e : P ≃ᵃⁱ[𝕜] P₂
⊢ range ↑e = univ
[PROOFSTEP]
rw [← coe_toIsometryEquiv]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
e✝ e : P ≃ᵃⁱ[𝕜] P₂
⊢ range ↑(toIsometryEquiv e) = univ
[PROOFSTEP]
exact IsometryEquiv.range_eq_univ _
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²¹ : NormedField 𝕜
inst✝²⁰ : SeminormedAddCommGroup V
inst✝¹⁹ : SeminormedAddCommGroup V₁
inst✝¹⁸ : SeminormedAddCommGroup V₂
inst✝¹⁷ : SeminormedAddCommGroup V₃
inst✝¹⁶ : SeminormedAddCommGroup V₄
inst✝¹⁵ : NormedSpace 𝕜 V
inst✝¹⁴ : NormedSpace 𝕜 V₁
inst✝¹³ : NormedSpace 𝕜 V₂
inst✝¹² : NormedSpace 𝕜 V₃
inst✝¹¹ : NormedSpace 𝕜 V₄
inst✝¹⁰ : PseudoMetricSpace P
inst✝⁹ : MetricSpace P₁
inst✝⁸ : PseudoMetricSpace P₂
inst✝⁷ : PseudoMetricSpace P₃
inst✝⁶ : PseudoMetricSpace P₄
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddTorsor V₁ P₁
inst✝³ : NormedAddTorsor V₂ P₂
inst✝² : NormedAddTorsor V₃ P₃
inst✝¹ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝ : TopologicalSpace α
p : P
⊢ symm (constVSub 𝕜 p) = trans (LinearIsometryEquiv.toAffineIsometryEquiv (LinearIsometryEquiv.neg 𝕜)) (vaddConst 𝕜 p)
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²¹ : NormedField 𝕜
inst✝²⁰ : SeminormedAddCommGroup V
inst✝¹⁹ : SeminormedAddCommGroup V₁
inst✝¹⁸ : SeminormedAddCommGroup V₂
inst✝¹⁷ : SeminormedAddCommGroup V₃
inst✝¹⁶ : SeminormedAddCommGroup V₄
inst✝¹⁵ : NormedSpace 𝕜 V
inst✝¹⁴ : NormedSpace 𝕜 V₁
inst✝¹³ : NormedSpace 𝕜 V₂
inst✝¹² : NormedSpace 𝕜 V₃
inst✝¹¹ : NormedSpace 𝕜 V₄
inst✝¹⁰ : PseudoMetricSpace P
inst✝⁹ : MetricSpace P₁
inst✝⁸ : PseudoMetricSpace P₂
inst✝⁷ : PseudoMetricSpace P₃
inst✝⁶ : PseudoMetricSpace P₄
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddTorsor V₁ P₁
inst✝³ : NormedAddTorsor V₂ P₂
inst✝² : NormedAddTorsor V₃ P₃
inst✝¹ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝ : TopologicalSpace α
p : P
x✝ : V
⊢ ↑(symm (constVSub 𝕜 p)) x✝ =
↑(trans (LinearIsometryEquiv.toAffineIsometryEquiv (LinearIsometryEquiv.neg 𝕜)) (vaddConst 𝕜 p)) x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²¹ : NormedField 𝕜
inst✝²⁰ : SeminormedAddCommGroup V
inst✝¹⁹ : SeminormedAddCommGroup V₁
inst✝¹⁸ : SeminormedAddCommGroup V₂
inst✝¹⁷ : SeminormedAddCommGroup V₃
inst✝¹⁶ : SeminormedAddCommGroup V₄
inst✝¹⁵ : NormedSpace 𝕜 V
inst✝¹⁴ : NormedSpace 𝕜 V₁
inst✝¹³ : NormedSpace 𝕜 V₂
inst✝¹² : NormedSpace 𝕜 V₃
inst✝¹¹ : NormedSpace 𝕜 V₄
inst✝¹⁰ : PseudoMetricSpace P
inst✝⁹ : MetricSpace P₁
inst✝⁸ : PseudoMetricSpace P₂
inst✝⁷ : PseudoMetricSpace P₃
inst✝⁶ : PseudoMetricSpace P₄
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddTorsor V₁ P₁
inst✝³ : NormedAddTorsor V₂ P₂
inst✝² : NormedAddTorsor V₃ P₃
inst✝¹ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝ : TopologicalSpace α
f : P → P₂
hf : Isometry f
p : P
g : V → V₂
hg : ∀ (v : V), g v = f (v +ᵥ p) -ᵥ f p
⊢ Isometry g
[PROOFSTEP]
convert (vaddConst 𝕜 (f p)).symm.isometry.comp (hf.comp (vaddConst 𝕜 p).isometry)
[GOAL]
case h.e'_5
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²¹ : NormedField 𝕜
inst✝²⁰ : SeminormedAddCommGroup V
inst✝¹⁹ : SeminormedAddCommGroup V₁
inst✝¹⁸ : SeminormedAddCommGroup V₂
inst✝¹⁷ : SeminormedAddCommGroup V₃
inst✝¹⁶ : SeminormedAddCommGroup V₄
inst✝¹⁵ : NormedSpace 𝕜 V
inst✝¹⁴ : NormedSpace 𝕜 V₁
inst✝¹³ : NormedSpace 𝕜 V₂
inst✝¹² : NormedSpace 𝕜 V₃
inst✝¹¹ : NormedSpace 𝕜 V₄
inst✝¹⁰ : PseudoMetricSpace P
inst✝⁹ : MetricSpace P₁
inst✝⁸ : PseudoMetricSpace P₂
inst✝⁷ : PseudoMetricSpace P₃
inst✝⁶ : PseudoMetricSpace P₄
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddTorsor V₁ P₁
inst✝³ : NormedAddTorsor V₂ P₂
inst✝² : NormedAddTorsor V₃ P₃
inst✝¹ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝ : TopologicalSpace α
f : P → P₂
hf : Isometry f
p : P
g : V → V₂
hg : ∀ (v : V), g v = f (v +ᵥ p) -ᵥ f p
⊢ g = ↑(symm (vaddConst 𝕜 (f p))) ∘ f ∘ ↑(vaddConst 𝕜 p)
[PROOFSTEP]
exact funext hg
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²¹ : NormedField 𝕜
inst✝²⁰ : SeminormedAddCommGroup V
inst✝¹⁹ : SeminormedAddCommGroup V₁
inst✝¹⁸ : SeminormedAddCommGroup V₂
inst✝¹⁷ : SeminormedAddCommGroup V₃
inst✝¹⁶ : SeminormedAddCommGroup V₄
inst✝¹⁵ : NormedSpace 𝕜 V
inst✝¹⁴ : NormedSpace 𝕜 V₁
inst✝¹³ : NormedSpace 𝕜 V₂
inst✝¹² : NormedSpace 𝕜 V₃
inst✝¹¹ : NormedSpace 𝕜 V₄
inst✝¹⁰ : PseudoMetricSpace P
inst✝⁹ : MetricSpace P₁
inst✝⁸ : PseudoMetricSpace P₂
inst✝⁷ : PseudoMetricSpace P₃
inst✝⁶ : PseudoMetricSpace P₄
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddTorsor V₁ P₁
inst✝³ : NormedAddTorsor V₂ P₂
inst✝² : NormedAddTorsor V₃ P₃
inst✝¹ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝ : TopologicalSpace α
x y : P
⊢ dist (↑(pointReflection 𝕜 x) y) x = dist y x
[PROOFSTEP]
rw [← (pointReflection 𝕜 x).dist_map y x, pointReflection_self]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²¹ : NormedField 𝕜
inst✝²⁰ : SeminormedAddCommGroup V
inst✝¹⁹ : SeminormedAddCommGroup V₁
inst✝¹⁸ : SeminormedAddCommGroup V₂
inst✝¹⁷ : SeminormedAddCommGroup V₃
inst✝¹⁶ : SeminormedAddCommGroup V₄
inst✝¹⁵ : NormedSpace 𝕜 V
inst✝¹⁴ : NormedSpace 𝕜 V₁
inst✝¹³ : NormedSpace 𝕜 V₂
inst✝¹² : NormedSpace 𝕜 V₃
inst✝¹¹ : NormedSpace 𝕜 V₄
inst✝¹⁰ : PseudoMetricSpace P
inst✝⁹ : MetricSpace P₁
inst✝⁸ : PseudoMetricSpace P₂
inst✝⁷ : PseudoMetricSpace P₃
inst✝⁶ : PseudoMetricSpace P₄
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddTorsor V₁ P₁
inst✝³ : NormedAddTorsor V₂ P₂
inst✝² : NormedAddTorsor V₃ P₃
inst✝¹ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝ : TopologicalSpace α
x y : P
⊢ dist (↑(pointReflection 𝕜 x) y) y = ‖bit0 (x -ᵥ y)‖
[PROOFSTEP]
rw [pointReflection_apply, dist_eq_norm_vsub V, vadd_vsub_assoc, bit0]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²¹ : NormedField 𝕜
inst✝²⁰ : SeminormedAddCommGroup V
inst✝¹⁹ : SeminormedAddCommGroup V₁
inst✝¹⁸ : SeminormedAddCommGroup V₂
inst✝¹⁷ : SeminormedAddCommGroup V₃
inst✝¹⁶ : SeminormedAddCommGroup V₄
inst✝¹⁵ : NormedSpace 𝕜 V
inst✝¹⁴ : NormedSpace 𝕜 V₁
inst✝¹³ : NormedSpace 𝕜 V₂
inst✝¹² : NormedSpace 𝕜 V₃
inst✝¹¹ : NormedSpace 𝕜 V₄
inst✝¹⁰ : PseudoMetricSpace P
inst✝⁹ : MetricSpace P₁
inst✝⁸ : PseudoMetricSpace P₂
inst✝⁷ : PseudoMetricSpace P₃
inst✝⁶ : PseudoMetricSpace P₄
inst✝⁵ : NormedAddTorsor V P
inst✝⁴ : NormedAddTorsor V₁ P₁
inst✝³ : NormedAddTorsor V₂ P₂
inst✝² : NormedAddTorsor V₃ P₃
inst✝¹ : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝ : TopologicalSpace α
x y : P
⊢ dist (↑(pointReflection 𝕜 x) y) y = ‖2‖ * dist x y
[PROOFSTEP]
rw [dist_pointReflection_self', ← two_smul' 𝕜 (x -ᵥ y), norm_smul, ← dist_eq_norm_vsub V]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²² : NormedField 𝕜
inst✝²¹ : SeminormedAddCommGroup V
inst✝²⁰ : SeminormedAddCommGroup V₁
inst✝¹⁹ : SeminormedAddCommGroup V₂
inst✝¹⁸ : SeminormedAddCommGroup V₃
inst✝¹⁷ : SeminormedAddCommGroup V₄
inst✝¹⁶ : NormedSpace 𝕜 V
inst✝¹⁵ : NormedSpace 𝕜 V₁
inst✝¹⁴ : NormedSpace 𝕜 V₂
inst✝¹³ : NormedSpace 𝕜 V₃
inst✝¹² : NormedSpace 𝕜 V₄
inst✝¹¹ : PseudoMetricSpace P
inst✝¹⁰ : MetricSpace P₁
inst✝⁹ : PseudoMetricSpace P₂
inst✝⁸ : PseudoMetricSpace P₃
inst✝⁷ : PseudoMetricSpace P₄
inst✝⁶ : NormedAddTorsor V P
inst✝⁵ : NormedAddTorsor V₁ P₁
inst✝⁴ : NormedAddTorsor V₂ P₂
inst✝³ : NormedAddTorsor V₃ P₃
inst✝² : NormedAddTorsor V₄ P₄
e : P ≃ᵃⁱ[𝕜] P₂
α : Type u_12
inst✝¹ : TopologicalSpace α
inst✝ : NormedSpace ℝ V
x y : P
⊢ dist (↑(pointReflection ℝ x) y) y = 2 * dist x y
[PROOFSTEP]
rw [dist_pointReflection_self, Real.norm_two]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
⊢ Continuous ↑f.linear ↔ Continuous ↑f
[PROOFSTEP]
inhabit P
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
⊢ Continuous ↑f.linear ↔ Continuous ↑f
[PROOFSTEP]
have :
(f.linear : V → V₂) =
(AffineIsometryEquiv.vaddConst 𝕜 <| f default).toHomeomorph.symm ∘
f ∘ (AffineIsometryEquiv.vaddConst 𝕜 default).toHomeomorph :=
by
ext v
simp only [(AffineIsometryEquiv.coe_toHomeomorph), Function.comp_apply, (AffineMap.map_vadd), eq_self_iff_true,
(AffineIsometryEquiv.toHomeomorph_symm), (AffineIsometryEquiv.coe_vaddConst), (vadd_vsub),
(AffineIsometryEquiv.coe_vaddConst_symm)]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
⊢ ↑f.linear =
↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))
[PROOFSTEP]
ext v
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
v : V
⊢ ↑f.linear v =
(↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default)))
v
[PROOFSTEP]
simp only [(AffineIsometryEquiv.coe_toHomeomorph), Function.comp_apply, (AffineMap.map_vadd), eq_self_iff_true,
(AffineIsometryEquiv.toHomeomorph_symm), (AffineIsometryEquiv.coe_vaddConst), (vadd_vsub),
(AffineIsometryEquiv.coe_vaddConst_symm)]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
this :
↑f.linear =
↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))
⊢ Continuous ↑f.linear ↔ Continuous ↑f
[PROOFSTEP]
rw [this]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
this :
↑f.linear =
↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))
⊢ Continuous
(↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))) ↔
Continuous ↑f
[PROOFSTEP]
simp only [Homeomorph.comp_continuous_iff, Homeomorph.comp_continuous_iff']
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
⊢ IsOpenMap ↑f.linear ↔ IsOpenMap ↑f
[PROOFSTEP]
inhabit P
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
⊢ IsOpenMap ↑f.linear ↔ IsOpenMap ↑f
[PROOFSTEP]
have :
(f.linear : V → V₂) =
(AffineIsometryEquiv.vaddConst 𝕜 <| f default).toHomeomorph.symm ∘
f ∘ (AffineIsometryEquiv.vaddConst 𝕜 default).toHomeomorph :=
by
ext v
simp only [(AffineIsometryEquiv.coe_toHomeomorph), Function.comp_apply, (AffineMap.map_vadd), eq_self_iff_true,
(AffineIsometryEquiv.toHomeomorph_symm), (AffineIsometryEquiv.coe_vaddConst), (vadd_vsub),
(AffineIsometryEquiv.coe_vaddConst_symm)]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
⊢ ↑f.linear =
↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))
[PROOFSTEP]
ext v
[GOAL]
case h
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
v : V
⊢ ↑f.linear v =
(↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default)))
v
[PROOFSTEP]
simp only [(AffineIsometryEquiv.coe_toHomeomorph), Function.comp_apply, (AffineMap.map_vadd), eq_self_iff_true,
(AffineIsometryEquiv.toHomeomorph_symm), (AffineIsometryEquiv.coe_vaddConst), (vadd_vsub),
(AffineIsometryEquiv.coe_vaddConst_symm)]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
this :
↑f.linear =
↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))
⊢ IsOpenMap ↑f.linear ↔ IsOpenMap ↑f
[PROOFSTEP]
rw [this]
[GOAL]
𝕜 : Type u_1
V : Type u_2
V₁ : Type u_3
V₂ : Type u_4
V₃ : Type u_5
V₄ : Type u_6
P₁ : Type u_7
P : Type u_8
P₂ : Type u_9
P₃ : Type u_10
P₄ : Type u_11
inst✝²⁰ : NormedField 𝕜
inst✝¹⁹ : SeminormedAddCommGroup V
inst✝¹⁸ : SeminormedAddCommGroup V₁
inst✝¹⁷ : SeminormedAddCommGroup V₂
inst✝¹⁶ : SeminormedAddCommGroup V₃
inst✝¹⁵ : SeminormedAddCommGroup V₄
inst✝¹⁴ : NormedSpace 𝕜 V
inst✝¹³ : NormedSpace 𝕜 V₁
inst✝¹² : NormedSpace 𝕜 V₂
inst✝¹¹ : NormedSpace 𝕜 V₃
inst✝¹⁰ : NormedSpace 𝕜 V₄
inst✝⁹ : PseudoMetricSpace P
inst✝⁸ : MetricSpace P₁
inst✝⁷ : PseudoMetricSpace P₂
inst✝⁶ : PseudoMetricSpace P₃
inst✝⁵ : PseudoMetricSpace P₄
inst✝⁴ : NormedAddTorsor V P
inst✝³ : NormedAddTorsor V₁ P₁
inst✝² : NormedAddTorsor V₂ P₂
inst✝¹ : NormedAddTorsor V₃ P₃
inst✝ : NormedAddTorsor V₄ P₄
f : P →ᵃ[𝕜] P₂
inhabited_h : Inhabited P
this :
↑f.linear =
↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))
⊢ IsOpenMap
(↑(Homeomorph.symm (AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 (↑f default)))) ∘
↑f ∘ ↑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.vaddConst 𝕜 default))) ↔
IsOpenMap ↑f
[PROOFSTEP]
simp only [Homeomorph.comp_isOpenMap_iff, Homeomorph.comp_isOpenMap_iff']
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.AffineIsometry", "llama_tokens": 24801} |
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
⊢ ‖inclusionInDoubleDual 𝕜 E‖ ≤ 1
[PROOFSTEP]
rw [inclusionInDoubleDual_norm_eq]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
⊢ ‖ContinuousLinearMap.id 𝕜 (Dual 𝕜 E)‖ ≤ 1
[PROOFSTEP]
exact ContinuousLinearMap.norm_id_le
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
x : E
⊢ ‖↑(inclusionInDoubleDual 𝕜 E) x‖ ≤ ‖x‖
[PROOFSTEP]
simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le 𝕜 E) x
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
⊢ LinearMap.SeparatingLeft (dualPairing 𝕜 E)
[PROOFSTEP]
rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
[GOAL]
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
⊢ Function.Injective ↑(dualPairing 𝕜 E)
[PROOFSTEP]
exact ContinuousLinearMap.coe_injective
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
M : ℝ
hMp : 0 ≤ M
hM : ∀ (f : Dual 𝕜 E), ‖↑f x‖ ≤ M * ‖f‖
⊢ ‖x‖ ≤ M
[PROOFSTEP]
classical
by_cases h : x = 0
· simp only [h, hMp, norm_zero]
· obtain ⟨f, hf₁, hfx⟩ : ∃ f : E →L[𝕜] 𝕜, ‖f‖ = 1 ∧ f x = ‖x‖ := exists_dual_vector 𝕜 x h
calc
‖x‖ = ‖(‖x‖ : 𝕜)‖ := IsROrC.norm_coe_norm.symm
_ = ‖f x‖ := by rw [hfx]
_ ≤ M * ‖f‖ := (hM f)
_ = M := by rw [hf₁, mul_one]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
M : ℝ
hMp : 0 ≤ M
hM : ∀ (f : Dual 𝕜 E), ‖↑f x‖ ≤ M * ‖f‖
⊢ ‖x‖ ≤ M
[PROOFSTEP]
by_cases h : x = 0
[GOAL]
case pos
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
M : ℝ
hMp : 0 ≤ M
hM : ∀ (f : Dual 𝕜 E), ‖↑f x‖ ≤ M * ‖f‖
h : x = 0
⊢ ‖x‖ ≤ M
[PROOFSTEP]
simp only [h, hMp, norm_zero]
[GOAL]
case neg
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
M : ℝ
hMp : 0 ≤ M
hM : ∀ (f : Dual 𝕜 E), ‖↑f x‖ ≤ M * ‖f‖
h : ¬x = 0
⊢ ‖x‖ ≤ M
[PROOFSTEP]
obtain ⟨f, hf₁, hfx⟩ : ∃ f : E →L[𝕜] 𝕜, ‖f‖ = 1 ∧ f x = ‖x‖ := exists_dual_vector 𝕜 x h
[GOAL]
case neg.intro.intro
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
M : ℝ
hMp : 0 ≤ M
hM : ∀ (f : Dual 𝕜 E), ‖↑f x‖ ≤ M * ‖f‖
h : ¬x = 0
f : E →L[𝕜] 𝕜
hf₁ : ‖f‖ = 1
hfx : ↑f x = ↑‖x‖
⊢ ‖x‖ ≤ M
[PROOFSTEP]
calc
‖x‖ = ‖(‖x‖ : 𝕜)‖ := IsROrC.norm_coe_norm.symm
_ = ‖f x‖ := by rw [hfx]
_ ≤ M * ‖f‖ := (hM f)
_ = M := by rw [hf₁, mul_one]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
M : ℝ
hMp : 0 ≤ M
hM : ∀ (f : Dual 𝕜 E), ‖↑f x‖ ≤ M * ‖f‖
h : ¬x = 0
f : E →L[𝕜] 𝕜
hf₁ : ‖f‖ = 1
hfx : ↑f x = ↑‖x‖
⊢ ‖↑‖x‖‖ = ‖↑f x‖
[PROOFSTEP]
rw [hfx]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
M : ℝ
hMp : 0 ≤ M
hM : ∀ (f : Dual 𝕜 E), ‖↑f x‖ ≤ M * ‖f‖
h : ¬x = 0
f : E →L[𝕜] 𝕜
hf₁ : ‖f‖ = 1
hfx : ↑f x = ↑‖x‖
⊢ M * ‖f‖ = M
[PROOFSTEP]
rw [hf₁, mul_one]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
h : ∀ (f : Dual 𝕜 E), ↑f x = 0
f : Dual 𝕜 E
⊢ ‖↑f x‖ ≤ 0 * ‖f‖
[PROOFSTEP]
simp [h f]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
hx : x = 0
⊢ ∀ (g : Dual 𝕜 E), ↑g x = 0
[PROOFSTEP]
simp [hx]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ x = y ↔ ∀ (g : Dual 𝕜 E), ↑g x = ↑g y
[PROOFSTEP]
rw [← sub_eq_zero, eq_zero_iff_forall_dual_eq_zero 𝕜 (x - y)]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ (∀ (g : Dual 𝕜 E), ↑g (x - y) = 0) ↔ ∀ (g : Dual 𝕜 E), ↑g x = ↑g y
[PROOFSTEP]
simp [sub_eq_zero]
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : E →L[𝕜] Dual 𝕜 (Dual 𝕜 E) := inclusionInDoubleDual 𝕜 E
⊢ ∀ (x : E), ‖↑↑src✝ x‖ = ‖x‖
[PROOFSTEP]
intro x
[GOAL]
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : E →L[𝕜] Dual 𝕜 (Dual 𝕜 E) := inclusionInDoubleDual 𝕜 E
x : E
⊢ ‖↑↑src✝ x‖ = ‖x‖
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : E →L[𝕜] Dual 𝕜 (Dual 𝕜 E) := inclusionInDoubleDual 𝕜 E
x : E
⊢ ‖↑↑src✝ x‖ ≤ ‖x‖
[PROOFSTEP]
exact double_dual_bound 𝕜 E x
[GOAL]
case a
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : E →L[𝕜] Dual 𝕜 (Dual 𝕜 E) := inclusionInDoubleDual 𝕜 E
x : E
⊢ ‖x‖ ≤ ‖↑↑src✝ x‖
[PROOFSTEP]
rw [ContinuousLinearMap.norm_def]
[GOAL]
case a
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : E →L[𝕜] Dual 𝕜 (Dual 𝕜 E) := inclusionInDoubleDual 𝕜 E
x : E
⊢ ‖x‖ ≤ sInf {c | 0 ≤ c ∧ ∀ (x_1 : Dual 𝕜 E), ‖↑(↑↑src✝ x) x_1‖ ≤ c * ‖x_1‖}
[PROOFSTEP]
refine' le_csInf ContinuousLinearMap.bounds_nonempty _
[GOAL]
case a
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : E →L[𝕜] Dual 𝕜 (Dual 𝕜 E) := inclusionInDoubleDual 𝕜 E
x : E
⊢ ∀ (b : ℝ), b ∈ {c | 0 ≤ c ∧ ∀ (x_1 : Dual 𝕜 E), ‖↑(↑↑src✝ x) x_1‖ ≤ c * ‖x_1‖} → ‖x‖ ≤ b
[PROOFSTEP]
rintro c ⟨hc1, hc2⟩
[GOAL]
case a.intro
𝕜 : Type v
inst✝² : IsROrC 𝕜
E : Type u
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
src✝ : E →L[𝕜] Dual 𝕜 (Dual 𝕜 E) := inclusionInDoubleDual 𝕜 E
x : E
c : ℝ
hc1 : 0 ≤ c
hc2 : ∀ (x_1 : Dual 𝕜 E), ‖↑(↑↑src✝ x) x_1‖ ≤ c * ‖x_1‖
⊢ ‖x‖ ≤ c
[PROOFSTEP]
exact norm_le_dual_bound 𝕜 x hc1 hc2
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
⊢ IsClosed (polar 𝕜 s)
[PROOFSTEP]
dsimp only [NormedSpace.polar]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
⊢ IsClosed (LinearMap.polar (LinearMap.flip (dualPairing 𝕜 E)) s)
[PROOFSTEP]
simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
⊢ IsClosed (⋂ (x : E) (_ : x ∈ s), {y | ‖↑(↑(dualPairing 𝕜 E) y) x‖ ≤ 1})
[PROOFSTEP]
refine' isClosed_biInter fun z _ => _
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
z : E
x✝ : z ∈ s
⊢ IsClosed {y | ‖↑(↑(dualPairing 𝕜 E) y) z‖ ≤ 1}
[PROOFSTEP]
exact isClosed_Iic.preimage (ContinuousLinearMap.apply 𝕜 𝕜 z).continuous.norm
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
⊢ IsClosed
((LinearMap.polar (LinearMap.flip (LinearMap.flip (dualPairing 𝕜 E))) ∘ ↑OrderDual.ofDual)
(LinearMap.polar (LinearMap.flip (dualPairing 𝕜 E)) s))
[PROOFSTEP]
simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual 𝕜 E).continuous
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
⊢ c⁻¹ • x' ∈ polar 𝕜 s
[PROOFSTEP]
by_cases c_zero : c = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : c = 0
⊢ c⁻¹ • x' ∈ polar 𝕜 s
[PROOFSTEP]
simp only [c_zero, inv_zero, zero_smul]
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : c = 0
⊢ 0 ∈ polar 𝕜 s
[PROOFSTEP]
exact (dualPairing 𝕜 E).flip.zero_mem_polar _
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
⊢ c⁻¹ • x' ∈ polar 𝕜 s
[PROOFSTEP]
have eq : ∀ z, ‖c⁻¹ • x' z‖ = ‖c⁻¹‖ * ‖x' z‖ := fun z => norm_smul c⁻¹ _
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
eq : ∀ (z : E), ‖c⁻¹ • ↑x' z‖ = ‖c⁻¹‖ * ‖↑x' z‖
⊢ c⁻¹ • x' ∈ polar 𝕜 s
[PROOFSTEP]
have le : ∀ z, z ∈ s → ‖c⁻¹ • x' z‖ ≤ ‖c⁻¹‖ * ‖c‖ := by
intro z hzs
rw [eq z]
apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
eq : ∀ (z : E), ‖c⁻¹ • ↑x' z‖ = ‖c⁻¹‖ * ‖↑x' z‖
⊢ ∀ (z : E), z ∈ s → ‖c⁻¹ • ↑x' z‖ ≤ ‖c⁻¹‖ * ‖c‖
[PROOFSTEP]
intro z hzs
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
eq : ∀ (z : E), ‖c⁻¹ • ↑x' z‖ = ‖c⁻¹‖ * ‖↑x' z‖
z : E
hzs : z ∈ s
⊢ ‖c⁻¹ • ↑x' z‖ ≤ ‖c⁻¹‖ * ‖c‖
[PROOFSTEP]
rw [eq z]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
eq : ∀ (z : E), ‖c⁻¹ • ↑x' z‖ = ‖c⁻¹‖ * ‖↑x' z‖
z : E
hzs : z ∈ s
⊢ ‖c⁻¹‖ * ‖↑x' z‖ ≤ ‖c⁻¹‖ * ‖c‖
[PROOFSTEP]
apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
eq : ∀ (z : E), ‖c⁻¹ • ↑x' z‖ = ‖c⁻¹‖ * ‖↑x' z‖
le : ∀ (z : E), z ∈ s → ‖c⁻¹ • ↑x' z‖ ≤ ‖c⁻¹‖ * ‖c‖
⊢ c⁻¹ • x' ∈ polar 𝕜 s
[PROOFSTEP]
have cancel : ‖c⁻¹‖ * ‖c‖ = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
eq : ∀ (z : E), ‖c⁻¹ • ↑x' z‖ = ‖c⁻¹‖ * ‖↑x' z‖
le : ∀ (z : E), z ∈ s → ‖c⁻¹ • ↑x' z‖ ≤ ‖c⁻¹‖ * ‖c‖
⊢ ‖c⁻¹‖ * ‖c‖ = 1
[PROOFSTEP]
simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x' : Dual 𝕜 E
c : 𝕜
hc : ∀ (z : E), z ∈ s → ‖↑x' z‖ ≤ ‖c‖
c_zero : ¬c = 0
eq : ∀ (z : E), ‖c⁻¹ • ↑x' z‖ = ‖c⁻¹‖ * ‖↑x' z‖
le : ∀ (z : E), z ∈ s → ‖c⁻¹ • ↑x' z‖ ≤ ‖c⁻¹‖ * ‖c‖
cancel : ‖c⁻¹‖ * ‖c‖ = 1
⊢ c⁻¹ • x' ∈ polar 𝕜 s
[PROOFSTEP]
rwa [cancel] at le
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
r : ℝ
hr : 0 < r
⊢ polar 𝕜 (ball 0 r) ⊆ closedBall 0 (‖c‖ / r)
[PROOFSTEP]
intro x' hx'
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
hx' : x' ∈ polar 𝕜 (ball 0 r)
⊢ x' ∈ closedBall 0 (‖c‖ / r)
[PROOFSTEP]
rw [mem_polar_iff] at hx'
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
hx' : ∀ (z : E), z ∈ ball 0 r → ‖↑x' z‖ ≤ 1
⊢ x' ∈ closedBall 0 (‖c‖ / r)
[PROOFSTEP]
simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
hx' : ∀ (z : E), ‖z‖ < r → ‖↑x' z‖ ≤ 1
⊢ ‖x'‖ ≤ ‖c‖ / r
[PROOFSTEP]
have hcr : 0 < ‖c‖ / r := div_pos (zero_lt_one.trans hc) hr
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
hx' : ∀ (z : E), ‖z‖ < r → ‖↑x' z‖ ≤ 1
hcr : 0 < ‖c‖ / r
⊢ ‖x'‖ ≤ ‖c‖ / r
[PROOFSTEP]
refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x h₁ h₂ => _
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
hx' : ∀ (z : E), ‖z‖ < r → ‖↑x' z‖ ≤ 1
hcr : 0 < ‖c‖ / r
x : E
h₁ : r / ‖c‖ ≤ ‖x‖
h₂ : ‖x‖ < r
⊢ ‖↑x' x‖ ≤ ‖c‖ / r * ‖x‖
[PROOFSTEP]
calc
‖x' x‖ ≤ 1 := hx' _ h₂
_ ≤ ‖c‖ / r * ‖x‖ := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div])
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : 1 < ‖c‖
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
hx' : ∀ (z : E), ‖z‖ < r → ‖↑x' z‖ ≤ 1
hcr : 0 < ‖c‖ / r
x : E
h₁ : r / ‖c‖ ≤ ‖x‖
h₂ : ‖x‖ < r
⊢ (‖c‖ / r)⁻¹ ≤ ‖x‖
[PROOFSTEP]
rwa [inv_div]
[GOAL]
𝕜✝ : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜✝
E✝ : Type u_2
inst✝⁴ : SeminormedAddCommGroup E✝
inst✝³ : NormedSpace 𝕜✝ E✝
𝕜 : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
hr : 0 < r
⊢ polar 𝕜 (closedBall 0 r) = closedBall 0 r⁻¹
[PROOFSTEP]
refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall 𝕜)
[GOAL]
𝕜✝ : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜✝
E✝ : Type u_2
inst✝⁴ : SeminormedAddCommGroup E✝
inst✝³ : NormedSpace 𝕜✝ E✝
𝕜 : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
hr : 0 < r
⊢ polar 𝕜 (closedBall 0 r) ⊆ closedBall 0 r⁻¹
[PROOFSTEP]
intro x' h
[GOAL]
𝕜✝ : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜✝
E✝ : Type u_2
inst✝⁴ : SeminormedAddCommGroup E✝
inst✝³ : NormedSpace 𝕜✝ E✝
𝕜 : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
h : x' ∈ polar 𝕜 (closedBall 0 r)
⊢ x' ∈ closedBall 0 r⁻¹
[PROOFSTEP]
simp only [mem_closedBall_zero_iff]
[GOAL]
𝕜✝ : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜✝
E✝ : Type u_2
inst✝⁴ : SeminormedAddCommGroup E✝
inst✝³ : NormedSpace 𝕜✝ E✝
𝕜 : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
h : x' ∈ polar 𝕜 (closedBall 0 r)
⊢ ‖x'‖ ≤ r⁻¹
[PROOFSTEP]
refine' ContinuousLinearMap.op_norm_le_of_ball hr (inv_nonneg.mpr hr.le) fun z _ => _
[GOAL]
𝕜✝ : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜✝
E✝ : Type u_2
inst✝⁴ : SeminormedAddCommGroup E✝
inst✝³ : NormedSpace 𝕜✝ E✝
𝕜 : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
r : ℝ
hr : 0 < r
x' : Dual 𝕜 E
h : x' ∈ polar 𝕜 (closedBall 0 r)
z : E
x✝ : z ∈ ball 0 r
⊢ ‖↑x' z‖ ≤ r⁻¹ * ‖z‖
[PROOFSTEP]
simpa only [one_div] using LinearMap.bound_of_ball_bound' hr 1 x'.toLinearMap h z
[GOAL]
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
s_nhd : s ∈ 𝓝 0
⊢ Metric.Bounded (polar 𝕜 s)
[PROOFSTEP]
obtain ⟨a, ha⟩ : ∃ a : 𝕜, 1 < ‖a‖ := NormedField.exists_one_lt_norm 𝕜
[GOAL]
case intro
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
s_nhd : s ∈ 𝓝 0
a : 𝕜
ha : 1 < ‖a‖
⊢ Metric.Bounded (polar 𝕜 s)
[PROOFSTEP]
obtain ⟨r, r_pos, r_ball⟩ : ∃ r : ℝ, 0 < r ∧ ball 0 r ⊆ s := Metric.mem_nhds_iff.1 s_nhd
[GOAL]
case intro.intro.intro
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
s_nhd : s ∈ 𝓝 0
a : 𝕜
ha : 1 < ‖a‖
r : ℝ
r_pos : 0 < r
r_ball : ball 0 r ⊆ s
⊢ Metric.Bounded (polar 𝕜 s)
[PROOFSTEP]
exact
bounded_closedBall.mono
(((dualPairing 𝕜 E).flip.polar_antitone r_ball).trans <| polar_ball_subset_closedBall_div ha r_pos)
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Dual", "llama_tokens": 9575} |
[GOAL]
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
p : ℝ≥0∞
inst✝ : Finite α
f : (i : α) → E i
⊢ Memℓp f p
[PROOFSTEP]
rcases p.trichotomy with (rfl | rfl | _h)
[GOAL]
case inl
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
inst✝ : Finite α
f : (i : α) → E i
⊢ Memℓp f 0
[PROOFSTEP]
exact memℓp_zero_iff.mpr {i : α | f i ≠ 0}.toFinite
[GOAL]
case inr.inl
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
inst✝ : Finite α
f : (i : α) → E i
⊢ Memℓp f ⊤
[PROOFSTEP]
exact memℓp_infty_iff.mpr (Set.Finite.bddAbove (Set.range fun i : α => ‖f i‖).toFinite)
[GOAL]
case inr.inr
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
p : ℝ≥0∞
inst✝ : Finite α
f : (i : α) → E i
_h : 0 < ENNReal.toReal p
⊢ Memℓp f p
[PROOFSTEP]
cases nonempty_fintype α
[GOAL]
case inr.inr.intro
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
p : ℝ≥0∞
inst✝ : Finite α
f : (i : α) → E i
_h : 0 < ENNReal.toReal p
val✝ : Fintype α
⊢ Memℓp f p
[PROOFSTEP]
exact memℓp_gen ⟨Finset.univ.sum _, hasSum_fintype _⟩
[GOAL]
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
p : ℝ≥0∞
inst✝ : Fintype α
f : { x // x ∈ lp E p }
⊢ ‖↑Equiv.lpPiLp f‖ = ‖f‖
[PROOFSTEP]
rcases p.trichotomy with (rfl | rfl | h)
[GOAL]
case inl
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
inst✝ : Fintype α
f : { x // x ∈ lp E 0 }
⊢ ‖↑Equiv.lpPiLp f‖ = ‖f‖
[PROOFSTEP]
rw [PiLp.norm_eq_card, lp.norm_eq_card_dsupport]
[GOAL]
case inr.inl
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
inst✝ : Fintype α
f : { x // x ∈ lp E ⊤ }
⊢ ‖↑Equiv.lpPiLp f‖ = ‖f‖
[PROOFSTEP]
rw [PiLp.norm_eq_ciSup, lp.norm_eq_ciSup]
[GOAL]
case inr.inl
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
inst✝ : Fintype α
f : { x // x ∈ lp E ⊤ }
⊢ ⨆ (i : α), ‖↑Equiv.lpPiLp f i‖ = ⨆ (i : α), ‖↑f i‖
[PROOFSTEP]
rfl
[GOAL]
case inr.inr
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
p : ℝ≥0∞
inst✝ : Fintype α
f : { x // x ∈ lp E p }
h : 0 < ENNReal.toReal p
⊢ ‖↑Equiv.lpPiLp f‖ = ‖f‖
[PROOFSTEP]
rw [PiLp.norm_eq_sum h, lp.norm_eq_tsum_rpow h, tsum_fintype]
[GOAL]
case inr.inr
α : Type u_1
E : α → Type u_2
inst✝¹ : (i : α) → NormedAddCommGroup (E i)
p : ℝ≥0∞
inst✝ : Fintype α
f : { x // x ∈ lp E p }
h : 0 < ENNReal.toReal p
⊢ (Finset.sum Finset.univ fun i => ‖↑Equiv.lpPiLp f i‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) =
(Finset.sum Finset.univ fun b => ‖↑f b‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
E : Type u_2
R : Type u_3
A : Type u_4
𝕜 : Type u_5
inst✝⁸ : TopologicalSpace α
inst✝⁷ : DiscreteTopology α
inst✝⁶ : NormedRing A
inst✝⁵ : NormOneClass A
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAlgebra 𝕜 A
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NonUnitalNormedRing R
src✝ : { x // x ∈ lp (fun x => E) ⊤ } ≃+ (α →ᵇ E) := AddEquiv.lpBcf
f : { x // x ∈ lp (fun x => E) ⊤ }
⊢ ‖↑{
toLinearMap :=
{
toAddHom :=
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : { x // x ∈ lp (fun x => E) ⊤ }),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) },
map_smul' :=
(_ :
∀ (k : 𝕜) (f : { x // x ∈ lp (fun x => E) ⊤ }),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : { x // x ∈ lp (fun x => E) ⊤ }),
Equiv.toFun src✝.toEquiv (x + y) =
Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(k • f) =
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : { x // x ∈ lp (fun x => E) ⊤ }),
Equiv.toFun src✝.toEquiv (x + y) =
Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(k • f)) },
invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
f‖ =
‖f‖
[PROOFSTEP]
simp only [norm_eq_iSup_norm, lp.norm_eq_ciSup]
[GOAL]
α : Type u_1
E : Type u_2
R : Type u_3
A : Type u_4
𝕜 : Type u_5
inst✝⁸ : TopologicalSpace α
inst✝⁷ : DiscreteTopology α
inst✝⁶ : NormedRing A
inst✝⁵ : NormOneClass A
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAlgebra 𝕜 A
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NonUnitalNormedRing R
src✝ : { x // x ∈ lp (fun x => E) ⊤ } ≃+ (α →ᵇ E) := AddEquiv.lpBcf
f : { x // x ∈ lp (fun x => E) ⊤ }
⊢ ⨆ (x : α),
‖↑(↑{
toLinearMap :=
{
toAddHom :=
{ toFun := AddEquiv.lpBcf.toEquiv.toFun,
map_add' :=
(_ :
∀ (x y : { x // x ∈ lp (fun x => E) ⊤ }),
Equiv.toFun src✝.toEquiv (x + y) =
Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) },
map_smul' :=
(_ :
∀ (k : 𝕜) (f : { x // x ∈ lp (fun x => E) ⊤ }),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : { x // x ∈ lp (fun x => E) ⊤ }),
Equiv.toFun src✝.toEquiv (x + y) =
Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(k • f) =
AddHom.toFun
{ toFun := src✝.toFun,
map_add' :=
(_ :
∀ (x y : { x // x ∈ lp (fun x => E) ⊤ }),
Equiv.toFun src✝.toEquiv (x + y) =
Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }
(k • f)) },
invFun := AddEquiv.lpBcf.toEquiv.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
f)
x‖ =
⨆ (i : α), ‖↑f i‖
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.LpEquiv", "llama_tokens": 3007} |
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → EDist (β i)
f g : PiLp ⊤ β
⊢ edist f g = ⨆ (i : ι), edist (f i) (g i)
[PROOFSTEP]
dsimp [edist]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → EDist (β i)
f g : PiLp ⊤ β
⊢ (if ⊤ = 0 then ↑(Finset.card (Finite.toFinset (_ : Set.Finite {i | f i ≠ g i})))
else if ⊤ = ⊤ then ⨆ (i : ι), edist (f i) (g i) else (∑ i : ι, edist (f i) (g i) ^ 0) ^ (1 / 0)) =
⨆ (i : ι), edist (f i) (g i)
[PROOFSTEP]
exact if_neg ENNReal.top_ne_zero
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f : PiLp p β
⊢ edist f f = 0
[PROOFSTEP]
rcases p.trichotomy with (rfl | rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f : PiLp 0 β
⊢ edist f f = 0
[PROOFSTEP]
simp [edist_eq_card]
[GOAL]
case inr.inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f : PiLp ⊤ β
⊢ edist f f = 0
[PROOFSTEP]
simp [edist_eq_iSup]
[GOAL]
case inr.inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f : PiLp p β
h : 0 < ENNReal.toReal p
⊢ edist f f = 0
[PROOFSTEP]
simp [edist_eq_sum h, ENNReal.zero_rpow_of_pos h, ENNReal.zero_rpow_of_pos (inv_pos.2 <| h)]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f g : PiLp p β
⊢ edist f g = edist g f
[PROOFSTEP]
rcases p.trichotomy with (rfl | rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f g : PiLp 0 β
⊢ edist f g = edist g f
[PROOFSTEP]
simp only [edist_eq_card, eq_comm, Ne.def]
[GOAL]
case inr.inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f g : PiLp ⊤ β
⊢ edist f g = edist g f
[PROOFSTEP]
simp only [edist_eq_iSup, edist_comm]
[GOAL]
case inr.inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
f g : PiLp p β
h : 0 < ENNReal.toReal p
⊢ edist f g = edist g f
[PROOFSTEP]
simp only [edist_eq_sum h, edist_comm]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → Dist (α i)
f g : PiLp ⊤ α
⊢ dist f g = ⨆ (i : ι), dist (f i) (g i)
[PROOFSTEP]
dsimp [dist]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹ : Fintype ι
inst✝ : (i : ι) → Dist (α i)
f g : PiLp ⊤ α
⊢ (if ⊤ = 0 then ↑(Finset.card (Finite.toFinset (_ : Set.Finite {i | f i ≠ g i})))
else if ⊤ = ⊤ then ⨆ (i : ι), dist (f i) (g i) else (∑ i : ι, dist (f i) (g i) ^ 0) ^ (1 / 0)) =
⨆ (i : ι), dist (f i) (g i)
[PROOFSTEP]
exact if_neg ENNReal.top_ne_zero
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : (i : ι) → Norm (β i)
inst✝ : (i : ι) → Zero (β i)
f : PiLp ⊤ β
⊢ ‖f‖ = ⨆ (i : ι), ‖f i‖
[PROOFSTEP]
dsimp [Norm.norm]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : (i : ι) → Norm (β i)
inst✝ : (i : ι) → Zero (β i)
f : PiLp ⊤ β
⊢ (if ⊤ = 0 then ↑(Finset.card (Finite.toFinset (_ : Set.Finite {i | f i ≠ 0})))
else if ⊤ = ⊤ then ⨆ (i : ι), ‖f i‖ else (∑ i : ι, ‖f i‖ ^ 0) ^ (1 / 0)) =
⨆ (i : ι), ‖f i‖
[PROOFSTEP]
exact if_neg ENNReal.top_ne_zero
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g h : PiLp p β
⊢ edist f h ≤ edist f g + edist g h
[PROOFSTEP]
rcases p.dichotomy with (rfl | hp)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g h : PiLp ⊤ β
⊢ edist f h ≤ edist f g + edist g h
[PROOFSTEP]
simp only [edist_eq_iSup]
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g h : PiLp ⊤ β
⊢ ⨆ (i : ι), edist (f i) (h i) ≤ (⨆ (i : ι), edist (f i) (g i)) + ⨆ (i : ι), edist (g i) (h i)
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl.inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g h : PiLp ⊤ β
h✝ : IsEmpty ι
⊢ ⨆ (i : ι), edist (f i) (h i) ≤ (⨆ (i : ι), edist (f i) (g i)) + ⨆ (i : ι), edist (g i) (h i)
[PROOFSTEP]
simp only [ciSup_of_empty, ENNReal.bot_eq_zero, add_zero, nonpos_iff_eq_zero]
-- Porting note: `le_iSup` needed some help
[GOAL]
case inl.inr
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g h : PiLp ⊤ β
h✝ : Nonempty ι
⊢ ⨆ (i : ι), edist (f i) (h i) ≤ (⨆ (i : ι), edist (f i) (g i)) + ⨆ (i : ι), edist (g i) (h i)
[PROOFSTEP]
refine
iSup_le fun i =>
(edist_triangle _ (g i) _).trans <|
add_le_add (le_iSup (fun k => edist (f k) (g k)) i) (le_iSup (fun k => edist (g k) (h k)) i)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g h : PiLp p β
hp : 1 ≤ ENNReal.toReal p
⊢ edist f h ≤ edist f g + edist g h
[PROOFSTEP]
simp only [edist_eq_sum (zero_lt_one.trans_le hp)]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g h : PiLp p β
hp : 1 ≤ ENNReal.toReal p
⊢ (∑ i : ι, edist (f i) (h i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≤
(∑ i : ι, edist (f i) (g i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) +
(∑ i : ι, edist (g i) (h i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
calc
(∑ i, edist (f i) (h i) ^ p.toReal) ^ (1 / p.toReal) ≤
(∑ i, (edist (f i) (g i) + edist (g i) (h i)) ^ p.toReal) ^ (1 / p.toReal) :=
by
apply ENNReal.rpow_le_rpow _ (one_div_nonneg.2 <| zero_le_one.trans hp)
refine' Finset.sum_le_sum fun i _ => _
exact ENNReal.rpow_le_rpow (edist_triangle _ _ _) (zero_le_one.trans hp)
_ ≤ (∑ i, edist (f i) (g i) ^ p.toReal) ^ (1 / p.toReal) + (∑ i, edist (g i) (h i) ^ p.toReal) ^ (1 / p.toReal) :=
ENNReal.Lp_add_le _ _ _ hp
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g h : PiLp p β
hp : 1 ≤ ENNReal.toReal p
⊢ (∑ i : ι, edist (f i) (h i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≤
(∑ i : ι, (edist (f i) (g i) + edist (g i) (h i)) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
apply ENNReal.rpow_le_rpow _ (one_div_nonneg.2 <| zero_le_one.trans hp)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g h : PiLp p β
hp : 1 ≤ ENNReal.toReal p
⊢ ∑ i : ι, edist (f i) (h i) ^ ENNReal.toReal p ≤ ∑ i : ι, (edist (f i) (g i) + edist (g i) (h i)) ^ ENNReal.toReal p
[PROOFSTEP]
refine' Finset.sum_le_sum fun i _ => _
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g h : PiLp p β
hp : 1 ≤ ENNReal.toReal p
i : ι
x✝ : i ∈ Finset.univ
⊢ edist (f i) (h i) ^ ENNReal.toReal p ≤ (edist (f i) (g i) + edist (g i) (h i)) ^ ENNReal.toReal p
[PROOFSTEP]
exact ENNReal.rpow_le_rpow (edist_triangle _ _ _) (zero_le_one.trans hp)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι✝ : Type u_3
α✝ : ι✝ → Type u_4
β : ι✝ → Type u_5
inst✝⁵ : Fact (1 ≤ p)
inst✝⁴ : (i : ι✝) → PseudoMetricSpace (α✝ i)
inst✝³ : (i : ι✝) → PseudoEMetricSpace (β i)
inst✝² : Fintype ι✝
ι : Type u_6
inst✝¹ : Finite ι
α : ι → Type u_7
inst✝ : (i : ι) → PseudoMetricSpace (α i)
f g : PiLp ⊤ α
⊢ ⨆ (i : ι), edist (f i) (g i) ≠ ⊤
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι✝ : Type u_3
α✝ : ι✝ → Type u_4
β : ι✝ → Type u_5
inst✝⁵ : Fact (1 ≤ p)
inst✝⁴ : (i : ι✝) → PseudoMetricSpace (α✝ i)
inst✝³ : (i : ι✝) → PseudoEMetricSpace (β i)
inst✝² : Fintype ι✝
ι : Type u_6
inst✝¹ : Finite ι
α : ι → Type u_7
inst✝ : (i : ι) → PseudoMetricSpace (α i)
f g : PiLp ⊤ α
val✝ : Fintype ι
⊢ ⨆ (i : ι), edist (f i) (g i) ≠ ⊤
[PROOFSTEP]
obtain ⟨M, hM⟩ := Fintype.exists_le fun i => (⟨dist (f i) (g i), dist_nonneg⟩ : ℝ≥0)
[GOAL]
case intro.intro
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι✝ : Type u_3
α✝ : ι✝ → Type u_4
β : ι✝ → Type u_5
inst✝⁵ : Fact (1 ≤ p)
inst✝⁴ : (i : ι✝) → PseudoMetricSpace (α✝ i)
inst✝³ : (i : ι✝) → PseudoEMetricSpace (β i)
inst✝² : Fintype ι✝
ι : Type u_6
inst✝¹ : Finite ι
α : ι → Type u_7
inst✝ : (i : ι) → PseudoMetricSpace (α i)
f g : PiLp ⊤ α
val✝ : Fintype ι
M : { r // 0 ≤ r }
hM : ∀ (i : ι), { val := dist (f i) (g i), property := (_ : 0 ≤ dist (f i) (g i)) } ≤ M
⊢ ⨆ (i : ι), edist (f i) (g i) ≠ ⊤
[PROOFSTEP]
refine' ne_of_lt ((iSup_le fun i => _).trans_lt (@ENNReal.coe_lt_top M))
[GOAL]
case intro.intro
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι✝ : Type u_3
α✝ : ι✝ → Type u_4
β : ι✝ → Type u_5
inst✝⁵ : Fact (1 ≤ p)
inst✝⁴ : (i : ι✝) → PseudoMetricSpace (α✝ i)
inst✝³ : (i : ι✝) → PseudoEMetricSpace (β i)
inst✝² : Fintype ι✝
ι : Type u_6
inst✝¹ : Finite ι
α : ι → Type u_7
inst✝ : (i : ι) → PseudoMetricSpace (α i)
f g : PiLp ⊤ α
val✝ : Fintype ι
M : { r // 0 ≤ r }
hM : ∀ (i : ι), { val := dist (f i) (g i), property := (_ : 0 ≤ dist (f i) (g i)) } ≤ M
i : ι
⊢ edist (f i) (g i) ≤ ↑M
[PROOFSTEP]
simp only [edist, PseudoMetricSpace.edist_dist, ENNReal.ofReal_eq_coe_nnreal dist_nonneg]
[GOAL]
case intro.intro
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι✝ : Type u_3
α✝ : ι✝ → Type u_4
β : ι✝ → Type u_5
inst✝⁵ : Fact (1 ≤ p)
inst✝⁴ : (i : ι✝) → PseudoMetricSpace (α✝ i)
inst✝³ : (i : ι✝) → PseudoEMetricSpace (β i)
inst✝² : Fintype ι✝
ι : Type u_6
inst✝¹ : Finite ι
α : ι → Type u_7
inst✝ : (i : ι) → PseudoMetricSpace (α i)
f g : PiLp ⊤ α
val✝ : Fintype ι
M : { r // 0 ≤ r }
hM : ∀ (i : ι), { val := dist (f i) (g i), property := (_ : 0 ≤ dist (f i) (g i)) } ≤ M
i : ι
⊢ ↑{ val := dist (f i) (g i), property := (_ : 0 ≤ dist (f i) (g i)) } ≤ ↑M
[PROOFSTEP]
exact_mod_cast hM i
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g : PiLp p α
⊢ edist f g ≠ ⊤
[PROOFSTEP]
rcases p.dichotomy with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
⊢ edist f g ≠ ⊤
[PROOFSTEP]
exact iSup_edist_ne_top_aux f g
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g : PiLp p α
h : 1 ≤ ENNReal.toReal p
⊢ edist f g ≠ ⊤
[PROOFSTEP]
rw [edist_eq_sum (zero_lt_one.trans_le h)]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g : PiLp p α
h : 1 ≤ ENNReal.toReal p
⊢ (∑ i : ι, edist (f i) (g i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≠ ⊤
[PROOFSTEP]
exact
ENNReal.rpow_ne_top_of_nonneg (one_div_nonneg.2 (zero_le_one.trans h))
(ne_of_lt <| ENNReal.sum_lt_top fun i hi => ENNReal.rpow_ne_top_of_nonneg (zero_le_one.trans h) (edist_ne_top _ _))
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g : PiLp p α
⊢ dist f g = ENNReal.toReal (edist f g)
[PROOFSTEP]
rcases p.dichotomy with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
⊢ dist f g = ENNReal.toReal (edist f g)
[PROOFSTEP]
rw [edist_eq_iSup, dist_eq_iSup]
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
⊢ ⨆ (i : ι), dist (f i) (g i) = ENNReal.toReal (⨆ (i : ι), edist (f i) (g i))
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl.inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : IsEmpty ι
⊢ ⨆ (i : ι), dist (f i) (g i) = ENNReal.toReal (⨆ (i : ι), edist (f i) (g i))
[PROOFSTEP]
simp only [Real.ciSup_empty, ciSup_of_empty, ENNReal.bot_eq_zero, ENNReal.zero_toReal]
[GOAL]
case inl.inr
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
⊢ ⨆ (i : ι), dist (f i) (g i) = ENNReal.toReal (⨆ (i : ι), edist (f i) (g i))
[PROOFSTEP]
refine' le_antisymm (ciSup_le fun i => _) _
[GOAL]
case inl.inr.refine'_1
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
i : ι
⊢ dist (f i) (g i) ≤ ENNReal.toReal (⨆ (i : ι), edist (f i) (g i))
[PROOFSTEP]
rw [← ENNReal.ofReal_le_iff_le_toReal (iSup_edist_ne_top_aux f g), ← PseudoMetricSpace.edist_dist]
-- Porting note: `le_iSup` needed some help
[GOAL]
case inl.inr.refine'_1
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
i : ι
⊢ PseudoMetricSpace.edist (f i) (g i) ≤ ⨆ (i : ι), edist (f i) (g i)
[PROOFSTEP]
exact le_iSup (fun k => edist (f k) (g k)) i
[GOAL]
case inl.inr.refine'_2
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
⊢ ENNReal.toReal (⨆ (i : ι), edist (f i) (g i)) ≤ ⨆ (i : ι), dist (f i) (g i)
[PROOFSTEP]
refine' ENNReal.toReal_le_of_le_ofReal (Real.sSup_nonneg _ _) (iSup_le fun i => _)
[GOAL]
case inl.inr.refine'_2.refine'_1
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
⊢ ∀ (x : ℝ), (x ∈ range fun i => dist (f i) (g i)) → 0 ≤ x
[PROOFSTEP]
rintro - ⟨i, rfl⟩
[GOAL]
case inl.inr.refine'_2.refine'_1.intro
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
i : ι
⊢ 0 ≤ (fun i => dist (f i) (g i)) i
[PROOFSTEP]
exact dist_nonneg
[GOAL]
case inl.inr.refine'_2.refine'_2
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
i : ι
⊢ edist (f i) (g i) ≤ ENNReal.ofReal (⨆ (i : ι), dist (f i) (g i))
[PROOFSTEP]
change PseudoMetricSpace.edist _ _ ≤ _
[GOAL]
case inl.inr.refine'_2.refine'_2
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
i : ι
⊢ PseudoMetricSpace.edist (f i) (g i) ≤ ENNReal.ofReal (⨆ (i : ι), dist (f i) (g i))
[PROOFSTEP]
rw [PseudoMetricSpace.edist_dist]
-- Porting note: `le_ciSup` needed some help
[GOAL]
case inl.inr.refine'_2.refine'_2
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
f g : PiLp ⊤ α
h✝ : Nonempty ι
i : ι
⊢ ENNReal.ofReal (dist (f i) (g i)) ≤ ENNReal.ofReal (⨆ (i : ι), dist (f i) (g i))
[PROOFSTEP]
exact ENNReal.ofReal_le_ofReal (le_ciSup (Fintype.bddAbove_range (fun k => dist (f k) (g k))) i)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g : PiLp p α
h : 1 ≤ ENNReal.toReal p
⊢ dist f g = ENNReal.toReal (edist f g)
[PROOFSTEP]
have A : ∀ i, edist (f i) (g i) ^ p.toReal ≠ ⊤ := fun i =>
ENNReal.rpow_ne_top_of_nonneg (zero_le_one.trans h) (edist_ne_top _ _)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
f g : PiLp p α
h : 1 ≤ ENNReal.toReal p
A : ∀ (i : ι), edist (f i) (g i) ^ ENNReal.toReal p ≠ ⊤
⊢ dist f g = ENNReal.toReal (edist f g)
[PROOFSTEP]
simp only [edist_eq_sum (zero_lt_one.trans_le h), dist_edist, ENNReal.toReal_rpow, dist_eq_sum (zero_lt_one.trans_le h),
← ENNReal.toReal_sum fun i _ => A i]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
⊢ LipschitzWith 1 ↑(equiv p β)
[PROOFSTEP]
intro x y
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
⊢ edist (↑(equiv p β) x) (↑(equiv p β) y) ≤ ↑1 * edist x y
[PROOFSTEP]
rcases p.dichotomy with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
x y : PiLp ⊤ β
⊢ edist (↑(equiv ⊤ β) x) (↑(equiv ⊤ β) y) ≤ ↑1 * edist x y
[PROOFSTEP]
simpa only [ENNReal.coe_one, one_mul, edist_eq_iSup, edist, Finset.sup_le_iff, Finset.mem_univ, forall_true_left] using
le_iSup fun i => edist (x i) (y i)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
⊢ edist (↑(equiv p β) x) (↑(equiv p β) y) ≤ ↑1 * edist x y
[PROOFSTEP]
have cancel : p.toReal * (1 / p.toReal) = 1 := mul_div_cancel' 1 (zero_lt_one.trans_le h).ne'
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ edist (↑(equiv p β) x) (↑(equiv p β) y) ≤ ↑1 * edist x y
[PROOFSTEP]
rw [edist_eq_sum (zero_lt_one.trans_le h)]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ edist (↑(equiv p β) x) (↑(equiv p β) y) ≤
↑1 * (∑ i : ι, edist (x i) (y i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
simp only [edist, forall_prop_of_true, one_mul, Finset.mem_univ, Finset.sup_le_iff, ENNReal.coe_one]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ ∀ (b : ι),
edist (↑(equiv p β) x b) (↑(equiv p β) y b) ≤
(∑ x_1 : ι, edist (x x_1) (y x_1) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
intro i
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
i : ι
⊢ edist (↑(equiv p β) x i) (↑(equiv p β) y i) ≤
(∑ x_1 : ι, edist (x x_1) (y x_1) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
calc
edist (x i) (y i) = (edist (x i) (y i) ^ p.toReal) ^ (1 / p.toReal) := by simp [← ENNReal.rpow_mul, cancel, -one_div]
_ ≤ (∑ i, edist (x i) (y i) ^ p.toReal) ^ (1 / p.toReal) :=
by
apply ENNReal.rpow_le_rpow _ (one_div_nonneg.2 <| zero_le_one.trans h)
exact Finset.single_le_sum (fun i _ => (bot_le : (0 : ℝ≥0∞) ≤ _)) (Finset.mem_univ i)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
i : ι
⊢ edist (x i) (y i) = (edist (x i) (y i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
simp [← ENNReal.rpow_mul, cancel, -one_div]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
i : ι
⊢ (edist (x i) (y i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≤
(∑ i : ι, edist (x i) (y i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
apply ENNReal.rpow_le_rpow _ (one_div_nonneg.2 <| zero_le_one.trans h)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
i : ι
⊢ edist (x i) (y i) ^ ENNReal.toReal p ≤ ∑ i : ι, edist (x i) (y i) ^ ENNReal.toReal p
[PROOFSTEP]
exact Finset.single_le_sum (fun i _ => (bot_le : (0 : ℝ≥0∞) ≤ _)) (Finset.mem_univ i)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
⊢ AntilipschitzWith (↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) ↑(equiv p β)
[PROOFSTEP]
intro x y
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
⊢ edist x y ≤ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
rcases p.dichotomy with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
x y : PiLp ⊤ β
⊢ edist x y ≤ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / ⊤)) * edist (↑(equiv ⊤ β) x) (↑(equiv ⊤ β) y)
[PROOFSTEP]
simp only [edist_eq_iSup, ENNReal.div_top, ENNReal.zero_toReal, NNReal.rpow_zero, ENNReal.coe_one, one_mul, iSup_le_iff]
-- Porting note: `Finset.le_sup` needed some help
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : (i : ι) → PseudoMetricSpace (α i)
inst✝² : (i : ι) → PseudoEMetricSpace (β i)
inst✝¹ : Fintype ι
inst✝ : Fact (1 ≤ ⊤)
x y : PiLp ⊤ β
⊢ ∀ (i : ι), edist (x i) (y i) ≤ edist (↑(equiv ⊤ β) x) (↑(equiv ⊤ β) y)
[PROOFSTEP]
exact fun i => Finset.le_sup (f := fun i => edist (x i) (y i)) (Finset.mem_univ i)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
⊢ edist x y ≤ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
have pos : 0 < p.toReal := zero_lt_one.trans_le h
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
⊢ edist x y ≤ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
have nonneg : 0 ≤ 1 / p.toReal := one_div_nonneg.2 (le_of_lt pos)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
⊢ edist x y ≤ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
have cancel : p.toReal * (1 / p.toReal) = 1 := mul_div_cancel' 1 (ne_of_gt pos)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ edist x y ≤ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
rw [edist_eq_sum pos, ENNReal.toReal_div 1 p]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ (∑ i : ι, edist (x i) (y i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≤
↑(↑(Fintype.card ι) ^ (ENNReal.toReal 1 / ENNReal.toReal p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
simp only [edist, ← one_div, ENNReal.one_toReal]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ (∑ x_1 : ι, edist (x x_1) (y x_1) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≤
↑(↑(Fintype.card ι) ^ (1 / ENNReal.toReal p)) *
Finset.sup Finset.univ fun b => edist (↑(equiv p β) x b) (↑(equiv p β) y b)
[PROOFSTEP]
calc
(∑ i, edist (x i) (y i) ^ p.toReal) ^ (1 / p.toReal) ≤
(∑ _i, edist (PiLp.equiv p β x) (PiLp.equiv p β y) ^ p.toReal) ^ (1 / p.toReal) :=
by
refine ENNReal.rpow_le_rpow ?_ nonneg
swap
refine Finset.sum_le_sum fun i _ => ?_
apply ENNReal.rpow_le_rpow _ (le_of_lt pos)
exact Finset.le_sup (f := fun i => edist (x i) (y i)) (Finset.mem_univ i)
_ = ((Fintype.card ι : ℝ≥0) ^ (1 / p.toReal) : ℝ≥0) * edist (PiLp.equiv p β x) (PiLp.equiv p β y) :=
by
simp only [nsmul_eq_mul, Finset.card_univ, ENNReal.rpow_one, Finset.sum_const,
ENNReal.mul_rpow_of_nonneg _ _ nonneg, ← ENNReal.rpow_mul, cancel]
have : (Fintype.card ι : ℝ≥0∞) = (Fintype.card ι : ℝ≥0) := (ENNReal.coe_nat (Fintype.card ι)).symm
rw [this, ENNReal.coe_rpow_of_nonneg _ nonneg]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ (∑ i : ι, edist (x i) (y i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≤
(∑ _i : ?m.67030, edist (↑(equiv p β) x) (↑(equiv p β) y) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
refine ENNReal.rpow_le_rpow ?_ nonneg
[GOAL]
case refine_1
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ Fintype ?m.67030
case refine_2
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ ∑ i : ι, edist (x i) (y i) ^ ENNReal.toReal p ≤
∑ _i : ?m.67030, edist (↑(equiv p β) x) (↑(equiv p β) y) ^ ENNReal.toReal p
[PROOFSTEP]
swap
[GOAL]
case refine_2
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ ∑ i : ι, edist (x i) (y i) ^ ENNReal.toReal p ≤
∑ _i : ?m.67030, edist (↑(equiv p β) x) (↑(equiv p β) y) ^ ENNReal.toReal p
case refine_1
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ Fintype ?m.67030
[PROOFSTEP]
refine Finset.sum_le_sum fun i _ => ?_
[GOAL]
case refine_2
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
i : ι
x✝ : i ∈ Finset.univ
⊢ edist (x i) (y i) ^ ENNReal.toReal p ≤ edist (↑(equiv p β) x) (↑(equiv p β) y) ^ ENNReal.toReal p
[PROOFSTEP]
apply ENNReal.rpow_le_rpow _ (le_of_lt pos)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
i : ι
x✝ : i ∈ Finset.univ
⊢ edist (x i) (y i) ≤ edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
exact Finset.le_sup (f := fun i => edist (x i) (y i)) (Finset.mem_univ i)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ (∑ _i : ι, edist (↑(equiv p β) x) (↑(equiv p β) y) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) =
↑(↑(Fintype.card ι) ^ (1 / ENNReal.toReal p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
simp only [nsmul_eq_mul, Finset.card_univ, ENNReal.rpow_one, Finset.sum_const, ENNReal.mul_rpow_of_nonneg _ _ nonneg, ←
ENNReal.rpow_mul, cancel]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ ↑(Fintype.card ι) ^ (1 / ENNReal.toReal p) * edist (↑(equiv p β) x) (↑(equiv p β) y) =
↑(↑(Fintype.card ι) ^ (1 / ENNReal.toReal p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
have : (Fintype.card ι : ℝ≥0∞) = (Fintype.card ι : ℝ≥0) := (ENNReal.coe_nat (Fintype.card ι)).symm
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
pos : 0 < ENNReal.toReal p
nonneg : 0 ≤ 1 / ENNReal.toReal p
cancel : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
this : ↑(Fintype.card ι) = ↑↑(Fintype.card ι)
⊢ ↑(Fintype.card ι) ^ (1 / ENNReal.toReal p) * edist (↑(equiv p β) x) (↑(equiv p β) y) =
↑(↑(Fintype.card ι) ^ (1 / ENNReal.toReal p)) * edist (↑(equiv p β) x) (↑(equiv p β) y)
[PROOFSTEP]
rw [this, ENNReal.coe_rpow_of_nonneg _ nonneg]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
⊢ 𝓤 (PiLp p β) = 𝓤 ((i : ι) → β i)
[PROOFSTEP]
have A : UniformInducing (PiLp.equiv p β) :=
(antilipschitzWith_equiv_aux p β).uniformInducing (lipschitzWith_equiv_aux p β).uniformContinuous
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
A : UniformInducing ↑(equiv p β)
⊢ 𝓤 (PiLp p β) = 𝓤 ((i : ι) → β i)
[PROOFSTEP]
have : (fun x : PiLp p β × PiLp p β => ((PiLp.equiv p β) x.fst, (PiLp.equiv p β) x.snd)) = id := by ext i <;> rfl
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
A : UniformInducing ↑(equiv p β)
⊢ (fun x => (↑(equiv p β) x.fst, ↑(equiv p β) x.snd)) = id
[PROOFSTEP]
ext i
[GOAL]
case h.h₁.h
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
A : UniformInducing ↑(equiv p β)
i : PiLp p β × PiLp p β
x✝ : ι
⊢ Prod.fst (↑(equiv p β) i.fst, ↑(equiv p β) i.snd) x✝ = Prod.fst (id i) x✝
[PROOFSTEP]
rfl
[GOAL]
case h.h₂.h
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
A : UniformInducing ↑(equiv p β)
i : PiLp p β × PiLp p β
x✝ : ι
⊢ Prod.snd (↑(equiv p β) i.fst, ↑(equiv p β) i.snd) x✝ = Prod.snd (id i) x✝
[PROOFSTEP]
rfl
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝³ : Fact (1 ≤ p)
inst✝² : (i : ι) → PseudoMetricSpace (α i)
inst✝¹ : (i : ι) → PseudoEMetricSpace (β i)
inst✝ : Fintype ι
A : UniformInducing ↑(equiv p β)
this : (fun x => (↑(equiv p β) x.fst, ↑(equiv p β) x.snd)) = id
⊢ 𝓤 (PiLp p β) = 𝓤 ((i : ι) → β i)
[PROOFSTEP]
rw [← A.comap_uniformity, this, comap_id]
[GOAL]
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝³ : Fintype ι
inst✝² : Fact (1 ≤ p✝)
p : ℝ≥0∞
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → PseudoMetricSpace (β i)
hp : p ≠ ⊤
x y : PiLp p β
⊢ ↑(nndist x y) = ↑((∑ i : ι, nndist (x i) (y i) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p))
[PROOFSTEP]
push_cast
[GOAL]
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝³ : Fintype ι
inst✝² : Fact (1 ≤ p✝)
p : ℝ≥0∞
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → PseudoMetricSpace (β i)
hp : p ≠ ⊤
x y : PiLp p β
⊢ dist x y = (∑ x_1 : ι, dist (x x_1) (y x_1) ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
exact dist_eq_sum (p.toReal_pos_iff_ne_top.mpr hp) _ _
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → PseudoMetricSpace (β i)
x y : PiLp ⊤ β
⊢ ↑(nndist x y) = ↑(⨆ (i : ι), nndist (x i) (y i))
[PROOFSTEP]
push_cast
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → PseudoMetricSpace (β i)
x y : PiLp ⊤ β
⊢ dist x y = ⨆ (i : ι), dist (x i) (y i)
[PROOFSTEP]
exact dist_eq_iSup _ _
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
x y : PiLp ⊤ β
⊢ edist (↑(equiv ⊤ β) x) (↑(equiv ⊤ β) y) ≤ edist x y
[PROOFSTEP]
simpa only [ENNReal.coe_one, one_mul] using lipschitzWith_equiv ∞ β x y
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → PseudoEMetricSpace (β i)
x y : PiLp ⊤ β
⊢ edist x y ≤ edist (↑(equiv ⊤ β) x) (↑(equiv ⊤ β) y)
[PROOFSTEP]
simpa only [ENNReal.div_top, ENNReal.zero_toReal, NNReal.rpow_zero, ENNReal.coe_one, one_mul] using
antilipschitzWith_equiv ∞ β x y
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
x y : PiLp p β
⊢ dist x y = ‖x - y‖
[PROOFSTEP]
rcases p.dichotomy with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
inst✝ : Fact (1 ≤ ⊤)
x y : PiLp ⊤ β
⊢ dist x y = ‖x - y‖
[PROOFSTEP]
simp only [dist_eq_iSup, norm_eq_ciSup, dist_eq_norm]
-- Porting note: added
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
inst✝ : Fact (1 ≤ ⊤)
x y : PiLp ⊤ β
⊢ ⨆ (i : ι), ‖x i - y i‖ = ⨆ (i : ι), ‖(x - y) i‖
[PROOFSTEP]
congr
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
⊢ dist x y = ‖x - y‖
[PROOFSTEP]
have : p ≠ ∞ := by
intro hp
rw [hp, ENNReal.top_toReal] at h
linarith
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
⊢ p ≠ ⊤
[PROOFSTEP]
intro hp
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
hp : p = ⊤
⊢ False
[PROOFSTEP]
rw [hp, ENNReal.top_toReal] at h
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
x y : PiLp p β
h : 1 ≤ 0
hp : p = ⊤
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
this : p ≠ ⊤
⊢ dist x y = ‖x - y‖
[PROOFSTEP]
simp only [dist_eq_sum (zero_lt_one.trans_le h), norm_eq_sum (zero_lt_one.trans_le h), dist_eq_norm]
-- Porting note: added
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
src✝ : AddCommGroup ((i : ι) → β i) := Pi.addCommGroup
x y : PiLp p β
h : 1 ≤ ENNReal.toReal p
this : p ≠ ⊤
⊢ (∑ x_1 : ι, ‖x x_1 - y x_1‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) =
(∑ i : ι, ‖(x - y) i‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
congr
[GOAL]
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝³ : Fintype ι
inst✝² : Fact (1 ≤ p✝)
p : ℝ≥0∞
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
hp : p ≠ ⊤
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
f : PiLp p β
⊢ ‖f‖₊ = (∑ i : ι, ‖f i‖₊ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
ext
[GOAL]
case a
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝³ : Fintype ι
inst✝² : Fact (1 ≤ p✝)
p : ℝ≥0∞
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
hp : p ≠ ⊤
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
f : PiLp p β
⊢ ↑‖f‖₊ = ↑((∑ i : ι, ‖f i‖₊ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p))
[PROOFSTEP]
simp [NNReal.coe_sum, norm_eq_sum (p.toReal_pos_iff_ne_top.mpr hp)]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
f : PiLp ⊤ β
⊢ ‖f‖₊ = ⨆ (i : ι), ‖f i‖₊
[PROOFSTEP]
ext
[GOAL]
case a
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
f : PiLp ⊤ β
⊢ ↑‖f‖₊ = ↑(⨆ (i : ι), ‖f i‖₊)
[PROOFSTEP]
simp [NNReal.coe_iSup, norm_eq_ciSup]
[GOAL]
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝³ : Fintype ι
inst✝² : Fact (1 ≤ p✝)
p : ℝ≥0∞
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
n : ℕ
h : p = ↑n
f : PiLp p β
⊢ ‖f‖ = (∑ i : ι, ‖f i‖ ^ n) ^ (1 / ↑n)
[PROOFSTEP]
have := p.toReal_pos_iff_ne_top.mpr (ne_of_eq_of_ne h <| ENNReal.nat_ne_top n)
[GOAL]
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝³ : Fintype ι
inst✝² : Fact (1 ≤ p✝)
p : ℝ≥0∞
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
n : ℕ
h : p = ↑n
f : PiLp p β
this : 0 < ENNReal.toReal p
⊢ ‖f‖ = (∑ i : ι, ‖f i‖ ^ n) ^ (1 / ↑n)
[PROOFSTEP]
simp only [one_div, h, Real.rpow_nat_cast, ENNReal.toReal_nat, eq_self_iff_true, Finset.sum_congr, norm_eq_sum this]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ ‖x‖ = Real.sqrt (∑ i : ι, ‖x i‖ ^ 2)
[PROOFSTEP]
rw [norm_eq_of_nat 2 (by norm_cast) _]
-- Porting note: was `convert`
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ 2 = ↑2
[PROOFSTEP]
norm_cast
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ (∑ i : ι, ‖x i‖ ^ 2) ^ (1 / ↑2) = Real.sqrt (∑ i : ι, ‖x i‖ ^ 2)
[PROOFSTEP]
rw [Real.sqrt_eq_rpow]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ (∑ i : ι, ‖x i‖ ^ 2) ^ (1 / ↑2) = (∑ i : ι, ‖x i‖ ^ 2) ^ (1 / 2)
[PROOFSTEP]
norm_cast
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ ↑‖x‖₊ = ↑(↑NNReal.sqrt (∑ i : ι, ‖x i‖₊ ^ 2))
[PROOFSTEP]
push_cast
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ ‖x‖ = Real.sqrt (∑ x_1 : ι, ‖x x_1‖ ^ 2)
[PROOFSTEP]
exact norm_eq_of_L2 x
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ ‖x‖ ^ 2 = ∑ i : ι, ‖x i‖ ^ 2
[PROOFSTEP]
suffices ‖x‖₊ ^ 2 = ∑ i : ι, ‖x i‖₊ ^ 2 by simpa only [NNReal.coe_sum] using congr_arg ((↑) : ℝ≥0 → ℝ) this
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
this : ‖x‖₊ ^ 2 = ∑ i : ι, ‖x i‖₊ ^ 2
⊢ ‖x‖ ^ 2 = ∑ i : ι, ‖x i‖ ^ 2
[PROOFSTEP]
simpa only [NNReal.coe_sum] using congr_arg ((↑) : ℝ≥0 → ℝ) this
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x : PiLp 2 β
⊢ ‖x‖₊ ^ 2 = ∑ i : ι, ‖x i‖₊ ^ 2
[PROOFSTEP]
rw [nnnorm_eq_of_L2, NNReal.sq_sqrt]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x y : PiLp 2 β
⊢ dist x y = Real.sqrt (∑ i : ι, dist (x i) (y i) ^ 2)
[PROOFSTEP]
simp_rw [dist_eq_norm, norm_eq_of_L2]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x y : PiLp 2 β
⊢ Real.sqrt (∑ i : ι, ‖(x - y) i‖ ^ 2) = Real.sqrt (∑ x_1 : ι, ‖x x_1 - y x_1‖ ^ 2)
[PROOFSTEP]
rfl
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x y : PiLp 2 β
⊢ ↑(nndist x y) = ↑(↑NNReal.sqrt (∑ i : ι, nndist (x i) (y i) ^ 2))
[PROOFSTEP]
push_cast
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x y : PiLp 2 β
⊢ dist x y = Real.sqrt (∑ x_1 : ι, dist (x x_1) (y x_1) ^ 2)
[PROOFSTEP]
exact dist_eq_of_L2 _ _
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝² : Fintype ι
inst✝¹ : Fact (1 ≤ p)
β : ι → Type u_6
inst✝ : (i : ι) → SeminormedAddCommGroup (β i)
x y : PiLp 2 β
⊢ edist x y = (∑ i : ι, edist (x i) (y i) ^ 2) ^ (1 / 2)
[PROOFSTEP]
simp [PiLp.edist_eq_sum]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
f : PiLp p β
⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
[PROOFSTEP]
rcases p.dichotomy with (rfl | hp)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : (i : ι) → SeminormedAddCommGroup (β i)
inst✝¹ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
inst✝ : Fact (1 ≤ ⊤)
f : PiLp ⊤ β
⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
[PROOFSTEP]
letI : Module 𝕜 (PiLp ∞ β) := Pi.module ι β 𝕜
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : (i : ι) → SeminormedAddCommGroup (β i)
inst✝¹ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
inst✝ : Fact (1 ≤ ⊤)
f : PiLp ⊤ β
this : Module 𝕜 (PiLp ⊤ β) := Pi.module ι β 𝕜
⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
[PROOFSTEP]
suffices ‖c • f‖₊ = ‖c‖₊ * ‖f‖₊ by exact_mod_cast NNReal.coe_mono this.le
[GOAL]
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : (i : ι) → SeminormedAddCommGroup (β i)
inst✝¹ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
inst✝ : Fact (1 ≤ ⊤)
f : PiLp ⊤ β
this✝ : Module 𝕜 (PiLp ⊤ β) := Pi.module ι β 𝕜
this : ‖c • f‖₊ = ‖c‖₊ * ‖f‖₊
⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
[PROOFSTEP]
exact_mod_cast NNReal.coe_mono this.le
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : (i : ι) → SeminormedAddCommGroup (β i)
inst✝¹ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
inst✝ : Fact (1 ≤ ⊤)
f : PiLp ⊤ β
this : Module 𝕜 (PiLp ⊤ β) := Pi.module ι β 𝕜
⊢ ‖c • f‖₊ = ‖c‖₊ * ‖f‖₊
[PROOFSTEP]
simp only [nnnorm_eq_ciSup, NNReal.mul_iSup, ← nnnorm_smul]
-- Porting note: added
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedField 𝕜'
inst✝² : (i : ι) → SeminormedAddCommGroup (β i)
inst✝¹ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
inst✝ : Fact (1 ≤ ⊤)
f : PiLp ⊤ β
this : Module 𝕜 (PiLp ⊤ β) := Pi.module ι β 𝕜
⊢ ⨆ (i : ι), ‖(c • f) i‖₊ = ⨆ (i : ι), ‖c • f i‖₊
[PROOFSTEP]
congr
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
f : PiLp p β
hp : 1 ≤ ENNReal.toReal p
⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
[PROOFSTEP]
have : p.toReal * (1 / p.toReal) = 1 := mul_div_cancel' 1 (zero_lt_one.trans_le hp).ne'
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
f : PiLp p β
hp : 1 ≤ ENNReal.toReal p
this : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
[PROOFSTEP]
have smul_apply : ∀ i : ι, (c • f) i = c • (f i) := fun i => rfl
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
f : PiLp p β
hp : 1 ≤ ENNReal.toReal p
this : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
smul_apply : ∀ (i : ι), (c • f) i = c • f i
⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖
[PROOFSTEP]
simp only [norm_eq_sum (zero_lt_one.trans_le hp), norm_smul, Real.mul_rpow, norm_nonneg, ← Finset.mul_sum, smul_apply]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
f : PiLp p β
hp : 1 ≤ ENNReal.toReal p
this : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
smul_apply : ∀ (i : ι), (c • f) i = c • f i
⊢ (‖c‖ ^ ENNReal.toReal p * ∑ x : ι, ‖f x‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) ≤
‖c‖ * (∑ x : ι, ‖f x‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
rw [mul_rpow (rpow_nonneg_of_nonneg (norm_nonneg _) _), ← rpow_mul (norm_nonneg _), this, Real.rpow_one]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
f : PiLp p β
hp : 1 ≤ ENNReal.toReal p
this : ENNReal.toReal p * (1 / ENNReal.toReal p) = 1
smul_apply : ∀ (i : ι), (c • f) i = c • f i
⊢ 0 ≤ ∑ x : ι, ‖f x‖ ^ ENNReal.toReal p
[PROOFSTEP]
exact Finset.sum_nonneg fun i _ => rpow_nonneg_of_nonneg (norm_nonneg _) _
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
src✝ : PiLp ⊤ β ≃ ((i : ι) → β i) := equiv ⊤ β
f : PiLp ⊤ β
⊢ ‖↑{
toLinearMap :=
{
toAddHom :=
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : PiLp ⊤ β), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ (f + g)) },
map_smul' :=
(_ :
∀ (c : 𝕜) (f : PiLp ⊤ β),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : PiLp ⊤ β), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ (f + g)) }
(c • f) =
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : PiLp ⊤ β), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ (f + g)) }
(c • f)) },
invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
f‖ =
‖f‖
[PROOFSTEP]
suffices (Finset.univ.sup fun i => ‖f i‖₊) = ⨆ i, ‖f i‖₊ by
simpa only [NNReal.coe_iSup] using congr_arg ((↑) : ℝ≥0 → ℝ) this
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
src✝ : PiLp ⊤ β ≃ ((i : ι) → β i) := equiv ⊤ β
f : PiLp ⊤ β
this : (Finset.sup Finset.univ fun i => ‖f i‖₊) = ⨆ (i : ι), ‖f i‖₊
⊢ ‖↑{
toLinearMap :=
{
toAddHom :=
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : PiLp ⊤ β), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ (f + g)) },
map_smul' :=
(_ :
∀ (c : 𝕜) (f : PiLp ⊤ β),
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : PiLp ⊤ β), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ (f + g)) }
(c • f) =
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (f g : PiLp ⊤ β), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ (f + g)) }
(c • f)) },
invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
f‖ =
‖f‖
[PROOFSTEP]
simpa only [NNReal.coe_iSup] using congr_arg ((↑) : ℝ≥0 → ℝ) this
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
src✝ : PiLp ⊤ β ≃ ((i : ι) → β i) := equiv ⊤ β
f : PiLp ⊤ β
⊢ (Finset.sup Finset.univ fun i => ‖f i‖₊) = ⨆ (i : ι), ‖f i‖₊
[PROOFSTEP]
refine' antisymm (Finset.sup_le fun i _ => le_ciSup (Fintype.bddAbove_range fun i => ‖f i‖₊) _) _
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
src✝ : PiLp ⊤ β ≃ ((i : ι) → β i) := equiv ⊤ β
f : PiLp ⊤ β
⊢ ⨆ (i : ι), ‖f i‖₊ ≤ Finset.sup Finset.univ fun i => ‖f i‖₊
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
src✝ : PiLp ⊤ β ≃ ((i : ι) → β i) := equiv ⊤ β
f : PiLp ⊤ β
h✝ : IsEmpty ι
⊢ ⨆ (i : ι), ‖f i‖₊ ≤ Finset.sup Finset.univ fun i => ‖f i‖₊
[PROOFSTEP]
simp only [ciSup_of_empty, Finset.univ_eq_empty, Finset.sup_empty, le_rfl]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁵ : Fintype ι
inst✝⁴ : Fact (1 ≤ p)
inst✝³ : NormedField 𝕜
inst✝² : NormedField 𝕜'
inst✝¹ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
src✝ : PiLp ⊤ β ≃ ((i : ι) → β i) := equiv ⊤ β
f : PiLp ⊤ β
h✝ : Nonempty ι
⊢ ⨆ (i : ι), ‖f i‖₊ ≤ Finset.sup Finset.univ fun i => ‖f i‖₊
[PROOFSTEP]
exact ciSup_le fun i => Finset.le_sup (f := fun k => ‖f k‖₊) (Finset.mem_univ i)
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x'✝ y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
x' : PiLp p fun x => E
⊢ ‖↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e) x'‖ = ‖x'‖
[PROOFSTEP]
clear x y
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x'✝ y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
x' : PiLp p fun x => E
⊢ ‖↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e) x'‖ = ‖x'‖
[PROOFSTEP]
rcases p.dichotomy with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x'✝ y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
e : ι ≃ ι'
inst✝ : Fact (1 ≤ ⊤)
x' : PiLp ⊤ fun x => E
⊢ ‖↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e) x'‖ = ‖x'‖
[PROOFSTEP]
simp_rw [norm_eq_ciSup]
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x'✝ y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
e : ι ≃ ι'
inst✝ : Fact (1 ≤ ⊤)
x' : PiLp ⊤ fun x => E
⊢ ⨆ (i : ι'), ‖↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e) x' i‖ = ⨆ (i : ι), ‖x' i‖
[PROOFSTEP]
exact e.symm.iSup_congr fun _ => rfl
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x'✝ y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
x' : PiLp p fun x => E
h : 1 ≤ ENNReal.toReal p
⊢ ‖↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e) x'‖ = ‖x'‖
[PROOFSTEP]
simp only [norm_eq_sum (zero_lt_one.trans_le h)]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x'✝ y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
x' : PiLp p fun x => E
h : 1 ≤ ENNReal.toReal p
⊢ (∑ x : ι', ‖↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e) x' x‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) =
(∑ x : ι, ‖x' x‖ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
[PROOFSTEP]
congr 1
[GOAL]
case inr.e_a
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x'✝ y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
x' : PiLp p fun x => E
h : 1 ≤ ENNReal.toReal p
⊢ ∑ x : ι', ‖↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e) x' x‖ ^ ENNReal.toReal p = ∑ x : ι, ‖x' x‖ ^ ENNReal.toReal p
[PROOFSTEP]
exact Fintype.sum_equiv e.symm _ _ fun _ => rfl
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
z : PiLp p fun x => E
⊢ ↑(LinearIsometryEquiv.symm (LinearIsometryEquiv.piLpCongrLeft p 𝕜 E e)) z =
↑(LinearIsometryEquiv.piLpCongrLeft p 𝕜 E e.symm) z
[PROOFSTEP]
simp only [LinearIsometryEquiv.piLpCongrLeft, LinearIsometryEquiv.symm, LinearIsometryEquiv.coe_mk]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
z : PiLp p fun x => E
⊢ ↑(LinearEquiv.symm (LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e)) z =
↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e.symm) z
[PROOFSTEP]
unfold PiLp WithLp
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
z : PiLp p fun x => E
⊢ ↑(LinearEquiv.symm (LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e)) z =
↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e.symm) z
[PROOFSTEP]
ext
[GOAL]
case h
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
e : ι ≃ ι'
z : PiLp p fun x => E
x✝ : ι
⊢ ↑(LinearEquiv.symm (LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e)) z x✝ =
↑(LinearEquiv.piCongrLeft' 𝕜 (fun x => E) e.symm) z x✝
[PROOFSTEP]
simp only [LinearEquiv.piCongrLeft'_symm_apply, eq_rec_constant, LinearEquiv.piCongrLeft'_apply, Equiv.symm_symm_apply]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹⁰ : Fintype ι
inst✝⁹ : Fact (1 ≤ p)
inst✝⁸ : NormedField 𝕜
inst✝⁷ : NormedField 𝕜'
inst✝⁶ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁵ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝⁴ : Fintype ι'
E : Type u_7
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq ι'
e : ι ≃ ι'
i : ι
v : E
⊢ ↑(LinearIsometryEquiv.piLpCongrLeft p 𝕜 E e) (↑(equiv p fun x => E).symm (Pi.single i v)) =
↑(equiv p fun x => E).symm (Pi.single (↑e i) v)
[PROOFSTEP]
funext x
[GOAL]
case h
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝¹⁰ : Fintype ι
inst✝⁹ : Fact (1 ≤ p)
inst✝⁸ : NormedField 𝕜
inst✝⁷ : NormedField 𝕜'
inst✝⁶ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁵ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x✝ y : PiLp p β
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝⁴ : Fintype ι'
E : Type u_7
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq ι'
e : ι ≃ ι'
i : ι
v : E
x : ι'
⊢ ↑(LinearIsometryEquiv.piLpCongrLeft p 𝕜 E e) (↑(equiv p fun x => E).symm (Pi.single i v)) x =
↑(equiv p fun x => E).symm (Pi.single (↑e i) v) x
[PROOFSTEP]
simp [LinearIsometryEquiv.piLpCongrLeft_apply, LinearEquiv.piCongrLeft', Equiv.piCongrLeft', Pi.single, Function.update,
Equiv.symm_apply_eq]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
hp : Fact (1 ≤ p)
i : ι
b : β i
⊢ ‖↑(equiv p β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
clear x y
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
hp : Fact (1 ≤ p)
i : ι
b : β i
⊢ ‖↑(equiv p β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
haveI : Nonempty ι := ⟨i⟩
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
hp : Fact (1 ≤ p)
i : ι
b : β i
this : Nonempty ι
⊢ ‖↑(equiv p β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
induction p using ENNReal.recTopCoe generalizing hp with
| top =>
simp_rw [nnnorm_eq_ciSup, equiv_symm_apply]
refine' ciSup_eq_of_forall_le_of_forall_lt_exists_gt (fun j => _) fun n hn => ⟨i, hn.trans_eq _⟩
· obtain rfl | hij := Decidable.eq_or_ne i j
· rw [Pi.single_eq_same]
· rw [Pi.single_eq_of_ne' hij, nnnorm_zero]
exact zero_le _
· rw [Pi.single_eq_same]
|
coe p =>
have hp0 : (p : ℝ) ≠ 0 := by exact_mod_cast (zero_lt_one.trans_le <| Fact.out (p := 1 ≤ (p : ℝ≥0∞))).ne'
rw [nnnorm_eq_sum ENNReal.coe_ne_top, ENNReal.coe_toReal, Fintype.sum_eq_single i, equiv_symm_apply,
Pi.single_eq_same, ← NNReal.rpow_mul, one_div, mul_inv_cancel hp0, NNReal.rpow_one]
intro j hij
rw [equiv_symm_apply, Pi.single_eq_of_ne hij, nnnorm_zero, NNReal.zero_rpow hp0]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
hp : Fact (1 ≤ p)
i : ι
b : β i
this : Nonempty ι
⊢ ‖↑(equiv p β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
induction p using ENNReal.recTopCoe generalizing hp with
| top =>
simp_rw [nnnorm_eq_ciSup, equiv_symm_apply]
refine' ciSup_eq_of_forall_le_of_forall_lt_exists_gt (fun j => _) fun n hn => ⟨i, hn.trans_eq _⟩
· obtain rfl | hij := Decidable.eq_or_ne i j
· rw [Pi.single_eq_same]
· rw [Pi.single_eq_of_ne' hij, nnnorm_zero]
exact zero_le _
· rw [Pi.single_eq_same]
|
coe p =>
have hp0 : (p : ℝ) ≠ 0 := by exact_mod_cast (zero_lt_one.trans_le <| Fact.out (p := 1 ≤ (p : ℝ≥0∞))).ne'
rw [nnnorm_eq_sum ENNReal.coe_ne_top, ENNReal.coe_toReal, Fintype.sum_eq_single i, equiv_symm_apply,
Pi.single_eq_same, ← NNReal.rpow_mul, one_div, mul_inv_cancel hp0, NNReal.rpow_one]
intro j hij
rw [equiv_symm_apply, Pi.single_eq_of_ne hij, nnnorm_zero, NNReal.zero_rpow hp0]
[GOAL]
case top
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
⊢ ‖↑(equiv ⊤ β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
| top =>
simp_rw [nnnorm_eq_ciSup, equiv_symm_apply]
refine' ciSup_eq_of_forall_le_of_forall_lt_exists_gt (fun j => _) fun n hn => ⟨i, hn.trans_eq _⟩
· obtain rfl | hij := Decidable.eq_or_ne i j
· rw [Pi.single_eq_same]
· rw [Pi.single_eq_of_ne' hij, nnnorm_zero]
exact zero_le _
· rw [Pi.single_eq_same]
[GOAL]
case top
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
⊢ ‖↑(equiv ⊤ β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
simp_rw [nnnorm_eq_ciSup, equiv_symm_apply]
[GOAL]
case top
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
⊢ ⨆ (i_1 : ι), ‖Pi.single i b i_1‖₊ = ‖b‖₊
[PROOFSTEP]
refine' ciSup_eq_of_forall_le_of_forall_lt_exists_gt (fun j => _) fun n hn => ⟨i, hn.trans_eq _⟩
[GOAL]
case top.refine'_1
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
j : ι
⊢ ‖Pi.single i b j‖₊ ≤ ‖b‖₊
[PROOFSTEP]
obtain rfl | hij := Decidable.eq_or_ne i j
[GOAL]
case top.refine'_1.inl
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
⊢ ‖Pi.single i b i‖₊ ≤ ‖b‖₊
[PROOFSTEP]
rw [Pi.single_eq_same]
[GOAL]
case top.refine'_1.inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
j : ι
hij : i ≠ j
⊢ ‖Pi.single i b j‖₊ ≤ ‖b‖₊
[PROOFSTEP]
rw [Pi.single_eq_of_ne' hij, nnnorm_zero]
[GOAL]
case top.refine'_1.inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
j : ι
hij : i ≠ j
⊢ 0 ≤ ‖b‖₊
[PROOFSTEP]
exact zero_le _
[GOAL]
case top.refine'_2
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
hp : Fact (1 ≤ ⊤)
n : ℝ≥0
hn : n < ‖b‖₊
⊢ ‖b‖₊ = ‖Pi.single i b i‖₊
[PROOFSTEP]
rw [Pi.single_eq_same]
[GOAL]
case coe
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p✝)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
p : ℝ≥0
hp : Fact (1 ≤ ↑p)
⊢ ‖↑(equiv (↑p) β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
|
coe p =>
have hp0 : (p : ℝ) ≠ 0 := by exact_mod_cast (zero_lt_one.trans_le <| Fact.out (p := 1 ≤ (p : ℝ≥0∞))).ne'
rw [nnnorm_eq_sum ENNReal.coe_ne_top, ENNReal.coe_toReal, Fintype.sum_eq_single i, equiv_symm_apply,
Pi.single_eq_same, ← NNReal.rpow_mul, one_div, mul_inv_cancel hp0, NNReal.rpow_one]
intro j hij
rw [equiv_symm_apply, Pi.single_eq_of_ne hij, nnnorm_zero, NNReal.zero_rpow hp0]
[GOAL]
case coe
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p✝)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
p : ℝ≥0
hp : Fact (1 ≤ ↑p)
⊢ ‖↑(equiv (↑p) β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
have hp0 : (p : ℝ) ≠ 0 := by exact_mod_cast (zero_lt_one.trans_le <| Fact.out (p := 1 ≤ (p : ℝ≥0∞))).ne'
[GOAL]
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p✝)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
p : ℝ≥0
hp : Fact (1 ≤ ↑p)
⊢ ↑p ≠ 0
[PROOFSTEP]
exact_mod_cast (zero_lt_one.trans_le <| Fact.out (p := 1 ≤ (p : ℝ≥0∞))).ne'
[GOAL]
case coe
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p✝)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
p : ℝ≥0
hp : Fact (1 ≤ ↑p)
hp0 : ↑p ≠ 0
⊢ ‖↑(equiv (↑p) β).symm (Pi.single i b)‖₊ = ‖b‖₊
[PROOFSTEP]
rw [nnnorm_eq_sum ENNReal.coe_ne_top, ENNReal.coe_toReal, Fintype.sum_eq_single i, equiv_symm_apply, Pi.single_eq_same,
← NNReal.rpow_mul, one_div, mul_inv_cancel hp0, NNReal.rpow_one]
[GOAL]
case coe
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p✝)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
p : ℝ≥0
hp : Fact (1 ≤ ↑p)
hp0 : ↑p ≠ 0
⊢ ∀ (x : ι), x ≠ i → ‖↑(equiv (↑p) β).symm (Pi.single i b) x‖₊ ^ ↑p = 0
[PROOFSTEP]
intro j hij
[GOAL]
case coe
p✝ : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p✝)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b : β i
this : Nonempty ι
p : ℝ≥0
hp : Fact (1 ≤ ↑p)
hp0 : ↑p ≠ 0
j : ι
hij : j ≠ i
⊢ ‖↑(equiv (↑p) β).symm (Pi.single i b) j‖₊ ^ ↑p = 0
[PROOFSTEP]
rw [equiv_symm_apply, Pi.single_eq_of_ne hij, nnnorm_zero, NNReal.zero_rpow hp0]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b₁ b₂ : β i
⊢ nndist (↑(equiv p β).symm (Pi.single i b₁)) (↑(equiv p β).symm (Pi.single i b₂)) = nndist b₁ b₂
[PROOFSTEP]
rw [nndist_eq_nnnorm, nndist_eq_nnnorm, ← WithLp.equiv_symm_sub, ← Pi.single_sub, nnnorm_equiv_symm_single]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
b₁ b₂ : β i
⊢ edist (↑(equiv p β).symm (Pi.single i b₁)) (↑(equiv p β).symm (Pi.single i b₂)) = edist b₁ b₂
[PROOFSTEP]
simp only [edist_nndist, nndist_equiv_symm_single_same p β i b₁ b₂]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x y : PiLp p β✝
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
β : Type u_8
inst✝ : SeminormedAddCommGroup β
hp : p ≠ ⊤
b : β
⊢ ‖↑(equiv p fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊
[PROOFSTEP]
rcases p.dichotomy with (h | h)
[GOAL]
case inl
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x y : PiLp p β✝
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
β : Type u_8
inst✝ : SeminormedAddCommGroup β
hp : p ≠ ⊤
b : β
h : p = ⊤
⊢ ‖↑(equiv p fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊
[PROOFSTEP]
exact False.elim (hp h)
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x y : PiLp p β✝
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
β : Type u_8
inst✝ : SeminormedAddCommGroup β
hp : p ≠ ⊤
b : β
h : 1 ≤ ENNReal.toReal p
⊢ ‖↑(equiv p fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊
[PROOFSTEP]
have ne_zero : p.toReal ≠ 0 := (zero_lt_one.trans_le h).ne'
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x y : PiLp p β✝
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
β : Type u_8
inst✝ : SeminormedAddCommGroup β
hp : p ≠ ⊤
b : β
h : 1 ≤ ENNReal.toReal p
ne_zero : ENNReal.toReal p ≠ 0
⊢ ‖↑(equiv p fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊
[PROOFSTEP]
simp_rw [nnnorm_eq_sum hp, equiv_symm_apply, Function.const_apply, Finset.sum_const, Finset.card_univ, nsmul_eq_mul,
NNReal.mul_rpow, ← NNReal.rpow_mul, mul_one_div_cancel ne_zero, NNReal.rpow_one, ENNReal.toReal_div,
ENNReal.one_toReal]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝¹⁰ : Fintype ι
inst✝⁹ : Fact (1 ≤ p)
inst✝⁸ : NormedField 𝕜
inst✝⁷ : NormedField 𝕜'
inst✝⁶ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁵ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x y : PiLp p β✝
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝⁴ : Fintype ι'
E : Type u_7
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
β : Type u_8
inst✝¹ : SeminormedAddCommGroup β
inst✝ : Nonempty ι
b : β
⊢ ‖↑(equiv p fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊
[PROOFSTEP]
clear x y
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝¹⁰ : Fintype ι
inst✝⁹ : Fact (1 ≤ p)
inst✝⁸ : NormedField 𝕜
inst✝⁷ : NormedField 𝕜'
inst✝⁶ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁵ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝⁴ : Fintype ι'
E : Type u_7
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
β : Type u_8
inst✝¹ : SeminormedAddCommGroup β
inst✝ : Nonempty ι
b : β
⊢ ‖↑(equiv p fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊
[PROOFSTEP]
rcases em <| p = ∞ with (rfl | hp)
[GOAL]
case inl
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝¹⁰ : Fintype ι
inst✝⁹ : NormedField 𝕜
inst✝⁸ : NormedField 𝕜'
inst✝⁷ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁶ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝⁵ : Fintype ι'
E : Type u_7
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
β : Type u_8
inst✝² : SeminormedAddCommGroup β
inst✝¹ : Nonempty ι
b : β
inst✝ : Fact (1 ≤ ⊤)
⊢ ‖↑(equiv ⊤ fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / ⊤) * ‖b‖₊
[PROOFSTEP]
simp only [equiv_symm_apply, ENNReal.div_top, ENNReal.zero_toReal, NNReal.rpow_zero, one_mul, nnnorm_eq_ciSup,
Function.const_apply, ciSup_const]
[GOAL]
case inr
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝¹⁰ : Fintype ι
inst✝⁹ : Fact (1 ≤ p)
inst✝⁸ : NormedField 𝕜
inst✝⁷ : NormedField 𝕜'
inst✝⁶ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁵ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝⁴ : Fintype ι'
E : Type u_7
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
β : Type u_8
inst✝¹ : SeminormedAddCommGroup β
inst✝ : Nonempty ι
b : β
hp : ¬p = ⊤
⊢ ‖↑(equiv p fun x => β).symm (Function.const ι b)‖₊ = ↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊
[PROOFSTEP]
exact nnnorm_equiv_symm_const hp b
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x y : PiLp p β✝
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
β : Type u_8
inst✝ : SeminormedAddCommGroup β
hp : p ≠ ⊤
b : β
⊢ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊) = ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) * ‖b‖
[PROOFSTEP]
simp
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β✝ : ι → Type u_5
inst✝¹⁰ : Fintype ι
inst✝⁹ : Fact (1 ≤ p)
inst✝⁸ : NormedField 𝕜
inst✝⁷ : NormedField 𝕜'
inst✝⁶ : (i : ι) → SeminormedAddCommGroup (β✝ i)
inst✝⁵ : (i : ι) → NormedSpace 𝕜 (β✝ i)
c : 𝕜
x y : PiLp p β✝
x' y' : (i : ι) → β✝ i
i : ι
ι' : Type u_6
inst✝⁴ : Fintype ι'
E : Type u_7
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
β : Type u_8
inst✝¹ : SeminormedAddCommGroup β
inst✝ : Nonempty ι
b : β
⊢ ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p) * ‖b‖₊) = ↑(↑(Fintype.card ι) ^ ENNReal.toReal (1 / p)) * ‖b‖
[PROOFSTEP]
simp
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁹ : Fintype ι
inst✝⁸ : Fact (1 ≤ p)
inst✝⁷ : NormedField 𝕜
inst✝⁶ : NormedField 𝕜'
inst✝⁵ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝⁴ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i✝ : ι
ι' : Type u_6
inst✝³ : Fintype ι'
E : Type u_7
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : DecidableEq ι
i : ι
⊢ ↑(basisFun p 𝕜 ι) i = ↑(equiv p fun i => 𝕜).symm (Pi.single i 1)
[PROOFSTEP]
simp_rw [basisFun, Basis.coe_ofEquivFun, WithLp.linearEquiv_symm_apply, Pi.single]
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
b : Basis ι 𝕜 (PiLp p fun x => 𝕜)
A : Matrix ι ι 𝕜
⊢ Basis.toMatrix b ↑(basisFun p 𝕜 ι) * A = ↑of fun i j => ↑(↑b.repr (↑(equiv p fun i => 𝕜).symm (Aᵀ j))) i
[PROOFSTEP]
have := basis_toMatrix_basisFun_mul (b.map (PiLp.linearEquiv _ 𝕜 _)) A
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
b : Basis ι 𝕜 (PiLp p fun x => 𝕜)
A : Matrix ι ι 𝕜
this :
Basis.toMatrix (Basis.map b (linearEquiv p 𝕜 fun x => 𝕜)) ↑(Pi.basisFun 𝕜 ι) * A =
↑of fun i j => ↑(↑(Basis.map b (linearEquiv p 𝕜 fun x => 𝕜)).repr (Aᵀ j)) i
⊢ Basis.toMatrix b ↑(basisFun p 𝕜 ι) * A = ↑of fun i j => ↑(↑b.repr (↑(equiv p fun i => 𝕜).symm (Aᵀ j))) i
[PROOFSTEP]
simp_rw [← PiLp.basisFun_map p, Basis.map_repr, LinearEquiv.trans_apply, WithLp.linearEquiv_symm_apply,
Basis.toMatrix_map, Function.comp, Basis.map_apply, LinearEquiv.symm_apply_apply] at this
[GOAL]
p : ℝ≥0∞
𝕜 : Type u_1
𝕜' : Type u_2
ι : Type u_3
α : ι → Type u_4
β : ι → Type u_5
inst✝⁸ : Fintype ι
inst✝⁷ : Fact (1 ≤ p)
inst✝⁶ : NormedField 𝕜
inst✝⁵ : NormedField 𝕜'
inst✝⁴ : (i : ι) → SeminormedAddCommGroup (β i)
inst✝³ : (i : ι) → NormedSpace 𝕜 (β i)
c : 𝕜
x y : PiLp p β
x' y' : (i : ι) → β i
i : ι
ι' : Type u_6
inst✝² : Fintype ι'
E : Type u_7
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
b : Basis ι 𝕜 (PiLp p fun x => 𝕜)
A : Matrix ι ι 𝕜
this :
(Basis.toMatrix b fun x => ↑(basisFun p 𝕜 ι) x) * A =
↑of fun i j => ↑(↑b.repr (↑(WithLp.equiv p (ι → 𝕜)).symm (Aᵀ j))) i
⊢ Basis.toMatrix b ↑(basisFun p 𝕜 ι) * A = ↑of fun i j => ↑(↑b.repr (↑(equiv p fun i => 𝕜).symm (Aᵀ j))) i
[PROOFSTEP]
exact this
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.PiLp", "llama_tokens": 52346} |
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
⊢ ∃ C, C ≥ 0 ∧ ∀ (y : F), ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
have A : ⋃ n : ℕ, closure (f '' ball 0 n) = Set.univ :=
by
refine' Subset.antisymm (subset_univ _) fun y _ => _
rcases surj y with ⟨x, hx⟩
rcases exists_nat_gt ‖x‖ with ⟨n, hn⟩
refine' mem_iUnion.2 ⟨n, subset_closure _⟩
refine' (mem_image _ _ _).2 ⟨x, ⟨_, hx⟩⟩
rwa [mem_ball, dist_eq_norm, sub_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
⊢ ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
[PROOFSTEP]
refine' Subset.antisymm (subset_univ _) fun y _ => _
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
y : F
x✝ : y ∈ Set.univ
⊢ y ∈ ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n)
[PROOFSTEP]
rcases surj y with ⟨x, hx⟩
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
y : F
x✝ : y ∈ Set.univ
x : E
hx : ↑f x = y
⊢ y ∈ ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n)
[PROOFSTEP]
rcases exists_nat_gt ‖x‖ with ⟨n, hn⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
y : F
x✝ : y ∈ Set.univ
x : E
hx : ↑f x = y
n : ℕ
hn : ‖x‖ < ↑n
⊢ y ∈ ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n)
[PROOFSTEP]
refine' mem_iUnion.2 ⟨n, subset_closure _⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
y : F
x✝ : y ∈ Set.univ
x : E
hx : ↑f x = y
n : ℕ
hn : ‖x‖ < ↑n
⊢ y ∈ ↑f '' ball 0 ↑n
[PROOFSTEP]
refine' (mem_image _ _ _).2 ⟨x, ⟨_, hx⟩⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
y : F
x✝ : y ∈ Set.univ
x : E
hx : ↑f x = y
n : ℕ
hn : ‖x‖ < ↑n
⊢ x ∈ ball 0 ↑n
[PROOFSTEP]
rwa [mem_ball, dist_eq_norm, sub_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
⊢ ∃ C, C ≥ 0 ∧ ∀ (y : F), ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
have : ∃ (n : ℕ) (x : _), x ∈ interior (closure (f '' ball 0 n)) :=
nonempty_interior_of_iUnion_of_closed (fun n => isClosed_closure) A
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
this : ∃ n x, x ∈ interior (closure (↑f '' ball 0 ↑n))
⊢ ∃ C, C ≥ 0 ∧ ∀ (y : F), ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
simp only [mem_interior_iff_mem_nhds, Metric.mem_nhds_iff] at this
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
this : ∃ n x ε, ε > 0 ∧ ball x ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
⊢ ∃ C, C ≥ 0 ∧ ∀ (y : F), ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
rcases this with ⟨n, a, ε, ⟨εpos, H⟩⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
⊢ ∃ C, C ≥ 0 ∧ ∀ (y : F), ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
rcases NormedField.exists_one_lt_norm 𝕜 with ⟨c, hc⟩
[GOAL]
case intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
⊢ ∃ C, C ≥ 0 ∧ ∀ (y : F), ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
refine' ⟨(ε / 2)⁻¹ * ‖c‖ * 2 * n, _, fun y => _⟩
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
⊢ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n ≥ 0
[PROOFSTEP]
refine' mul_nonneg (mul_nonneg (mul_nonneg _ (norm_nonneg _)) (by norm_num)) _
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
⊢ 0 ≤ 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro.intro.intro.refine'_1.refine'_1
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
⊢ 0 ≤ (ε / 2)⁻¹
case intro.intro.intro.intro.intro.refine'_1.refine'_2
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
⊢ 0 ≤ ↑n
[PROOFSTEP]
exacts [inv_nonneg.2 (div_nonneg (le_of_lt εpos) (by norm_num)), n.cast_nonneg]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
⊢ 0 ≤ 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
by_cases hy : y = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : y = 0
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
use 0
[GOAL]
case h
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : y = 0
⊢ dist (↑f 0) y ≤ 1 / 2 * ‖y‖ ∧ ‖0‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
simp [hy]
[GOAL]
case neg
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rcases rescale_to_shell hc (half_pos εpos) hy with ⟨d, hd, ydlt, -, dinv⟩
[GOAL]
case neg.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
let δ := ‖d‖ * ‖y‖ / 4
[GOAL]
case neg.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
have δpos : 0 < δ := div_pos (mul_pos (norm_pos_iff.2 hd) (norm_pos_iff.2 hy)) (by norm_num)
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
⊢ 0 < 4
[PROOFSTEP]
norm_num
[GOAL]
case neg.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
have : a + d • y ∈ ball a ε := by simp [dist_eq_norm, lt_of_le_of_lt ydlt.le (half_lt_self εpos)]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
⊢ a + d • y ∈ ball a ε
[PROOFSTEP]
simp [dist_eq_norm, lt_of_le_of_lt ydlt.le (half_lt_self εpos)]
[GOAL]
case neg.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this : a + d • y ∈ ball a ε
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rcases Metric.mem_closure_iff.1 (H this) _ δpos with ⟨z₁, z₁im, h₁⟩
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
h₁ : dist (a + d • y) z₁ < δ
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rcases(mem_image _ _ _).1 z₁im with ⟨x₁, hx₁, xz₁⟩
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
h₁ : dist (a + d • y) z₁ < δ
x₁ : E
hx₁ : x₁ ∈ ball 0 ↑n
xz₁ : ↑f x₁ = z₁
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rw [← xz₁] at h₁
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : x₁ ∈ ball 0 ↑n
xz₁ : ↑f x₁ = z₁
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rw [mem_ball, dist_eq_norm, sub_zero] at hx₁
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
have : a ∈ ball a ε := by
simp
exact εpos
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
⊢ a ∈ ball a ε
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
⊢ 0 < ε
[PROOFSTEP]
exact εpos
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rcases Metric.mem_closure_iff.1 (H this) _ δpos with ⟨z₂, z₂im, h₂⟩
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
h₂ : dist a z₂ < δ
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rcases(mem_image _ _ _).1 z₂im with ⟨x₂, hx₂, xz₂⟩
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
h₂ : dist a z₂ < δ
x₂ : E
hx₂ : x₂ ∈ ball 0 ↑n
xz₂ : ↑f x₂ = z₂
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rw [← xz₂] at h₂
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : x₂ ∈ ball 0 ↑n
xz₂ : ↑f x₂ = z₂
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rw [mem_ball, dist_eq_norm, sub_zero] at hx₂
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
let x := x₁ - x₂
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
have I : ‖f x - d • y‖ ≤ 2 * δ :=
calc
‖f x - d • y‖ = ‖f x₁ - (a + d • y) - (f x₂ - a)‖ := by
congr 1
simp only [f.map_sub]
abel
_ ≤ ‖f x₁ - (a + d • y)‖ + ‖f x₂ - a‖ := (norm_sub_le _ _)
_ ≤ δ + δ := by
apply add_le_add
· rw [← dist_eq_norm, dist_comm]
exact le_of_lt h₁
· rw [← dist_eq_norm, dist_comm]
exact le_of_lt h₂
_ = 2 * δ := (two_mul _).symm
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ‖↑f x - d • y‖ = ‖↑f x₁ - (a + d • y) - (↑f x₂ - a)‖
[PROOFSTEP]
congr 1
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ↑f x - d • y = ↑f x₁ - (a + d • y) - (↑f x₂ - a)
[PROOFSTEP]
simp only [f.map_sub]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ↑f x₁ - ↑f x₂ - d • y = ↑f x₁ - (a + d • y) - (↑f x₂ - a)
[PROOFSTEP]
abel
[GOAL]
case e_a
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ↑f x₁ - ↑f x₂ - d • y = ↑f x₁ - (a + d • y) - (↑f x₂ - a)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ‖↑f x₁ - (a + d • y)‖ + ‖↑f x₂ - a‖ ≤ δ + δ
[PROOFSTEP]
apply add_le_add
[GOAL]
case h₁
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ‖↑f x₁ - (a + d • y)‖ ≤ δ
[PROOFSTEP]
rw [← dist_eq_norm, dist_comm]
[GOAL]
case h₁
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ dist (a + d • y) (↑f x₁) ≤ δ
[PROOFSTEP]
exact le_of_lt h₁
[GOAL]
case h₂
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ ‖↑f x₂ - a‖ ≤ δ
[PROOFSTEP]
rw [← dist_eq_norm, dist_comm]
[GOAL]
case h₂
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
⊢ dist a (↑f x₂) ≤ δ
[PROOFSTEP]
exact le_of_lt h₂
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
have J : ‖f (d⁻¹ • x) - y‖ ≤ 1 / 2 * ‖y‖ :=
calc
‖f (d⁻¹ • x) - y‖ = ‖d⁻¹ • f x - (d⁻¹ * d) • y‖ := by rwa [f.map_smul _, inv_mul_cancel, one_smul]
_ = ‖d⁻¹ • (f x - d • y)‖ := by rw [mul_smul, smul_sub]
_ = ‖d‖⁻¹ * ‖f x - d • y‖ := by rw [norm_smul, norm_inv]
_ ≤ ‖d‖⁻¹ * (2 * δ) := by
apply mul_le_mul_of_nonneg_left I
rw [inv_nonneg]
exact norm_nonneg _
_ = ‖d‖⁻¹ * ‖d‖ * ‖y‖ / 2 := by
simp only
ring
_ = ‖y‖ / 2 := by
rw [inv_mul_cancel, one_mul]
simp [norm_eq_zero, hd]
_ = 1 / 2 * ‖y‖ := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖↑f (d⁻¹ • x) - y‖ = ‖d⁻¹ • ↑f x - (d⁻¹ * d) • y‖
[PROOFSTEP]
rwa [f.map_smul _, inv_mul_cancel, one_smul]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖d⁻¹ • ↑f x - (d⁻¹ * d) • y‖ = ‖d⁻¹ • (↑f x - d • y)‖
[PROOFSTEP]
rw [mul_smul, smul_sub]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖d⁻¹ • (↑f x - d • y)‖ = ‖d‖⁻¹ * ‖↑f x - d • y‖
[PROOFSTEP]
rw [norm_smul, norm_inv]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖d‖⁻¹ * ‖↑f x - d • y‖ ≤ ‖d‖⁻¹ * (2 * δ)
[PROOFSTEP]
apply mul_le_mul_of_nonneg_left I
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ 0 ≤ ‖d‖⁻¹
[PROOFSTEP]
rw [inv_nonneg]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ 0 ≤ ‖d‖
[PROOFSTEP]
exact norm_nonneg _
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖d‖⁻¹ * (2 * δ) = ‖d‖⁻¹ * ‖d‖ * ‖y‖ / 2
[PROOFSTEP]
simp only
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖d‖⁻¹ * (2 * (‖d‖ * ‖y‖ / 4)) = ‖d‖⁻¹ * ‖d‖ * ‖y‖ / 2
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖d‖⁻¹ * ‖d‖ * ‖y‖ / 2 = ‖y‖ / 2
[PROOFSTEP]
rw [inv_mul_cancel, one_mul]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖d‖ ≠ 0
[PROOFSTEP]
simp [norm_eq_zero, hd]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
⊢ ‖y‖ / 2 = 1 / 2 * ‖y‖
[PROOFSTEP]
ring
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : ‖↑f (d⁻¹ • x) - y‖ ≤ 1 / 2 * ‖y‖
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
rw [← dist_eq_norm] at J
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
have K : ‖d⁻¹ • x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖ :=
calc
‖d⁻¹ • x‖ = ‖d‖⁻¹ * ‖x₁ - x₂‖ := by rw [norm_smul, norm_inv]
_ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖ * (n + n) :=
by
refine' mul_le_mul dinv _ (norm_nonneg _) _
· exact le_trans (norm_sub_le _ _) (add_le_add (le_of_lt hx₁) (le_of_lt hx₂))
· apply mul_nonneg (mul_nonneg _ (norm_nonneg _)) (norm_nonneg _)
exact inv_nonneg.2 (le_of_lt (half_pos εpos))
_ = (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖ := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
⊢ ‖d⁻¹ • x‖ = ‖d‖⁻¹ * ‖x₁ - x₂‖
[PROOFSTEP]
rw [norm_smul, norm_inv]
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
⊢ ‖d‖⁻¹ * ‖x₁ - x₂‖ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖ * (↑n + ↑n)
[PROOFSTEP]
refine' mul_le_mul dinv _ (norm_nonneg _) _
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
⊢ ‖x₁ - x₂‖ ≤ ↑n + ↑n
[PROOFSTEP]
exact le_trans (norm_sub_le _ _) (add_le_add (le_of_lt hx₁) (le_of_lt hx₂))
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
⊢ 0 ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
[PROOFSTEP]
apply mul_nonneg (mul_nonneg _ (norm_nonneg _)) (norm_nonneg _)
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
⊢ 0 ≤ (ε / 2)⁻¹
[PROOFSTEP]
exact inv_nonneg.2 (le_of_lt (half_pos εpos))
[GOAL]
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
⊢ (ε / 2)⁻¹ * ‖c‖ * ‖y‖ * (↑n + ↑n) = (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
ring
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type u_3
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝ : CompleteSpace F
surj : Surjective ↑f
A : ⋃ (n : ℕ), closure (↑f '' ball 0 ↑n) = Set.univ
n : ℕ
a : F
ε : ℝ
εpos : ε > 0
H : ball a ε ⊆ closure ((fun a => ↑f a) '' ball 0 ↑n)
c : 𝕜
hc : 1 < ‖c‖
y : F
hy : ¬y = 0
d : 𝕜
hd : d ≠ 0
ydlt : ‖d • y‖ < ε / 2
dinv : ‖d‖⁻¹ ≤ (ε / 2)⁻¹ * ‖c‖ * ‖y‖
δ : ℝ := ‖d‖ * ‖y‖ / 4
δpos : 0 < δ
this✝ : a + d • y ∈ ball a ε
z₁ : F
z₁im : z₁ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₁ : E
h₁ : dist (a + d • y) (↑f x₁) < δ
hx₁ : ‖x₁‖ < ↑n
xz₁ : ↑f x₁ = z₁
this : a ∈ ball a ε
z₂ : F
z₂im : z₂ ∈ (fun a => ↑f a) '' ball 0 ↑n
x₂ : E
h₂ : dist a (↑f x₂) < δ
hx₂ : ‖x₂‖ < ↑n
xz₂ : ↑f x₂ = z₂
x : E := x₁ - x₂
I : ‖↑f x - d • y‖ ≤ 2 * δ
J : dist (↑f (d⁻¹ • x)) y ≤ 1 / 2 * ‖y‖
K : ‖d⁻¹ • x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
⊢ ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ (ε / 2)⁻¹ * ‖c‖ * 2 * ↑n * ‖y‖
[PROOFSTEP]
exact ⟨d⁻¹ • x, J, K⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
⊢ ∃ C, C > 0 ∧ ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
obtain ⟨C, C0, hC⟩ := exists_approx_preimage_norm_le f surj
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
hC : ∀ (y : F), ∃ x, dist (↑f x) y ≤ 1 / 2 * ‖y‖ ∧ ‖x‖ ≤ C * ‖y‖
⊢ ∃ C, C > 0 ∧ ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
choose g hg using hC
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
⊢ ∃ C, C > 0 ∧ ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
let h y := y - f (g y)
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
⊢ ∃ C, C > 0 ∧ ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
have hle : ∀ y, ‖h y‖ ≤ 1 / 2 * ‖y‖ := by
intro y
rw [← dist_eq_norm, dist_comm]
exact (hg y).1
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
⊢ ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
[PROOFSTEP]
intro y
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
y : F
⊢ ‖h y‖ ≤ 1 / 2 * ‖y‖
[PROOFSTEP]
rw [← dist_eq_norm, dist_comm]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
y : F
⊢ dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖
[PROOFSTEP]
exact (hg y).1
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
⊢ ∃ C, C > 0 ∧ ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
[PROOFSTEP]
refine' ⟨2 * C + 1, by linarith, fun y => _⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
⊢ 2 * C + 1 > 0
[PROOFSTEP]
linarith
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have hnle : ∀ n : ℕ, ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖ := by
intro n
induction' n with n IH
· simp only [one_div, Nat.zero_eq, one_mul, iterate_zero_apply, pow_zero, le_rfl]
· rw [iterate_succ']
apply le_trans (hle _) _
rw [pow_succ, mul_assoc]
apply mul_le_mul_of_nonneg_left IH
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
⊢ ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
[PROOFSTEP]
intro n
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
n : ℕ
⊢ ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
⊢ ‖h^[Nat.zero] y‖ ≤ (1 / 2) ^ Nat.zero * ‖y‖
[PROOFSTEP]
simp only [one_div, Nat.zero_eq, one_mul, iterate_zero_apply, pow_zero, le_rfl]
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
n : ℕ
IH : ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
⊢ ‖h^[Nat.succ n] y‖ ≤ (1 / 2) ^ Nat.succ n * ‖y‖
[PROOFSTEP]
rw [iterate_succ']
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
n : ℕ
IH : ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
⊢ ‖(h ∘ h^[n]) y‖ ≤ (1 / 2) ^ Nat.succ n * ‖y‖
[PROOFSTEP]
apply le_trans (hle _) _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
n : ℕ
IH : ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
⊢ 1 / 2 * ‖h^[n] y‖ ≤ (1 / 2) ^ Nat.succ n * ‖y‖
[PROOFSTEP]
rw [pow_succ, mul_assoc]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
n : ℕ
IH : ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
⊢ 1 / 2 * ‖h^[n] y‖ ≤ 1 / 2 * ((1 / 2) ^ n * ‖y‖)
[PROOFSTEP]
apply mul_le_mul_of_nonneg_left IH
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
n : ℕ
IH : ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
let u n := g (h^[n] y)
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have ule : ∀ n, ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖) := by
intro n
apply le_trans (hg _).2 _
calc
C * ‖h^[n] y‖ ≤ C * ((1 / 2) ^ n * ‖y‖) := mul_le_mul_of_nonneg_left (hnle n) C0
_ = (1 / 2) ^ n * (C * ‖y‖) := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
⊢ ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
[PROOFSTEP]
intro n
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
n : ℕ
⊢ ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
[PROOFSTEP]
apply le_trans (hg _).2 _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
n : ℕ
⊢ C * ‖h^[n] y‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
[PROOFSTEP]
calc
C * ‖h^[n] y‖ ≤ C * ((1 / 2) ^ n * ‖y‖) := mul_le_mul_of_nonneg_left (hnle n) C0
_ = (1 / 2) ^ n * (C * ‖y‖) := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
n : ℕ
⊢ C * ((1 / 2) ^ n * ‖y‖) = (1 / 2) ^ n * (C * ‖y‖)
[PROOFSTEP]
ring
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have sNu : Summable fun n => ‖u n‖ :=
by
refine' summable_of_nonneg_of_le (fun n => norm_nonneg _) ule _
exact Summable.mul_right _ (summable_geometric_of_lt_1 (by norm_num) (by norm_num))
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
⊢ Summable fun n => ‖u n‖
[PROOFSTEP]
refine' summable_of_nonneg_of_le (fun n => norm_nonneg _) ule _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
⊢ Summable fun b => (1 / 2) ^ b * (C * ‖y‖)
[PROOFSTEP]
exact Summable.mul_right _ (summable_geometric_of_lt_1 (by norm_num) (by norm_num))
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have su : Summable u := summable_of_summable_norm sNu
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
let x := tsum u
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖ :=
calc
‖x‖ ≤ ∑' n, ‖u n‖ := norm_tsum_le_tsum_norm sNu
_ ≤ ∑' n, (1 / 2) ^ n * (C * ‖y‖) := (tsum_le_tsum ule sNu (Summable.mul_right _ summable_geometric_two))
_ = (∑' n, (1 / 2) ^ n) * (C * ‖y‖) := tsum_mul_right
_ = 2 * C * ‖y‖ := by rw [tsum_geometric_two, mul_assoc]
_ ≤ 2 * C * ‖y‖ + ‖y‖ := (le_add_of_nonneg_right (norm_nonneg y))
_ = (2 * C + 1) * ‖y‖ := by ring
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
⊢ (∑' (n : ℕ), (1 / 2) ^ n) * (C * ‖y‖) = 2 * C * ‖y‖
[PROOFSTEP]
rw [tsum_geometric_two, mul_assoc]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
⊢ 2 * C * ‖y‖ + ‖y‖ = (2 * C + 1) * ‖y‖
[PROOFSTEP]
ring
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have fsumeq : ∀ n : ℕ, f (∑ i in Finset.range n, u i) = y - h^[n] y :=
by
intro n
induction' n with n IH
· simp [f.map_zero]
· rw [sum_range_succ, f.map_add, IH, iterate_succ_apply', sub_add]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
⊢ ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
[PROOFSTEP]
intro n
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
n : ℕ
⊢ ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
⊢ ↑f (∑ i in Finset.range Nat.zero, u i) = y - h^[Nat.zero] y
[PROOFSTEP]
simp [f.map_zero]
[GOAL]
case succ
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
n : ℕ
IH : ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
⊢ ↑f (∑ i in Finset.range (Nat.succ n), u i) = y - h^[Nat.succ n] y
[PROOFSTEP]
rw [sum_range_succ, f.map_add, IH, iterate_succ_apply', sub_add]
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x) := su.hasSum.tendsto_sum_nat
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have L₁ : Tendsto (fun n => f (∑ i in Finset.range n, u i)) atTop (𝓝 (f x)) := (f.continuous.tendsto _).comp this
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => ↑f (∑ i in Finset.range n, u i)) atTop (𝓝 (↑f x))
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
simp only [fsumeq] at L₁
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have L₂ : Tendsto (fun n => y - h^[n] y) atTop (𝓝 (y - 0)) :=
by
refine' tendsto_const_nhds.sub _
rw [tendsto_iff_norm_tendsto_zero]
simp only [sub_zero]
refine' squeeze_zero (fun _ => norm_nonneg _) hnle _
rw [← zero_mul ‖y‖]
refine' (_root_.tendsto_pow_atTop_nhds_0_of_lt_1 _ _).mul tendsto_const_nhds <;> norm_num
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ Tendsto (fun n => y - h^[n] y) atTop (𝓝 (y - 0))
[PROOFSTEP]
refine' tendsto_const_nhds.sub _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ Tendsto (fun n => h^[n] y) atTop (𝓝 0)
[PROOFSTEP]
rw [tendsto_iff_norm_tendsto_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ Tendsto (fun e => ‖h^[e] y - 0‖) atTop (𝓝 0)
[PROOFSTEP]
simp only [sub_zero]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ Tendsto (fun e => ‖(fun y => y - ↑f (g y))^[e] y‖) atTop (𝓝 0)
[PROOFSTEP]
refine' squeeze_zero (fun _ => norm_nonneg _) hnle _
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ Tendsto (fun t => (1 / 2) ^ t * ‖y‖) atTop (𝓝 0)
[PROOFSTEP]
rw [← zero_mul ‖y‖]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ Tendsto (fun t => (1 / 2) ^ t * ‖y‖) atTop (𝓝 (0 * ‖y‖))
[PROOFSTEP]
refine' (_root_.tendsto_pow_atTop_nhds_0_of_lt_1 _ _).mul tendsto_const_nhds
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
⊢ 1 / 2 < 1
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
L₂ : Tendsto (fun n => y - h^[n] y) atTop (𝓝 (y - 0))
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
have feq : f x = y - 0 := tendsto_nhds_unique L₁ L₂
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
L₂ : Tendsto (fun n => y - h^[n] y) atTop (𝓝 (y - 0))
feq : ↑f x = y - 0
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
rw [sub_zero] at feq
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
C : ℝ
C0 : C ≥ 0
g : F → E
hg : ∀ (y : F), dist (↑f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖
h : F → F := fun y => y - ↑f (g y)
hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖
y : F
hnle : ∀ (n : ℕ), ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖
u : ℕ → E := fun n => g (h^[n] y)
ule : ∀ (n : ℕ), ‖u n‖ ≤ (1 / 2) ^ n * (C * ‖y‖)
sNu : Summable fun n => ‖u n‖
su : Summable u
x : E := tsum u
x_ineq : ‖x‖ ≤ (2 * C + 1) * ‖y‖
fsumeq : ∀ (n : ℕ), ↑f (∑ i in Finset.range n, u i) = y - h^[n] y
this : Tendsto (fun n => ∑ i in Finset.range n, u i) atTop (𝓝 x)
L₁ : Tendsto (fun n => y - (fun y => y - ↑f (g y))^[n] y) atTop (𝓝 (↑f (∑' (n : ℕ), g ((fun y => y - ↑f (g y))^[n] y))))
L₂ : Tendsto (fun n => y - h^[n] y) atTop (𝓝 (y - 0))
feq : ↑f x = y
⊢ ∃ x, ↑f x = y ∧ ‖x‖ ≤ (2 * C + 1) * ‖y‖
[PROOFSTEP]
exact ⟨x, feq, x_ineq⟩
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
⊢ IsOpenMap ↑f
[PROOFSTEP]
intro s hs
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
⊢ IsOpen (↑f '' s)
[PROOFSTEP]
rcases exists_preimage_norm_le f surj with ⟨C, Cpos, hC⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
⊢ IsOpen (↑f '' s)
[PROOFSTEP]
refine' isOpen_iff.2 fun y yfs => _
[GOAL]
case intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
⊢ ∃ ε, ε > 0 ∧ ball y ε ⊆ ↑f '' s
[PROOFSTEP]
rcases mem_image_iff_bex.1 yfs with ⟨x, xs, fxy⟩
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
⊢ ∃ ε, ε > 0 ∧ ball y ε ⊆ ↑f '' s
[PROOFSTEP]
rcases isOpen_iff.1 hs x xs with ⟨ε, εpos, hε⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
⊢ ∃ ε, ε > 0 ∧ ball y ε ⊆ ↑f '' s
[PROOFSTEP]
refine' ⟨ε / C, div_pos εpos Cpos, fun z hz => _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
⊢ z ∈ ↑f '' s
[PROOFSTEP]
rcases hC (z - y) with ⟨w, wim, wnorm⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
⊢ z ∈ ↑f '' s
[PROOFSTEP]
have : f (x + w) = z := by rw [f.map_add, wim, fxy, add_sub_cancel'_right]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
⊢ ↑f (x + w) = z
[PROOFSTEP]
rw [f.map_add, wim, fxy, add_sub_cancel'_right]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
this : ↑f (x + w) = z
⊢ z ∈ ↑f '' s
[PROOFSTEP]
rw [← this]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
this : ↑f (x + w) = z
⊢ ↑f (x + w) ∈ ↑f '' s
[PROOFSTEP]
have : x + w ∈ ball x ε :=
calc
dist (x + w) x = ‖w‖ := by
rw [dist_eq_norm]
simp
_ ≤ C * ‖z - y‖ := wnorm
_ < C * (ε / C) := by
apply mul_lt_mul_of_pos_left _ Cpos
rwa [mem_ball, dist_eq_norm] at hz
_ = ε := mul_div_cancel' _ (ne_of_gt Cpos)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
this : ↑f (x + w) = z
⊢ dist (x + w) x = ‖w‖
[PROOFSTEP]
rw [dist_eq_norm]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
this : ↑f (x + w) = z
⊢ ‖x + w - x‖ = ‖w‖
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
this : ↑f (x + w) = z
⊢ C * ‖z - y‖ < C * (ε / C)
[PROOFSTEP]
apply mul_lt_mul_of_pos_left _ Cpos
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
this : ↑f (x + w) = z
⊢ ‖z - y‖ < ε / C
[PROOFSTEP]
rwa [mem_ball, dist_eq_norm] at hz
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
surj : Surjective ↑f
s : Set E
hs : IsOpen s
C : ℝ
Cpos : C > 0
hC : ∀ (y : F), ∃ x, ↑f x = y ∧ ‖x‖ ≤ C * ‖y‖
y : F
yfs : y ∈ ↑f '' s
x : E
xs : x ∈ s
fxy : ↑f x = y
ε : ℝ
εpos : ε > 0
hε : ball x ε ⊆ s
z : F
hz : z ∈ ball y (ε / C)
w : E
wim : ↑f w = z - y
wnorm : ‖w‖ ≤ C * ‖z - y‖
this✝ : ↑f (x + w) = z
this : x + w ∈ ball x ε
⊢ ↑f (x + w) ∈ ↑f '' s
[PROOFSTEP]
exact Set.mem_image_of_mem _ (hε this)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hsurj : LinearMap.range f = ⊤
⊢ ∃ fsymm, 0 < fsymm.nnnorm
[PROOFSTEP]
choose C hC fsymm h using exists_preimage_norm_le _ (LinearMap.range_eq_top.mp hsurj)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hsurj : LinearMap.range f = ⊤
C : ℝ
hC : C > 0
fsymm : F → E
h : ∀ (y : F), ↑f (fsymm y) = y ∧ ‖fsymm y‖ ≤ C * ‖y‖
⊢ ∃ fsymm, 0 < fsymm.nnnorm
[PROOFSTEP]
use{
toFun := fsymm
nnnorm := ⟨C, hC.lt.le⟩
bound' := fun y => (h y).2
right_inv' := fun y => (h y).1 }
[GOAL]
case h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hsurj : LinearMap.range f = ⊤
C : ℝ
hC : C > 0
fsymm : F → E
h : ∀ (y : F), ↑f (fsymm y) = y ∧ ‖fsymm y‖ ≤ C * ‖y‖
⊢ 0 <
{ toFun := fsymm, nnnorm := { val := C, property := (_ : 0 ≤ C) }, bound' := (_ : ∀ (y : F), ‖fsymm y‖ ≤ C * ‖y‖),
right_inv' := (_ : ∀ (y : F), ↑f (fsymm y) = y) }.nnnorm
[PROOFSTEP]
exact hC
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hsurj : LinearMap.range f = ⊤
⊢ 0 < (nonlinearRightInverseOfSurjective f hsurj).nnnorm
[PROOFSTEP]
rw [nonlinearRightInverseOfSurjective]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hsurj : LinearMap.range f = ⊤
⊢ 0 < (Classical.choose (_ : ∃ fsymm, 0 < fsymm.nnnorm)).nnnorm
[PROOFSTEP]
exact Classical.choose_spec (exists_nonlinearRightInverse_of_surjective f hsurj)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
e : E ≃ₗ[𝕜] F
h : Continuous ↑e
⊢ Continuous ↑(symm e)
[PROOFSTEP]
rw [continuous_def]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
e : E ≃ₗ[𝕜] F
h : Continuous ↑e
⊢ ∀ (s : Set E), IsOpen s → IsOpen (↑(symm e) ⁻¹' s)
[PROOFSTEP]
intro s hs
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
e : E ≃ₗ[𝕜] F
h : Continuous ↑e
s : Set E
hs : IsOpen s
⊢ IsOpen (↑(symm e) ⁻¹' s)
[PROOFSTEP]
rw [← e.image_eq_preimage]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
e : E ≃ₗ[𝕜] F
h : Continuous ↑e
s : Set E
hs : IsOpen s
⊢ IsOpen (↑e '' s)
[PROOFSTEP]
rw [← e.coe_coe] at h ⊢
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
e : E ≃ₗ[𝕜] F
h : Continuous ↑↑e
s : Set E
hs : IsOpen s
⊢ IsOpen (↑↑e '' s)
[PROOFSTEP]
exact ContinuousLinearMap.isOpenMap (𝕜 := 𝕜) ⟨↑e, h⟩ e.surjective s hs
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hinj : ker f = ⊥
hsurj : LinearMap.range f = ⊤
⊢ Continuous ↑(LinearEquiv.ofBijective ↑f (_ : Injective ↑↑f ∧ Surjective ↑↑f))
[PROOFSTEP]
convert f.continuous
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hinj : ker f = ⊥
hsurj : LinearMap.range f = ⊤
⊢ ↑(ofBijective f hinj hsurj) = f
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
hinj : ker f = ⊥
hsurj : LinearMap.range f = ⊤
x✝ : E
⊢ ↑↑(ofBijective f hinj hsurj) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝² : CompleteSpace F
inst✝¹ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
inst✝ : CompleteSpace { x // x ∈ G }
hker : ker f = ⊥
⊢ ker (coprod f (Submodule.subtypeL G)) = ⊥
[PROOFSTEP]
rw [ker_coprod_of_disjoint_range]
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝² : CompleteSpace F
inst✝¹ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
inst✝ : CompleteSpace { x // x ∈ G }
hker : ker f = ⊥
⊢ Submodule.prod (ker f) (ker (Submodule.subtypeL G)) = ⊥
[PROOFSTEP]
rw [hker, Submodule.ker_subtypeL, Submodule.prod_bot]
[GOAL]
case hd
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝² : CompleteSpace F
inst✝¹ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
inst✝ : CompleteSpace { x // x ∈ G }
hker : ker f = ⊥
⊢ Disjoint (LinearMap.range f) (LinearMap.range (Submodule.subtypeL G))
[PROOFSTEP]
rw [Submodule.range_subtypeL]
[GOAL]
case hd
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝² : CompleteSpace F
inst✝¹ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
inst✝ : CompleteSpace { x // x ∈ G }
hker : ker f = ⊥
⊢ Disjoint (LinearMap.range f) G
[PROOFSTEP]
exact h.disjoint
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝² : CompleteSpace F
inst✝¹ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
inst✝ : CompleteSpace { x // x ∈ G }
hker : ker f = ⊥
⊢ LinearMap.range (coprod f (Submodule.subtypeL G)) = ⊤
[PROOFSTEP]
rw [range_coprod, Submodule.range_subtypeL, h.sup_eq_top]
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝² : CompleteSpace F
inst✝¹ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
inst✝ : CompleteSpace { x // x ∈ G }
hker : ker f = ⊥
⊢ LinearMap.range f = Submodule.map (↑↑(coprodSubtypeLEquivOfIsCompl f h hker)) (Submodule.prod ⊤ ⊥)
[PROOFSTEP]
rw [coprodSubtypeLEquivOfIsCompl, ContinuousLinearEquiv.coe_ofBijective, coe_coprod, LinearMap.coprod_map_prod,
Submodule.map_bot, sup_bot_eq, Submodule.map_top]
[GOAL]
𝕜 : Type u_1
inst✝⁷ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace 𝕜 E
F : Type u_3
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝² : CompleteSpace F
inst✝¹ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
inst✝ : CompleteSpace { x // x ∈ G }
hker : ker f = ⊥
⊢ LinearMap.range f = LinearMap.range ↑f
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
hG : IsClosed ↑G
hker : ker f = ⊥
⊢ IsClosed ↑(LinearMap.range f)
[PROOFSTEP]
haveI : CompleteSpace G := hG.completeSpace_coe
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
hG : IsClosed ↑G
hker : ker f = ⊥
this : CompleteSpace { x // x ∈ G }
⊢ IsClosed ↑(LinearMap.range f)
[PROOFSTEP]
let g := coprodSubtypeLEquivOfIsCompl f h hker
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
hG : IsClosed ↑G
hker : ker f = ⊥
this : CompleteSpace { x // x ∈ G }
g : (E × { x // x ∈ G }) ≃L[𝕜] F := coprodSubtypeLEquivOfIsCompl f h hker
⊢ IsClosed ↑(LinearMap.range f)
[PROOFSTEP]
rw [range_eq_map_coprodSubtypeLEquivOfIsCompl f h hker]
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
hG : IsClosed ↑G
hker : ker f = ⊥
this : CompleteSpace { x // x ∈ G }
g : (E × { x // x ∈ G }) ≃L[𝕜] F := coprodSubtypeLEquivOfIsCompl f h hker
⊢ IsClosed ↑(Submodule.map (↑↑(coprodSubtypeLEquivOfIsCompl f h hker)) (Submodule.prod ⊤ ⊥))
[PROOFSTEP]
apply g.toHomeomorph.isClosed_image.2
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f✝ : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
f : E →L[𝕜] F
G : Submodule 𝕜 F
h : IsCompl (LinearMap.range f) G
hG : IsClosed ↑G
hker : ker f = ⊥
this : CompleteSpace { x // x ∈ G }
g : (E × { x // x ∈ G }) ≃L[𝕜] F := coprodSubtypeLEquivOfIsCompl f h hker
⊢ IsClosed ↑(Submodule.prod ⊤ ⊥)
[PROOFSTEP]
exact isClosed_univ.prod isClosed_singleton
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(graph g)
⊢ Continuous ↑g
[PROOFSTEP]
letI : CompleteSpace g.graph := completeSpace_coe_iff_isComplete.mpr hg.isComplete
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(graph g)
this : CompleteSpace { x // x ∈ graph g } := Iff.mpr completeSpace_coe_iff_isComplete (IsClosed.isComplete hg)
⊢ Continuous ↑g
[PROOFSTEP]
let φ₀ : E →ₗ[𝕜] E × F := LinearMap.id.prod g
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(graph g)
this : CompleteSpace { x // x ∈ graph g } := Iff.mpr completeSpace_coe_iff_isComplete (IsClosed.isComplete hg)
φ₀ : E →ₗ[𝕜] E × F := prod id g
⊢ Continuous ↑g
[PROOFSTEP]
have : Function.LeftInverse Prod.fst φ₀ := fun x => rfl
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(graph g)
this✝ : CompleteSpace { x // x ∈ graph g } := Iff.mpr completeSpace_coe_iff_isComplete (IsClosed.isComplete hg)
φ₀ : E →ₗ[𝕜] E × F := prod id g
this : LeftInverse Prod.fst ↑φ₀
⊢ Continuous ↑g
[PROOFSTEP]
let φ : E ≃ₗ[𝕜] g.graph := (LinearEquiv.ofLeftInverse this).trans (LinearEquiv.ofEq _ _ g.graph_eq_range_prod.symm)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(graph g)
this✝ : CompleteSpace { x // x ∈ graph g } := Iff.mpr completeSpace_coe_iff_isComplete (IsClosed.isComplete hg)
φ₀ : E →ₗ[𝕜] E × F := prod id g
this : LeftInverse Prod.fst ↑φ₀
φ : E ≃ₗ[𝕜] { x // x ∈ graph g } :=
LinearEquiv.trans (LinearEquiv.ofLeftInverse this)
(LinearEquiv.ofEq (range φ₀) (graph g) (_ : range (prod id g) = graph g))
⊢ Continuous ↑g
[PROOFSTEP]
let ψ : g.graph ≃L[𝕜] E := φ.symm.toContinuousLinearEquivOfContinuous continuous_subtype_val.fst
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(graph g)
this✝ : CompleteSpace { x // x ∈ graph g } := Iff.mpr completeSpace_coe_iff_isComplete (IsClosed.isComplete hg)
φ₀ : E →ₗ[𝕜] E × F := prod id g
this : LeftInverse Prod.fst ↑φ₀
φ : E ≃ₗ[𝕜] { x // x ∈ graph g } :=
LinearEquiv.trans (LinearEquiv.ofLeftInverse this)
(LinearEquiv.ofEq (range φ₀) (graph g) (_ : range (prod id g) = graph g))
ψ : { x // x ∈ graph g } ≃L[𝕜] E :=
LinearEquiv.toContinuousLinearEquivOfContinuous (LinearEquiv.symm φ) (_ : Continuous fun a => (↑a).fst)
⊢ Continuous ↑g
[PROOFSTEP]
exact (continuous_subtype_val.comp ψ.symm.continuous).snd
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
⊢ Continuous ↑g
[PROOFSTEP]
refine' g.continuous_of_isClosed_graph (IsSeqClosed.isClosed _)
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
⊢ IsSeqClosed ↑(graph g)
[PROOFSTEP]
rintro φ ⟨x, y⟩ hφg hφ
[GOAL]
case mk
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
φ : ℕ → E × F
x : E
y : F
hφg : ∀ (n : ℕ), φ n ∈ ↑(graph g)
hφ : Tendsto φ atTop (𝓝 (x, y))
⊢ (x, y) ∈ ↑(graph g)
[PROOFSTEP]
refine' hg (Prod.fst ∘ φ) x y ((continuous_fst.tendsto _).comp hφ) _
[GOAL]
case mk
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
φ : ℕ → E × F
x : E
y : F
hφg : ∀ (n : ℕ), φ n ∈ ↑(graph g)
hφ : Tendsto φ atTop (𝓝 (x, y))
⊢ Tendsto (↑g ∘ Prod.fst ∘ φ) atTop (𝓝 y)
[PROOFSTEP]
have : g ∘ Prod.fst ∘ φ = Prod.snd ∘ φ := by
ext n
exact (hφg n).symm
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
φ : ℕ → E × F
x : E
y : F
hφg : ∀ (n : ℕ), φ n ∈ ↑(graph g)
hφ : Tendsto φ atTop (𝓝 (x, y))
⊢ ↑g ∘ Prod.fst ∘ φ = Prod.snd ∘ φ
[PROOFSTEP]
ext n
[GOAL]
case h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
φ : ℕ → E × F
x : E
y : F
hφg : ∀ (n : ℕ), φ n ∈ ↑(graph g)
hφ : Tendsto φ atTop (𝓝 (x, y))
n : ℕ
⊢ (↑g ∘ Prod.fst ∘ φ) n = (Prod.snd ∘ φ) n
[PROOFSTEP]
exact (hφg n).symm
[GOAL]
case mk
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
φ : ℕ → E × F
x : E
y : F
hφg : ∀ (n : ℕ), φ n ∈ ↑(graph g)
hφ : Tendsto φ atTop (𝓝 (x, y))
this : ↑g ∘ Prod.fst ∘ φ = Prod.snd ∘ φ
⊢ Tendsto (↑g ∘ Prod.fst ∘ φ) atTop (𝓝 y)
[PROOFSTEP]
rw [this]
[GOAL]
case mk
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
φ : ℕ → E × F
x : E
y : F
hφg : ∀ (n : ℕ), φ n ∈ ↑(graph g)
hφ : Tendsto φ atTop (𝓝 (x, y))
this : ↑g ∘ Prod.fst ∘ φ = Prod.snd ∘ φ
⊢ Tendsto (Prod.snd ∘ φ) atTop (𝓝 y)
[PROOFSTEP]
exact (continuous_snd.tendsto _).comp hφ
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(LinearMap.graph g)
⊢ ↑(ofIsClosedGraph hg) = g
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : IsClosed ↑(LinearMap.graph g)
x✝ : E
⊢ ↑↑(ofIsClosedGraph hg) x✝ = ↑g x✝
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
⊢ ↑(ofSeqClosedGraph hg) = g
[PROOFSTEP]
ext
[GOAL]
case h
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type u_3
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
f : E →L[𝕜] F
inst✝¹ : CompleteSpace F
inst✝ : CompleteSpace E
g : E →ₗ[𝕜] F
hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (↑g ∘ u) atTop (𝓝 y) → y = ↑g x
x✝ : E
⊢ ↑↑(ofSeqClosedGraph hg) x✝ = ↑g x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Banach", "llama_tokens": 72290} |
[GOAL]
A : Type u_1
inst✝⁵ : NormedRing A
inst✝⁴ : NormedAlgebra ℂ A
inst✝³ : StarRing A
inst✝² : ContinuousStar A
inst✝¹ : CompleteSpace A
inst✝ : StarModule ℂ A
a b : { x // x ∈ selfAdjoint A }
h : Commute ↑a ↑b
⊢ expUnitary (a + b) = expUnitary a * expUnitary b
[PROOFSTEP]
ext
[GOAL]
case a
A : Type u_1
inst✝⁵ : NormedRing A
inst✝⁴ : NormedAlgebra ℂ A
inst✝³ : StarRing A
inst✝² : ContinuousStar A
inst✝¹ : CompleteSpace A
inst✝ : StarModule ℂ A
a b : { x // x ∈ selfAdjoint A }
h : Commute ↑a ↑b
⊢ ↑(expUnitary (a + b)) = ↑(expUnitary a * expUnitary b)
[PROOFSTEP]
have hcomm : Commute (I • (a : A)) (I • (b : A)) :=
by
unfold Commute SemiconjBy
simp only [h.eq, Algebra.smul_mul_assoc, Algebra.mul_smul_comm]
[GOAL]
A : Type u_1
inst✝⁵ : NormedRing A
inst✝⁴ : NormedAlgebra ℂ A
inst✝³ : StarRing A
inst✝² : ContinuousStar A
inst✝¹ : CompleteSpace A
inst✝ : StarModule ℂ A
a b : { x // x ∈ selfAdjoint A }
h : Commute ↑a ↑b
⊢ Commute (I • ↑a) (I • ↑b)
[PROOFSTEP]
unfold Commute SemiconjBy
[GOAL]
A : Type u_1
inst✝⁵ : NormedRing A
inst✝⁴ : NormedAlgebra ℂ A
inst✝³ : StarRing A
inst✝² : ContinuousStar A
inst✝¹ : CompleteSpace A
inst✝ : StarModule ℂ A
a b : { x // x ∈ selfAdjoint A }
h : Commute ↑a ↑b
⊢ I • ↑a * I • ↑b = I • ↑b * I • ↑a
[PROOFSTEP]
simp only [h.eq, Algebra.smul_mul_assoc, Algebra.mul_smul_comm]
[GOAL]
case a
A : Type u_1
inst✝⁵ : NormedRing A
inst✝⁴ : NormedAlgebra ℂ A
inst✝³ : StarRing A
inst✝² : ContinuousStar A
inst✝¹ : CompleteSpace A
inst✝ : StarModule ℂ A
a b : { x // x ∈ selfAdjoint A }
h : Commute ↑a ↑b
hcomm : Commute (I • ↑a) (I • ↑b)
⊢ ↑(expUnitary (a + b)) = ↑(expUnitary a * expUnitary b)
[PROOFSTEP]
simpa only [expUnitary_coe, AddSubgroup.coe_add, smul_add] using exp_add_of_commute hcomm
[GOAL]
A : Type u_1
inst✝⁵ : NormedRing A
inst✝⁴ : NormedAlgebra ℂ A
inst✝³ : StarRing A
inst✝² : ContinuousStar A
inst✝¹ : CompleteSpace A
inst✝ : StarModule ℂ A
a b : { x // x ∈ selfAdjoint A }
h : Commute ↑a ↑b
⊢ selfAdjoint.expUnitary a * selfAdjoint.expUnitary b = selfAdjoint.expUnitary b * selfAdjoint.expUnitary a
[PROOFSTEP]
rw [← h.expUnitary_add, ← h.symm.expUnitary_add, add_comm]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Star.Exponential", "llama_tokens": 1040} |
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
⊢ ‖U i j‖ ≤ 1
[PROOFSTEP]
have norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x, ‖U i x‖ ^ 2 :=
by
apply Multiset.single_le_sum
· intro x h_x
rw [Multiset.mem_map] at h_x
cases' h_x with a h_a
rw [← h_a.2]
apply sq_nonneg
· rw [Multiset.mem_map]
use j
simp only [eq_self_iff_true, Finset.mem_univ_val, and_self_iff, sq_eq_sq]
-- The L2 norm of a row is a diagonal entry of U * Uᴴ
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
⊢ ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
[PROOFSTEP]
apply Multiset.single_le_sum
[GOAL]
case a
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
⊢ ∀ (x : ℝ), x ∈ Multiset.map (fun x => ‖U i x‖ ^ 2) Finset.univ.val → 0 ≤ x
[PROOFSTEP]
intro x h_x
[GOAL]
case a
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
x : ℝ
h_x : x ∈ Multiset.map (fun x => ‖U i x‖ ^ 2) Finset.univ.val
⊢ 0 ≤ x
[PROOFSTEP]
rw [Multiset.mem_map] at h_x
[GOAL]
case a
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
x : ℝ
h_x : ∃ a, a ∈ Finset.univ.val ∧ ‖U i a‖ ^ 2 = x
⊢ 0 ≤ x
[PROOFSTEP]
cases' h_x with a h_a
[GOAL]
case a.intro
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
x : ℝ
a : n
h_a : a ∈ Finset.univ.val ∧ ‖U i a‖ ^ 2 = x
⊢ 0 ≤ x
[PROOFSTEP]
rw [← h_a.2]
[GOAL]
case a.intro
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
x : ℝ
a : n
h_a : a ∈ Finset.univ.val ∧ ‖U i a‖ ^ 2 = x
⊢ 0 ≤ ‖U i a‖ ^ 2
[PROOFSTEP]
apply sq_nonneg
[GOAL]
case a
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
⊢ ‖U i j‖ ^ 2 ∈ Multiset.map (fun x => ‖U i x‖ ^ 2) Finset.univ.val
[PROOFSTEP]
rw [Multiset.mem_map]
[GOAL]
case a
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
⊢ ∃ a, a ∈ Finset.univ.val ∧ ‖U i a‖ ^ 2 = ‖U i j‖ ^ 2
[PROOFSTEP]
use j
[GOAL]
case h
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
⊢ j ∈ Finset.univ.val ∧ ‖U i j‖ ^ 2 = ‖U i j‖ ^ 2
[PROOFSTEP]
simp only [eq_self_iff_true, Finset.mem_univ_val, and_self_iff, sq_eq_sq]
-- The L2 norm of a row is a diagonal entry of U * Uᴴ
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
⊢ ‖U i j‖ ≤ 1
[PROOFSTEP]
have diag_eq_norm_sum : (U * Uᴴ) i i = ∑ x : n, ‖U i x‖ ^ 2 := by
simp only [Matrix.mul_apply, Matrix.conjTranspose_apply, ← starRingEnd_apply, IsROrC.mul_conj, IsROrC.normSq_eq_def',
IsROrC.ofReal_pow];
norm_cast
-- The L2 norm of a row is a diagonal entry of U * Uᴴ, real part
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
⊢ (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
[PROOFSTEP]
simp only [Matrix.mul_apply, Matrix.conjTranspose_apply, ← starRingEnd_apply, IsROrC.mul_conj, IsROrC.normSq_eq_def',
IsROrC.ofReal_pow]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
⊢ ∑ x : n, ↑‖U i x‖ ^ 2 = ↑(∑ x : n, ‖U i x‖ ^ 2)
[PROOFSTEP]
norm_cast
-- The L2 norm of a row is a diagonal entry of U * Uᴴ, real part
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
⊢ ‖U i j‖ ≤ 1
[PROOFSTEP]
have re_diag_eq_norm_sum : IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2 :=
by
rw [IsROrC.ext_iff] at diag_eq_norm_sum
rw [diag_eq_norm_sum.1]
norm_cast
-- Since U is unitary, the diagonal entries of U * Uᴴ are all 1
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
⊢ ↑IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2
[PROOFSTEP]
rw [IsROrC.ext_iff] at diag_eq_norm_sum
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum✝ : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
diag_eq_norm_sum :
↑IsROrC.re ((U * Uᴴ) i i) = ↑IsROrC.re ↑(∑ x : n, ‖U i x‖ ^ 2) ∧
↑IsROrC.im ((U * Uᴴ) i i) = ↑IsROrC.im ↑(∑ x : n, ‖U i x‖ ^ 2)
⊢ ↑IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2
[PROOFSTEP]
rw [diag_eq_norm_sum.1]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum✝ : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
diag_eq_norm_sum :
↑IsROrC.re ((U * Uᴴ) i i) = ↑IsROrC.re ↑(∑ x : n, ‖U i x‖ ^ 2) ∧
↑IsROrC.im ((U * Uᴴ) i i) = ↑IsROrC.im ↑(∑ x : n, ‖U i x‖ ^ 2)
⊢ ↑IsROrC.re ↑(∑ x : n, ‖U i x‖ ^ 2) = ∑ x : n, ‖U i x‖ ^ 2
[PROOFSTEP]
norm_cast
-- Since U is unitary, the diagonal entries of U * Uᴴ are all 1
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
re_diag_eq_norm_sum : ↑IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2
⊢ ‖U i j‖ ≤ 1
[PROOFSTEP]
have mul_eq_one : U * Uᴴ = 1 := unitary.mul_star_self_of_mem hU
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
re_diag_eq_norm_sum : ↑IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2
mul_eq_one : U * Uᴴ = 1
⊢ ‖U i j‖ ≤ 1
[PROOFSTEP]
have diag_eq_one : IsROrC.re ((U * Uᴴ) i i) = 1 := by
simp only [mul_eq_one, eq_self_iff_true, Matrix.one_apply_eq, IsROrC.one_re]
-- Putting it all together
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
re_diag_eq_norm_sum : ↑IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2
mul_eq_one : U * Uᴴ = 1
⊢ ↑IsROrC.re ((U * Uᴴ) i i) = 1
[PROOFSTEP]
simp only [mul_eq_one, eq_self_iff_true, Matrix.one_apply_eq, IsROrC.one_re]
-- Putting it all together
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
re_diag_eq_norm_sum : ↑IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2
mul_eq_one : U * Uᴴ = 1
diag_eq_one : ↑IsROrC.re ((U * Uᴴ) i i) = 1
⊢ ‖U i j‖ ≤ 1
[PROOFSTEP]
rw [← sq_le_one_iff (norm_nonneg (U i j)), ← diag_eq_one, re_diag_eq_norm_sum]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i j : n
norm_sum : ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
diag_eq_norm_sum : (U * Uᴴ) i i = ↑(∑ x : n, ‖U i x‖ ^ 2)
re_diag_eq_norm_sum : ↑IsROrC.re ((U * Uᴴ) i i) = ∑ x : n, ‖U i x‖ ^ 2
mul_eq_one : U * Uᴴ = 1
diag_eq_one : ↑IsROrC.re ((U * Uᴴ) i i) = 1
⊢ ‖U i j‖ ^ 2 ≤ ∑ x : n, ‖U i x‖ ^ 2
[PROOFSTEP]
exact norm_sum
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
⊢ ‖U‖ ≤ 1
[PROOFSTEP]
conv =>
-- Porting note: was `simp_rw [pi_norm_le_iff_of_nonneg zero_le_one]`
rw [pi_norm_le_iff_of_nonneg zero_le_one]
intro
rw [pi_norm_le_iff_of_nonneg zero_le_one]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
| ‖U‖ ≤ 1
[PROOFSTEP]
rw [pi_norm_le_iff_of_nonneg zero_le_one]
intro
rw [pi_norm_le_iff_of_nonneg zero_le_one]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
| ‖U‖ ≤ 1
[PROOFSTEP]
rw [pi_norm_le_iff_of_nonneg zero_le_one]
intro
rw [pi_norm_le_iff_of_nonneg zero_le_one]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
| ‖U‖ ≤ 1
[PROOFSTEP]
rw [pi_norm_le_iff_of_nonneg zero_le_one]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
| ∀ (i : n), ‖U i‖ ≤ 1
[PROOFSTEP]
intro
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i✝ : n
| ‖U i✝‖ ≤ 1
[PROOFSTEP]
rw [pi_norm_le_iff_of_nonneg zero_le_one]
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
⊢ ∀ (i i_1 : n), ‖U i i_1‖ ≤ 1
[PROOFSTEP]
intros
[GOAL]
𝕜 : Type u_1
m : Type u_2
n : Type u_3
E : Type u_4
inst✝² : IsROrC 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
U : Matrix n n 𝕜
hU : U ∈ Matrix.unitaryGroup n 𝕜
i✝¹ i✝ : n
⊢ ‖U i✝¹ i✝‖ ≤ 1
[PROOFSTEP]
exact entry_norm_bound_of_unitary hU _ _
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Star.Matrix", "llama_tokens": 6349} |
[GOAL]
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
⊢ interior (↑(convexHull ℝ) (range ↑b)) = {x | ∀ (i : ι), 0 < ↑(coord b i) x}
[PROOFSTEP]
cases subsingleton_or_nontrivial ι
[GOAL]
case inl
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Subsingleton ι
⊢ interior (↑(convexHull ℝ) (range ↑b)) = {x | ∀ (i : ι), 0 < ↑(coord b i) x}
[PROOFSTEP]
have : range b = univ := AffineSubspace.eq_univ_of_subsingleton_span_eq_top (subsingleton_range _) b.tot
[GOAL]
case inl
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Subsingleton ι
this : range ↑b = univ
⊢ interior (↑(convexHull ℝ) (range ↑b)) = {x | ∀ (i : ι), 0 < ↑(coord b i) x}
[PROOFSTEP]
simp [this]
[GOAL]
case inr
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Nontrivial ι
⊢ interior (↑(convexHull ℝ) (range ↑b)) = {x | ∀ (i : ι), 0 < ↑(coord b i) x}
[PROOFSTEP]
haveI : FiniteDimensional ℝ E := b.finiteDimensional
[GOAL]
case inr
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Nontrivial ι
this : FiniteDimensional ℝ E
⊢ interior (↑(convexHull ℝ) (range ↑b)) = {x | ∀ (i : ι), 0 < ↑(coord b i) x}
[PROOFSTEP]
have : convexHull ℝ (range b) = ⋂ i, b.coord i ⁻¹' Ici 0 := by rw [b.convexHull_eq_nonneg_coord, setOf_forall]; rfl
[GOAL]
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Nontrivial ι
this : FiniteDimensional ℝ E
⊢ ↑(convexHull ℝ) (range ↑b) = ⋂ (i : ι), ↑(coord b i) ⁻¹' Ici 0
[PROOFSTEP]
rw [b.convexHull_eq_nonneg_coord, setOf_forall]
[GOAL]
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Nontrivial ι
this : FiniteDimensional ℝ E
⊢ ⋂ (i : ι), {x | 0 ≤ ↑(coord b i) x} = ⋂ (i : ι), ↑(coord b i) ⁻¹' Ici 0
[PROOFSTEP]
rfl
[GOAL]
case inr
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Nontrivial ι
this✝ : FiniteDimensional ℝ E
this : ↑(convexHull ℝ) (range ↑b) = ⋂ (i : ι), ↑(coord b i) ⁻¹' Ici 0
⊢ interior (↑(convexHull ℝ) (range ↑b)) = {x | ∀ (i : ι), 0 < ↑(coord b i) x}
[PROOFSTEP]
ext
[GOAL]
case inr.h
ι : Type u_1
E : Type u_2
inst✝² : Finite ι
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
b : AffineBasis ι ℝ E
h✝ : Nontrivial ι
this✝ : FiniteDimensional ℝ E
this : ↑(convexHull ℝ) (range ↑b) = ⋂ (i : ι), ↑(coord b i) ⁻¹' Ici 0
x✝ : E
⊢ x✝ ∈ interior (↑(convexHull ℝ) (range ↑b)) ↔ x✝ ∈ {x | ∀ (i : ι), 0 < ↑(coord b i) x}
[PROOFSTEP]
simp only [this, interior_iInter, ←
IsOpenMap.preimage_interior_eq_interior_preimage (isOpenMap_barycentric_coord b _) (continuous_barycentric_coord b _),
interior_Ici, mem_iInter, mem_setOf_eq, mem_Ioi, mem_preimage]
[GOAL]
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
hne : Set.Nonempty s
h : AffineIndependent ℝ Subtype.val
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
obtain ⟨q, hq⟩ := hne
[GOAL]
case intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
obtain ⟨ε, ε0, hεu⟩ := Metric.nhds_basis_closedBall.mem_iff.1 (hu.mem_nhds <| hsu hq)
[GOAL]
case intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
obtain ⟨t, ht₁, ht₂, ht₃⟩ := exists_subset_affineIndependent_affineSpan_eq_top h
[GOAL]
case intro.intro.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
let f : P → P := fun y => lineMap q y (ε / dist y q)
[GOAL]
case intro.intro.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
have hf : ∀ y, f y ∈ u := by
refine' fun y => hεu _
simp only
rw [Metric.mem_closedBall, lineMap_apply, dist_vadd_left, norm_smul, Real.norm_eq_abs, dist_eq_norm_vsub V y q,
abs_div, abs_of_pos ε0, abs_of_nonneg (norm_nonneg _), div_mul_comm]
exact mul_le_of_le_one_left ε0.le (div_self_le_one _)
[GOAL]
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
⊢ ∀ (y : P), f y ∈ u
[PROOFSTEP]
refine' fun y => hεu _
[GOAL]
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
y : P
⊢ f y ∈ Metric.closedBall q ε
[PROOFSTEP]
simp only
[GOAL]
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
y : P
⊢ ↑(lineMap q y) (ε / dist y q) ∈ Metric.closedBall q ε
[PROOFSTEP]
rw [Metric.mem_closedBall, lineMap_apply, dist_vadd_left, norm_smul, Real.norm_eq_abs, dist_eq_norm_vsub V y q, abs_div,
abs_of_pos ε0, abs_of_nonneg (norm_nonneg _), div_mul_comm]
[GOAL]
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
y : P
⊢ ‖y -ᵥ q‖ / ‖y -ᵥ q‖ * ε ≤ ε
[PROOFSTEP]
exact mul_le_of_le_one_left ε0.le (div_self_le_one _)
[GOAL]
case intro.intro.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
have hεyq : ∀ (y) (_ : y ∉ s), ε / dist y q ≠ 0 := fun y hy =>
div_ne_zero ε0.ne' (dist_ne_zero.2 (ne_of_mem_of_not_mem hq hy).symm)
[GOAL]
case intro.intro.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
classical
let w : t → ℝˣ := fun p => if hp : (p : P) ∈ s then 1 else Units.mk0 _ (hεyq (↑p) hp)
refine' ⟨Set.range fun p : t => lineMap q p (w p : ℝ), _, _, _, _⟩
· intro p hp; use⟨p, ht₁ hp⟩; simp [hp]
· rintro y ⟨⟨p, hp⟩, rfl⟩
by_cases hps : p ∈ s <;>
simp only [hps, lineMap_apply_one, Units.val_mk0, dif_neg, dif_pos, not_false_iff, Units.val_one,
Subtype.coe_mk] <;>
[exact hsu hps; exact hf p]
· exact (ht₂.units_lineMap ⟨q, ht₁ hq⟩ w).range
· rw [affineSpan_eq_affineSpan_lineMap_units (ht₁ hq) w, ht₃]
[GOAL]
case intro.intro.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
let w : t → ℝˣ := fun p => if hp : (p : P) ∈ s then 1 else Units.mk0 _ (hεyq (↑p) hp)
[GOAL]
case intro.intro.intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
[PROOFSTEP]
refine' ⟨Set.range fun p : t => lineMap q p (w p : ℝ), _, _, _, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
⊢ s ⊆ range fun p => ↑(lineMap q ↑p) ↑(w p)
[PROOFSTEP]
intro p hp
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ s
⊢ p ∈ range fun p => ↑(lineMap q ↑p) ↑(w p)
[PROOFSTEP]
use⟨p, ht₁ hp⟩
[GOAL]
case h
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ s
⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := (_ : p ∈ t) } = p
[PROOFSTEP]
simp [hp]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_2
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
⊢ (range fun p => ↑(lineMap q ↑p) ↑(w p)) ⊆ u
[PROOFSTEP]
rintro y ⟨⟨p, hp⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_2.intro.mk
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ t
⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := hp } ∈ u
[PROOFSTEP]
by_cases hps : p ∈ s <;>
simp only [hps, lineMap_apply_one, Units.val_mk0, dif_neg, dif_pos, not_false_iff, Units.val_one,
Subtype.coe_mk] <;>
[exact hsu hps; exact hf p]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_2.intro.mk
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ t
⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := hp } ∈ u
[PROOFSTEP]
by_cases hps : p ∈ s
[GOAL]
case pos
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ t
hps : p ∈ s
⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := hp } ∈ u
[PROOFSTEP]
simp only [hps, lineMap_apply_one, Units.val_mk0, dif_neg, dif_pos, not_false_iff, Units.val_one, Subtype.coe_mk]
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ t
hps : ¬p ∈ s
⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := hp } ∈ u
[PROOFSTEP]
simp only [hps, lineMap_apply_one, Units.val_mk0, dif_neg, dif_pos, not_false_iff, Units.val_one, Subtype.coe_mk]
[GOAL]
case pos
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ t
hps : p ∈ s
⊢ p ∈ u
[PROOFSTEP]
exact hsu hps
[GOAL]
case neg
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
p : P
hp : p ∈ t
hps : ¬p ∈ s
⊢ ↑(lineMap q p) (ε / dist p q) ∈ u
[PROOFSTEP]
exact hf p
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_3
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
⊢ AffineIndependent ℝ Subtype.val
[PROOFSTEP]
exact (ht₂.units_lineMap ⟨q, ht₁ hq⟩ w).range
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_4
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
s u : Set P
hu : IsOpen u
hsu : s ⊆ u
h : AffineIndependent ℝ Subtype.val
q : P
hq : q ∈ s
ε : ℝ
ε0 : 0 < ε
hεu : Metric.closedBall q ε ⊆ u
t : Set P
ht₁ : s ⊆ t
ht₂ : AffineIndependent ℝ fun p => ↑p
ht₃ : affineSpan ℝ t = ⊤
f : P → P := fun y => ↑(lineMap q y) (ε / dist y q)
hf : ∀ (y : P), f y ∈ u
hεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0
w : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)
⊢ affineSpan ℝ (range fun p => ↑(lineMap q ↑p) ↑(w p)) = ⊤
[PROOFSTEP]
rw [affineSpan_eq_affineSpan_lineMap_units (ht₁ hq) w, ht₃]
[GOAL]
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
u : Set P
hu : IsOpen u
hne : Set.Nonempty u
⊢ ∃ s x, AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ s = ⊤
[PROOFSTEP]
rcases hne with ⟨x, hx⟩
[GOAL]
case intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
u : Set P
hu : IsOpen u
x : P
hx : x ∈ u
⊢ ∃ s x, AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ s = ⊤
[PROOFSTEP]
rcases hu.exists_between_affineIndependent_span_eq_top (singleton_subset_iff.mpr hx) (singleton_nonempty _)
(affineIndependent_of_subsingleton _ _) with
⟨s, -, hsu, hs⟩
[GOAL]
case intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : NormedSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
u : Set P
hu : IsOpen u
x : P
hx : x ∈ u
s : Set P
hsu : s ⊆ u
hs : AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ s = ⊤
⊢ ∃ s x, AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ s = ⊤
[PROOFSTEP]
exact ⟨s, hsu, hs⟩
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
ι : Type u_3
inst✝ : Fintype ι
b : AffineBasis ι ℝ V
⊢ Finset.centroid ℝ Finset.univ ↑b ∈ interior (↑(convexHull ℝ) (range ↑b))
[PROOFSTEP]
haveI := b.nonempty
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
ι : Type u_3
inst✝ : Fintype ι
b : AffineBasis ι ℝ V
this : Nonempty ι
⊢ Finset.centroid ℝ Finset.univ ↑b ∈ interior (↑(convexHull ℝ) (range ↑b))
[PROOFSTEP]
simp only [b.interior_convexHull, mem_setOf_eq, b.coord_apply_centroid (Finset.mem_univ _), inv_pos, Nat.cast_pos,
Finset.card_pos, Finset.univ_nonempty, forall_true_iff]
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
⊢ Set.Nonempty (interior (↑(convexHull ℝ) s)) ↔ affineSpan ℝ s = ⊤
[PROOFSTEP]
refine' ⟨affineSpan_eq_top_of_nonempty_interior, fun h => _⟩
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
h : affineSpan ℝ s = ⊤
⊢ Set.Nonempty (interior (↑(convexHull ℝ) s))
[PROOFSTEP]
obtain ⟨t, hts, b, hb⟩ := AffineBasis.exists_affine_subbasis h
[GOAL]
case intro.intro.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
h : affineSpan ℝ s = ⊤
t : Set V
hts : t ⊆ s
b : AffineBasis ↑t ℝ V
hb : ↑b = Subtype.val
⊢ Set.Nonempty (interior (↑(convexHull ℝ) s))
[PROOFSTEP]
suffices (interior (convexHull ℝ (range b))).Nonempty
by
rw [hb, Subtype.range_coe_subtype, setOf_mem_eq] at this
refine' this.mono _
mono*
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
h : affineSpan ℝ s = ⊤
t : Set V
hts : t ⊆ s
b : AffineBasis ↑t ℝ V
hb : ↑b = Subtype.val
this : Set.Nonempty (interior (↑(convexHull ℝ) (range ↑b)))
⊢ Set.Nonempty (interior (↑(convexHull ℝ) s))
[PROOFSTEP]
rw [hb, Subtype.range_coe_subtype, setOf_mem_eq] at this
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
h : affineSpan ℝ s = ⊤
t : Set V
hts : t ⊆ s
b : AffineBasis ↑t ℝ V
hb : ↑b = Subtype.val
this : Set.Nonempty (interior (↑(convexHull ℝ) t))
⊢ Set.Nonempty (interior (↑(convexHull ℝ) s))
[PROOFSTEP]
refine' this.mono _
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
h : affineSpan ℝ s = ⊤
t : Set V
hts : t ⊆ s
b : AffineBasis ↑t ℝ V
hb : ↑b = Subtype.val
this : Set.Nonempty (interior (↑(convexHull ℝ) t))
⊢ interior (↑(convexHull ℝ) t) ⊆ interior (↑(convexHull ℝ) s)
[PROOFSTEP]
mono*
[GOAL]
case intro.intro.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
h : affineSpan ℝ s = ⊤
t : Set V
hts : t ⊆ s
b : AffineBasis ↑t ℝ V
hb : ↑b = Subtype.val
⊢ Set.Nonempty (interior (↑(convexHull ℝ) (range ↑b)))
[PROOFSTEP]
lift t to Finset V using b.finite_set
[GOAL]
case intro.intro.intro.intro
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
h : affineSpan ℝ s = ⊤
t : Finset V
hts : ↑t ⊆ s
b : AffineBasis ↑↑t ℝ V
hb : ↑b = Subtype.val
⊢ Set.Nonempty (interior (↑(convexHull ℝ) (range ↑b)))
[PROOFSTEP]
exact ⟨_, b.centroid_mem_interior_convexHull⟩
[GOAL]
V : Type u_1
P : Type u_2
inst✝⁴ : NormedAddCommGroup V
inst✝³ : NormedSpace ℝ V
inst✝² : MetricSpace P
inst✝¹ : NormedAddTorsor V P
inst✝ : FiniteDimensional ℝ V
s : Set V
hs : Convex ℝ s
⊢ Set.Nonempty (interior s) ↔ affineSpan ℝ s = ⊤
[PROOFSTEP]
rw [← interior_convexHull_nonempty_iff_affineSpan_eq_top, hs.convexHull_eq]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.AddTorsorBases", "llama_tokens": 13239} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
s : Set E
⊢ EMetric.diam (c • s) = ‖c‖₊ • EMetric.diam s
[PROOFSTEP]
refine' le_antisymm (ediam_smul_le c s) _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
s : Set E
⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)
[PROOFSTEP]
obtain rfl | hc := eq_or_ne c 0
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
s : Set E
⊢ ‖0‖₊ • EMetric.diam s ≤ EMetric.diam (0 • s)
[PROOFSTEP]
obtain rfl | hs := s.eq_empty_or_nonempty
[GOAL]
case inl.inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
⊢ ‖0‖₊ • EMetric.diam ∅ ≤ EMetric.diam (0 • ∅)
[PROOFSTEP]
simp
[GOAL]
case inl.inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
s : Set E
hs : Set.Nonempty s
⊢ ‖0‖₊ • EMetric.diam s ≤ EMetric.diam (0 • s)
[PROOFSTEP]
simp [zero_smul_set hs, ← Set.singleton_zero]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
s : Set E
hc : c ≠ 0
⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)
[PROOFSTEP]
have := (lipschitzWith_smul c⁻¹).ediam_image_le (c • s)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
s : Set E
hc : c ≠ 0
this : EMetric.diam ((fun x x_1 => x • x_1) c⁻¹ '' (c • s)) ≤ ↑‖c⁻¹‖₊ * EMetric.diam (c • s)
⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)
[PROOFSTEP]
rwa [← smul_eq_mul, ← ENNReal.smul_def, Set.image_smul, inv_smul_smul₀ hc s, nnnorm_inv,
ENNReal.le_inv_smul_iff (nnnorm_ne_zero_iff.mpr hc)] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
x : Set E
⊢ diam (c • x) = ‖c‖ * diam x
[PROOFSTEP]
simp_rw [diam, ediam_smul₀, ENNReal.toReal_smul, NNReal.smul_def, coe_nnnorm, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
⊢ EMetric.infEdist (c • x) (c • s) = ‖c‖₊ • EMetric.infEdist x s
[PROOFSTEP]
simp_rw [EMetric.infEdist]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
⊢ ⨅ (y : E) (_ : y ∈ c • s), edist (c • x) y = ‖c‖₊ • ⨅ (y : E) (_ : y ∈ s), edist x y
[PROOFSTEP]
have : Function.Surjective ((c • ·) : E → E) := Function.RightInverse.surjective (smul_inv_smul₀ hc)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
this : Function.Surjective fun x => c • x
⊢ ⨅ (y : E) (_ : y ∈ c • s), edist (c • x) y = ‖c‖₊ • ⨅ (y : E) (_ : y ∈ s), edist x y
[PROOFSTEP]
trans ⨅ (y) (_ : y ∈ s), ‖c‖₊ • edist x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
this : Function.Surjective fun x => c • x
⊢ ⨅ (y : E) (_ : y ∈ c • s), edist (c • x) y = ⨅ (y : E) (_ : y ∈ s), ‖c‖₊ • edist x y
[PROOFSTEP]
refine' (this.iInf_congr _ fun y => _).symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
this : Function.Surjective fun x => c • x
y : E
⊢ ⨅ (_ : c • y ∈ c • s), edist (c • x) (c • y) = ⨅ (_ : y ∈ s), ‖c‖₊ • edist x y
[PROOFSTEP]
simp_rw [smul_mem_smul_set_iff₀ hc, edist_smul₀]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
this : Function.Surjective fun x => c • x
⊢ ⨅ (y : E) (_ : y ∈ s), ‖c‖₊ • edist x y = ‖c‖₊ • ⨅ (y : E) (_ : y ∈ s), edist x y
[PROOFSTEP]
have : (‖c‖₊ : ENNReal) ≠ 0 := by simp [hc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
this : Function.Surjective fun x => c • x
⊢ ↑‖c‖₊ ≠ 0
[PROOFSTEP]
simp [hc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
this✝ : Function.Surjective fun x => c • x
this : ↑‖c‖₊ ≠ 0
⊢ ⨅ (y : E) (_ : y ∈ s), ‖c‖₊ • edist x y = ‖c‖₊ • ⨅ (y : E) (_ : y ∈ s), edist x y
[PROOFSTEP]
simp_rw [ENNReal.smul_def, smul_eq_mul, ENNReal.mul_iInf_of_ne this ENNReal.coe_ne_top]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedDivisionRing 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : Module 𝕜 E
inst✝ : BoundedSMul 𝕜 E
c : 𝕜
hc : c ≠ 0
s : Set E
x : E
⊢ infDist (c • x) (c • s) = ‖c‖ * infDist x s
[PROOFSTEP]
simp_rw [Metric.infDist, infEdist_smul₀ hc s, ENNReal.toReal_smul, NNReal.smul_def, coe_nnnorm, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
⊢ c • ball x r = ball (c • x) (‖c‖ * r)
[PROOFSTEP]
ext y
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
⊢ y ∈ c • ball x r ↔ y ∈ ball (c • x) (‖c‖ * r)
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ hc]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
⊢ c⁻¹ • y ∈ ball x r ↔ y ∈ ball (c • x) (‖c‖ * r)
[PROOFSTEP]
conv_lhs => rw [← inv_smul_smul₀ hc x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
| c⁻¹ • y ∈ ball x r
[PROOFSTEP]
rw [← inv_smul_smul₀ hc x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
| c⁻¹ • y ∈ ball x r
[PROOFSTEP]
rw [← inv_smul_smul₀ hc x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
| c⁻¹ • y ∈ ball x r
[PROOFSTEP]
rw [← inv_smul_smul₀ hc x]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
⊢ c⁻¹ • y ∈ ball (c⁻¹ • c • x) r ↔ y ∈ ball (c • x) (‖c‖ * r)
[PROOFSTEP]
simp [← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hc), mul_comm _ r, dist_smul₀]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
⊢ c • ball 0 1 = ball 0 ‖c‖
[PROOFSTEP]
rw [_root_.smul_ball hc, smul_zero, mul_one]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
⊢ c • sphere x r = sphere (c • x) (‖c‖ * r)
[PROOFSTEP]
ext y
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
⊢ y ∈ c • sphere x r ↔ y ∈ sphere (c • x) (‖c‖ * r)
[PROOFSTEP]
rw [mem_smul_set_iff_inv_smul_mem₀ hc]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
⊢ c⁻¹ • y ∈ sphere x r ↔ y ∈ sphere (c • x) (‖c‖ * r)
[PROOFSTEP]
conv_lhs => rw [← inv_smul_smul₀ hc x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
| c⁻¹ • y ∈ sphere x r
[PROOFSTEP]
rw [← inv_smul_smul₀ hc x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
| c⁻¹ • y ∈ sphere x r
[PROOFSTEP]
rw [← inv_smul_smul₀ hc x]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
| c⁻¹ • y ∈ sphere x r
[PROOFSTEP]
rw [← inv_smul_smul₀ hc x]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
y : E
⊢ c⁻¹ • y ∈ sphere (c⁻¹ • c • x) r ↔ y ∈ sphere (c • x) (‖c‖ * r)
[PROOFSTEP]
simp only [mem_sphere, dist_smul₀, norm_inv, ← div_eq_inv_mul, div_eq_iff (norm_pos_iff.2 hc).ne', mul_comm r]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
hc : c ≠ 0
x : E
r : ℝ
⊢ c • closedBall x r = closedBall (c • x) (‖c‖ * r)
[PROOFSTEP]
simp only [← ball_union_sphere, Set.smul_set_union, _root_.smul_ball hc, smul_sphere' hc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
⊢ ∀ᶠ (r : 𝕜) in 𝓝 0, {x} + r • s ⊆ u
[PROOFSTEP]
obtain ⟨ε, εpos, hε⟩ : ∃ ε : ℝ, 0 < ε ∧ closedBall x ε ⊆ u := nhds_basis_closedBall.mem_iff.1 hu
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
⊢ ∀ᶠ (r : 𝕜) in 𝓝 0, {x} + r • s ⊆ u
[PROOFSTEP]
obtain ⟨R, Rpos, hR⟩ : ∃ R : ℝ, 0 < R ∧ s ⊆ closedBall 0 R := hs.subset_ball_lt 0 0
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
⊢ ∀ᶠ (r : 𝕜) in 𝓝 0, {x} + r • s ⊆ u
[PROOFSTEP]
have : Metric.closedBall (0 : 𝕜) (ε / R) ∈ 𝓝 (0 : 𝕜) := closedBall_mem_nhds _ (div_pos εpos Rpos)
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
⊢ ∀ᶠ (r : 𝕜) in 𝓝 0, {x} + r • s ⊆ u
[PROOFSTEP]
filter_upwards [this] with r hr
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
⊢ {x} + r • s ⊆ u
[PROOFSTEP]
simp only [image_add_left, singleton_add]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
⊢ (fun x_1 => -x + x_1) ⁻¹' (r • s) ⊆ u
[PROOFSTEP]
intro y hy
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
⊢ y ∈ u
[PROOFSTEP]
obtain ⟨z, zs, hz⟩ : ∃ z : E, z ∈ s ∧ r • z = -x + y := by simpa [mem_smul_set] using hy
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
⊢ ∃ z, z ∈ s ∧ r • z = -x + y
[PROOFSTEP]
simpa [mem_smul_set] using hy
[GOAL]
case h.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
z : E
zs : z ∈ s
hz : r • z = -x + y
⊢ y ∈ u
[PROOFSTEP]
have I : ‖r • z‖ ≤ ε :=
calc
‖r • z‖ = ‖r‖ * ‖z‖ := norm_smul _ _
_ ≤ ε / R * R :=
(mul_le_mul (mem_closedBall_zero_iff.1 hr) (mem_closedBall_zero_iff.1 (hR zs)) (norm_nonneg _)
(div_pos εpos Rpos).le)
_ = ε := by field_simp [Rpos.ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
z : E
zs : z ∈ s
hz : r • z = -x + y
⊢ ε / R * R = ε
[PROOFSTEP]
field_simp [Rpos.ne']
[GOAL]
case h.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
z : E
zs : z ∈ s
hz : r • z = -x + y
I : ‖r • z‖ ≤ ε
⊢ y ∈ u
[PROOFSTEP]
have : y = x + r • z := by simp only [hz, add_neg_cancel_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
z : E
zs : z ∈ s
hz : r • z = -x + y
I : ‖r • z‖ ≤ ε
⊢ y = x + r • z
[PROOFSTEP]
simp only [hz, add_neg_cancel_left]
[GOAL]
case h.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this✝ : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
z : E
zs : z ∈ s
hz : r • z = -x + y
I : ‖r • z‖ ≤ ε
this : y = x + r • z
⊢ y ∈ u
[PROOFSTEP]
apply hε
[GOAL]
case h.intro.intro.a
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
s : Set E
hs : Metric.Bounded s
u : Set E
hu : u ∈ 𝓝 x
ε : ℝ
εpos : 0 < ε
hε : closedBall x ε ⊆ u
R : ℝ
Rpos : 0 < R
hR : s ⊆ closedBall 0 R
this✝ : closedBall 0 (ε / R) ∈ 𝓝 0
r : 𝕜
hr : r ∈ closedBall 0 (ε / R)
y : E
hy : y ∈ (fun x_1 => -x + x_1) ⁻¹' (r • s)
z : E
zs : z ∈ s
hz : r • z = -x + y
I : ‖r • z‖ ≤ ε
this : y = x + r • z
⊢ y ∈ closedBall x ε
[PROOFSTEP]
simpa only [this, dist_eq_norm, add_sub_cancel', mem_closedBall] using I
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε r : ℝ
hr : 0 < r
⊢ r • ball 0 1 = ball 0 r
[PROOFSTEP]
rw [smul_unitBall hr.ne', Real.norm_of_nonneg hr.le]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
x z : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∃ y, dist x y = b * dist x z ∧ dist y z = a * dist x z
[PROOFSTEP]
use a • x + b • z
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
x z : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ dist x (a • x + b • z) = b * dist x z ∧ dist (a • x + b • z) z = a * dist x z
[PROOFSTEP]
nth_rw 1 [← one_smul ℝ x]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
x z : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ dist (1 • x) (a • x + b • z) = b * dist x z ∧ dist (a • x + b • z) z = a * dist x z
[PROOFSTEP]
nth_rw 4 [← one_smul ℝ z]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
x z : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ dist (1 • x) (a • x + b • z) = b * dist x z ∧ dist (a • x + b • z) (1 • z) = a * dist x z
[PROOFSTEP]
simp [dist_eq_norm, ← hab, add_smul, ← smul_sub, norm_smul_of_nonneg, ha, hb]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : dist x z ≤ ε + δ
⊢ ∃ y, dist x y ≤ δ ∧ dist y z ≤ ε
[PROOFSTEP]
obtain rfl | hε' := hε.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ 0
h : dist x z ≤ 0 + δ
⊢ ∃ y, dist x y ≤ δ ∧ dist y z ≤ 0
[PROOFSTEP]
exact ⟨z, by rwa [zero_add] at h , (dist_self _).le⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ 0
h : dist x z ≤ 0 + δ
⊢ dist x z ≤ δ
[PROOFSTEP]
rwa [zero_add] at h
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : dist x z ≤ ε + δ
hε' : 0 < ε
⊢ ∃ y, dist x y ≤ δ ∧ dist y z ≤ ε
[PROOFSTEP]
have hεδ := add_pos_of_pos_of_nonneg hε' hδ
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : dist x z ≤ ε + δ
hε' : 0 < ε
hεδ : 0 < ε + δ
⊢ ∃ y, dist x y ≤ δ ∧ dist y z ≤ ε
[PROOFSTEP]
refine'
(exists_dist_eq x z (div_nonneg hε <| add_nonneg hε hδ) (div_nonneg hδ <| add_nonneg hε hδ) <| by
rw [← add_div, div_self hεδ.ne']).imp
fun y hy => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : dist x z ≤ ε + δ
hε' : 0 < ε
hεδ : 0 < ε + δ
⊢ ε / (ε + δ) + δ / (ε + δ) = 1
[PROOFSTEP]
rw [← add_div, div_self hεδ.ne']
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : dist x z ≤ ε + δ
hε' : 0 < ε
hεδ : 0 < ε + δ
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x y ≤ δ ∧ dist y z ≤ ε
[PROOFSTEP]
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : dist x z ≤ ε + δ
hε' : 0 < ε
hεδ : 0 < ε + δ
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x z / (ε + δ) * δ ≤ δ ∧ dist x z / (ε + δ) * ε ≤ ε
[PROOFSTEP]
rw [← div_le_one hεδ] at h
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : dist x z / (ε + δ) ≤ 1
hε' : 0 < ε
hεδ : 0 < ε + δ
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x z / (ε + δ) * δ ≤ δ ∧ dist x z / (ε + δ) * ε ≤ ε
[PROOFSTEP]
exact ⟨mul_le_of_le_one_left hδ h, mul_le_of_le_one_left hε h⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 < ε
h : dist x z < ε + δ
⊢ ∃ y, dist x y ≤ δ ∧ dist y z < ε
[PROOFSTEP]
refine'
(exists_dist_eq x z (div_nonneg hε.le <| add_nonneg hε.le hδ) (div_nonneg hδ <| add_nonneg hε.le hδ) <| by
rw [← add_div, div_self (add_pos_of_pos_of_nonneg hε hδ).ne']).imp
fun y hy => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 < ε
h : dist x z < ε + δ
⊢ ε / (ε + δ) + δ / (ε + δ) = 1
[PROOFSTEP]
rw [← add_div, div_self (add_pos_of_pos_of_nonneg hε hδ).ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 < ε
h : dist x z < ε + δ
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x y ≤ δ ∧ dist y z < ε
[PROOFSTEP]
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 < ε
h : dist x z < ε + δ
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x z / (ε + δ) * δ ≤ δ ∧ dist x z / (ε + δ) * ε < ε
[PROOFSTEP]
rw [← div_lt_one (add_pos_of_pos_of_nonneg hε hδ)] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 < ε
h : dist x z / (ε + δ) < 1
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x z / (ε + δ) * δ ≤ δ ∧ dist x z / (ε + δ) * ε < ε
[PROOFSTEP]
exact ⟨mul_le_of_le_one_left hδ h.le, mul_lt_of_lt_one_left hε h⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : dist x z < ε + δ
⊢ ∃ y, dist x y < δ ∧ dist y z ≤ ε
[PROOFSTEP]
obtain ⟨y, yz, xy⟩ := exists_dist_le_lt hε hδ (show dist z x < δ + ε by simpa only [dist_comm, add_comm] using h)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : dist x z < ε + δ
⊢ dist z x < δ + ε
[PROOFSTEP]
simpa only [dist_comm, add_comm] using h
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : dist x z < ε + δ
y : E
yz : dist z y ≤ ε
xy : dist y x < δ
⊢ ∃ y, dist x y < δ ∧ dist y z ≤ ε
[PROOFSTEP]
exact ⟨y, by simp [dist_comm x y, dist_comm y z, *]⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : dist x z < ε + δ
y : E
yz : dist z y ≤ ε
xy : dist y x < δ
⊢ dist x y < δ ∧ dist y z ≤ ε
[PROOFSTEP]
simp [dist_comm x y, dist_comm y z, *]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : dist x z < ε + δ
⊢ ∃ y, dist x y < δ ∧ dist y z < ε
[PROOFSTEP]
refine'
(exists_dist_eq x z (div_nonneg hε.le <| add_nonneg hε.le hδ.le) (div_nonneg hδ.le <| add_nonneg hε.le hδ.le) <| by
rw [← add_div, div_self (add_pos hε hδ).ne']).imp
fun y hy => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : dist x z < ε + δ
⊢ ε / (ε + δ) + δ / (ε + δ) = 1
[PROOFSTEP]
rw [← add_div, div_self (add_pos hε hδ).ne']
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : dist x z < ε + δ
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x y < δ ∧ dist y z < ε
[PROOFSTEP]
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : dist x z < ε + δ
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x z / (ε + δ) * δ < δ ∧ dist x z / (ε + δ) * ε < ε
[PROOFSTEP]
rw [← div_lt_one (add_pos hε hδ)] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y✝ z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : dist x z / (ε + δ) < 1
y : E
hy : dist x y = δ / (ε + δ) * dist x z ∧ dist y z = ε / (ε + δ) * dist x z
⊢ dist x z / (ε + δ) * δ < δ ∧ dist x z / (ε + δ) * ε < ε
[PROOFSTEP]
exact ⟨mul_lt_of_lt_one_left hδ h, mul_lt_of_lt_one_left hε h⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
⊢ Disjoint (ball x δ) (ball y ε) ↔ δ + ε ≤ dist x y
[PROOFSTEP]
refine' ⟨fun h => le_of_not_lt fun hxy => _, ball_disjoint_ball⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : Disjoint (ball x δ) (ball y ε)
hxy : dist x y < δ + ε
⊢ False
[PROOFSTEP]
rw [add_comm] at hxy
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : Disjoint (ball x δ) (ball y ε)
hxy : dist x y < ε + δ
⊢ False
[PROOFSTEP]
obtain ⟨z, hxz, hzy⟩ := exists_dist_lt_lt hδ hε hxy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z✝ : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : Disjoint (ball x δ) (ball y ε)
hxy : dist x y < ε + δ
z : E
hxz : dist x z < δ
hzy : dist z y < ε
⊢ False
[PROOFSTEP]
rw [dist_comm] at hxz
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z✝ : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : Disjoint (ball x δ) (ball y ε)
hxy : dist x y < ε + δ
z : E
hxz : dist z x < δ
hzy : dist z y < ε
⊢ False
[PROOFSTEP]
exact h.le_bot ⟨hxz, hzy⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
⊢ Disjoint (ball x δ) (closedBall y ε) ↔ δ + ε ≤ dist x y
[PROOFSTEP]
refine' ⟨fun h => le_of_not_lt fun hxy => _, ball_disjoint_closedBall⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : Disjoint (ball x δ) (closedBall y ε)
hxy : dist x y < δ + ε
⊢ False
[PROOFSTEP]
rw [add_comm] at hxy
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : Disjoint (ball x δ) (closedBall y ε)
hxy : dist x y < ε + δ
⊢ False
[PROOFSTEP]
obtain ⟨z, hxz, hzy⟩ := exists_dist_lt_le hδ hε hxy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z✝ : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : Disjoint (ball x δ) (closedBall y ε)
hxy : dist x y < ε + δ
z : E
hxz : dist x z < δ
hzy : dist z y ≤ ε
⊢ False
[PROOFSTEP]
rw [dist_comm] at hxz
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z✝ : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 ≤ ε
h : Disjoint (ball x δ) (closedBall y ε)
hxy : dist x y < ε + δ
z : E
hxz : dist z x < δ
hzy : dist z y ≤ ε
⊢ False
[PROOFSTEP]
exact h.le_bot ⟨hxz, hzy⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 < ε
⊢ Disjoint (closedBall x δ) (ball y ε) ↔ δ + ε ≤ dist x y
[PROOFSTEP]
rw [disjoint_comm, disjoint_ball_closedBall_iff hε hδ, add_comm, dist_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
⊢ Disjoint (closedBall x δ) (closedBall y ε) ↔ δ + ε < dist x y
[PROOFSTEP]
refine' ⟨fun h => lt_of_not_ge fun hxy => _, closedBall_disjoint_closedBall⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : Disjoint (closedBall x δ) (closedBall y ε)
hxy : δ + ε ≥ dist x y
⊢ False
[PROOFSTEP]
rw [add_comm] at hxy
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : Disjoint (closedBall x δ) (closedBall y ε)
hxy : ε + δ ≥ dist x y
⊢ False
[PROOFSTEP]
obtain ⟨z, hxz, hzy⟩ := exists_dist_le_le hδ hε hxy
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z✝ : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : Disjoint (closedBall x δ) (closedBall y ε)
hxy : ε + δ ≥ dist x y
z : E
hxz : dist x z ≤ δ
hzy : dist z y ≤ ε
⊢ False
[PROOFSTEP]
rw [dist_comm] at hxz
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z✝ : E
δ ε : ℝ
hδ : 0 ≤ δ
hε : 0 ≤ ε
h : Disjoint (closedBall x δ) (closedBall y ε)
hxy : ε + δ ≥ dist x y
z : E
hxz : dist z x ≤ δ
hzy : dist z y ≤ ε
⊢ False
[PROOFSTEP]
exact h.le_bot ⟨hxz, hzy⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
⊢ infEdist x (thickening δ s) = infEdist x s - ENNReal.ofReal δ
[PROOFSTEP]
obtain hs | hs := lt_or_le (infEdist x s) (ENNReal.ofReal δ)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : infEdist x s < ENNReal.ofReal δ
⊢ infEdist x (thickening δ s) = infEdist x s - ENNReal.ofReal δ
[PROOFSTEP]
rw [infEdist_zero_of_mem, tsub_eq_zero_of_le hs.le]
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : infEdist x s < ENNReal.ofReal δ
⊢ x ∈ thickening δ s
[PROOFSTEP]
exact hs
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
⊢ infEdist x (thickening δ s) = infEdist x s - ENNReal.ofReal δ
[PROOFSTEP]
refine' (tsub_le_iff_right.2 infEdist_le_infEdist_thickening_add).antisymm' _
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
⊢ infEdist x (thickening δ s) ≤ infEdist x s - ENNReal.ofReal δ
[PROOFSTEP]
refine' le_sub_of_add_le_right ofReal_ne_top _
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
⊢ infEdist x (thickening δ s) + ENNReal.ofReal δ ≤ infEdist x s
[PROOFSTEP]
refine' le_infEdist.2 fun z hz => le_of_forall_lt' fun r h => _
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : ℝ≥0∞
h : edist x z < r
⊢ infEdist x (thickening δ s) + ENNReal.ofReal δ < r
[PROOFSTEP]
cases' r with r
[GOAL]
case inr.none
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
h : edist x z < none
⊢ infEdist x (thickening δ s) + ENNReal.ofReal δ < none
[PROOFSTEP]
exact add_lt_top.2 ⟨lt_top_iff_ne_top.2 <| infEdist_ne_top ⟨z, self_subset_thickening hδ _ hz⟩, ofReal_lt_top⟩
[GOAL]
case inr.some
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : edist x z < Option.some r
⊢ infEdist x (thickening δ s) + ENNReal.ofReal δ < Option.some r
[PROOFSTEP]
have hr : 0 < ↑r - δ := by
refine' sub_pos_of_lt _
have := hs.trans_lt ((infEdist_le_edist_of_mem hz).trans_lt h)
rw [ofReal_eq_coe_nnreal hδ.le, some_eq_coe] at this
exact_mod_cast this
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : edist x z < Option.some r
⊢ 0 < ↑r - δ
[PROOFSTEP]
refine' sub_pos_of_lt _
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : edist x z < Option.some r
⊢ δ < ↑r
[PROOFSTEP]
have := hs.trans_lt ((infEdist_le_edist_of_mem hz).trans_lt h)
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : edist x z < Option.some r
this : ENNReal.ofReal δ < Option.some r
⊢ δ < ↑r
[PROOFSTEP]
rw [ofReal_eq_coe_nnreal hδ.le, some_eq_coe] at this
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : edist x z < Option.some r
this : ↑{ val := δ, property := (_ : 0 ≤ δ) } < ↑r
⊢ δ < ↑r
[PROOFSTEP]
exact_mod_cast this
[GOAL]
case inr.some
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : edist x z < Option.some r
hr : 0 < ↑r - δ
⊢ infEdist x (thickening δ s) + ENNReal.ofReal δ < Option.some r
[PROOFSTEP]
rw [some_eq_coe, edist_lt_coe, ← dist_lt_coe, ← add_sub_cancel'_right δ ↑r] at h
[GOAL]
case inr.some
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : dist x z < δ + (↑r - δ)
hr : 0 < ↑r - δ
⊢ infEdist x (thickening δ s) + ENNReal.ofReal δ < Option.some r
[PROOFSTEP]
obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hr hδ h
[GOAL]
case inr.some.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y✝ z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : dist x z < δ + (↑r - δ)
hr : 0 < ↑r - δ
y : E
hxy : dist x y < ↑r - δ
hyz : dist y z < δ
⊢ infEdist x (thickening δ s) + ENNReal.ofReal δ < Option.some r
[PROOFSTEP]
refine'
(ENNReal.add_lt_add_right ofReal_ne_top <|
infEdist_lt_iff.2 ⟨_, mem_thickening_iff.2 ⟨_, hz, hyz⟩, edist_lt_ofReal.2 hxy⟩).trans_le
_
[GOAL]
case inr.some.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y✝ z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : dist x z < δ + (↑r - δ)
hr : 0 < ↑r - δ
y : E
hxy : dist x y < ↑r - δ
hyz : dist y z < δ
⊢ ENNReal.ofReal (↑r - δ) + ENNReal.ofReal δ ≤ Option.some r
[PROOFSTEP]
rw [← ofReal_add hr.le hδ.le, sub_add_cancel, ofReal_coe_nnreal]
[GOAL]
case inr.some.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y✝ z✝ : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
x : E
hs : ENNReal.ofReal δ ≤ infEdist x s
z : E
hz : z ∈ s
r : NNReal
h : dist x z < δ + (↑r - δ)
hr : 0 < ↑r - δ
y : E
hxy : dist x y < ↑r - δ
hyz : dist y z < δ
⊢ ↑r ≤ Option.some r
[PROOFSTEP]
exact le_rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
s : Set E
x : E
⊢ x ∈ thickening (ε + δ) s → x ∈ thickening ε (thickening δ s)
[PROOFSTEP]
simp_rw [mem_thickening_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
s : Set E
x : E
⊢ (∃ z, z ∈ s ∧ dist x z < ε + δ) → ∃ z, (∃ z_1, z_1 ∈ s ∧ dist z z_1 < δ) ∧ dist x z < ε
[PROOFSTEP]
rintro ⟨z, hz, hxz⟩
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
s : Set E
x z : E
hz : z ∈ s
hxz : dist x z < ε + δ
⊢ ∃ z, (∃ z_1, z_1 ∈ s ∧ dist z z_1 < δ) ∧ dist x z < ε
[PROOFSTEP]
rw [add_comm] at hxz
[GOAL]
case intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z✝ : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
s : Set E
x z : E
hz : z ∈ s
hxz : dist x z < δ + ε
⊢ ∃ z, (∃ z_1, z_1 ∈ s ∧ dist z z_1 < δ) ∧ dist x z < ε
[PROOFSTEP]
obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hε hδ hxz
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y✝ z✝ : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
s : Set E
x z : E
hz : z ∈ s
hxz : dist x z < δ + ε
y : E
hxy : dist x y < ε
hyz : dist y z < δ
⊢ ∃ z, (∃ z_1, z_1 ∈ s ∧ dist z z_1 < δ) ∧ dist x z < ε
[PROOFSTEP]
exact ⟨y, ⟨_, hz, hyz⟩, hxy⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 < δ
s : Set E
x : E
⊢ x ∈ cthickening (ε + δ) s → x ∈ cthickening ε (thickening δ s)
[PROOFSTEP]
simp_rw [mem_cthickening_iff, ENNReal.ofReal_add hε hδ.le, infEdist_thickening hδ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 < δ
s : Set E
x : E
⊢ infEdist x s ≤ ENNReal.ofReal ε + ENNReal.ofReal δ → infEdist x s - ENNReal.ofReal δ ≤ ENNReal.ofReal ε
[PROOFSTEP]
exact tsub_le_iff_right.2
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hδ : 0 < δ
s : Set E
⊢ closure (thickening δ s) = cthickening δ s
[PROOFSTEP]
rw [← cthickening_zero, cthickening_thickening le_rfl hδ, zero_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ✝ ε δ : ℝ
s : Set E
x : E
⊢ infEdist x (cthickening δ s) = infEdist x s - ENNReal.ofReal δ
[PROOFSTEP]
obtain hδ | hδ := le_or_lt δ 0
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ✝ ε δ : ℝ
s : Set E
x : E
hδ : δ ≤ 0
⊢ infEdist x (cthickening δ s) = infEdist x s - ENNReal.ofReal δ
[PROOFSTEP]
rw [cthickening_of_nonpos hδ, infEdist_closure, ofReal_of_nonpos hδ, tsub_zero]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ✝ ε δ : ℝ
s : Set E
x : E
hδ : 0 < δ
⊢ infEdist x (cthickening δ s) = infEdist x s - ENNReal.ofReal δ
[PROOFSTEP]
rw [← closure_thickening hδ, infEdist_closure, infEdist_thickening hδ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 ≤ δ
s : Set E
⊢ thickening ε (cthickening δ s) = thickening (ε + δ) s
[PROOFSTEP]
obtain rfl | hδ := hδ.eq_or_lt
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
ε : ℝ
hε : 0 < ε
s : Set E
hδ : 0 ≤ 0
⊢ thickening ε (cthickening 0 s) = thickening (ε + 0) s
[PROOFSTEP]
rw [cthickening_zero, thickening_closure, add_zero]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 < ε
hδ✝ : 0 ≤ δ
s : Set E
hδ : 0 < δ
⊢ thickening ε (cthickening δ s) = thickening (ε + δ) s
[PROOFSTEP]
rw [← closure_thickening hδ, thickening_closure, thickening_thickening hε hδ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 ≤ δ
s : Set E
x : E
⊢ x ∈ cthickening (ε + δ) s → x ∈ cthickening ε (cthickening δ s)
[PROOFSTEP]
simp_rw [mem_cthickening_iff, ENNReal.ofReal_add hε hδ, infEdist_cthickening]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 ≤ δ
s : Set E
x : E
⊢ infEdist x s ≤ ENNReal.ofReal ε + ENNReal.ofReal δ → infEdist x s - ENNReal.ofReal δ ≤ ENNReal.ofReal ε
[PROOFSTEP]
exact tsub_le_iff_right.2
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
x : E
⊢ thickening ε (Metric.ball x δ) = Metric.ball x (ε + δ)
[PROOFSTEP]
rw [← thickening_singleton, thickening_thickening hε hδ, thickening_singleton]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 ≤ δ
x : E
⊢ thickening ε (Metric.closedBall x δ) = Metric.ball x (ε + δ)
[PROOFSTEP]
rw [← cthickening_singleton _ hδ, thickening_cthickening hε hδ, thickening_singleton]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 < δ
x : E
⊢ cthickening ε (Metric.ball x δ) = Metric.closedBall x (ε + δ)
[PROOFSTEP]
rw [← thickening_singleton, cthickening_thickening hε hδ, cthickening_singleton _ (add_nonneg hε hδ.le)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x✝ y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 ≤ δ
x : E
⊢ cthickening ε (Metric.closedBall x δ) = Metric.closedBall x (ε + δ)
[PROOFSTEP]
rw [← cthickening_singleton _ hδ, cthickening_cthickening hε hδ, cthickening_singleton _ (add_nonneg hε hδ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
a b : E
⊢ Metric.ball a ε + Metric.ball b δ = Metric.ball (a + b) (ε + δ)
[PROOFSTEP]
rw [ball_add, thickening_ball hε hδ b, Metric.vadd_ball, vadd_eq_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 < δ
a b : E
⊢ Metric.ball a ε - Metric.ball b δ = Metric.ball (a - b) (ε + δ)
[PROOFSTEP]
simp_rw [sub_eq_add_neg, neg_ball, ball_add_ball hε hδ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 ≤ δ
a b : E
⊢ Metric.ball a ε + Metric.closedBall b δ = Metric.ball (a + b) (ε + δ)
[PROOFSTEP]
rw [ball_add, thickening_closedBall hε hδ b, Metric.vadd_ball, vadd_eq_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 < ε
hδ : 0 ≤ δ
a b : E
⊢ Metric.ball a ε - Metric.closedBall b δ = Metric.ball (a - b) (ε + δ)
[PROOFSTEP]
simp_rw [sub_eq_add_neg, neg_closedBall, ball_add_closedBall hε hδ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 < δ
a b : E
⊢ Metric.closedBall a ε + Metric.ball b δ = Metric.ball (a + b) (ε + δ)
[PROOFSTEP]
rw [add_comm, ball_add_closedBall hδ hε b, add_comm, add_comm δ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : SeminormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
hε : 0 ≤ ε
hδ : 0 < δ
a b : E
⊢ Metric.closedBall a ε - Metric.ball b δ = Metric.ball (a - b) (ε + δ)
[PROOFSTEP]
simp_rw [sub_eq_add_neg, neg_ball, closedBall_add_ball hε hδ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
inst✝ : ProperSpace E
hε : 0 ≤ ε
hδ : 0 ≤ δ
a b : E
⊢ Metric.closedBall a ε + Metric.closedBall b δ = Metric.closedBall (a + b) (ε + δ)
[PROOFSTEP]
rw [(isCompact_closedBall _ _).add_closedBall hδ b, cthickening_closedBall hδ hε a, Metric.vadd_closedBall, vadd_eq_add,
add_comm, add_comm δ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : SeminormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
x y z : E
δ ε : ℝ
inst✝ : ProperSpace E
hε : 0 ≤ ε
hδ : 0 ≤ δ
a b : E
⊢ Metric.closedBall a ε - Metric.closedBall b δ = Metric.closedBall (a - b) (ε + δ)
[PROOFSTEP]
rw [sub_eq_add_neg, neg_closedBall, closedBall_add_closedBall hε hδ, sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
x : E
r : ℝ
hr : 0 ≤ r
⊢ c • closedBall x r = closedBall (c • x) (‖c‖ * r)
[PROOFSTEP]
rcases eq_or_ne c 0 with (rfl | hc)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
r : ℝ
hr : 0 ≤ r
⊢ 0 • closedBall x r = closedBall (0 • x) (‖0‖ * r)
[PROOFSTEP]
simp [hr, zero_smul_set, Set.singleton_zero, ← nonempty_closedBall]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
x : E
r : ℝ
hr : 0 ≤ r
hc : c ≠ 0
⊢ c • closedBall x r = closedBall (c • x) (‖c‖ * r)
[PROOFSTEP]
exact smul_closedBall' hc x r
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝² : NormedField 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
c : 𝕜
⊢ c • closedBall 0 1 = closedBall 0 ‖c‖
[PROOFSTEP]
rw [smul_closedBall _ _ zero_le_one, smul_zero, mul_one]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
r : ℝ
hr : 0 ≤ r
⊢ r • closedBall 0 1 = closedBall 0 r
[PROOFSTEP]
rw [smul_closedUnitBall, Real.norm_of_nonneg hr]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
⊢ Set.Nonempty (sphere x r) ↔ 0 ≤ r
[PROOFSTEP]
obtain ⟨y, hy⟩ := exists_ne x
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
y : E
hy : y ≠ x
⊢ Set.Nonempty (sphere x r) ↔ 0 ≤ r
[PROOFSTEP]
refine' ⟨fun h => nonempty_closedBall.1 (h.mono sphere_subset_closedBall), fun hr => ⟨r • ‖y - x‖⁻¹ • (y - x) + x, _⟩⟩
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
y : E
hy : y ≠ x
hr : 0 ≤ r
⊢ r • ‖y - x‖⁻¹ • (y - x) + x ∈ sphere x r
[PROOFSTEP]
have : ‖y - x‖ ≠ 0 := by simpa [sub_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
y : E
hy : y ≠ x
hr : 0 ≤ r
⊢ ‖y - x‖ ≠ 0
[PROOFSTEP]
simpa [sub_eq_zero]
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
y : E
hy : y ≠ x
hr : 0 ≤ r
this : ‖y - x‖ ≠ 0
⊢ r • ‖y - x‖⁻¹ • (y - x) + x ∈ sphere x r
[PROOFSTEP]
simp [norm_smul, this, Real.norm_of_nonneg hr]
[GOAL]
case intro
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
y : E
hy : y ≠ x
hr : 0 ≤ r
this : ‖y - x‖ ≠ 0
⊢ |r| * (‖y - x‖⁻¹ * ‖y - x‖) = r
[PROOFSTEP]
rw [inv_mul_cancel this, mul_one, abs_eq_self.mpr hr]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
c : 𝕜
x : E
r : ℝ
hr : 0 ≤ r
⊢ c • sphere x r = sphere (c • x) (‖c‖ * r)
[PROOFSTEP]
rcases eq_or_ne c 0 with (rfl | hc)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
x : E
r : ℝ
hr : 0 ≤ r
⊢ 0 • sphere x r = sphere (0 • x) (‖0‖ * r)
[PROOFSTEP]
simp [zero_smul_set, Set.singleton_zero, hr]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
inst✝⁴ : NormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedSpace ℝ E
inst✝ : Nontrivial E
c : 𝕜
x : E
r : ℝ
hr : 0 ≤ r
hc : c ≠ 0
⊢ c • sphere x r = sphere (c • x) (‖c‖ * r)
[PROOFSTEP]
exact smul_sphere' hc x r
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
r : ℝ
hr : 0 < r
x : E
⊢ x +ᵥ r • ball 0 1 = ball x r
[PROOFSTEP]
rw [smul_unitBall_of_pos hr, vadd_ball_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
inst✝³ : NormedField 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : NormedSpace ℝ E
r : ℝ
hr : 0 ≤ r
x : E
⊢ x +ᵥ r • closedBall 0 1 = closedBall x r
[PROOFSTEP]
rw [smul_closedUnitBall, Real.norm_of_nonneg hr, vadd_closedBall_zero]
| {"mathlib_filename": "Mathlib.Analysis.NormedSpace.Pointwise", "llama_tokens": 28838} |